sched: Ensure set_task_cpu() is never called on blocked tasks
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/nmi.h>
34 #include <linux/init.h>
35 #include <linux/uaccess.h>
36 #include <linux/highmem.h>
37 #include <linux/smp_lock.h>
38 #include <asm/mmu_context.h>
39 #include <linux/interrupt.h>
40 #include <linux/capability.h>
41 #include <linux/completion.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/debug_locks.h>
44 #include <linux/perf_event.h>
45 #include <linux/security.h>
46 #include <linux/notifier.h>
47 #include <linux/profile.h>
48 #include <linux/freezer.h>
49 #include <linux/vmalloc.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/pid_namespace.h>
53 #include <linux/smp.h>
54 #include <linux/threads.h>
55 #include <linux/timer.h>
56 #include <linux/rcupdate.h>
57 #include <linux/cpu.h>
58 #include <linux/cpuset.h>
59 #include <linux/percpu.h>
60 #include <linux/kthread.h>
61 #include <linux/proc_fs.h>
62 #include <linux/seq_file.h>
63 #include <linux/sysctl.h>
64 #include <linux/syscalls.h>
65 #include <linux/times.h>
66 #include <linux/tsacct_kern.h>
67 #include <linux/kprobes.h>
68 #include <linux/delayacct.h>
69 #include <linux/unistd.h>
70 #include <linux/pagemap.h>
71 #include <linux/hrtimer.h>
72 #include <linux/tick.h>
73 #include <linux/debugfs.h>
74 #include <linux/ctype.h>
75 #include <linux/ftrace.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_GROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 #ifdef CONFIG_CGROUP_SCHED
249 struct cgroup_subsys_state css;
250 #endif
251
252 #ifdef CONFIG_USER_SCHED
253 uid_t uid;
254 #endif
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
262 #endif
263
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
268 struct rt_bandwidth rt_bandwidth;
269 #endif
270
271 struct rcu_head rcu;
272 struct list_head list;
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
277 };
278
279 #ifdef CONFIG_USER_SCHED
280
281 /* Helper function to pass uid information to create_sched_user() */
282 void set_tg_uid(struct user_struct *user)
283 {
284 user->tg->uid = user->uid;
285 }
286
287 /*
288 * Root task group.
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
291 */
292 struct task_group root_task_group;
293
294 #ifdef CONFIG_FAIR_GROUP_SCHED
295 /* Default task group's sched entity on each cpu */
296 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297 /* Default task group's cfs_rq on each cpu */
298 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
300
301 #ifdef CONFIG_RT_GROUP_SCHED
302 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
304 #endif /* CONFIG_RT_GROUP_SCHED */
305 #else /* !CONFIG_USER_SCHED */
306 #define root_task_group init_task_group
307 #endif /* CONFIG_USER_SCHED */
308
309 /* task_group_lock serializes add/remove of task groups and also changes to
310 * a task group's cpu shares.
311 */
312 static DEFINE_SPINLOCK(task_group_lock);
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315
316 #ifdef CONFIG_SMP
317 static int root_task_group_empty(void)
318 {
319 return list_empty(&root_task_group.children);
320 }
321 #endif
322
323 #ifdef CONFIG_USER_SCHED
324 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
325 #else /* !CONFIG_USER_SCHED */
326 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
327 #endif /* CONFIG_USER_SCHED */
328
329 /*
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
337 #define MIN_SHARES 2
338 #define MAX_SHARES (1UL << 18)
339
340 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341 #endif
342
343 /* Default task group.
344 * Every task in system belong to this group at bootup.
345 */
346 struct task_group init_task_group;
347
348 /* return group to which a task belongs */
349 static inline struct task_group *task_group(struct task_struct *p)
350 {
351 struct task_group *tg;
352
353 #ifdef CONFIG_USER_SCHED
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
357 #elif defined(CONFIG_CGROUP_SCHED)
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
360 #else
361 tg = &init_task_group;
362 #endif
363 return tg;
364 }
365
366 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
368 {
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
372 #endif
373
374 #ifdef CONFIG_RT_GROUP_SCHED
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
377 #endif
378 }
379
380 #else
381
382 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
383 static inline struct task_group *task_group(struct task_struct *p)
384 {
385 return NULL;
386 }
387
388 #endif /* CONFIG_GROUP_SCHED */
389
390 /* CFS-related fields in a runqueue */
391 struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
395 u64 exec_clock;
396 u64 min_vruntime;
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
408 struct sched_entity *curr, *next, *last;
409
410 unsigned int nr_spread_over;
411
412 #ifdef CONFIG_FAIR_GROUP_SCHED
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
425
426 #ifdef CONFIG_SMP
427 /*
428 * the part of load.weight contributed by tasks
429 */
430 unsigned long task_weight;
431
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
439
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
449 #endif
450 #endif
451 };
452
453 /* Real-Time classes' related field in a runqueue: */
454 struct rt_rq {
455 struct rt_prio_array active;
456 unsigned long rt_nr_running;
457 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
458 struct {
459 int curr; /* highest queued rt task prio */
460 #ifdef CONFIG_SMP
461 int next; /* next highest */
462 #endif
463 } highest_prio;
464 #endif
465 #ifdef CONFIG_SMP
466 unsigned long rt_nr_migratory;
467 unsigned long rt_nr_total;
468 int overloaded;
469 struct plist_head pushable_tasks;
470 #endif
471 int rt_throttled;
472 u64 rt_time;
473 u64 rt_runtime;
474 /* Nests inside the rq lock: */
475 raw_spinlock_t rt_runtime_lock;
476
477 #ifdef CONFIG_RT_GROUP_SCHED
478 unsigned long rt_nr_boosted;
479
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484 #endif
485 };
486
487 #ifdef CONFIG_SMP
488
489 /*
490 * We add the notion of a root-domain which will be used to define per-domain
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
496 */
497 struct root_domain {
498 atomic_t refcount;
499 cpumask_var_t span;
500 cpumask_var_t online;
501
502 /*
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
506 cpumask_var_t rto_mask;
507 atomic_t rto_count;
508 #ifdef CONFIG_SMP
509 struct cpupri cpupri;
510 #endif
511 };
512
513 /*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
517 static struct root_domain def_root_domain;
518
519 #endif
520
521 /*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
528 struct rq {
529 /* runqueue lock: */
530 raw_spinlock_t lock;
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
539 #ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541 #endif
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
548 struct rt_rq rt;
549
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
569
570 u64 clock;
571
572 atomic_t nr_iowait;
573
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
577
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
586
587 unsigned long avg_load_per_task;
588
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
591
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
597
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
609
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
615
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
618
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
623
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
627
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
631 };
632
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
634
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
637 {
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
639 }
640
641 static inline int cpu_of(struct rq *rq)
642 {
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
648 }
649
650 /*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
659
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
665
666 inline void update_rq_clock(struct rq *rq)
667 {
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669 }
670
671 /*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
679
680 /**
681 * runqueue_is_locked
682 * @cpu: the processor in question.
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
688 int runqueue_is_locked(int cpu)
689 {
690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
691 }
692
693 /*
694 * Debugging: various feature bits
695 */
696
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
700 enum {
701 #include "sched_features.h"
702 };
703
704 #undef SCHED_FEAT
705
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
711 0;
712
713 #undef SCHED_FEAT
714
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
718
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
722 };
723
724 #undef SCHED_FEAT
725
726 static int sched_feat_show(struct seq_file *m, void *v)
727 {
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
734 }
735 seq_puts(m, "\n");
736
737 return 0;
738 }
739
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743 {
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
777 *ppos += cnt;
778
779 return cnt;
780 }
781
782 static int sched_feat_open(struct inode *inode, struct file *filp)
783 {
784 return single_open(filp, sched_feat_show, NULL);
785 }
786
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793 };
794
795 static __init int sched_init_debug(void)
796 {
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801 }
802 late_initcall(sched_init_debug);
803
804 #endif
805
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808 /*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814 /*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
820
821 /*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826 unsigned int sysctl_sched_shares_thresh = 4;
827
828 /*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
836 /*
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
839 */
840 unsigned int sysctl_sched_rt_period = 1000000;
841
842 static __read_mostly int scheduler_running;
843
844 /*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848 int sysctl_sched_rt_runtime = 950000;
849
850 static inline u64 global_rt_period(void)
851 {
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853 }
854
855 static inline u64 global_rt_runtime(void)
856 {
857 if (sysctl_sched_rt_runtime < 0)
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861 }
862
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
865 #endif
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
868 #endif
869
870 static inline int task_current(struct rq *rq, struct task_struct *p)
871 {
872 return rq->curr == p;
873 }
874
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq *rq, struct task_struct *p)
877 {
878 return task_current(rq, p);
879 }
880
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882 {
883 }
884
885 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
886 {
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890 #endif
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
898 raw_spin_unlock_irq(&rq->lock);
899 }
900
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904 #ifdef CONFIG_SMP
905 return p->oncpu;
906 #else
907 return task_current(rq, p);
908 #endif
909 }
910
911 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912 {
913 #ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920 #endif
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 raw_spin_unlock_irq(&rq->lock);
923 #else
924 raw_spin_unlock(&rq->lock);
925 #endif
926 }
927
928 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
929 {
930 #ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938 #endif
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
941 #endif
942 }
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944
945 /*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
949 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 __acquires(rq->lock)
951 {
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 raw_spin_unlock(&rq->lock);
958 }
959 }
960
961 /*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
965 */
966 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 __acquires(rq->lock)
968 {
969 struct rq *rq;
970
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 raw_spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
978 }
979 }
980
981 void task_rq_unlock_wait(struct task_struct *p)
982 {
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 raw_spin_unlock_wait(&rq->lock);
987 }
988
989 static void __task_rq_unlock(struct rq *rq)
990 __releases(rq->lock)
991 {
992 raw_spin_unlock(&rq->lock);
993 }
994
995 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 __releases(rq->lock)
997 {
998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
999 }
1000
1001 /*
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1003 */
1004 static struct rq *this_rq_lock(void)
1005 __acquires(rq->lock)
1006 {
1007 struct rq *rq;
1008
1009 local_irq_disable();
1010 rq = this_rq();
1011 raw_spin_lock(&rq->lock);
1012
1013 return rq;
1014 }
1015
1016 #ifdef CONFIG_SCHED_HRTICK
1017 /*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
1027
1028 /*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033 static inline int hrtick_enabled(struct rq *rq)
1034 {
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 if (!cpu_active(cpu_of(rq)))
1038 return 0;
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040 }
1041
1042 static void hrtick_clear(struct rq *rq)
1043 {
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046 }
1047
1048 /*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053 {
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
1058 raw_spin_lock(&rq->lock);
1059 update_rq_clock(rq);
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 raw_spin_unlock(&rq->lock);
1062
1063 return HRTIMER_NORESTART;
1064 }
1065
1066 #ifdef CONFIG_SMP
1067 /*
1068 * called from hardirq (IPI) context
1069 */
1070 static void __hrtick_start(void *arg)
1071 {
1072 struct rq *rq = arg;
1073
1074 raw_spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 raw_spin_unlock(&rq->lock);
1078 }
1079
1080 /*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085 static void hrtick_start(struct rq *rq, u64 delay)
1086 {
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1089
1090 hrtimer_set_expires(timer, time);
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 rq->hrtick_csd_pending = 1;
1097 }
1098 }
1099
1100 static int
1101 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102 {
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
1112 hrtick_clear(cpu_rq(cpu));
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117 }
1118
1119 static __init void init_hrtick(void)
1120 {
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122 }
1123 #else
1124 /*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129 static void hrtick_start(struct rq *rq, u64 delay)
1130 {
1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132 HRTIMER_MODE_REL_PINNED, 0);
1133 }
1134
1135 static inline void init_hrtick(void)
1136 {
1137 }
1138 #endif /* CONFIG_SMP */
1139
1140 static void init_rq_hrtick(struct rq *rq)
1141 {
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1144
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1149
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1152 }
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1155 {
1156 }
1157
1158 static inline void init_rq_hrtick(struct rq *rq)
1159 {
1160 }
1161
1162 static inline void init_hrtick(void)
1163 {
1164 }
1165 #endif /* CONFIG_SCHED_HRTICK */
1166
1167 /*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174 #ifdef CONFIG_SMP
1175
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1179
1180 static void resched_task(struct task_struct *p)
1181 {
1182 int cpu;
1183
1184 assert_raw_spin_locked(&task_rq(p)->lock);
1185
1186 if (test_tsk_need_resched(p))
1187 return;
1188
1189 set_tsk_need_resched(p);
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199 }
1200
1201 static void resched_cpu(int cpu)
1202 {
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
1210 }
1211
1212 #ifdef CONFIG_NO_HZ
1213 /*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223 void wake_up_idle_cpu(int cpu)
1224 {
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_need_resched(rq->idle);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251 }
1252 #endif /* CONFIG_NO_HZ */
1253
1254 static u64 sched_avg_period(void)
1255 {
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257 }
1258
1259 static void sched_avg_update(struct rq *rq)
1260 {
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267 }
1268
1269 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270 {
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273 }
1274
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1277 {
1278 assert_raw_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1280 }
1281
1282 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283 {
1284 }
1285 #endif /* CONFIG_SMP */
1286
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1292
1293 #define WMULT_SHIFT 32
1294
1295 /*
1296 * Shift right and round:
1297 */
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299
1300 /*
1301 * delta *= weight / lw
1302 */
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306 {
1307 u64 tmp;
1308
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 }
1329
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 {
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1334 }
1335
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 {
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1340 }
1341
1342 /*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1353
1354 /*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1365 */
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1375 };
1376
1377 /*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 };
1394
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397 /*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406 };
1407
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1420
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427 };
1428
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1438
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_add(&rq->load, load);
1442 }
1443
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445 {
1446 update_load_sub(&rq->load, load);
1447 }
1448
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1451
1452 /*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 {
1458 struct task_group *parent, *child;
1459 int ret;
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471 up:
1472 continue;
1473 }
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1484
1485 return ret;
1486 }
1487
1488 static int tg_nop(struct task_group *tg, void *data)
1489 {
1490 return 0;
1491 }
1492 #endif
1493
1494 #ifdef CONFIG_SMP
1495 /* Used instead of source_load when we know the type == 0 */
1496 static unsigned long weighted_cpuload(const int cpu)
1497 {
1498 return cpu_rq(cpu)->load.weight;
1499 }
1500
1501 /*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508 static unsigned long source_load(int cpu, int type)
1509 {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517 }
1518
1519 /*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523 static unsigned long target_load(int cpu, int type)
1524 {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532 }
1533
1534 static struct sched_group *group_of(int cpu)
1535 {
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542 }
1543
1544 static unsigned long power_of(int cpu)
1545 {
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552 }
1553
1554 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556 static unsigned long cpu_avg_load_per_task(int cpu)
1557 {
1558 struct rq *rq = cpu_rq(cpu);
1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1560
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
1563 else
1564 rq->avg_load_per_task = 0;
1565
1566 return rq->avg_load_per_task;
1567 }
1568
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570
1571 static __read_mostly unsigned long *update_shares_data;
1572
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575 /*
1576 * Calculate and set the cpu's group shares.
1577 */
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 unsigned long *usd_rq_weight)
1582 {
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1585
1586 rq_weight = usd_rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
1591
1592 /*
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1596 */
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1604
1605 raw_spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
1610 }
1611 }
1612
1613 /*
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1617 */
1618 static int tg_shares_up(struct task_group *tg, void *data)
1619 {
1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1621 unsigned long *usd_rq_weight;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1625
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1631
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd_rq_weight[i] = weight;
1635
1636 rq_weight += weight;
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
1645 sum_weight += weight;
1646 shares += tg->cfs_rq[i]->shares;
1647 }
1648
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
1657
1658 for_each_cpu(i, sched_domain_span(sd))
1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1660
1661 local_irq_restore(flags);
1662
1663 return 0;
1664 }
1665
1666 /*
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
1670 */
1671 static int tg_load_down(struct task_group *tg, void *data)
1672 {
1673 unsigned long load;
1674 long cpu = (long)data;
1675
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
1683
1684 tg->cfs_rq[cpu]->h_load = load;
1685
1686 return 0;
1687 }
1688
1689 static void update_shares(struct sched_domain *sd)
1690 {
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
1703 }
1704 }
1705
1706 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707 {
1708 if (root_task_group_empty())
1709 return;
1710
1711 raw_spin_unlock(&rq->lock);
1712 update_shares(sd);
1713 raw_spin_lock(&rq->lock);
1714 }
1715
1716 static void update_h_load(long cpu)
1717 {
1718 if (root_task_group_empty())
1719 return;
1720
1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1722 }
1723
1724 #else
1725
1726 static inline void update_shares(struct sched_domain *sd)
1727 {
1728 }
1729
1730 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731 {
1732 }
1733
1734 #endif
1735
1736 #ifdef CONFIG_PREEMPT
1737
1738 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
1740 /*
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
1747 */
1748 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752 {
1753 raw_spin_unlock(&this_rq->lock);
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757 }
1758
1759 #else
1760 /*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771 {
1772 int ret = 0;
1773
1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1775 if (busiest < this_rq) {
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
1784 }
1785 return ret;
1786 }
1787
1788 #endif /* CONFIG_PREEMPT */
1789
1790 /*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794 {
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
1797 raw_spin_unlock(&this_rq->lock);
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802 }
1803
1804 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806 {
1807 raw_spin_unlock(&busiest->lock);
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809 }
1810 #endif
1811
1812 #ifdef CONFIG_FAIR_GROUP_SCHED
1813 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814 {
1815 #ifdef CONFIG_SMP
1816 cfs_rq->shares = shares;
1817 #endif
1818 }
1819 #endif
1820
1821 static void calc_load_account_active(struct rq *this_rq);
1822 static void update_sysctl(void);
1823 static int get_update_sysctl_factor(void);
1824
1825 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826 {
1827 set_task_rq(p, cpu);
1828 #ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836 #endif
1837 }
1838
1839 #include "sched_stats.h"
1840 #include "sched_idletask.c"
1841 #include "sched_fair.c"
1842 #include "sched_rt.c"
1843 #ifdef CONFIG_SCHED_DEBUG
1844 # include "sched_debug.c"
1845 #endif
1846
1847 #define sched_class_highest (&rt_sched_class)
1848 #define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
1850
1851 static void inc_nr_running(struct rq *rq)
1852 {
1853 rq->nr_running++;
1854 }
1855
1856 static void dec_nr_running(struct rq *rq)
1857 {
1858 rq->nr_running--;
1859 }
1860
1861 static void set_load_weight(struct task_struct *p)
1862 {
1863 if (task_has_rt_policy(p)) {
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
1868
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
1877
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 }
1881
1882 static void update_avg(u64 *avg, u64 sample)
1883 {
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886 }
1887
1888 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1889 {
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
1893 sched_info_queued(p);
1894 p->sched_class->enqueue_task(rq, p, wakeup);
1895 p->se.on_rq = 1;
1896 }
1897
1898 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1899 {
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
1909 }
1910
1911 sched_info_dequeued(p);
1912 p->sched_class->dequeue_task(rq, p, sleep);
1913 p->se.on_rq = 0;
1914 }
1915
1916 /*
1917 * __normal_prio - return the priority that is based on the static prio
1918 */
1919 static inline int __normal_prio(struct task_struct *p)
1920 {
1921 return p->static_prio;
1922 }
1923
1924 /*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
1931 static inline int normal_prio(struct task_struct *p)
1932 {
1933 int prio;
1934
1935 if (task_has_rt_policy(p))
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940 }
1941
1942 /*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
1949 static int effective_prio(struct task_struct *p)
1950 {
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960 }
1961
1962 /*
1963 * activate_task - move a task to the runqueue.
1964 */
1965 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1966 {
1967 if (task_contributes_to_load(p))
1968 rq->nr_uninterruptible--;
1969
1970 enqueue_task(rq, p, wakeup);
1971 inc_nr_running(rq);
1972 }
1973
1974 /*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
1977 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1978 {
1979 if (task_contributes_to_load(p))
1980 rq->nr_uninterruptible++;
1981
1982 dequeue_task(rq, p, sleep);
1983 dec_nr_running(rq);
1984 }
1985
1986 /**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
1990 inline int task_curr(const struct task_struct *p)
1991 {
1992 return cpu_curr(task_cpu(p)) == p;
1993 }
1994
1995 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998 {
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005 }
2006
2007 /**
2008 * kthread_bind - bind a just-created kthread to a cpu.
2009 * @p: thread created by kthread_create().
2010 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2011 *
2012 * Description: This function is equivalent to set_cpus_allowed(),
2013 * except that @cpu doesn't need to be online, and the thread must be
2014 * stopped (i.e., just returned from kthread_create()).
2015 *
2016 * Function lives here instead of kthread.c because it messes with
2017 * scheduler internals which require locking.
2018 */
2019 void kthread_bind(struct task_struct *p, unsigned int cpu)
2020 {
2021 /* Must have done schedule() in kthread() before we set_task_cpu */
2022 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2023 WARN_ON(1);
2024 return;
2025 }
2026
2027 p->cpus_allowed = cpumask_of_cpu(cpu);
2028 p->rt.nr_cpus_allowed = 1;
2029 p->flags |= PF_THREAD_BOUND;
2030 }
2031 EXPORT_SYMBOL(kthread_bind);
2032
2033 #ifdef CONFIG_SMP
2034 /*
2035 * Is this task likely cache-hot:
2036 */
2037 static int
2038 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2039 {
2040 s64 delta;
2041
2042 if (p->sched_class != &fair_sched_class)
2043 return 0;
2044
2045 /*
2046 * Buddy candidates are cache hot:
2047 */
2048 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2049 (&p->se == cfs_rq_of(&p->se)->next ||
2050 &p->se == cfs_rq_of(&p->se)->last))
2051 return 1;
2052
2053 if (sysctl_sched_migration_cost == -1)
2054 return 1;
2055 if (sysctl_sched_migration_cost == 0)
2056 return 0;
2057
2058 delta = now - p->se.exec_start;
2059
2060 return delta < (s64)sysctl_sched_migration_cost;
2061 }
2062
2063
2064 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2065 {
2066 int old_cpu = task_cpu(p);
2067 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2068 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2069
2070 #ifdef CONFIG_SCHED_DEBUG
2071 /*
2072 * We should never call set_task_cpu() on a blocked task,
2073 * ttwu() will sort out the placement.
2074 */
2075 WARN_ON(p->state != TASK_RUNNING && p->state != TASK_WAKING);
2076 #endif
2077
2078 trace_sched_migrate_task(p, new_cpu);
2079
2080 if (old_cpu != new_cpu) {
2081 p->se.nr_migrations++;
2082 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2083 1, 1, NULL, 0);
2084 }
2085 p->se.vruntime -= old_cfsrq->min_vruntime -
2086 new_cfsrq->min_vruntime;
2087
2088 __set_task_cpu(p, new_cpu);
2089 }
2090
2091 struct migration_req {
2092 struct list_head list;
2093
2094 struct task_struct *task;
2095 int dest_cpu;
2096
2097 struct completion done;
2098 };
2099
2100 /*
2101 * The task's runqueue lock must be held.
2102 * Returns true if you have to wait for migration thread.
2103 */
2104 static int
2105 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2106 {
2107 struct rq *rq = task_rq(p);
2108
2109 /*
2110 * If the task is not on a runqueue (and not running), then
2111 * the next wake-up will properly place the task.
2112 */
2113 if (!p->se.on_rq && !task_running(rq, p))
2114 return 0;
2115
2116 init_completion(&req->done);
2117 req->task = p;
2118 req->dest_cpu = dest_cpu;
2119 list_add(&req->list, &rq->migration_queue);
2120
2121 return 1;
2122 }
2123
2124 /*
2125 * wait_task_context_switch - wait for a thread to complete at least one
2126 * context switch.
2127 *
2128 * @p must not be current.
2129 */
2130 void wait_task_context_switch(struct task_struct *p)
2131 {
2132 unsigned long nvcsw, nivcsw, flags;
2133 int running;
2134 struct rq *rq;
2135
2136 nvcsw = p->nvcsw;
2137 nivcsw = p->nivcsw;
2138 for (;;) {
2139 /*
2140 * The runqueue is assigned before the actual context
2141 * switch. We need to take the runqueue lock.
2142 *
2143 * We could check initially without the lock but it is
2144 * very likely that we need to take the lock in every
2145 * iteration.
2146 */
2147 rq = task_rq_lock(p, &flags);
2148 running = task_running(rq, p);
2149 task_rq_unlock(rq, &flags);
2150
2151 if (likely(!running))
2152 break;
2153 /*
2154 * The switch count is incremented before the actual
2155 * context switch. We thus wait for two switches to be
2156 * sure at least one completed.
2157 */
2158 if ((p->nvcsw - nvcsw) > 1)
2159 break;
2160 if ((p->nivcsw - nivcsw) > 1)
2161 break;
2162
2163 cpu_relax();
2164 }
2165 }
2166
2167 /*
2168 * wait_task_inactive - wait for a thread to unschedule.
2169 *
2170 * If @match_state is nonzero, it's the @p->state value just checked and
2171 * not expected to change. If it changes, i.e. @p might have woken up,
2172 * then return zero. When we succeed in waiting for @p to be off its CPU,
2173 * we return a positive number (its total switch count). If a second call
2174 * a short while later returns the same number, the caller can be sure that
2175 * @p has remained unscheduled the whole time.
2176 *
2177 * The caller must ensure that the task *will* unschedule sometime soon,
2178 * else this function might spin for a *long* time. This function can't
2179 * be called with interrupts off, or it may introduce deadlock with
2180 * smp_call_function() if an IPI is sent by the same process we are
2181 * waiting to become inactive.
2182 */
2183 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2184 {
2185 unsigned long flags;
2186 int running, on_rq;
2187 unsigned long ncsw;
2188 struct rq *rq;
2189
2190 for (;;) {
2191 /*
2192 * We do the initial early heuristics without holding
2193 * any task-queue locks at all. We'll only try to get
2194 * the runqueue lock when things look like they will
2195 * work out!
2196 */
2197 rq = task_rq(p);
2198
2199 /*
2200 * If the task is actively running on another CPU
2201 * still, just relax and busy-wait without holding
2202 * any locks.
2203 *
2204 * NOTE! Since we don't hold any locks, it's not
2205 * even sure that "rq" stays as the right runqueue!
2206 * But we don't care, since "task_running()" will
2207 * return false if the runqueue has changed and p
2208 * is actually now running somewhere else!
2209 */
2210 while (task_running(rq, p)) {
2211 if (match_state && unlikely(p->state != match_state))
2212 return 0;
2213 cpu_relax();
2214 }
2215
2216 /*
2217 * Ok, time to look more closely! We need the rq
2218 * lock now, to be *sure*. If we're wrong, we'll
2219 * just go back and repeat.
2220 */
2221 rq = task_rq_lock(p, &flags);
2222 trace_sched_wait_task(rq, p);
2223 running = task_running(rq, p);
2224 on_rq = p->se.on_rq;
2225 ncsw = 0;
2226 if (!match_state || p->state == match_state)
2227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2228 task_rq_unlock(rq, &flags);
2229
2230 /*
2231 * If it changed from the expected state, bail out now.
2232 */
2233 if (unlikely(!ncsw))
2234 break;
2235
2236 /*
2237 * Was it really running after all now that we
2238 * checked with the proper locks actually held?
2239 *
2240 * Oops. Go back and try again..
2241 */
2242 if (unlikely(running)) {
2243 cpu_relax();
2244 continue;
2245 }
2246
2247 /*
2248 * It's not enough that it's not actively running,
2249 * it must be off the runqueue _entirely_, and not
2250 * preempted!
2251 *
2252 * So if it was still runnable (but just not actively
2253 * running right now), it's preempted, and we should
2254 * yield - it could be a while.
2255 */
2256 if (unlikely(on_rq)) {
2257 schedule_timeout_uninterruptible(1);
2258 continue;
2259 }
2260
2261 /*
2262 * Ahh, all good. It wasn't running, and it wasn't
2263 * runnable, which means that it will never become
2264 * running in the future either. We're all done!
2265 */
2266 break;
2267 }
2268
2269 return ncsw;
2270 }
2271
2272 /***
2273 * kick_process - kick a running thread to enter/exit the kernel
2274 * @p: the to-be-kicked thread
2275 *
2276 * Cause a process which is running on another CPU to enter
2277 * kernel-mode, without any delay. (to get signals handled.)
2278 *
2279 * NOTE: this function doesnt have to take the runqueue lock,
2280 * because all it wants to ensure is that the remote task enters
2281 * the kernel. If the IPI races and the task has been migrated
2282 * to another CPU then no harm is done and the purpose has been
2283 * achieved as well.
2284 */
2285 void kick_process(struct task_struct *p)
2286 {
2287 int cpu;
2288
2289 preempt_disable();
2290 cpu = task_cpu(p);
2291 if ((cpu != smp_processor_id()) && task_curr(p))
2292 smp_send_reschedule(cpu);
2293 preempt_enable();
2294 }
2295 EXPORT_SYMBOL_GPL(kick_process);
2296 #endif /* CONFIG_SMP */
2297
2298 /**
2299 * task_oncpu_function_call - call a function on the cpu on which a task runs
2300 * @p: the task to evaluate
2301 * @func: the function to be called
2302 * @info: the function call argument
2303 *
2304 * Calls the function @func when the task is currently running. This might
2305 * be on the current CPU, which just calls the function directly
2306 */
2307 void task_oncpu_function_call(struct task_struct *p,
2308 void (*func) (void *info), void *info)
2309 {
2310 int cpu;
2311
2312 preempt_disable();
2313 cpu = task_cpu(p);
2314 if (task_curr(p))
2315 smp_call_function_single(cpu, func, info, 1);
2316 preempt_enable();
2317 }
2318
2319 #ifdef CONFIG_SMP
2320 /*
2321 * Called from:
2322 *
2323 * - fork, @p is stable because it isn't on the tasklist yet
2324 *
2325 * - exec, @p is unstable XXX
2326 *
2327 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2328 * we should be good.
2329 */
2330 static inline
2331 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2332 {
2333 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2334
2335 /*
2336 * In order not to call set_task_cpu() on a blocking task we need
2337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2338 * cpu.
2339 *
2340 * Since this is common to all placement strategies, this lives here.
2341 *
2342 * [ this allows ->select_task() to simply return task_cpu(p) and
2343 * not worry about this generic constraint ]
2344 */
2345 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2346 !cpu_active(cpu))) {
2347
2348 cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2349 /*
2350 * XXX: race against hot-plug modifying cpu_active_mask
2351 */
2352 BUG_ON(cpu >= nr_cpu_ids);
2353 }
2354
2355 return cpu;
2356 }
2357 #endif
2358
2359 /***
2360 * try_to_wake_up - wake up a thread
2361 * @p: the to-be-woken-up thread
2362 * @state: the mask of task states that can be woken
2363 * @sync: do a synchronous wakeup?
2364 *
2365 * Put it on the run-queue if it's not already there. The "current"
2366 * thread is always on the run-queue (except when the actual
2367 * re-schedule is in progress), and as such you're allowed to do
2368 * the simpler "current->state = TASK_RUNNING" to mark yourself
2369 * runnable without the overhead of this.
2370 *
2371 * returns failure only if the task is already active.
2372 */
2373 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2374 int wake_flags)
2375 {
2376 int cpu, orig_cpu, this_cpu, success = 0;
2377 unsigned long flags;
2378 struct rq *rq, *orig_rq;
2379
2380 if (!sched_feat(SYNC_WAKEUPS))
2381 wake_flags &= ~WF_SYNC;
2382
2383 this_cpu = get_cpu();
2384
2385 smp_wmb();
2386 rq = orig_rq = task_rq_lock(p, &flags);
2387 update_rq_clock(rq);
2388 if (!(p->state & state))
2389 goto out;
2390
2391 if (p->se.on_rq)
2392 goto out_running;
2393
2394 cpu = task_cpu(p);
2395 orig_cpu = cpu;
2396
2397 #ifdef CONFIG_SMP
2398 if (unlikely(task_running(rq, p)))
2399 goto out_activate;
2400
2401 /*
2402 * In order to handle concurrent wakeups and release the rq->lock
2403 * we put the task in TASK_WAKING state.
2404 *
2405 * First fix up the nr_uninterruptible count:
2406 */
2407 if (task_contributes_to_load(p))
2408 rq->nr_uninterruptible--;
2409 p->state = TASK_WAKING;
2410 __task_rq_unlock(rq);
2411
2412 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2413 if (cpu != orig_cpu)
2414 set_task_cpu(p, cpu);
2415
2416 rq = __task_rq_lock(p);
2417 update_rq_clock(rq);
2418
2419 WARN_ON(p->state != TASK_WAKING);
2420 cpu = task_cpu(p);
2421
2422 #ifdef CONFIG_SCHEDSTATS
2423 schedstat_inc(rq, ttwu_count);
2424 if (cpu == this_cpu)
2425 schedstat_inc(rq, ttwu_local);
2426 else {
2427 struct sched_domain *sd;
2428 for_each_domain(this_cpu, sd) {
2429 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2430 schedstat_inc(sd, ttwu_wake_remote);
2431 break;
2432 }
2433 }
2434 }
2435 #endif /* CONFIG_SCHEDSTATS */
2436
2437 out_activate:
2438 #endif /* CONFIG_SMP */
2439 schedstat_inc(p, se.nr_wakeups);
2440 if (wake_flags & WF_SYNC)
2441 schedstat_inc(p, se.nr_wakeups_sync);
2442 if (orig_cpu != cpu)
2443 schedstat_inc(p, se.nr_wakeups_migrate);
2444 if (cpu == this_cpu)
2445 schedstat_inc(p, se.nr_wakeups_local);
2446 else
2447 schedstat_inc(p, se.nr_wakeups_remote);
2448 activate_task(rq, p, 1);
2449 success = 1;
2450
2451 /*
2452 * Only attribute actual wakeups done by this task.
2453 */
2454 if (!in_interrupt()) {
2455 struct sched_entity *se = &current->se;
2456 u64 sample = se->sum_exec_runtime;
2457
2458 if (se->last_wakeup)
2459 sample -= se->last_wakeup;
2460 else
2461 sample -= se->start_runtime;
2462 update_avg(&se->avg_wakeup, sample);
2463
2464 se->last_wakeup = se->sum_exec_runtime;
2465 }
2466
2467 out_running:
2468 trace_sched_wakeup(rq, p, success);
2469 check_preempt_curr(rq, p, wake_flags);
2470
2471 p->state = TASK_RUNNING;
2472 #ifdef CONFIG_SMP
2473 if (p->sched_class->task_wake_up)
2474 p->sched_class->task_wake_up(rq, p);
2475
2476 if (unlikely(rq->idle_stamp)) {
2477 u64 delta = rq->clock - rq->idle_stamp;
2478 u64 max = 2*sysctl_sched_migration_cost;
2479
2480 if (delta > max)
2481 rq->avg_idle = max;
2482 else
2483 update_avg(&rq->avg_idle, delta);
2484 rq->idle_stamp = 0;
2485 }
2486 #endif
2487 out:
2488 task_rq_unlock(rq, &flags);
2489 put_cpu();
2490
2491 return success;
2492 }
2493
2494 /**
2495 * wake_up_process - Wake up a specific process
2496 * @p: The process to be woken up.
2497 *
2498 * Attempt to wake up the nominated process and move it to the set of runnable
2499 * processes. Returns 1 if the process was woken up, 0 if it was already
2500 * running.
2501 *
2502 * It may be assumed that this function implies a write memory barrier before
2503 * changing the task state if and only if any tasks are woken up.
2504 */
2505 int wake_up_process(struct task_struct *p)
2506 {
2507 return try_to_wake_up(p, TASK_ALL, 0);
2508 }
2509 EXPORT_SYMBOL(wake_up_process);
2510
2511 int wake_up_state(struct task_struct *p, unsigned int state)
2512 {
2513 return try_to_wake_up(p, state, 0);
2514 }
2515
2516 /*
2517 * Perform scheduler related setup for a newly forked process p.
2518 * p is forked by current.
2519 *
2520 * __sched_fork() is basic setup used by init_idle() too:
2521 */
2522 static void __sched_fork(struct task_struct *p)
2523 {
2524 p->se.exec_start = 0;
2525 p->se.sum_exec_runtime = 0;
2526 p->se.prev_sum_exec_runtime = 0;
2527 p->se.nr_migrations = 0;
2528 p->se.last_wakeup = 0;
2529 p->se.avg_overlap = 0;
2530 p->se.start_runtime = 0;
2531 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2532
2533 #ifdef CONFIG_SCHEDSTATS
2534 p->se.wait_start = 0;
2535 p->se.wait_max = 0;
2536 p->se.wait_count = 0;
2537 p->se.wait_sum = 0;
2538
2539 p->se.sleep_start = 0;
2540 p->se.sleep_max = 0;
2541 p->se.sum_sleep_runtime = 0;
2542
2543 p->se.block_start = 0;
2544 p->se.block_max = 0;
2545 p->se.exec_max = 0;
2546 p->se.slice_max = 0;
2547
2548 p->se.nr_migrations_cold = 0;
2549 p->se.nr_failed_migrations_affine = 0;
2550 p->se.nr_failed_migrations_running = 0;
2551 p->se.nr_failed_migrations_hot = 0;
2552 p->se.nr_forced_migrations = 0;
2553
2554 p->se.nr_wakeups = 0;
2555 p->se.nr_wakeups_sync = 0;
2556 p->se.nr_wakeups_migrate = 0;
2557 p->se.nr_wakeups_local = 0;
2558 p->se.nr_wakeups_remote = 0;
2559 p->se.nr_wakeups_affine = 0;
2560 p->se.nr_wakeups_affine_attempts = 0;
2561 p->se.nr_wakeups_passive = 0;
2562 p->se.nr_wakeups_idle = 0;
2563
2564 #endif
2565
2566 INIT_LIST_HEAD(&p->rt.run_list);
2567 p->se.on_rq = 0;
2568 INIT_LIST_HEAD(&p->se.group_node);
2569
2570 #ifdef CONFIG_PREEMPT_NOTIFIERS
2571 INIT_HLIST_HEAD(&p->preempt_notifiers);
2572 #endif
2573 }
2574
2575 /*
2576 * fork()/clone()-time setup:
2577 */
2578 void sched_fork(struct task_struct *p, int clone_flags)
2579 {
2580 int cpu = get_cpu();
2581
2582 __sched_fork(p);
2583 /*
2584 * We mark the process as waking here. This guarantees that
2585 * nobody will actually run it, and a signal or other external
2586 * event cannot wake it up and insert it on the runqueue either.
2587 */
2588 p->state = TASK_WAKING;
2589
2590 /*
2591 * Revert to default priority/policy on fork if requested.
2592 */
2593 if (unlikely(p->sched_reset_on_fork)) {
2594 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2595 p->policy = SCHED_NORMAL;
2596 p->normal_prio = p->static_prio;
2597 }
2598
2599 if (PRIO_TO_NICE(p->static_prio) < 0) {
2600 p->static_prio = NICE_TO_PRIO(0);
2601 p->normal_prio = p->static_prio;
2602 set_load_weight(p);
2603 }
2604
2605 /*
2606 * We don't need the reset flag anymore after the fork. It has
2607 * fulfilled its duty:
2608 */
2609 p->sched_reset_on_fork = 0;
2610 }
2611
2612 /*
2613 * Make sure we do not leak PI boosting priority to the child.
2614 */
2615 p->prio = current->normal_prio;
2616
2617 if (!rt_prio(p->prio))
2618 p->sched_class = &fair_sched_class;
2619
2620 if (p->sched_class->task_fork)
2621 p->sched_class->task_fork(p);
2622
2623 #ifdef CONFIG_SMP
2624 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2625 #endif
2626 set_task_cpu(p, cpu);
2627
2628 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2629 if (likely(sched_info_on()))
2630 memset(&p->sched_info, 0, sizeof(p->sched_info));
2631 #endif
2632 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2633 p->oncpu = 0;
2634 #endif
2635 #ifdef CONFIG_PREEMPT
2636 /* Want to start with kernel preemption disabled. */
2637 task_thread_info(p)->preempt_count = 1;
2638 #endif
2639 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2640
2641 put_cpu();
2642 }
2643
2644 /*
2645 * wake_up_new_task - wake up a newly created task for the first time.
2646 *
2647 * This function will do some initial scheduler statistics housekeeping
2648 * that must be done for every newly created context, then puts the task
2649 * on the runqueue and wakes it.
2650 */
2651 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2652 {
2653 unsigned long flags;
2654 struct rq *rq;
2655
2656 rq = task_rq_lock(p, &flags);
2657 BUG_ON(p->state != TASK_WAKING);
2658 p->state = TASK_RUNNING;
2659 update_rq_clock(rq);
2660 activate_task(rq, p, 0);
2661 trace_sched_wakeup_new(rq, p, 1);
2662 check_preempt_curr(rq, p, WF_FORK);
2663 #ifdef CONFIG_SMP
2664 if (p->sched_class->task_wake_up)
2665 p->sched_class->task_wake_up(rq, p);
2666 #endif
2667 task_rq_unlock(rq, &flags);
2668 }
2669
2670 #ifdef CONFIG_PREEMPT_NOTIFIERS
2671
2672 /**
2673 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2674 * @notifier: notifier struct to register
2675 */
2676 void preempt_notifier_register(struct preempt_notifier *notifier)
2677 {
2678 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2679 }
2680 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2681
2682 /**
2683 * preempt_notifier_unregister - no longer interested in preemption notifications
2684 * @notifier: notifier struct to unregister
2685 *
2686 * This is safe to call from within a preemption notifier.
2687 */
2688 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2689 {
2690 hlist_del(&notifier->link);
2691 }
2692 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2693
2694 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2695 {
2696 struct preempt_notifier *notifier;
2697 struct hlist_node *node;
2698
2699 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2700 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2701 }
2702
2703 static void
2704 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2705 struct task_struct *next)
2706 {
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2709
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_out(notifier, next);
2712 }
2713
2714 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2715
2716 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2717 {
2718 }
2719
2720 static void
2721 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2722 struct task_struct *next)
2723 {
2724 }
2725
2726 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2727
2728 /**
2729 * prepare_task_switch - prepare to switch tasks
2730 * @rq: the runqueue preparing to switch
2731 * @prev: the current task that is being switched out
2732 * @next: the task we are going to switch to.
2733 *
2734 * This is called with the rq lock held and interrupts off. It must
2735 * be paired with a subsequent finish_task_switch after the context
2736 * switch.
2737 *
2738 * prepare_task_switch sets up locking and calls architecture specific
2739 * hooks.
2740 */
2741 static inline void
2742 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2743 struct task_struct *next)
2744 {
2745 fire_sched_out_preempt_notifiers(prev, next);
2746 prepare_lock_switch(rq, next);
2747 prepare_arch_switch(next);
2748 }
2749
2750 /**
2751 * finish_task_switch - clean up after a task-switch
2752 * @rq: runqueue associated with task-switch
2753 * @prev: the thread we just switched away from.
2754 *
2755 * finish_task_switch must be called after the context switch, paired
2756 * with a prepare_task_switch call before the context switch.
2757 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2758 * and do any other architecture-specific cleanup actions.
2759 *
2760 * Note that we may have delayed dropping an mm in context_switch(). If
2761 * so, we finish that here outside of the runqueue lock. (Doing it
2762 * with the lock held can cause deadlocks; see schedule() for
2763 * details.)
2764 */
2765 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2766 __releases(rq->lock)
2767 {
2768 struct mm_struct *mm = rq->prev_mm;
2769 long prev_state;
2770
2771 rq->prev_mm = NULL;
2772
2773 /*
2774 * A task struct has one reference for the use as "current".
2775 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2776 * schedule one last time. The schedule call will never return, and
2777 * the scheduled task must drop that reference.
2778 * The test for TASK_DEAD must occur while the runqueue locks are
2779 * still held, otherwise prev could be scheduled on another cpu, die
2780 * there before we look at prev->state, and then the reference would
2781 * be dropped twice.
2782 * Manfred Spraul <manfred@colorfullife.com>
2783 */
2784 prev_state = prev->state;
2785 finish_arch_switch(prev);
2786 perf_event_task_sched_in(current, cpu_of(rq));
2787 finish_lock_switch(rq, prev);
2788
2789 fire_sched_in_preempt_notifiers(current);
2790 if (mm)
2791 mmdrop(mm);
2792 if (unlikely(prev_state == TASK_DEAD)) {
2793 /*
2794 * Remove function-return probe instances associated with this
2795 * task and put them back on the free list.
2796 */
2797 kprobe_flush_task(prev);
2798 put_task_struct(prev);
2799 }
2800 }
2801
2802 #ifdef CONFIG_SMP
2803
2804 /* assumes rq->lock is held */
2805 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2806 {
2807 if (prev->sched_class->pre_schedule)
2808 prev->sched_class->pre_schedule(rq, prev);
2809 }
2810
2811 /* rq->lock is NOT held, but preemption is disabled */
2812 static inline void post_schedule(struct rq *rq)
2813 {
2814 if (rq->post_schedule) {
2815 unsigned long flags;
2816
2817 raw_spin_lock_irqsave(&rq->lock, flags);
2818 if (rq->curr->sched_class->post_schedule)
2819 rq->curr->sched_class->post_schedule(rq);
2820 raw_spin_unlock_irqrestore(&rq->lock, flags);
2821
2822 rq->post_schedule = 0;
2823 }
2824 }
2825
2826 #else
2827
2828 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2829 {
2830 }
2831
2832 static inline void post_schedule(struct rq *rq)
2833 {
2834 }
2835
2836 #endif
2837
2838 /**
2839 * schedule_tail - first thing a freshly forked thread must call.
2840 * @prev: the thread we just switched away from.
2841 */
2842 asmlinkage void schedule_tail(struct task_struct *prev)
2843 __releases(rq->lock)
2844 {
2845 struct rq *rq = this_rq();
2846
2847 finish_task_switch(rq, prev);
2848
2849 /*
2850 * FIXME: do we need to worry about rq being invalidated by the
2851 * task_switch?
2852 */
2853 post_schedule(rq);
2854
2855 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2856 /* In this case, finish_task_switch does not reenable preemption */
2857 preempt_enable();
2858 #endif
2859 if (current->set_child_tid)
2860 put_user(task_pid_vnr(current), current->set_child_tid);
2861 }
2862
2863 /*
2864 * context_switch - switch to the new MM and the new
2865 * thread's register state.
2866 */
2867 static inline void
2868 context_switch(struct rq *rq, struct task_struct *prev,
2869 struct task_struct *next)
2870 {
2871 struct mm_struct *mm, *oldmm;
2872
2873 prepare_task_switch(rq, prev, next);
2874 trace_sched_switch(rq, prev, next);
2875 mm = next->mm;
2876 oldmm = prev->active_mm;
2877 /*
2878 * For paravirt, this is coupled with an exit in switch_to to
2879 * combine the page table reload and the switch backend into
2880 * one hypercall.
2881 */
2882 arch_start_context_switch(prev);
2883
2884 if (likely(!mm)) {
2885 next->active_mm = oldmm;
2886 atomic_inc(&oldmm->mm_count);
2887 enter_lazy_tlb(oldmm, next);
2888 } else
2889 switch_mm(oldmm, mm, next);
2890
2891 if (likely(!prev->mm)) {
2892 prev->active_mm = NULL;
2893 rq->prev_mm = oldmm;
2894 }
2895 /*
2896 * Since the runqueue lock will be released by the next
2897 * task (which is an invalid locking op but in the case
2898 * of the scheduler it's an obvious special-case), so we
2899 * do an early lockdep release here:
2900 */
2901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2902 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2903 #endif
2904
2905 /* Here we just switch the register state and the stack. */
2906 switch_to(prev, next, prev);
2907
2908 barrier();
2909 /*
2910 * this_rq must be evaluated again because prev may have moved
2911 * CPUs since it called schedule(), thus the 'rq' on its stack
2912 * frame will be invalid.
2913 */
2914 finish_task_switch(this_rq(), prev);
2915 }
2916
2917 /*
2918 * nr_running, nr_uninterruptible and nr_context_switches:
2919 *
2920 * externally visible scheduler statistics: current number of runnable
2921 * threads, current number of uninterruptible-sleeping threads, total
2922 * number of context switches performed since bootup.
2923 */
2924 unsigned long nr_running(void)
2925 {
2926 unsigned long i, sum = 0;
2927
2928 for_each_online_cpu(i)
2929 sum += cpu_rq(i)->nr_running;
2930
2931 return sum;
2932 }
2933
2934 unsigned long nr_uninterruptible(void)
2935 {
2936 unsigned long i, sum = 0;
2937
2938 for_each_possible_cpu(i)
2939 sum += cpu_rq(i)->nr_uninterruptible;
2940
2941 /*
2942 * Since we read the counters lockless, it might be slightly
2943 * inaccurate. Do not allow it to go below zero though:
2944 */
2945 if (unlikely((long)sum < 0))
2946 sum = 0;
2947
2948 return sum;
2949 }
2950
2951 unsigned long long nr_context_switches(void)
2952 {
2953 int i;
2954 unsigned long long sum = 0;
2955
2956 for_each_possible_cpu(i)
2957 sum += cpu_rq(i)->nr_switches;
2958
2959 return sum;
2960 }
2961
2962 unsigned long nr_iowait(void)
2963 {
2964 unsigned long i, sum = 0;
2965
2966 for_each_possible_cpu(i)
2967 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2968
2969 return sum;
2970 }
2971
2972 unsigned long nr_iowait_cpu(void)
2973 {
2974 struct rq *this = this_rq();
2975 return atomic_read(&this->nr_iowait);
2976 }
2977
2978 unsigned long this_cpu_load(void)
2979 {
2980 struct rq *this = this_rq();
2981 return this->cpu_load[0];
2982 }
2983
2984
2985 /* Variables and functions for calc_load */
2986 static atomic_long_t calc_load_tasks;
2987 static unsigned long calc_load_update;
2988 unsigned long avenrun[3];
2989 EXPORT_SYMBOL(avenrun);
2990
2991 /**
2992 * get_avenrun - get the load average array
2993 * @loads: pointer to dest load array
2994 * @offset: offset to add
2995 * @shift: shift count to shift the result left
2996 *
2997 * These values are estimates at best, so no need for locking.
2998 */
2999 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3000 {
3001 loads[0] = (avenrun[0] + offset) << shift;
3002 loads[1] = (avenrun[1] + offset) << shift;
3003 loads[2] = (avenrun[2] + offset) << shift;
3004 }
3005
3006 static unsigned long
3007 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3008 {
3009 load *= exp;
3010 load += active * (FIXED_1 - exp);
3011 return load >> FSHIFT;
3012 }
3013
3014 /*
3015 * calc_load - update the avenrun load estimates 10 ticks after the
3016 * CPUs have updated calc_load_tasks.
3017 */
3018 void calc_global_load(void)
3019 {
3020 unsigned long upd = calc_load_update + 10;
3021 long active;
3022
3023 if (time_before(jiffies, upd))
3024 return;
3025
3026 active = atomic_long_read(&calc_load_tasks);
3027 active = active > 0 ? active * FIXED_1 : 0;
3028
3029 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3030 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3031 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3032
3033 calc_load_update += LOAD_FREQ;
3034 }
3035
3036 /*
3037 * Either called from update_cpu_load() or from a cpu going idle
3038 */
3039 static void calc_load_account_active(struct rq *this_rq)
3040 {
3041 long nr_active, delta;
3042
3043 nr_active = this_rq->nr_running;
3044 nr_active += (long) this_rq->nr_uninterruptible;
3045
3046 if (nr_active != this_rq->calc_load_active) {
3047 delta = nr_active - this_rq->calc_load_active;
3048 this_rq->calc_load_active = nr_active;
3049 atomic_long_add(delta, &calc_load_tasks);
3050 }
3051 }
3052
3053 /*
3054 * Update rq->cpu_load[] statistics. This function is usually called every
3055 * scheduler tick (TICK_NSEC).
3056 */
3057 static void update_cpu_load(struct rq *this_rq)
3058 {
3059 unsigned long this_load = this_rq->load.weight;
3060 int i, scale;
3061
3062 this_rq->nr_load_updates++;
3063
3064 /* Update our load: */
3065 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3066 unsigned long old_load, new_load;
3067
3068 /* scale is effectively 1 << i now, and >> i divides by scale */
3069
3070 old_load = this_rq->cpu_load[i];
3071 new_load = this_load;
3072 /*
3073 * Round up the averaging division if load is increasing. This
3074 * prevents us from getting stuck on 9 if the load is 10, for
3075 * example.
3076 */
3077 if (new_load > old_load)
3078 new_load += scale-1;
3079 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3080 }
3081
3082 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3083 this_rq->calc_load_update += LOAD_FREQ;
3084 calc_load_account_active(this_rq);
3085 }
3086 }
3087
3088 #ifdef CONFIG_SMP
3089
3090 /*
3091 * double_rq_lock - safely lock two runqueues
3092 *
3093 * Note this does not disable interrupts like task_rq_lock,
3094 * you need to do so manually before calling.
3095 */
3096 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3097 __acquires(rq1->lock)
3098 __acquires(rq2->lock)
3099 {
3100 BUG_ON(!irqs_disabled());
3101 if (rq1 == rq2) {
3102 raw_spin_lock(&rq1->lock);
3103 __acquire(rq2->lock); /* Fake it out ;) */
3104 } else {
3105 if (rq1 < rq2) {
3106 raw_spin_lock(&rq1->lock);
3107 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3108 } else {
3109 raw_spin_lock(&rq2->lock);
3110 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3111 }
3112 }
3113 update_rq_clock(rq1);
3114 update_rq_clock(rq2);
3115 }
3116
3117 /*
3118 * double_rq_unlock - safely unlock two runqueues
3119 *
3120 * Note this does not restore interrupts like task_rq_unlock,
3121 * you need to do so manually after calling.
3122 */
3123 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3124 __releases(rq1->lock)
3125 __releases(rq2->lock)
3126 {
3127 raw_spin_unlock(&rq1->lock);
3128 if (rq1 != rq2)
3129 raw_spin_unlock(&rq2->lock);
3130 else
3131 __release(rq2->lock);
3132 }
3133
3134 /*
3135 * If dest_cpu is allowed for this process, migrate the task to it.
3136 * This is accomplished by forcing the cpu_allowed mask to only
3137 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3138 * the cpu_allowed mask is restored.
3139 */
3140 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3141 {
3142 struct migration_req req;
3143 unsigned long flags;
3144 struct rq *rq;
3145
3146 rq = task_rq_lock(p, &flags);
3147 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3148 || unlikely(!cpu_active(dest_cpu)))
3149 goto out;
3150
3151 /* force the process onto the specified CPU */
3152 if (migrate_task(p, dest_cpu, &req)) {
3153 /* Need to wait for migration thread (might exit: take ref). */
3154 struct task_struct *mt = rq->migration_thread;
3155
3156 get_task_struct(mt);
3157 task_rq_unlock(rq, &flags);
3158 wake_up_process(mt);
3159 put_task_struct(mt);
3160 wait_for_completion(&req.done);
3161
3162 return;
3163 }
3164 out:
3165 task_rq_unlock(rq, &flags);
3166 }
3167
3168 /*
3169 * sched_exec - execve() is a valuable balancing opportunity, because at
3170 * this point the task has the smallest effective memory and cache footprint.
3171 */
3172 void sched_exec(void)
3173 {
3174 int new_cpu, this_cpu = get_cpu();
3175 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
3176 put_cpu();
3177 if (new_cpu != this_cpu)
3178 sched_migrate_task(current, new_cpu);
3179 }
3180
3181 /*
3182 * pull_task - move a task from a remote runqueue to the local runqueue.
3183 * Both runqueues must be locked.
3184 */
3185 static void pull_task(struct rq *src_rq, struct task_struct *p,
3186 struct rq *this_rq, int this_cpu)
3187 {
3188 deactivate_task(src_rq, p, 0);
3189 set_task_cpu(p, this_cpu);
3190 activate_task(this_rq, p, 0);
3191 check_preempt_curr(this_rq, p, 0);
3192 }
3193
3194 /*
3195 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3196 */
3197 static
3198 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3199 struct sched_domain *sd, enum cpu_idle_type idle,
3200 int *all_pinned)
3201 {
3202 int tsk_cache_hot = 0;
3203 /*
3204 * We do not migrate tasks that are:
3205 * 1) running (obviously), or
3206 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3207 * 3) are cache-hot on their current CPU.
3208 */
3209 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3210 schedstat_inc(p, se.nr_failed_migrations_affine);
3211 return 0;
3212 }
3213 *all_pinned = 0;
3214
3215 if (task_running(rq, p)) {
3216 schedstat_inc(p, se.nr_failed_migrations_running);
3217 return 0;
3218 }
3219
3220 /*
3221 * Aggressive migration if:
3222 * 1) task is cache cold, or
3223 * 2) too many balance attempts have failed.
3224 */
3225
3226 tsk_cache_hot = task_hot(p, rq->clock, sd);
3227 if (!tsk_cache_hot ||
3228 sd->nr_balance_failed > sd->cache_nice_tries) {
3229 #ifdef CONFIG_SCHEDSTATS
3230 if (tsk_cache_hot) {
3231 schedstat_inc(sd, lb_hot_gained[idle]);
3232 schedstat_inc(p, se.nr_forced_migrations);
3233 }
3234 #endif
3235 return 1;
3236 }
3237
3238 if (tsk_cache_hot) {
3239 schedstat_inc(p, se.nr_failed_migrations_hot);
3240 return 0;
3241 }
3242 return 1;
3243 }
3244
3245 static unsigned long
3246 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3247 unsigned long max_load_move, struct sched_domain *sd,
3248 enum cpu_idle_type idle, int *all_pinned,
3249 int *this_best_prio, struct rq_iterator *iterator)
3250 {
3251 int loops = 0, pulled = 0, pinned = 0;
3252 struct task_struct *p;
3253 long rem_load_move = max_load_move;
3254
3255 if (max_load_move == 0)
3256 goto out;
3257
3258 pinned = 1;
3259
3260 /*
3261 * Start the load-balancing iterator:
3262 */
3263 p = iterator->start(iterator->arg);
3264 next:
3265 if (!p || loops++ > sysctl_sched_nr_migrate)
3266 goto out;
3267
3268 if ((p->se.load.weight >> 1) > rem_load_move ||
3269 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3270 p = iterator->next(iterator->arg);
3271 goto next;
3272 }
3273
3274 pull_task(busiest, p, this_rq, this_cpu);
3275 pulled++;
3276 rem_load_move -= p->se.load.weight;
3277
3278 #ifdef CONFIG_PREEMPT
3279 /*
3280 * NEWIDLE balancing is a source of latency, so preemptible kernels
3281 * will stop after the first task is pulled to minimize the critical
3282 * section.
3283 */
3284 if (idle == CPU_NEWLY_IDLE)
3285 goto out;
3286 #endif
3287
3288 /*
3289 * We only want to steal up to the prescribed amount of weighted load.
3290 */
3291 if (rem_load_move > 0) {
3292 if (p->prio < *this_best_prio)
3293 *this_best_prio = p->prio;
3294 p = iterator->next(iterator->arg);
3295 goto next;
3296 }
3297 out:
3298 /*
3299 * Right now, this is one of only two places pull_task() is called,
3300 * so we can safely collect pull_task() stats here rather than
3301 * inside pull_task().
3302 */
3303 schedstat_add(sd, lb_gained[idle], pulled);
3304
3305 if (all_pinned)
3306 *all_pinned = pinned;
3307
3308 return max_load_move - rem_load_move;
3309 }
3310
3311 /*
3312 * move_tasks tries to move up to max_load_move weighted load from busiest to
3313 * this_rq, as part of a balancing operation within domain "sd".
3314 * Returns 1 if successful and 0 otherwise.
3315 *
3316 * Called with both runqueues locked.
3317 */
3318 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3319 unsigned long max_load_move,
3320 struct sched_domain *sd, enum cpu_idle_type idle,
3321 int *all_pinned)
3322 {
3323 const struct sched_class *class = sched_class_highest;
3324 unsigned long total_load_moved = 0;
3325 int this_best_prio = this_rq->curr->prio;
3326
3327 do {
3328 total_load_moved +=
3329 class->load_balance(this_rq, this_cpu, busiest,
3330 max_load_move - total_load_moved,
3331 sd, idle, all_pinned, &this_best_prio);
3332 class = class->next;
3333
3334 #ifdef CONFIG_PREEMPT
3335 /*
3336 * NEWIDLE balancing is a source of latency, so preemptible
3337 * kernels will stop after the first task is pulled to minimize
3338 * the critical section.
3339 */
3340 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3341 break;
3342 #endif
3343 } while (class && max_load_move > total_load_moved);
3344
3345 return total_load_moved > 0;
3346 }
3347
3348 static int
3349 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3350 struct sched_domain *sd, enum cpu_idle_type idle,
3351 struct rq_iterator *iterator)
3352 {
3353 struct task_struct *p = iterator->start(iterator->arg);
3354 int pinned = 0;
3355
3356 while (p) {
3357 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3358 pull_task(busiest, p, this_rq, this_cpu);
3359 /*
3360 * Right now, this is only the second place pull_task()
3361 * is called, so we can safely collect pull_task()
3362 * stats here rather than inside pull_task().
3363 */
3364 schedstat_inc(sd, lb_gained[idle]);
3365
3366 return 1;
3367 }
3368 p = iterator->next(iterator->arg);
3369 }
3370
3371 return 0;
3372 }
3373
3374 /*
3375 * move_one_task tries to move exactly one task from busiest to this_rq, as
3376 * part of active balancing operations within "domain".
3377 * Returns 1 if successful and 0 otherwise.
3378 *
3379 * Called with both runqueues locked.
3380 */
3381 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3382 struct sched_domain *sd, enum cpu_idle_type idle)
3383 {
3384 const struct sched_class *class;
3385
3386 for_each_class(class) {
3387 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3388 return 1;
3389 }
3390
3391 return 0;
3392 }
3393 /********** Helpers for find_busiest_group ************************/
3394 /*
3395 * sd_lb_stats - Structure to store the statistics of a sched_domain
3396 * during load balancing.
3397 */
3398 struct sd_lb_stats {
3399 struct sched_group *busiest; /* Busiest group in this sd */
3400 struct sched_group *this; /* Local group in this sd */
3401 unsigned long total_load; /* Total load of all groups in sd */
3402 unsigned long total_pwr; /* Total power of all groups in sd */
3403 unsigned long avg_load; /* Average load across all groups in sd */
3404
3405 /** Statistics of this group */
3406 unsigned long this_load;
3407 unsigned long this_load_per_task;
3408 unsigned long this_nr_running;
3409
3410 /* Statistics of the busiest group */
3411 unsigned long max_load;
3412 unsigned long busiest_load_per_task;
3413 unsigned long busiest_nr_running;
3414
3415 int group_imb; /* Is there imbalance in this sd */
3416 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3417 int power_savings_balance; /* Is powersave balance needed for this sd */
3418 struct sched_group *group_min; /* Least loaded group in sd */
3419 struct sched_group *group_leader; /* Group which relieves group_min */
3420 unsigned long min_load_per_task; /* load_per_task in group_min */
3421 unsigned long leader_nr_running; /* Nr running of group_leader */
3422 unsigned long min_nr_running; /* Nr running of group_min */
3423 #endif
3424 };
3425
3426 /*
3427 * sg_lb_stats - stats of a sched_group required for load_balancing
3428 */
3429 struct sg_lb_stats {
3430 unsigned long avg_load; /*Avg load across the CPUs of the group */
3431 unsigned long group_load; /* Total load over the CPUs of the group */
3432 unsigned long sum_nr_running; /* Nr tasks running in the group */
3433 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3434 unsigned long group_capacity;
3435 int group_imb; /* Is there an imbalance in the group ? */
3436 };
3437
3438 /**
3439 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3440 * @group: The group whose first cpu is to be returned.
3441 */
3442 static inline unsigned int group_first_cpu(struct sched_group *group)
3443 {
3444 return cpumask_first(sched_group_cpus(group));
3445 }
3446
3447 /**
3448 * get_sd_load_idx - Obtain the load index for a given sched domain.
3449 * @sd: The sched_domain whose load_idx is to be obtained.
3450 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3451 */
3452 static inline int get_sd_load_idx(struct sched_domain *sd,
3453 enum cpu_idle_type idle)
3454 {
3455 int load_idx;
3456
3457 switch (idle) {
3458 case CPU_NOT_IDLE:
3459 load_idx = sd->busy_idx;
3460 break;
3461
3462 case CPU_NEWLY_IDLE:
3463 load_idx = sd->newidle_idx;
3464 break;
3465 default:
3466 load_idx = sd->idle_idx;
3467 break;
3468 }
3469
3470 return load_idx;
3471 }
3472
3473
3474 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3475 /**
3476 * init_sd_power_savings_stats - Initialize power savings statistics for
3477 * the given sched_domain, during load balancing.
3478 *
3479 * @sd: Sched domain whose power-savings statistics are to be initialized.
3480 * @sds: Variable containing the statistics for sd.
3481 * @idle: Idle status of the CPU at which we're performing load-balancing.
3482 */
3483 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3484 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3485 {
3486 /*
3487 * Busy processors will not participate in power savings
3488 * balance.
3489 */
3490 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3491 sds->power_savings_balance = 0;
3492 else {
3493 sds->power_savings_balance = 1;
3494 sds->min_nr_running = ULONG_MAX;
3495 sds->leader_nr_running = 0;
3496 }
3497 }
3498
3499 /**
3500 * update_sd_power_savings_stats - Update the power saving stats for a
3501 * sched_domain while performing load balancing.
3502 *
3503 * @group: sched_group belonging to the sched_domain under consideration.
3504 * @sds: Variable containing the statistics of the sched_domain
3505 * @local_group: Does group contain the CPU for which we're performing
3506 * load balancing ?
3507 * @sgs: Variable containing the statistics of the group.
3508 */
3509 static inline void update_sd_power_savings_stats(struct sched_group *group,
3510 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3511 {
3512
3513 if (!sds->power_savings_balance)
3514 return;
3515
3516 /*
3517 * If the local group is idle or completely loaded
3518 * no need to do power savings balance at this domain
3519 */
3520 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3521 !sds->this_nr_running))
3522 sds->power_savings_balance = 0;
3523
3524 /*
3525 * If a group is already running at full capacity or idle,
3526 * don't include that group in power savings calculations
3527 */
3528 if (!sds->power_savings_balance ||
3529 sgs->sum_nr_running >= sgs->group_capacity ||
3530 !sgs->sum_nr_running)
3531 return;
3532
3533 /*
3534 * Calculate the group which has the least non-idle load.
3535 * This is the group from where we need to pick up the load
3536 * for saving power
3537 */
3538 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3539 (sgs->sum_nr_running == sds->min_nr_running &&
3540 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3541 sds->group_min = group;
3542 sds->min_nr_running = sgs->sum_nr_running;
3543 sds->min_load_per_task = sgs->sum_weighted_load /
3544 sgs->sum_nr_running;
3545 }
3546
3547 /*
3548 * Calculate the group which is almost near its
3549 * capacity but still has some space to pick up some load
3550 * from other group and save more power
3551 */
3552 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3553 return;
3554
3555 if (sgs->sum_nr_running > sds->leader_nr_running ||
3556 (sgs->sum_nr_running == sds->leader_nr_running &&
3557 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3558 sds->group_leader = group;
3559 sds->leader_nr_running = sgs->sum_nr_running;
3560 }
3561 }
3562
3563 /**
3564 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3565 * @sds: Variable containing the statistics of the sched_domain
3566 * under consideration.
3567 * @this_cpu: Cpu at which we're currently performing load-balancing.
3568 * @imbalance: Variable to store the imbalance.
3569 *
3570 * Description:
3571 * Check if we have potential to perform some power-savings balance.
3572 * If yes, set the busiest group to be the least loaded group in the
3573 * sched_domain, so that it's CPUs can be put to idle.
3574 *
3575 * Returns 1 if there is potential to perform power-savings balance.
3576 * Else returns 0.
3577 */
3578 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3579 int this_cpu, unsigned long *imbalance)
3580 {
3581 if (!sds->power_savings_balance)
3582 return 0;
3583
3584 if (sds->this != sds->group_leader ||
3585 sds->group_leader == sds->group_min)
3586 return 0;
3587
3588 *imbalance = sds->min_load_per_task;
3589 sds->busiest = sds->group_min;
3590
3591 return 1;
3592
3593 }
3594 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3595 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3596 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3597 {
3598 return;
3599 }
3600
3601 static inline void update_sd_power_savings_stats(struct sched_group *group,
3602 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3603 {
3604 return;
3605 }
3606
3607 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3608 int this_cpu, unsigned long *imbalance)
3609 {
3610 return 0;
3611 }
3612 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3613
3614
3615 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3616 {
3617 return SCHED_LOAD_SCALE;
3618 }
3619
3620 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3621 {
3622 return default_scale_freq_power(sd, cpu);
3623 }
3624
3625 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3626 {
3627 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3628 unsigned long smt_gain = sd->smt_gain;
3629
3630 smt_gain /= weight;
3631
3632 return smt_gain;
3633 }
3634
3635 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3636 {
3637 return default_scale_smt_power(sd, cpu);
3638 }
3639
3640 unsigned long scale_rt_power(int cpu)
3641 {
3642 struct rq *rq = cpu_rq(cpu);
3643 u64 total, available;
3644
3645 sched_avg_update(rq);
3646
3647 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3648 available = total - rq->rt_avg;
3649
3650 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3651 total = SCHED_LOAD_SCALE;
3652
3653 total >>= SCHED_LOAD_SHIFT;
3654
3655 return div_u64(available, total);
3656 }
3657
3658 static void update_cpu_power(struct sched_domain *sd, int cpu)
3659 {
3660 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3661 unsigned long power = SCHED_LOAD_SCALE;
3662 struct sched_group *sdg = sd->groups;
3663
3664 if (sched_feat(ARCH_POWER))
3665 power *= arch_scale_freq_power(sd, cpu);
3666 else
3667 power *= default_scale_freq_power(sd, cpu);
3668
3669 power >>= SCHED_LOAD_SHIFT;
3670
3671 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3672 if (sched_feat(ARCH_POWER))
3673 power *= arch_scale_smt_power(sd, cpu);
3674 else
3675 power *= default_scale_smt_power(sd, cpu);
3676
3677 power >>= SCHED_LOAD_SHIFT;
3678 }
3679
3680 power *= scale_rt_power(cpu);
3681 power >>= SCHED_LOAD_SHIFT;
3682
3683 if (!power)
3684 power = 1;
3685
3686 sdg->cpu_power = power;
3687 }
3688
3689 static void update_group_power(struct sched_domain *sd, int cpu)
3690 {
3691 struct sched_domain *child = sd->child;
3692 struct sched_group *group, *sdg = sd->groups;
3693 unsigned long power;
3694
3695 if (!child) {
3696 update_cpu_power(sd, cpu);
3697 return;
3698 }
3699
3700 power = 0;
3701
3702 group = child->groups;
3703 do {
3704 power += group->cpu_power;
3705 group = group->next;
3706 } while (group != child->groups);
3707
3708 sdg->cpu_power = power;
3709 }
3710
3711 /**
3712 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3713 * @sd: The sched_domain whose statistics are to be updated.
3714 * @group: sched_group whose statistics are to be updated.
3715 * @this_cpu: Cpu for which load balance is currently performed.
3716 * @idle: Idle status of this_cpu
3717 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3718 * @sd_idle: Idle status of the sched_domain containing group.
3719 * @local_group: Does group contain this_cpu.
3720 * @cpus: Set of cpus considered for load balancing.
3721 * @balance: Should we balance.
3722 * @sgs: variable to hold the statistics for this group.
3723 */
3724 static inline void update_sg_lb_stats(struct sched_domain *sd,
3725 struct sched_group *group, int this_cpu,
3726 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3727 int local_group, const struct cpumask *cpus,
3728 int *balance, struct sg_lb_stats *sgs)
3729 {
3730 unsigned long load, max_cpu_load, min_cpu_load;
3731 int i;
3732 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3733 unsigned long sum_avg_load_per_task;
3734 unsigned long avg_load_per_task;
3735
3736 if (local_group) {
3737 balance_cpu = group_first_cpu(group);
3738 if (balance_cpu == this_cpu)
3739 update_group_power(sd, this_cpu);
3740 }
3741
3742 /* Tally up the load of all CPUs in the group */
3743 sum_avg_load_per_task = avg_load_per_task = 0;
3744 max_cpu_load = 0;
3745 min_cpu_load = ~0UL;
3746
3747 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3748 struct rq *rq = cpu_rq(i);
3749
3750 if (*sd_idle && rq->nr_running)
3751 *sd_idle = 0;
3752
3753 /* Bias balancing toward cpus of our domain */
3754 if (local_group) {
3755 if (idle_cpu(i) && !first_idle_cpu) {
3756 first_idle_cpu = 1;
3757 balance_cpu = i;
3758 }
3759
3760 load = target_load(i, load_idx);
3761 } else {
3762 load = source_load(i, load_idx);
3763 if (load > max_cpu_load)
3764 max_cpu_load = load;
3765 if (min_cpu_load > load)
3766 min_cpu_load = load;
3767 }
3768
3769 sgs->group_load += load;
3770 sgs->sum_nr_running += rq->nr_running;
3771 sgs->sum_weighted_load += weighted_cpuload(i);
3772
3773 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3774 }
3775
3776 /*
3777 * First idle cpu or the first cpu(busiest) in this sched group
3778 * is eligible for doing load balancing at this and above
3779 * domains. In the newly idle case, we will allow all the cpu's
3780 * to do the newly idle load balance.
3781 */
3782 if (idle != CPU_NEWLY_IDLE && local_group &&
3783 balance_cpu != this_cpu && balance) {
3784 *balance = 0;
3785 return;
3786 }
3787
3788 /* Adjust by relative CPU power of the group */
3789 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3790
3791
3792 /*
3793 * Consider the group unbalanced when the imbalance is larger
3794 * than the average weight of two tasks.
3795 *
3796 * APZ: with cgroup the avg task weight can vary wildly and
3797 * might not be a suitable number - should we keep a
3798 * normalized nr_running number somewhere that negates
3799 * the hierarchy?
3800 */
3801 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3802 group->cpu_power;
3803
3804 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3805 sgs->group_imb = 1;
3806
3807 sgs->group_capacity =
3808 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3809 }
3810
3811 /**
3812 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3813 * @sd: sched_domain whose statistics are to be updated.
3814 * @this_cpu: Cpu for which load balance is currently performed.
3815 * @idle: Idle status of this_cpu
3816 * @sd_idle: Idle status of the sched_domain containing group.
3817 * @cpus: Set of cpus considered for load balancing.
3818 * @balance: Should we balance.
3819 * @sds: variable to hold the statistics for this sched_domain.
3820 */
3821 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3822 enum cpu_idle_type idle, int *sd_idle,
3823 const struct cpumask *cpus, int *balance,
3824 struct sd_lb_stats *sds)
3825 {
3826 struct sched_domain *child = sd->child;
3827 struct sched_group *group = sd->groups;
3828 struct sg_lb_stats sgs;
3829 int load_idx, prefer_sibling = 0;
3830
3831 if (child && child->flags & SD_PREFER_SIBLING)
3832 prefer_sibling = 1;
3833
3834 init_sd_power_savings_stats(sd, sds, idle);
3835 load_idx = get_sd_load_idx(sd, idle);
3836
3837 do {
3838 int local_group;
3839
3840 local_group = cpumask_test_cpu(this_cpu,
3841 sched_group_cpus(group));
3842 memset(&sgs, 0, sizeof(sgs));
3843 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3844 local_group, cpus, balance, &sgs);
3845
3846 if (local_group && balance && !(*balance))
3847 return;
3848
3849 sds->total_load += sgs.group_load;
3850 sds->total_pwr += group->cpu_power;
3851
3852 /*
3853 * In case the child domain prefers tasks go to siblings
3854 * first, lower the group capacity to one so that we'll try
3855 * and move all the excess tasks away.
3856 */
3857 if (prefer_sibling)
3858 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3859
3860 if (local_group) {
3861 sds->this_load = sgs.avg_load;
3862 sds->this = group;
3863 sds->this_nr_running = sgs.sum_nr_running;
3864 sds->this_load_per_task = sgs.sum_weighted_load;
3865 } else if (sgs.avg_load > sds->max_load &&
3866 (sgs.sum_nr_running > sgs.group_capacity ||
3867 sgs.group_imb)) {
3868 sds->max_load = sgs.avg_load;
3869 sds->busiest = group;
3870 sds->busiest_nr_running = sgs.sum_nr_running;
3871 sds->busiest_load_per_task = sgs.sum_weighted_load;
3872 sds->group_imb = sgs.group_imb;
3873 }
3874
3875 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3876 group = group->next;
3877 } while (group != sd->groups);
3878 }
3879
3880 /**
3881 * fix_small_imbalance - Calculate the minor imbalance that exists
3882 * amongst the groups of a sched_domain, during
3883 * load balancing.
3884 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3885 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3886 * @imbalance: Variable to store the imbalance.
3887 */
3888 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3889 int this_cpu, unsigned long *imbalance)
3890 {
3891 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3892 unsigned int imbn = 2;
3893
3894 if (sds->this_nr_running) {
3895 sds->this_load_per_task /= sds->this_nr_running;
3896 if (sds->busiest_load_per_task >
3897 sds->this_load_per_task)
3898 imbn = 1;
3899 } else
3900 sds->this_load_per_task =
3901 cpu_avg_load_per_task(this_cpu);
3902
3903 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3904 sds->busiest_load_per_task * imbn) {
3905 *imbalance = sds->busiest_load_per_task;
3906 return;
3907 }
3908
3909 /*
3910 * OK, we don't have enough imbalance to justify moving tasks,
3911 * however we may be able to increase total CPU power used by
3912 * moving them.
3913 */
3914
3915 pwr_now += sds->busiest->cpu_power *
3916 min(sds->busiest_load_per_task, sds->max_load);
3917 pwr_now += sds->this->cpu_power *
3918 min(sds->this_load_per_task, sds->this_load);
3919 pwr_now /= SCHED_LOAD_SCALE;
3920
3921 /* Amount of load we'd subtract */
3922 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3923 sds->busiest->cpu_power;
3924 if (sds->max_load > tmp)
3925 pwr_move += sds->busiest->cpu_power *
3926 min(sds->busiest_load_per_task, sds->max_load - tmp);
3927
3928 /* Amount of load we'd add */
3929 if (sds->max_load * sds->busiest->cpu_power <
3930 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3931 tmp = (sds->max_load * sds->busiest->cpu_power) /
3932 sds->this->cpu_power;
3933 else
3934 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3935 sds->this->cpu_power;
3936 pwr_move += sds->this->cpu_power *
3937 min(sds->this_load_per_task, sds->this_load + tmp);
3938 pwr_move /= SCHED_LOAD_SCALE;
3939
3940 /* Move if we gain throughput */
3941 if (pwr_move > pwr_now)
3942 *imbalance = sds->busiest_load_per_task;
3943 }
3944
3945 /**
3946 * calculate_imbalance - Calculate the amount of imbalance present within the
3947 * groups of a given sched_domain during load balance.
3948 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3949 * @this_cpu: Cpu for which currently load balance is being performed.
3950 * @imbalance: The variable to store the imbalance.
3951 */
3952 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3953 unsigned long *imbalance)
3954 {
3955 unsigned long max_pull;
3956 /*
3957 * In the presence of smp nice balancing, certain scenarios can have
3958 * max load less than avg load(as we skip the groups at or below
3959 * its cpu_power, while calculating max_load..)
3960 */
3961 if (sds->max_load < sds->avg_load) {
3962 *imbalance = 0;
3963 return fix_small_imbalance(sds, this_cpu, imbalance);
3964 }
3965
3966 /* Don't want to pull so many tasks that a group would go idle */
3967 max_pull = min(sds->max_load - sds->avg_load,
3968 sds->max_load - sds->busiest_load_per_task);
3969
3970 /* How much load to actually move to equalise the imbalance */
3971 *imbalance = min(max_pull * sds->busiest->cpu_power,
3972 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3973 / SCHED_LOAD_SCALE;
3974
3975 /*
3976 * if *imbalance is less than the average load per runnable task
3977 * there is no gaurantee that any tasks will be moved so we'll have
3978 * a think about bumping its value to force at least one task to be
3979 * moved
3980 */
3981 if (*imbalance < sds->busiest_load_per_task)
3982 return fix_small_imbalance(sds, this_cpu, imbalance);
3983
3984 }
3985 /******* find_busiest_group() helpers end here *********************/
3986
3987 /**
3988 * find_busiest_group - Returns the busiest group within the sched_domain
3989 * if there is an imbalance. If there isn't an imbalance, and
3990 * the user has opted for power-savings, it returns a group whose
3991 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3992 * such a group exists.
3993 *
3994 * Also calculates the amount of weighted load which should be moved
3995 * to restore balance.
3996 *
3997 * @sd: The sched_domain whose busiest group is to be returned.
3998 * @this_cpu: The cpu for which load balancing is currently being performed.
3999 * @imbalance: Variable which stores amount of weighted load which should
4000 * be moved to restore balance/put a group to idle.
4001 * @idle: The idle status of this_cpu.
4002 * @sd_idle: The idleness of sd
4003 * @cpus: The set of CPUs under consideration for load-balancing.
4004 * @balance: Pointer to a variable indicating if this_cpu
4005 * is the appropriate cpu to perform load balancing at this_level.
4006 *
4007 * Returns: - the busiest group if imbalance exists.
4008 * - If no imbalance and user has opted for power-savings balance,
4009 * return the least loaded group whose CPUs can be
4010 * put to idle by rebalancing its tasks onto our group.
4011 */
4012 static struct sched_group *
4013 find_busiest_group(struct sched_domain *sd, int this_cpu,
4014 unsigned long *imbalance, enum cpu_idle_type idle,
4015 int *sd_idle, const struct cpumask *cpus, int *balance)
4016 {
4017 struct sd_lb_stats sds;
4018
4019 memset(&sds, 0, sizeof(sds));
4020
4021 /*
4022 * Compute the various statistics relavent for load balancing at
4023 * this level.
4024 */
4025 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4026 balance, &sds);
4027
4028 /* Cases where imbalance does not exist from POV of this_cpu */
4029 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4030 * at this level.
4031 * 2) There is no busy sibling group to pull from.
4032 * 3) This group is the busiest group.
4033 * 4) This group is more busy than the avg busieness at this
4034 * sched_domain.
4035 * 5) The imbalance is within the specified limit.
4036 * 6) Any rebalance would lead to ping-pong
4037 */
4038 if (balance && !(*balance))
4039 goto ret;
4040
4041 if (!sds.busiest || sds.busiest_nr_running == 0)
4042 goto out_balanced;
4043
4044 if (sds.this_load >= sds.max_load)
4045 goto out_balanced;
4046
4047 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4048
4049 if (sds.this_load >= sds.avg_load)
4050 goto out_balanced;
4051
4052 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4053 goto out_balanced;
4054
4055 sds.busiest_load_per_task /= sds.busiest_nr_running;
4056 if (sds.group_imb)
4057 sds.busiest_load_per_task =
4058 min(sds.busiest_load_per_task, sds.avg_load);
4059
4060 /*
4061 * We're trying to get all the cpus to the average_load, so we don't
4062 * want to push ourselves above the average load, nor do we wish to
4063 * reduce the max loaded cpu below the average load, as either of these
4064 * actions would just result in more rebalancing later, and ping-pong
4065 * tasks around. Thus we look for the minimum possible imbalance.
4066 * Negative imbalances (*we* are more loaded than anyone else) will
4067 * be counted as no imbalance for these purposes -- we can't fix that
4068 * by pulling tasks to us. Be careful of negative numbers as they'll
4069 * appear as very large values with unsigned longs.
4070 */
4071 if (sds.max_load <= sds.busiest_load_per_task)
4072 goto out_balanced;
4073
4074 /* Looks like there is an imbalance. Compute it */
4075 calculate_imbalance(&sds, this_cpu, imbalance);
4076 return sds.busiest;
4077
4078 out_balanced:
4079 /*
4080 * There is no obvious imbalance. But check if we can do some balancing
4081 * to save power.
4082 */
4083 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4084 return sds.busiest;
4085 ret:
4086 *imbalance = 0;
4087 return NULL;
4088 }
4089
4090 /*
4091 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4092 */
4093 static struct rq *
4094 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4095 unsigned long imbalance, const struct cpumask *cpus)
4096 {
4097 struct rq *busiest = NULL, *rq;
4098 unsigned long max_load = 0;
4099 int i;
4100
4101 for_each_cpu(i, sched_group_cpus(group)) {
4102 unsigned long power = power_of(i);
4103 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4104 unsigned long wl;
4105
4106 if (!cpumask_test_cpu(i, cpus))
4107 continue;
4108
4109 rq = cpu_rq(i);
4110 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4111 wl /= power;
4112
4113 if (capacity && rq->nr_running == 1 && wl > imbalance)
4114 continue;
4115
4116 if (wl > max_load) {
4117 max_load = wl;
4118 busiest = rq;
4119 }
4120 }
4121
4122 return busiest;
4123 }
4124
4125 /*
4126 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4127 * so long as it is large enough.
4128 */
4129 #define MAX_PINNED_INTERVAL 512
4130
4131 /* Working cpumask for load_balance and load_balance_newidle. */
4132 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4133
4134 /*
4135 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4136 * tasks if there is an imbalance.
4137 */
4138 static int load_balance(int this_cpu, struct rq *this_rq,
4139 struct sched_domain *sd, enum cpu_idle_type idle,
4140 int *balance)
4141 {
4142 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4143 struct sched_group *group;
4144 unsigned long imbalance;
4145 struct rq *busiest;
4146 unsigned long flags;
4147 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4148
4149 cpumask_copy(cpus, cpu_active_mask);
4150
4151 /*
4152 * When power savings policy is enabled for the parent domain, idle
4153 * sibling can pick up load irrespective of busy siblings. In this case,
4154 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4155 * portraying it as CPU_NOT_IDLE.
4156 */
4157 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4158 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4159 sd_idle = 1;
4160
4161 schedstat_inc(sd, lb_count[idle]);
4162
4163 redo:
4164 update_shares(sd);
4165 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4166 cpus, balance);
4167
4168 if (*balance == 0)
4169 goto out_balanced;
4170
4171 if (!group) {
4172 schedstat_inc(sd, lb_nobusyg[idle]);
4173 goto out_balanced;
4174 }
4175
4176 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4177 if (!busiest) {
4178 schedstat_inc(sd, lb_nobusyq[idle]);
4179 goto out_balanced;
4180 }
4181
4182 BUG_ON(busiest == this_rq);
4183
4184 schedstat_add(sd, lb_imbalance[idle], imbalance);
4185
4186 ld_moved = 0;
4187 if (busiest->nr_running > 1) {
4188 /*
4189 * Attempt to move tasks. If find_busiest_group has found
4190 * an imbalance but busiest->nr_running <= 1, the group is
4191 * still unbalanced. ld_moved simply stays zero, so it is
4192 * correctly treated as an imbalance.
4193 */
4194 local_irq_save(flags);
4195 double_rq_lock(this_rq, busiest);
4196 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4197 imbalance, sd, idle, &all_pinned);
4198 double_rq_unlock(this_rq, busiest);
4199 local_irq_restore(flags);
4200
4201 /*
4202 * some other cpu did the load balance for us.
4203 */
4204 if (ld_moved && this_cpu != smp_processor_id())
4205 resched_cpu(this_cpu);
4206
4207 /* All tasks on this runqueue were pinned by CPU affinity */
4208 if (unlikely(all_pinned)) {
4209 cpumask_clear_cpu(cpu_of(busiest), cpus);
4210 if (!cpumask_empty(cpus))
4211 goto redo;
4212 goto out_balanced;
4213 }
4214 }
4215
4216 if (!ld_moved) {
4217 schedstat_inc(sd, lb_failed[idle]);
4218 sd->nr_balance_failed++;
4219
4220 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4221
4222 raw_spin_lock_irqsave(&busiest->lock, flags);
4223
4224 /* don't kick the migration_thread, if the curr
4225 * task on busiest cpu can't be moved to this_cpu
4226 */
4227 if (!cpumask_test_cpu(this_cpu,
4228 &busiest->curr->cpus_allowed)) {
4229 raw_spin_unlock_irqrestore(&busiest->lock,
4230 flags);
4231 all_pinned = 1;
4232 goto out_one_pinned;
4233 }
4234
4235 if (!busiest->active_balance) {
4236 busiest->active_balance = 1;
4237 busiest->push_cpu = this_cpu;
4238 active_balance = 1;
4239 }
4240 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4241 if (active_balance)
4242 wake_up_process(busiest->migration_thread);
4243
4244 /*
4245 * We've kicked active balancing, reset the failure
4246 * counter.
4247 */
4248 sd->nr_balance_failed = sd->cache_nice_tries+1;
4249 }
4250 } else
4251 sd->nr_balance_failed = 0;
4252
4253 if (likely(!active_balance)) {
4254 /* We were unbalanced, so reset the balancing interval */
4255 sd->balance_interval = sd->min_interval;
4256 } else {
4257 /*
4258 * If we've begun active balancing, start to back off. This
4259 * case may not be covered by the all_pinned logic if there
4260 * is only 1 task on the busy runqueue (because we don't call
4261 * move_tasks).
4262 */
4263 if (sd->balance_interval < sd->max_interval)
4264 sd->balance_interval *= 2;
4265 }
4266
4267 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4268 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4269 ld_moved = -1;
4270
4271 goto out;
4272
4273 out_balanced:
4274 schedstat_inc(sd, lb_balanced[idle]);
4275
4276 sd->nr_balance_failed = 0;
4277
4278 out_one_pinned:
4279 /* tune up the balancing interval */
4280 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4281 (sd->balance_interval < sd->max_interval))
4282 sd->balance_interval *= 2;
4283
4284 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4285 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4286 ld_moved = -1;
4287 else
4288 ld_moved = 0;
4289 out:
4290 if (ld_moved)
4291 update_shares(sd);
4292 return ld_moved;
4293 }
4294
4295 /*
4296 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4297 * tasks if there is an imbalance.
4298 *
4299 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4300 * this_rq is locked.
4301 */
4302 static int
4303 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4304 {
4305 struct sched_group *group;
4306 struct rq *busiest = NULL;
4307 unsigned long imbalance;
4308 int ld_moved = 0;
4309 int sd_idle = 0;
4310 int all_pinned = 0;
4311 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4312
4313 cpumask_copy(cpus, cpu_active_mask);
4314
4315 /*
4316 * When power savings policy is enabled for the parent domain, idle
4317 * sibling can pick up load irrespective of busy siblings. In this case,
4318 * let the state of idle sibling percolate up as IDLE, instead of
4319 * portraying it as CPU_NOT_IDLE.
4320 */
4321 if (sd->flags & SD_SHARE_CPUPOWER &&
4322 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4323 sd_idle = 1;
4324
4325 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4326 redo:
4327 update_shares_locked(this_rq, sd);
4328 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4329 &sd_idle, cpus, NULL);
4330 if (!group) {
4331 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4332 goto out_balanced;
4333 }
4334
4335 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4336 if (!busiest) {
4337 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4338 goto out_balanced;
4339 }
4340
4341 BUG_ON(busiest == this_rq);
4342
4343 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4344
4345 ld_moved = 0;
4346 if (busiest->nr_running > 1) {
4347 /* Attempt to move tasks */
4348 double_lock_balance(this_rq, busiest);
4349 /* this_rq->clock is already updated */
4350 update_rq_clock(busiest);
4351 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4352 imbalance, sd, CPU_NEWLY_IDLE,
4353 &all_pinned);
4354 double_unlock_balance(this_rq, busiest);
4355
4356 if (unlikely(all_pinned)) {
4357 cpumask_clear_cpu(cpu_of(busiest), cpus);
4358 if (!cpumask_empty(cpus))
4359 goto redo;
4360 }
4361 }
4362
4363 if (!ld_moved) {
4364 int active_balance = 0;
4365
4366 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4367 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4368 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4369 return -1;
4370
4371 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4372 return -1;
4373
4374 if (sd->nr_balance_failed++ < 2)
4375 return -1;
4376
4377 /*
4378 * The only task running in a non-idle cpu can be moved to this
4379 * cpu in an attempt to completely freeup the other CPU
4380 * package. The same method used to move task in load_balance()
4381 * have been extended for load_balance_newidle() to speedup
4382 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4383 *
4384 * The package power saving logic comes from
4385 * find_busiest_group(). If there are no imbalance, then
4386 * f_b_g() will return NULL. However when sched_mc={1,2} then
4387 * f_b_g() will select a group from which a running task may be
4388 * pulled to this cpu in order to make the other package idle.
4389 * If there is no opportunity to make a package idle and if
4390 * there are no imbalance, then f_b_g() will return NULL and no
4391 * action will be taken in load_balance_newidle().
4392 *
4393 * Under normal task pull operation due to imbalance, there
4394 * will be more than one task in the source run queue and
4395 * move_tasks() will succeed. ld_moved will be true and this
4396 * active balance code will not be triggered.
4397 */
4398
4399 /* Lock busiest in correct order while this_rq is held */
4400 double_lock_balance(this_rq, busiest);
4401
4402 /*
4403 * don't kick the migration_thread, if the curr
4404 * task on busiest cpu can't be moved to this_cpu
4405 */
4406 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4407 double_unlock_balance(this_rq, busiest);
4408 all_pinned = 1;
4409 return ld_moved;
4410 }
4411
4412 if (!busiest->active_balance) {
4413 busiest->active_balance = 1;
4414 busiest->push_cpu = this_cpu;
4415 active_balance = 1;
4416 }
4417
4418 double_unlock_balance(this_rq, busiest);
4419 /*
4420 * Should not call ttwu while holding a rq->lock
4421 */
4422 raw_spin_unlock(&this_rq->lock);
4423 if (active_balance)
4424 wake_up_process(busiest->migration_thread);
4425 raw_spin_lock(&this_rq->lock);
4426
4427 } else
4428 sd->nr_balance_failed = 0;
4429
4430 update_shares_locked(this_rq, sd);
4431 return ld_moved;
4432
4433 out_balanced:
4434 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4435 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4436 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4437 return -1;
4438 sd->nr_balance_failed = 0;
4439
4440 return 0;
4441 }
4442
4443 /*
4444 * idle_balance is called by schedule() if this_cpu is about to become
4445 * idle. Attempts to pull tasks from other CPUs.
4446 */
4447 static void idle_balance(int this_cpu, struct rq *this_rq)
4448 {
4449 struct sched_domain *sd;
4450 int pulled_task = 0;
4451 unsigned long next_balance = jiffies + HZ;
4452
4453 this_rq->idle_stamp = this_rq->clock;
4454
4455 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4456 return;
4457
4458 for_each_domain(this_cpu, sd) {
4459 unsigned long interval;
4460
4461 if (!(sd->flags & SD_LOAD_BALANCE))
4462 continue;
4463
4464 if (sd->flags & SD_BALANCE_NEWIDLE)
4465 /* If we've pulled tasks over stop searching: */
4466 pulled_task = load_balance_newidle(this_cpu, this_rq,
4467 sd);
4468
4469 interval = msecs_to_jiffies(sd->balance_interval);
4470 if (time_after(next_balance, sd->last_balance + interval))
4471 next_balance = sd->last_balance + interval;
4472 if (pulled_task) {
4473 this_rq->idle_stamp = 0;
4474 break;
4475 }
4476 }
4477 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4478 /*
4479 * We are going idle. next_balance may be set based on
4480 * a busy processor. So reset next_balance.
4481 */
4482 this_rq->next_balance = next_balance;
4483 }
4484 }
4485
4486 /*
4487 * active_load_balance is run by migration threads. It pushes running tasks
4488 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4489 * running on each physical CPU where possible, and avoids physical /
4490 * logical imbalances.
4491 *
4492 * Called with busiest_rq locked.
4493 */
4494 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4495 {
4496 int target_cpu = busiest_rq->push_cpu;
4497 struct sched_domain *sd;
4498 struct rq *target_rq;
4499
4500 /* Is there any task to move? */
4501 if (busiest_rq->nr_running <= 1)
4502 return;
4503
4504 target_rq = cpu_rq(target_cpu);
4505
4506 /*
4507 * This condition is "impossible", if it occurs
4508 * we need to fix it. Originally reported by
4509 * Bjorn Helgaas on a 128-cpu setup.
4510 */
4511 BUG_ON(busiest_rq == target_rq);
4512
4513 /* move a task from busiest_rq to target_rq */
4514 double_lock_balance(busiest_rq, target_rq);
4515 update_rq_clock(busiest_rq);
4516 update_rq_clock(target_rq);
4517
4518 /* Search for an sd spanning us and the target CPU. */
4519 for_each_domain(target_cpu, sd) {
4520 if ((sd->flags & SD_LOAD_BALANCE) &&
4521 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4522 break;
4523 }
4524
4525 if (likely(sd)) {
4526 schedstat_inc(sd, alb_count);
4527
4528 if (move_one_task(target_rq, target_cpu, busiest_rq,
4529 sd, CPU_IDLE))
4530 schedstat_inc(sd, alb_pushed);
4531 else
4532 schedstat_inc(sd, alb_failed);
4533 }
4534 double_unlock_balance(busiest_rq, target_rq);
4535 }
4536
4537 #ifdef CONFIG_NO_HZ
4538 static struct {
4539 atomic_t load_balancer;
4540 cpumask_var_t cpu_mask;
4541 cpumask_var_t ilb_grp_nohz_mask;
4542 } nohz ____cacheline_aligned = {
4543 .load_balancer = ATOMIC_INIT(-1),
4544 };
4545
4546 int get_nohz_load_balancer(void)
4547 {
4548 return atomic_read(&nohz.load_balancer);
4549 }
4550
4551 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4552 /**
4553 * lowest_flag_domain - Return lowest sched_domain containing flag.
4554 * @cpu: The cpu whose lowest level of sched domain is to
4555 * be returned.
4556 * @flag: The flag to check for the lowest sched_domain
4557 * for the given cpu.
4558 *
4559 * Returns the lowest sched_domain of a cpu which contains the given flag.
4560 */
4561 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4562 {
4563 struct sched_domain *sd;
4564
4565 for_each_domain(cpu, sd)
4566 if (sd && (sd->flags & flag))
4567 break;
4568
4569 return sd;
4570 }
4571
4572 /**
4573 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4574 * @cpu: The cpu whose domains we're iterating over.
4575 * @sd: variable holding the value of the power_savings_sd
4576 * for cpu.
4577 * @flag: The flag to filter the sched_domains to be iterated.
4578 *
4579 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4580 * set, starting from the lowest sched_domain to the highest.
4581 */
4582 #define for_each_flag_domain(cpu, sd, flag) \
4583 for (sd = lowest_flag_domain(cpu, flag); \
4584 (sd && (sd->flags & flag)); sd = sd->parent)
4585
4586 /**
4587 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4588 * @ilb_group: group to be checked for semi-idleness
4589 *
4590 * Returns: 1 if the group is semi-idle. 0 otherwise.
4591 *
4592 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4593 * and atleast one non-idle CPU. This helper function checks if the given
4594 * sched_group is semi-idle or not.
4595 */
4596 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4597 {
4598 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4599 sched_group_cpus(ilb_group));
4600
4601 /*
4602 * A sched_group is semi-idle when it has atleast one busy cpu
4603 * and atleast one idle cpu.
4604 */
4605 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4606 return 0;
4607
4608 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4609 return 0;
4610
4611 return 1;
4612 }
4613 /**
4614 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4615 * @cpu: The cpu which is nominating a new idle_load_balancer.
4616 *
4617 * Returns: Returns the id of the idle load balancer if it exists,
4618 * Else, returns >= nr_cpu_ids.
4619 *
4620 * This algorithm picks the idle load balancer such that it belongs to a
4621 * semi-idle powersavings sched_domain. The idea is to try and avoid
4622 * completely idle packages/cores just for the purpose of idle load balancing
4623 * when there are other idle cpu's which are better suited for that job.
4624 */
4625 static int find_new_ilb(int cpu)
4626 {
4627 struct sched_domain *sd;
4628 struct sched_group *ilb_group;
4629
4630 /*
4631 * Have idle load balancer selection from semi-idle packages only
4632 * when power-aware load balancing is enabled
4633 */
4634 if (!(sched_smt_power_savings || sched_mc_power_savings))
4635 goto out_done;
4636
4637 /*
4638 * Optimize for the case when we have no idle CPUs or only one
4639 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4640 */
4641 if (cpumask_weight(nohz.cpu_mask) < 2)
4642 goto out_done;
4643
4644 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4645 ilb_group = sd->groups;
4646
4647 do {
4648 if (is_semi_idle_group(ilb_group))
4649 return cpumask_first(nohz.ilb_grp_nohz_mask);
4650
4651 ilb_group = ilb_group->next;
4652
4653 } while (ilb_group != sd->groups);
4654 }
4655
4656 out_done:
4657 return cpumask_first(nohz.cpu_mask);
4658 }
4659 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4660 static inline int find_new_ilb(int call_cpu)
4661 {
4662 return cpumask_first(nohz.cpu_mask);
4663 }
4664 #endif
4665
4666 /*
4667 * This routine will try to nominate the ilb (idle load balancing)
4668 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4669 * load balancing on behalf of all those cpus. If all the cpus in the system
4670 * go into this tickless mode, then there will be no ilb owner (as there is
4671 * no need for one) and all the cpus will sleep till the next wakeup event
4672 * arrives...
4673 *
4674 * For the ilb owner, tick is not stopped. And this tick will be used
4675 * for idle load balancing. ilb owner will still be part of
4676 * nohz.cpu_mask..
4677 *
4678 * While stopping the tick, this cpu will become the ilb owner if there
4679 * is no other owner. And will be the owner till that cpu becomes busy
4680 * or if all cpus in the system stop their ticks at which point
4681 * there is no need for ilb owner.
4682 *
4683 * When the ilb owner becomes busy, it nominates another owner, during the
4684 * next busy scheduler_tick()
4685 */
4686 int select_nohz_load_balancer(int stop_tick)
4687 {
4688 int cpu = smp_processor_id();
4689
4690 if (stop_tick) {
4691 cpu_rq(cpu)->in_nohz_recently = 1;
4692
4693 if (!cpu_active(cpu)) {
4694 if (atomic_read(&nohz.load_balancer) != cpu)
4695 return 0;
4696
4697 /*
4698 * If we are going offline and still the leader,
4699 * give up!
4700 */
4701 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4702 BUG();
4703
4704 return 0;
4705 }
4706
4707 cpumask_set_cpu(cpu, nohz.cpu_mask);
4708
4709 /* time for ilb owner also to sleep */
4710 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4711 if (atomic_read(&nohz.load_balancer) == cpu)
4712 atomic_set(&nohz.load_balancer, -1);
4713 return 0;
4714 }
4715
4716 if (atomic_read(&nohz.load_balancer) == -1) {
4717 /* make me the ilb owner */
4718 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4719 return 1;
4720 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4721 int new_ilb;
4722
4723 if (!(sched_smt_power_savings ||
4724 sched_mc_power_savings))
4725 return 1;
4726 /*
4727 * Check to see if there is a more power-efficient
4728 * ilb.
4729 */
4730 new_ilb = find_new_ilb(cpu);
4731 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4732 atomic_set(&nohz.load_balancer, -1);
4733 resched_cpu(new_ilb);
4734 return 0;
4735 }
4736 return 1;
4737 }
4738 } else {
4739 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4740 return 0;
4741
4742 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4743
4744 if (atomic_read(&nohz.load_balancer) == cpu)
4745 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4746 BUG();
4747 }
4748 return 0;
4749 }
4750 #endif
4751
4752 static DEFINE_SPINLOCK(balancing);
4753
4754 /*
4755 * It checks each scheduling domain to see if it is due to be balanced,
4756 * and initiates a balancing operation if so.
4757 *
4758 * Balancing parameters are set up in arch_init_sched_domains.
4759 */
4760 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4761 {
4762 int balance = 1;
4763 struct rq *rq = cpu_rq(cpu);
4764 unsigned long interval;
4765 struct sched_domain *sd;
4766 /* Earliest time when we have to do rebalance again */
4767 unsigned long next_balance = jiffies + 60*HZ;
4768 int update_next_balance = 0;
4769 int need_serialize;
4770
4771 for_each_domain(cpu, sd) {
4772 if (!(sd->flags & SD_LOAD_BALANCE))
4773 continue;
4774
4775 interval = sd->balance_interval;
4776 if (idle != CPU_IDLE)
4777 interval *= sd->busy_factor;
4778
4779 /* scale ms to jiffies */
4780 interval = msecs_to_jiffies(interval);
4781 if (unlikely(!interval))
4782 interval = 1;
4783 if (interval > HZ*NR_CPUS/10)
4784 interval = HZ*NR_CPUS/10;
4785
4786 need_serialize = sd->flags & SD_SERIALIZE;
4787
4788 if (need_serialize) {
4789 if (!spin_trylock(&balancing))
4790 goto out;
4791 }
4792
4793 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4794 if (load_balance(cpu, rq, sd, idle, &balance)) {
4795 /*
4796 * We've pulled tasks over so either we're no
4797 * longer idle, or one of our SMT siblings is
4798 * not idle.
4799 */
4800 idle = CPU_NOT_IDLE;
4801 }
4802 sd->last_balance = jiffies;
4803 }
4804 if (need_serialize)
4805 spin_unlock(&balancing);
4806 out:
4807 if (time_after(next_balance, sd->last_balance + interval)) {
4808 next_balance = sd->last_balance + interval;
4809 update_next_balance = 1;
4810 }
4811
4812 /*
4813 * Stop the load balance at this level. There is another
4814 * CPU in our sched group which is doing load balancing more
4815 * actively.
4816 */
4817 if (!balance)
4818 break;
4819 }
4820
4821 /*
4822 * next_balance will be updated only when there is a need.
4823 * When the cpu is attached to null domain for ex, it will not be
4824 * updated.
4825 */
4826 if (likely(update_next_balance))
4827 rq->next_balance = next_balance;
4828 }
4829
4830 /*
4831 * run_rebalance_domains is triggered when needed from the scheduler tick.
4832 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4833 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4834 */
4835 static void run_rebalance_domains(struct softirq_action *h)
4836 {
4837 int this_cpu = smp_processor_id();
4838 struct rq *this_rq = cpu_rq(this_cpu);
4839 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4840 CPU_IDLE : CPU_NOT_IDLE;
4841
4842 rebalance_domains(this_cpu, idle);
4843
4844 #ifdef CONFIG_NO_HZ
4845 /*
4846 * If this cpu is the owner for idle load balancing, then do the
4847 * balancing on behalf of the other idle cpus whose ticks are
4848 * stopped.
4849 */
4850 if (this_rq->idle_at_tick &&
4851 atomic_read(&nohz.load_balancer) == this_cpu) {
4852 struct rq *rq;
4853 int balance_cpu;
4854
4855 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4856 if (balance_cpu == this_cpu)
4857 continue;
4858
4859 /*
4860 * If this cpu gets work to do, stop the load balancing
4861 * work being done for other cpus. Next load
4862 * balancing owner will pick it up.
4863 */
4864 if (need_resched())
4865 break;
4866
4867 rebalance_domains(balance_cpu, CPU_IDLE);
4868
4869 rq = cpu_rq(balance_cpu);
4870 if (time_after(this_rq->next_balance, rq->next_balance))
4871 this_rq->next_balance = rq->next_balance;
4872 }
4873 }
4874 #endif
4875 }
4876
4877 static inline int on_null_domain(int cpu)
4878 {
4879 return !rcu_dereference(cpu_rq(cpu)->sd);
4880 }
4881
4882 /*
4883 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4884 *
4885 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4886 * idle load balancing owner or decide to stop the periodic load balancing,
4887 * if the whole system is idle.
4888 */
4889 static inline void trigger_load_balance(struct rq *rq, int cpu)
4890 {
4891 #ifdef CONFIG_NO_HZ
4892 /*
4893 * If we were in the nohz mode recently and busy at the current
4894 * scheduler tick, then check if we need to nominate new idle
4895 * load balancer.
4896 */
4897 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4898 rq->in_nohz_recently = 0;
4899
4900 if (atomic_read(&nohz.load_balancer) == cpu) {
4901 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4902 atomic_set(&nohz.load_balancer, -1);
4903 }
4904
4905 if (atomic_read(&nohz.load_balancer) == -1) {
4906 int ilb = find_new_ilb(cpu);
4907
4908 if (ilb < nr_cpu_ids)
4909 resched_cpu(ilb);
4910 }
4911 }
4912
4913 /*
4914 * If this cpu is idle and doing idle load balancing for all the
4915 * cpus with ticks stopped, is it time for that to stop?
4916 */
4917 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4918 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4919 resched_cpu(cpu);
4920 return;
4921 }
4922
4923 /*
4924 * If this cpu is idle and the idle load balancing is done by
4925 * someone else, then no need raise the SCHED_SOFTIRQ
4926 */
4927 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4928 cpumask_test_cpu(cpu, nohz.cpu_mask))
4929 return;
4930 #endif
4931 /* Don't need to rebalance while attached to NULL domain */
4932 if (time_after_eq(jiffies, rq->next_balance) &&
4933 likely(!on_null_domain(cpu)))
4934 raise_softirq(SCHED_SOFTIRQ);
4935 }
4936
4937 #else /* CONFIG_SMP */
4938
4939 /*
4940 * on UP we do not need to balance between CPUs:
4941 */
4942 static inline void idle_balance(int cpu, struct rq *rq)
4943 {
4944 }
4945
4946 #endif
4947
4948 DEFINE_PER_CPU(struct kernel_stat, kstat);
4949
4950 EXPORT_PER_CPU_SYMBOL(kstat);
4951
4952 /*
4953 * Return any ns on the sched_clock that have not yet been accounted in
4954 * @p in case that task is currently running.
4955 *
4956 * Called with task_rq_lock() held on @rq.
4957 */
4958 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4959 {
4960 u64 ns = 0;
4961
4962 if (task_current(rq, p)) {
4963 update_rq_clock(rq);
4964 ns = rq->clock - p->se.exec_start;
4965 if ((s64)ns < 0)
4966 ns = 0;
4967 }
4968
4969 return ns;
4970 }
4971
4972 unsigned long long task_delta_exec(struct task_struct *p)
4973 {
4974 unsigned long flags;
4975 struct rq *rq;
4976 u64 ns = 0;
4977
4978 rq = task_rq_lock(p, &flags);
4979 ns = do_task_delta_exec(p, rq);
4980 task_rq_unlock(rq, &flags);
4981
4982 return ns;
4983 }
4984
4985 /*
4986 * Return accounted runtime for the task.
4987 * In case the task is currently running, return the runtime plus current's
4988 * pending runtime that have not been accounted yet.
4989 */
4990 unsigned long long task_sched_runtime(struct task_struct *p)
4991 {
4992 unsigned long flags;
4993 struct rq *rq;
4994 u64 ns = 0;
4995
4996 rq = task_rq_lock(p, &flags);
4997 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4998 task_rq_unlock(rq, &flags);
4999
5000 return ns;
5001 }
5002
5003 /*
5004 * Return sum_exec_runtime for the thread group.
5005 * In case the task is currently running, return the sum plus current's
5006 * pending runtime that have not been accounted yet.
5007 *
5008 * Note that the thread group might have other running tasks as well,
5009 * so the return value not includes other pending runtime that other
5010 * running tasks might have.
5011 */
5012 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5013 {
5014 struct task_cputime totals;
5015 unsigned long flags;
5016 struct rq *rq;
5017 u64 ns;
5018
5019 rq = task_rq_lock(p, &flags);
5020 thread_group_cputime(p, &totals);
5021 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5022 task_rq_unlock(rq, &flags);
5023
5024 return ns;
5025 }
5026
5027 /*
5028 * Account user cpu time to a process.
5029 * @p: the process that the cpu time gets accounted to
5030 * @cputime: the cpu time spent in user space since the last update
5031 * @cputime_scaled: cputime scaled by cpu frequency
5032 */
5033 void account_user_time(struct task_struct *p, cputime_t cputime,
5034 cputime_t cputime_scaled)
5035 {
5036 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5037 cputime64_t tmp;
5038
5039 /* Add user time to process. */
5040 p->utime = cputime_add(p->utime, cputime);
5041 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5042 account_group_user_time(p, cputime);
5043
5044 /* Add user time to cpustat. */
5045 tmp = cputime_to_cputime64(cputime);
5046 if (TASK_NICE(p) > 0)
5047 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5048 else
5049 cpustat->user = cputime64_add(cpustat->user, tmp);
5050
5051 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5052 /* Account for user time used */
5053 acct_update_integrals(p);
5054 }
5055
5056 /*
5057 * Account guest cpu time to a process.
5058 * @p: the process that the cpu time gets accounted to
5059 * @cputime: the cpu time spent in virtual machine since the last update
5060 * @cputime_scaled: cputime scaled by cpu frequency
5061 */
5062 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5063 cputime_t cputime_scaled)
5064 {
5065 cputime64_t tmp;
5066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5067
5068 tmp = cputime_to_cputime64(cputime);
5069
5070 /* Add guest time to process. */
5071 p->utime = cputime_add(p->utime, cputime);
5072 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5073 account_group_user_time(p, cputime);
5074 p->gtime = cputime_add(p->gtime, cputime);
5075
5076 /* Add guest time to cpustat. */
5077 if (TASK_NICE(p) > 0) {
5078 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5079 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5080 } else {
5081 cpustat->user = cputime64_add(cpustat->user, tmp);
5082 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5083 }
5084 }
5085
5086 /*
5087 * Account system cpu time to a process.
5088 * @p: the process that the cpu time gets accounted to
5089 * @hardirq_offset: the offset to subtract from hardirq_count()
5090 * @cputime: the cpu time spent in kernel space since the last update
5091 * @cputime_scaled: cputime scaled by cpu frequency
5092 */
5093 void account_system_time(struct task_struct *p, int hardirq_offset,
5094 cputime_t cputime, cputime_t cputime_scaled)
5095 {
5096 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5097 cputime64_t tmp;
5098
5099 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5100 account_guest_time(p, cputime, cputime_scaled);
5101 return;
5102 }
5103
5104 /* Add system time to process. */
5105 p->stime = cputime_add(p->stime, cputime);
5106 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5107 account_group_system_time(p, cputime);
5108
5109 /* Add system time to cpustat. */
5110 tmp = cputime_to_cputime64(cputime);
5111 if (hardirq_count() - hardirq_offset)
5112 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5113 else if (softirq_count())
5114 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5115 else
5116 cpustat->system = cputime64_add(cpustat->system, tmp);
5117
5118 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5119
5120 /* Account for system time used */
5121 acct_update_integrals(p);
5122 }
5123
5124 /*
5125 * Account for involuntary wait time.
5126 * @steal: the cpu time spent in involuntary wait
5127 */
5128 void account_steal_time(cputime_t cputime)
5129 {
5130 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5131 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5132
5133 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5134 }
5135
5136 /*
5137 * Account for idle time.
5138 * @cputime: the cpu time spent in idle wait
5139 */
5140 void account_idle_time(cputime_t cputime)
5141 {
5142 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5143 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5144 struct rq *rq = this_rq();
5145
5146 if (atomic_read(&rq->nr_iowait) > 0)
5147 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5148 else
5149 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5150 }
5151
5152 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5153
5154 /*
5155 * Account a single tick of cpu time.
5156 * @p: the process that the cpu time gets accounted to
5157 * @user_tick: indicates if the tick is a user or a system tick
5158 */
5159 void account_process_tick(struct task_struct *p, int user_tick)
5160 {
5161 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5162 struct rq *rq = this_rq();
5163
5164 if (user_tick)
5165 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5166 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5167 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5168 one_jiffy_scaled);
5169 else
5170 account_idle_time(cputime_one_jiffy);
5171 }
5172
5173 /*
5174 * Account multiple ticks of steal time.
5175 * @p: the process from which the cpu time has been stolen
5176 * @ticks: number of stolen ticks
5177 */
5178 void account_steal_ticks(unsigned long ticks)
5179 {
5180 account_steal_time(jiffies_to_cputime(ticks));
5181 }
5182
5183 /*
5184 * Account multiple ticks of idle time.
5185 * @ticks: number of stolen ticks
5186 */
5187 void account_idle_ticks(unsigned long ticks)
5188 {
5189 account_idle_time(jiffies_to_cputime(ticks));
5190 }
5191
5192 #endif
5193
5194 /*
5195 * Use precise platform statistics if available:
5196 */
5197 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5198 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5199 {
5200 *ut = p->utime;
5201 *st = p->stime;
5202 }
5203
5204 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5205 {
5206 struct task_cputime cputime;
5207
5208 thread_group_cputime(p, &cputime);
5209
5210 *ut = cputime.utime;
5211 *st = cputime.stime;
5212 }
5213 #else
5214
5215 #ifndef nsecs_to_cputime
5216 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5217 #endif
5218
5219 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5220 {
5221 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5222
5223 /*
5224 * Use CFS's precise accounting:
5225 */
5226 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5227
5228 if (total) {
5229 u64 temp;
5230
5231 temp = (u64)(rtime * utime);
5232 do_div(temp, total);
5233 utime = (cputime_t)temp;
5234 } else
5235 utime = rtime;
5236
5237 /*
5238 * Compare with previous values, to keep monotonicity:
5239 */
5240 p->prev_utime = max(p->prev_utime, utime);
5241 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5242
5243 *ut = p->prev_utime;
5244 *st = p->prev_stime;
5245 }
5246
5247 /*
5248 * Must be called with siglock held.
5249 */
5250 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5251 {
5252 struct signal_struct *sig = p->signal;
5253 struct task_cputime cputime;
5254 cputime_t rtime, utime, total;
5255
5256 thread_group_cputime(p, &cputime);
5257
5258 total = cputime_add(cputime.utime, cputime.stime);
5259 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5260
5261 if (total) {
5262 u64 temp;
5263
5264 temp = (u64)(rtime * cputime.utime);
5265 do_div(temp, total);
5266 utime = (cputime_t)temp;
5267 } else
5268 utime = rtime;
5269
5270 sig->prev_utime = max(sig->prev_utime, utime);
5271 sig->prev_stime = max(sig->prev_stime,
5272 cputime_sub(rtime, sig->prev_utime));
5273
5274 *ut = sig->prev_utime;
5275 *st = sig->prev_stime;
5276 }
5277 #endif
5278
5279 /*
5280 * This function gets called by the timer code, with HZ frequency.
5281 * We call it with interrupts disabled.
5282 *
5283 * It also gets called by the fork code, when changing the parent's
5284 * timeslices.
5285 */
5286 void scheduler_tick(void)
5287 {
5288 int cpu = smp_processor_id();
5289 struct rq *rq = cpu_rq(cpu);
5290 struct task_struct *curr = rq->curr;
5291
5292 sched_clock_tick();
5293
5294 raw_spin_lock(&rq->lock);
5295 update_rq_clock(rq);
5296 update_cpu_load(rq);
5297 curr->sched_class->task_tick(rq, curr, 0);
5298 raw_spin_unlock(&rq->lock);
5299
5300 perf_event_task_tick(curr, cpu);
5301
5302 #ifdef CONFIG_SMP
5303 rq->idle_at_tick = idle_cpu(cpu);
5304 trigger_load_balance(rq, cpu);
5305 #endif
5306 }
5307
5308 notrace unsigned long get_parent_ip(unsigned long addr)
5309 {
5310 if (in_lock_functions(addr)) {
5311 addr = CALLER_ADDR2;
5312 if (in_lock_functions(addr))
5313 addr = CALLER_ADDR3;
5314 }
5315 return addr;
5316 }
5317
5318 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5319 defined(CONFIG_PREEMPT_TRACER))
5320
5321 void __kprobes add_preempt_count(int val)
5322 {
5323 #ifdef CONFIG_DEBUG_PREEMPT
5324 /*
5325 * Underflow?
5326 */
5327 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5328 return;
5329 #endif
5330 preempt_count() += val;
5331 #ifdef CONFIG_DEBUG_PREEMPT
5332 /*
5333 * Spinlock count overflowing soon?
5334 */
5335 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5336 PREEMPT_MASK - 10);
5337 #endif
5338 if (preempt_count() == val)
5339 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5340 }
5341 EXPORT_SYMBOL(add_preempt_count);
5342
5343 void __kprobes sub_preempt_count(int val)
5344 {
5345 #ifdef CONFIG_DEBUG_PREEMPT
5346 /*
5347 * Underflow?
5348 */
5349 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5350 return;
5351 /*
5352 * Is the spinlock portion underflowing?
5353 */
5354 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5355 !(preempt_count() & PREEMPT_MASK)))
5356 return;
5357 #endif
5358
5359 if (preempt_count() == val)
5360 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5361 preempt_count() -= val;
5362 }
5363 EXPORT_SYMBOL(sub_preempt_count);
5364
5365 #endif
5366
5367 /*
5368 * Print scheduling while atomic bug:
5369 */
5370 static noinline void __schedule_bug(struct task_struct *prev)
5371 {
5372 struct pt_regs *regs = get_irq_regs();
5373
5374 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5375 prev->comm, prev->pid, preempt_count());
5376
5377 debug_show_held_locks(prev);
5378 print_modules();
5379 if (irqs_disabled())
5380 print_irqtrace_events(prev);
5381
5382 if (regs)
5383 show_regs(regs);
5384 else
5385 dump_stack();
5386 }
5387
5388 /*
5389 * Various schedule()-time debugging checks and statistics:
5390 */
5391 static inline void schedule_debug(struct task_struct *prev)
5392 {
5393 /*
5394 * Test if we are atomic. Since do_exit() needs to call into
5395 * schedule() atomically, we ignore that path for now.
5396 * Otherwise, whine if we are scheduling when we should not be.
5397 */
5398 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5399 __schedule_bug(prev);
5400
5401 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5402
5403 schedstat_inc(this_rq(), sched_count);
5404 #ifdef CONFIG_SCHEDSTATS
5405 if (unlikely(prev->lock_depth >= 0)) {
5406 schedstat_inc(this_rq(), bkl_count);
5407 schedstat_inc(prev, sched_info.bkl_count);
5408 }
5409 #endif
5410 }
5411
5412 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5413 {
5414 if (prev->state == TASK_RUNNING) {
5415 u64 runtime = prev->se.sum_exec_runtime;
5416
5417 runtime -= prev->se.prev_sum_exec_runtime;
5418 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5419
5420 /*
5421 * In order to avoid avg_overlap growing stale when we are
5422 * indeed overlapping and hence not getting put to sleep, grow
5423 * the avg_overlap on preemption.
5424 *
5425 * We use the average preemption runtime because that
5426 * correlates to the amount of cache footprint a task can
5427 * build up.
5428 */
5429 update_avg(&prev->se.avg_overlap, runtime);
5430 }
5431 prev->sched_class->put_prev_task(rq, prev);
5432 }
5433
5434 /*
5435 * Pick up the highest-prio task:
5436 */
5437 static inline struct task_struct *
5438 pick_next_task(struct rq *rq)
5439 {
5440 const struct sched_class *class;
5441 struct task_struct *p;
5442
5443 /*
5444 * Optimization: we know that if all tasks are in
5445 * the fair class we can call that function directly:
5446 */
5447 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5448 p = fair_sched_class.pick_next_task(rq);
5449 if (likely(p))
5450 return p;
5451 }
5452
5453 class = sched_class_highest;
5454 for ( ; ; ) {
5455 p = class->pick_next_task(rq);
5456 if (p)
5457 return p;
5458 /*
5459 * Will never be NULL as the idle class always
5460 * returns a non-NULL p:
5461 */
5462 class = class->next;
5463 }
5464 }
5465
5466 /*
5467 * schedule() is the main scheduler function.
5468 */
5469 asmlinkage void __sched schedule(void)
5470 {
5471 struct task_struct *prev, *next;
5472 unsigned long *switch_count;
5473 struct rq *rq;
5474 int cpu;
5475
5476 need_resched:
5477 preempt_disable();
5478 cpu = smp_processor_id();
5479 rq = cpu_rq(cpu);
5480 rcu_sched_qs(cpu);
5481 prev = rq->curr;
5482 switch_count = &prev->nivcsw;
5483
5484 release_kernel_lock(prev);
5485 need_resched_nonpreemptible:
5486
5487 schedule_debug(prev);
5488
5489 if (sched_feat(HRTICK))
5490 hrtick_clear(rq);
5491
5492 raw_spin_lock_irq(&rq->lock);
5493 update_rq_clock(rq);
5494 clear_tsk_need_resched(prev);
5495
5496 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5497 if (unlikely(signal_pending_state(prev->state, prev)))
5498 prev->state = TASK_RUNNING;
5499 else
5500 deactivate_task(rq, prev, 1);
5501 switch_count = &prev->nvcsw;
5502 }
5503
5504 pre_schedule(rq, prev);
5505
5506 if (unlikely(!rq->nr_running))
5507 idle_balance(cpu, rq);
5508
5509 put_prev_task(rq, prev);
5510 next = pick_next_task(rq);
5511
5512 if (likely(prev != next)) {
5513 sched_info_switch(prev, next);
5514 perf_event_task_sched_out(prev, next, cpu);
5515
5516 rq->nr_switches++;
5517 rq->curr = next;
5518 ++*switch_count;
5519
5520 context_switch(rq, prev, next); /* unlocks the rq */
5521 /*
5522 * the context switch might have flipped the stack from under
5523 * us, hence refresh the local variables.
5524 */
5525 cpu = smp_processor_id();
5526 rq = cpu_rq(cpu);
5527 } else
5528 raw_spin_unlock_irq(&rq->lock);
5529
5530 post_schedule(rq);
5531
5532 if (unlikely(reacquire_kernel_lock(current) < 0))
5533 goto need_resched_nonpreemptible;
5534
5535 preempt_enable_no_resched();
5536 if (need_resched())
5537 goto need_resched;
5538 }
5539 EXPORT_SYMBOL(schedule);
5540
5541 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5542 /*
5543 * Look out! "owner" is an entirely speculative pointer
5544 * access and not reliable.
5545 */
5546 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5547 {
5548 unsigned int cpu;
5549 struct rq *rq;
5550
5551 if (!sched_feat(OWNER_SPIN))
5552 return 0;
5553
5554 #ifdef CONFIG_DEBUG_PAGEALLOC
5555 /*
5556 * Need to access the cpu field knowing that
5557 * DEBUG_PAGEALLOC could have unmapped it if
5558 * the mutex owner just released it and exited.
5559 */
5560 if (probe_kernel_address(&owner->cpu, cpu))
5561 goto out;
5562 #else
5563 cpu = owner->cpu;
5564 #endif
5565
5566 /*
5567 * Even if the access succeeded (likely case),
5568 * the cpu field may no longer be valid.
5569 */
5570 if (cpu >= nr_cpumask_bits)
5571 goto out;
5572
5573 /*
5574 * We need to validate that we can do a
5575 * get_cpu() and that we have the percpu area.
5576 */
5577 if (!cpu_online(cpu))
5578 goto out;
5579
5580 rq = cpu_rq(cpu);
5581
5582 for (;;) {
5583 /*
5584 * Owner changed, break to re-assess state.
5585 */
5586 if (lock->owner != owner)
5587 break;
5588
5589 /*
5590 * Is that owner really running on that cpu?
5591 */
5592 if (task_thread_info(rq->curr) != owner || need_resched())
5593 return 0;
5594
5595 cpu_relax();
5596 }
5597 out:
5598 return 1;
5599 }
5600 #endif
5601
5602 #ifdef CONFIG_PREEMPT
5603 /*
5604 * this is the entry point to schedule() from in-kernel preemption
5605 * off of preempt_enable. Kernel preemptions off return from interrupt
5606 * occur there and call schedule directly.
5607 */
5608 asmlinkage void __sched preempt_schedule(void)
5609 {
5610 struct thread_info *ti = current_thread_info();
5611
5612 /*
5613 * If there is a non-zero preempt_count or interrupts are disabled,
5614 * we do not want to preempt the current task. Just return..
5615 */
5616 if (likely(ti->preempt_count || irqs_disabled()))
5617 return;
5618
5619 do {
5620 add_preempt_count(PREEMPT_ACTIVE);
5621 schedule();
5622 sub_preempt_count(PREEMPT_ACTIVE);
5623
5624 /*
5625 * Check again in case we missed a preemption opportunity
5626 * between schedule and now.
5627 */
5628 barrier();
5629 } while (need_resched());
5630 }
5631 EXPORT_SYMBOL(preempt_schedule);
5632
5633 /*
5634 * this is the entry point to schedule() from kernel preemption
5635 * off of irq context.
5636 * Note, that this is called and return with irqs disabled. This will
5637 * protect us against recursive calling from irq.
5638 */
5639 asmlinkage void __sched preempt_schedule_irq(void)
5640 {
5641 struct thread_info *ti = current_thread_info();
5642
5643 /* Catch callers which need to be fixed */
5644 BUG_ON(ti->preempt_count || !irqs_disabled());
5645
5646 do {
5647 add_preempt_count(PREEMPT_ACTIVE);
5648 local_irq_enable();
5649 schedule();
5650 local_irq_disable();
5651 sub_preempt_count(PREEMPT_ACTIVE);
5652
5653 /*
5654 * Check again in case we missed a preemption opportunity
5655 * between schedule and now.
5656 */
5657 barrier();
5658 } while (need_resched());
5659 }
5660
5661 #endif /* CONFIG_PREEMPT */
5662
5663 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5664 void *key)
5665 {
5666 return try_to_wake_up(curr->private, mode, wake_flags);
5667 }
5668 EXPORT_SYMBOL(default_wake_function);
5669
5670 /*
5671 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5672 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5673 * number) then we wake all the non-exclusive tasks and one exclusive task.
5674 *
5675 * There are circumstances in which we can try to wake a task which has already
5676 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5677 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5678 */
5679 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5680 int nr_exclusive, int wake_flags, void *key)
5681 {
5682 wait_queue_t *curr, *next;
5683
5684 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5685 unsigned flags = curr->flags;
5686
5687 if (curr->func(curr, mode, wake_flags, key) &&
5688 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5689 break;
5690 }
5691 }
5692
5693 /**
5694 * __wake_up - wake up threads blocked on a waitqueue.
5695 * @q: the waitqueue
5696 * @mode: which threads
5697 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5698 * @key: is directly passed to the wakeup function
5699 *
5700 * It may be assumed that this function implies a write memory barrier before
5701 * changing the task state if and only if any tasks are woken up.
5702 */
5703 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5704 int nr_exclusive, void *key)
5705 {
5706 unsigned long flags;
5707
5708 spin_lock_irqsave(&q->lock, flags);
5709 __wake_up_common(q, mode, nr_exclusive, 0, key);
5710 spin_unlock_irqrestore(&q->lock, flags);
5711 }
5712 EXPORT_SYMBOL(__wake_up);
5713
5714 /*
5715 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5716 */
5717 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5718 {
5719 __wake_up_common(q, mode, 1, 0, NULL);
5720 }
5721
5722 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5723 {
5724 __wake_up_common(q, mode, 1, 0, key);
5725 }
5726
5727 /**
5728 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5729 * @q: the waitqueue
5730 * @mode: which threads
5731 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5732 * @key: opaque value to be passed to wakeup targets
5733 *
5734 * The sync wakeup differs that the waker knows that it will schedule
5735 * away soon, so while the target thread will be woken up, it will not
5736 * be migrated to another CPU - ie. the two threads are 'synchronized'
5737 * with each other. This can prevent needless bouncing between CPUs.
5738 *
5739 * On UP it can prevent extra preemption.
5740 *
5741 * It may be assumed that this function implies a write memory barrier before
5742 * changing the task state if and only if any tasks are woken up.
5743 */
5744 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5745 int nr_exclusive, void *key)
5746 {
5747 unsigned long flags;
5748 int wake_flags = WF_SYNC;
5749
5750 if (unlikely(!q))
5751 return;
5752
5753 if (unlikely(!nr_exclusive))
5754 wake_flags = 0;
5755
5756 spin_lock_irqsave(&q->lock, flags);
5757 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5758 spin_unlock_irqrestore(&q->lock, flags);
5759 }
5760 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5761
5762 /*
5763 * __wake_up_sync - see __wake_up_sync_key()
5764 */
5765 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5766 {
5767 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5768 }
5769 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5770
5771 /**
5772 * complete: - signals a single thread waiting on this completion
5773 * @x: holds the state of this particular completion
5774 *
5775 * This will wake up a single thread waiting on this completion. Threads will be
5776 * awakened in the same order in which they were queued.
5777 *
5778 * See also complete_all(), wait_for_completion() and related routines.
5779 *
5780 * It may be assumed that this function implies a write memory barrier before
5781 * changing the task state if and only if any tasks are woken up.
5782 */
5783 void complete(struct completion *x)
5784 {
5785 unsigned long flags;
5786
5787 spin_lock_irqsave(&x->wait.lock, flags);
5788 x->done++;
5789 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5790 spin_unlock_irqrestore(&x->wait.lock, flags);
5791 }
5792 EXPORT_SYMBOL(complete);
5793
5794 /**
5795 * complete_all: - signals all threads waiting on this completion
5796 * @x: holds the state of this particular completion
5797 *
5798 * This will wake up all threads waiting on this particular completion event.
5799 *
5800 * It may be assumed that this function implies a write memory barrier before
5801 * changing the task state if and only if any tasks are woken up.
5802 */
5803 void complete_all(struct completion *x)
5804 {
5805 unsigned long flags;
5806
5807 spin_lock_irqsave(&x->wait.lock, flags);
5808 x->done += UINT_MAX/2;
5809 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5810 spin_unlock_irqrestore(&x->wait.lock, flags);
5811 }
5812 EXPORT_SYMBOL(complete_all);
5813
5814 static inline long __sched
5815 do_wait_for_common(struct completion *x, long timeout, int state)
5816 {
5817 if (!x->done) {
5818 DECLARE_WAITQUEUE(wait, current);
5819
5820 wait.flags |= WQ_FLAG_EXCLUSIVE;
5821 __add_wait_queue_tail(&x->wait, &wait);
5822 do {
5823 if (signal_pending_state(state, current)) {
5824 timeout = -ERESTARTSYS;
5825 break;
5826 }
5827 __set_current_state(state);
5828 spin_unlock_irq(&x->wait.lock);
5829 timeout = schedule_timeout(timeout);
5830 spin_lock_irq(&x->wait.lock);
5831 } while (!x->done && timeout);
5832 __remove_wait_queue(&x->wait, &wait);
5833 if (!x->done)
5834 return timeout;
5835 }
5836 x->done--;
5837 return timeout ?: 1;
5838 }
5839
5840 static long __sched
5841 wait_for_common(struct completion *x, long timeout, int state)
5842 {
5843 might_sleep();
5844
5845 spin_lock_irq(&x->wait.lock);
5846 timeout = do_wait_for_common(x, timeout, state);
5847 spin_unlock_irq(&x->wait.lock);
5848 return timeout;
5849 }
5850
5851 /**
5852 * wait_for_completion: - waits for completion of a task
5853 * @x: holds the state of this particular completion
5854 *
5855 * This waits to be signaled for completion of a specific task. It is NOT
5856 * interruptible and there is no timeout.
5857 *
5858 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5859 * and interrupt capability. Also see complete().
5860 */
5861 void __sched wait_for_completion(struct completion *x)
5862 {
5863 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5864 }
5865 EXPORT_SYMBOL(wait_for_completion);
5866
5867 /**
5868 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5869 * @x: holds the state of this particular completion
5870 * @timeout: timeout value in jiffies
5871 *
5872 * This waits for either a completion of a specific task to be signaled or for a
5873 * specified timeout to expire. The timeout is in jiffies. It is not
5874 * interruptible.
5875 */
5876 unsigned long __sched
5877 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5878 {
5879 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5880 }
5881 EXPORT_SYMBOL(wait_for_completion_timeout);
5882
5883 /**
5884 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5885 * @x: holds the state of this particular completion
5886 *
5887 * This waits for completion of a specific task to be signaled. It is
5888 * interruptible.
5889 */
5890 int __sched wait_for_completion_interruptible(struct completion *x)
5891 {
5892 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5893 if (t == -ERESTARTSYS)
5894 return t;
5895 return 0;
5896 }
5897 EXPORT_SYMBOL(wait_for_completion_interruptible);
5898
5899 /**
5900 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5901 * @x: holds the state of this particular completion
5902 * @timeout: timeout value in jiffies
5903 *
5904 * This waits for either a completion of a specific task to be signaled or for a
5905 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5906 */
5907 unsigned long __sched
5908 wait_for_completion_interruptible_timeout(struct completion *x,
5909 unsigned long timeout)
5910 {
5911 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5912 }
5913 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5914
5915 /**
5916 * wait_for_completion_killable: - waits for completion of a task (killable)
5917 * @x: holds the state of this particular completion
5918 *
5919 * This waits to be signaled for completion of a specific task. It can be
5920 * interrupted by a kill signal.
5921 */
5922 int __sched wait_for_completion_killable(struct completion *x)
5923 {
5924 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5925 if (t == -ERESTARTSYS)
5926 return t;
5927 return 0;
5928 }
5929 EXPORT_SYMBOL(wait_for_completion_killable);
5930
5931 /**
5932 * try_wait_for_completion - try to decrement a completion without blocking
5933 * @x: completion structure
5934 *
5935 * Returns: 0 if a decrement cannot be done without blocking
5936 * 1 if a decrement succeeded.
5937 *
5938 * If a completion is being used as a counting completion,
5939 * attempt to decrement the counter without blocking. This
5940 * enables us to avoid waiting if the resource the completion
5941 * is protecting is not available.
5942 */
5943 bool try_wait_for_completion(struct completion *x)
5944 {
5945 unsigned long flags;
5946 int ret = 1;
5947
5948 spin_lock_irqsave(&x->wait.lock, flags);
5949 if (!x->done)
5950 ret = 0;
5951 else
5952 x->done--;
5953 spin_unlock_irqrestore(&x->wait.lock, flags);
5954 return ret;
5955 }
5956 EXPORT_SYMBOL(try_wait_for_completion);
5957
5958 /**
5959 * completion_done - Test to see if a completion has any waiters
5960 * @x: completion structure
5961 *
5962 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5963 * 1 if there are no waiters.
5964 *
5965 */
5966 bool completion_done(struct completion *x)
5967 {
5968 unsigned long flags;
5969 int ret = 1;
5970
5971 spin_lock_irqsave(&x->wait.lock, flags);
5972 if (!x->done)
5973 ret = 0;
5974 spin_unlock_irqrestore(&x->wait.lock, flags);
5975 return ret;
5976 }
5977 EXPORT_SYMBOL(completion_done);
5978
5979 static long __sched
5980 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5981 {
5982 unsigned long flags;
5983 wait_queue_t wait;
5984
5985 init_waitqueue_entry(&wait, current);
5986
5987 __set_current_state(state);
5988
5989 spin_lock_irqsave(&q->lock, flags);
5990 __add_wait_queue(q, &wait);
5991 spin_unlock(&q->lock);
5992 timeout = schedule_timeout(timeout);
5993 spin_lock_irq(&q->lock);
5994 __remove_wait_queue(q, &wait);
5995 spin_unlock_irqrestore(&q->lock, flags);
5996
5997 return timeout;
5998 }
5999
6000 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6001 {
6002 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6003 }
6004 EXPORT_SYMBOL(interruptible_sleep_on);
6005
6006 long __sched
6007 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6008 {
6009 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6010 }
6011 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6012
6013 void __sched sleep_on(wait_queue_head_t *q)
6014 {
6015 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6016 }
6017 EXPORT_SYMBOL(sleep_on);
6018
6019 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6020 {
6021 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6022 }
6023 EXPORT_SYMBOL(sleep_on_timeout);
6024
6025 #ifdef CONFIG_RT_MUTEXES
6026
6027 /*
6028 * rt_mutex_setprio - set the current priority of a task
6029 * @p: task
6030 * @prio: prio value (kernel-internal form)
6031 *
6032 * This function changes the 'effective' priority of a task. It does
6033 * not touch ->normal_prio like __setscheduler().
6034 *
6035 * Used by the rt_mutex code to implement priority inheritance logic.
6036 */
6037 void rt_mutex_setprio(struct task_struct *p, int prio)
6038 {
6039 unsigned long flags;
6040 int oldprio, on_rq, running;
6041 struct rq *rq;
6042 const struct sched_class *prev_class = p->sched_class;
6043
6044 BUG_ON(prio < 0 || prio > MAX_PRIO);
6045
6046 rq = task_rq_lock(p, &flags);
6047 update_rq_clock(rq);
6048
6049 oldprio = p->prio;
6050 on_rq = p->se.on_rq;
6051 running = task_current(rq, p);
6052 if (on_rq)
6053 dequeue_task(rq, p, 0);
6054 if (running)
6055 p->sched_class->put_prev_task(rq, p);
6056
6057 if (rt_prio(prio))
6058 p->sched_class = &rt_sched_class;
6059 else
6060 p->sched_class = &fair_sched_class;
6061
6062 p->prio = prio;
6063
6064 if (running)
6065 p->sched_class->set_curr_task(rq);
6066 if (on_rq) {
6067 enqueue_task(rq, p, 0);
6068
6069 check_class_changed(rq, p, prev_class, oldprio, running);
6070 }
6071 task_rq_unlock(rq, &flags);
6072 }
6073
6074 #endif
6075
6076 void set_user_nice(struct task_struct *p, long nice)
6077 {
6078 int old_prio, delta, on_rq;
6079 unsigned long flags;
6080 struct rq *rq;
6081
6082 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6083 return;
6084 /*
6085 * We have to be careful, if called from sys_setpriority(),
6086 * the task might be in the middle of scheduling on another CPU.
6087 */
6088 rq = task_rq_lock(p, &flags);
6089 update_rq_clock(rq);
6090 /*
6091 * The RT priorities are set via sched_setscheduler(), but we still
6092 * allow the 'normal' nice value to be set - but as expected
6093 * it wont have any effect on scheduling until the task is
6094 * SCHED_FIFO/SCHED_RR:
6095 */
6096 if (task_has_rt_policy(p)) {
6097 p->static_prio = NICE_TO_PRIO(nice);
6098 goto out_unlock;
6099 }
6100 on_rq = p->se.on_rq;
6101 if (on_rq)
6102 dequeue_task(rq, p, 0);
6103
6104 p->static_prio = NICE_TO_PRIO(nice);
6105 set_load_weight(p);
6106 old_prio = p->prio;
6107 p->prio = effective_prio(p);
6108 delta = p->prio - old_prio;
6109
6110 if (on_rq) {
6111 enqueue_task(rq, p, 0);
6112 /*
6113 * If the task increased its priority or is running and
6114 * lowered its priority, then reschedule its CPU:
6115 */
6116 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6117 resched_task(rq->curr);
6118 }
6119 out_unlock:
6120 task_rq_unlock(rq, &flags);
6121 }
6122 EXPORT_SYMBOL(set_user_nice);
6123
6124 /*
6125 * can_nice - check if a task can reduce its nice value
6126 * @p: task
6127 * @nice: nice value
6128 */
6129 int can_nice(const struct task_struct *p, const int nice)
6130 {
6131 /* convert nice value [19,-20] to rlimit style value [1,40] */
6132 int nice_rlim = 20 - nice;
6133
6134 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6135 capable(CAP_SYS_NICE));
6136 }
6137
6138 #ifdef __ARCH_WANT_SYS_NICE
6139
6140 /*
6141 * sys_nice - change the priority of the current process.
6142 * @increment: priority increment
6143 *
6144 * sys_setpriority is a more generic, but much slower function that
6145 * does similar things.
6146 */
6147 SYSCALL_DEFINE1(nice, int, increment)
6148 {
6149 long nice, retval;
6150
6151 /*
6152 * Setpriority might change our priority at the same moment.
6153 * We don't have to worry. Conceptually one call occurs first
6154 * and we have a single winner.
6155 */
6156 if (increment < -40)
6157 increment = -40;
6158 if (increment > 40)
6159 increment = 40;
6160
6161 nice = TASK_NICE(current) + increment;
6162 if (nice < -20)
6163 nice = -20;
6164 if (nice > 19)
6165 nice = 19;
6166
6167 if (increment < 0 && !can_nice(current, nice))
6168 return -EPERM;
6169
6170 retval = security_task_setnice(current, nice);
6171 if (retval)
6172 return retval;
6173
6174 set_user_nice(current, nice);
6175 return 0;
6176 }
6177
6178 #endif
6179
6180 /**
6181 * task_prio - return the priority value of a given task.
6182 * @p: the task in question.
6183 *
6184 * This is the priority value as seen by users in /proc.
6185 * RT tasks are offset by -200. Normal tasks are centered
6186 * around 0, value goes from -16 to +15.
6187 */
6188 int task_prio(const struct task_struct *p)
6189 {
6190 return p->prio - MAX_RT_PRIO;
6191 }
6192
6193 /**
6194 * task_nice - return the nice value of a given task.
6195 * @p: the task in question.
6196 */
6197 int task_nice(const struct task_struct *p)
6198 {
6199 return TASK_NICE(p);
6200 }
6201 EXPORT_SYMBOL(task_nice);
6202
6203 /**
6204 * idle_cpu - is a given cpu idle currently?
6205 * @cpu: the processor in question.
6206 */
6207 int idle_cpu(int cpu)
6208 {
6209 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6210 }
6211
6212 /**
6213 * idle_task - return the idle task for a given cpu.
6214 * @cpu: the processor in question.
6215 */
6216 struct task_struct *idle_task(int cpu)
6217 {
6218 return cpu_rq(cpu)->idle;
6219 }
6220
6221 /**
6222 * find_process_by_pid - find a process with a matching PID value.
6223 * @pid: the pid in question.
6224 */
6225 static struct task_struct *find_process_by_pid(pid_t pid)
6226 {
6227 return pid ? find_task_by_vpid(pid) : current;
6228 }
6229
6230 /* Actually do priority change: must hold rq lock. */
6231 static void
6232 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6233 {
6234 BUG_ON(p->se.on_rq);
6235
6236 p->policy = policy;
6237 p->rt_priority = prio;
6238 p->normal_prio = normal_prio(p);
6239 /* we are holding p->pi_lock already */
6240 p->prio = rt_mutex_getprio(p);
6241 if (rt_prio(p->prio))
6242 p->sched_class = &rt_sched_class;
6243 else
6244 p->sched_class = &fair_sched_class;
6245 set_load_weight(p);
6246 }
6247
6248 /*
6249 * check the target process has a UID that matches the current process's
6250 */
6251 static bool check_same_owner(struct task_struct *p)
6252 {
6253 const struct cred *cred = current_cred(), *pcred;
6254 bool match;
6255
6256 rcu_read_lock();
6257 pcred = __task_cred(p);
6258 match = (cred->euid == pcred->euid ||
6259 cred->euid == pcred->uid);
6260 rcu_read_unlock();
6261 return match;
6262 }
6263
6264 static int __sched_setscheduler(struct task_struct *p, int policy,
6265 struct sched_param *param, bool user)
6266 {
6267 int retval, oldprio, oldpolicy = -1, on_rq, running;
6268 unsigned long flags;
6269 const struct sched_class *prev_class = p->sched_class;
6270 struct rq *rq;
6271 int reset_on_fork;
6272
6273 /* may grab non-irq protected spin_locks */
6274 BUG_ON(in_interrupt());
6275 recheck:
6276 /* double check policy once rq lock held */
6277 if (policy < 0) {
6278 reset_on_fork = p->sched_reset_on_fork;
6279 policy = oldpolicy = p->policy;
6280 } else {
6281 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6282 policy &= ~SCHED_RESET_ON_FORK;
6283
6284 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6285 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6286 policy != SCHED_IDLE)
6287 return -EINVAL;
6288 }
6289
6290 /*
6291 * Valid priorities for SCHED_FIFO and SCHED_RR are
6292 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6293 * SCHED_BATCH and SCHED_IDLE is 0.
6294 */
6295 if (param->sched_priority < 0 ||
6296 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6297 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6298 return -EINVAL;
6299 if (rt_policy(policy) != (param->sched_priority != 0))
6300 return -EINVAL;
6301
6302 /*
6303 * Allow unprivileged RT tasks to decrease priority:
6304 */
6305 if (user && !capable(CAP_SYS_NICE)) {
6306 if (rt_policy(policy)) {
6307 unsigned long rlim_rtprio;
6308
6309 if (!lock_task_sighand(p, &flags))
6310 return -ESRCH;
6311 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6312 unlock_task_sighand(p, &flags);
6313
6314 /* can't set/change the rt policy */
6315 if (policy != p->policy && !rlim_rtprio)
6316 return -EPERM;
6317
6318 /* can't increase priority */
6319 if (param->sched_priority > p->rt_priority &&
6320 param->sched_priority > rlim_rtprio)
6321 return -EPERM;
6322 }
6323 /*
6324 * Like positive nice levels, dont allow tasks to
6325 * move out of SCHED_IDLE either:
6326 */
6327 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6328 return -EPERM;
6329
6330 /* can't change other user's priorities */
6331 if (!check_same_owner(p))
6332 return -EPERM;
6333
6334 /* Normal users shall not reset the sched_reset_on_fork flag */
6335 if (p->sched_reset_on_fork && !reset_on_fork)
6336 return -EPERM;
6337 }
6338
6339 if (user) {
6340 #ifdef CONFIG_RT_GROUP_SCHED
6341 /*
6342 * Do not allow realtime tasks into groups that have no runtime
6343 * assigned.
6344 */
6345 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6346 task_group(p)->rt_bandwidth.rt_runtime == 0)
6347 return -EPERM;
6348 #endif
6349
6350 retval = security_task_setscheduler(p, policy, param);
6351 if (retval)
6352 return retval;
6353 }
6354
6355 /*
6356 * make sure no PI-waiters arrive (or leave) while we are
6357 * changing the priority of the task:
6358 */
6359 raw_spin_lock_irqsave(&p->pi_lock, flags);
6360 /*
6361 * To be able to change p->policy safely, the apropriate
6362 * runqueue lock must be held.
6363 */
6364 rq = __task_rq_lock(p);
6365 /* recheck policy now with rq lock held */
6366 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6367 policy = oldpolicy = -1;
6368 __task_rq_unlock(rq);
6369 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6370 goto recheck;
6371 }
6372 update_rq_clock(rq);
6373 on_rq = p->se.on_rq;
6374 running = task_current(rq, p);
6375 if (on_rq)
6376 deactivate_task(rq, p, 0);
6377 if (running)
6378 p->sched_class->put_prev_task(rq, p);
6379
6380 p->sched_reset_on_fork = reset_on_fork;
6381
6382 oldprio = p->prio;
6383 __setscheduler(rq, p, policy, param->sched_priority);
6384
6385 if (running)
6386 p->sched_class->set_curr_task(rq);
6387 if (on_rq) {
6388 activate_task(rq, p, 0);
6389
6390 check_class_changed(rq, p, prev_class, oldprio, running);
6391 }
6392 __task_rq_unlock(rq);
6393 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6394
6395 rt_mutex_adjust_pi(p);
6396
6397 return 0;
6398 }
6399
6400 /**
6401 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6402 * @p: the task in question.
6403 * @policy: new policy.
6404 * @param: structure containing the new RT priority.
6405 *
6406 * NOTE that the task may be already dead.
6407 */
6408 int sched_setscheduler(struct task_struct *p, int policy,
6409 struct sched_param *param)
6410 {
6411 return __sched_setscheduler(p, policy, param, true);
6412 }
6413 EXPORT_SYMBOL_GPL(sched_setscheduler);
6414
6415 /**
6416 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6417 * @p: the task in question.
6418 * @policy: new policy.
6419 * @param: structure containing the new RT priority.
6420 *
6421 * Just like sched_setscheduler, only don't bother checking if the
6422 * current context has permission. For example, this is needed in
6423 * stop_machine(): we create temporary high priority worker threads,
6424 * but our caller might not have that capability.
6425 */
6426 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6427 struct sched_param *param)
6428 {
6429 return __sched_setscheduler(p, policy, param, false);
6430 }
6431
6432 static int
6433 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6434 {
6435 struct sched_param lparam;
6436 struct task_struct *p;
6437 int retval;
6438
6439 if (!param || pid < 0)
6440 return -EINVAL;
6441 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6442 return -EFAULT;
6443
6444 rcu_read_lock();
6445 retval = -ESRCH;
6446 p = find_process_by_pid(pid);
6447 if (p != NULL)
6448 retval = sched_setscheduler(p, policy, &lparam);
6449 rcu_read_unlock();
6450
6451 return retval;
6452 }
6453
6454 /**
6455 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6456 * @pid: the pid in question.
6457 * @policy: new policy.
6458 * @param: structure containing the new RT priority.
6459 */
6460 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6461 struct sched_param __user *, param)
6462 {
6463 /* negative values for policy are not valid */
6464 if (policy < 0)
6465 return -EINVAL;
6466
6467 return do_sched_setscheduler(pid, policy, param);
6468 }
6469
6470 /**
6471 * sys_sched_setparam - set/change the RT priority of a thread
6472 * @pid: the pid in question.
6473 * @param: structure containing the new RT priority.
6474 */
6475 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6476 {
6477 return do_sched_setscheduler(pid, -1, param);
6478 }
6479
6480 /**
6481 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6482 * @pid: the pid in question.
6483 */
6484 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6485 {
6486 struct task_struct *p;
6487 int retval;
6488
6489 if (pid < 0)
6490 return -EINVAL;
6491
6492 retval = -ESRCH;
6493 rcu_read_lock();
6494 p = find_process_by_pid(pid);
6495 if (p) {
6496 retval = security_task_getscheduler(p);
6497 if (!retval)
6498 retval = p->policy
6499 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6500 }
6501 rcu_read_unlock();
6502 return retval;
6503 }
6504
6505 /**
6506 * sys_sched_getparam - get the RT priority of a thread
6507 * @pid: the pid in question.
6508 * @param: structure containing the RT priority.
6509 */
6510 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6511 {
6512 struct sched_param lp;
6513 struct task_struct *p;
6514 int retval;
6515
6516 if (!param || pid < 0)
6517 return -EINVAL;
6518
6519 rcu_read_lock();
6520 p = find_process_by_pid(pid);
6521 retval = -ESRCH;
6522 if (!p)
6523 goto out_unlock;
6524
6525 retval = security_task_getscheduler(p);
6526 if (retval)
6527 goto out_unlock;
6528
6529 lp.sched_priority = p->rt_priority;
6530 rcu_read_unlock();
6531
6532 /*
6533 * This one might sleep, we cannot do it with a spinlock held ...
6534 */
6535 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6536
6537 return retval;
6538
6539 out_unlock:
6540 rcu_read_unlock();
6541 return retval;
6542 }
6543
6544 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6545 {
6546 cpumask_var_t cpus_allowed, new_mask;
6547 struct task_struct *p;
6548 int retval;
6549
6550 get_online_cpus();
6551 rcu_read_lock();
6552
6553 p = find_process_by_pid(pid);
6554 if (!p) {
6555 rcu_read_unlock();
6556 put_online_cpus();
6557 return -ESRCH;
6558 }
6559
6560 /* Prevent p going away */
6561 get_task_struct(p);
6562 rcu_read_unlock();
6563
6564 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6565 retval = -ENOMEM;
6566 goto out_put_task;
6567 }
6568 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6569 retval = -ENOMEM;
6570 goto out_free_cpus_allowed;
6571 }
6572 retval = -EPERM;
6573 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6574 goto out_unlock;
6575
6576 retval = security_task_setscheduler(p, 0, NULL);
6577 if (retval)
6578 goto out_unlock;
6579
6580 cpuset_cpus_allowed(p, cpus_allowed);
6581 cpumask_and(new_mask, in_mask, cpus_allowed);
6582 again:
6583 retval = set_cpus_allowed_ptr(p, new_mask);
6584
6585 if (!retval) {
6586 cpuset_cpus_allowed(p, cpus_allowed);
6587 if (!cpumask_subset(new_mask, cpus_allowed)) {
6588 /*
6589 * We must have raced with a concurrent cpuset
6590 * update. Just reset the cpus_allowed to the
6591 * cpuset's cpus_allowed
6592 */
6593 cpumask_copy(new_mask, cpus_allowed);
6594 goto again;
6595 }
6596 }
6597 out_unlock:
6598 free_cpumask_var(new_mask);
6599 out_free_cpus_allowed:
6600 free_cpumask_var(cpus_allowed);
6601 out_put_task:
6602 put_task_struct(p);
6603 put_online_cpus();
6604 return retval;
6605 }
6606
6607 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6608 struct cpumask *new_mask)
6609 {
6610 if (len < cpumask_size())
6611 cpumask_clear(new_mask);
6612 else if (len > cpumask_size())
6613 len = cpumask_size();
6614
6615 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6616 }
6617
6618 /**
6619 * sys_sched_setaffinity - set the cpu affinity of a process
6620 * @pid: pid of the process
6621 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6622 * @user_mask_ptr: user-space pointer to the new cpu mask
6623 */
6624 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6625 unsigned long __user *, user_mask_ptr)
6626 {
6627 cpumask_var_t new_mask;
6628 int retval;
6629
6630 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6631 return -ENOMEM;
6632
6633 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6634 if (retval == 0)
6635 retval = sched_setaffinity(pid, new_mask);
6636 free_cpumask_var(new_mask);
6637 return retval;
6638 }
6639
6640 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6641 {
6642 struct task_struct *p;
6643 unsigned long flags;
6644 struct rq *rq;
6645 int retval;
6646
6647 get_online_cpus();
6648 rcu_read_lock();
6649
6650 retval = -ESRCH;
6651 p = find_process_by_pid(pid);
6652 if (!p)
6653 goto out_unlock;
6654
6655 retval = security_task_getscheduler(p);
6656 if (retval)
6657 goto out_unlock;
6658
6659 rq = task_rq_lock(p, &flags);
6660 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6661 task_rq_unlock(rq, &flags);
6662
6663 out_unlock:
6664 rcu_read_unlock();
6665 put_online_cpus();
6666
6667 return retval;
6668 }
6669
6670 /**
6671 * sys_sched_getaffinity - get the cpu affinity of a process
6672 * @pid: pid of the process
6673 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6674 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6675 */
6676 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6677 unsigned long __user *, user_mask_ptr)
6678 {
6679 int ret;
6680 cpumask_var_t mask;
6681
6682 if (len < cpumask_size())
6683 return -EINVAL;
6684
6685 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6686 return -ENOMEM;
6687
6688 ret = sched_getaffinity(pid, mask);
6689 if (ret == 0) {
6690 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6691 ret = -EFAULT;
6692 else
6693 ret = cpumask_size();
6694 }
6695 free_cpumask_var(mask);
6696
6697 return ret;
6698 }
6699
6700 /**
6701 * sys_sched_yield - yield the current processor to other threads.
6702 *
6703 * This function yields the current CPU to other tasks. If there are no
6704 * other threads running on this CPU then this function will return.
6705 */
6706 SYSCALL_DEFINE0(sched_yield)
6707 {
6708 struct rq *rq = this_rq_lock();
6709
6710 schedstat_inc(rq, yld_count);
6711 current->sched_class->yield_task(rq);
6712
6713 /*
6714 * Since we are going to call schedule() anyway, there's
6715 * no need to preempt or enable interrupts:
6716 */
6717 __release(rq->lock);
6718 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6719 do_raw_spin_unlock(&rq->lock);
6720 preempt_enable_no_resched();
6721
6722 schedule();
6723
6724 return 0;
6725 }
6726
6727 static inline int should_resched(void)
6728 {
6729 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6730 }
6731
6732 static void __cond_resched(void)
6733 {
6734 add_preempt_count(PREEMPT_ACTIVE);
6735 schedule();
6736 sub_preempt_count(PREEMPT_ACTIVE);
6737 }
6738
6739 int __sched _cond_resched(void)
6740 {
6741 if (should_resched()) {
6742 __cond_resched();
6743 return 1;
6744 }
6745 return 0;
6746 }
6747 EXPORT_SYMBOL(_cond_resched);
6748
6749 /*
6750 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6751 * call schedule, and on return reacquire the lock.
6752 *
6753 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6754 * operations here to prevent schedule() from being called twice (once via
6755 * spin_unlock(), once by hand).
6756 */
6757 int __cond_resched_lock(spinlock_t *lock)
6758 {
6759 int resched = should_resched();
6760 int ret = 0;
6761
6762 lockdep_assert_held(lock);
6763
6764 if (spin_needbreak(lock) || resched) {
6765 spin_unlock(lock);
6766 if (resched)
6767 __cond_resched();
6768 else
6769 cpu_relax();
6770 ret = 1;
6771 spin_lock(lock);
6772 }
6773 return ret;
6774 }
6775 EXPORT_SYMBOL(__cond_resched_lock);
6776
6777 int __sched __cond_resched_softirq(void)
6778 {
6779 BUG_ON(!in_softirq());
6780
6781 if (should_resched()) {
6782 local_bh_enable();
6783 __cond_resched();
6784 local_bh_disable();
6785 return 1;
6786 }
6787 return 0;
6788 }
6789 EXPORT_SYMBOL(__cond_resched_softirq);
6790
6791 /**
6792 * yield - yield the current processor to other threads.
6793 *
6794 * This is a shortcut for kernel-space yielding - it marks the
6795 * thread runnable and calls sys_sched_yield().
6796 */
6797 void __sched yield(void)
6798 {
6799 set_current_state(TASK_RUNNING);
6800 sys_sched_yield();
6801 }
6802 EXPORT_SYMBOL(yield);
6803
6804 /*
6805 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6806 * that process accounting knows that this is a task in IO wait state.
6807 */
6808 void __sched io_schedule(void)
6809 {
6810 struct rq *rq = raw_rq();
6811
6812 delayacct_blkio_start();
6813 atomic_inc(&rq->nr_iowait);
6814 current->in_iowait = 1;
6815 schedule();
6816 current->in_iowait = 0;
6817 atomic_dec(&rq->nr_iowait);
6818 delayacct_blkio_end();
6819 }
6820 EXPORT_SYMBOL(io_schedule);
6821
6822 long __sched io_schedule_timeout(long timeout)
6823 {
6824 struct rq *rq = raw_rq();
6825 long ret;
6826
6827 delayacct_blkio_start();
6828 atomic_inc(&rq->nr_iowait);
6829 current->in_iowait = 1;
6830 ret = schedule_timeout(timeout);
6831 current->in_iowait = 0;
6832 atomic_dec(&rq->nr_iowait);
6833 delayacct_blkio_end();
6834 return ret;
6835 }
6836
6837 /**
6838 * sys_sched_get_priority_max - return maximum RT priority.
6839 * @policy: scheduling class.
6840 *
6841 * this syscall returns the maximum rt_priority that can be used
6842 * by a given scheduling class.
6843 */
6844 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6845 {
6846 int ret = -EINVAL;
6847
6848 switch (policy) {
6849 case SCHED_FIFO:
6850 case SCHED_RR:
6851 ret = MAX_USER_RT_PRIO-1;
6852 break;
6853 case SCHED_NORMAL:
6854 case SCHED_BATCH:
6855 case SCHED_IDLE:
6856 ret = 0;
6857 break;
6858 }
6859 return ret;
6860 }
6861
6862 /**
6863 * sys_sched_get_priority_min - return minimum RT priority.
6864 * @policy: scheduling class.
6865 *
6866 * this syscall returns the minimum rt_priority that can be used
6867 * by a given scheduling class.
6868 */
6869 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6870 {
6871 int ret = -EINVAL;
6872
6873 switch (policy) {
6874 case SCHED_FIFO:
6875 case SCHED_RR:
6876 ret = 1;
6877 break;
6878 case SCHED_NORMAL:
6879 case SCHED_BATCH:
6880 case SCHED_IDLE:
6881 ret = 0;
6882 }
6883 return ret;
6884 }
6885
6886 /**
6887 * sys_sched_rr_get_interval - return the default timeslice of a process.
6888 * @pid: pid of the process.
6889 * @interval: userspace pointer to the timeslice value.
6890 *
6891 * this syscall writes the default timeslice value of a given process
6892 * into the user-space timespec buffer. A value of '0' means infinity.
6893 */
6894 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6895 struct timespec __user *, interval)
6896 {
6897 struct task_struct *p;
6898 unsigned int time_slice;
6899 unsigned long flags;
6900 struct rq *rq;
6901 int retval;
6902 struct timespec t;
6903
6904 if (pid < 0)
6905 return -EINVAL;
6906
6907 retval = -ESRCH;
6908 rcu_read_lock();
6909 p = find_process_by_pid(pid);
6910 if (!p)
6911 goto out_unlock;
6912
6913 retval = security_task_getscheduler(p);
6914 if (retval)
6915 goto out_unlock;
6916
6917 rq = task_rq_lock(p, &flags);
6918 time_slice = p->sched_class->get_rr_interval(rq, p);
6919 task_rq_unlock(rq, &flags);
6920
6921 rcu_read_unlock();
6922 jiffies_to_timespec(time_slice, &t);
6923 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6924 return retval;
6925
6926 out_unlock:
6927 rcu_read_unlock();
6928 return retval;
6929 }
6930
6931 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6932
6933 void sched_show_task(struct task_struct *p)
6934 {
6935 unsigned long free = 0;
6936 unsigned state;
6937
6938 state = p->state ? __ffs(p->state) + 1 : 0;
6939 pr_info("%-13.13s %c", p->comm,
6940 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6941 #if BITS_PER_LONG == 32
6942 if (state == TASK_RUNNING)
6943 pr_cont(" running ");
6944 else
6945 pr_cont(" %08lx ", thread_saved_pc(p));
6946 #else
6947 if (state == TASK_RUNNING)
6948 pr_cont(" running task ");
6949 else
6950 pr_cont(" %016lx ", thread_saved_pc(p));
6951 #endif
6952 #ifdef CONFIG_DEBUG_STACK_USAGE
6953 free = stack_not_used(p);
6954 #endif
6955 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
6956 task_pid_nr(p), task_pid_nr(p->real_parent),
6957 (unsigned long)task_thread_info(p)->flags);
6958
6959 show_stack(p, NULL);
6960 }
6961
6962 void show_state_filter(unsigned long state_filter)
6963 {
6964 struct task_struct *g, *p;
6965
6966 #if BITS_PER_LONG == 32
6967 pr_info(" task PC stack pid father\n");
6968 #else
6969 pr_info(" task PC stack pid father\n");
6970 #endif
6971 read_lock(&tasklist_lock);
6972 do_each_thread(g, p) {
6973 /*
6974 * reset the NMI-timeout, listing all files on a slow
6975 * console might take alot of time:
6976 */
6977 touch_nmi_watchdog();
6978 if (!state_filter || (p->state & state_filter))
6979 sched_show_task(p);
6980 } while_each_thread(g, p);
6981
6982 touch_all_softlockup_watchdogs();
6983
6984 #ifdef CONFIG_SCHED_DEBUG
6985 sysrq_sched_debug_show();
6986 #endif
6987 read_unlock(&tasklist_lock);
6988 /*
6989 * Only show locks if all tasks are dumped:
6990 */
6991 if (!state_filter)
6992 debug_show_all_locks();
6993 }
6994
6995 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6996 {
6997 idle->sched_class = &idle_sched_class;
6998 }
6999
7000 /**
7001 * init_idle - set up an idle thread for a given CPU
7002 * @idle: task in question
7003 * @cpu: cpu the idle task belongs to
7004 *
7005 * NOTE: this function does not set the idle thread's NEED_RESCHED
7006 * flag, to make booting more robust.
7007 */
7008 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7009 {
7010 struct rq *rq = cpu_rq(cpu);
7011 unsigned long flags;
7012
7013 raw_spin_lock_irqsave(&rq->lock, flags);
7014
7015 __sched_fork(idle);
7016 idle->state = TASK_RUNNING;
7017 idle->se.exec_start = sched_clock();
7018
7019 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7020 __set_task_cpu(idle, cpu);
7021
7022 rq->curr = rq->idle = idle;
7023 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7024 idle->oncpu = 1;
7025 #endif
7026 raw_spin_unlock_irqrestore(&rq->lock, flags);
7027
7028 /* Set the preempt count _outside_ the spinlocks! */
7029 #if defined(CONFIG_PREEMPT)
7030 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7031 #else
7032 task_thread_info(idle)->preempt_count = 0;
7033 #endif
7034 /*
7035 * The idle tasks have their own, simple scheduling class:
7036 */
7037 idle->sched_class = &idle_sched_class;
7038 ftrace_graph_init_task(idle);
7039 }
7040
7041 /*
7042 * In a system that switches off the HZ timer nohz_cpu_mask
7043 * indicates which cpus entered this state. This is used
7044 * in the rcu update to wait only for active cpus. For system
7045 * which do not switch off the HZ timer nohz_cpu_mask should
7046 * always be CPU_BITS_NONE.
7047 */
7048 cpumask_var_t nohz_cpu_mask;
7049
7050 /*
7051 * Increase the granularity value when there are more CPUs,
7052 * because with more CPUs the 'effective latency' as visible
7053 * to users decreases. But the relationship is not linear,
7054 * so pick a second-best guess by going with the log2 of the
7055 * number of CPUs.
7056 *
7057 * This idea comes from the SD scheduler of Con Kolivas:
7058 */
7059 static int get_update_sysctl_factor(void)
7060 {
7061 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7062 unsigned int factor;
7063
7064 switch (sysctl_sched_tunable_scaling) {
7065 case SCHED_TUNABLESCALING_NONE:
7066 factor = 1;
7067 break;
7068 case SCHED_TUNABLESCALING_LINEAR:
7069 factor = cpus;
7070 break;
7071 case SCHED_TUNABLESCALING_LOG:
7072 default:
7073 factor = 1 + ilog2(cpus);
7074 break;
7075 }
7076
7077 return factor;
7078 }
7079
7080 static void update_sysctl(void)
7081 {
7082 unsigned int factor = get_update_sysctl_factor();
7083
7084 #define SET_SYSCTL(name) \
7085 (sysctl_##name = (factor) * normalized_sysctl_##name)
7086 SET_SYSCTL(sched_min_granularity);
7087 SET_SYSCTL(sched_latency);
7088 SET_SYSCTL(sched_wakeup_granularity);
7089 SET_SYSCTL(sched_shares_ratelimit);
7090 #undef SET_SYSCTL
7091 }
7092
7093 static inline void sched_init_granularity(void)
7094 {
7095 update_sysctl();
7096 }
7097
7098 #ifdef CONFIG_SMP
7099 /*
7100 * This is how migration works:
7101 *
7102 * 1) we queue a struct migration_req structure in the source CPU's
7103 * runqueue and wake up that CPU's migration thread.
7104 * 2) we down() the locked semaphore => thread blocks.
7105 * 3) migration thread wakes up (implicitly it forces the migrated
7106 * thread off the CPU)
7107 * 4) it gets the migration request and checks whether the migrated
7108 * task is still in the wrong runqueue.
7109 * 5) if it's in the wrong runqueue then the migration thread removes
7110 * it and puts it into the right queue.
7111 * 6) migration thread up()s the semaphore.
7112 * 7) we wake up and the migration is done.
7113 */
7114
7115 /*
7116 * Change a given task's CPU affinity. Migrate the thread to a
7117 * proper CPU and schedule it away if the CPU it's executing on
7118 * is removed from the allowed bitmask.
7119 *
7120 * NOTE: the caller must have a valid reference to the task, the
7121 * task must not exit() & deallocate itself prematurely. The
7122 * call is not atomic; no spinlocks may be held.
7123 */
7124 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7125 {
7126 struct migration_req req;
7127 unsigned long flags;
7128 struct rq *rq;
7129 int ret = 0;
7130
7131 /*
7132 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7133 * the ->cpus_allowed mask from under waking tasks, which would be
7134 * possible when we change rq->lock in ttwu(), so synchronize against
7135 * TASK_WAKING to avoid that.
7136 */
7137 again:
7138 while (p->state == TASK_WAKING)
7139 cpu_relax();
7140
7141 rq = task_rq_lock(p, &flags);
7142
7143 if (p->state == TASK_WAKING) {
7144 task_rq_unlock(rq, &flags);
7145 goto again;
7146 }
7147
7148 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7149 ret = -EINVAL;
7150 goto out;
7151 }
7152
7153 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7154 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7155 ret = -EINVAL;
7156 goto out;
7157 }
7158
7159 if (p->sched_class->set_cpus_allowed)
7160 p->sched_class->set_cpus_allowed(p, new_mask);
7161 else {
7162 cpumask_copy(&p->cpus_allowed, new_mask);
7163 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7164 }
7165
7166 /* Can the task run on the task's current CPU? If so, we're done */
7167 if (cpumask_test_cpu(task_cpu(p), new_mask))
7168 goto out;
7169
7170 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7171 /* Need help from migration thread: drop lock and wait. */
7172 struct task_struct *mt = rq->migration_thread;
7173
7174 get_task_struct(mt);
7175 task_rq_unlock(rq, &flags);
7176 wake_up_process(rq->migration_thread);
7177 put_task_struct(mt);
7178 wait_for_completion(&req.done);
7179 tlb_migrate_finish(p->mm);
7180 return 0;
7181 }
7182 out:
7183 task_rq_unlock(rq, &flags);
7184
7185 return ret;
7186 }
7187 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7188
7189 /*
7190 * Move (not current) task off this cpu, onto dest cpu. We're doing
7191 * this because either it can't run here any more (set_cpus_allowed()
7192 * away from this CPU, or CPU going down), or because we're
7193 * attempting to rebalance this task on exec (sched_exec).
7194 *
7195 * So we race with normal scheduler movements, but that's OK, as long
7196 * as the task is no longer on this CPU.
7197 *
7198 * Returns non-zero if task was successfully migrated.
7199 */
7200 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7201 {
7202 struct rq *rq_dest, *rq_src;
7203 int ret = 0;
7204
7205 if (unlikely(!cpu_active(dest_cpu)))
7206 return ret;
7207
7208 rq_src = cpu_rq(src_cpu);
7209 rq_dest = cpu_rq(dest_cpu);
7210
7211 double_rq_lock(rq_src, rq_dest);
7212 /* Already moved. */
7213 if (task_cpu(p) != src_cpu)
7214 goto done;
7215 /* Affinity changed (again). */
7216 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7217 goto fail;
7218
7219 /*
7220 * If we're not on a rq, the next wake-up will ensure we're
7221 * placed properly.
7222 */
7223 if (p->se.on_rq) {
7224 deactivate_task(rq_src, p, 0);
7225 set_task_cpu(p, dest_cpu);
7226 activate_task(rq_dest, p, 0);
7227 check_preempt_curr(rq_dest, p, 0);
7228 }
7229 done:
7230 ret = 1;
7231 fail:
7232 double_rq_unlock(rq_src, rq_dest);
7233 return ret;
7234 }
7235
7236 #define RCU_MIGRATION_IDLE 0
7237 #define RCU_MIGRATION_NEED_QS 1
7238 #define RCU_MIGRATION_GOT_QS 2
7239 #define RCU_MIGRATION_MUST_SYNC 3
7240
7241 /*
7242 * migration_thread - this is a highprio system thread that performs
7243 * thread migration by bumping thread off CPU then 'pushing' onto
7244 * another runqueue.
7245 */
7246 static int migration_thread(void *data)
7247 {
7248 int badcpu;
7249 int cpu = (long)data;
7250 struct rq *rq;
7251
7252 rq = cpu_rq(cpu);
7253 BUG_ON(rq->migration_thread != current);
7254
7255 set_current_state(TASK_INTERRUPTIBLE);
7256 while (!kthread_should_stop()) {
7257 struct migration_req *req;
7258 struct list_head *head;
7259
7260 raw_spin_lock_irq(&rq->lock);
7261
7262 if (cpu_is_offline(cpu)) {
7263 raw_spin_unlock_irq(&rq->lock);
7264 break;
7265 }
7266
7267 if (rq->active_balance) {
7268 active_load_balance(rq, cpu);
7269 rq->active_balance = 0;
7270 }
7271
7272 head = &rq->migration_queue;
7273
7274 if (list_empty(head)) {
7275 raw_spin_unlock_irq(&rq->lock);
7276 schedule();
7277 set_current_state(TASK_INTERRUPTIBLE);
7278 continue;
7279 }
7280 req = list_entry(head->next, struct migration_req, list);
7281 list_del_init(head->next);
7282
7283 if (req->task != NULL) {
7284 raw_spin_unlock(&rq->lock);
7285 __migrate_task(req->task, cpu, req->dest_cpu);
7286 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7287 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7288 raw_spin_unlock(&rq->lock);
7289 } else {
7290 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7291 raw_spin_unlock(&rq->lock);
7292 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7293 }
7294 local_irq_enable();
7295
7296 complete(&req->done);
7297 }
7298 __set_current_state(TASK_RUNNING);
7299
7300 return 0;
7301 }
7302
7303 #ifdef CONFIG_HOTPLUG_CPU
7304
7305 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7306 {
7307 int ret;
7308
7309 local_irq_disable();
7310 ret = __migrate_task(p, src_cpu, dest_cpu);
7311 local_irq_enable();
7312 return ret;
7313 }
7314
7315 /*
7316 * Figure out where task on dead CPU should go, use force if necessary.
7317 */
7318 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7319 {
7320 int dest_cpu;
7321 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7322
7323 again:
7324 /* Look for allowed, online CPU in same node. */
7325 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7326 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7327 goto move;
7328
7329 /* Any allowed, online CPU? */
7330 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7331 if (dest_cpu < nr_cpu_ids)
7332 goto move;
7333
7334 /* No more Mr. Nice Guy. */
7335 if (dest_cpu >= nr_cpu_ids) {
7336 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7337 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7338
7339 /*
7340 * Don't tell them about moving exiting tasks or
7341 * kernel threads (both mm NULL), since they never
7342 * leave kernel.
7343 */
7344 if (p->mm && printk_ratelimit()) {
7345 pr_info("process %d (%s) no longer affine to cpu%d\n",
7346 task_pid_nr(p), p->comm, dead_cpu);
7347 }
7348 }
7349
7350 move:
7351 /* It can have affinity changed while we were choosing. */
7352 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7353 goto again;
7354 }
7355
7356 /*
7357 * While a dead CPU has no uninterruptible tasks queued at this point,
7358 * it might still have a nonzero ->nr_uninterruptible counter, because
7359 * for performance reasons the counter is not stricly tracking tasks to
7360 * their home CPUs. So we just add the counter to another CPU's counter,
7361 * to keep the global sum constant after CPU-down:
7362 */
7363 static void migrate_nr_uninterruptible(struct rq *rq_src)
7364 {
7365 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7366 unsigned long flags;
7367
7368 local_irq_save(flags);
7369 double_rq_lock(rq_src, rq_dest);
7370 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7371 rq_src->nr_uninterruptible = 0;
7372 double_rq_unlock(rq_src, rq_dest);
7373 local_irq_restore(flags);
7374 }
7375
7376 /* Run through task list and migrate tasks from the dead cpu. */
7377 static void migrate_live_tasks(int src_cpu)
7378 {
7379 struct task_struct *p, *t;
7380
7381 read_lock(&tasklist_lock);
7382
7383 do_each_thread(t, p) {
7384 if (p == current)
7385 continue;
7386
7387 if (task_cpu(p) == src_cpu)
7388 move_task_off_dead_cpu(src_cpu, p);
7389 } while_each_thread(t, p);
7390
7391 read_unlock(&tasklist_lock);
7392 }
7393
7394 /*
7395 * Schedules idle task to be the next runnable task on current CPU.
7396 * It does so by boosting its priority to highest possible.
7397 * Used by CPU offline code.
7398 */
7399 void sched_idle_next(void)
7400 {
7401 int this_cpu = smp_processor_id();
7402 struct rq *rq = cpu_rq(this_cpu);
7403 struct task_struct *p = rq->idle;
7404 unsigned long flags;
7405
7406 /* cpu has to be offline */
7407 BUG_ON(cpu_online(this_cpu));
7408
7409 /*
7410 * Strictly not necessary since rest of the CPUs are stopped by now
7411 * and interrupts disabled on the current cpu.
7412 */
7413 raw_spin_lock_irqsave(&rq->lock, flags);
7414
7415 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7416
7417 update_rq_clock(rq);
7418 activate_task(rq, p, 0);
7419
7420 raw_spin_unlock_irqrestore(&rq->lock, flags);
7421 }
7422
7423 /*
7424 * Ensures that the idle task is using init_mm right before its cpu goes
7425 * offline.
7426 */
7427 void idle_task_exit(void)
7428 {
7429 struct mm_struct *mm = current->active_mm;
7430
7431 BUG_ON(cpu_online(smp_processor_id()));
7432
7433 if (mm != &init_mm)
7434 switch_mm(mm, &init_mm, current);
7435 mmdrop(mm);
7436 }
7437
7438 /* called under rq->lock with disabled interrupts */
7439 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7440 {
7441 struct rq *rq = cpu_rq(dead_cpu);
7442
7443 /* Must be exiting, otherwise would be on tasklist. */
7444 BUG_ON(!p->exit_state);
7445
7446 /* Cannot have done final schedule yet: would have vanished. */
7447 BUG_ON(p->state == TASK_DEAD);
7448
7449 get_task_struct(p);
7450
7451 /*
7452 * Drop lock around migration; if someone else moves it,
7453 * that's OK. No task can be added to this CPU, so iteration is
7454 * fine.
7455 */
7456 raw_spin_unlock_irq(&rq->lock);
7457 move_task_off_dead_cpu(dead_cpu, p);
7458 raw_spin_lock_irq(&rq->lock);
7459
7460 put_task_struct(p);
7461 }
7462
7463 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7464 static void migrate_dead_tasks(unsigned int dead_cpu)
7465 {
7466 struct rq *rq = cpu_rq(dead_cpu);
7467 struct task_struct *next;
7468
7469 for ( ; ; ) {
7470 if (!rq->nr_running)
7471 break;
7472 update_rq_clock(rq);
7473 next = pick_next_task(rq);
7474 if (!next)
7475 break;
7476 next->sched_class->put_prev_task(rq, next);
7477 migrate_dead(dead_cpu, next);
7478
7479 }
7480 }
7481
7482 /*
7483 * remove the tasks which were accounted by rq from calc_load_tasks.
7484 */
7485 static void calc_global_load_remove(struct rq *rq)
7486 {
7487 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7488 rq->calc_load_active = 0;
7489 }
7490 #endif /* CONFIG_HOTPLUG_CPU */
7491
7492 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7493
7494 static struct ctl_table sd_ctl_dir[] = {
7495 {
7496 .procname = "sched_domain",
7497 .mode = 0555,
7498 },
7499 {}
7500 };
7501
7502 static struct ctl_table sd_ctl_root[] = {
7503 {
7504 .procname = "kernel",
7505 .mode = 0555,
7506 .child = sd_ctl_dir,
7507 },
7508 {}
7509 };
7510
7511 static struct ctl_table *sd_alloc_ctl_entry(int n)
7512 {
7513 struct ctl_table *entry =
7514 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7515
7516 return entry;
7517 }
7518
7519 static void sd_free_ctl_entry(struct ctl_table **tablep)
7520 {
7521 struct ctl_table *entry;
7522
7523 /*
7524 * In the intermediate directories, both the child directory and
7525 * procname are dynamically allocated and could fail but the mode
7526 * will always be set. In the lowest directory the names are
7527 * static strings and all have proc handlers.
7528 */
7529 for (entry = *tablep; entry->mode; entry++) {
7530 if (entry->child)
7531 sd_free_ctl_entry(&entry->child);
7532 if (entry->proc_handler == NULL)
7533 kfree(entry->procname);
7534 }
7535
7536 kfree(*tablep);
7537 *tablep = NULL;
7538 }
7539
7540 static void
7541 set_table_entry(struct ctl_table *entry,
7542 const char *procname, void *data, int maxlen,
7543 mode_t mode, proc_handler *proc_handler)
7544 {
7545 entry->procname = procname;
7546 entry->data = data;
7547 entry->maxlen = maxlen;
7548 entry->mode = mode;
7549 entry->proc_handler = proc_handler;
7550 }
7551
7552 static struct ctl_table *
7553 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7554 {
7555 struct ctl_table *table = sd_alloc_ctl_entry(13);
7556
7557 if (table == NULL)
7558 return NULL;
7559
7560 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7561 sizeof(long), 0644, proc_doulongvec_minmax);
7562 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7563 sizeof(long), 0644, proc_doulongvec_minmax);
7564 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7565 sizeof(int), 0644, proc_dointvec_minmax);
7566 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7567 sizeof(int), 0644, proc_dointvec_minmax);
7568 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7569 sizeof(int), 0644, proc_dointvec_minmax);
7570 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7571 sizeof(int), 0644, proc_dointvec_minmax);
7572 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7573 sizeof(int), 0644, proc_dointvec_minmax);
7574 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7575 sizeof(int), 0644, proc_dointvec_minmax);
7576 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7577 sizeof(int), 0644, proc_dointvec_minmax);
7578 set_table_entry(&table[9], "cache_nice_tries",
7579 &sd->cache_nice_tries,
7580 sizeof(int), 0644, proc_dointvec_minmax);
7581 set_table_entry(&table[10], "flags", &sd->flags,
7582 sizeof(int), 0644, proc_dointvec_minmax);
7583 set_table_entry(&table[11], "name", sd->name,
7584 CORENAME_MAX_SIZE, 0444, proc_dostring);
7585 /* &table[12] is terminator */
7586
7587 return table;
7588 }
7589
7590 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7591 {
7592 struct ctl_table *entry, *table;
7593 struct sched_domain *sd;
7594 int domain_num = 0, i;
7595 char buf[32];
7596
7597 for_each_domain(cpu, sd)
7598 domain_num++;
7599 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7600 if (table == NULL)
7601 return NULL;
7602
7603 i = 0;
7604 for_each_domain(cpu, sd) {
7605 snprintf(buf, 32, "domain%d", i);
7606 entry->procname = kstrdup(buf, GFP_KERNEL);
7607 entry->mode = 0555;
7608 entry->child = sd_alloc_ctl_domain_table(sd);
7609 entry++;
7610 i++;
7611 }
7612 return table;
7613 }
7614
7615 static struct ctl_table_header *sd_sysctl_header;
7616 static void register_sched_domain_sysctl(void)
7617 {
7618 int i, cpu_num = num_possible_cpus();
7619 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7620 char buf[32];
7621
7622 WARN_ON(sd_ctl_dir[0].child);
7623 sd_ctl_dir[0].child = entry;
7624
7625 if (entry == NULL)
7626 return;
7627
7628 for_each_possible_cpu(i) {
7629 snprintf(buf, 32, "cpu%d", i);
7630 entry->procname = kstrdup(buf, GFP_KERNEL);
7631 entry->mode = 0555;
7632 entry->child = sd_alloc_ctl_cpu_table(i);
7633 entry++;
7634 }
7635
7636 WARN_ON(sd_sysctl_header);
7637 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7638 }
7639
7640 /* may be called multiple times per register */
7641 static void unregister_sched_domain_sysctl(void)
7642 {
7643 if (sd_sysctl_header)
7644 unregister_sysctl_table(sd_sysctl_header);
7645 sd_sysctl_header = NULL;
7646 if (sd_ctl_dir[0].child)
7647 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7648 }
7649 #else
7650 static void register_sched_domain_sysctl(void)
7651 {
7652 }
7653 static void unregister_sched_domain_sysctl(void)
7654 {
7655 }
7656 #endif
7657
7658 static void set_rq_online(struct rq *rq)
7659 {
7660 if (!rq->online) {
7661 const struct sched_class *class;
7662
7663 cpumask_set_cpu(rq->cpu, rq->rd->online);
7664 rq->online = 1;
7665
7666 for_each_class(class) {
7667 if (class->rq_online)
7668 class->rq_online(rq);
7669 }
7670 }
7671 }
7672
7673 static void set_rq_offline(struct rq *rq)
7674 {
7675 if (rq->online) {
7676 const struct sched_class *class;
7677
7678 for_each_class(class) {
7679 if (class->rq_offline)
7680 class->rq_offline(rq);
7681 }
7682
7683 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7684 rq->online = 0;
7685 }
7686 }
7687
7688 /*
7689 * migration_call - callback that gets triggered when a CPU is added.
7690 * Here we can start up the necessary migration thread for the new CPU.
7691 */
7692 static int __cpuinit
7693 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7694 {
7695 struct task_struct *p;
7696 int cpu = (long)hcpu;
7697 unsigned long flags;
7698 struct rq *rq;
7699
7700 switch (action) {
7701
7702 case CPU_UP_PREPARE:
7703 case CPU_UP_PREPARE_FROZEN:
7704 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7705 if (IS_ERR(p))
7706 return NOTIFY_BAD;
7707 kthread_bind(p, cpu);
7708 /* Must be high prio: stop_machine expects to yield to it. */
7709 rq = task_rq_lock(p, &flags);
7710 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7711 task_rq_unlock(rq, &flags);
7712 get_task_struct(p);
7713 cpu_rq(cpu)->migration_thread = p;
7714 rq->calc_load_update = calc_load_update;
7715 break;
7716
7717 case CPU_ONLINE:
7718 case CPU_ONLINE_FROZEN:
7719 /* Strictly unnecessary, as first user will wake it. */
7720 wake_up_process(cpu_rq(cpu)->migration_thread);
7721
7722 /* Update our root-domain */
7723 rq = cpu_rq(cpu);
7724 raw_spin_lock_irqsave(&rq->lock, flags);
7725 if (rq->rd) {
7726 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7727
7728 set_rq_online(rq);
7729 }
7730 raw_spin_unlock_irqrestore(&rq->lock, flags);
7731 break;
7732
7733 #ifdef CONFIG_HOTPLUG_CPU
7734 case CPU_UP_CANCELED:
7735 case CPU_UP_CANCELED_FROZEN:
7736 if (!cpu_rq(cpu)->migration_thread)
7737 break;
7738 /* Unbind it from offline cpu so it can run. Fall thru. */
7739 kthread_bind(cpu_rq(cpu)->migration_thread,
7740 cpumask_any(cpu_online_mask));
7741 kthread_stop(cpu_rq(cpu)->migration_thread);
7742 put_task_struct(cpu_rq(cpu)->migration_thread);
7743 cpu_rq(cpu)->migration_thread = NULL;
7744 break;
7745
7746 case CPU_DEAD:
7747 case CPU_DEAD_FROZEN:
7748 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7749 migrate_live_tasks(cpu);
7750 rq = cpu_rq(cpu);
7751 kthread_stop(rq->migration_thread);
7752 put_task_struct(rq->migration_thread);
7753 rq->migration_thread = NULL;
7754 /* Idle task back to normal (off runqueue, low prio) */
7755 raw_spin_lock_irq(&rq->lock);
7756 update_rq_clock(rq);
7757 deactivate_task(rq, rq->idle, 0);
7758 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7759 rq->idle->sched_class = &idle_sched_class;
7760 migrate_dead_tasks(cpu);
7761 raw_spin_unlock_irq(&rq->lock);
7762 cpuset_unlock();
7763 migrate_nr_uninterruptible(rq);
7764 BUG_ON(rq->nr_running != 0);
7765 calc_global_load_remove(rq);
7766 /*
7767 * No need to migrate the tasks: it was best-effort if
7768 * they didn't take sched_hotcpu_mutex. Just wake up
7769 * the requestors.
7770 */
7771 raw_spin_lock_irq(&rq->lock);
7772 while (!list_empty(&rq->migration_queue)) {
7773 struct migration_req *req;
7774
7775 req = list_entry(rq->migration_queue.next,
7776 struct migration_req, list);
7777 list_del_init(&req->list);
7778 raw_spin_unlock_irq(&rq->lock);
7779 complete(&req->done);
7780 raw_spin_lock_irq(&rq->lock);
7781 }
7782 raw_spin_unlock_irq(&rq->lock);
7783 break;
7784
7785 case CPU_DYING:
7786 case CPU_DYING_FROZEN:
7787 /* Update our root-domain */
7788 rq = cpu_rq(cpu);
7789 raw_spin_lock_irqsave(&rq->lock, flags);
7790 if (rq->rd) {
7791 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7792 set_rq_offline(rq);
7793 }
7794 raw_spin_unlock_irqrestore(&rq->lock, flags);
7795 break;
7796 #endif
7797 }
7798 return NOTIFY_OK;
7799 }
7800
7801 /*
7802 * Register at high priority so that task migration (migrate_all_tasks)
7803 * happens before everything else. This has to be lower priority than
7804 * the notifier in the perf_event subsystem, though.
7805 */
7806 static struct notifier_block __cpuinitdata migration_notifier = {
7807 .notifier_call = migration_call,
7808 .priority = 10
7809 };
7810
7811 static int __init migration_init(void)
7812 {
7813 void *cpu = (void *)(long)smp_processor_id();
7814 int err;
7815
7816 /* Start one for the boot CPU: */
7817 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7818 BUG_ON(err == NOTIFY_BAD);
7819 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7820 register_cpu_notifier(&migration_notifier);
7821
7822 return 0;
7823 }
7824 early_initcall(migration_init);
7825 #endif
7826
7827 #ifdef CONFIG_SMP
7828
7829 #ifdef CONFIG_SCHED_DEBUG
7830
7831 static __read_mostly int sched_domain_debug_enabled;
7832
7833 static int __init sched_domain_debug_setup(char *str)
7834 {
7835 sched_domain_debug_enabled = 1;
7836
7837 return 0;
7838 }
7839 early_param("sched_debug", sched_domain_debug_setup);
7840
7841 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7842 struct cpumask *groupmask)
7843 {
7844 struct sched_group *group = sd->groups;
7845 char str[256];
7846
7847 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7848 cpumask_clear(groupmask);
7849
7850 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7851
7852 if (!(sd->flags & SD_LOAD_BALANCE)) {
7853 pr_cont("does not load-balance\n");
7854 if (sd->parent)
7855 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
7856 return -1;
7857 }
7858
7859 pr_cont("span %s level %s\n", str, sd->name);
7860
7861 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7862 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
7863 }
7864 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7865 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
7866 }
7867
7868 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7869 do {
7870 if (!group) {
7871 pr_cont("\n");
7872 pr_err("ERROR: group is NULL\n");
7873 break;
7874 }
7875
7876 if (!group->cpu_power) {
7877 pr_cont("\n");
7878 pr_err("ERROR: domain->cpu_power not set\n");
7879 break;
7880 }
7881
7882 if (!cpumask_weight(sched_group_cpus(group))) {
7883 pr_cont("\n");
7884 pr_err("ERROR: empty group\n");
7885 break;
7886 }
7887
7888 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7889 pr_cont("\n");
7890 pr_err("ERROR: repeated CPUs\n");
7891 break;
7892 }
7893
7894 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7895
7896 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7897
7898 pr_cont(" %s", str);
7899 if (group->cpu_power != SCHED_LOAD_SCALE) {
7900 pr_cont(" (cpu_power = %d)", group->cpu_power);
7901 }
7902
7903 group = group->next;
7904 } while (group != sd->groups);
7905 pr_cont("\n");
7906
7907 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7908 pr_err("ERROR: groups don't span domain->span\n");
7909
7910 if (sd->parent &&
7911 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7912 pr_err("ERROR: parent span is not a superset of domain->span\n");
7913 return 0;
7914 }
7915
7916 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7917 {
7918 cpumask_var_t groupmask;
7919 int level = 0;
7920
7921 if (!sched_domain_debug_enabled)
7922 return;
7923
7924 if (!sd) {
7925 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7926 return;
7927 }
7928
7929 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7930
7931 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7932 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7933 return;
7934 }
7935
7936 for (;;) {
7937 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7938 break;
7939 level++;
7940 sd = sd->parent;
7941 if (!sd)
7942 break;
7943 }
7944 free_cpumask_var(groupmask);
7945 }
7946 #else /* !CONFIG_SCHED_DEBUG */
7947 # define sched_domain_debug(sd, cpu) do { } while (0)
7948 #endif /* CONFIG_SCHED_DEBUG */
7949
7950 static int sd_degenerate(struct sched_domain *sd)
7951 {
7952 if (cpumask_weight(sched_domain_span(sd)) == 1)
7953 return 1;
7954
7955 /* Following flags need at least 2 groups */
7956 if (sd->flags & (SD_LOAD_BALANCE |
7957 SD_BALANCE_NEWIDLE |
7958 SD_BALANCE_FORK |
7959 SD_BALANCE_EXEC |
7960 SD_SHARE_CPUPOWER |
7961 SD_SHARE_PKG_RESOURCES)) {
7962 if (sd->groups != sd->groups->next)
7963 return 0;
7964 }
7965
7966 /* Following flags don't use groups */
7967 if (sd->flags & (SD_WAKE_AFFINE))
7968 return 0;
7969
7970 return 1;
7971 }
7972
7973 static int
7974 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7975 {
7976 unsigned long cflags = sd->flags, pflags = parent->flags;
7977
7978 if (sd_degenerate(parent))
7979 return 1;
7980
7981 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7982 return 0;
7983
7984 /* Flags needing groups don't count if only 1 group in parent */
7985 if (parent->groups == parent->groups->next) {
7986 pflags &= ~(SD_LOAD_BALANCE |
7987 SD_BALANCE_NEWIDLE |
7988 SD_BALANCE_FORK |
7989 SD_BALANCE_EXEC |
7990 SD_SHARE_CPUPOWER |
7991 SD_SHARE_PKG_RESOURCES);
7992 if (nr_node_ids == 1)
7993 pflags &= ~SD_SERIALIZE;
7994 }
7995 if (~cflags & pflags)
7996 return 0;
7997
7998 return 1;
7999 }
8000
8001 static void free_rootdomain(struct root_domain *rd)
8002 {
8003 synchronize_sched();
8004
8005 cpupri_cleanup(&rd->cpupri);
8006
8007 free_cpumask_var(rd->rto_mask);
8008 free_cpumask_var(rd->online);
8009 free_cpumask_var(rd->span);
8010 kfree(rd);
8011 }
8012
8013 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8014 {
8015 struct root_domain *old_rd = NULL;
8016 unsigned long flags;
8017
8018 raw_spin_lock_irqsave(&rq->lock, flags);
8019
8020 if (rq->rd) {
8021 old_rd = rq->rd;
8022
8023 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8024 set_rq_offline(rq);
8025
8026 cpumask_clear_cpu(rq->cpu, old_rd->span);
8027
8028 /*
8029 * If we dont want to free the old_rt yet then
8030 * set old_rd to NULL to skip the freeing later
8031 * in this function:
8032 */
8033 if (!atomic_dec_and_test(&old_rd->refcount))
8034 old_rd = NULL;
8035 }
8036
8037 atomic_inc(&rd->refcount);
8038 rq->rd = rd;
8039
8040 cpumask_set_cpu(rq->cpu, rd->span);
8041 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8042 set_rq_online(rq);
8043
8044 raw_spin_unlock_irqrestore(&rq->lock, flags);
8045
8046 if (old_rd)
8047 free_rootdomain(old_rd);
8048 }
8049
8050 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8051 {
8052 gfp_t gfp = GFP_KERNEL;
8053
8054 memset(rd, 0, sizeof(*rd));
8055
8056 if (bootmem)
8057 gfp = GFP_NOWAIT;
8058
8059 if (!alloc_cpumask_var(&rd->span, gfp))
8060 goto out;
8061 if (!alloc_cpumask_var(&rd->online, gfp))
8062 goto free_span;
8063 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8064 goto free_online;
8065
8066 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8067 goto free_rto_mask;
8068 return 0;
8069
8070 free_rto_mask:
8071 free_cpumask_var(rd->rto_mask);
8072 free_online:
8073 free_cpumask_var(rd->online);
8074 free_span:
8075 free_cpumask_var(rd->span);
8076 out:
8077 return -ENOMEM;
8078 }
8079
8080 static void init_defrootdomain(void)
8081 {
8082 init_rootdomain(&def_root_domain, true);
8083
8084 atomic_set(&def_root_domain.refcount, 1);
8085 }
8086
8087 static struct root_domain *alloc_rootdomain(void)
8088 {
8089 struct root_domain *rd;
8090
8091 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8092 if (!rd)
8093 return NULL;
8094
8095 if (init_rootdomain(rd, false) != 0) {
8096 kfree(rd);
8097 return NULL;
8098 }
8099
8100 return rd;
8101 }
8102
8103 /*
8104 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8105 * hold the hotplug lock.
8106 */
8107 static void
8108 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8109 {
8110 struct rq *rq = cpu_rq(cpu);
8111 struct sched_domain *tmp;
8112
8113 /* Remove the sched domains which do not contribute to scheduling. */
8114 for (tmp = sd; tmp; ) {
8115 struct sched_domain *parent = tmp->parent;
8116 if (!parent)
8117 break;
8118
8119 if (sd_parent_degenerate(tmp, parent)) {
8120 tmp->parent = parent->parent;
8121 if (parent->parent)
8122 parent->parent->child = tmp;
8123 } else
8124 tmp = tmp->parent;
8125 }
8126
8127 if (sd && sd_degenerate(sd)) {
8128 sd = sd->parent;
8129 if (sd)
8130 sd->child = NULL;
8131 }
8132
8133 sched_domain_debug(sd, cpu);
8134
8135 rq_attach_root(rq, rd);
8136 rcu_assign_pointer(rq->sd, sd);
8137 }
8138
8139 /* cpus with isolated domains */
8140 static cpumask_var_t cpu_isolated_map;
8141
8142 /* Setup the mask of cpus configured for isolated domains */
8143 static int __init isolated_cpu_setup(char *str)
8144 {
8145 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8146 cpulist_parse(str, cpu_isolated_map);
8147 return 1;
8148 }
8149
8150 __setup("isolcpus=", isolated_cpu_setup);
8151
8152 /*
8153 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8154 * to a function which identifies what group(along with sched group) a CPU
8155 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8156 * (due to the fact that we keep track of groups covered with a struct cpumask).
8157 *
8158 * init_sched_build_groups will build a circular linked list of the groups
8159 * covered by the given span, and will set each group's ->cpumask correctly,
8160 * and ->cpu_power to 0.
8161 */
8162 static void
8163 init_sched_build_groups(const struct cpumask *span,
8164 const struct cpumask *cpu_map,
8165 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8166 struct sched_group **sg,
8167 struct cpumask *tmpmask),
8168 struct cpumask *covered, struct cpumask *tmpmask)
8169 {
8170 struct sched_group *first = NULL, *last = NULL;
8171 int i;
8172
8173 cpumask_clear(covered);
8174
8175 for_each_cpu(i, span) {
8176 struct sched_group *sg;
8177 int group = group_fn(i, cpu_map, &sg, tmpmask);
8178 int j;
8179
8180 if (cpumask_test_cpu(i, covered))
8181 continue;
8182
8183 cpumask_clear(sched_group_cpus(sg));
8184 sg->cpu_power = 0;
8185
8186 for_each_cpu(j, span) {
8187 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8188 continue;
8189
8190 cpumask_set_cpu(j, covered);
8191 cpumask_set_cpu(j, sched_group_cpus(sg));
8192 }
8193 if (!first)
8194 first = sg;
8195 if (last)
8196 last->next = sg;
8197 last = sg;
8198 }
8199 last->next = first;
8200 }
8201
8202 #define SD_NODES_PER_DOMAIN 16
8203
8204 #ifdef CONFIG_NUMA
8205
8206 /**
8207 * find_next_best_node - find the next node to include in a sched_domain
8208 * @node: node whose sched_domain we're building
8209 * @used_nodes: nodes already in the sched_domain
8210 *
8211 * Find the next node to include in a given scheduling domain. Simply
8212 * finds the closest node not already in the @used_nodes map.
8213 *
8214 * Should use nodemask_t.
8215 */
8216 static int find_next_best_node(int node, nodemask_t *used_nodes)
8217 {
8218 int i, n, val, min_val, best_node = 0;
8219
8220 min_val = INT_MAX;
8221
8222 for (i = 0; i < nr_node_ids; i++) {
8223 /* Start at @node */
8224 n = (node + i) % nr_node_ids;
8225
8226 if (!nr_cpus_node(n))
8227 continue;
8228
8229 /* Skip already used nodes */
8230 if (node_isset(n, *used_nodes))
8231 continue;
8232
8233 /* Simple min distance search */
8234 val = node_distance(node, n);
8235
8236 if (val < min_val) {
8237 min_val = val;
8238 best_node = n;
8239 }
8240 }
8241
8242 node_set(best_node, *used_nodes);
8243 return best_node;
8244 }
8245
8246 /**
8247 * sched_domain_node_span - get a cpumask for a node's sched_domain
8248 * @node: node whose cpumask we're constructing
8249 * @span: resulting cpumask
8250 *
8251 * Given a node, construct a good cpumask for its sched_domain to span. It
8252 * should be one that prevents unnecessary balancing, but also spreads tasks
8253 * out optimally.
8254 */
8255 static void sched_domain_node_span(int node, struct cpumask *span)
8256 {
8257 nodemask_t used_nodes;
8258 int i;
8259
8260 cpumask_clear(span);
8261 nodes_clear(used_nodes);
8262
8263 cpumask_or(span, span, cpumask_of_node(node));
8264 node_set(node, used_nodes);
8265
8266 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8267 int next_node = find_next_best_node(node, &used_nodes);
8268
8269 cpumask_or(span, span, cpumask_of_node(next_node));
8270 }
8271 }
8272 #endif /* CONFIG_NUMA */
8273
8274 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8275
8276 /*
8277 * The cpus mask in sched_group and sched_domain hangs off the end.
8278 *
8279 * ( See the the comments in include/linux/sched.h:struct sched_group
8280 * and struct sched_domain. )
8281 */
8282 struct static_sched_group {
8283 struct sched_group sg;
8284 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8285 };
8286
8287 struct static_sched_domain {
8288 struct sched_domain sd;
8289 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8290 };
8291
8292 struct s_data {
8293 #ifdef CONFIG_NUMA
8294 int sd_allnodes;
8295 cpumask_var_t domainspan;
8296 cpumask_var_t covered;
8297 cpumask_var_t notcovered;
8298 #endif
8299 cpumask_var_t nodemask;
8300 cpumask_var_t this_sibling_map;
8301 cpumask_var_t this_core_map;
8302 cpumask_var_t send_covered;
8303 cpumask_var_t tmpmask;
8304 struct sched_group **sched_group_nodes;
8305 struct root_domain *rd;
8306 };
8307
8308 enum s_alloc {
8309 sa_sched_groups = 0,
8310 sa_rootdomain,
8311 sa_tmpmask,
8312 sa_send_covered,
8313 sa_this_core_map,
8314 sa_this_sibling_map,
8315 sa_nodemask,
8316 sa_sched_group_nodes,
8317 #ifdef CONFIG_NUMA
8318 sa_notcovered,
8319 sa_covered,
8320 sa_domainspan,
8321 #endif
8322 sa_none,
8323 };
8324
8325 /*
8326 * SMT sched-domains:
8327 */
8328 #ifdef CONFIG_SCHED_SMT
8329 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8330 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8331
8332 static int
8333 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8334 struct sched_group **sg, struct cpumask *unused)
8335 {
8336 if (sg)
8337 *sg = &per_cpu(sched_groups, cpu).sg;
8338 return cpu;
8339 }
8340 #endif /* CONFIG_SCHED_SMT */
8341
8342 /*
8343 * multi-core sched-domains:
8344 */
8345 #ifdef CONFIG_SCHED_MC
8346 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8347 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8348 #endif /* CONFIG_SCHED_MC */
8349
8350 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8351 static int
8352 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8353 struct sched_group **sg, struct cpumask *mask)
8354 {
8355 int group;
8356
8357 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8358 group = cpumask_first(mask);
8359 if (sg)
8360 *sg = &per_cpu(sched_group_core, group).sg;
8361 return group;
8362 }
8363 #elif defined(CONFIG_SCHED_MC)
8364 static int
8365 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8366 struct sched_group **sg, struct cpumask *unused)
8367 {
8368 if (sg)
8369 *sg = &per_cpu(sched_group_core, cpu).sg;
8370 return cpu;
8371 }
8372 #endif
8373
8374 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8375 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8376
8377 static int
8378 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8379 struct sched_group **sg, struct cpumask *mask)
8380 {
8381 int group;
8382 #ifdef CONFIG_SCHED_MC
8383 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8384 group = cpumask_first(mask);
8385 #elif defined(CONFIG_SCHED_SMT)
8386 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8387 group = cpumask_first(mask);
8388 #else
8389 group = cpu;
8390 #endif
8391 if (sg)
8392 *sg = &per_cpu(sched_group_phys, group).sg;
8393 return group;
8394 }
8395
8396 #ifdef CONFIG_NUMA
8397 /*
8398 * The init_sched_build_groups can't handle what we want to do with node
8399 * groups, so roll our own. Now each node has its own list of groups which
8400 * gets dynamically allocated.
8401 */
8402 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8403 static struct sched_group ***sched_group_nodes_bycpu;
8404
8405 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8406 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8407
8408 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8409 struct sched_group **sg,
8410 struct cpumask *nodemask)
8411 {
8412 int group;
8413
8414 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8415 group = cpumask_first(nodemask);
8416
8417 if (sg)
8418 *sg = &per_cpu(sched_group_allnodes, group).sg;
8419 return group;
8420 }
8421
8422 static void init_numa_sched_groups_power(struct sched_group *group_head)
8423 {
8424 struct sched_group *sg = group_head;
8425 int j;
8426
8427 if (!sg)
8428 return;
8429 do {
8430 for_each_cpu(j, sched_group_cpus(sg)) {
8431 struct sched_domain *sd;
8432
8433 sd = &per_cpu(phys_domains, j).sd;
8434 if (j != group_first_cpu(sd->groups)) {
8435 /*
8436 * Only add "power" once for each
8437 * physical package.
8438 */
8439 continue;
8440 }
8441
8442 sg->cpu_power += sd->groups->cpu_power;
8443 }
8444 sg = sg->next;
8445 } while (sg != group_head);
8446 }
8447
8448 static int build_numa_sched_groups(struct s_data *d,
8449 const struct cpumask *cpu_map, int num)
8450 {
8451 struct sched_domain *sd;
8452 struct sched_group *sg, *prev;
8453 int n, j;
8454
8455 cpumask_clear(d->covered);
8456 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8457 if (cpumask_empty(d->nodemask)) {
8458 d->sched_group_nodes[num] = NULL;
8459 goto out;
8460 }
8461
8462 sched_domain_node_span(num, d->domainspan);
8463 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8464
8465 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8466 GFP_KERNEL, num);
8467 if (!sg) {
8468 pr_warning("Can not alloc domain group for node %d\n", num);
8469 return -ENOMEM;
8470 }
8471 d->sched_group_nodes[num] = sg;
8472
8473 for_each_cpu(j, d->nodemask) {
8474 sd = &per_cpu(node_domains, j).sd;
8475 sd->groups = sg;
8476 }
8477
8478 sg->cpu_power = 0;
8479 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8480 sg->next = sg;
8481 cpumask_or(d->covered, d->covered, d->nodemask);
8482
8483 prev = sg;
8484 for (j = 0; j < nr_node_ids; j++) {
8485 n = (num + j) % nr_node_ids;
8486 cpumask_complement(d->notcovered, d->covered);
8487 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8488 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8489 if (cpumask_empty(d->tmpmask))
8490 break;
8491 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8492 if (cpumask_empty(d->tmpmask))
8493 continue;
8494 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8495 GFP_KERNEL, num);
8496 if (!sg) {
8497 pr_warning("Can not alloc domain group for node %d\n",
8498 j);
8499 return -ENOMEM;
8500 }
8501 sg->cpu_power = 0;
8502 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8503 sg->next = prev->next;
8504 cpumask_or(d->covered, d->covered, d->tmpmask);
8505 prev->next = sg;
8506 prev = sg;
8507 }
8508 out:
8509 return 0;
8510 }
8511 #endif /* CONFIG_NUMA */
8512
8513 #ifdef CONFIG_NUMA
8514 /* Free memory allocated for various sched_group structures */
8515 static void free_sched_groups(const struct cpumask *cpu_map,
8516 struct cpumask *nodemask)
8517 {
8518 int cpu, i;
8519
8520 for_each_cpu(cpu, cpu_map) {
8521 struct sched_group **sched_group_nodes
8522 = sched_group_nodes_bycpu[cpu];
8523
8524 if (!sched_group_nodes)
8525 continue;
8526
8527 for (i = 0; i < nr_node_ids; i++) {
8528 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8529
8530 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8531 if (cpumask_empty(nodemask))
8532 continue;
8533
8534 if (sg == NULL)
8535 continue;
8536 sg = sg->next;
8537 next_sg:
8538 oldsg = sg;
8539 sg = sg->next;
8540 kfree(oldsg);
8541 if (oldsg != sched_group_nodes[i])
8542 goto next_sg;
8543 }
8544 kfree(sched_group_nodes);
8545 sched_group_nodes_bycpu[cpu] = NULL;
8546 }
8547 }
8548 #else /* !CONFIG_NUMA */
8549 static void free_sched_groups(const struct cpumask *cpu_map,
8550 struct cpumask *nodemask)
8551 {
8552 }
8553 #endif /* CONFIG_NUMA */
8554
8555 /*
8556 * Initialize sched groups cpu_power.
8557 *
8558 * cpu_power indicates the capacity of sched group, which is used while
8559 * distributing the load between different sched groups in a sched domain.
8560 * Typically cpu_power for all the groups in a sched domain will be same unless
8561 * there are asymmetries in the topology. If there are asymmetries, group
8562 * having more cpu_power will pickup more load compared to the group having
8563 * less cpu_power.
8564 */
8565 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8566 {
8567 struct sched_domain *child;
8568 struct sched_group *group;
8569 long power;
8570 int weight;
8571
8572 WARN_ON(!sd || !sd->groups);
8573
8574 if (cpu != group_first_cpu(sd->groups))
8575 return;
8576
8577 child = sd->child;
8578
8579 sd->groups->cpu_power = 0;
8580
8581 if (!child) {
8582 power = SCHED_LOAD_SCALE;
8583 weight = cpumask_weight(sched_domain_span(sd));
8584 /*
8585 * SMT siblings share the power of a single core.
8586 * Usually multiple threads get a better yield out of
8587 * that one core than a single thread would have,
8588 * reflect that in sd->smt_gain.
8589 */
8590 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8591 power *= sd->smt_gain;
8592 power /= weight;
8593 power >>= SCHED_LOAD_SHIFT;
8594 }
8595 sd->groups->cpu_power += power;
8596 return;
8597 }
8598
8599 /*
8600 * Add cpu_power of each child group to this groups cpu_power.
8601 */
8602 group = child->groups;
8603 do {
8604 sd->groups->cpu_power += group->cpu_power;
8605 group = group->next;
8606 } while (group != child->groups);
8607 }
8608
8609 /*
8610 * Initializers for schedule domains
8611 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8612 */
8613
8614 #ifdef CONFIG_SCHED_DEBUG
8615 # define SD_INIT_NAME(sd, type) sd->name = #type
8616 #else
8617 # define SD_INIT_NAME(sd, type) do { } while (0)
8618 #endif
8619
8620 #define SD_INIT(sd, type) sd_init_##type(sd)
8621
8622 #define SD_INIT_FUNC(type) \
8623 static noinline void sd_init_##type(struct sched_domain *sd) \
8624 { \
8625 memset(sd, 0, sizeof(*sd)); \
8626 *sd = SD_##type##_INIT; \
8627 sd->level = SD_LV_##type; \
8628 SD_INIT_NAME(sd, type); \
8629 }
8630
8631 SD_INIT_FUNC(CPU)
8632 #ifdef CONFIG_NUMA
8633 SD_INIT_FUNC(ALLNODES)
8634 SD_INIT_FUNC(NODE)
8635 #endif
8636 #ifdef CONFIG_SCHED_SMT
8637 SD_INIT_FUNC(SIBLING)
8638 #endif
8639 #ifdef CONFIG_SCHED_MC
8640 SD_INIT_FUNC(MC)
8641 #endif
8642
8643 static int default_relax_domain_level = -1;
8644
8645 static int __init setup_relax_domain_level(char *str)
8646 {
8647 unsigned long val;
8648
8649 val = simple_strtoul(str, NULL, 0);
8650 if (val < SD_LV_MAX)
8651 default_relax_domain_level = val;
8652
8653 return 1;
8654 }
8655 __setup("relax_domain_level=", setup_relax_domain_level);
8656
8657 static void set_domain_attribute(struct sched_domain *sd,
8658 struct sched_domain_attr *attr)
8659 {
8660 int request;
8661
8662 if (!attr || attr->relax_domain_level < 0) {
8663 if (default_relax_domain_level < 0)
8664 return;
8665 else
8666 request = default_relax_domain_level;
8667 } else
8668 request = attr->relax_domain_level;
8669 if (request < sd->level) {
8670 /* turn off idle balance on this domain */
8671 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8672 } else {
8673 /* turn on idle balance on this domain */
8674 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8675 }
8676 }
8677
8678 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8679 const struct cpumask *cpu_map)
8680 {
8681 switch (what) {
8682 case sa_sched_groups:
8683 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8684 d->sched_group_nodes = NULL;
8685 case sa_rootdomain:
8686 free_rootdomain(d->rd); /* fall through */
8687 case sa_tmpmask:
8688 free_cpumask_var(d->tmpmask); /* fall through */
8689 case sa_send_covered:
8690 free_cpumask_var(d->send_covered); /* fall through */
8691 case sa_this_core_map:
8692 free_cpumask_var(d->this_core_map); /* fall through */
8693 case sa_this_sibling_map:
8694 free_cpumask_var(d->this_sibling_map); /* fall through */
8695 case sa_nodemask:
8696 free_cpumask_var(d->nodemask); /* fall through */
8697 case sa_sched_group_nodes:
8698 #ifdef CONFIG_NUMA
8699 kfree(d->sched_group_nodes); /* fall through */
8700 case sa_notcovered:
8701 free_cpumask_var(d->notcovered); /* fall through */
8702 case sa_covered:
8703 free_cpumask_var(d->covered); /* fall through */
8704 case sa_domainspan:
8705 free_cpumask_var(d->domainspan); /* fall through */
8706 #endif
8707 case sa_none:
8708 break;
8709 }
8710 }
8711
8712 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8713 const struct cpumask *cpu_map)
8714 {
8715 #ifdef CONFIG_NUMA
8716 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8717 return sa_none;
8718 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8719 return sa_domainspan;
8720 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8721 return sa_covered;
8722 /* Allocate the per-node list of sched groups */
8723 d->sched_group_nodes = kcalloc(nr_node_ids,
8724 sizeof(struct sched_group *), GFP_KERNEL);
8725 if (!d->sched_group_nodes) {
8726 pr_warning("Can not alloc sched group node list\n");
8727 return sa_notcovered;
8728 }
8729 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8730 #endif
8731 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8732 return sa_sched_group_nodes;
8733 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8734 return sa_nodemask;
8735 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8736 return sa_this_sibling_map;
8737 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8738 return sa_this_core_map;
8739 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8740 return sa_send_covered;
8741 d->rd = alloc_rootdomain();
8742 if (!d->rd) {
8743 pr_warning("Cannot alloc root domain\n");
8744 return sa_tmpmask;
8745 }
8746 return sa_rootdomain;
8747 }
8748
8749 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8750 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8751 {
8752 struct sched_domain *sd = NULL;
8753 #ifdef CONFIG_NUMA
8754 struct sched_domain *parent;
8755
8756 d->sd_allnodes = 0;
8757 if (cpumask_weight(cpu_map) >
8758 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8759 sd = &per_cpu(allnodes_domains, i).sd;
8760 SD_INIT(sd, ALLNODES);
8761 set_domain_attribute(sd, attr);
8762 cpumask_copy(sched_domain_span(sd), cpu_map);
8763 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8764 d->sd_allnodes = 1;
8765 }
8766 parent = sd;
8767
8768 sd = &per_cpu(node_domains, i).sd;
8769 SD_INIT(sd, NODE);
8770 set_domain_attribute(sd, attr);
8771 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8772 sd->parent = parent;
8773 if (parent)
8774 parent->child = sd;
8775 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8776 #endif
8777 return sd;
8778 }
8779
8780 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8781 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8782 struct sched_domain *parent, int i)
8783 {
8784 struct sched_domain *sd;
8785 sd = &per_cpu(phys_domains, i).sd;
8786 SD_INIT(sd, CPU);
8787 set_domain_attribute(sd, attr);
8788 cpumask_copy(sched_domain_span(sd), d->nodemask);
8789 sd->parent = parent;
8790 if (parent)
8791 parent->child = sd;
8792 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8793 return sd;
8794 }
8795
8796 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8797 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8798 struct sched_domain *parent, int i)
8799 {
8800 struct sched_domain *sd = parent;
8801 #ifdef CONFIG_SCHED_MC
8802 sd = &per_cpu(core_domains, i).sd;
8803 SD_INIT(sd, MC);
8804 set_domain_attribute(sd, attr);
8805 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8806 sd->parent = parent;
8807 parent->child = sd;
8808 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8809 #endif
8810 return sd;
8811 }
8812
8813 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8814 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8815 struct sched_domain *parent, int i)
8816 {
8817 struct sched_domain *sd = parent;
8818 #ifdef CONFIG_SCHED_SMT
8819 sd = &per_cpu(cpu_domains, i).sd;
8820 SD_INIT(sd, SIBLING);
8821 set_domain_attribute(sd, attr);
8822 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8823 sd->parent = parent;
8824 parent->child = sd;
8825 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8826 #endif
8827 return sd;
8828 }
8829
8830 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8831 const struct cpumask *cpu_map, int cpu)
8832 {
8833 switch (l) {
8834 #ifdef CONFIG_SCHED_SMT
8835 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8836 cpumask_and(d->this_sibling_map, cpu_map,
8837 topology_thread_cpumask(cpu));
8838 if (cpu == cpumask_first(d->this_sibling_map))
8839 init_sched_build_groups(d->this_sibling_map, cpu_map,
8840 &cpu_to_cpu_group,
8841 d->send_covered, d->tmpmask);
8842 break;
8843 #endif
8844 #ifdef CONFIG_SCHED_MC
8845 case SD_LV_MC: /* set up multi-core groups */
8846 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8847 if (cpu == cpumask_first(d->this_core_map))
8848 init_sched_build_groups(d->this_core_map, cpu_map,
8849 &cpu_to_core_group,
8850 d->send_covered, d->tmpmask);
8851 break;
8852 #endif
8853 case SD_LV_CPU: /* set up physical groups */
8854 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8855 if (!cpumask_empty(d->nodemask))
8856 init_sched_build_groups(d->nodemask, cpu_map,
8857 &cpu_to_phys_group,
8858 d->send_covered, d->tmpmask);
8859 break;
8860 #ifdef CONFIG_NUMA
8861 case SD_LV_ALLNODES:
8862 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8863 d->send_covered, d->tmpmask);
8864 break;
8865 #endif
8866 default:
8867 break;
8868 }
8869 }
8870
8871 /*
8872 * Build sched domains for a given set of cpus and attach the sched domains
8873 * to the individual cpus
8874 */
8875 static int __build_sched_domains(const struct cpumask *cpu_map,
8876 struct sched_domain_attr *attr)
8877 {
8878 enum s_alloc alloc_state = sa_none;
8879 struct s_data d;
8880 struct sched_domain *sd;
8881 int i;
8882 #ifdef CONFIG_NUMA
8883 d.sd_allnodes = 0;
8884 #endif
8885
8886 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8887 if (alloc_state != sa_rootdomain)
8888 goto error;
8889 alloc_state = sa_sched_groups;
8890
8891 /*
8892 * Set up domains for cpus specified by the cpu_map.
8893 */
8894 for_each_cpu(i, cpu_map) {
8895 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8896 cpu_map);
8897
8898 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8899 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8900 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8901 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8902 }
8903
8904 for_each_cpu(i, cpu_map) {
8905 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8906 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8907 }
8908
8909 /* Set up physical groups */
8910 for (i = 0; i < nr_node_ids; i++)
8911 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8912
8913 #ifdef CONFIG_NUMA
8914 /* Set up node groups */
8915 if (d.sd_allnodes)
8916 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8917
8918 for (i = 0; i < nr_node_ids; i++)
8919 if (build_numa_sched_groups(&d, cpu_map, i))
8920 goto error;
8921 #endif
8922
8923 /* Calculate CPU power for physical packages and nodes */
8924 #ifdef CONFIG_SCHED_SMT
8925 for_each_cpu(i, cpu_map) {
8926 sd = &per_cpu(cpu_domains, i).sd;
8927 init_sched_groups_power(i, sd);
8928 }
8929 #endif
8930 #ifdef CONFIG_SCHED_MC
8931 for_each_cpu(i, cpu_map) {
8932 sd = &per_cpu(core_domains, i).sd;
8933 init_sched_groups_power(i, sd);
8934 }
8935 #endif
8936
8937 for_each_cpu(i, cpu_map) {
8938 sd = &per_cpu(phys_domains, i).sd;
8939 init_sched_groups_power(i, sd);
8940 }
8941
8942 #ifdef CONFIG_NUMA
8943 for (i = 0; i < nr_node_ids; i++)
8944 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8945
8946 if (d.sd_allnodes) {
8947 struct sched_group *sg;
8948
8949 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8950 d.tmpmask);
8951 init_numa_sched_groups_power(sg);
8952 }
8953 #endif
8954
8955 /* Attach the domains */
8956 for_each_cpu(i, cpu_map) {
8957 #ifdef CONFIG_SCHED_SMT
8958 sd = &per_cpu(cpu_domains, i).sd;
8959 #elif defined(CONFIG_SCHED_MC)
8960 sd = &per_cpu(core_domains, i).sd;
8961 #else
8962 sd = &per_cpu(phys_domains, i).sd;
8963 #endif
8964 cpu_attach_domain(sd, d.rd, i);
8965 }
8966
8967 d.sched_group_nodes = NULL; /* don't free this we still need it */
8968 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8969 return 0;
8970
8971 error:
8972 __free_domain_allocs(&d, alloc_state, cpu_map);
8973 return -ENOMEM;
8974 }
8975
8976 static int build_sched_domains(const struct cpumask *cpu_map)
8977 {
8978 return __build_sched_domains(cpu_map, NULL);
8979 }
8980
8981 static cpumask_var_t *doms_cur; /* current sched domains */
8982 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8983 static struct sched_domain_attr *dattr_cur;
8984 /* attribues of custom domains in 'doms_cur' */
8985
8986 /*
8987 * Special case: If a kmalloc of a doms_cur partition (array of
8988 * cpumask) fails, then fallback to a single sched domain,
8989 * as determined by the single cpumask fallback_doms.
8990 */
8991 static cpumask_var_t fallback_doms;
8992
8993 /*
8994 * arch_update_cpu_topology lets virtualized architectures update the
8995 * cpu core maps. It is supposed to return 1 if the topology changed
8996 * or 0 if it stayed the same.
8997 */
8998 int __attribute__((weak)) arch_update_cpu_topology(void)
8999 {
9000 return 0;
9001 }
9002
9003 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
9004 {
9005 int i;
9006 cpumask_var_t *doms;
9007
9008 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
9009 if (!doms)
9010 return NULL;
9011 for (i = 0; i < ndoms; i++) {
9012 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
9013 free_sched_domains(doms, i);
9014 return NULL;
9015 }
9016 }
9017 return doms;
9018 }
9019
9020 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9021 {
9022 unsigned int i;
9023 for (i = 0; i < ndoms; i++)
9024 free_cpumask_var(doms[i]);
9025 kfree(doms);
9026 }
9027
9028 /*
9029 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9030 * For now this just excludes isolated cpus, but could be used to
9031 * exclude other special cases in the future.
9032 */
9033 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9034 {
9035 int err;
9036
9037 arch_update_cpu_topology();
9038 ndoms_cur = 1;
9039 doms_cur = alloc_sched_domains(ndoms_cur);
9040 if (!doms_cur)
9041 doms_cur = &fallback_doms;
9042 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9043 dattr_cur = NULL;
9044 err = build_sched_domains(doms_cur[0]);
9045 register_sched_domain_sysctl();
9046
9047 return err;
9048 }
9049
9050 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9051 struct cpumask *tmpmask)
9052 {
9053 free_sched_groups(cpu_map, tmpmask);
9054 }
9055
9056 /*
9057 * Detach sched domains from a group of cpus specified in cpu_map
9058 * These cpus will now be attached to the NULL domain
9059 */
9060 static void detach_destroy_domains(const struct cpumask *cpu_map)
9061 {
9062 /* Save because hotplug lock held. */
9063 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9064 int i;
9065
9066 for_each_cpu(i, cpu_map)
9067 cpu_attach_domain(NULL, &def_root_domain, i);
9068 synchronize_sched();
9069 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9070 }
9071
9072 /* handle null as "default" */
9073 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9074 struct sched_domain_attr *new, int idx_new)
9075 {
9076 struct sched_domain_attr tmp;
9077
9078 /* fast path */
9079 if (!new && !cur)
9080 return 1;
9081
9082 tmp = SD_ATTR_INIT;
9083 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9084 new ? (new + idx_new) : &tmp,
9085 sizeof(struct sched_domain_attr));
9086 }
9087
9088 /*
9089 * Partition sched domains as specified by the 'ndoms_new'
9090 * cpumasks in the array doms_new[] of cpumasks. This compares
9091 * doms_new[] to the current sched domain partitioning, doms_cur[].
9092 * It destroys each deleted domain and builds each new domain.
9093 *
9094 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9095 * The masks don't intersect (don't overlap.) We should setup one
9096 * sched domain for each mask. CPUs not in any of the cpumasks will
9097 * not be load balanced. If the same cpumask appears both in the
9098 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9099 * it as it is.
9100 *
9101 * The passed in 'doms_new' should be allocated using
9102 * alloc_sched_domains. This routine takes ownership of it and will
9103 * free_sched_domains it when done with it. If the caller failed the
9104 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9105 * and partition_sched_domains() will fallback to the single partition
9106 * 'fallback_doms', it also forces the domains to be rebuilt.
9107 *
9108 * If doms_new == NULL it will be replaced with cpu_online_mask.
9109 * ndoms_new == 0 is a special case for destroying existing domains,
9110 * and it will not create the default domain.
9111 *
9112 * Call with hotplug lock held
9113 */
9114 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9115 struct sched_domain_attr *dattr_new)
9116 {
9117 int i, j, n;
9118 int new_topology;
9119
9120 mutex_lock(&sched_domains_mutex);
9121
9122 /* always unregister in case we don't destroy any domains */
9123 unregister_sched_domain_sysctl();
9124
9125 /* Let architecture update cpu core mappings. */
9126 new_topology = arch_update_cpu_topology();
9127
9128 n = doms_new ? ndoms_new : 0;
9129
9130 /* Destroy deleted domains */
9131 for (i = 0; i < ndoms_cur; i++) {
9132 for (j = 0; j < n && !new_topology; j++) {
9133 if (cpumask_equal(doms_cur[i], doms_new[j])
9134 && dattrs_equal(dattr_cur, i, dattr_new, j))
9135 goto match1;
9136 }
9137 /* no match - a current sched domain not in new doms_new[] */
9138 detach_destroy_domains(doms_cur[i]);
9139 match1:
9140 ;
9141 }
9142
9143 if (doms_new == NULL) {
9144 ndoms_cur = 0;
9145 doms_new = &fallback_doms;
9146 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9147 WARN_ON_ONCE(dattr_new);
9148 }
9149
9150 /* Build new domains */
9151 for (i = 0; i < ndoms_new; i++) {
9152 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9153 if (cpumask_equal(doms_new[i], doms_cur[j])
9154 && dattrs_equal(dattr_new, i, dattr_cur, j))
9155 goto match2;
9156 }
9157 /* no match - add a new doms_new */
9158 __build_sched_domains(doms_new[i],
9159 dattr_new ? dattr_new + i : NULL);
9160 match2:
9161 ;
9162 }
9163
9164 /* Remember the new sched domains */
9165 if (doms_cur != &fallback_doms)
9166 free_sched_domains(doms_cur, ndoms_cur);
9167 kfree(dattr_cur); /* kfree(NULL) is safe */
9168 doms_cur = doms_new;
9169 dattr_cur = dattr_new;
9170 ndoms_cur = ndoms_new;
9171
9172 register_sched_domain_sysctl();
9173
9174 mutex_unlock(&sched_domains_mutex);
9175 }
9176
9177 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9178 static void arch_reinit_sched_domains(void)
9179 {
9180 get_online_cpus();
9181
9182 /* Destroy domains first to force the rebuild */
9183 partition_sched_domains(0, NULL, NULL);
9184
9185 rebuild_sched_domains();
9186 put_online_cpus();
9187 }
9188
9189 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9190 {
9191 unsigned int level = 0;
9192
9193 if (sscanf(buf, "%u", &level) != 1)
9194 return -EINVAL;
9195
9196 /*
9197 * level is always be positive so don't check for
9198 * level < POWERSAVINGS_BALANCE_NONE which is 0
9199 * What happens on 0 or 1 byte write,
9200 * need to check for count as well?
9201 */
9202
9203 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9204 return -EINVAL;
9205
9206 if (smt)
9207 sched_smt_power_savings = level;
9208 else
9209 sched_mc_power_savings = level;
9210
9211 arch_reinit_sched_domains();
9212
9213 return count;
9214 }
9215
9216 #ifdef CONFIG_SCHED_MC
9217 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9218 char *page)
9219 {
9220 return sprintf(page, "%u\n", sched_mc_power_savings);
9221 }
9222 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9223 const char *buf, size_t count)
9224 {
9225 return sched_power_savings_store(buf, count, 0);
9226 }
9227 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9228 sched_mc_power_savings_show,
9229 sched_mc_power_savings_store);
9230 #endif
9231
9232 #ifdef CONFIG_SCHED_SMT
9233 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9234 char *page)
9235 {
9236 return sprintf(page, "%u\n", sched_smt_power_savings);
9237 }
9238 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9239 const char *buf, size_t count)
9240 {
9241 return sched_power_savings_store(buf, count, 1);
9242 }
9243 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9244 sched_smt_power_savings_show,
9245 sched_smt_power_savings_store);
9246 #endif
9247
9248 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9249 {
9250 int err = 0;
9251
9252 #ifdef CONFIG_SCHED_SMT
9253 if (smt_capable())
9254 err = sysfs_create_file(&cls->kset.kobj,
9255 &attr_sched_smt_power_savings.attr);
9256 #endif
9257 #ifdef CONFIG_SCHED_MC
9258 if (!err && mc_capable())
9259 err = sysfs_create_file(&cls->kset.kobj,
9260 &attr_sched_mc_power_savings.attr);
9261 #endif
9262 return err;
9263 }
9264 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9265
9266 #ifndef CONFIG_CPUSETS
9267 /*
9268 * Add online and remove offline CPUs from the scheduler domains.
9269 * When cpusets are enabled they take over this function.
9270 */
9271 static int update_sched_domains(struct notifier_block *nfb,
9272 unsigned long action, void *hcpu)
9273 {
9274 switch (action) {
9275 case CPU_ONLINE:
9276 case CPU_ONLINE_FROZEN:
9277 case CPU_DOWN_PREPARE:
9278 case CPU_DOWN_PREPARE_FROZEN:
9279 case CPU_DOWN_FAILED:
9280 case CPU_DOWN_FAILED_FROZEN:
9281 partition_sched_domains(1, NULL, NULL);
9282 return NOTIFY_OK;
9283
9284 default:
9285 return NOTIFY_DONE;
9286 }
9287 }
9288 #endif
9289
9290 static int update_runtime(struct notifier_block *nfb,
9291 unsigned long action, void *hcpu)
9292 {
9293 int cpu = (int)(long)hcpu;
9294
9295 switch (action) {
9296 case CPU_DOWN_PREPARE:
9297 case CPU_DOWN_PREPARE_FROZEN:
9298 disable_runtime(cpu_rq(cpu));
9299 return NOTIFY_OK;
9300
9301 case CPU_DOWN_FAILED:
9302 case CPU_DOWN_FAILED_FROZEN:
9303 case CPU_ONLINE:
9304 case CPU_ONLINE_FROZEN:
9305 enable_runtime(cpu_rq(cpu));
9306 return NOTIFY_OK;
9307
9308 default:
9309 return NOTIFY_DONE;
9310 }
9311 }
9312
9313 void __init sched_init_smp(void)
9314 {
9315 cpumask_var_t non_isolated_cpus;
9316
9317 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9318 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9319
9320 #if defined(CONFIG_NUMA)
9321 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9322 GFP_KERNEL);
9323 BUG_ON(sched_group_nodes_bycpu == NULL);
9324 #endif
9325 get_online_cpus();
9326 mutex_lock(&sched_domains_mutex);
9327 arch_init_sched_domains(cpu_active_mask);
9328 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9329 if (cpumask_empty(non_isolated_cpus))
9330 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9331 mutex_unlock(&sched_domains_mutex);
9332 put_online_cpus();
9333
9334 #ifndef CONFIG_CPUSETS
9335 /* XXX: Theoretical race here - CPU may be hotplugged now */
9336 hotcpu_notifier(update_sched_domains, 0);
9337 #endif
9338
9339 /* RT runtime code needs to handle some hotplug events */
9340 hotcpu_notifier(update_runtime, 0);
9341
9342 init_hrtick();
9343
9344 /* Move init over to a non-isolated CPU */
9345 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9346 BUG();
9347 sched_init_granularity();
9348 free_cpumask_var(non_isolated_cpus);
9349
9350 init_sched_rt_class();
9351 }
9352 #else
9353 void __init sched_init_smp(void)
9354 {
9355 sched_init_granularity();
9356 }
9357 #endif /* CONFIG_SMP */
9358
9359 const_debug unsigned int sysctl_timer_migration = 1;
9360
9361 int in_sched_functions(unsigned long addr)
9362 {
9363 return in_lock_functions(addr) ||
9364 (addr >= (unsigned long)__sched_text_start
9365 && addr < (unsigned long)__sched_text_end);
9366 }
9367
9368 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9369 {
9370 cfs_rq->tasks_timeline = RB_ROOT;
9371 INIT_LIST_HEAD(&cfs_rq->tasks);
9372 #ifdef CONFIG_FAIR_GROUP_SCHED
9373 cfs_rq->rq = rq;
9374 #endif
9375 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9376 }
9377
9378 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9379 {
9380 struct rt_prio_array *array;
9381 int i;
9382
9383 array = &rt_rq->active;
9384 for (i = 0; i < MAX_RT_PRIO; i++) {
9385 INIT_LIST_HEAD(array->queue + i);
9386 __clear_bit(i, array->bitmap);
9387 }
9388 /* delimiter for bitsearch: */
9389 __set_bit(MAX_RT_PRIO, array->bitmap);
9390
9391 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9392 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9393 #ifdef CONFIG_SMP
9394 rt_rq->highest_prio.next = MAX_RT_PRIO;
9395 #endif
9396 #endif
9397 #ifdef CONFIG_SMP
9398 rt_rq->rt_nr_migratory = 0;
9399 rt_rq->overloaded = 0;
9400 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9401 #endif
9402
9403 rt_rq->rt_time = 0;
9404 rt_rq->rt_throttled = 0;
9405 rt_rq->rt_runtime = 0;
9406 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9407
9408 #ifdef CONFIG_RT_GROUP_SCHED
9409 rt_rq->rt_nr_boosted = 0;
9410 rt_rq->rq = rq;
9411 #endif
9412 }
9413
9414 #ifdef CONFIG_FAIR_GROUP_SCHED
9415 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9416 struct sched_entity *se, int cpu, int add,
9417 struct sched_entity *parent)
9418 {
9419 struct rq *rq = cpu_rq(cpu);
9420 tg->cfs_rq[cpu] = cfs_rq;
9421 init_cfs_rq(cfs_rq, rq);
9422 cfs_rq->tg = tg;
9423 if (add)
9424 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9425
9426 tg->se[cpu] = se;
9427 /* se could be NULL for init_task_group */
9428 if (!se)
9429 return;
9430
9431 if (!parent)
9432 se->cfs_rq = &rq->cfs;
9433 else
9434 se->cfs_rq = parent->my_q;
9435
9436 se->my_q = cfs_rq;
9437 se->load.weight = tg->shares;
9438 se->load.inv_weight = 0;
9439 se->parent = parent;
9440 }
9441 #endif
9442
9443 #ifdef CONFIG_RT_GROUP_SCHED
9444 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9445 struct sched_rt_entity *rt_se, int cpu, int add,
9446 struct sched_rt_entity *parent)
9447 {
9448 struct rq *rq = cpu_rq(cpu);
9449
9450 tg->rt_rq[cpu] = rt_rq;
9451 init_rt_rq(rt_rq, rq);
9452 rt_rq->tg = tg;
9453 rt_rq->rt_se = rt_se;
9454 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9455 if (add)
9456 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9457
9458 tg->rt_se[cpu] = rt_se;
9459 if (!rt_se)
9460 return;
9461
9462 if (!parent)
9463 rt_se->rt_rq = &rq->rt;
9464 else
9465 rt_se->rt_rq = parent->my_q;
9466
9467 rt_se->my_q = rt_rq;
9468 rt_se->parent = parent;
9469 INIT_LIST_HEAD(&rt_se->run_list);
9470 }
9471 #endif
9472
9473 void __init sched_init(void)
9474 {
9475 int i, j;
9476 unsigned long alloc_size = 0, ptr;
9477
9478 #ifdef CONFIG_FAIR_GROUP_SCHED
9479 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9480 #endif
9481 #ifdef CONFIG_RT_GROUP_SCHED
9482 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9483 #endif
9484 #ifdef CONFIG_USER_SCHED
9485 alloc_size *= 2;
9486 #endif
9487 #ifdef CONFIG_CPUMASK_OFFSTACK
9488 alloc_size += num_possible_cpus() * cpumask_size();
9489 #endif
9490 if (alloc_size) {
9491 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9492
9493 #ifdef CONFIG_FAIR_GROUP_SCHED
9494 init_task_group.se = (struct sched_entity **)ptr;
9495 ptr += nr_cpu_ids * sizeof(void **);
9496
9497 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9498 ptr += nr_cpu_ids * sizeof(void **);
9499
9500 #ifdef CONFIG_USER_SCHED
9501 root_task_group.se = (struct sched_entity **)ptr;
9502 ptr += nr_cpu_ids * sizeof(void **);
9503
9504 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9505 ptr += nr_cpu_ids * sizeof(void **);
9506 #endif /* CONFIG_USER_SCHED */
9507 #endif /* CONFIG_FAIR_GROUP_SCHED */
9508 #ifdef CONFIG_RT_GROUP_SCHED
9509 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9510 ptr += nr_cpu_ids * sizeof(void **);
9511
9512 init_task_group.rt_rq = (struct rt_rq **)ptr;
9513 ptr += nr_cpu_ids * sizeof(void **);
9514
9515 #ifdef CONFIG_USER_SCHED
9516 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9517 ptr += nr_cpu_ids * sizeof(void **);
9518
9519 root_task_group.rt_rq = (struct rt_rq **)ptr;
9520 ptr += nr_cpu_ids * sizeof(void **);
9521 #endif /* CONFIG_USER_SCHED */
9522 #endif /* CONFIG_RT_GROUP_SCHED */
9523 #ifdef CONFIG_CPUMASK_OFFSTACK
9524 for_each_possible_cpu(i) {
9525 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9526 ptr += cpumask_size();
9527 }
9528 #endif /* CONFIG_CPUMASK_OFFSTACK */
9529 }
9530
9531 #ifdef CONFIG_SMP
9532 init_defrootdomain();
9533 #endif
9534
9535 init_rt_bandwidth(&def_rt_bandwidth,
9536 global_rt_period(), global_rt_runtime());
9537
9538 #ifdef CONFIG_RT_GROUP_SCHED
9539 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9540 global_rt_period(), global_rt_runtime());
9541 #ifdef CONFIG_USER_SCHED
9542 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9543 global_rt_period(), RUNTIME_INF);
9544 #endif /* CONFIG_USER_SCHED */
9545 #endif /* CONFIG_RT_GROUP_SCHED */
9546
9547 #ifdef CONFIG_GROUP_SCHED
9548 list_add(&init_task_group.list, &task_groups);
9549 INIT_LIST_HEAD(&init_task_group.children);
9550
9551 #ifdef CONFIG_USER_SCHED
9552 INIT_LIST_HEAD(&root_task_group.children);
9553 init_task_group.parent = &root_task_group;
9554 list_add(&init_task_group.siblings, &root_task_group.children);
9555 #endif /* CONFIG_USER_SCHED */
9556 #endif /* CONFIG_GROUP_SCHED */
9557
9558 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9559 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9560 __alignof__(unsigned long));
9561 #endif
9562 for_each_possible_cpu(i) {
9563 struct rq *rq;
9564
9565 rq = cpu_rq(i);
9566 raw_spin_lock_init(&rq->lock);
9567 rq->nr_running = 0;
9568 rq->calc_load_active = 0;
9569 rq->calc_load_update = jiffies + LOAD_FREQ;
9570 init_cfs_rq(&rq->cfs, rq);
9571 init_rt_rq(&rq->rt, rq);
9572 #ifdef CONFIG_FAIR_GROUP_SCHED
9573 init_task_group.shares = init_task_group_load;
9574 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9575 #ifdef CONFIG_CGROUP_SCHED
9576 /*
9577 * How much cpu bandwidth does init_task_group get?
9578 *
9579 * In case of task-groups formed thr' the cgroup filesystem, it
9580 * gets 100% of the cpu resources in the system. This overall
9581 * system cpu resource is divided among the tasks of
9582 * init_task_group and its child task-groups in a fair manner,
9583 * based on each entity's (task or task-group's) weight
9584 * (se->load.weight).
9585 *
9586 * In other words, if init_task_group has 10 tasks of weight
9587 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9588 * then A0's share of the cpu resource is:
9589 *
9590 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9591 *
9592 * We achieve this by letting init_task_group's tasks sit
9593 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9594 */
9595 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9596 #elif defined CONFIG_USER_SCHED
9597 root_task_group.shares = NICE_0_LOAD;
9598 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9599 /*
9600 * In case of task-groups formed thr' the user id of tasks,
9601 * init_task_group represents tasks belonging to root user.
9602 * Hence it forms a sibling of all subsequent groups formed.
9603 * In this case, init_task_group gets only a fraction of overall
9604 * system cpu resource, based on the weight assigned to root
9605 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9606 * by letting tasks of init_task_group sit in a separate cfs_rq
9607 * (init_tg_cfs_rq) and having one entity represent this group of
9608 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9609 */
9610 init_tg_cfs_entry(&init_task_group,
9611 &per_cpu(init_tg_cfs_rq, i),
9612 &per_cpu(init_sched_entity, i), i, 1,
9613 root_task_group.se[i]);
9614
9615 #endif
9616 #endif /* CONFIG_FAIR_GROUP_SCHED */
9617
9618 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9619 #ifdef CONFIG_RT_GROUP_SCHED
9620 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9621 #ifdef CONFIG_CGROUP_SCHED
9622 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9623 #elif defined CONFIG_USER_SCHED
9624 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9625 init_tg_rt_entry(&init_task_group,
9626 &per_cpu(init_rt_rq_var, i),
9627 &per_cpu(init_sched_rt_entity, i), i, 1,
9628 root_task_group.rt_se[i]);
9629 #endif
9630 #endif
9631
9632 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9633 rq->cpu_load[j] = 0;
9634 #ifdef CONFIG_SMP
9635 rq->sd = NULL;
9636 rq->rd = NULL;
9637 rq->post_schedule = 0;
9638 rq->active_balance = 0;
9639 rq->next_balance = jiffies;
9640 rq->push_cpu = 0;
9641 rq->cpu = i;
9642 rq->online = 0;
9643 rq->migration_thread = NULL;
9644 rq->idle_stamp = 0;
9645 rq->avg_idle = 2*sysctl_sched_migration_cost;
9646 INIT_LIST_HEAD(&rq->migration_queue);
9647 rq_attach_root(rq, &def_root_domain);
9648 #endif
9649 init_rq_hrtick(rq);
9650 atomic_set(&rq->nr_iowait, 0);
9651 }
9652
9653 set_load_weight(&init_task);
9654
9655 #ifdef CONFIG_PREEMPT_NOTIFIERS
9656 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9657 #endif
9658
9659 #ifdef CONFIG_SMP
9660 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9661 #endif
9662
9663 #ifdef CONFIG_RT_MUTEXES
9664 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9665 #endif
9666
9667 /*
9668 * The boot idle thread does lazy MMU switching as well:
9669 */
9670 atomic_inc(&init_mm.mm_count);
9671 enter_lazy_tlb(&init_mm, current);
9672
9673 /*
9674 * Make us the idle thread. Technically, schedule() should not be
9675 * called from this thread, however somewhere below it might be,
9676 * but because we are the idle thread, we just pick up running again
9677 * when this runqueue becomes "idle".
9678 */
9679 init_idle(current, smp_processor_id());
9680
9681 calc_load_update = jiffies + LOAD_FREQ;
9682
9683 /*
9684 * During early bootup we pretend to be a normal task:
9685 */
9686 current->sched_class = &fair_sched_class;
9687
9688 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9689 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9690 #ifdef CONFIG_SMP
9691 #ifdef CONFIG_NO_HZ
9692 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9693 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9694 #endif
9695 /* May be allocated at isolcpus cmdline parse time */
9696 if (cpu_isolated_map == NULL)
9697 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9698 #endif /* SMP */
9699
9700 perf_event_init();
9701
9702 scheduler_running = 1;
9703 }
9704
9705 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9706 static inline int preempt_count_equals(int preempt_offset)
9707 {
9708 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9709
9710 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9711 }
9712
9713 void __might_sleep(char *file, int line, int preempt_offset)
9714 {
9715 #ifdef in_atomic
9716 static unsigned long prev_jiffy; /* ratelimiting */
9717
9718 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9719 system_state != SYSTEM_RUNNING || oops_in_progress)
9720 return;
9721 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9722 return;
9723 prev_jiffy = jiffies;
9724
9725 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9726 file, line);
9727 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9728 in_atomic(), irqs_disabled(),
9729 current->pid, current->comm);
9730
9731 debug_show_held_locks(current);
9732 if (irqs_disabled())
9733 print_irqtrace_events(current);
9734 dump_stack();
9735 #endif
9736 }
9737 EXPORT_SYMBOL(__might_sleep);
9738 #endif
9739
9740 #ifdef CONFIG_MAGIC_SYSRQ
9741 static void normalize_task(struct rq *rq, struct task_struct *p)
9742 {
9743 int on_rq;
9744
9745 update_rq_clock(rq);
9746 on_rq = p->se.on_rq;
9747 if (on_rq)
9748 deactivate_task(rq, p, 0);
9749 __setscheduler(rq, p, SCHED_NORMAL, 0);
9750 if (on_rq) {
9751 activate_task(rq, p, 0);
9752 resched_task(rq->curr);
9753 }
9754 }
9755
9756 void normalize_rt_tasks(void)
9757 {
9758 struct task_struct *g, *p;
9759 unsigned long flags;
9760 struct rq *rq;
9761
9762 read_lock_irqsave(&tasklist_lock, flags);
9763 do_each_thread(g, p) {
9764 /*
9765 * Only normalize user tasks:
9766 */
9767 if (!p->mm)
9768 continue;
9769
9770 p->se.exec_start = 0;
9771 #ifdef CONFIG_SCHEDSTATS
9772 p->se.wait_start = 0;
9773 p->se.sleep_start = 0;
9774 p->se.block_start = 0;
9775 #endif
9776
9777 if (!rt_task(p)) {
9778 /*
9779 * Renice negative nice level userspace
9780 * tasks back to 0:
9781 */
9782 if (TASK_NICE(p) < 0 && p->mm)
9783 set_user_nice(p, 0);
9784 continue;
9785 }
9786
9787 raw_spin_lock(&p->pi_lock);
9788 rq = __task_rq_lock(p);
9789
9790 normalize_task(rq, p);
9791
9792 __task_rq_unlock(rq);
9793 raw_spin_unlock(&p->pi_lock);
9794 } while_each_thread(g, p);
9795
9796 read_unlock_irqrestore(&tasklist_lock, flags);
9797 }
9798
9799 #endif /* CONFIG_MAGIC_SYSRQ */
9800
9801 #ifdef CONFIG_IA64
9802 /*
9803 * These functions are only useful for the IA64 MCA handling.
9804 *
9805 * They can only be called when the whole system has been
9806 * stopped - every CPU needs to be quiescent, and no scheduling
9807 * activity can take place. Using them for anything else would
9808 * be a serious bug, and as a result, they aren't even visible
9809 * under any other configuration.
9810 */
9811
9812 /**
9813 * curr_task - return the current task for a given cpu.
9814 * @cpu: the processor in question.
9815 *
9816 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9817 */
9818 struct task_struct *curr_task(int cpu)
9819 {
9820 return cpu_curr(cpu);
9821 }
9822
9823 /**
9824 * set_curr_task - set the current task for a given cpu.
9825 * @cpu: the processor in question.
9826 * @p: the task pointer to set.
9827 *
9828 * Description: This function must only be used when non-maskable interrupts
9829 * are serviced on a separate stack. It allows the architecture to switch the
9830 * notion of the current task on a cpu in a non-blocking manner. This function
9831 * must be called with all CPU's synchronized, and interrupts disabled, the
9832 * and caller must save the original value of the current task (see
9833 * curr_task() above) and restore that value before reenabling interrupts and
9834 * re-starting the system.
9835 *
9836 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9837 */
9838 void set_curr_task(int cpu, struct task_struct *p)
9839 {
9840 cpu_curr(cpu) = p;
9841 }
9842
9843 #endif
9844
9845 #ifdef CONFIG_FAIR_GROUP_SCHED
9846 static void free_fair_sched_group(struct task_group *tg)
9847 {
9848 int i;
9849
9850 for_each_possible_cpu(i) {
9851 if (tg->cfs_rq)
9852 kfree(tg->cfs_rq[i]);
9853 if (tg->se)
9854 kfree(tg->se[i]);
9855 }
9856
9857 kfree(tg->cfs_rq);
9858 kfree(tg->se);
9859 }
9860
9861 static
9862 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9863 {
9864 struct cfs_rq *cfs_rq;
9865 struct sched_entity *se;
9866 struct rq *rq;
9867 int i;
9868
9869 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9870 if (!tg->cfs_rq)
9871 goto err;
9872 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9873 if (!tg->se)
9874 goto err;
9875
9876 tg->shares = NICE_0_LOAD;
9877
9878 for_each_possible_cpu(i) {
9879 rq = cpu_rq(i);
9880
9881 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9882 GFP_KERNEL, cpu_to_node(i));
9883 if (!cfs_rq)
9884 goto err;
9885
9886 se = kzalloc_node(sizeof(struct sched_entity),
9887 GFP_KERNEL, cpu_to_node(i));
9888 if (!se)
9889 goto err_free_rq;
9890
9891 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9892 }
9893
9894 return 1;
9895
9896 err_free_rq:
9897 kfree(cfs_rq);
9898 err:
9899 return 0;
9900 }
9901
9902 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9903 {
9904 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9905 &cpu_rq(cpu)->leaf_cfs_rq_list);
9906 }
9907
9908 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9909 {
9910 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9911 }
9912 #else /* !CONFG_FAIR_GROUP_SCHED */
9913 static inline void free_fair_sched_group(struct task_group *tg)
9914 {
9915 }
9916
9917 static inline
9918 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9919 {
9920 return 1;
9921 }
9922
9923 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9924 {
9925 }
9926
9927 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9928 {
9929 }
9930 #endif /* CONFIG_FAIR_GROUP_SCHED */
9931
9932 #ifdef CONFIG_RT_GROUP_SCHED
9933 static void free_rt_sched_group(struct task_group *tg)
9934 {
9935 int i;
9936
9937 destroy_rt_bandwidth(&tg->rt_bandwidth);
9938
9939 for_each_possible_cpu(i) {
9940 if (tg->rt_rq)
9941 kfree(tg->rt_rq[i]);
9942 if (tg->rt_se)
9943 kfree(tg->rt_se[i]);
9944 }
9945
9946 kfree(tg->rt_rq);
9947 kfree(tg->rt_se);
9948 }
9949
9950 static
9951 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9952 {
9953 struct rt_rq *rt_rq;
9954 struct sched_rt_entity *rt_se;
9955 struct rq *rq;
9956 int i;
9957
9958 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9959 if (!tg->rt_rq)
9960 goto err;
9961 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9962 if (!tg->rt_se)
9963 goto err;
9964
9965 init_rt_bandwidth(&tg->rt_bandwidth,
9966 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9967
9968 for_each_possible_cpu(i) {
9969 rq = cpu_rq(i);
9970
9971 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9972 GFP_KERNEL, cpu_to_node(i));
9973 if (!rt_rq)
9974 goto err;
9975
9976 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9977 GFP_KERNEL, cpu_to_node(i));
9978 if (!rt_se)
9979 goto err_free_rq;
9980
9981 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9982 }
9983
9984 return 1;
9985
9986 err_free_rq:
9987 kfree(rt_rq);
9988 err:
9989 return 0;
9990 }
9991
9992 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9993 {
9994 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9995 &cpu_rq(cpu)->leaf_rt_rq_list);
9996 }
9997
9998 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9999 {
10000 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10001 }
10002 #else /* !CONFIG_RT_GROUP_SCHED */
10003 static inline void free_rt_sched_group(struct task_group *tg)
10004 {
10005 }
10006
10007 static inline
10008 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
10009 {
10010 return 1;
10011 }
10012
10013 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10014 {
10015 }
10016
10017 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10018 {
10019 }
10020 #endif /* CONFIG_RT_GROUP_SCHED */
10021
10022 #ifdef CONFIG_GROUP_SCHED
10023 static void free_sched_group(struct task_group *tg)
10024 {
10025 free_fair_sched_group(tg);
10026 free_rt_sched_group(tg);
10027 kfree(tg);
10028 }
10029
10030 /* allocate runqueue etc for a new task group */
10031 struct task_group *sched_create_group(struct task_group *parent)
10032 {
10033 struct task_group *tg;
10034 unsigned long flags;
10035 int i;
10036
10037 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10038 if (!tg)
10039 return ERR_PTR(-ENOMEM);
10040
10041 if (!alloc_fair_sched_group(tg, parent))
10042 goto err;
10043
10044 if (!alloc_rt_sched_group(tg, parent))
10045 goto err;
10046
10047 spin_lock_irqsave(&task_group_lock, flags);
10048 for_each_possible_cpu(i) {
10049 register_fair_sched_group(tg, i);
10050 register_rt_sched_group(tg, i);
10051 }
10052 list_add_rcu(&tg->list, &task_groups);
10053
10054 WARN_ON(!parent); /* root should already exist */
10055
10056 tg->parent = parent;
10057 INIT_LIST_HEAD(&tg->children);
10058 list_add_rcu(&tg->siblings, &parent->children);
10059 spin_unlock_irqrestore(&task_group_lock, flags);
10060
10061 return tg;
10062
10063 err:
10064 free_sched_group(tg);
10065 return ERR_PTR(-ENOMEM);
10066 }
10067
10068 /* rcu callback to free various structures associated with a task group */
10069 static void free_sched_group_rcu(struct rcu_head *rhp)
10070 {
10071 /* now it should be safe to free those cfs_rqs */
10072 free_sched_group(container_of(rhp, struct task_group, rcu));
10073 }
10074
10075 /* Destroy runqueue etc associated with a task group */
10076 void sched_destroy_group(struct task_group *tg)
10077 {
10078 unsigned long flags;
10079 int i;
10080
10081 spin_lock_irqsave(&task_group_lock, flags);
10082 for_each_possible_cpu(i) {
10083 unregister_fair_sched_group(tg, i);
10084 unregister_rt_sched_group(tg, i);
10085 }
10086 list_del_rcu(&tg->list);
10087 list_del_rcu(&tg->siblings);
10088 spin_unlock_irqrestore(&task_group_lock, flags);
10089
10090 /* wait for possible concurrent references to cfs_rqs complete */
10091 call_rcu(&tg->rcu, free_sched_group_rcu);
10092 }
10093
10094 /* change task's runqueue when it moves between groups.
10095 * The caller of this function should have put the task in its new group
10096 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10097 * reflect its new group.
10098 */
10099 void sched_move_task(struct task_struct *tsk)
10100 {
10101 int on_rq, running;
10102 unsigned long flags;
10103 struct rq *rq;
10104
10105 rq = task_rq_lock(tsk, &flags);
10106
10107 update_rq_clock(rq);
10108
10109 running = task_current(rq, tsk);
10110 on_rq = tsk->se.on_rq;
10111
10112 if (on_rq)
10113 dequeue_task(rq, tsk, 0);
10114 if (unlikely(running))
10115 tsk->sched_class->put_prev_task(rq, tsk);
10116
10117 set_task_rq(tsk, task_cpu(tsk));
10118
10119 #ifdef CONFIG_FAIR_GROUP_SCHED
10120 if (tsk->sched_class->moved_group)
10121 tsk->sched_class->moved_group(tsk);
10122 #endif
10123
10124 if (unlikely(running))
10125 tsk->sched_class->set_curr_task(rq);
10126 if (on_rq)
10127 enqueue_task(rq, tsk, 0);
10128
10129 task_rq_unlock(rq, &flags);
10130 }
10131 #endif /* CONFIG_GROUP_SCHED */
10132
10133 #ifdef CONFIG_FAIR_GROUP_SCHED
10134 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10135 {
10136 struct cfs_rq *cfs_rq = se->cfs_rq;
10137 int on_rq;
10138
10139 on_rq = se->on_rq;
10140 if (on_rq)
10141 dequeue_entity(cfs_rq, se, 0);
10142
10143 se->load.weight = shares;
10144 se->load.inv_weight = 0;
10145
10146 if (on_rq)
10147 enqueue_entity(cfs_rq, se, 0);
10148 }
10149
10150 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10151 {
10152 struct cfs_rq *cfs_rq = se->cfs_rq;
10153 struct rq *rq = cfs_rq->rq;
10154 unsigned long flags;
10155
10156 raw_spin_lock_irqsave(&rq->lock, flags);
10157 __set_se_shares(se, shares);
10158 raw_spin_unlock_irqrestore(&rq->lock, flags);
10159 }
10160
10161 static DEFINE_MUTEX(shares_mutex);
10162
10163 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10164 {
10165 int i;
10166 unsigned long flags;
10167
10168 /*
10169 * We can't change the weight of the root cgroup.
10170 */
10171 if (!tg->se[0])
10172 return -EINVAL;
10173
10174 if (shares < MIN_SHARES)
10175 shares = MIN_SHARES;
10176 else if (shares > MAX_SHARES)
10177 shares = MAX_SHARES;
10178
10179 mutex_lock(&shares_mutex);
10180 if (tg->shares == shares)
10181 goto done;
10182
10183 spin_lock_irqsave(&task_group_lock, flags);
10184 for_each_possible_cpu(i)
10185 unregister_fair_sched_group(tg, i);
10186 list_del_rcu(&tg->siblings);
10187 spin_unlock_irqrestore(&task_group_lock, flags);
10188
10189 /* wait for any ongoing reference to this group to finish */
10190 synchronize_sched();
10191
10192 /*
10193 * Now we are free to modify the group's share on each cpu
10194 * w/o tripping rebalance_share or load_balance_fair.
10195 */
10196 tg->shares = shares;
10197 for_each_possible_cpu(i) {
10198 /*
10199 * force a rebalance
10200 */
10201 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10202 set_se_shares(tg->se[i], shares);
10203 }
10204
10205 /*
10206 * Enable load balance activity on this group, by inserting it back on
10207 * each cpu's rq->leaf_cfs_rq_list.
10208 */
10209 spin_lock_irqsave(&task_group_lock, flags);
10210 for_each_possible_cpu(i)
10211 register_fair_sched_group(tg, i);
10212 list_add_rcu(&tg->siblings, &tg->parent->children);
10213 spin_unlock_irqrestore(&task_group_lock, flags);
10214 done:
10215 mutex_unlock(&shares_mutex);
10216 return 0;
10217 }
10218
10219 unsigned long sched_group_shares(struct task_group *tg)
10220 {
10221 return tg->shares;
10222 }
10223 #endif
10224
10225 #ifdef CONFIG_RT_GROUP_SCHED
10226 /*
10227 * Ensure that the real time constraints are schedulable.
10228 */
10229 static DEFINE_MUTEX(rt_constraints_mutex);
10230
10231 static unsigned long to_ratio(u64 period, u64 runtime)
10232 {
10233 if (runtime == RUNTIME_INF)
10234 return 1ULL << 20;
10235
10236 return div64_u64(runtime << 20, period);
10237 }
10238
10239 /* Must be called with tasklist_lock held */
10240 static inline int tg_has_rt_tasks(struct task_group *tg)
10241 {
10242 struct task_struct *g, *p;
10243
10244 do_each_thread(g, p) {
10245 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10246 return 1;
10247 } while_each_thread(g, p);
10248
10249 return 0;
10250 }
10251
10252 struct rt_schedulable_data {
10253 struct task_group *tg;
10254 u64 rt_period;
10255 u64 rt_runtime;
10256 };
10257
10258 static int tg_schedulable(struct task_group *tg, void *data)
10259 {
10260 struct rt_schedulable_data *d = data;
10261 struct task_group *child;
10262 unsigned long total, sum = 0;
10263 u64 period, runtime;
10264
10265 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10266 runtime = tg->rt_bandwidth.rt_runtime;
10267
10268 if (tg == d->tg) {
10269 period = d->rt_period;
10270 runtime = d->rt_runtime;
10271 }
10272
10273 #ifdef CONFIG_USER_SCHED
10274 if (tg == &root_task_group) {
10275 period = global_rt_period();
10276 runtime = global_rt_runtime();
10277 }
10278 #endif
10279
10280 /*
10281 * Cannot have more runtime than the period.
10282 */
10283 if (runtime > period && runtime != RUNTIME_INF)
10284 return -EINVAL;
10285
10286 /*
10287 * Ensure we don't starve existing RT tasks.
10288 */
10289 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10290 return -EBUSY;
10291
10292 total = to_ratio(period, runtime);
10293
10294 /*
10295 * Nobody can have more than the global setting allows.
10296 */
10297 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10298 return -EINVAL;
10299
10300 /*
10301 * The sum of our children's runtime should not exceed our own.
10302 */
10303 list_for_each_entry_rcu(child, &tg->children, siblings) {
10304 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10305 runtime = child->rt_bandwidth.rt_runtime;
10306
10307 if (child == d->tg) {
10308 period = d->rt_period;
10309 runtime = d->rt_runtime;
10310 }
10311
10312 sum += to_ratio(period, runtime);
10313 }
10314
10315 if (sum > total)
10316 return -EINVAL;
10317
10318 return 0;
10319 }
10320
10321 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10322 {
10323 struct rt_schedulable_data data = {
10324 .tg = tg,
10325 .rt_period = period,
10326 .rt_runtime = runtime,
10327 };
10328
10329 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10330 }
10331
10332 static int tg_set_bandwidth(struct task_group *tg,
10333 u64 rt_period, u64 rt_runtime)
10334 {
10335 int i, err = 0;
10336
10337 mutex_lock(&rt_constraints_mutex);
10338 read_lock(&tasklist_lock);
10339 err = __rt_schedulable(tg, rt_period, rt_runtime);
10340 if (err)
10341 goto unlock;
10342
10343 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10344 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10345 tg->rt_bandwidth.rt_runtime = rt_runtime;
10346
10347 for_each_possible_cpu(i) {
10348 struct rt_rq *rt_rq = tg->rt_rq[i];
10349
10350 raw_spin_lock(&rt_rq->rt_runtime_lock);
10351 rt_rq->rt_runtime = rt_runtime;
10352 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10353 }
10354 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10355 unlock:
10356 read_unlock(&tasklist_lock);
10357 mutex_unlock(&rt_constraints_mutex);
10358
10359 return err;
10360 }
10361
10362 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10363 {
10364 u64 rt_runtime, rt_period;
10365
10366 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10367 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10368 if (rt_runtime_us < 0)
10369 rt_runtime = RUNTIME_INF;
10370
10371 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10372 }
10373
10374 long sched_group_rt_runtime(struct task_group *tg)
10375 {
10376 u64 rt_runtime_us;
10377
10378 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10379 return -1;
10380
10381 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10382 do_div(rt_runtime_us, NSEC_PER_USEC);
10383 return rt_runtime_us;
10384 }
10385
10386 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10387 {
10388 u64 rt_runtime, rt_period;
10389
10390 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10391 rt_runtime = tg->rt_bandwidth.rt_runtime;
10392
10393 if (rt_period == 0)
10394 return -EINVAL;
10395
10396 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10397 }
10398
10399 long sched_group_rt_period(struct task_group *tg)
10400 {
10401 u64 rt_period_us;
10402
10403 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10404 do_div(rt_period_us, NSEC_PER_USEC);
10405 return rt_period_us;
10406 }
10407
10408 static int sched_rt_global_constraints(void)
10409 {
10410 u64 runtime, period;
10411 int ret = 0;
10412
10413 if (sysctl_sched_rt_period <= 0)
10414 return -EINVAL;
10415
10416 runtime = global_rt_runtime();
10417 period = global_rt_period();
10418
10419 /*
10420 * Sanity check on the sysctl variables.
10421 */
10422 if (runtime > period && runtime != RUNTIME_INF)
10423 return -EINVAL;
10424
10425 mutex_lock(&rt_constraints_mutex);
10426 read_lock(&tasklist_lock);
10427 ret = __rt_schedulable(NULL, 0, 0);
10428 read_unlock(&tasklist_lock);
10429 mutex_unlock(&rt_constraints_mutex);
10430
10431 return ret;
10432 }
10433
10434 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10435 {
10436 /* Don't accept realtime tasks when there is no way for them to run */
10437 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10438 return 0;
10439
10440 return 1;
10441 }
10442
10443 #else /* !CONFIG_RT_GROUP_SCHED */
10444 static int sched_rt_global_constraints(void)
10445 {
10446 unsigned long flags;
10447 int i;
10448
10449 if (sysctl_sched_rt_period <= 0)
10450 return -EINVAL;
10451
10452 /*
10453 * There's always some RT tasks in the root group
10454 * -- migration, kstopmachine etc..
10455 */
10456 if (sysctl_sched_rt_runtime == 0)
10457 return -EBUSY;
10458
10459 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10460 for_each_possible_cpu(i) {
10461 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10462
10463 raw_spin_lock(&rt_rq->rt_runtime_lock);
10464 rt_rq->rt_runtime = global_rt_runtime();
10465 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10466 }
10467 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10468
10469 return 0;
10470 }
10471 #endif /* CONFIG_RT_GROUP_SCHED */
10472
10473 int sched_rt_handler(struct ctl_table *table, int write,
10474 void __user *buffer, size_t *lenp,
10475 loff_t *ppos)
10476 {
10477 int ret;
10478 int old_period, old_runtime;
10479 static DEFINE_MUTEX(mutex);
10480
10481 mutex_lock(&mutex);
10482 old_period = sysctl_sched_rt_period;
10483 old_runtime = sysctl_sched_rt_runtime;
10484
10485 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10486
10487 if (!ret && write) {
10488 ret = sched_rt_global_constraints();
10489 if (ret) {
10490 sysctl_sched_rt_period = old_period;
10491 sysctl_sched_rt_runtime = old_runtime;
10492 } else {
10493 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10494 def_rt_bandwidth.rt_period =
10495 ns_to_ktime(global_rt_period());
10496 }
10497 }
10498 mutex_unlock(&mutex);
10499
10500 return ret;
10501 }
10502
10503 #ifdef CONFIG_CGROUP_SCHED
10504
10505 /* return corresponding task_group object of a cgroup */
10506 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10507 {
10508 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10509 struct task_group, css);
10510 }
10511
10512 static struct cgroup_subsys_state *
10513 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10514 {
10515 struct task_group *tg, *parent;
10516
10517 if (!cgrp->parent) {
10518 /* This is early initialization for the top cgroup */
10519 return &init_task_group.css;
10520 }
10521
10522 parent = cgroup_tg(cgrp->parent);
10523 tg = sched_create_group(parent);
10524 if (IS_ERR(tg))
10525 return ERR_PTR(-ENOMEM);
10526
10527 return &tg->css;
10528 }
10529
10530 static void
10531 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10532 {
10533 struct task_group *tg = cgroup_tg(cgrp);
10534
10535 sched_destroy_group(tg);
10536 }
10537
10538 static int
10539 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10540 {
10541 #ifdef CONFIG_RT_GROUP_SCHED
10542 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10543 return -EINVAL;
10544 #else
10545 /* We don't support RT-tasks being in separate groups */
10546 if (tsk->sched_class != &fair_sched_class)
10547 return -EINVAL;
10548 #endif
10549 return 0;
10550 }
10551
10552 static int
10553 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10554 struct task_struct *tsk, bool threadgroup)
10555 {
10556 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10557 if (retval)
10558 return retval;
10559 if (threadgroup) {
10560 struct task_struct *c;
10561 rcu_read_lock();
10562 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10563 retval = cpu_cgroup_can_attach_task(cgrp, c);
10564 if (retval) {
10565 rcu_read_unlock();
10566 return retval;
10567 }
10568 }
10569 rcu_read_unlock();
10570 }
10571 return 0;
10572 }
10573
10574 static void
10575 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10576 struct cgroup *old_cont, struct task_struct *tsk,
10577 bool threadgroup)
10578 {
10579 sched_move_task(tsk);
10580 if (threadgroup) {
10581 struct task_struct *c;
10582 rcu_read_lock();
10583 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10584 sched_move_task(c);
10585 }
10586 rcu_read_unlock();
10587 }
10588 }
10589
10590 #ifdef CONFIG_FAIR_GROUP_SCHED
10591 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10592 u64 shareval)
10593 {
10594 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10595 }
10596
10597 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10598 {
10599 struct task_group *tg = cgroup_tg(cgrp);
10600
10601 return (u64) tg->shares;
10602 }
10603 #endif /* CONFIG_FAIR_GROUP_SCHED */
10604
10605 #ifdef CONFIG_RT_GROUP_SCHED
10606 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10607 s64 val)
10608 {
10609 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10610 }
10611
10612 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10613 {
10614 return sched_group_rt_runtime(cgroup_tg(cgrp));
10615 }
10616
10617 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10618 u64 rt_period_us)
10619 {
10620 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10621 }
10622
10623 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10624 {
10625 return sched_group_rt_period(cgroup_tg(cgrp));
10626 }
10627 #endif /* CONFIG_RT_GROUP_SCHED */
10628
10629 static struct cftype cpu_files[] = {
10630 #ifdef CONFIG_FAIR_GROUP_SCHED
10631 {
10632 .name = "shares",
10633 .read_u64 = cpu_shares_read_u64,
10634 .write_u64 = cpu_shares_write_u64,
10635 },
10636 #endif
10637 #ifdef CONFIG_RT_GROUP_SCHED
10638 {
10639 .name = "rt_runtime_us",
10640 .read_s64 = cpu_rt_runtime_read,
10641 .write_s64 = cpu_rt_runtime_write,
10642 },
10643 {
10644 .name = "rt_period_us",
10645 .read_u64 = cpu_rt_period_read_uint,
10646 .write_u64 = cpu_rt_period_write_uint,
10647 },
10648 #endif
10649 };
10650
10651 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10652 {
10653 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10654 }
10655
10656 struct cgroup_subsys cpu_cgroup_subsys = {
10657 .name = "cpu",
10658 .create = cpu_cgroup_create,
10659 .destroy = cpu_cgroup_destroy,
10660 .can_attach = cpu_cgroup_can_attach,
10661 .attach = cpu_cgroup_attach,
10662 .populate = cpu_cgroup_populate,
10663 .subsys_id = cpu_cgroup_subsys_id,
10664 .early_init = 1,
10665 };
10666
10667 #endif /* CONFIG_CGROUP_SCHED */
10668
10669 #ifdef CONFIG_CGROUP_CPUACCT
10670
10671 /*
10672 * CPU accounting code for task groups.
10673 *
10674 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10675 * (balbir@in.ibm.com).
10676 */
10677
10678 /* track cpu usage of a group of tasks and its child groups */
10679 struct cpuacct {
10680 struct cgroup_subsys_state css;
10681 /* cpuusage holds pointer to a u64-type object on every cpu */
10682 u64 *cpuusage;
10683 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10684 struct cpuacct *parent;
10685 };
10686
10687 struct cgroup_subsys cpuacct_subsys;
10688
10689 /* return cpu accounting group corresponding to this container */
10690 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10691 {
10692 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10693 struct cpuacct, css);
10694 }
10695
10696 /* return cpu accounting group to which this task belongs */
10697 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10698 {
10699 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10700 struct cpuacct, css);
10701 }
10702
10703 /* create a new cpu accounting group */
10704 static struct cgroup_subsys_state *cpuacct_create(
10705 struct cgroup_subsys *ss, struct cgroup *cgrp)
10706 {
10707 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10708 int i;
10709
10710 if (!ca)
10711 goto out;
10712
10713 ca->cpuusage = alloc_percpu(u64);
10714 if (!ca->cpuusage)
10715 goto out_free_ca;
10716
10717 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10718 if (percpu_counter_init(&ca->cpustat[i], 0))
10719 goto out_free_counters;
10720
10721 if (cgrp->parent)
10722 ca->parent = cgroup_ca(cgrp->parent);
10723
10724 return &ca->css;
10725
10726 out_free_counters:
10727 while (--i >= 0)
10728 percpu_counter_destroy(&ca->cpustat[i]);
10729 free_percpu(ca->cpuusage);
10730 out_free_ca:
10731 kfree(ca);
10732 out:
10733 return ERR_PTR(-ENOMEM);
10734 }
10735
10736 /* destroy an existing cpu accounting group */
10737 static void
10738 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10739 {
10740 struct cpuacct *ca = cgroup_ca(cgrp);
10741 int i;
10742
10743 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10744 percpu_counter_destroy(&ca->cpustat[i]);
10745 free_percpu(ca->cpuusage);
10746 kfree(ca);
10747 }
10748
10749 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10750 {
10751 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10752 u64 data;
10753
10754 #ifndef CONFIG_64BIT
10755 /*
10756 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10757 */
10758 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10759 data = *cpuusage;
10760 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10761 #else
10762 data = *cpuusage;
10763 #endif
10764
10765 return data;
10766 }
10767
10768 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10769 {
10770 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10771
10772 #ifndef CONFIG_64BIT
10773 /*
10774 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10775 */
10776 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10777 *cpuusage = val;
10778 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10779 #else
10780 *cpuusage = val;
10781 #endif
10782 }
10783
10784 /* return total cpu usage (in nanoseconds) of a group */
10785 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10786 {
10787 struct cpuacct *ca = cgroup_ca(cgrp);
10788 u64 totalcpuusage = 0;
10789 int i;
10790
10791 for_each_present_cpu(i)
10792 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10793
10794 return totalcpuusage;
10795 }
10796
10797 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10798 u64 reset)
10799 {
10800 struct cpuacct *ca = cgroup_ca(cgrp);
10801 int err = 0;
10802 int i;
10803
10804 if (reset) {
10805 err = -EINVAL;
10806 goto out;
10807 }
10808
10809 for_each_present_cpu(i)
10810 cpuacct_cpuusage_write(ca, i, 0);
10811
10812 out:
10813 return err;
10814 }
10815
10816 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10817 struct seq_file *m)
10818 {
10819 struct cpuacct *ca = cgroup_ca(cgroup);
10820 u64 percpu;
10821 int i;
10822
10823 for_each_present_cpu(i) {
10824 percpu = cpuacct_cpuusage_read(ca, i);
10825 seq_printf(m, "%llu ", (unsigned long long) percpu);
10826 }
10827 seq_printf(m, "\n");
10828 return 0;
10829 }
10830
10831 static const char *cpuacct_stat_desc[] = {
10832 [CPUACCT_STAT_USER] = "user",
10833 [CPUACCT_STAT_SYSTEM] = "system",
10834 };
10835
10836 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10837 struct cgroup_map_cb *cb)
10838 {
10839 struct cpuacct *ca = cgroup_ca(cgrp);
10840 int i;
10841
10842 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10843 s64 val = percpu_counter_read(&ca->cpustat[i]);
10844 val = cputime64_to_clock_t(val);
10845 cb->fill(cb, cpuacct_stat_desc[i], val);
10846 }
10847 return 0;
10848 }
10849
10850 static struct cftype files[] = {
10851 {
10852 .name = "usage",
10853 .read_u64 = cpuusage_read,
10854 .write_u64 = cpuusage_write,
10855 },
10856 {
10857 .name = "usage_percpu",
10858 .read_seq_string = cpuacct_percpu_seq_read,
10859 },
10860 {
10861 .name = "stat",
10862 .read_map = cpuacct_stats_show,
10863 },
10864 };
10865
10866 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10867 {
10868 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10869 }
10870
10871 /*
10872 * charge this task's execution time to its accounting group.
10873 *
10874 * called with rq->lock held.
10875 */
10876 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10877 {
10878 struct cpuacct *ca;
10879 int cpu;
10880
10881 if (unlikely(!cpuacct_subsys.active))
10882 return;
10883
10884 cpu = task_cpu(tsk);
10885
10886 rcu_read_lock();
10887
10888 ca = task_ca(tsk);
10889
10890 for (; ca; ca = ca->parent) {
10891 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10892 *cpuusage += cputime;
10893 }
10894
10895 rcu_read_unlock();
10896 }
10897
10898 /*
10899 * Charge the system/user time to the task's accounting group.
10900 */
10901 static void cpuacct_update_stats(struct task_struct *tsk,
10902 enum cpuacct_stat_index idx, cputime_t val)
10903 {
10904 struct cpuacct *ca;
10905
10906 if (unlikely(!cpuacct_subsys.active))
10907 return;
10908
10909 rcu_read_lock();
10910 ca = task_ca(tsk);
10911
10912 do {
10913 percpu_counter_add(&ca->cpustat[idx], val);
10914 ca = ca->parent;
10915 } while (ca);
10916 rcu_read_unlock();
10917 }
10918
10919 struct cgroup_subsys cpuacct_subsys = {
10920 .name = "cpuacct",
10921 .create = cpuacct_create,
10922 .destroy = cpuacct_destroy,
10923 .populate = cpuacct_populate,
10924 .subsys_id = cpuacct_subsys_id,
10925 };
10926 #endif /* CONFIG_CGROUP_CPUACCT */
10927
10928 #ifndef CONFIG_SMP
10929
10930 int rcu_expedited_torture_stats(char *page)
10931 {
10932 return 0;
10933 }
10934 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10935
10936 void synchronize_sched_expedited(void)
10937 {
10938 }
10939 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10940
10941 #else /* #ifndef CONFIG_SMP */
10942
10943 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10944 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10945
10946 #define RCU_EXPEDITED_STATE_POST -2
10947 #define RCU_EXPEDITED_STATE_IDLE -1
10948
10949 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10950
10951 int rcu_expedited_torture_stats(char *page)
10952 {
10953 int cnt = 0;
10954 int cpu;
10955
10956 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10957 for_each_online_cpu(cpu) {
10958 cnt += sprintf(&page[cnt], " %d:%d",
10959 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10960 }
10961 cnt += sprintf(&page[cnt], "\n");
10962 return cnt;
10963 }
10964 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10965
10966 static long synchronize_sched_expedited_count;
10967
10968 /*
10969 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10970 * approach to force grace period to end quickly. This consumes
10971 * significant time on all CPUs, and is thus not recommended for
10972 * any sort of common-case code.
10973 *
10974 * Note that it is illegal to call this function while holding any
10975 * lock that is acquired by a CPU-hotplug notifier. Failing to
10976 * observe this restriction will result in deadlock.
10977 */
10978 void synchronize_sched_expedited(void)
10979 {
10980 int cpu;
10981 unsigned long flags;
10982 bool need_full_sync = 0;
10983 struct rq *rq;
10984 struct migration_req *req;
10985 long snap;
10986 int trycount = 0;
10987
10988 smp_mb(); /* ensure prior mod happens before capturing snap. */
10989 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10990 get_online_cpus();
10991 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10992 put_online_cpus();
10993 if (trycount++ < 10)
10994 udelay(trycount * num_online_cpus());
10995 else {
10996 synchronize_sched();
10997 return;
10998 }
10999 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
11000 smp_mb(); /* ensure test happens before caller kfree */
11001 return;
11002 }
11003 get_online_cpus();
11004 }
11005 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
11006 for_each_online_cpu(cpu) {
11007 rq = cpu_rq(cpu);
11008 req = &per_cpu(rcu_migration_req, cpu);
11009 init_completion(&req->done);
11010 req->task = NULL;
11011 req->dest_cpu = RCU_MIGRATION_NEED_QS;
11012 raw_spin_lock_irqsave(&rq->lock, flags);
11013 list_add(&req->list, &rq->migration_queue);
11014 raw_spin_unlock_irqrestore(&rq->lock, flags);
11015 wake_up_process(rq->migration_thread);
11016 }
11017 for_each_online_cpu(cpu) {
11018 rcu_expedited_state = cpu;
11019 req = &per_cpu(rcu_migration_req, cpu);
11020 rq = cpu_rq(cpu);
11021 wait_for_completion(&req->done);
11022 raw_spin_lock_irqsave(&rq->lock, flags);
11023 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11024 need_full_sync = 1;
11025 req->dest_cpu = RCU_MIGRATION_IDLE;
11026 raw_spin_unlock_irqrestore(&rq->lock, flags);
11027 }
11028 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11029 synchronize_sched_expedited_count++;
11030 mutex_unlock(&rcu_sched_expedited_mutex);
11031 put_online_cpus();
11032 if (need_full_sync)
11033 synchronize_sched();
11034 }
11035 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11036
11037 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.240494 seconds and 6 git commands to generate.