Merge branch 'linus' into perfcounters/core
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
131 /*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136 {
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138 }
139
140 /*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145 {
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148 }
149 #endif
150
151 static inline int rt_policy(int policy)
152 {
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
156 }
157
158 static inline int task_has_rt_policy(struct task_struct *p)
159 {
160 return rt_policy(p->policy);
161 }
162
163 /*
164 * This is the priority-queue data structure of the RT scheduling class:
165 */
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169 };
170
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
177 };
178
179 static struct rt_bandwidth def_rt_bandwidth;
180
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184 {
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202 }
203
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206 {
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
215 }
216
217 static inline int rt_bandwidth_enabled(void)
218 {
219 return sysctl_sched_rt_runtime >= 0;
220 }
221
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223 {
224 ktime_t now;
225
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 unsigned long delta;
235 ktime_t soft, hard;
236
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
239
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
242
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
248 }
249 spin_unlock(&rt_b->rt_runtime_lock);
250 }
251
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
254 {
255 hrtimer_cancel(&rt_b->rt_period_timer);
256 }
257 #endif
258
259 /*
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
262 */
263 static DEFINE_MUTEX(sched_domains_mutex);
264
265 #ifdef CONFIG_GROUP_SCHED
266
267 #include <linux/cgroup.h>
268
269 struct cfs_rq;
270
271 static LIST_HEAD(task_groups);
272
273 /* task group related information */
274 struct task_group {
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
277 #endif
278
279 #ifdef CONFIG_USER_SCHED
280 uid_t uid;
281 #endif
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
289 #endif
290
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
294
295 struct rt_bandwidth rt_bandwidth;
296 #endif
297
298 struct rcu_head rcu;
299 struct list_head list;
300
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
304 };
305
306 #ifdef CONFIG_USER_SCHED
307
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
310 {
311 user->tg->uid = user->uid;
312 }
313
314 /*
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
318 */
319 struct task_group root_task_group;
320
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
327
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
335
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
338 */
339 static DEFINE_SPINLOCK(task_group_lock);
340
341 #ifdef CONFIG_SMP
342 static int root_task_group_empty(void)
343 {
344 return list_empty(&root_task_group.children);
345 }
346 #endif
347
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
354
355 /*
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
362 */
363 #define MIN_SHARES 2
364 #define MAX_SHARES (1UL << 18)
365
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367 #endif
368
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
371 */
372 struct task_group init_task_group;
373
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
376 {
377 struct task_group *tg;
378
379 #ifdef CONFIG_USER_SCHED
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
386 #else
387 tg = &init_task_group;
388 #endif
389 return tg;
390 }
391
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
394 {
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
398 #endif
399
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
403 #endif
404 }
405
406 #else
407
408 #ifdef CONFIG_SMP
409 static int root_task_group_empty(void)
410 {
411 return 1;
412 }
413 #endif
414
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
417 {
418 return NULL;
419 }
420
421 #endif /* CONFIG_GROUP_SCHED */
422
423 /* CFS-related fields in a runqueue */
424 struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
427
428 u64 exec_clock;
429 u64 min_vruntime;
430
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
433
434 struct list_head tasks;
435 struct list_head *balance_iterator;
436
437 /*
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
440 */
441 struct sched_entity *curr, *next, *last;
442
443 unsigned int nr_spread_over;
444
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
447
448 /*
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
452 *
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
455 */
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
458
459 #ifdef CONFIG_SMP
460 /*
461 * the part of load.weight contributed by tasks
462 */
463 unsigned long task_weight;
464
465 /*
466 * h_load = weight * f(tg)
467 *
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
470 */
471 unsigned long h_load;
472
473 /*
474 * this cpu's part of tg->shares
475 */
476 unsigned long shares;
477
478 /*
479 * load.weight at the time we set shares
480 */
481 unsigned long rq_weight;
482 #endif
483 #endif
484 };
485
486 /* Real-Time classes' related field in a runqueue: */
487 struct rt_rq {
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 struct {
492 int curr; /* highest queued rt task prio */
493 #ifdef CONFIG_SMP
494 int next; /* next highest */
495 #endif
496 } highest_prio;
497 #endif
498 #ifdef CONFIG_SMP
499 unsigned long rt_nr_migratory;
500 int overloaded;
501 struct plist_head pushable_tasks;
502 #endif
503 int rt_throttled;
504 u64 rt_time;
505 u64 rt_runtime;
506 /* Nests inside the rq lock: */
507 spinlock_t rt_runtime_lock;
508
509 #ifdef CONFIG_RT_GROUP_SCHED
510 unsigned long rt_nr_boosted;
511
512 struct rq *rq;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
516 #endif
517 };
518
519 #ifdef CONFIG_SMP
520
521 /*
522 * We add the notion of a root-domain which will be used to define per-domain
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
525 * exclusive cpuset is created, we also create and attach a new root-domain
526 * object.
527 *
528 */
529 struct root_domain {
530 atomic_t refcount;
531 cpumask_var_t span;
532 cpumask_var_t online;
533
534 /*
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
537 */
538 cpumask_var_t rto_mask;
539 atomic_t rto_count;
540 #ifdef CONFIG_SMP
541 struct cpupri cpupri;
542 #endif
543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
544 /*
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
548 */
549 unsigned int sched_mc_preferred_wakeup_cpu;
550 #endif
551 };
552
553 /*
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
556 */
557 static struct root_domain def_root_domain;
558
559 #endif
560
561 /*
562 * This is the main, per-CPU runqueue data structure.
563 *
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
567 */
568 struct rq {
569 /* runqueue lock: */
570 spinlock_t lock;
571
572 /*
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
575 */
576 unsigned long nr_running;
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
579 #ifdef CONFIG_NO_HZ
580 unsigned long last_tick_seen;
581 unsigned char in_nohz_recently;
582 #endif
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
585 unsigned long nr_load_updates;
586 u64 nr_switches;
587 u64 nr_migrations_in;
588
589 struct cfs_rq cfs;
590 struct rt_rq rt;
591
592 #ifdef CONFIG_FAIR_GROUP_SCHED
593 /* list of leaf cfs_rq on this cpu: */
594 struct list_head leaf_cfs_rq_list;
595 #endif
596 #ifdef CONFIG_RT_GROUP_SCHED
597 struct list_head leaf_rt_rq_list;
598 #endif
599
600 /*
601 * This is part of a global counter where only the total sum
602 * over all CPUs matters. A task can increase this counter on
603 * one CPU and if it got migrated afterwards it may decrease
604 * it on another CPU. Always updated under the runqueue lock:
605 */
606 unsigned long nr_uninterruptible;
607
608 struct task_struct *curr, *idle;
609 unsigned long next_balance;
610 struct mm_struct *prev_mm;
611
612 u64 clock;
613
614 atomic_t nr_iowait;
615
616 #ifdef CONFIG_SMP
617 struct root_domain *rd;
618 struct sched_domain *sd;
619
620 unsigned char idle_at_tick;
621 /* For active balancing */
622 int active_balance;
623 int push_cpu;
624 /* cpu of this runqueue: */
625 int cpu;
626 int online;
627
628 unsigned long avg_load_per_task;
629
630 struct task_struct *migration_thread;
631 struct list_head migration_queue;
632 #endif
633
634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638 #endif
639 struct hrtimer hrtick_timer;
640 #endif
641
642 #ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647
648 /* sys_sched_yield() stats */
649 unsigned int yld_count;
650
651 /* schedule() stats */
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
655
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
659
660 /* BKL stats */
661 unsigned int bkl_count;
662 #endif
663 };
664
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 {
669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
670 }
671
672 static inline int cpu_of(struct rq *rq)
673 {
674 #ifdef CONFIG_SMP
675 return rq->cpu;
676 #else
677 return 0;
678 #endif
679 }
680
681 /*
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
684 *
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
687 */
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695
696 inline void update_rq_clock(struct rq *rq)
697 {
698 rq->clock = sched_clock_cpu(cpu_of(rq));
699 }
700
701 /*
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 */
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
706 #else
707 # define const_debug static const
708 #endif
709
710 /**
711 * runqueue_is_locked
712 *
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
716 */
717 int runqueue_is_locked(void)
718 {
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
722
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
726 }
727
728 /*
729 * Debugging: various feature bits
730 */
731
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
735 enum {
736 #include "sched_features.h"
737 };
738
739 #undef SCHED_FEAT
740
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
743
744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h"
746 0;
747
748 #undef SCHED_FEAT
749
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
752 #name ,
753
754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h"
756 NULL
757 };
758
759 #undef SCHED_FEAT
760
761 static int sched_feat_show(struct seq_file *m, void *v)
762 {
763 int i;
764
765 for (i = 0; sched_feat_names[i]; i++) {
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
769 }
770 seq_puts(m, "\n");
771
772 return 0;
773 }
774
775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
778 {
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
783
784 if (cnt > 63)
785 cnt = 63;
786
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
789
790 buf[cnt] = 0;
791
792 if (strncmp(buf, "NO_", 3) == 0) {
793 neg = 1;
794 cmp += 3;
795 }
796
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
799
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
806 }
807 }
808
809 if (!sched_feat_names[i])
810 return -EINVAL;
811
812 filp->f_pos += cnt;
813
814 return cnt;
815 }
816
817 static int sched_feat_open(struct inode *inode, struct file *filp)
818 {
819 return single_open(filp, sched_feat_show, NULL);
820 }
821
822 static struct file_operations sched_feat_fops = {
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
828 };
829
830 static __init int sched_init_debug(void)
831 {
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
834
835 return 0;
836 }
837 late_initcall(sched_init_debug);
838
839 #endif
840
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
842
843 /*
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
846 */
847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
848
849 /*
850 * ratelimit for updating the group shares.
851 * default: 0.25ms
852 */
853 unsigned int sysctl_sched_shares_ratelimit = 250000;
854
855 /*
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
859 */
860 unsigned int sysctl_sched_shares_thresh = 4;
861
862 /*
863 * period over which we measure -rt task cpu usage in us.
864 * default: 1s
865 */
866 unsigned int sysctl_sched_rt_period = 1000000;
867
868 static __read_mostly int scheduler_running;
869
870 /*
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
873 */
874 int sysctl_sched_rt_runtime = 950000;
875
876 static inline u64 global_rt_period(void)
877 {
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879 }
880
881 static inline u64 global_rt_runtime(void)
882 {
883 if (sysctl_sched_rt_runtime < 0)
884 return RUNTIME_INF;
885
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887 }
888
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
891 #endif
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
894 #endif
895
896 static inline int task_current(struct rq *rq, struct task_struct *p)
897 {
898 return rq->curr == p;
899 }
900
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904 return task_current(rq, p);
905 }
906
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 {
909 }
910
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 {
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916 #endif
917 /*
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
921 */
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923
924 spin_unlock_irq(&rq->lock);
925 }
926
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p)
929 {
930 #ifdef CONFIG_SMP
931 return p->oncpu;
932 #else
933 return task_current(rq, p);
934 #endif
935 }
936
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 {
939 #ifdef CONFIG_SMP
940 /*
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
944 */
945 next->oncpu = 1;
946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949 #else
950 spin_unlock(&rq->lock);
951 #endif
952 }
953
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 {
956 #ifdef CONFIG_SMP
957 /*
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
961 */
962 smp_wmb();
963 prev->oncpu = 0;
964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
967 #endif
968 }
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
970
971 /*
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
974 */
975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976 __acquires(rq->lock)
977 {
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
983 spin_unlock(&rq->lock);
984 }
985 }
986
987 /*
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
991 */
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993 __acquires(rq->lock)
994 {
995 struct rq *rq;
996
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1003 spin_unlock_irqrestore(&rq->lock, *flags);
1004 }
1005 }
1006
1007 void task_rq_unlock_wait(struct task_struct *p)
1008 {
1009 struct rq *rq = task_rq(p);
1010
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1013 }
1014
1015 static void __task_rq_unlock(struct rq *rq)
1016 __releases(rq->lock)
1017 {
1018 spin_unlock(&rq->lock);
1019 }
1020
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022 __releases(rq->lock)
1023 {
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1025 }
1026
1027 /*
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1029 */
1030 static struct rq *this_rq_lock(void)
1031 __acquires(rq->lock)
1032 {
1033 struct rq *rq;
1034
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1038
1039 return rq;
1040 }
1041
1042 #ifdef CONFIG_SCHED_HRTICK
1043 /*
1044 * Use HR-timers to deliver accurate preemption points.
1045 *
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1049 *
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1052 */
1053
1054 /*
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1058 */
1059 static inline int hrtick_enabled(struct rq *rq)
1060 {
1061 if (!sched_feat(HRTICK))
1062 return 0;
1063 if (!cpu_active(cpu_of(rq)))
1064 return 0;
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1066 }
1067
1068 static void hrtick_clear(struct rq *rq)
1069 {
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1072 }
1073
1074 /*
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1077 */
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 {
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock(&rq->lock);
1085 update_rq_clock(rq);
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1088
1089 return HRTIMER_NORESTART;
1090 }
1091
1092 #ifdef CONFIG_SMP
1093 /*
1094 * called from hardirq (IPI) context
1095 */
1096 static void __hrtick_start(void *arg)
1097 {
1098 struct rq *rq = arg;
1099
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
1104 }
1105
1106 /*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111 static void hrtick_start(struct rq *rq, u64 delay)
1112 {
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115
1116 hrtimer_set_expires(timer, time);
1117
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 rq->hrtick_csd_pending = 1;
1123 }
1124 }
1125
1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 {
1129 int cpu = (int)(long)hcpu;
1130
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
1138 hrtick_clear(cpu_rq(cpu));
1139 return NOTIFY_OK;
1140 }
1141
1142 return NOTIFY_DONE;
1143 }
1144
1145 static __init void init_hrtick(void)
1146 {
1147 hotcpu_notifier(hotplug_hrtick, 0);
1148 }
1149 #else
1150 /*
1151 * Called to set the hrtick timer state.
1152 *
1153 * called with rq->lock held and irqs disabled
1154 */
1155 static void hrtick_start(struct rq *rq, u64 delay)
1156 {
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL, 0);
1159 }
1160
1161 static inline void init_hrtick(void)
1162 {
1163 }
1164 #endif /* CONFIG_SMP */
1165
1166 static void init_rq_hrtick(struct rq *rq)
1167 {
1168 #ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
1170
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174 #endif
1175
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
1178 }
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq)
1181 {
1182 }
1183
1184 static inline void init_rq_hrtick(struct rq *rq)
1185 {
1186 }
1187
1188 static inline void init_hrtick(void)
1189 {
1190 }
1191 #endif /* CONFIG_SCHED_HRTICK */
1192
1193 /*
1194 * resched_task - mark a task 'to be rescheduled now'.
1195 *
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1199 */
1200 #ifdef CONFIG_SMP
1201
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif
1205
1206 static void resched_task(struct task_struct *p)
1207 {
1208 int cpu;
1209
1210 assert_spin_locked(&task_rq(p)->lock);
1211
1212 if (test_tsk_need_resched(p))
1213 return;
1214
1215 set_tsk_need_resched(p);
1216
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1225 }
1226
1227 static void resched_cpu(int cpu)
1228 {
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1231
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1236 }
1237
1238 #ifdef CONFIG_NO_HZ
1239 /*
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1248 */
1249 void wake_up_idle_cpu(int cpu)
1250 {
1251 struct rq *rq = cpu_rq(cpu);
1252
1253 if (cpu == smp_processor_id())
1254 return;
1255
1256 /*
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1262 */
1263 if (rq->curr != rq->idle)
1264 return;
1265
1266 /*
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1270 */
1271 set_tsk_need_resched(rq->idle);
1272
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1277 }
1278 #endif /* CONFIG_NO_HZ */
1279
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p)
1282 {
1283 assert_spin_locked(&task_rq(p)->lock);
1284 set_tsk_need_resched(p);
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 /*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1354
1355 /*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1366 */
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1376 };
1377
1378 /*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 };
1395
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398 /*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407 };
1408
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1421
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428 };
1429
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1439
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442 update_load_add(&rq->load, load);
1443 }
1444
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 {
1447 update_load_sub(&rq->load, load);
1448 }
1449
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1452
1453 /*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 {
1459 struct task_group *parent, *child;
1460 int ret;
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472 up:
1473 continue;
1474 }
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1485
1486 return ret;
1487 }
1488
1489 static int tg_nop(struct task_group *tg, void *data)
1490 {
1491 return 0;
1492 }
1493 #endif
1494
1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499
1500 static unsigned long cpu_avg_load_per_task(int cpu)
1501 {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1504
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 else
1508 rq->avg_load_per_task = 0;
1509
1510 return rq->avg_load_per_task;
1511 }
1512
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1514
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516
1517 /*
1518 * Calculate and set the cpu's group shares.
1519 */
1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
1523 {
1524 unsigned long shares;
1525 unsigned long rq_weight;
1526
1527 if (!tg->se[cpu])
1528 return;
1529
1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531
1532 /*
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1536 *
1537 */
1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
1545
1546 spin_lock_irqsave(&rq->lock, flags);
1547 tg->cfs_rq[cpu]->shares = shares;
1548
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1551 }
1552 }
1553
1554 /*
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1558 */
1559 static int tg_shares_up(struct task_group *tg, void *data)
1560 {
1561 unsigned long weight, rq_weight = 0;
1562 unsigned long shares = 0;
1563 struct sched_domain *sd = data;
1564 int i;
1565
1566 for_each_cpu(i, sched_domain_span(sd)) {
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1575
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
1578 shares += tg->cfs_rq[i]->shares;
1579 }
1580
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
1586
1587 for_each_cpu(i, sched_domain_span(sd))
1588 update_group_shares_cpu(tg, i, shares, rq_weight);
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1597 */
1598 static int tg_load_down(struct task_group *tg, void *data)
1599 {
1600 unsigned long load;
1601 long cpu = (long)data;
1602
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609 }
1610
1611 tg->cfs_rq[cpu]->h_load = load;
1612
1613 return 0;
1614 }
1615
1616 static void update_shares(struct sched_domain *sd)
1617 {
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1620
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
1624 }
1625 }
1626
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 {
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1632 }
1633
1634 static void update_h_load(long cpu)
1635 {
1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 }
1638
1639 #else
1640
1641 static inline void update_shares(struct sched_domain *sd)
1642 {
1643 }
1644
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646 {
1647 }
1648
1649 #endif
1650
1651 #ifdef CONFIG_PREEMPT
1652
1653 /*
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1660 */
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665 {
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1668
1669 return 1;
1670 }
1671
1672 #else
1673 /*
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1679 */
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1684 {
1685 int ret = 0;
1686
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 }
1696 return ret;
1697 }
1698
1699 #endif /* CONFIG_PREEMPT */
1700
1701 /*
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 */
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 {
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1710 }
1711
1712 return _double_lock_balance(this_rq, busiest);
1713 }
1714
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1717 {
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720 }
1721 #endif
1722
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725 {
1726 #ifdef CONFIG_SMP
1727 cfs_rq->shares = shares;
1728 #endif
1729 }
1730 #endif
1731
1732 #include "sched_stats.h"
1733 #include "sched_idletask.c"
1734 #include "sched_fair.c"
1735 #include "sched_rt.c"
1736 #ifdef CONFIG_SCHED_DEBUG
1737 # include "sched_debug.c"
1738 #endif
1739
1740 #define sched_class_highest (&rt_sched_class)
1741 #define for_each_class(class) \
1742 for (class = sched_class_highest; class; class = class->next)
1743
1744 static void inc_nr_running(struct rq *rq)
1745 {
1746 rq->nr_running++;
1747 }
1748
1749 static void dec_nr_running(struct rq *rq)
1750 {
1751 rq->nr_running--;
1752 }
1753
1754 static void set_load_weight(struct task_struct *p)
1755 {
1756 if (task_has_rt_policy(p)) {
1757 p->se.load.weight = prio_to_weight[0] * 2;
1758 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1759 return;
1760 }
1761
1762 /*
1763 * SCHED_IDLE tasks get minimal weight:
1764 */
1765 if (p->policy == SCHED_IDLE) {
1766 p->se.load.weight = WEIGHT_IDLEPRIO;
1767 p->se.load.inv_weight = WMULT_IDLEPRIO;
1768 return;
1769 }
1770
1771 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1772 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1773 }
1774
1775 static void update_avg(u64 *avg, u64 sample)
1776 {
1777 s64 diff = sample - *avg;
1778 *avg += diff >> 3;
1779 }
1780
1781 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1782 {
1783 if (wakeup)
1784 p->se.start_runtime = p->se.sum_exec_runtime;
1785
1786 sched_info_queued(p);
1787 p->sched_class->enqueue_task(rq, p, wakeup);
1788 p->se.on_rq = 1;
1789 }
1790
1791 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1792 {
1793 if (sleep) {
1794 if (p->se.last_wakeup) {
1795 update_avg(&p->se.avg_overlap,
1796 p->se.sum_exec_runtime - p->se.last_wakeup);
1797 p->se.last_wakeup = 0;
1798 } else {
1799 update_avg(&p->se.avg_wakeup,
1800 sysctl_sched_wakeup_granularity);
1801 }
1802 }
1803
1804 sched_info_dequeued(p);
1805 p->sched_class->dequeue_task(rq, p, sleep);
1806 p->se.on_rq = 0;
1807 }
1808
1809 /*
1810 * __normal_prio - return the priority that is based on the static prio
1811 */
1812 static inline int __normal_prio(struct task_struct *p)
1813 {
1814 return p->static_prio;
1815 }
1816
1817 /*
1818 * Calculate the expected normal priority: i.e. priority
1819 * without taking RT-inheritance into account. Might be
1820 * boosted by interactivity modifiers. Changes upon fork,
1821 * setprio syscalls, and whenever the interactivity
1822 * estimator recalculates.
1823 */
1824 static inline int normal_prio(struct task_struct *p)
1825 {
1826 int prio;
1827
1828 if (task_has_rt_policy(p))
1829 prio = MAX_RT_PRIO-1 - p->rt_priority;
1830 else
1831 prio = __normal_prio(p);
1832 return prio;
1833 }
1834
1835 /*
1836 * Calculate the current priority, i.e. the priority
1837 * taken into account by the scheduler. This value might
1838 * be boosted by RT tasks, or might be boosted by
1839 * interactivity modifiers. Will be RT if the task got
1840 * RT-boosted. If not then it returns p->normal_prio.
1841 */
1842 static int effective_prio(struct task_struct *p)
1843 {
1844 p->normal_prio = normal_prio(p);
1845 /*
1846 * If we are RT tasks or we were boosted to RT priority,
1847 * keep the priority unchanged. Otherwise, update priority
1848 * to the normal priority:
1849 */
1850 if (!rt_prio(p->prio))
1851 return p->normal_prio;
1852 return p->prio;
1853 }
1854
1855 /*
1856 * activate_task - move a task to the runqueue.
1857 */
1858 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1859 {
1860 if (task_contributes_to_load(p))
1861 rq->nr_uninterruptible--;
1862
1863 enqueue_task(rq, p, wakeup);
1864 inc_nr_running(rq);
1865 }
1866
1867 /*
1868 * deactivate_task - remove a task from the runqueue.
1869 */
1870 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1871 {
1872 if (task_contributes_to_load(p))
1873 rq->nr_uninterruptible++;
1874
1875 dequeue_task(rq, p, sleep);
1876 dec_nr_running(rq);
1877 }
1878
1879 /**
1880 * task_curr - is this task currently executing on a CPU?
1881 * @p: the task in question.
1882 */
1883 inline int task_curr(const struct task_struct *p)
1884 {
1885 return cpu_curr(task_cpu(p)) == p;
1886 }
1887
1888 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1889 {
1890 set_task_rq(p, cpu);
1891 #ifdef CONFIG_SMP
1892 /*
1893 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1894 * successfuly executed on another CPU. We must ensure that updates of
1895 * per-task data have been completed by this moment.
1896 */
1897 smp_wmb();
1898 task_thread_info(p)->cpu = cpu;
1899 #endif
1900 }
1901
1902 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1903 const struct sched_class *prev_class,
1904 int oldprio, int running)
1905 {
1906 if (prev_class != p->sched_class) {
1907 if (prev_class->switched_from)
1908 prev_class->switched_from(rq, p, running);
1909 p->sched_class->switched_to(rq, p, running);
1910 } else
1911 p->sched_class->prio_changed(rq, p, oldprio, running);
1912 }
1913
1914 #ifdef CONFIG_SMP
1915
1916 /* Used instead of source_load when we know the type == 0 */
1917 static unsigned long weighted_cpuload(const int cpu)
1918 {
1919 return cpu_rq(cpu)->load.weight;
1920 }
1921
1922 /*
1923 * Is this task likely cache-hot:
1924 */
1925 static int
1926 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1927 {
1928 s64 delta;
1929
1930 /*
1931 * Buddy candidates are cache hot:
1932 */
1933 if (sched_feat(CACHE_HOT_BUDDY) &&
1934 (&p->se == cfs_rq_of(&p->se)->next ||
1935 &p->se == cfs_rq_of(&p->se)->last))
1936 return 1;
1937
1938 if (p->sched_class != &fair_sched_class)
1939 return 0;
1940
1941 if (sysctl_sched_migration_cost == -1)
1942 return 1;
1943 if (sysctl_sched_migration_cost == 0)
1944 return 0;
1945
1946 delta = now - p->se.exec_start;
1947
1948 return delta < (s64)sysctl_sched_migration_cost;
1949 }
1950
1951
1952 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1953 {
1954 int old_cpu = task_cpu(p);
1955 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1956 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1957 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1958 u64 clock_offset;
1959
1960 clock_offset = old_rq->clock - new_rq->clock;
1961
1962 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1963
1964 #ifdef CONFIG_SCHEDSTATS
1965 if (p->se.wait_start)
1966 p->se.wait_start -= clock_offset;
1967 if (p->se.sleep_start)
1968 p->se.sleep_start -= clock_offset;
1969 if (p->se.block_start)
1970 p->se.block_start -= clock_offset;
1971 #endif
1972 if (old_cpu != new_cpu) {
1973 p->se.nr_migrations++;
1974 new_rq->nr_migrations_in++;
1975 #ifdef CONFIG_SCHEDSTATS
1976 if (task_hot(p, old_rq->clock, NULL))
1977 schedstat_inc(p, se.nr_forced2_migrations);
1978 #endif
1979 }
1980 p->se.vruntime -= old_cfsrq->min_vruntime -
1981 new_cfsrq->min_vruntime;
1982
1983 __set_task_cpu(p, new_cpu);
1984 }
1985
1986 struct migration_req {
1987 struct list_head list;
1988
1989 struct task_struct *task;
1990 int dest_cpu;
1991
1992 struct completion done;
1993 };
1994
1995 /*
1996 * The task's runqueue lock must be held.
1997 * Returns true if you have to wait for migration thread.
1998 */
1999 static int
2000 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2001 {
2002 struct rq *rq = task_rq(p);
2003
2004 /*
2005 * If the task is not on a runqueue (and not running), then
2006 * it is sufficient to simply update the task's cpu field.
2007 */
2008 if (!p->se.on_rq && !task_running(rq, p)) {
2009 set_task_cpu(p, dest_cpu);
2010 return 0;
2011 }
2012
2013 init_completion(&req->done);
2014 req->task = p;
2015 req->dest_cpu = dest_cpu;
2016 list_add(&req->list, &rq->migration_queue);
2017
2018 return 1;
2019 }
2020
2021 /*
2022 * wait_task_inactive - wait for a thread to unschedule.
2023 *
2024 * If @match_state is nonzero, it's the @p->state value just checked and
2025 * not expected to change. If it changes, i.e. @p might have woken up,
2026 * then return zero. When we succeed in waiting for @p to be off its CPU,
2027 * we return a positive number (its total switch count). If a second call
2028 * a short while later returns the same number, the caller can be sure that
2029 * @p has remained unscheduled the whole time.
2030 *
2031 * The caller must ensure that the task *will* unschedule sometime soon,
2032 * else this function might spin for a *long* time. This function can't
2033 * be called with interrupts off, or it may introduce deadlock with
2034 * smp_call_function() if an IPI is sent by the same process we are
2035 * waiting to become inactive.
2036 */
2037 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2038 {
2039 unsigned long flags;
2040 int running, on_rq;
2041 unsigned long ncsw;
2042 struct rq *rq;
2043
2044 for (;;) {
2045 /*
2046 * We do the initial early heuristics without holding
2047 * any task-queue locks at all. We'll only try to get
2048 * the runqueue lock when things look like they will
2049 * work out!
2050 */
2051 rq = task_rq(p);
2052
2053 /*
2054 * If the task is actively running on another CPU
2055 * still, just relax and busy-wait without holding
2056 * any locks.
2057 *
2058 * NOTE! Since we don't hold any locks, it's not
2059 * even sure that "rq" stays as the right runqueue!
2060 * But we don't care, since "task_running()" will
2061 * return false if the runqueue has changed and p
2062 * is actually now running somewhere else!
2063 */
2064 while (task_running(rq, p)) {
2065 if (match_state && unlikely(p->state != match_state))
2066 return 0;
2067 cpu_relax();
2068 }
2069
2070 /*
2071 * Ok, time to look more closely! We need the rq
2072 * lock now, to be *sure*. If we're wrong, we'll
2073 * just go back and repeat.
2074 */
2075 rq = task_rq_lock(p, &flags);
2076 trace_sched_wait_task(rq, p);
2077 running = task_running(rq, p);
2078 on_rq = p->se.on_rq;
2079 ncsw = 0;
2080 if (!match_state || p->state == match_state)
2081 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2082 task_rq_unlock(rq, &flags);
2083
2084 /*
2085 * If it changed from the expected state, bail out now.
2086 */
2087 if (unlikely(!ncsw))
2088 break;
2089
2090 /*
2091 * Was it really running after all now that we
2092 * checked with the proper locks actually held?
2093 *
2094 * Oops. Go back and try again..
2095 */
2096 if (unlikely(running)) {
2097 cpu_relax();
2098 continue;
2099 }
2100
2101 /*
2102 * It's not enough that it's not actively running,
2103 * it must be off the runqueue _entirely_, and not
2104 * preempted!
2105 *
2106 * So if it was still runnable (but just not actively
2107 * running right now), it's preempted, and we should
2108 * yield - it could be a while.
2109 */
2110 if (unlikely(on_rq)) {
2111 schedule_timeout_uninterruptible(1);
2112 continue;
2113 }
2114
2115 /*
2116 * Ahh, all good. It wasn't running, and it wasn't
2117 * runnable, which means that it will never become
2118 * running in the future either. We're all done!
2119 */
2120 break;
2121 }
2122
2123 return ncsw;
2124 }
2125
2126 /***
2127 * kick_process - kick a running thread to enter/exit the kernel
2128 * @p: the to-be-kicked thread
2129 *
2130 * Cause a process which is running on another CPU to enter
2131 * kernel-mode, without any delay. (to get signals handled.)
2132 *
2133 * NOTE: this function doesnt have to take the runqueue lock,
2134 * because all it wants to ensure is that the remote task enters
2135 * the kernel. If the IPI races and the task has been migrated
2136 * to another CPU then no harm is done and the purpose has been
2137 * achieved as well.
2138 */
2139 void kick_process(struct task_struct *p)
2140 {
2141 int cpu;
2142
2143 preempt_disable();
2144 cpu = task_cpu(p);
2145 if ((cpu != smp_processor_id()) && task_curr(p))
2146 smp_send_reschedule(cpu);
2147 preempt_enable();
2148 }
2149
2150 /*
2151 * Return a low guess at the load of a migration-source cpu weighted
2152 * according to the scheduling class and "nice" value.
2153 *
2154 * We want to under-estimate the load of migration sources, to
2155 * balance conservatively.
2156 */
2157 static unsigned long source_load(int cpu, int type)
2158 {
2159 struct rq *rq = cpu_rq(cpu);
2160 unsigned long total = weighted_cpuload(cpu);
2161
2162 if (type == 0 || !sched_feat(LB_BIAS))
2163 return total;
2164
2165 return min(rq->cpu_load[type-1], total);
2166 }
2167
2168 /*
2169 * Return a high guess at the load of a migration-target cpu weighted
2170 * according to the scheduling class and "nice" value.
2171 */
2172 static unsigned long target_load(int cpu, int type)
2173 {
2174 struct rq *rq = cpu_rq(cpu);
2175 unsigned long total = weighted_cpuload(cpu);
2176
2177 if (type == 0 || !sched_feat(LB_BIAS))
2178 return total;
2179
2180 return max(rq->cpu_load[type-1], total);
2181 }
2182
2183 /*
2184 * find_idlest_group finds and returns the least busy CPU group within the
2185 * domain.
2186 */
2187 static struct sched_group *
2188 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2189 {
2190 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2191 unsigned long min_load = ULONG_MAX, this_load = 0;
2192 int load_idx = sd->forkexec_idx;
2193 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2194
2195 do {
2196 unsigned long load, avg_load;
2197 int local_group;
2198 int i;
2199
2200 /* Skip over this group if it has no CPUs allowed */
2201 if (!cpumask_intersects(sched_group_cpus(group),
2202 &p->cpus_allowed))
2203 continue;
2204
2205 local_group = cpumask_test_cpu(this_cpu,
2206 sched_group_cpus(group));
2207
2208 /* Tally up the load of all CPUs in the group */
2209 avg_load = 0;
2210
2211 for_each_cpu(i, sched_group_cpus(group)) {
2212 /* Bias balancing toward cpus of our domain */
2213 if (local_group)
2214 load = source_load(i, load_idx);
2215 else
2216 load = target_load(i, load_idx);
2217
2218 avg_load += load;
2219 }
2220
2221 /* Adjust by relative CPU power of the group */
2222 avg_load = sg_div_cpu_power(group,
2223 avg_load * SCHED_LOAD_SCALE);
2224
2225 if (local_group) {
2226 this_load = avg_load;
2227 this = group;
2228 } else if (avg_load < min_load) {
2229 min_load = avg_load;
2230 idlest = group;
2231 }
2232 } while (group = group->next, group != sd->groups);
2233
2234 if (!idlest || 100*this_load < imbalance*min_load)
2235 return NULL;
2236 return idlest;
2237 }
2238
2239 /*
2240 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2241 */
2242 static int
2243 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2244 {
2245 unsigned long load, min_load = ULONG_MAX;
2246 int idlest = -1;
2247 int i;
2248
2249 /* Traverse only the allowed CPUs */
2250 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2251 load = weighted_cpuload(i);
2252
2253 if (load < min_load || (load == min_load && i == this_cpu)) {
2254 min_load = load;
2255 idlest = i;
2256 }
2257 }
2258
2259 return idlest;
2260 }
2261
2262 /*
2263 * sched_balance_self: balance the current task (running on cpu) in domains
2264 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2265 * SD_BALANCE_EXEC.
2266 *
2267 * Balance, ie. select the least loaded group.
2268 *
2269 * Returns the target CPU number, or the same CPU if no balancing is needed.
2270 *
2271 * preempt must be disabled.
2272 */
2273 static int sched_balance_self(int cpu, int flag)
2274 {
2275 struct task_struct *t = current;
2276 struct sched_domain *tmp, *sd = NULL;
2277
2278 for_each_domain(cpu, tmp) {
2279 /*
2280 * If power savings logic is enabled for a domain, stop there.
2281 */
2282 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2283 break;
2284 if (tmp->flags & flag)
2285 sd = tmp;
2286 }
2287
2288 if (sd)
2289 update_shares(sd);
2290
2291 while (sd) {
2292 struct sched_group *group;
2293 int new_cpu, weight;
2294
2295 if (!(sd->flags & flag)) {
2296 sd = sd->child;
2297 continue;
2298 }
2299
2300 group = find_idlest_group(sd, t, cpu);
2301 if (!group) {
2302 sd = sd->child;
2303 continue;
2304 }
2305
2306 new_cpu = find_idlest_cpu(group, t, cpu);
2307 if (new_cpu == -1 || new_cpu == cpu) {
2308 /* Now try balancing at a lower domain level of cpu */
2309 sd = sd->child;
2310 continue;
2311 }
2312
2313 /* Now try balancing at a lower domain level of new_cpu */
2314 cpu = new_cpu;
2315 weight = cpumask_weight(sched_domain_span(sd));
2316 sd = NULL;
2317 for_each_domain(cpu, tmp) {
2318 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2319 break;
2320 if (tmp->flags & flag)
2321 sd = tmp;
2322 }
2323 /* while loop will break here if sd == NULL */
2324 }
2325
2326 return cpu;
2327 }
2328
2329 #endif /* CONFIG_SMP */
2330
2331 /**
2332 * task_oncpu_function_call - call a function on the cpu on which a task runs
2333 * @p: the task to evaluate
2334 * @func: the function to be called
2335 * @info: the function call argument
2336 *
2337 * Calls the function @func when the task is currently running. This might
2338 * be on the current CPU, which just calls the function directly
2339 */
2340 void task_oncpu_function_call(struct task_struct *p,
2341 void (*func) (void *info), void *info)
2342 {
2343 int cpu;
2344
2345 preempt_disable();
2346 cpu = task_cpu(p);
2347 if (task_curr(p))
2348 smp_call_function_single(cpu, func, info, 1);
2349 preempt_enable();
2350 }
2351
2352 /***
2353 * try_to_wake_up - wake up a thread
2354 * @p: the to-be-woken-up thread
2355 * @state: the mask of task states that can be woken
2356 * @sync: do a synchronous wakeup?
2357 *
2358 * Put it on the run-queue if it's not already there. The "current"
2359 * thread is always on the run-queue (except when the actual
2360 * re-schedule is in progress), and as such you're allowed to do
2361 * the simpler "current->state = TASK_RUNNING" to mark yourself
2362 * runnable without the overhead of this.
2363 *
2364 * returns failure only if the task is already active.
2365 */
2366 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2367 {
2368 int cpu, orig_cpu, this_cpu, success = 0;
2369 unsigned long flags;
2370 long old_state;
2371 struct rq *rq;
2372
2373 if (!sched_feat(SYNC_WAKEUPS))
2374 sync = 0;
2375
2376 #ifdef CONFIG_SMP
2377 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2378 struct sched_domain *sd;
2379
2380 this_cpu = raw_smp_processor_id();
2381 cpu = task_cpu(p);
2382
2383 for_each_domain(this_cpu, sd) {
2384 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2385 update_shares(sd);
2386 break;
2387 }
2388 }
2389 }
2390 #endif
2391
2392 smp_wmb();
2393 rq = task_rq_lock(p, &flags);
2394 update_rq_clock(rq);
2395 old_state = p->state;
2396 if (!(old_state & state))
2397 goto out;
2398
2399 if (p->se.on_rq)
2400 goto out_running;
2401
2402 cpu = task_cpu(p);
2403 orig_cpu = cpu;
2404 this_cpu = smp_processor_id();
2405
2406 #ifdef CONFIG_SMP
2407 if (unlikely(task_running(rq, p)))
2408 goto out_activate;
2409
2410 cpu = p->sched_class->select_task_rq(p, sync);
2411 if (cpu != orig_cpu) {
2412 set_task_cpu(p, cpu);
2413 task_rq_unlock(rq, &flags);
2414 /* might preempt at this point */
2415 rq = task_rq_lock(p, &flags);
2416 old_state = p->state;
2417 if (!(old_state & state))
2418 goto out;
2419 if (p->se.on_rq)
2420 goto out_running;
2421
2422 this_cpu = smp_processor_id();
2423 cpu = task_cpu(p);
2424 }
2425
2426 #ifdef CONFIG_SCHEDSTATS
2427 schedstat_inc(rq, ttwu_count);
2428 if (cpu == this_cpu)
2429 schedstat_inc(rq, ttwu_local);
2430 else {
2431 struct sched_domain *sd;
2432 for_each_domain(this_cpu, sd) {
2433 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2434 schedstat_inc(sd, ttwu_wake_remote);
2435 break;
2436 }
2437 }
2438 }
2439 #endif /* CONFIG_SCHEDSTATS */
2440
2441 out_activate:
2442 #endif /* CONFIG_SMP */
2443 schedstat_inc(p, se.nr_wakeups);
2444 if (sync)
2445 schedstat_inc(p, se.nr_wakeups_sync);
2446 if (orig_cpu != cpu)
2447 schedstat_inc(p, se.nr_wakeups_migrate);
2448 if (cpu == this_cpu)
2449 schedstat_inc(p, se.nr_wakeups_local);
2450 else
2451 schedstat_inc(p, se.nr_wakeups_remote);
2452 activate_task(rq, p, 1);
2453 success = 1;
2454
2455 /*
2456 * Only attribute actual wakeups done by this task.
2457 */
2458 if (!in_interrupt()) {
2459 struct sched_entity *se = &current->se;
2460 u64 sample = se->sum_exec_runtime;
2461
2462 if (se->last_wakeup)
2463 sample -= se->last_wakeup;
2464 else
2465 sample -= se->start_runtime;
2466 update_avg(&se->avg_wakeup, sample);
2467
2468 se->last_wakeup = se->sum_exec_runtime;
2469 }
2470
2471 out_running:
2472 trace_sched_wakeup(rq, p, success);
2473 check_preempt_curr(rq, p, sync);
2474
2475 p->state = TASK_RUNNING;
2476 #ifdef CONFIG_SMP
2477 if (p->sched_class->task_wake_up)
2478 p->sched_class->task_wake_up(rq, p);
2479 #endif
2480 out:
2481 task_rq_unlock(rq, &flags);
2482
2483 return success;
2484 }
2485
2486 int wake_up_process(struct task_struct *p)
2487 {
2488 return try_to_wake_up(p, TASK_ALL, 0);
2489 }
2490 EXPORT_SYMBOL(wake_up_process);
2491
2492 int wake_up_state(struct task_struct *p, unsigned int state)
2493 {
2494 return try_to_wake_up(p, state, 0);
2495 }
2496
2497 /*
2498 * Perform scheduler related setup for a newly forked process p.
2499 * p is forked by current.
2500 *
2501 * __sched_fork() is basic setup used by init_idle() too:
2502 */
2503 static void __sched_fork(struct task_struct *p)
2504 {
2505 p->se.exec_start = 0;
2506 p->se.sum_exec_runtime = 0;
2507 p->se.prev_sum_exec_runtime = 0;
2508 p->se.nr_migrations = 0;
2509 p->se.last_wakeup = 0;
2510 p->se.avg_overlap = 0;
2511 p->se.start_runtime = 0;
2512 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2513
2514 #ifdef CONFIG_SCHEDSTATS
2515 p->se.wait_start = 0;
2516 p->se.sum_sleep_runtime = 0;
2517 p->se.sleep_start = 0;
2518 p->se.block_start = 0;
2519 p->se.sleep_max = 0;
2520 p->se.block_max = 0;
2521 p->se.exec_max = 0;
2522 p->se.slice_max = 0;
2523 p->se.wait_max = 0;
2524 #endif
2525
2526 INIT_LIST_HEAD(&p->rt.run_list);
2527 p->se.on_rq = 0;
2528 INIT_LIST_HEAD(&p->se.group_node);
2529
2530 #ifdef CONFIG_PREEMPT_NOTIFIERS
2531 INIT_HLIST_HEAD(&p->preempt_notifiers);
2532 #endif
2533
2534 /*
2535 * We mark the process as running here, but have not actually
2536 * inserted it onto the runqueue yet. This guarantees that
2537 * nobody will actually run it, and a signal or other external
2538 * event cannot wake it up and insert it on the runqueue either.
2539 */
2540 p->state = TASK_RUNNING;
2541 }
2542
2543 /*
2544 * fork()/clone()-time setup:
2545 */
2546 void sched_fork(struct task_struct *p, int clone_flags)
2547 {
2548 int cpu = get_cpu();
2549
2550 __sched_fork(p);
2551
2552 #ifdef CONFIG_SMP
2553 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2554 #endif
2555 set_task_cpu(p, cpu);
2556
2557 /*
2558 * Make sure we do not leak PI boosting priority to the child:
2559 */
2560 p->prio = current->normal_prio;
2561 if (!rt_prio(p->prio))
2562 p->sched_class = &fair_sched_class;
2563
2564 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2565 if (likely(sched_info_on()))
2566 memset(&p->sched_info, 0, sizeof(p->sched_info));
2567 #endif
2568 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2569 p->oncpu = 0;
2570 #endif
2571 #ifdef CONFIG_PREEMPT
2572 /* Want to start with kernel preemption disabled. */
2573 task_thread_info(p)->preempt_count = 1;
2574 #endif
2575 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2576
2577 put_cpu();
2578 }
2579
2580 /*
2581 * wake_up_new_task - wake up a newly created task for the first time.
2582 *
2583 * This function will do some initial scheduler statistics housekeeping
2584 * that must be done for every newly created context, then puts the task
2585 * on the runqueue and wakes it.
2586 */
2587 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2588 {
2589 unsigned long flags;
2590 struct rq *rq;
2591
2592 rq = task_rq_lock(p, &flags);
2593 BUG_ON(p->state != TASK_RUNNING);
2594 update_rq_clock(rq);
2595
2596 p->prio = effective_prio(p);
2597
2598 if (!p->sched_class->task_new || !current->se.on_rq) {
2599 activate_task(rq, p, 0);
2600 } else {
2601 /*
2602 * Let the scheduling class do new task startup
2603 * management (if any):
2604 */
2605 p->sched_class->task_new(rq, p);
2606 inc_nr_running(rq);
2607 }
2608 trace_sched_wakeup_new(rq, p, 1);
2609 check_preempt_curr(rq, p, 0);
2610 #ifdef CONFIG_SMP
2611 if (p->sched_class->task_wake_up)
2612 p->sched_class->task_wake_up(rq, p);
2613 #endif
2614 task_rq_unlock(rq, &flags);
2615 }
2616
2617 #ifdef CONFIG_PREEMPT_NOTIFIERS
2618
2619 /**
2620 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2621 * @notifier: notifier struct to register
2622 */
2623 void preempt_notifier_register(struct preempt_notifier *notifier)
2624 {
2625 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2626 }
2627 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2628
2629 /**
2630 * preempt_notifier_unregister - no longer interested in preemption notifications
2631 * @notifier: notifier struct to unregister
2632 *
2633 * This is safe to call from within a preemption notifier.
2634 */
2635 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2636 {
2637 hlist_del(&notifier->link);
2638 }
2639 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2640
2641 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2642 {
2643 struct preempt_notifier *notifier;
2644 struct hlist_node *node;
2645
2646 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2647 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2648 }
2649
2650 static void
2651 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2652 struct task_struct *next)
2653 {
2654 struct preempt_notifier *notifier;
2655 struct hlist_node *node;
2656
2657 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2658 notifier->ops->sched_out(notifier, next);
2659 }
2660
2661 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2662
2663 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2664 {
2665 }
2666
2667 static void
2668 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2669 struct task_struct *next)
2670 {
2671 }
2672
2673 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2674
2675 /**
2676 * prepare_task_switch - prepare to switch tasks
2677 * @rq: the runqueue preparing to switch
2678 * @prev: the current task that is being switched out
2679 * @next: the task we are going to switch to.
2680 *
2681 * This is called with the rq lock held and interrupts off. It must
2682 * be paired with a subsequent finish_task_switch after the context
2683 * switch.
2684 *
2685 * prepare_task_switch sets up locking and calls architecture specific
2686 * hooks.
2687 */
2688 static inline void
2689 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2690 struct task_struct *next)
2691 {
2692 fire_sched_out_preempt_notifiers(prev, next);
2693 prepare_lock_switch(rq, next);
2694 prepare_arch_switch(next);
2695 }
2696
2697 /**
2698 * finish_task_switch - clean up after a task-switch
2699 * @rq: runqueue associated with task-switch
2700 * @prev: the thread we just switched away from.
2701 *
2702 * finish_task_switch must be called after the context switch, paired
2703 * with a prepare_task_switch call before the context switch.
2704 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2705 * and do any other architecture-specific cleanup actions.
2706 *
2707 * Note that we may have delayed dropping an mm in context_switch(). If
2708 * so, we finish that here outside of the runqueue lock. (Doing it
2709 * with the lock held can cause deadlocks; see schedule() for
2710 * details.)
2711 */
2712 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2713 __releases(rq->lock)
2714 {
2715 struct mm_struct *mm = rq->prev_mm;
2716 long prev_state;
2717 #ifdef CONFIG_SMP
2718 int post_schedule = 0;
2719
2720 if (current->sched_class->needs_post_schedule)
2721 post_schedule = current->sched_class->needs_post_schedule(rq);
2722 #endif
2723
2724 rq->prev_mm = NULL;
2725
2726 /*
2727 * A task struct has one reference for the use as "current".
2728 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2729 * schedule one last time. The schedule call will never return, and
2730 * the scheduled task must drop that reference.
2731 * The test for TASK_DEAD must occur while the runqueue locks are
2732 * still held, otherwise prev could be scheduled on another cpu, die
2733 * there before we look at prev->state, and then the reference would
2734 * be dropped twice.
2735 * Manfred Spraul <manfred@colorfullife.com>
2736 */
2737 prev_state = prev->state;
2738 finish_arch_switch(prev);
2739 perf_counter_task_sched_in(current, cpu_of(rq));
2740 finish_lock_switch(rq, prev);
2741 #ifdef CONFIG_SMP
2742 if (post_schedule)
2743 current->sched_class->post_schedule(rq);
2744 #endif
2745
2746 fire_sched_in_preempt_notifiers(current);
2747 if (mm)
2748 mmdrop(mm);
2749 if (unlikely(prev_state == TASK_DEAD)) {
2750 /*
2751 * Remove function-return probe instances associated with this
2752 * task and put them back on the free list.
2753 */
2754 kprobe_flush_task(prev);
2755 put_task_struct(prev);
2756 }
2757 }
2758
2759 /**
2760 * schedule_tail - first thing a freshly forked thread must call.
2761 * @prev: the thread we just switched away from.
2762 */
2763 asmlinkage void schedule_tail(struct task_struct *prev)
2764 __releases(rq->lock)
2765 {
2766 struct rq *rq = this_rq();
2767
2768 finish_task_switch(rq, prev);
2769 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2770 /* In this case, finish_task_switch does not reenable preemption */
2771 preempt_enable();
2772 #endif
2773 if (current->set_child_tid)
2774 put_user(task_pid_vnr(current), current->set_child_tid);
2775 }
2776
2777 /*
2778 * context_switch - switch to the new MM and the new
2779 * thread's register state.
2780 */
2781 static inline void
2782 context_switch(struct rq *rq, struct task_struct *prev,
2783 struct task_struct *next)
2784 {
2785 struct mm_struct *mm, *oldmm;
2786
2787 prepare_task_switch(rq, prev, next);
2788 trace_sched_switch(rq, prev, next);
2789 mm = next->mm;
2790 oldmm = prev->active_mm;
2791 /*
2792 * For paravirt, this is coupled with an exit in switch_to to
2793 * combine the page table reload and the switch backend into
2794 * one hypercall.
2795 */
2796 arch_enter_lazy_cpu_mode();
2797
2798 if (unlikely(!mm)) {
2799 next->active_mm = oldmm;
2800 atomic_inc(&oldmm->mm_count);
2801 enter_lazy_tlb(oldmm, next);
2802 } else
2803 switch_mm(oldmm, mm, next);
2804
2805 if (unlikely(!prev->mm)) {
2806 prev->active_mm = NULL;
2807 rq->prev_mm = oldmm;
2808 }
2809 /*
2810 * Since the runqueue lock will be released by the next
2811 * task (which is an invalid locking op but in the case
2812 * of the scheduler it's an obvious special-case), so we
2813 * do an early lockdep release here:
2814 */
2815 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2816 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2817 #endif
2818
2819 /* Here we just switch the register state and the stack. */
2820 switch_to(prev, next, prev);
2821
2822 barrier();
2823 /*
2824 * this_rq must be evaluated again because prev may have moved
2825 * CPUs since it called schedule(), thus the 'rq' on its stack
2826 * frame will be invalid.
2827 */
2828 finish_task_switch(this_rq(), prev);
2829 }
2830
2831 /*
2832 * nr_running, nr_uninterruptible and nr_context_switches:
2833 *
2834 * externally visible scheduler statistics: current number of runnable
2835 * threads, current number of uninterruptible-sleeping threads, total
2836 * number of context switches performed since bootup.
2837 */
2838 unsigned long nr_running(void)
2839 {
2840 unsigned long i, sum = 0;
2841
2842 for_each_online_cpu(i)
2843 sum += cpu_rq(i)->nr_running;
2844
2845 return sum;
2846 }
2847
2848 unsigned long nr_uninterruptible(void)
2849 {
2850 unsigned long i, sum = 0;
2851
2852 for_each_possible_cpu(i)
2853 sum += cpu_rq(i)->nr_uninterruptible;
2854
2855 /*
2856 * Since we read the counters lockless, it might be slightly
2857 * inaccurate. Do not allow it to go below zero though:
2858 */
2859 if (unlikely((long)sum < 0))
2860 sum = 0;
2861
2862 return sum;
2863 }
2864
2865 unsigned long long nr_context_switches(void)
2866 {
2867 int i;
2868 unsigned long long sum = 0;
2869
2870 for_each_possible_cpu(i)
2871 sum += cpu_rq(i)->nr_switches;
2872
2873 return sum;
2874 }
2875
2876 unsigned long nr_iowait(void)
2877 {
2878 unsigned long i, sum = 0;
2879
2880 for_each_possible_cpu(i)
2881 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2882
2883 return sum;
2884 }
2885
2886 unsigned long nr_active(void)
2887 {
2888 unsigned long i, running = 0, uninterruptible = 0;
2889
2890 for_each_online_cpu(i) {
2891 running += cpu_rq(i)->nr_running;
2892 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2893 }
2894
2895 if (unlikely((long)uninterruptible < 0))
2896 uninterruptible = 0;
2897
2898 return running + uninterruptible;
2899 }
2900
2901 /*
2902 * Externally visible per-cpu scheduler statistics:
2903 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2904 */
2905 u64 cpu_nr_migrations(int cpu)
2906 {
2907 return cpu_rq(cpu)->nr_migrations_in;
2908 }
2909
2910 /*
2911 * Update rq->cpu_load[] statistics. This function is usually called every
2912 * scheduler tick (TICK_NSEC).
2913 */
2914 static void update_cpu_load(struct rq *this_rq)
2915 {
2916 unsigned long this_load = this_rq->load.weight;
2917 int i, scale;
2918
2919 this_rq->nr_load_updates++;
2920
2921 /* Update our load: */
2922 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2923 unsigned long old_load, new_load;
2924
2925 /* scale is effectively 1 << i now, and >> i divides by scale */
2926
2927 old_load = this_rq->cpu_load[i];
2928 new_load = this_load;
2929 /*
2930 * Round up the averaging division if load is increasing. This
2931 * prevents us from getting stuck on 9 if the load is 10, for
2932 * example.
2933 */
2934 if (new_load > old_load)
2935 new_load += scale-1;
2936 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2937 }
2938 }
2939
2940 #ifdef CONFIG_SMP
2941
2942 /*
2943 * double_rq_lock - safely lock two runqueues
2944 *
2945 * Note this does not disable interrupts like task_rq_lock,
2946 * you need to do so manually before calling.
2947 */
2948 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2949 __acquires(rq1->lock)
2950 __acquires(rq2->lock)
2951 {
2952 BUG_ON(!irqs_disabled());
2953 if (rq1 == rq2) {
2954 spin_lock(&rq1->lock);
2955 __acquire(rq2->lock); /* Fake it out ;) */
2956 } else {
2957 if (rq1 < rq2) {
2958 spin_lock(&rq1->lock);
2959 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2960 } else {
2961 spin_lock(&rq2->lock);
2962 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2963 }
2964 }
2965 update_rq_clock(rq1);
2966 update_rq_clock(rq2);
2967 }
2968
2969 /*
2970 * double_rq_unlock - safely unlock two runqueues
2971 *
2972 * Note this does not restore interrupts like task_rq_unlock,
2973 * you need to do so manually after calling.
2974 */
2975 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2976 __releases(rq1->lock)
2977 __releases(rq2->lock)
2978 {
2979 spin_unlock(&rq1->lock);
2980 if (rq1 != rq2)
2981 spin_unlock(&rq2->lock);
2982 else
2983 __release(rq2->lock);
2984 }
2985
2986 /*
2987 * If dest_cpu is allowed for this process, migrate the task to it.
2988 * This is accomplished by forcing the cpu_allowed mask to only
2989 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2990 * the cpu_allowed mask is restored.
2991 */
2992 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2993 {
2994 struct migration_req req;
2995 unsigned long flags;
2996 struct rq *rq;
2997
2998 rq = task_rq_lock(p, &flags);
2999 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3000 || unlikely(!cpu_active(dest_cpu)))
3001 goto out;
3002
3003 /* force the process onto the specified CPU */
3004 if (migrate_task(p, dest_cpu, &req)) {
3005 /* Need to wait for migration thread (might exit: take ref). */
3006 struct task_struct *mt = rq->migration_thread;
3007
3008 get_task_struct(mt);
3009 task_rq_unlock(rq, &flags);
3010 wake_up_process(mt);
3011 put_task_struct(mt);
3012 wait_for_completion(&req.done);
3013
3014 return;
3015 }
3016 out:
3017 task_rq_unlock(rq, &flags);
3018 }
3019
3020 /*
3021 * sched_exec - execve() is a valuable balancing opportunity, because at
3022 * this point the task has the smallest effective memory and cache footprint.
3023 */
3024 void sched_exec(void)
3025 {
3026 int new_cpu, this_cpu = get_cpu();
3027 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3028 put_cpu();
3029 if (new_cpu != this_cpu)
3030 sched_migrate_task(current, new_cpu);
3031 }
3032
3033 /*
3034 * pull_task - move a task from a remote runqueue to the local runqueue.
3035 * Both runqueues must be locked.
3036 */
3037 static void pull_task(struct rq *src_rq, struct task_struct *p,
3038 struct rq *this_rq, int this_cpu)
3039 {
3040 deactivate_task(src_rq, p, 0);
3041 set_task_cpu(p, this_cpu);
3042 activate_task(this_rq, p, 0);
3043 /*
3044 * Note that idle threads have a prio of MAX_PRIO, for this test
3045 * to be always true for them.
3046 */
3047 check_preempt_curr(this_rq, p, 0);
3048 }
3049
3050 /*
3051 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3052 */
3053 static
3054 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3055 struct sched_domain *sd, enum cpu_idle_type idle,
3056 int *all_pinned)
3057 {
3058 int tsk_cache_hot = 0;
3059 /*
3060 * We do not migrate tasks that are:
3061 * 1) running (obviously), or
3062 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3063 * 3) are cache-hot on their current CPU.
3064 */
3065 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3066 schedstat_inc(p, se.nr_failed_migrations_affine);
3067 return 0;
3068 }
3069 *all_pinned = 0;
3070
3071 if (task_running(rq, p)) {
3072 schedstat_inc(p, se.nr_failed_migrations_running);
3073 return 0;
3074 }
3075
3076 /*
3077 * Aggressive migration if:
3078 * 1) task is cache cold, or
3079 * 2) too many balance attempts have failed.
3080 */
3081
3082 tsk_cache_hot = task_hot(p, rq->clock, sd);
3083 if (!tsk_cache_hot ||
3084 sd->nr_balance_failed > sd->cache_nice_tries) {
3085 #ifdef CONFIG_SCHEDSTATS
3086 if (tsk_cache_hot) {
3087 schedstat_inc(sd, lb_hot_gained[idle]);
3088 schedstat_inc(p, se.nr_forced_migrations);
3089 }
3090 #endif
3091 return 1;
3092 }
3093
3094 if (tsk_cache_hot) {
3095 schedstat_inc(p, se.nr_failed_migrations_hot);
3096 return 0;
3097 }
3098 return 1;
3099 }
3100
3101 static unsigned long
3102 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3103 unsigned long max_load_move, struct sched_domain *sd,
3104 enum cpu_idle_type idle, int *all_pinned,
3105 int *this_best_prio, struct rq_iterator *iterator)
3106 {
3107 int loops = 0, pulled = 0, pinned = 0;
3108 struct task_struct *p;
3109 long rem_load_move = max_load_move;
3110
3111 if (max_load_move == 0)
3112 goto out;
3113
3114 pinned = 1;
3115
3116 /*
3117 * Start the load-balancing iterator:
3118 */
3119 p = iterator->start(iterator->arg);
3120 next:
3121 if (!p || loops++ > sysctl_sched_nr_migrate)
3122 goto out;
3123
3124 if ((p->se.load.weight >> 1) > rem_load_move ||
3125 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3126 p = iterator->next(iterator->arg);
3127 goto next;
3128 }
3129
3130 pull_task(busiest, p, this_rq, this_cpu);
3131 pulled++;
3132 rem_load_move -= p->se.load.weight;
3133
3134 #ifdef CONFIG_PREEMPT
3135 /*
3136 * NEWIDLE balancing is a source of latency, so preemptible kernels
3137 * will stop after the first task is pulled to minimize the critical
3138 * section.
3139 */
3140 if (idle == CPU_NEWLY_IDLE)
3141 goto out;
3142 #endif
3143
3144 /*
3145 * We only want to steal up to the prescribed amount of weighted load.
3146 */
3147 if (rem_load_move > 0) {
3148 if (p->prio < *this_best_prio)
3149 *this_best_prio = p->prio;
3150 p = iterator->next(iterator->arg);
3151 goto next;
3152 }
3153 out:
3154 /*
3155 * Right now, this is one of only two places pull_task() is called,
3156 * so we can safely collect pull_task() stats here rather than
3157 * inside pull_task().
3158 */
3159 schedstat_add(sd, lb_gained[idle], pulled);
3160
3161 if (all_pinned)
3162 *all_pinned = pinned;
3163
3164 return max_load_move - rem_load_move;
3165 }
3166
3167 /*
3168 * move_tasks tries to move up to max_load_move weighted load from busiest to
3169 * this_rq, as part of a balancing operation within domain "sd".
3170 * Returns 1 if successful and 0 otherwise.
3171 *
3172 * Called with both runqueues locked.
3173 */
3174 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3175 unsigned long max_load_move,
3176 struct sched_domain *sd, enum cpu_idle_type idle,
3177 int *all_pinned)
3178 {
3179 const struct sched_class *class = sched_class_highest;
3180 unsigned long total_load_moved = 0;
3181 int this_best_prio = this_rq->curr->prio;
3182
3183 do {
3184 total_load_moved +=
3185 class->load_balance(this_rq, this_cpu, busiest,
3186 max_load_move - total_load_moved,
3187 sd, idle, all_pinned, &this_best_prio);
3188 class = class->next;
3189
3190 #ifdef CONFIG_PREEMPT
3191 /*
3192 * NEWIDLE balancing is a source of latency, so preemptible
3193 * kernels will stop after the first task is pulled to minimize
3194 * the critical section.
3195 */
3196 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3197 break;
3198 #endif
3199 } while (class && max_load_move > total_load_moved);
3200
3201 return total_load_moved > 0;
3202 }
3203
3204 static int
3205 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3206 struct sched_domain *sd, enum cpu_idle_type idle,
3207 struct rq_iterator *iterator)
3208 {
3209 struct task_struct *p = iterator->start(iterator->arg);
3210 int pinned = 0;
3211
3212 while (p) {
3213 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3214 pull_task(busiest, p, this_rq, this_cpu);
3215 /*
3216 * Right now, this is only the second place pull_task()
3217 * is called, so we can safely collect pull_task()
3218 * stats here rather than inside pull_task().
3219 */
3220 schedstat_inc(sd, lb_gained[idle]);
3221
3222 return 1;
3223 }
3224 p = iterator->next(iterator->arg);
3225 }
3226
3227 return 0;
3228 }
3229
3230 /*
3231 * move_one_task tries to move exactly one task from busiest to this_rq, as
3232 * part of active balancing operations within "domain".
3233 * Returns 1 if successful and 0 otherwise.
3234 *
3235 * Called with both runqueues locked.
3236 */
3237 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3238 struct sched_domain *sd, enum cpu_idle_type idle)
3239 {
3240 const struct sched_class *class;
3241
3242 for (class = sched_class_highest; class; class = class->next)
3243 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3244 return 1;
3245
3246 return 0;
3247 }
3248 /********** Helpers for find_busiest_group ************************/
3249 /*
3250 * sd_lb_stats - Structure to store the statistics of a sched_domain
3251 * during load balancing.
3252 */
3253 struct sd_lb_stats {
3254 struct sched_group *busiest; /* Busiest group in this sd */
3255 struct sched_group *this; /* Local group in this sd */
3256 unsigned long total_load; /* Total load of all groups in sd */
3257 unsigned long total_pwr; /* Total power of all groups in sd */
3258 unsigned long avg_load; /* Average load across all groups in sd */
3259
3260 /** Statistics of this group */
3261 unsigned long this_load;
3262 unsigned long this_load_per_task;
3263 unsigned long this_nr_running;
3264
3265 /* Statistics of the busiest group */
3266 unsigned long max_load;
3267 unsigned long busiest_load_per_task;
3268 unsigned long busiest_nr_running;
3269
3270 int group_imb; /* Is there imbalance in this sd */
3271 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3272 int power_savings_balance; /* Is powersave balance needed for this sd */
3273 struct sched_group *group_min; /* Least loaded group in sd */
3274 struct sched_group *group_leader; /* Group which relieves group_min */
3275 unsigned long min_load_per_task; /* load_per_task in group_min */
3276 unsigned long leader_nr_running; /* Nr running of group_leader */
3277 unsigned long min_nr_running; /* Nr running of group_min */
3278 #endif
3279 };
3280
3281 /*
3282 * sg_lb_stats - stats of a sched_group required for load_balancing
3283 */
3284 struct sg_lb_stats {
3285 unsigned long avg_load; /*Avg load across the CPUs of the group */
3286 unsigned long group_load; /* Total load over the CPUs of the group */
3287 unsigned long sum_nr_running; /* Nr tasks running in the group */
3288 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3289 unsigned long group_capacity;
3290 int group_imb; /* Is there an imbalance in the group ? */
3291 };
3292
3293 /**
3294 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3295 * @group: The group whose first cpu is to be returned.
3296 */
3297 static inline unsigned int group_first_cpu(struct sched_group *group)
3298 {
3299 return cpumask_first(sched_group_cpus(group));
3300 }
3301
3302 /**
3303 * get_sd_load_idx - Obtain the load index for a given sched domain.
3304 * @sd: The sched_domain whose load_idx is to be obtained.
3305 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3306 */
3307 static inline int get_sd_load_idx(struct sched_domain *sd,
3308 enum cpu_idle_type idle)
3309 {
3310 int load_idx;
3311
3312 switch (idle) {
3313 case CPU_NOT_IDLE:
3314 load_idx = sd->busy_idx;
3315 break;
3316
3317 case CPU_NEWLY_IDLE:
3318 load_idx = sd->newidle_idx;
3319 break;
3320 default:
3321 load_idx = sd->idle_idx;
3322 break;
3323 }
3324
3325 return load_idx;
3326 }
3327
3328
3329 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3330 /**
3331 * init_sd_power_savings_stats - Initialize power savings statistics for
3332 * the given sched_domain, during load balancing.
3333 *
3334 * @sd: Sched domain whose power-savings statistics are to be initialized.
3335 * @sds: Variable containing the statistics for sd.
3336 * @idle: Idle status of the CPU at which we're performing load-balancing.
3337 */
3338 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3339 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3340 {
3341 /*
3342 * Busy processors will not participate in power savings
3343 * balance.
3344 */
3345 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3346 sds->power_savings_balance = 0;
3347 else {
3348 sds->power_savings_balance = 1;
3349 sds->min_nr_running = ULONG_MAX;
3350 sds->leader_nr_running = 0;
3351 }
3352 }
3353
3354 /**
3355 * update_sd_power_savings_stats - Update the power saving stats for a
3356 * sched_domain while performing load balancing.
3357 *
3358 * @group: sched_group belonging to the sched_domain under consideration.
3359 * @sds: Variable containing the statistics of the sched_domain
3360 * @local_group: Does group contain the CPU for which we're performing
3361 * load balancing ?
3362 * @sgs: Variable containing the statistics of the group.
3363 */
3364 static inline void update_sd_power_savings_stats(struct sched_group *group,
3365 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3366 {
3367
3368 if (!sds->power_savings_balance)
3369 return;
3370
3371 /*
3372 * If the local group is idle or completely loaded
3373 * no need to do power savings balance at this domain
3374 */
3375 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3376 !sds->this_nr_running))
3377 sds->power_savings_balance = 0;
3378
3379 /*
3380 * If a group is already running at full capacity or idle,
3381 * don't include that group in power savings calculations
3382 */
3383 if (!sds->power_savings_balance ||
3384 sgs->sum_nr_running >= sgs->group_capacity ||
3385 !sgs->sum_nr_running)
3386 return;
3387
3388 /*
3389 * Calculate the group which has the least non-idle load.
3390 * This is the group from where we need to pick up the load
3391 * for saving power
3392 */
3393 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3394 (sgs->sum_nr_running == sds->min_nr_running &&
3395 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3396 sds->group_min = group;
3397 sds->min_nr_running = sgs->sum_nr_running;
3398 sds->min_load_per_task = sgs->sum_weighted_load /
3399 sgs->sum_nr_running;
3400 }
3401
3402 /*
3403 * Calculate the group which is almost near its
3404 * capacity but still has some space to pick up some load
3405 * from other group and save more power
3406 */
3407 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3408 return;
3409
3410 if (sgs->sum_nr_running > sds->leader_nr_running ||
3411 (sgs->sum_nr_running == sds->leader_nr_running &&
3412 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3413 sds->group_leader = group;
3414 sds->leader_nr_running = sgs->sum_nr_running;
3415 }
3416 }
3417
3418 /**
3419 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3420 * @sds: Variable containing the statistics of the sched_domain
3421 * under consideration.
3422 * @this_cpu: Cpu at which we're currently performing load-balancing.
3423 * @imbalance: Variable to store the imbalance.
3424 *
3425 * Description:
3426 * Check if we have potential to perform some power-savings balance.
3427 * If yes, set the busiest group to be the least loaded group in the
3428 * sched_domain, so that it's CPUs can be put to idle.
3429 *
3430 * Returns 1 if there is potential to perform power-savings balance.
3431 * Else returns 0.
3432 */
3433 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3434 int this_cpu, unsigned long *imbalance)
3435 {
3436 if (!sds->power_savings_balance)
3437 return 0;
3438
3439 if (sds->this != sds->group_leader ||
3440 sds->group_leader == sds->group_min)
3441 return 0;
3442
3443 *imbalance = sds->min_load_per_task;
3444 sds->busiest = sds->group_min;
3445
3446 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3447 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3448 group_first_cpu(sds->group_leader);
3449 }
3450
3451 return 1;
3452
3453 }
3454 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3455 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3456 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3457 {
3458 return;
3459 }
3460
3461 static inline void update_sd_power_savings_stats(struct sched_group *group,
3462 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3463 {
3464 return;
3465 }
3466
3467 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3468 int this_cpu, unsigned long *imbalance)
3469 {
3470 return 0;
3471 }
3472 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3473
3474
3475 /**
3476 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3477 * @group: sched_group whose statistics are to be updated.
3478 * @this_cpu: Cpu for which load balance is currently performed.
3479 * @idle: Idle status of this_cpu
3480 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3481 * @sd_idle: Idle status of the sched_domain containing group.
3482 * @local_group: Does group contain this_cpu.
3483 * @cpus: Set of cpus considered for load balancing.
3484 * @balance: Should we balance.
3485 * @sgs: variable to hold the statistics for this group.
3486 */
3487 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3488 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3489 int local_group, const struct cpumask *cpus,
3490 int *balance, struct sg_lb_stats *sgs)
3491 {
3492 unsigned long load, max_cpu_load, min_cpu_load;
3493 int i;
3494 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3495 unsigned long sum_avg_load_per_task;
3496 unsigned long avg_load_per_task;
3497
3498 if (local_group)
3499 balance_cpu = group_first_cpu(group);
3500
3501 /* Tally up the load of all CPUs in the group */
3502 sum_avg_load_per_task = avg_load_per_task = 0;
3503 max_cpu_load = 0;
3504 min_cpu_load = ~0UL;
3505
3506 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3507 struct rq *rq = cpu_rq(i);
3508
3509 if (*sd_idle && rq->nr_running)
3510 *sd_idle = 0;
3511
3512 /* Bias balancing toward cpus of our domain */
3513 if (local_group) {
3514 if (idle_cpu(i) && !first_idle_cpu) {
3515 first_idle_cpu = 1;
3516 balance_cpu = i;
3517 }
3518
3519 load = target_load(i, load_idx);
3520 } else {
3521 load = source_load(i, load_idx);
3522 if (load > max_cpu_load)
3523 max_cpu_load = load;
3524 if (min_cpu_load > load)
3525 min_cpu_load = load;
3526 }
3527
3528 sgs->group_load += load;
3529 sgs->sum_nr_running += rq->nr_running;
3530 sgs->sum_weighted_load += weighted_cpuload(i);
3531
3532 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3533 }
3534
3535 /*
3536 * First idle cpu or the first cpu(busiest) in this sched group
3537 * is eligible for doing load balancing at this and above
3538 * domains. In the newly idle case, we will allow all the cpu's
3539 * to do the newly idle load balance.
3540 */
3541 if (idle != CPU_NEWLY_IDLE && local_group &&
3542 balance_cpu != this_cpu && balance) {
3543 *balance = 0;
3544 return;
3545 }
3546
3547 /* Adjust by relative CPU power of the group */
3548 sgs->avg_load = sg_div_cpu_power(group,
3549 sgs->group_load * SCHED_LOAD_SCALE);
3550
3551
3552 /*
3553 * Consider the group unbalanced when the imbalance is larger
3554 * than the average weight of two tasks.
3555 *
3556 * APZ: with cgroup the avg task weight can vary wildly and
3557 * might not be a suitable number - should we keep a
3558 * normalized nr_running number somewhere that negates
3559 * the hierarchy?
3560 */
3561 avg_load_per_task = sg_div_cpu_power(group,
3562 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3563
3564 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3565 sgs->group_imb = 1;
3566
3567 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3568
3569 }
3570
3571 /**
3572 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3573 * @sd: sched_domain whose statistics are to be updated.
3574 * @this_cpu: Cpu for which load balance is currently performed.
3575 * @idle: Idle status of this_cpu
3576 * @sd_idle: Idle status of the sched_domain containing group.
3577 * @cpus: Set of cpus considered for load balancing.
3578 * @balance: Should we balance.
3579 * @sds: variable to hold the statistics for this sched_domain.
3580 */
3581 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3582 enum cpu_idle_type idle, int *sd_idle,
3583 const struct cpumask *cpus, int *balance,
3584 struct sd_lb_stats *sds)
3585 {
3586 struct sched_group *group = sd->groups;
3587 struct sg_lb_stats sgs;
3588 int load_idx;
3589
3590 init_sd_power_savings_stats(sd, sds, idle);
3591 load_idx = get_sd_load_idx(sd, idle);
3592
3593 do {
3594 int local_group;
3595
3596 local_group = cpumask_test_cpu(this_cpu,
3597 sched_group_cpus(group));
3598 memset(&sgs, 0, sizeof(sgs));
3599 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3600 local_group, cpus, balance, &sgs);
3601
3602 if (local_group && balance && !(*balance))
3603 return;
3604
3605 sds->total_load += sgs.group_load;
3606 sds->total_pwr += group->__cpu_power;
3607
3608 if (local_group) {
3609 sds->this_load = sgs.avg_load;
3610 sds->this = group;
3611 sds->this_nr_running = sgs.sum_nr_running;
3612 sds->this_load_per_task = sgs.sum_weighted_load;
3613 } else if (sgs.avg_load > sds->max_load &&
3614 (sgs.sum_nr_running > sgs.group_capacity ||
3615 sgs.group_imb)) {
3616 sds->max_load = sgs.avg_load;
3617 sds->busiest = group;
3618 sds->busiest_nr_running = sgs.sum_nr_running;
3619 sds->busiest_load_per_task = sgs.sum_weighted_load;
3620 sds->group_imb = sgs.group_imb;
3621 }
3622
3623 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3624 group = group->next;
3625 } while (group != sd->groups);
3626
3627 }
3628
3629 /**
3630 * fix_small_imbalance - Calculate the minor imbalance that exists
3631 * amongst the groups of a sched_domain, during
3632 * load balancing.
3633 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3634 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3635 * @imbalance: Variable to store the imbalance.
3636 */
3637 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3638 int this_cpu, unsigned long *imbalance)
3639 {
3640 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3641 unsigned int imbn = 2;
3642
3643 if (sds->this_nr_running) {
3644 sds->this_load_per_task /= sds->this_nr_running;
3645 if (sds->busiest_load_per_task >
3646 sds->this_load_per_task)
3647 imbn = 1;
3648 } else
3649 sds->this_load_per_task =
3650 cpu_avg_load_per_task(this_cpu);
3651
3652 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3653 sds->busiest_load_per_task * imbn) {
3654 *imbalance = sds->busiest_load_per_task;
3655 return;
3656 }
3657
3658 /*
3659 * OK, we don't have enough imbalance to justify moving tasks,
3660 * however we may be able to increase total CPU power used by
3661 * moving them.
3662 */
3663
3664 pwr_now += sds->busiest->__cpu_power *
3665 min(sds->busiest_load_per_task, sds->max_load);
3666 pwr_now += sds->this->__cpu_power *
3667 min(sds->this_load_per_task, sds->this_load);
3668 pwr_now /= SCHED_LOAD_SCALE;
3669
3670 /* Amount of load we'd subtract */
3671 tmp = sg_div_cpu_power(sds->busiest,
3672 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3673 if (sds->max_load > tmp)
3674 pwr_move += sds->busiest->__cpu_power *
3675 min(sds->busiest_load_per_task, sds->max_load - tmp);
3676
3677 /* Amount of load we'd add */
3678 if (sds->max_load * sds->busiest->__cpu_power <
3679 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3680 tmp = sg_div_cpu_power(sds->this,
3681 sds->max_load * sds->busiest->__cpu_power);
3682 else
3683 tmp = sg_div_cpu_power(sds->this,
3684 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3685 pwr_move += sds->this->__cpu_power *
3686 min(sds->this_load_per_task, sds->this_load + tmp);
3687 pwr_move /= SCHED_LOAD_SCALE;
3688
3689 /* Move if we gain throughput */
3690 if (pwr_move > pwr_now)
3691 *imbalance = sds->busiest_load_per_task;
3692 }
3693
3694 /**
3695 * calculate_imbalance - Calculate the amount of imbalance present within the
3696 * groups of a given sched_domain during load balance.
3697 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3698 * @this_cpu: Cpu for which currently load balance is being performed.
3699 * @imbalance: The variable to store the imbalance.
3700 */
3701 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3702 unsigned long *imbalance)
3703 {
3704 unsigned long max_pull;
3705 /*
3706 * In the presence of smp nice balancing, certain scenarios can have
3707 * max load less than avg load(as we skip the groups at or below
3708 * its cpu_power, while calculating max_load..)
3709 */
3710 if (sds->max_load < sds->avg_load) {
3711 *imbalance = 0;
3712 return fix_small_imbalance(sds, this_cpu, imbalance);
3713 }
3714
3715 /* Don't want to pull so many tasks that a group would go idle */
3716 max_pull = min(sds->max_load - sds->avg_load,
3717 sds->max_load - sds->busiest_load_per_task);
3718
3719 /* How much load to actually move to equalise the imbalance */
3720 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3721 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3722 / SCHED_LOAD_SCALE;
3723
3724 /*
3725 * if *imbalance is less than the average load per runnable task
3726 * there is no gaurantee that any tasks will be moved so we'll have
3727 * a think about bumping its value to force at least one task to be
3728 * moved
3729 */
3730 if (*imbalance < sds->busiest_load_per_task)
3731 return fix_small_imbalance(sds, this_cpu, imbalance);
3732
3733 }
3734 /******* find_busiest_group() helpers end here *********************/
3735
3736 /**
3737 * find_busiest_group - Returns the busiest group within the sched_domain
3738 * if there is an imbalance. If there isn't an imbalance, and
3739 * the user has opted for power-savings, it returns a group whose
3740 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3741 * such a group exists.
3742 *
3743 * Also calculates the amount of weighted load which should be moved
3744 * to restore balance.
3745 *
3746 * @sd: The sched_domain whose busiest group is to be returned.
3747 * @this_cpu: The cpu for which load balancing is currently being performed.
3748 * @imbalance: Variable which stores amount of weighted load which should
3749 * be moved to restore balance/put a group to idle.
3750 * @idle: The idle status of this_cpu.
3751 * @sd_idle: The idleness of sd
3752 * @cpus: The set of CPUs under consideration for load-balancing.
3753 * @balance: Pointer to a variable indicating if this_cpu
3754 * is the appropriate cpu to perform load balancing at this_level.
3755 *
3756 * Returns: - the busiest group if imbalance exists.
3757 * - If no imbalance and user has opted for power-savings balance,
3758 * return the least loaded group whose CPUs can be
3759 * put to idle by rebalancing its tasks onto our group.
3760 */
3761 static struct sched_group *
3762 find_busiest_group(struct sched_domain *sd, int this_cpu,
3763 unsigned long *imbalance, enum cpu_idle_type idle,
3764 int *sd_idle, const struct cpumask *cpus, int *balance)
3765 {
3766 struct sd_lb_stats sds;
3767
3768 memset(&sds, 0, sizeof(sds));
3769
3770 /*
3771 * Compute the various statistics relavent for load balancing at
3772 * this level.
3773 */
3774 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3775 balance, &sds);
3776
3777 /* Cases where imbalance does not exist from POV of this_cpu */
3778 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3779 * at this level.
3780 * 2) There is no busy sibling group to pull from.
3781 * 3) This group is the busiest group.
3782 * 4) This group is more busy than the avg busieness at this
3783 * sched_domain.
3784 * 5) The imbalance is within the specified limit.
3785 * 6) Any rebalance would lead to ping-pong
3786 */
3787 if (balance && !(*balance))
3788 goto ret;
3789
3790 if (!sds.busiest || sds.busiest_nr_running == 0)
3791 goto out_balanced;
3792
3793 if (sds.this_load >= sds.max_load)
3794 goto out_balanced;
3795
3796 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3797
3798 if (sds.this_load >= sds.avg_load)
3799 goto out_balanced;
3800
3801 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3802 goto out_balanced;
3803
3804 sds.busiest_load_per_task /= sds.busiest_nr_running;
3805 if (sds.group_imb)
3806 sds.busiest_load_per_task =
3807 min(sds.busiest_load_per_task, sds.avg_load);
3808
3809 /*
3810 * We're trying to get all the cpus to the average_load, so we don't
3811 * want to push ourselves above the average load, nor do we wish to
3812 * reduce the max loaded cpu below the average load, as either of these
3813 * actions would just result in more rebalancing later, and ping-pong
3814 * tasks around. Thus we look for the minimum possible imbalance.
3815 * Negative imbalances (*we* are more loaded than anyone else) will
3816 * be counted as no imbalance for these purposes -- we can't fix that
3817 * by pulling tasks to us. Be careful of negative numbers as they'll
3818 * appear as very large values with unsigned longs.
3819 */
3820 if (sds.max_load <= sds.busiest_load_per_task)
3821 goto out_balanced;
3822
3823 /* Looks like there is an imbalance. Compute it */
3824 calculate_imbalance(&sds, this_cpu, imbalance);
3825 return sds.busiest;
3826
3827 out_balanced:
3828 /*
3829 * There is no obvious imbalance. But check if we can do some balancing
3830 * to save power.
3831 */
3832 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3833 return sds.busiest;
3834 ret:
3835 *imbalance = 0;
3836 return NULL;
3837 }
3838
3839 /*
3840 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3841 */
3842 static struct rq *
3843 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3844 unsigned long imbalance, const struct cpumask *cpus)
3845 {
3846 struct rq *busiest = NULL, *rq;
3847 unsigned long max_load = 0;
3848 int i;
3849
3850 for_each_cpu(i, sched_group_cpus(group)) {
3851 unsigned long wl;
3852
3853 if (!cpumask_test_cpu(i, cpus))
3854 continue;
3855
3856 rq = cpu_rq(i);
3857 wl = weighted_cpuload(i);
3858
3859 if (rq->nr_running == 1 && wl > imbalance)
3860 continue;
3861
3862 if (wl > max_load) {
3863 max_load = wl;
3864 busiest = rq;
3865 }
3866 }
3867
3868 return busiest;
3869 }
3870
3871 /*
3872 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3873 * so long as it is large enough.
3874 */
3875 #define MAX_PINNED_INTERVAL 512
3876
3877 /* Working cpumask for load_balance and load_balance_newidle. */
3878 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3879
3880 /*
3881 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3882 * tasks if there is an imbalance.
3883 */
3884 static int load_balance(int this_cpu, struct rq *this_rq,
3885 struct sched_domain *sd, enum cpu_idle_type idle,
3886 int *balance)
3887 {
3888 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3889 struct sched_group *group;
3890 unsigned long imbalance;
3891 struct rq *busiest;
3892 unsigned long flags;
3893 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3894
3895 cpumask_setall(cpus);
3896
3897 /*
3898 * When power savings policy is enabled for the parent domain, idle
3899 * sibling can pick up load irrespective of busy siblings. In this case,
3900 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3901 * portraying it as CPU_NOT_IDLE.
3902 */
3903 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3904 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3905 sd_idle = 1;
3906
3907 schedstat_inc(sd, lb_count[idle]);
3908
3909 redo:
3910 update_shares(sd);
3911 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3912 cpus, balance);
3913
3914 if (*balance == 0)
3915 goto out_balanced;
3916
3917 if (!group) {
3918 schedstat_inc(sd, lb_nobusyg[idle]);
3919 goto out_balanced;
3920 }
3921
3922 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3923 if (!busiest) {
3924 schedstat_inc(sd, lb_nobusyq[idle]);
3925 goto out_balanced;
3926 }
3927
3928 BUG_ON(busiest == this_rq);
3929
3930 schedstat_add(sd, lb_imbalance[idle], imbalance);
3931
3932 ld_moved = 0;
3933 if (busiest->nr_running > 1) {
3934 /*
3935 * Attempt to move tasks. If find_busiest_group has found
3936 * an imbalance but busiest->nr_running <= 1, the group is
3937 * still unbalanced. ld_moved simply stays zero, so it is
3938 * correctly treated as an imbalance.
3939 */
3940 local_irq_save(flags);
3941 double_rq_lock(this_rq, busiest);
3942 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3943 imbalance, sd, idle, &all_pinned);
3944 double_rq_unlock(this_rq, busiest);
3945 local_irq_restore(flags);
3946
3947 /*
3948 * some other cpu did the load balance for us.
3949 */
3950 if (ld_moved && this_cpu != smp_processor_id())
3951 resched_cpu(this_cpu);
3952
3953 /* All tasks on this runqueue were pinned by CPU affinity */
3954 if (unlikely(all_pinned)) {
3955 cpumask_clear_cpu(cpu_of(busiest), cpus);
3956 if (!cpumask_empty(cpus))
3957 goto redo;
3958 goto out_balanced;
3959 }
3960 }
3961
3962 if (!ld_moved) {
3963 schedstat_inc(sd, lb_failed[idle]);
3964 sd->nr_balance_failed++;
3965
3966 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3967
3968 spin_lock_irqsave(&busiest->lock, flags);
3969
3970 /* don't kick the migration_thread, if the curr
3971 * task on busiest cpu can't be moved to this_cpu
3972 */
3973 if (!cpumask_test_cpu(this_cpu,
3974 &busiest->curr->cpus_allowed)) {
3975 spin_unlock_irqrestore(&busiest->lock, flags);
3976 all_pinned = 1;
3977 goto out_one_pinned;
3978 }
3979
3980 if (!busiest->active_balance) {
3981 busiest->active_balance = 1;
3982 busiest->push_cpu = this_cpu;
3983 active_balance = 1;
3984 }
3985 spin_unlock_irqrestore(&busiest->lock, flags);
3986 if (active_balance)
3987 wake_up_process(busiest->migration_thread);
3988
3989 /*
3990 * We've kicked active balancing, reset the failure
3991 * counter.
3992 */
3993 sd->nr_balance_failed = sd->cache_nice_tries+1;
3994 }
3995 } else
3996 sd->nr_balance_failed = 0;
3997
3998 if (likely(!active_balance)) {
3999 /* We were unbalanced, so reset the balancing interval */
4000 sd->balance_interval = sd->min_interval;
4001 } else {
4002 /*
4003 * If we've begun active balancing, start to back off. This
4004 * case may not be covered by the all_pinned logic if there
4005 * is only 1 task on the busy runqueue (because we don't call
4006 * move_tasks).
4007 */
4008 if (sd->balance_interval < sd->max_interval)
4009 sd->balance_interval *= 2;
4010 }
4011
4012 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4013 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4014 ld_moved = -1;
4015
4016 goto out;
4017
4018 out_balanced:
4019 schedstat_inc(sd, lb_balanced[idle]);
4020
4021 sd->nr_balance_failed = 0;
4022
4023 out_one_pinned:
4024 /* tune up the balancing interval */
4025 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4026 (sd->balance_interval < sd->max_interval))
4027 sd->balance_interval *= 2;
4028
4029 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4030 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4031 ld_moved = -1;
4032 else
4033 ld_moved = 0;
4034 out:
4035 if (ld_moved)
4036 update_shares(sd);
4037 return ld_moved;
4038 }
4039
4040 /*
4041 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4042 * tasks if there is an imbalance.
4043 *
4044 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4045 * this_rq is locked.
4046 */
4047 static int
4048 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4049 {
4050 struct sched_group *group;
4051 struct rq *busiest = NULL;
4052 unsigned long imbalance;
4053 int ld_moved = 0;
4054 int sd_idle = 0;
4055 int all_pinned = 0;
4056 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4057
4058 cpumask_setall(cpus);
4059
4060 /*
4061 * When power savings policy is enabled for the parent domain, idle
4062 * sibling can pick up load irrespective of busy siblings. In this case,
4063 * let the state of idle sibling percolate up as IDLE, instead of
4064 * portraying it as CPU_NOT_IDLE.
4065 */
4066 if (sd->flags & SD_SHARE_CPUPOWER &&
4067 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4068 sd_idle = 1;
4069
4070 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4071 redo:
4072 update_shares_locked(this_rq, sd);
4073 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4074 &sd_idle, cpus, NULL);
4075 if (!group) {
4076 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4077 goto out_balanced;
4078 }
4079
4080 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4081 if (!busiest) {
4082 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4083 goto out_balanced;
4084 }
4085
4086 BUG_ON(busiest == this_rq);
4087
4088 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4089
4090 ld_moved = 0;
4091 if (busiest->nr_running > 1) {
4092 /* Attempt to move tasks */
4093 double_lock_balance(this_rq, busiest);
4094 /* this_rq->clock is already updated */
4095 update_rq_clock(busiest);
4096 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4097 imbalance, sd, CPU_NEWLY_IDLE,
4098 &all_pinned);
4099 double_unlock_balance(this_rq, busiest);
4100
4101 if (unlikely(all_pinned)) {
4102 cpumask_clear_cpu(cpu_of(busiest), cpus);
4103 if (!cpumask_empty(cpus))
4104 goto redo;
4105 }
4106 }
4107
4108 if (!ld_moved) {
4109 int active_balance = 0;
4110
4111 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4112 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4113 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4114 return -1;
4115
4116 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4117 return -1;
4118
4119 if (sd->nr_balance_failed++ < 2)
4120 return -1;
4121
4122 /*
4123 * The only task running in a non-idle cpu can be moved to this
4124 * cpu in an attempt to completely freeup the other CPU
4125 * package. The same method used to move task in load_balance()
4126 * have been extended for load_balance_newidle() to speedup
4127 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4128 *
4129 * The package power saving logic comes from
4130 * find_busiest_group(). If there are no imbalance, then
4131 * f_b_g() will return NULL. However when sched_mc={1,2} then
4132 * f_b_g() will select a group from which a running task may be
4133 * pulled to this cpu in order to make the other package idle.
4134 * If there is no opportunity to make a package idle and if
4135 * there are no imbalance, then f_b_g() will return NULL and no
4136 * action will be taken in load_balance_newidle().
4137 *
4138 * Under normal task pull operation due to imbalance, there
4139 * will be more than one task in the source run queue and
4140 * move_tasks() will succeed. ld_moved will be true and this
4141 * active balance code will not be triggered.
4142 */
4143
4144 /* Lock busiest in correct order while this_rq is held */
4145 double_lock_balance(this_rq, busiest);
4146
4147 /*
4148 * don't kick the migration_thread, if the curr
4149 * task on busiest cpu can't be moved to this_cpu
4150 */
4151 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4152 double_unlock_balance(this_rq, busiest);
4153 all_pinned = 1;
4154 return ld_moved;
4155 }
4156
4157 if (!busiest->active_balance) {
4158 busiest->active_balance = 1;
4159 busiest->push_cpu = this_cpu;
4160 active_balance = 1;
4161 }
4162
4163 double_unlock_balance(this_rq, busiest);
4164 /*
4165 * Should not call ttwu while holding a rq->lock
4166 */
4167 spin_unlock(&this_rq->lock);
4168 if (active_balance)
4169 wake_up_process(busiest->migration_thread);
4170 spin_lock(&this_rq->lock);
4171
4172 } else
4173 sd->nr_balance_failed = 0;
4174
4175 update_shares_locked(this_rq, sd);
4176 return ld_moved;
4177
4178 out_balanced:
4179 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4180 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4181 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4182 return -1;
4183 sd->nr_balance_failed = 0;
4184
4185 return 0;
4186 }
4187
4188 /*
4189 * idle_balance is called by schedule() if this_cpu is about to become
4190 * idle. Attempts to pull tasks from other CPUs.
4191 */
4192 static void idle_balance(int this_cpu, struct rq *this_rq)
4193 {
4194 struct sched_domain *sd;
4195 int pulled_task = 0;
4196 unsigned long next_balance = jiffies + HZ;
4197
4198 for_each_domain(this_cpu, sd) {
4199 unsigned long interval;
4200
4201 if (!(sd->flags & SD_LOAD_BALANCE))
4202 continue;
4203
4204 if (sd->flags & SD_BALANCE_NEWIDLE)
4205 /* If we've pulled tasks over stop searching: */
4206 pulled_task = load_balance_newidle(this_cpu, this_rq,
4207 sd);
4208
4209 interval = msecs_to_jiffies(sd->balance_interval);
4210 if (time_after(next_balance, sd->last_balance + interval))
4211 next_balance = sd->last_balance + interval;
4212 if (pulled_task)
4213 break;
4214 }
4215 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4216 /*
4217 * We are going idle. next_balance may be set based on
4218 * a busy processor. So reset next_balance.
4219 */
4220 this_rq->next_balance = next_balance;
4221 }
4222 }
4223
4224 /*
4225 * active_load_balance is run by migration threads. It pushes running tasks
4226 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4227 * running on each physical CPU where possible, and avoids physical /
4228 * logical imbalances.
4229 *
4230 * Called with busiest_rq locked.
4231 */
4232 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4233 {
4234 int target_cpu = busiest_rq->push_cpu;
4235 struct sched_domain *sd;
4236 struct rq *target_rq;
4237
4238 /* Is there any task to move? */
4239 if (busiest_rq->nr_running <= 1)
4240 return;
4241
4242 target_rq = cpu_rq(target_cpu);
4243
4244 /*
4245 * This condition is "impossible", if it occurs
4246 * we need to fix it. Originally reported by
4247 * Bjorn Helgaas on a 128-cpu setup.
4248 */
4249 BUG_ON(busiest_rq == target_rq);
4250
4251 /* move a task from busiest_rq to target_rq */
4252 double_lock_balance(busiest_rq, target_rq);
4253 update_rq_clock(busiest_rq);
4254 update_rq_clock(target_rq);
4255
4256 /* Search for an sd spanning us and the target CPU. */
4257 for_each_domain(target_cpu, sd) {
4258 if ((sd->flags & SD_LOAD_BALANCE) &&
4259 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4260 break;
4261 }
4262
4263 if (likely(sd)) {
4264 schedstat_inc(sd, alb_count);
4265
4266 if (move_one_task(target_rq, target_cpu, busiest_rq,
4267 sd, CPU_IDLE))
4268 schedstat_inc(sd, alb_pushed);
4269 else
4270 schedstat_inc(sd, alb_failed);
4271 }
4272 double_unlock_balance(busiest_rq, target_rq);
4273 }
4274
4275 #ifdef CONFIG_NO_HZ
4276 static struct {
4277 atomic_t load_balancer;
4278 cpumask_var_t cpu_mask;
4279 } nohz ____cacheline_aligned = {
4280 .load_balancer = ATOMIC_INIT(-1),
4281 };
4282
4283 /*
4284 * This routine will try to nominate the ilb (idle load balancing)
4285 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4286 * load balancing on behalf of all those cpus. If all the cpus in the system
4287 * go into this tickless mode, then there will be no ilb owner (as there is
4288 * no need for one) and all the cpus will sleep till the next wakeup event
4289 * arrives...
4290 *
4291 * For the ilb owner, tick is not stopped. And this tick will be used
4292 * for idle load balancing. ilb owner will still be part of
4293 * nohz.cpu_mask..
4294 *
4295 * While stopping the tick, this cpu will become the ilb owner if there
4296 * is no other owner. And will be the owner till that cpu becomes busy
4297 * or if all cpus in the system stop their ticks at which point
4298 * there is no need for ilb owner.
4299 *
4300 * When the ilb owner becomes busy, it nominates another owner, during the
4301 * next busy scheduler_tick()
4302 */
4303 int select_nohz_load_balancer(int stop_tick)
4304 {
4305 int cpu = smp_processor_id();
4306
4307 if (stop_tick) {
4308 cpu_rq(cpu)->in_nohz_recently = 1;
4309
4310 if (!cpu_active(cpu)) {
4311 if (atomic_read(&nohz.load_balancer) != cpu)
4312 return 0;
4313
4314 /*
4315 * If we are going offline and still the leader,
4316 * give up!
4317 */
4318 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4319 BUG();
4320
4321 return 0;
4322 }
4323
4324 cpumask_set_cpu(cpu, nohz.cpu_mask);
4325
4326 /* time for ilb owner also to sleep */
4327 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4328 if (atomic_read(&nohz.load_balancer) == cpu)
4329 atomic_set(&nohz.load_balancer, -1);
4330 return 0;
4331 }
4332
4333 if (atomic_read(&nohz.load_balancer) == -1) {
4334 /* make me the ilb owner */
4335 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4336 return 1;
4337 } else if (atomic_read(&nohz.load_balancer) == cpu)
4338 return 1;
4339 } else {
4340 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4341 return 0;
4342
4343 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4344
4345 if (atomic_read(&nohz.load_balancer) == cpu)
4346 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4347 BUG();
4348 }
4349 return 0;
4350 }
4351 #endif
4352
4353 static DEFINE_SPINLOCK(balancing);
4354
4355 /*
4356 * It checks each scheduling domain to see if it is due to be balanced,
4357 * and initiates a balancing operation if so.
4358 *
4359 * Balancing parameters are set up in arch_init_sched_domains.
4360 */
4361 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4362 {
4363 int balance = 1;
4364 struct rq *rq = cpu_rq(cpu);
4365 unsigned long interval;
4366 struct sched_domain *sd;
4367 /* Earliest time when we have to do rebalance again */
4368 unsigned long next_balance = jiffies + 60*HZ;
4369 int update_next_balance = 0;
4370 int need_serialize;
4371
4372 for_each_domain(cpu, sd) {
4373 if (!(sd->flags & SD_LOAD_BALANCE))
4374 continue;
4375
4376 interval = sd->balance_interval;
4377 if (idle != CPU_IDLE)
4378 interval *= sd->busy_factor;
4379
4380 /* scale ms to jiffies */
4381 interval = msecs_to_jiffies(interval);
4382 if (unlikely(!interval))
4383 interval = 1;
4384 if (interval > HZ*NR_CPUS/10)
4385 interval = HZ*NR_CPUS/10;
4386
4387 need_serialize = sd->flags & SD_SERIALIZE;
4388
4389 if (need_serialize) {
4390 if (!spin_trylock(&balancing))
4391 goto out;
4392 }
4393
4394 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4395 if (load_balance(cpu, rq, sd, idle, &balance)) {
4396 /*
4397 * We've pulled tasks over so either we're no
4398 * longer idle, or one of our SMT siblings is
4399 * not idle.
4400 */
4401 idle = CPU_NOT_IDLE;
4402 }
4403 sd->last_balance = jiffies;
4404 }
4405 if (need_serialize)
4406 spin_unlock(&balancing);
4407 out:
4408 if (time_after(next_balance, sd->last_balance + interval)) {
4409 next_balance = sd->last_balance + interval;
4410 update_next_balance = 1;
4411 }
4412
4413 /*
4414 * Stop the load balance at this level. There is another
4415 * CPU in our sched group which is doing load balancing more
4416 * actively.
4417 */
4418 if (!balance)
4419 break;
4420 }
4421
4422 /*
4423 * next_balance will be updated only when there is a need.
4424 * When the cpu is attached to null domain for ex, it will not be
4425 * updated.
4426 */
4427 if (likely(update_next_balance))
4428 rq->next_balance = next_balance;
4429 }
4430
4431 /*
4432 * run_rebalance_domains is triggered when needed from the scheduler tick.
4433 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4434 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4435 */
4436 static void run_rebalance_domains(struct softirq_action *h)
4437 {
4438 int this_cpu = smp_processor_id();
4439 struct rq *this_rq = cpu_rq(this_cpu);
4440 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4441 CPU_IDLE : CPU_NOT_IDLE;
4442
4443 rebalance_domains(this_cpu, idle);
4444
4445 #ifdef CONFIG_NO_HZ
4446 /*
4447 * If this cpu is the owner for idle load balancing, then do the
4448 * balancing on behalf of the other idle cpus whose ticks are
4449 * stopped.
4450 */
4451 if (this_rq->idle_at_tick &&
4452 atomic_read(&nohz.load_balancer) == this_cpu) {
4453 struct rq *rq;
4454 int balance_cpu;
4455
4456 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4457 if (balance_cpu == this_cpu)
4458 continue;
4459
4460 /*
4461 * If this cpu gets work to do, stop the load balancing
4462 * work being done for other cpus. Next load
4463 * balancing owner will pick it up.
4464 */
4465 if (need_resched())
4466 break;
4467
4468 rebalance_domains(balance_cpu, CPU_IDLE);
4469
4470 rq = cpu_rq(balance_cpu);
4471 if (time_after(this_rq->next_balance, rq->next_balance))
4472 this_rq->next_balance = rq->next_balance;
4473 }
4474 }
4475 #endif
4476 }
4477
4478 static inline int on_null_domain(int cpu)
4479 {
4480 return !rcu_dereference(cpu_rq(cpu)->sd);
4481 }
4482
4483 /*
4484 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4485 *
4486 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4487 * idle load balancing owner or decide to stop the periodic load balancing,
4488 * if the whole system is idle.
4489 */
4490 static inline void trigger_load_balance(struct rq *rq, int cpu)
4491 {
4492 #ifdef CONFIG_NO_HZ
4493 /*
4494 * If we were in the nohz mode recently and busy at the current
4495 * scheduler tick, then check if we need to nominate new idle
4496 * load balancer.
4497 */
4498 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4499 rq->in_nohz_recently = 0;
4500
4501 if (atomic_read(&nohz.load_balancer) == cpu) {
4502 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4503 atomic_set(&nohz.load_balancer, -1);
4504 }
4505
4506 if (atomic_read(&nohz.load_balancer) == -1) {
4507 /*
4508 * simple selection for now: Nominate the
4509 * first cpu in the nohz list to be the next
4510 * ilb owner.
4511 *
4512 * TBD: Traverse the sched domains and nominate
4513 * the nearest cpu in the nohz.cpu_mask.
4514 */
4515 int ilb = cpumask_first(nohz.cpu_mask);
4516
4517 if (ilb < nr_cpu_ids)
4518 resched_cpu(ilb);
4519 }
4520 }
4521
4522 /*
4523 * If this cpu is idle and doing idle load balancing for all the
4524 * cpus with ticks stopped, is it time for that to stop?
4525 */
4526 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4527 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4528 resched_cpu(cpu);
4529 return;
4530 }
4531
4532 /*
4533 * If this cpu is idle and the idle load balancing is done by
4534 * someone else, then no need raise the SCHED_SOFTIRQ
4535 */
4536 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4537 cpumask_test_cpu(cpu, nohz.cpu_mask))
4538 return;
4539 #endif
4540 /* Don't need to rebalance while attached to NULL domain */
4541 if (time_after_eq(jiffies, rq->next_balance) &&
4542 likely(!on_null_domain(cpu)))
4543 raise_softirq(SCHED_SOFTIRQ);
4544 }
4545
4546 #else /* CONFIG_SMP */
4547
4548 /*
4549 * on UP we do not need to balance between CPUs:
4550 */
4551 static inline void idle_balance(int cpu, struct rq *rq)
4552 {
4553 }
4554
4555 #endif
4556
4557 DEFINE_PER_CPU(struct kernel_stat, kstat);
4558
4559 EXPORT_PER_CPU_SYMBOL(kstat);
4560
4561 /*
4562 * Return any ns on the sched_clock that have not yet been accounted in
4563 * @p in case that task is currently running.
4564 *
4565 * Called with task_rq_lock() held on @rq.
4566 */
4567 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4568 {
4569 u64 ns = 0;
4570
4571 if (task_current(rq, p)) {
4572 update_rq_clock(rq);
4573 ns = rq->clock - p->se.exec_start;
4574 if ((s64)ns < 0)
4575 ns = 0;
4576 }
4577
4578 return ns;
4579 }
4580
4581 unsigned long long task_delta_exec(struct task_struct *p)
4582 {
4583 unsigned long flags;
4584 struct rq *rq;
4585 u64 ns = 0;
4586
4587 rq = task_rq_lock(p, &flags);
4588 ns = do_task_delta_exec(p, rq);
4589 task_rq_unlock(rq, &flags);
4590
4591 return ns;
4592 }
4593
4594 /*
4595 * Return accounted runtime for the task.
4596 * In case the task is currently running, return the runtime plus current's
4597 * pending runtime that have not been accounted yet.
4598 */
4599 unsigned long long task_sched_runtime(struct task_struct *p)
4600 {
4601 unsigned long flags;
4602 struct rq *rq;
4603 u64 ns = 0;
4604
4605 rq = task_rq_lock(p, &flags);
4606 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4607 task_rq_unlock(rq, &flags);
4608
4609 return ns;
4610 }
4611
4612 /*
4613 * Return sum_exec_runtime for the thread group.
4614 * In case the task is currently running, return the sum plus current's
4615 * pending runtime that have not been accounted yet.
4616 *
4617 * Note that the thread group might have other running tasks as well,
4618 * so the return value not includes other pending runtime that other
4619 * running tasks might have.
4620 */
4621 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4622 {
4623 struct task_cputime totals;
4624 unsigned long flags;
4625 struct rq *rq;
4626 u64 ns;
4627
4628 rq = task_rq_lock(p, &flags);
4629 thread_group_cputime(p, &totals);
4630 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4631 task_rq_unlock(rq, &flags);
4632
4633 return ns;
4634 }
4635
4636 /*
4637 * Account user cpu time to a process.
4638 * @p: the process that the cpu time gets accounted to
4639 * @cputime: the cpu time spent in user space since the last update
4640 * @cputime_scaled: cputime scaled by cpu frequency
4641 */
4642 void account_user_time(struct task_struct *p, cputime_t cputime,
4643 cputime_t cputime_scaled)
4644 {
4645 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4646 cputime64_t tmp;
4647
4648 /* Add user time to process. */
4649 p->utime = cputime_add(p->utime, cputime);
4650 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4651 account_group_user_time(p, cputime);
4652
4653 /* Add user time to cpustat. */
4654 tmp = cputime_to_cputime64(cputime);
4655 if (TASK_NICE(p) > 0)
4656 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4657 else
4658 cpustat->user = cputime64_add(cpustat->user, tmp);
4659
4660 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4661 /* Account for user time used */
4662 acct_update_integrals(p);
4663 }
4664
4665 /*
4666 * Account guest cpu time to a process.
4667 * @p: the process that the cpu time gets accounted to
4668 * @cputime: the cpu time spent in virtual machine since the last update
4669 * @cputime_scaled: cputime scaled by cpu frequency
4670 */
4671 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4672 cputime_t cputime_scaled)
4673 {
4674 cputime64_t tmp;
4675 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4676
4677 tmp = cputime_to_cputime64(cputime);
4678
4679 /* Add guest time to process. */
4680 p->utime = cputime_add(p->utime, cputime);
4681 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4682 account_group_user_time(p, cputime);
4683 p->gtime = cputime_add(p->gtime, cputime);
4684
4685 /* Add guest time to cpustat. */
4686 cpustat->user = cputime64_add(cpustat->user, tmp);
4687 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4688 }
4689
4690 /*
4691 * Account system cpu time to a process.
4692 * @p: the process that the cpu time gets accounted to
4693 * @hardirq_offset: the offset to subtract from hardirq_count()
4694 * @cputime: the cpu time spent in kernel space since the last update
4695 * @cputime_scaled: cputime scaled by cpu frequency
4696 */
4697 void account_system_time(struct task_struct *p, int hardirq_offset,
4698 cputime_t cputime, cputime_t cputime_scaled)
4699 {
4700 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4701 cputime64_t tmp;
4702
4703 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4704 account_guest_time(p, cputime, cputime_scaled);
4705 return;
4706 }
4707
4708 /* Add system time to process. */
4709 p->stime = cputime_add(p->stime, cputime);
4710 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4711 account_group_system_time(p, cputime);
4712
4713 /* Add system time to cpustat. */
4714 tmp = cputime_to_cputime64(cputime);
4715 if (hardirq_count() - hardirq_offset)
4716 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4717 else if (softirq_count())
4718 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4719 else
4720 cpustat->system = cputime64_add(cpustat->system, tmp);
4721
4722 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4723
4724 /* Account for system time used */
4725 acct_update_integrals(p);
4726 }
4727
4728 /*
4729 * Account for involuntary wait time.
4730 * @steal: the cpu time spent in involuntary wait
4731 */
4732 void account_steal_time(cputime_t cputime)
4733 {
4734 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4735 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4736
4737 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4738 }
4739
4740 /*
4741 * Account for idle time.
4742 * @cputime: the cpu time spent in idle wait
4743 */
4744 void account_idle_time(cputime_t cputime)
4745 {
4746 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4747 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4748 struct rq *rq = this_rq();
4749
4750 if (atomic_read(&rq->nr_iowait) > 0)
4751 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4752 else
4753 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4754 }
4755
4756 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4757
4758 /*
4759 * Account a single tick of cpu time.
4760 * @p: the process that the cpu time gets accounted to
4761 * @user_tick: indicates if the tick is a user or a system tick
4762 */
4763 void account_process_tick(struct task_struct *p, int user_tick)
4764 {
4765 cputime_t one_jiffy = jiffies_to_cputime(1);
4766 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4767 struct rq *rq = this_rq();
4768
4769 if (user_tick)
4770 account_user_time(p, one_jiffy, one_jiffy_scaled);
4771 else if (p != rq->idle)
4772 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4773 one_jiffy_scaled);
4774 else
4775 account_idle_time(one_jiffy);
4776 }
4777
4778 /*
4779 * Account multiple ticks of steal time.
4780 * @p: the process from which the cpu time has been stolen
4781 * @ticks: number of stolen ticks
4782 */
4783 void account_steal_ticks(unsigned long ticks)
4784 {
4785 account_steal_time(jiffies_to_cputime(ticks));
4786 }
4787
4788 /*
4789 * Account multiple ticks of idle time.
4790 * @ticks: number of stolen ticks
4791 */
4792 void account_idle_ticks(unsigned long ticks)
4793 {
4794 account_idle_time(jiffies_to_cputime(ticks));
4795 }
4796
4797 #endif
4798
4799 /*
4800 * Use precise platform statistics if available:
4801 */
4802 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4803 cputime_t task_utime(struct task_struct *p)
4804 {
4805 return p->utime;
4806 }
4807
4808 cputime_t task_stime(struct task_struct *p)
4809 {
4810 return p->stime;
4811 }
4812 #else
4813 cputime_t task_utime(struct task_struct *p)
4814 {
4815 clock_t utime = cputime_to_clock_t(p->utime),
4816 total = utime + cputime_to_clock_t(p->stime);
4817 u64 temp;
4818
4819 /*
4820 * Use CFS's precise accounting:
4821 */
4822 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4823
4824 if (total) {
4825 temp *= utime;
4826 do_div(temp, total);
4827 }
4828 utime = (clock_t)temp;
4829
4830 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4831 return p->prev_utime;
4832 }
4833
4834 cputime_t task_stime(struct task_struct *p)
4835 {
4836 clock_t stime;
4837
4838 /*
4839 * Use CFS's precise accounting. (we subtract utime from
4840 * the total, to make sure the total observed by userspace
4841 * grows monotonically - apps rely on that):
4842 */
4843 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4844 cputime_to_clock_t(task_utime(p));
4845
4846 if (stime >= 0)
4847 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4848
4849 return p->prev_stime;
4850 }
4851 #endif
4852
4853 inline cputime_t task_gtime(struct task_struct *p)
4854 {
4855 return p->gtime;
4856 }
4857
4858 /*
4859 * This function gets called by the timer code, with HZ frequency.
4860 * We call it with interrupts disabled.
4861 *
4862 * It also gets called by the fork code, when changing the parent's
4863 * timeslices.
4864 */
4865 void scheduler_tick(void)
4866 {
4867 int cpu = smp_processor_id();
4868 struct rq *rq = cpu_rq(cpu);
4869 struct task_struct *curr = rq->curr;
4870
4871 sched_clock_tick();
4872
4873 spin_lock(&rq->lock);
4874 update_rq_clock(rq);
4875 update_cpu_load(rq);
4876 curr->sched_class->task_tick(rq, curr, 0);
4877 perf_counter_task_tick(curr, cpu);
4878 spin_unlock(&rq->lock);
4879
4880 #ifdef CONFIG_SMP
4881 rq->idle_at_tick = idle_cpu(cpu);
4882 trigger_load_balance(rq, cpu);
4883 #endif
4884 }
4885
4886 notrace unsigned long get_parent_ip(unsigned long addr)
4887 {
4888 if (in_lock_functions(addr)) {
4889 addr = CALLER_ADDR2;
4890 if (in_lock_functions(addr))
4891 addr = CALLER_ADDR3;
4892 }
4893 return addr;
4894 }
4895
4896 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4897 defined(CONFIG_PREEMPT_TRACER))
4898
4899 void __kprobes add_preempt_count(int val)
4900 {
4901 #ifdef CONFIG_DEBUG_PREEMPT
4902 /*
4903 * Underflow?
4904 */
4905 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4906 return;
4907 #endif
4908 preempt_count() += val;
4909 #ifdef CONFIG_DEBUG_PREEMPT
4910 /*
4911 * Spinlock count overflowing soon?
4912 */
4913 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4914 PREEMPT_MASK - 10);
4915 #endif
4916 if (preempt_count() == val)
4917 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4918 }
4919 EXPORT_SYMBOL(add_preempt_count);
4920
4921 void __kprobes sub_preempt_count(int val)
4922 {
4923 #ifdef CONFIG_DEBUG_PREEMPT
4924 /*
4925 * Underflow?
4926 */
4927 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4928 return;
4929 /*
4930 * Is the spinlock portion underflowing?
4931 */
4932 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4933 !(preempt_count() & PREEMPT_MASK)))
4934 return;
4935 #endif
4936
4937 if (preempt_count() == val)
4938 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4939 preempt_count() -= val;
4940 }
4941 EXPORT_SYMBOL(sub_preempt_count);
4942
4943 #endif
4944
4945 /*
4946 * Print scheduling while atomic bug:
4947 */
4948 static noinline void __schedule_bug(struct task_struct *prev)
4949 {
4950 struct pt_regs *regs = get_irq_regs();
4951
4952 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4953 prev->comm, prev->pid, preempt_count());
4954
4955 debug_show_held_locks(prev);
4956 print_modules();
4957 if (irqs_disabled())
4958 print_irqtrace_events(prev);
4959
4960 if (regs)
4961 show_regs(regs);
4962 else
4963 dump_stack();
4964 }
4965
4966 /*
4967 * Various schedule()-time debugging checks and statistics:
4968 */
4969 static inline void schedule_debug(struct task_struct *prev)
4970 {
4971 /*
4972 * Test if we are atomic. Since do_exit() needs to call into
4973 * schedule() atomically, we ignore that path for now.
4974 * Otherwise, whine if we are scheduling when we should not be.
4975 */
4976 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4977 __schedule_bug(prev);
4978
4979 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4980
4981 schedstat_inc(this_rq(), sched_count);
4982 #ifdef CONFIG_SCHEDSTATS
4983 if (unlikely(prev->lock_depth >= 0)) {
4984 schedstat_inc(this_rq(), bkl_count);
4985 schedstat_inc(prev, sched_info.bkl_count);
4986 }
4987 #endif
4988 }
4989
4990 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4991 {
4992 if (prev->state == TASK_RUNNING) {
4993 u64 runtime = prev->se.sum_exec_runtime;
4994
4995 runtime -= prev->se.prev_sum_exec_runtime;
4996 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4997
4998 /*
4999 * In order to avoid avg_overlap growing stale when we are
5000 * indeed overlapping and hence not getting put to sleep, grow
5001 * the avg_overlap on preemption.
5002 *
5003 * We use the average preemption runtime because that
5004 * correlates to the amount of cache footprint a task can
5005 * build up.
5006 */
5007 update_avg(&prev->se.avg_overlap, runtime);
5008 }
5009 prev->sched_class->put_prev_task(rq, prev);
5010 }
5011
5012 /*
5013 * Pick up the highest-prio task:
5014 */
5015 static inline struct task_struct *
5016 pick_next_task(struct rq *rq)
5017 {
5018 const struct sched_class *class;
5019 struct task_struct *p;
5020
5021 /*
5022 * Optimization: we know that if all tasks are in
5023 * the fair class we can call that function directly:
5024 */
5025 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5026 p = fair_sched_class.pick_next_task(rq);
5027 if (likely(p))
5028 return p;
5029 }
5030
5031 class = sched_class_highest;
5032 for ( ; ; ) {
5033 p = class->pick_next_task(rq);
5034 if (p)
5035 return p;
5036 /*
5037 * Will never be NULL as the idle class always
5038 * returns a non-NULL p:
5039 */
5040 class = class->next;
5041 }
5042 }
5043
5044 /*
5045 * schedule() is the main scheduler function.
5046 */
5047 asmlinkage void __sched __schedule(void)
5048 {
5049 struct task_struct *prev, *next;
5050 unsigned long *switch_count;
5051 struct rq *rq;
5052 int cpu;
5053
5054 cpu = smp_processor_id();
5055 rq = cpu_rq(cpu);
5056 rcu_qsctr_inc(cpu);
5057 prev = rq->curr;
5058 switch_count = &prev->nivcsw;
5059
5060 release_kernel_lock(prev);
5061 need_resched_nonpreemptible:
5062
5063 schedule_debug(prev);
5064
5065 if (sched_feat(HRTICK))
5066 hrtick_clear(rq);
5067
5068 spin_lock_irq(&rq->lock);
5069 update_rq_clock(rq);
5070 clear_tsk_need_resched(prev);
5071
5072 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5073 if (unlikely(signal_pending_state(prev->state, prev)))
5074 prev->state = TASK_RUNNING;
5075 else
5076 deactivate_task(rq, prev, 1);
5077 switch_count = &prev->nvcsw;
5078 }
5079
5080 #ifdef CONFIG_SMP
5081 if (prev->sched_class->pre_schedule)
5082 prev->sched_class->pre_schedule(rq, prev);
5083 #endif
5084
5085 if (unlikely(!rq->nr_running))
5086 idle_balance(cpu, rq);
5087
5088 put_prev_task(rq, prev);
5089 next = pick_next_task(rq);
5090
5091 if (likely(prev != next)) {
5092 sched_info_switch(prev, next);
5093 perf_counter_task_sched_out(prev, cpu);
5094
5095 rq->nr_switches++;
5096 rq->curr = next;
5097 ++*switch_count;
5098
5099 context_switch(rq, prev, next); /* unlocks the rq */
5100 /*
5101 * the context switch might have flipped the stack from under
5102 * us, hence refresh the local variables.
5103 */
5104 cpu = smp_processor_id();
5105 rq = cpu_rq(cpu);
5106 } else
5107 spin_unlock_irq(&rq->lock);
5108
5109 if (unlikely(reacquire_kernel_lock(current) < 0))
5110 goto need_resched_nonpreemptible;
5111 }
5112
5113 asmlinkage void __sched schedule(void)
5114 {
5115 need_resched:
5116 preempt_disable();
5117 __schedule();
5118 preempt_enable_no_resched();
5119 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5120 goto need_resched;
5121 }
5122 EXPORT_SYMBOL(schedule);
5123
5124 #ifdef CONFIG_SMP
5125 /*
5126 * Look out! "owner" is an entirely speculative pointer
5127 * access and not reliable.
5128 */
5129 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5130 {
5131 unsigned int cpu;
5132 struct rq *rq;
5133
5134 if (!sched_feat(OWNER_SPIN))
5135 return 0;
5136
5137 #ifdef CONFIG_DEBUG_PAGEALLOC
5138 /*
5139 * Need to access the cpu field knowing that
5140 * DEBUG_PAGEALLOC could have unmapped it if
5141 * the mutex owner just released it and exited.
5142 */
5143 if (probe_kernel_address(&owner->cpu, cpu))
5144 goto out;
5145 #else
5146 cpu = owner->cpu;
5147 #endif
5148
5149 /*
5150 * Even if the access succeeded (likely case),
5151 * the cpu field may no longer be valid.
5152 */
5153 if (cpu >= nr_cpumask_bits)
5154 goto out;
5155
5156 /*
5157 * We need to validate that we can do a
5158 * get_cpu() and that we have the percpu area.
5159 */
5160 if (!cpu_online(cpu))
5161 goto out;
5162
5163 rq = cpu_rq(cpu);
5164
5165 for (;;) {
5166 /*
5167 * Owner changed, break to re-assess state.
5168 */
5169 if (lock->owner != owner)
5170 break;
5171
5172 /*
5173 * Is that owner really running on that cpu?
5174 */
5175 if (task_thread_info(rq->curr) != owner || need_resched())
5176 return 0;
5177
5178 cpu_relax();
5179 }
5180 out:
5181 return 1;
5182 }
5183 #endif
5184
5185 #ifdef CONFIG_PREEMPT
5186 /*
5187 * this is the entry point to schedule() from in-kernel preemption
5188 * off of preempt_enable. Kernel preemptions off return from interrupt
5189 * occur there and call schedule directly.
5190 */
5191 asmlinkage void __sched preempt_schedule(void)
5192 {
5193 struct thread_info *ti = current_thread_info();
5194
5195 /*
5196 * If there is a non-zero preempt_count or interrupts are disabled,
5197 * we do not want to preempt the current task. Just return..
5198 */
5199 if (likely(ti->preempt_count || irqs_disabled()))
5200 return;
5201
5202 do {
5203 add_preempt_count(PREEMPT_ACTIVE);
5204 schedule();
5205 sub_preempt_count(PREEMPT_ACTIVE);
5206
5207 /*
5208 * Check again in case we missed a preemption opportunity
5209 * between schedule and now.
5210 */
5211 barrier();
5212 } while (need_resched());
5213 }
5214 EXPORT_SYMBOL(preempt_schedule);
5215
5216 /*
5217 * this is the entry point to schedule() from kernel preemption
5218 * off of irq context.
5219 * Note, that this is called and return with irqs disabled. This will
5220 * protect us against recursive calling from irq.
5221 */
5222 asmlinkage void __sched preempt_schedule_irq(void)
5223 {
5224 struct thread_info *ti = current_thread_info();
5225
5226 /* Catch callers which need to be fixed */
5227 BUG_ON(ti->preempt_count || !irqs_disabled());
5228
5229 do {
5230 add_preempt_count(PREEMPT_ACTIVE);
5231 local_irq_enable();
5232 schedule();
5233 local_irq_disable();
5234 sub_preempt_count(PREEMPT_ACTIVE);
5235
5236 /*
5237 * Check again in case we missed a preemption opportunity
5238 * between schedule and now.
5239 */
5240 barrier();
5241 } while (need_resched());
5242 }
5243
5244 #endif /* CONFIG_PREEMPT */
5245
5246 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5247 void *key)
5248 {
5249 return try_to_wake_up(curr->private, mode, sync);
5250 }
5251 EXPORT_SYMBOL(default_wake_function);
5252
5253 /*
5254 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5255 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5256 * number) then we wake all the non-exclusive tasks and one exclusive task.
5257 *
5258 * There are circumstances in which we can try to wake a task which has already
5259 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5260 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5261 */
5262 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5263 int nr_exclusive, int sync, void *key)
5264 {
5265 wait_queue_t *curr, *next;
5266
5267 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5268 unsigned flags = curr->flags;
5269
5270 if (curr->func(curr, mode, sync, key) &&
5271 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5272 break;
5273 }
5274 }
5275
5276 /**
5277 * __wake_up - wake up threads blocked on a waitqueue.
5278 * @q: the waitqueue
5279 * @mode: which threads
5280 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5281 * @key: is directly passed to the wakeup function
5282 */
5283 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5284 int nr_exclusive, void *key)
5285 {
5286 unsigned long flags;
5287
5288 spin_lock_irqsave(&q->lock, flags);
5289 __wake_up_common(q, mode, nr_exclusive, 0, key);
5290 spin_unlock_irqrestore(&q->lock, flags);
5291 }
5292 EXPORT_SYMBOL(__wake_up);
5293
5294 /*
5295 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5296 */
5297 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5298 {
5299 __wake_up_common(q, mode, 1, 0, NULL);
5300 }
5301
5302 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5303 {
5304 __wake_up_common(q, mode, 1, 0, key);
5305 }
5306
5307 /**
5308 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5309 * @q: the waitqueue
5310 * @mode: which threads
5311 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5312 * @key: opaque value to be passed to wakeup targets
5313 *
5314 * The sync wakeup differs that the waker knows that it will schedule
5315 * away soon, so while the target thread will be woken up, it will not
5316 * be migrated to another CPU - ie. the two threads are 'synchronized'
5317 * with each other. This can prevent needless bouncing between CPUs.
5318 *
5319 * On UP it can prevent extra preemption.
5320 */
5321 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5322 int nr_exclusive, void *key)
5323 {
5324 unsigned long flags;
5325 int sync = 1;
5326
5327 if (unlikely(!q))
5328 return;
5329
5330 if (unlikely(!nr_exclusive))
5331 sync = 0;
5332
5333 spin_lock_irqsave(&q->lock, flags);
5334 __wake_up_common(q, mode, nr_exclusive, sync, key);
5335 spin_unlock_irqrestore(&q->lock, flags);
5336 }
5337 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5338
5339 /*
5340 * __wake_up_sync - see __wake_up_sync_key()
5341 */
5342 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5343 {
5344 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5345 }
5346 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5347
5348 /**
5349 * complete: - signals a single thread waiting on this completion
5350 * @x: holds the state of this particular completion
5351 *
5352 * This will wake up a single thread waiting on this completion. Threads will be
5353 * awakened in the same order in which they were queued.
5354 *
5355 * See also complete_all(), wait_for_completion() and related routines.
5356 */
5357 void complete(struct completion *x)
5358 {
5359 unsigned long flags;
5360
5361 spin_lock_irqsave(&x->wait.lock, flags);
5362 x->done++;
5363 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5364 spin_unlock_irqrestore(&x->wait.lock, flags);
5365 }
5366 EXPORT_SYMBOL(complete);
5367
5368 /**
5369 * complete_all: - signals all threads waiting on this completion
5370 * @x: holds the state of this particular completion
5371 *
5372 * This will wake up all threads waiting on this particular completion event.
5373 */
5374 void complete_all(struct completion *x)
5375 {
5376 unsigned long flags;
5377
5378 spin_lock_irqsave(&x->wait.lock, flags);
5379 x->done += UINT_MAX/2;
5380 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5381 spin_unlock_irqrestore(&x->wait.lock, flags);
5382 }
5383 EXPORT_SYMBOL(complete_all);
5384
5385 static inline long __sched
5386 do_wait_for_common(struct completion *x, long timeout, int state)
5387 {
5388 if (!x->done) {
5389 DECLARE_WAITQUEUE(wait, current);
5390
5391 wait.flags |= WQ_FLAG_EXCLUSIVE;
5392 __add_wait_queue_tail(&x->wait, &wait);
5393 do {
5394 if (signal_pending_state(state, current)) {
5395 timeout = -ERESTARTSYS;
5396 break;
5397 }
5398 __set_current_state(state);
5399 spin_unlock_irq(&x->wait.lock);
5400 timeout = schedule_timeout(timeout);
5401 spin_lock_irq(&x->wait.lock);
5402 } while (!x->done && timeout);
5403 __remove_wait_queue(&x->wait, &wait);
5404 if (!x->done)
5405 return timeout;
5406 }
5407 x->done--;
5408 return timeout ?: 1;
5409 }
5410
5411 static long __sched
5412 wait_for_common(struct completion *x, long timeout, int state)
5413 {
5414 might_sleep();
5415
5416 spin_lock_irq(&x->wait.lock);
5417 timeout = do_wait_for_common(x, timeout, state);
5418 spin_unlock_irq(&x->wait.lock);
5419 return timeout;
5420 }
5421
5422 /**
5423 * wait_for_completion: - waits for completion of a task
5424 * @x: holds the state of this particular completion
5425 *
5426 * This waits to be signaled for completion of a specific task. It is NOT
5427 * interruptible and there is no timeout.
5428 *
5429 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5430 * and interrupt capability. Also see complete().
5431 */
5432 void __sched wait_for_completion(struct completion *x)
5433 {
5434 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5435 }
5436 EXPORT_SYMBOL(wait_for_completion);
5437
5438 /**
5439 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5440 * @x: holds the state of this particular completion
5441 * @timeout: timeout value in jiffies
5442 *
5443 * This waits for either a completion of a specific task to be signaled or for a
5444 * specified timeout to expire. The timeout is in jiffies. It is not
5445 * interruptible.
5446 */
5447 unsigned long __sched
5448 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5449 {
5450 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5451 }
5452 EXPORT_SYMBOL(wait_for_completion_timeout);
5453
5454 /**
5455 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5456 * @x: holds the state of this particular completion
5457 *
5458 * This waits for completion of a specific task to be signaled. It is
5459 * interruptible.
5460 */
5461 int __sched wait_for_completion_interruptible(struct completion *x)
5462 {
5463 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5464 if (t == -ERESTARTSYS)
5465 return t;
5466 return 0;
5467 }
5468 EXPORT_SYMBOL(wait_for_completion_interruptible);
5469
5470 /**
5471 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5472 * @x: holds the state of this particular completion
5473 * @timeout: timeout value in jiffies
5474 *
5475 * This waits for either a completion of a specific task to be signaled or for a
5476 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5477 */
5478 unsigned long __sched
5479 wait_for_completion_interruptible_timeout(struct completion *x,
5480 unsigned long timeout)
5481 {
5482 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5483 }
5484 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5485
5486 /**
5487 * wait_for_completion_killable: - waits for completion of a task (killable)
5488 * @x: holds the state of this particular completion
5489 *
5490 * This waits to be signaled for completion of a specific task. It can be
5491 * interrupted by a kill signal.
5492 */
5493 int __sched wait_for_completion_killable(struct completion *x)
5494 {
5495 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5496 if (t == -ERESTARTSYS)
5497 return t;
5498 return 0;
5499 }
5500 EXPORT_SYMBOL(wait_for_completion_killable);
5501
5502 /**
5503 * try_wait_for_completion - try to decrement a completion without blocking
5504 * @x: completion structure
5505 *
5506 * Returns: 0 if a decrement cannot be done without blocking
5507 * 1 if a decrement succeeded.
5508 *
5509 * If a completion is being used as a counting completion,
5510 * attempt to decrement the counter without blocking. This
5511 * enables us to avoid waiting if the resource the completion
5512 * is protecting is not available.
5513 */
5514 bool try_wait_for_completion(struct completion *x)
5515 {
5516 int ret = 1;
5517
5518 spin_lock_irq(&x->wait.lock);
5519 if (!x->done)
5520 ret = 0;
5521 else
5522 x->done--;
5523 spin_unlock_irq(&x->wait.lock);
5524 return ret;
5525 }
5526 EXPORT_SYMBOL(try_wait_for_completion);
5527
5528 /**
5529 * completion_done - Test to see if a completion has any waiters
5530 * @x: completion structure
5531 *
5532 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5533 * 1 if there are no waiters.
5534 *
5535 */
5536 bool completion_done(struct completion *x)
5537 {
5538 int ret = 1;
5539
5540 spin_lock_irq(&x->wait.lock);
5541 if (!x->done)
5542 ret = 0;
5543 spin_unlock_irq(&x->wait.lock);
5544 return ret;
5545 }
5546 EXPORT_SYMBOL(completion_done);
5547
5548 static long __sched
5549 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5550 {
5551 unsigned long flags;
5552 wait_queue_t wait;
5553
5554 init_waitqueue_entry(&wait, current);
5555
5556 __set_current_state(state);
5557
5558 spin_lock_irqsave(&q->lock, flags);
5559 __add_wait_queue(q, &wait);
5560 spin_unlock(&q->lock);
5561 timeout = schedule_timeout(timeout);
5562 spin_lock_irq(&q->lock);
5563 __remove_wait_queue(q, &wait);
5564 spin_unlock_irqrestore(&q->lock, flags);
5565
5566 return timeout;
5567 }
5568
5569 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5570 {
5571 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5572 }
5573 EXPORT_SYMBOL(interruptible_sleep_on);
5574
5575 long __sched
5576 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5577 {
5578 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5579 }
5580 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5581
5582 void __sched sleep_on(wait_queue_head_t *q)
5583 {
5584 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5585 }
5586 EXPORT_SYMBOL(sleep_on);
5587
5588 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5589 {
5590 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5591 }
5592 EXPORT_SYMBOL(sleep_on_timeout);
5593
5594 #ifdef CONFIG_RT_MUTEXES
5595
5596 /*
5597 * rt_mutex_setprio - set the current priority of a task
5598 * @p: task
5599 * @prio: prio value (kernel-internal form)
5600 *
5601 * This function changes the 'effective' priority of a task. It does
5602 * not touch ->normal_prio like __setscheduler().
5603 *
5604 * Used by the rt_mutex code to implement priority inheritance logic.
5605 */
5606 void rt_mutex_setprio(struct task_struct *p, int prio)
5607 {
5608 unsigned long flags;
5609 int oldprio, on_rq, running;
5610 struct rq *rq;
5611 const struct sched_class *prev_class = p->sched_class;
5612
5613 BUG_ON(prio < 0 || prio > MAX_PRIO);
5614
5615 rq = task_rq_lock(p, &flags);
5616 update_rq_clock(rq);
5617
5618 oldprio = p->prio;
5619 on_rq = p->se.on_rq;
5620 running = task_current(rq, p);
5621 if (on_rq)
5622 dequeue_task(rq, p, 0);
5623 if (running)
5624 p->sched_class->put_prev_task(rq, p);
5625
5626 if (rt_prio(prio))
5627 p->sched_class = &rt_sched_class;
5628 else
5629 p->sched_class = &fair_sched_class;
5630
5631 p->prio = prio;
5632
5633 if (running)
5634 p->sched_class->set_curr_task(rq);
5635 if (on_rq) {
5636 enqueue_task(rq, p, 0);
5637
5638 check_class_changed(rq, p, prev_class, oldprio, running);
5639 }
5640 task_rq_unlock(rq, &flags);
5641 }
5642
5643 #endif
5644
5645 void set_user_nice(struct task_struct *p, long nice)
5646 {
5647 int old_prio, delta, on_rq;
5648 unsigned long flags;
5649 struct rq *rq;
5650
5651 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5652 return;
5653 /*
5654 * We have to be careful, if called from sys_setpriority(),
5655 * the task might be in the middle of scheduling on another CPU.
5656 */
5657 rq = task_rq_lock(p, &flags);
5658 update_rq_clock(rq);
5659 /*
5660 * The RT priorities are set via sched_setscheduler(), but we still
5661 * allow the 'normal' nice value to be set - but as expected
5662 * it wont have any effect on scheduling until the task is
5663 * SCHED_FIFO/SCHED_RR:
5664 */
5665 if (task_has_rt_policy(p)) {
5666 p->static_prio = NICE_TO_PRIO(nice);
5667 goto out_unlock;
5668 }
5669 on_rq = p->se.on_rq;
5670 if (on_rq)
5671 dequeue_task(rq, p, 0);
5672
5673 p->static_prio = NICE_TO_PRIO(nice);
5674 set_load_weight(p);
5675 old_prio = p->prio;
5676 p->prio = effective_prio(p);
5677 delta = p->prio - old_prio;
5678
5679 if (on_rq) {
5680 enqueue_task(rq, p, 0);
5681 /*
5682 * If the task increased its priority or is running and
5683 * lowered its priority, then reschedule its CPU:
5684 */
5685 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5686 resched_task(rq->curr);
5687 }
5688 out_unlock:
5689 task_rq_unlock(rq, &flags);
5690 }
5691 EXPORT_SYMBOL(set_user_nice);
5692
5693 /*
5694 * can_nice - check if a task can reduce its nice value
5695 * @p: task
5696 * @nice: nice value
5697 */
5698 int can_nice(const struct task_struct *p, const int nice)
5699 {
5700 /* convert nice value [19,-20] to rlimit style value [1,40] */
5701 int nice_rlim = 20 - nice;
5702
5703 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5704 capable(CAP_SYS_NICE));
5705 }
5706
5707 #ifdef __ARCH_WANT_SYS_NICE
5708
5709 /*
5710 * sys_nice - change the priority of the current process.
5711 * @increment: priority increment
5712 *
5713 * sys_setpriority is a more generic, but much slower function that
5714 * does similar things.
5715 */
5716 SYSCALL_DEFINE1(nice, int, increment)
5717 {
5718 long nice, retval;
5719
5720 /*
5721 * Setpriority might change our priority at the same moment.
5722 * We don't have to worry. Conceptually one call occurs first
5723 * and we have a single winner.
5724 */
5725 if (increment < -40)
5726 increment = -40;
5727 if (increment > 40)
5728 increment = 40;
5729
5730 nice = TASK_NICE(current) + increment;
5731 if (nice < -20)
5732 nice = -20;
5733 if (nice > 19)
5734 nice = 19;
5735
5736 if (increment < 0 && !can_nice(current, nice))
5737 return -EPERM;
5738
5739 retval = security_task_setnice(current, nice);
5740 if (retval)
5741 return retval;
5742
5743 set_user_nice(current, nice);
5744 return 0;
5745 }
5746
5747 #endif
5748
5749 /**
5750 * task_prio - return the priority value of a given task.
5751 * @p: the task in question.
5752 *
5753 * This is the priority value as seen by users in /proc.
5754 * RT tasks are offset by -200. Normal tasks are centered
5755 * around 0, value goes from -16 to +15.
5756 */
5757 int task_prio(const struct task_struct *p)
5758 {
5759 return p->prio - MAX_RT_PRIO;
5760 }
5761
5762 /**
5763 * task_nice - return the nice value of a given task.
5764 * @p: the task in question.
5765 */
5766 int task_nice(const struct task_struct *p)
5767 {
5768 return TASK_NICE(p);
5769 }
5770 EXPORT_SYMBOL(task_nice);
5771
5772 /**
5773 * idle_cpu - is a given cpu idle currently?
5774 * @cpu: the processor in question.
5775 */
5776 int idle_cpu(int cpu)
5777 {
5778 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5779 }
5780
5781 /**
5782 * idle_task - return the idle task for a given cpu.
5783 * @cpu: the processor in question.
5784 */
5785 struct task_struct *idle_task(int cpu)
5786 {
5787 return cpu_rq(cpu)->idle;
5788 }
5789
5790 /**
5791 * find_process_by_pid - find a process with a matching PID value.
5792 * @pid: the pid in question.
5793 */
5794 static struct task_struct *find_process_by_pid(pid_t pid)
5795 {
5796 return pid ? find_task_by_vpid(pid) : current;
5797 }
5798
5799 /* Actually do priority change: must hold rq lock. */
5800 static void
5801 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5802 {
5803 BUG_ON(p->se.on_rq);
5804
5805 p->policy = policy;
5806 switch (p->policy) {
5807 case SCHED_NORMAL:
5808 case SCHED_BATCH:
5809 case SCHED_IDLE:
5810 p->sched_class = &fair_sched_class;
5811 break;
5812 case SCHED_FIFO:
5813 case SCHED_RR:
5814 p->sched_class = &rt_sched_class;
5815 break;
5816 }
5817
5818 p->rt_priority = prio;
5819 p->normal_prio = normal_prio(p);
5820 /* we are holding p->pi_lock already */
5821 p->prio = rt_mutex_getprio(p);
5822 set_load_weight(p);
5823 }
5824
5825 /*
5826 * check the target process has a UID that matches the current process's
5827 */
5828 static bool check_same_owner(struct task_struct *p)
5829 {
5830 const struct cred *cred = current_cred(), *pcred;
5831 bool match;
5832
5833 rcu_read_lock();
5834 pcred = __task_cred(p);
5835 match = (cred->euid == pcred->euid ||
5836 cred->euid == pcred->uid);
5837 rcu_read_unlock();
5838 return match;
5839 }
5840
5841 static int __sched_setscheduler(struct task_struct *p, int policy,
5842 struct sched_param *param, bool user)
5843 {
5844 int retval, oldprio, oldpolicy = -1, on_rq, running;
5845 unsigned long flags;
5846 const struct sched_class *prev_class = p->sched_class;
5847 struct rq *rq;
5848
5849 /* may grab non-irq protected spin_locks */
5850 BUG_ON(in_interrupt());
5851 recheck:
5852 /* double check policy once rq lock held */
5853 if (policy < 0)
5854 policy = oldpolicy = p->policy;
5855 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5856 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5857 policy != SCHED_IDLE)
5858 return -EINVAL;
5859 /*
5860 * Valid priorities for SCHED_FIFO and SCHED_RR are
5861 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5862 * SCHED_BATCH and SCHED_IDLE is 0.
5863 */
5864 if (param->sched_priority < 0 ||
5865 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5866 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5867 return -EINVAL;
5868 if (rt_policy(policy) != (param->sched_priority != 0))
5869 return -EINVAL;
5870
5871 /*
5872 * Allow unprivileged RT tasks to decrease priority:
5873 */
5874 if (user && !capable(CAP_SYS_NICE)) {
5875 if (rt_policy(policy)) {
5876 unsigned long rlim_rtprio;
5877
5878 if (!lock_task_sighand(p, &flags))
5879 return -ESRCH;
5880 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5881 unlock_task_sighand(p, &flags);
5882
5883 /* can't set/change the rt policy */
5884 if (policy != p->policy && !rlim_rtprio)
5885 return -EPERM;
5886
5887 /* can't increase priority */
5888 if (param->sched_priority > p->rt_priority &&
5889 param->sched_priority > rlim_rtprio)
5890 return -EPERM;
5891 }
5892 /*
5893 * Like positive nice levels, dont allow tasks to
5894 * move out of SCHED_IDLE either:
5895 */
5896 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5897 return -EPERM;
5898
5899 /* can't change other user's priorities */
5900 if (!check_same_owner(p))
5901 return -EPERM;
5902 }
5903
5904 if (user) {
5905 #ifdef CONFIG_RT_GROUP_SCHED
5906 /*
5907 * Do not allow realtime tasks into groups that have no runtime
5908 * assigned.
5909 */
5910 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5911 task_group(p)->rt_bandwidth.rt_runtime == 0)
5912 return -EPERM;
5913 #endif
5914
5915 retval = security_task_setscheduler(p, policy, param);
5916 if (retval)
5917 return retval;
5918 }
5919
5920 /*
5921 * make sure no PI-waiters arrive (or leave) while we are
5922 * changing the priority of the task:
5923 */
5924 spin_lock_irqsave(&p->pi_lock, flags);
5925 /*
5926 * To be able to change p->policy safely, the apropriate
5927 * runqueue lock must be held.
5928 */
5929 rq = __task_rq_lock(p);
5930 /* recheck policy now with rq lock held */
5931 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5932 policy = oldpolicy = -1;
5933 __task_rq_unlock(rq);
5934 spin_unlock_irqrestore(&p->pi_lock, flags);
5935 goto recheck;
5936 }
5937 update_rq_clock(rq);
5938 on_rq = p->se.on_rq;
5939 running = task_current(rq, p);
5940 if (on_rq)
5941 deactivate_task(rq, p, 0);
5942 if (running)
5943 p->sched_class->put_prev_task(rq, p);
5944
5945 oldprio = p->prio;
5946 __setscheduler(rq, p, policy, param->sched_priority);
5947
5948 if (running)
5949 p->sched_class->set_curr_task(rq);
5950 if (on_rq) {
5951 activate_task(rq, p, 0);
5952
5953 check_class_changed(rq, p, prev_class, oldprio, running);
5954 }
5955 __task_rq_unlock(rq);
5956 spin_unlock_irqrestore(&p->pi_lock, flags);
5957
5958 rt_mutex_adjust_pi(p);
5959
5960 return 0;
5961 }
5962
5963 /**
5964 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5965 * @p: the task in question.
5966 * @policy: new policy.
5967 * @param: structure containing the new RT priority.
5968 *
5969 * NOTE that the task may be already dead.
5970 */
5971 int sched_setscheduler(struct task_struct *p, int policy,
5972 struct sched_param *param)
5973 {
5974 return __sched_setscheduler(p, policy, param, true);
5975 }
5976 EXPORT_SYMBOL_GPL(sched_setscheduler);
5977
5978 /**
5979 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5980 * @p: the task in question.
5981 * @policy: new policy.
5982 * @param: structure containing the new RT priority.
5983 *
5984 * Just like sched_setscheduler, only don't bother checking if the
5985 * current context has permission. For example, this is needed in
5986 * stop_machine(): we create temporary high priority worker threads,
5987 * but our caller might not have that capability.
5988 */
5989 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5990 struct sched_param *param)
5991 {
5992 return __sched_setscheduler(p, policy, param, false);
5993 }
5994
5995 static int
5996 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5997 {
5998 struct sched_param lparam;
5999 struct task_struct *p;
6000 int retval;
6001
6002 if (!param || pid < 0)
6003 return -EINVAL;
6004 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6005 return -EFAULT;
6006
6007 rcu_read_lock();
6008 retval = -ESRCH;
6009 p = find_process_by_pid(pid);
6010 if (p != NULL)
6011 retval = sched_setscheduler(p, policy, &lparam);
6012 rcu_read_unlock();
6013
6014 return retval;
6015 }
6016
6017 /**
6018 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6019 * @pid: the pid in question.
6020 * @policy: new policy.
6021 * @param: structure containing the new RT priority.
6022 */
6023 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6024 struct sched_param __user *, param)
6025 {
6026 /* negative values for policy are not valid */
6027 if (policy < 0)
6028 return -EINVAL;
6029
6030 return do_sched_setscheduler(pid, policy, param);
6031 }
6032
6033 /**
6034 * sys_sched_setparam - set/change the RT priority of a thread
6035 * @pid: the pid in question.
6036 * @param: structure containing the new RT priority.
6037 */
6038 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6039 {
6040 return do_sched_setscheduler(pid, -1, param);
6041 }
6042
6043 /**
6044 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6045 * @pid: the pid in question.
6046 */
6047 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6048 {
6049 struct task_struct *p;
6050 int retval;
6051
6052 if (pid < 0)
6053 return -EINVAL;
6054
6055 retval = -ESRCH;
6056 read_lock(&tasklist_lock);
6057 p = find_process_by_pid(pid);
6058 if (p) {
6059 retval = security_task_getscheduler(p);
6060 if (!retval)
6061 retval = p->policy;
6062 }
6063 read_unlock(&tasklist_lock);
6064 return retval;
6065 }
6066
6067 /**
6068 * sys_sched_getscheduler - get the RT priority of a thread
6069 * @pid: the pid in question.
6070 * @param: structure containing the RT priority.
6071 */
6072 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6073 {
6074 struct sched_param lp;
6075 struct task_struct *p;
6076 int retval;
6077
6078 if (!param || pid < 0)
6079 return -EINVAL;
6080
6081 read_lock(&tasklist_lock);
6082 p = find_process_by_pid(pid);
6083 retval = -ESRCH;
6084 if (!p)
6085 goto out_unlock;
6086
6087 retval = security_task_getscheduler(p);
6088 if (retval)
6089 goto out_unlock;
6090
6091 lp.sched_priority = p->rt_priority;
6092 read_unlock(&tasklist_lock);
6093
6094 /*
6095 * This one might sleep, we cannot do it with a spinlock held ...
6096 */
6097 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6098
6099 return retval;
6100
6101 out_unlock:
6102 read_unlock(&tasklist_lock);
6103 return retval;
6104 }
6105
6106 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6107 {
6108 cpumask_var_t cpus_allowed, new_mask;
6109 struct task_struct *p;
6110 int retval;
6111
6112 get_online_cpus();
6113 read_lock(&tasklist_lock);
6114
6115 p = find_process_by_pid(pid);
6116 if (!p) {
6117 read_unlock(&tasklist_lock);
6118 put_online_cpus();
6119 return -ESRCH;
6120 }
6121
6122 /*
6123 * It is not safe to call set_cpus_allowed with the
6124 * tasklist_lock held. We will bump the task_struct's
6125 * usage count and then drop tasklist_lock.
6126 */
6127 get_task_struct(p);
6128 read_unlock(&tasklist_lock);
6129
6130 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6131 retval = -ENOMEM;
6132 goto out_put_task;
6133 }
6134 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6135 retval = -ENOMEM;
6136 goto out_free_cpus_allowed;
6137 }
6138 retval = -EPERM;
6139 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6140 goto out_unlock;
6141
6142 retval = security_task_setscheduler(p, 0, NULL);
6143 if (retval)
6144 goto out_unlock;
6145
6146 cpuset_cpus_allowed(p, cpus_allowed);
6147 cpumask_and(new_mask, in_mask, cpus_allowed);
6148 again:
6149 retval = set_cpus_allowed_ptr(p, new_mask);
6150
6151 if (!retval) {
6152 cpuset_cpus_allowed(p, cpus_allowed);
6153 if (!cpumask_subset(new_mask, cpus_allowed)) {
6154 /*
6155 * We must have raced with a concurrent cpuset
6156 * update. Just reset the cpus_allowed to the
6157 * cpuset's cpus_allowed
6158 */
6159 cpumask_copy(new_mask, cpus_allowed);
6160 goto again;
6161 }
6162 }
6163 out_unlock:
6164 free_cpumask_var(new_mask);
6165 out_free_cpus_allowed:
6166 free_cpumask_var(cpus_allowed);
6167 out_put_task:
6168 put_task_struct(p);
6169 put_online_cpus();
6170 return retval;
6171 }
6172
6173 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6174 struct cpumask *new_mask)
6175 {
6176 if (len < cpumask_size())
6177 cpumask_clear(new_mask);
6178 else if (len > cpumask_size())
6179 len = cpumask_size();
6180
6181 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6182 }
6183
6184 /**
6185 * sys_sched_setaffinity - set the cpu affinity of a process
6186 * @pid: pid of the process
6187 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6188 * @user_mask_ptr: user-space pointer to the new cpu mask
6189 */
6190 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6191 unsigned long __user *, user_mask_ptr)
6192 {
6193 cpumask_var_t new_mask;
6194 int retval;
6195
6196 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6197 return -ENOMEM;
6198
6199 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6200 if (retval == 0)
6201 retval = sched_setaffinity(pid, new_mask);
6202 free_cpumask_var(new_mask);
6203 return retval;
6204 }
6205
6206 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6207 {
6208 struct task_struct *p;
6209 int retval;
6210
6211 get_online_cpus();
6212 read_lock(&tasklist_lock);
6213
6214 retval = -ESRCH;
6215 p = find_process_by_pid(pid);
6216 if (!p)
6217 goto out_unlock;
6218
6219 retval = security_task_getscheduler(p);
6220 if (retval)
6221 goto out_unlock;
6222
6223 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6224
6225 out_unlock:
6226 read_unlock(&tasklist_lock);
6227 put_online_cpus();
6228
6229 return retval;
6230 }
6231
6232 /**
6233 * sys_sched_getaffinity - get the cpu affinity of a process
6234 * @pid: pid of the process
6235 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6236 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6237 */
6238 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6239 unsigned long __user *, user_mask_ptr)
6240 {
6241 int ret;
6242 cpumask_var_t mask;
6243
6244 if (len < cpumask_size())
6245 return -EINVAL;
6246
6247 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6248 return -ENOMEM;
6249
6250 ret = sched_getaffinity(pid, mask);
6251 if (ret == 0) {
6252 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6253 ret = -EFAULT;
6254 else
6255 ret = cpumask_size();
6256 }
6257 free_cpumask_var(mask);
6258
6259 return ret;
6260 }
6261
6262 /**
6263 * sys_sched_yield - yield the current processor to other threads.
6264 *
6265 * This function yields the current CPU to other tasks. If there are no
6266 * other threads running on this CPU then this function will return.
6267 */
6268 SYSCALL_DEFINE0(sched_yield)
6269 {
6270 struct rq *rq = this_rq_lock();
6271
6272 schedstat_inc(rq, yld_count);
6273 current->sched_class->yield_task(rq);
6274
6275 /*
6276 * Since we are going to call schedule() anyway, there's
6277 * no need to preempt or enable interrupts:
6278 */
6279 __release(rq->lock);
6280 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6281 _raw_spin_unlock(&rq->lock);
6282 preempt_enable_no_resched();
6283
6284 schedule();
6285
6286 return 0;
6287 }
6288
6289 static void __cond_resched(void)
6290 {
6291 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6292 __might_sleep(__FILE__, __LINE__);
6293 #endif
6294 /*
6295 * The BKS might be reacquired before we have dropped
6296 * PREEMPT_ACTIVE, which could trigger a second
6297 * cond_resched() call.
6298 */
6299 do {
6300 add_preempt_count(PREEMPT_ACTIVE);
6301 schedule();
6302 sub_preempt_count(PREEMPT_ACTIVE);
6303 } while (need_resched());
6304 }
6305
6306 int __sched _cond_resched(void)
6307 {
6308 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6309 system_state == SYSTEM_RUNNING) {
6310 __cond_resched();
6311 return 1;
6312 }
6313 return 0;
6314 }
6315 EXPORT_SYMBOL(_cond_resched);
6316
6317 /*
6318 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6319 * call schedule, and on return reacquire the lock.
6320 *
6321 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6322 * operations here to prevent schedule() from being called twice (once via
6323 * spin_unlock(), once by hand).
6324 */
6325 int cond_resched_lock(spinlock_t *lock)
6326 {
6327 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6328 int ret = 0;
6329
6330 if (spin_needbreak(lock) || resched) {
6331 spin_unlock(lock);
6332 if (resched && need_resched())
6333 __cond_resched();
6334 else
6335 cpu_relax();
6336 ret = 1;
6337 spin_lock(lock);
6338 }
6339 return ret;
6340 }
6341 EXPORT_SYMBOL(cond_resched_lock);
6342
6343 int __sched cond_resched_softirq(void)
6344 {
6345 BUG_ON(!in_softirq());
6346
6347 if (need_resched() && system_state == SYSTEM_RUNNING) {
6348 local_bh_enable();
6349 __cond_resched();
6350 local_bh_disable();
6351 return 1;
6352 }
6353 return 0;
6354 }
6355 EXPORT_SYMBOL(cond_resched_softirq);
6356
6357 /**
6358 * yield - yield the current processor to other threads.
6359 *
6360 * This is a shortcut for kernel-space yielding - it marks the
6361 * thread runnable and calls sys_sched_yield().
6362 */
6363 void __sched yield(void)
6364 {
6365 set_current_state(TASK_RUNNING);
6366 sys_sched_yield();
6367 }
6368 EXPORT_SYMBOL(yield);
6369
6370 /*
6371 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6372 * that process accounting knows that this is a task in IO wait state.
6373 *
6374 * But don't do that if it is a deliberate, throttling IO wait (this task
6375 * has set its backing_dev_info: the queue against which it should throttle)
6376 */
6377 void __sched io_schedule(void)
6378 {
6379 struct rq *rq = &__raw_get_cpu_var(runqueues);
6380
6381 delayacct_blkio_start();
6382 atomic_inc(&rq->nr_iowait);
6383 schedule();
6384 atomic_dec(&rq->nr_iowait);
6385 delayacct_blkio_end();
6386 }
6387 EXPORT_SYMBOL(io_schedule);
6388
6389 long __sched io_schedule_timeout(long timeout)
6390 {
6391 struct rq *rq = &__raw_get_cpu_var(runqueues);
6392 long ret;
6393
6394 delayacct_blkio_start();
6395 atomic_inc(&rq->nr_iowait);
6396 ret = schedule_timeout(timeout);
6397 atomic_dec(&rq->nr_iowait);
6398 delayacct_blkio_end();
6399 return ret;
6400 }
6401
6402 /**
6403 * sys_sched_get_priority_max - return maximum RT priority.
6404 * @policy: scheduling class.
6405 *
6406 * this syscall returns the maximum rt_priority that can be used
6407 * by a given scheduling class.
6408 */
6409 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6410 {
6411 int ret = -EINVAL;
6412
6413 switch (policy) {
6414 case SCHED_FIFO:
6415 case SCHED_RR:
6416 ret = MAX_USER_RT_PRIO-1;
6417 break;
6418 case SCHED_NORMAL:
6419 case SCHED_BATCH:
6420 case SCHED_IDLE:
6421 ret = 0;
6422 break;
6423 }
6424 return ret;
6425 }
6426
6427 /**
6428 * sys_sched_get_priority_min - return minimum RT priority.
6429 * @policy: scheduling class.
6430 *
6431 * this syscall returns the minimum rt_priority that can be used
6432 * by a given scheduling class.
6433 */
6434 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6435 {
6436 int ret = -EINVAL;
6437
6438 switch (policy) {
6439 case SCHED_FIFO:
6440 case SCHED_RR:
6441 ret = 1;
6442 break;
6443 case SCHED_NORMAL:
6444 case SCHED_BATCH:
6445 case SCHED_IDLE:
6446 ret = 0;
6447 }
6448 return ret;
6449 }
6450
6451 /**
6452 * sys_sched_rr_get_interval - return the default timeslice of a process.
6453 * @pid: pid of the process.
6454 * @interval: userspace pointer to the timeslice value.
6455 *
6456 * this syscall writes the default timeslice value of a given process
6457 * into the user-space timespec buffer. A value of '0' means infinity.
6458 */
6459 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6460 struct timespec __user *, interval)
6461 {
6462 struct task_struct *p;
6463 unsigned int time_slice;
6464 int retval;
6465 struct timespec t;
6466
6467 if (pid < 0)
6468 return -EINVAL;
6469
6470 retval = -ESRCH;
6471 read_lock(&tasklist_lock);
6472 p = find_process_by_pid(pid);
6473 if (!p)
6474 goto out_unlock;
6475
6476 retval = security_task_getscheduler(p);
6477 if (retval)
6478 goto out_unlock;
6479
6480 /*
6481 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6482 * tasks that are on an otherwise idle runqueue:
6483 */
6484 time_slice = 0;
6485 if (p->policy == SCHED_RR) {
6486 time_slice = DEF_TIMESLICE;
6487 } else if (p->policy != SCHED_FIFO) {
6488 struct sched_entity *se = &p->se;
6489 unsigned long flags;
6490 struct rq *rq;
6491
6492 rq = task_rq_lock(p, &flags);
6493 if (rq->cfs.load.weight)
6494 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6495 task_rq_unlock(rq, &flags);
6496 }
6497 read_unlock(&tasklist_lock);
6498 jiffies_to_timespec(time_slice, &t);
6499 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6500 return retval;
6501
6502 out_unlock:
6503 read_unlock(&tasklist_lock);
6504 return retval;
6505 }
6506
6507 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6508
6509 void sched_show_task(struct task_struct *p)
6510 {
6511 unsigned long free = 0;
6512 unsigned state;
6513
6514 state = p->state ? __ffs(p->state) + 1 : 0;
6515 printk(KERN_INFO "%-13.13s %c", p->comm,
6516 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6517 #if BITS_PER_LONG == 32
6518 if (state == TASK_RUNNING)
6519 printk(KERN_CONT " running ");
6520 else
6521 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6522 #else
6523 if (state == TASK_RUNNING)
6524 printk(KERN_CONT " running task ");
6525 else
6526 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6527 #endif
6528 #ifdef CONFIG_DEBUG_STACK_USAGE
6529 free = stack_not_used(p);
6530 #endif
6531 printk(KERN_CONT "%5lu %5d %6d\n", free,
6532 task_pid_nr(p), task_pid_nr(p->real_parent));
6533
6534 show_stack(p, NULL);
6535 }
6536
6537 void show_state_filter(unsigned long state_filter)
6538 {
6539 struct task_struct *g, *p;
6540
6541 #if BITS_PER_LONG == 32
6542 printk(KERN_INFO
6543 " task PC stack pid father\n");
6544 #else
6545 printk(KERN_INFO
6546 " task PC stack pid father\n");
6547 #endif
6548 read_lock(&tasklist_lock);
6549 do_each_thread(g, p) {
6550 /*
6551 * reset the NMI-timeout, listing all files on a slow
6552 * console might take alot of time:
6553 */
6554 touch_nmi_watchdog();
6555 if (!state_filter || (p->state & state_filter))
6556 sched_show_task(p);
6557 } while_each_thread(g, p);
6558
6559 touch_all_softlockup_watchdogs();
6560
6561 #ifdef CONFIG_SCHED_DEBUG
6562 sysrq_sched_debug_show();
6563 #endif
6564 read_unlock(&tasklist_lock);
6565 /*
6566 * Only show locks if all tasks are dumped:
6567 */
6568 if (state_filter == -1)
6569 debug_show_all_locks();
6570 }
6571
6572 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6573 {
6574 idle->sched_class = &idle_sched_class;
6575 }
6576
6577 /**
6578 * init_idle - set up an idle thread for a given CPU
6579 * @idle: task in question
6580 * @cpu: cpu the idle task belongs to
6581 *
6582 * NOTE: this function does not set the idle thread's NEED_RESCHED
6583 * flag, to make booting more robust.
6584 */
6585 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6586 {
6587 struct rq *rq = cpu_rq(cpu);
6588 unsigned long flags;
6589
6590 spin_lock_irqsave(&rq->lock, flags);
6591
6592 __sched_fork(idle);
6593 idle->se.exec_start = sched_clock();
6594
6595 idle->prio = idle->normal_prio = MAX_PRIO;
6596 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6597 __set_task_cpu(idle, cpu);
6598
6599 rq->curr = rq->idle = idle;
6600 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6601 idle->oncpu = 1;
6602 #endif
6603 spin_unlock_irqrestore(&rq->lock, flags);
6604
6605 /* Set the preempt count _outside_ the spinlocks! */
6606 #if defined(CONFIG_PREEMPT)
6607 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6608 #else
6609 task_thread_info(idle)->preempt_count = 0;
6610 #endif
6611 /*
6612 * The idle tasks have their own, simple scheduling class:
6613 */
6614 idle->sched_class = &idle_sched_class;
6615 ftrace_graph_init_task(idle);
6616 }
6617
6618 /*
6619 * In a system that switches off the HZ timer nohz_cpu_mask
6620 * indicates which cpus entered this state. This is used
6621 * in the rcu update to wait only for active cpus. For system
6622 * which do not switch off the HZ timer nohz_cpu_mask should
6623 * always be CPU_BITS_NONE.
6624 */
6625 cpumask_var_t nohz_cpu_mask;
6626
6627 /*
6628 * Increase the granularity value when there are more CPUs,
6629 * because with more CPUs the 'effective latency' as visible
6630 * to users decreases. But the relationship is not linear,
6631 * so pick a second-best guess by going with the log2 of the
6632 * number of CPUs.
6633 *
6634 * This idea comes from the SD scheduler of Con Kolivas:
6635 */
6636 static inline void sched_init_granularity(void)
6637 {
6638 unsigned int factor = 1 + ilog2(num_online_cpus());
6639 const unsigned long limit = 200000000;
6640
6641 sysctl_sched_min_granularity *= factor;
6642 if (sysctl_sched_min_granularity > limit)
6643 sysctl_sched_min_granularity = limit;
6644
6645 sysctl_sched_latency *= factor;
6646 if (sysctl_sched_latency > limit)
6647 sysctl_sched_latency = limit;
6648
6649 sysctl_sched_wakeup_granularity *= factor;
6650
6651 sysctl_sched_shares_ratelimit *= factor;
6652 }
6653
6654 #ifdef CONFIG_SMP
6655 /*
6656 * This is how migration works:
6657 *
6658 * 1) we queue a struct migration_req structure in the source CPU's
6659 * runqueue and wake up that CPU's migration thread.
6660 * 2) we down() the locked semaphore => thread blocks.
6661 * 3) migration thread wakes up (implicitly it forces the migrated
6662 * thread off the CPU)
6663 * 4) it gets the migration request and checks whether the migrated
6664 * task is still in the wrong runqueue.
6665 * 5) if it's in the wrong runqueue then the migration thread removes
6666 * it and puts it into the right queue.
6667 * 6) migration thread up()s the semaphore.
6668 * 7) we wake up and the migration is done.
6669 */
6670
6671 /*
6672 * Change a given task's CPU affinity. Migrate the thread to a
6673 * proper CPU and schedule it away if the CPU it's executing on
6674 * is removed from the allowed bitmask.
6675 *
6676 * NOTE: the caller must have a valid reference to the task, the
6677 * task must not exit() & deallocate itself prematurely. The
6678 * call is not atomic; no spinlocks may be held.
6679 */
6680 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6681 {
6682 struct migration_req req;
6683 unsigned long flags;
6684 struct rq *rq;
6685 int ret = 0;
6686
6687 rq = task_rq_lock(p, &flags);
6688 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6689 ret = -EINVAL;
6690 goto out;
6691 }
6692
6693 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6694 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6695 ret = -EINVAL;
6696 goto out;
6697 }
6698
6699 if (p->sched_class->set_cpus_allowed)
6700 p->sched_class->set_cpus_allowed(p, new_mask);
6701 else {
6702 cpumask_copy(&p->cpus_allowed, new_mask);
6703 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6704 }
6705
6706 /* Can the task run on the task's current CPU? If so, we're done */
6707 if (cpumask_test_cpu(task_cpu(p), new_mask))
6708 goto out;
6709
6710 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6711 /* Need help from migration thread: drop lock and wait. */
6712 task_rq_unlock(rq, &flags);
6713 wake_up_process(rq->migration_thread);
6714 wait_for_completion(&req.done);
6715 tlb_migrate_finish(p->mm);
6716 return 0;
6717 }
6718 out:
6719 task_rq_unlock(rq, &flags);
6720
6721 return ret;
6722 }
6723 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6724
6725 /*
6726 * Move (not current) task off this cpu, onto dest cpu. We're doing
6727 * this because either it can't run here any more (set_cpus_allowed()
6728 * away from this CPU, or CPU going down), or because we're
6729 * attempting to rebalance this task on exec (sched_exec).
6730 *
6731 * So we race with normal scheduler movements, but that's OK, as long
6732 * as the task is no longer on this CPU.
6733 *
6734 * Returns non-zero if task was successfully migrated.
6735 */
6736 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6737 {
6738 struct rq *rq_dest, *rq_src;
6739 int ret = 0, on_rq;
6740
6741 if (unlikely(!cpu_active(dest_cpu)))
6742 return ret;
6743
6744 rq_src = cpu_rq(src_cpu);
6745 rq_dest = cpu_rq(dest_cpu);
6746
6747 double_rq_lock(rq_src, rq_dest);
6748 /* Already moved. */
6749 if (task_cpu(p) != src_cpu)
6750 goto done;
6751 /* Affinity changed (again). */
6752 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6753 goto fail;
6754
6755 on_rq = p->se.on_rq;
6756 if (on_rq)
6757 deactivate_task(rq_src, p, 0);
6758
6759 set_task_cpu(p, dest_cpu);
6760 if (on_rq) {
6761 activate_task(rq_dest, p, 0);
6762 check_preempt_curr(rq_dest, p, 0);
6763 }
6764 done:
6765 ret = 1;
6766 fail:
6767 double_rq_unlock(rq_src, rq_dest);
6768 return ret;
6769 }
6770
6771 /*
6772 * migration_thread - this is a highprio system thread that performs
6773 * thread migration by bumping thread off CPU then 'pushing' onto
6774 * another runqueue.
6775 */
6776 static int migration_thread(void *data)
6777 {
6778 int cpu = (long)data;
6779 struct rq *rq;
6780
6781 rq = cpu_rq(cpu);
6782 BUG_ON(rq->migration_thread != current);
6783
6784 set_current_state(TASK_INTERRUPTIBLE);
6785 while (!kthread_should_stop()) {
6786 struct migration_req *req;
6787 struct list_head *head;
6788
6789 spin_lock_irq(&rq->lock);
6790
6791 if (cpu_is_offline(cpu)) {
6792 spin_unlock_irq(&rq->lock);
6793 goto wait_to_die;
6794 }
6795
6796 if (rq->active_balance) {
6797 active_load_balance(rq, cpu);
6798 rq->active_balance = 0;
6799 }
6800
6801 head = &rq->migration_queue;
6802
6803 if (list_empty(head)) {
6804 spin_unlock_irq(&rq->lock);
6805 schedule();
6806 set_current_state(TASK_INTERRUPTIBLE);
6807 continue;
6808 }
6809 req = list_entry(head->next, struct migration_req, list);
6810 list_del_init(head->next);
6811
6812 spin_unlock(&rq->lock);
6813 __migrate_task(req->task, cpu, req->dest_cpu);
6814 local_irq_enable();
6815
6816 complete(&req->done);
6817 }
6818 __set_current_state(TASK_RUNNING);
6819 return 0;
6820
6821 wait_to_die:
6822 /* Wait for kthread_stop */
6823 set_current_state(TASK_INTERRUPTIBLE);
6824 while (!kthread_should_stop()) {
6825 schedule();
6826 set_current_state(TASK_INTERRUPTIBLE);
6827 }
6828 __set_current_state(TASK_RUNNING);
6829 return 0;
6830 }
6831
6832 #ifdef CONFIG_HOTPLUG_CPU
6833
6834 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6835 {
6836 int ret;
6837
6838 local_irq_disable();
6839 ret = __migrate_task(p, src_cpu, dest_cpu);
6840 local_irq_enable();
6841 return ret;
6842 }
6843
6844 /*
6845 * Figure out where task on dead CPU should go, use force if necessary.
6846 */
6847 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6848 {
6849 int dest_cpu;
6850 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6851
6852 again:
6853 /* Look for allowed, online CPU in same node. */
6854 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6855 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6856 goto move;
6857
6858 /* Any allowed, online CPU? */
6859 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6860 if (dest_cpu < nr_cpu_ids)
6861 goto move;
6862
6863 /* No more Mr. Nice Guy. */
6864 if (dest_cpu >= nr_cpu_ids) {
6865 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6866 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6867
6868 /*
6869 * Don't tell them about moving exiting tasks or
6870 * kernel threads (both mm NULL), since they never
6871 * leave kernel.
6872 */
6873 if (p->mm && printk_ratelimit()) {
6874 printk(KERN_INFO "process %d (%s) no "
6875 "longer affine to cpu%d\n",
6876 task_pid_nr(p), p->comm, dead_cpu);
6877 }
6878 }
6879
6880 move:
6881 /* It can have affinity changed while we were choosing. */
6882 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6883 goto again;
6884 }
6885
6886 /*
6887 * While a dead CPU has no uninterruptible tasks queued at this point,
6888 * it might still have a nonzero ->nr_uninterruptible counter, because
6889 * for performance reasons the counter is not stricly tracking tasks to
6890 * their home CPUs. So we just add the counter to another CPU's counter,
6891 * to keep the global sum constant after CPU-down:
6892 */
6893 static void migrate_nr_uninterruptible(struct rq *rq_src)
6894 {
6895 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6896 unsigned long flags;
6897
6898 local_irq_save(flags);
6899 double_rq_lock(rq_src, rq_dest);
6900 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6901 rq_src->nr_uninterruptible = 0;
6902 double_rq_unlock(rq_src, rq_dest);
6903 local_irq_restore(flags);
6904 }
6905
6906 /* Run through task list and migrate tasks from the dead cpu. */
6907 static void migrate_live_tasks(int src_cpu)
6908 {
6909 struct task_struct *p, *t;
6910
6911 read_lock(&tasklist_lock);
6912
6913 do_each_thread(t, p) {
6914 if (p == current)
6915 continue;
6916
6917 if (task_cpu(p) == src_cpu)
6918 move_task_off_dead_cpu(src_cpu, p);
6919 } while_each_thread(t, p);
6920
6921 read_unlock(&tasklist_lock);
6922 }
6923
6924 /*
6925 * Schedules idle task to be the next runnable task on current CPU.
6926 * It does so by boosting its priority to highest possible.
6927 * Used by CPU offline code.
6928 */
6929 void sched_idle_next(void)
6930 {
6931 int this_cpu = smp_processor_id();
6932 struct rq *rq = cpu_rq(this_cpu);
6933 struct task_struct *p = rq->idle;
6934 unsigned long flags;
6935
6936 /* cpu has to be offline */
6937 BUG_ON(cpu_online(this_cpu));
6938
6939 /*
6940 * Strictly not necessary since rest of the CPUs are stopped by now
6941 * and interrupts disabled on the current cpu.
6942 */
6943 spin_lock_irqsave(&rq->lock, flags);
6944
6945 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6946
6947 update_rq_clock(rq);
6948 activate_task(rq, p, 0);
6949
6950 spin_unlock_irqrestore(&rq->lock, flags);
6951 }
6952
6953 /*
6954 * Ensures that the idle task is using init_mm right before its cpu goes
6955 * offline.
6956 */
6957 void idle_task_exit(void)
6958 {
6959 struct mm_struct *mm = current->active_mm;
6960
6961 BUG_ON(cpu_online(smp_processor_id()));
6962
6963 if (mm != &init_mm)
6964 switch_mm(mm, &init_mm, current);
6965 mmdrop(mm);
6966 }
6967
6968 /* called under rq->lock with disabled interrupts */
6969 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6970 {
6971 struct rq *rq = cpu_rq(dead_cpu);
6972
6973 /* Must be exiting, otherwise would be on tasklist. */
6974 BUG_ON(!p->exit_state);
6975
6976 /* Cannot have done final schedule yet: would have vanished. */
6977 BUG_ON(p->state == TASK_DEAD);
6978
6979 get_task_struct(p);
6980
6981 /*
6982 * Drop lock around migration; if someone else moves it,
6983 * that's OK. No task can be added to this CPU, so iteration is
6984 * fine.
6985 */
6986 spin_unlock_irq(&rq->lock);
6987 move_task_off_dead_cpu(dead_cpu, p);
6988 spin_lock_irq(&rq->lock);
6989
6990 put_task_struct(p);
6991 }
6992
6993 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6994 static void migrate_dead_tasks(unsigned int dead_cpu)
6995 {
6996 struct rq *rq = cpu_rq(dead_cpu);
6997 struct task_struct *next;
6998
6999 for ( ; ; ) {
7000 if (!rq->nr_running)
7001 break;
7002 update_rq_clock(rq);
7003 next = pick_next_task(rq);
7004 if (!next)
7005 break;
7006 next->sched_class->put_prev_task(rq, next);
7007 migrate_dead(dead_cpu, next);
7008
7009 }
7010 }
7011 #endif /* CONFIG_HOTPLUG_CPU */
7012
7013 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7014
7015 static struct ctl_table sd_ctl_dir[] = {
7016 {
7017 .procname = "sched_domain",
7018 .mode = 0555,
7019 },
7020 {0, },
7021 };
7022
7023 static struct ctl_table sd_ctl_root[] = {
7024 {
7025 .ctl_name = CTL_KERN,
7026 .procname = "kernel",
7027 .mode = 0555,
7028 .child = sd_ctl_dir,
7029 },
7030 {0, },
7031 };
7032
7033 static struct ctl_table *sd_alloc_ctl_entry(int n)
7034 {
7035 struct ctl_table *entry =
7036 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7037
7038 return entry;
7039 }
7040
7041 static void sd_free_ctl_entry(struct ctl_table **tablep)
7042 {
7043 struct ctl_table *entry;
7044
7045 /*
7046 * In the intermediate directories, both the child directory and
7047 * procname are dynamically allocated and could fail but the mode
7048 * will always be set. In the lowest directory the names are
7049 * static strings and all have proc handlers.
7050 */
7051 for (entry = *tablep; entry->mode; entry++) {
7052 if (entry->child)
7053 sd_free_ctl_entry(&entry->child);
7054 if (entry->proc_handler == NULL)
7055 kfree(entry->procname);
7056 }
7057
7058 kfree(*tablep);
7059 *tablep = NULL;
7060 }
7061
7062 static void
7063 set_table_entry(struct ctl_table *entry,
7064 const char *procname, void *data, int maxlen,
7065 mode_t mode, proc_handler *proc_handler)
7066 {
7067 entry->procname = procname;
7068 entry->data = data;
7069 entry->maxlen = maxlen;
7070 entry->mode = mode;
7071 entry->proc_handler = proc_handler;
7072 }
7073
7074 static struct ctl_table *
7075 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7076 {
7077 struct ctl_table *table = sd_alloc_ctl_entry(13);
7078
7079 if (table == NULL)
7080 return NULL;
7081
7082 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7083 sizeof(long), 0644, proc_doulongvec_minmax);
7084 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7085 sizeof(long), 0644, proc_doulongvec_minmax);
7086 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7087 sizeof(int), 0644, proc_dointvec_minmax);
7088 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7089 sizeof(int), 0644, proc_dointvec_minmax);
7090 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7091 sizeof(int), 0644, proc_dointvec_minmax);
7092 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7093 sizeof(int), 0644, proc_dointvec_minmax);
7094 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7095 sizeof(int), 0644, proc_dointvec_minmax);
7096 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7097 sizeof(int), 0644, proc_dointvec_minmax);
7098 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7099 sizeof(int), 0644, proc_dointvec_minmax);
7100 set_table_entry(&table[9], "cache_nice_tries",
7101 &sd->cache_nice_tries,
7102 sizeof(int), 0644, proc_dointvec_minmax);
7103 set_table_entry(&table[10], "flags", &sd->flags,
7104 sizeof(int), 0644, proc_dointvec_minmax);
7105 set_table_entry(&table[11], "name", sd->name,
7106 CORENAME_MAX_SIZE, 0444, proc_dostring);
7107 /* &table[12] is terminator */
7108
7109 return table;
7110 }
7111
7112 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7113 {
7114 struct ctl_table *entry, *table;
7115 struct sched_domain *sd;
7116 int domain_num = 0, i;
7117 char buf[32];
7118
7119 for_each_domain(cpu, sd)
7120 domain_num++;
7121 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7122 if (table == NULL)
7123 return NULL;
7124
7125 i = 0;
7126 for_each_domain(cpu, sd) {
7127 snprintf(buf, 32, "domain%d", i);
7128 entry->procname = kstrdup(buf, GFP_KERNEL);
7129 entry->mode = 0555;
7130 entry->child = sd_alloc_ctl_domain_table(sd);
7131 entry++;
7132 i++;
7133 }
7134 return table;
7135 }
7136
7137 static struct ctl_table_header *sd_sysctl_header;
7138 static void register_sched_domain_sysctl(void)
7139 {
7140 int i, cpu_num = num_online_cpus();
7141 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7142 char buf[32];
7143
7144 WARN_ON(sd_ctl_dir[0].child);
7145 sd_ctl_dir[0].child = entry;
7146
7147 if (entry == NULL)
7148 return;
7149
7150 for_each_online_cpu(i) {
7151 snprintf(buf, 32, "cpu%d", i);
7152 entry->procname = kstrdup(buf, GFP_KERNEL);
7153 entry->mode = 0555;
7154 entry->child = sd_alloc_ctl_cpu_table(i);
7155 entry++;
7156 }
7157
7158 WARN_ON(sd_sysctl_header);
7159 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7160 }
7161
7162 /* may be called multiple times per register */
7163 static void unregister_sched_domain_sysctl(void)
7164 {
7165 if (sd_sysctl_header)
7166 unregister_sysctl_table(sd_sysctl_header);
7167 sd_sysctl_header = NULL;
7168 if (sd_ctl_dir[0].child)
7169 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7170 }
7171 #else
7172 static void register_sched_domain_sysctl(void)
7173 {
7174 }
7175 static void unregister_sched_domain_sysctl(void)
7176 {
7177 }
7178 #endif
7179
7180 static void set_rq_online(struct rq *rq)
7181 {
7182 if (!rq->online) {
7183 const struct sched_class *class;
7184
7185 cpumask_set_cpu(rq->cpu, rq->rd->online);
7186 rq->online = 1;
7187
7188 for_each_class(class) {
7189 if (class->rq_online)
7190 class->rq_online(rq);
7191 }
7192 }
7193 }
7194
7195 static void set_rq_offline(struct rq *rq)
7196 {
7197 if (rq->online) {
7198 const struct sched_class *class;
7199
7200 for_each_class(class) {
7201 if (class->rq_offline)
7202 class->rq_offline(rq);
7203 }
7204
7205 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7206 rq->online = 0;
7207 }
7208 }
7209
7210 /*
7211 * migration_call - callback that gets triggered when a CPU is added.
7212 * Here we can start up the necessary migration thread for the new CPU.
7213 */
7214 static int __cpuinit
7215 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7216 {
7217 struct task_struct *p;
7218 int cpu = (long)hcpu;
7219 unsigned long flags;
7220 struct rq *rq;
7221
7222 switch (action) {
7223
7224 case CPU_UP_PREPARE:
7225 case CPU_UP_PREPARE_FROZEN:
7226 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7227 if (IS_ERR(p))
7228 return NOTIFY_BAD;
7229 kthread_bind(p, cpu);
7230 /* Must be high prio: stop_machine expects to yield to it. */
7231 rq = task_rq_lock(p, &flags);
7232 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7233 task_rq_unlock(rq, &flags);
7234 cpu_rq(cpu)->migration_thread = p;
7235 break;
7236
7237 case CPU_ONLINE:
7238 case CPU_ONLINE_FROZEN:
7239 /* Strictly unnecessary, as first user will wake it. */
7240 wake_up_process(cpu_rq(cpu)->migration_thread);
7241
7242 /* Update our root-domain */
7243 rq = cpu_rq(cpu);
7244 spin_lock_irqsave(&rq->lock, flags);
7245 if (rq->rd) {
7246 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7247
7248 set_rq_online(rq);
7249 }
7250 spin_unlock_irqrestore(&rq->lock, flags);
7251 break;
7252
7253 #ifdef CONFIG_HOTPLUG_CPU
7254 case CPU_UP_CANCELED:
7255 case CPU_UP_CANCELED_FROZEN:
7256 if (!cpu_rq(cpu)->migration_thread)
7257 break;
7258 /* Unbind it from offline cpu so it can run. Fall thru. */
7259 kthread_bind(cpu_rq(cpu)->migration_thread,
7260 cpumask_any(cpu_online_mask));
7261 kthread_stop(cpu_rq(cpu)->migration_thread);
7262 cpu_rq(cpu)->migration_thread = NULL;
7263 break;
7264
7265 case CPU_DEAD:
7266 case CPU_DEAD_FROZEN:
7267 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7268 migrate_live_tasks(cpu);
7269 rq = cpu_rq(cpu);
7270 kthread_stop(rq->migration_thread);
7271 rq->migration_thread = NULL;
7272 /* Idle task back to normal (off runqueue, low prio) */
7273 spin_lock_irq(&rq->lock);
7274 update_rq_clock(rq);
7275 deactivate_task(rq, rq->idle, 0);
7276 rq->idle->static_prio = MAX_PRIO;
7277 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7278 rq->idle->sched_class = &idle_sched_class;
7279 migrate_dead_tasks(cpu);
7280 spin_unlock_irq(&rq->lock);
7281 cpuset_unlock();
7282 migrate_nr_uninterruptible(rq);
7283 BUG_ON(rq->nr_running != 0);
7284
7285 /*
7286 * No need to migrate the tasks: it was best-effort if
7287 * they didn't take sched_hotcpu_mutex. Just wake up
7288 * the requestors.
7289 */
7290 spin_lock_irq(&rq->lock);
7291 while (!list_empty(&rq->migration_queue)) {
7292 struct migration_req *req;
7293
7294 req = list_entry(rq->migration_queue.next,
7295 struct migration_req, list);
7296 list_del_init(&req->list);
7297 spin_unlock_irq(&rq->lock);
7298 complete(&req->done);
7299 spin_lock_irq(&rq->lock);
7300 }
7301 spin_unlock_irq(&rq->lock);
7302 break;
7303
7304 case CPU_DYING:
7305 case CPU_DYING_FROZEN:
7306 /* Update our root-domain */
7307 rq = cpu_rq(cpu);
7308 spin_lock_irqsave(&rq->lock, flags);
7309 if (rq->rd) {
7310 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7311 set_rq_offline(rq);
7312 }
7313 spin_unlock_irqrestore(&rq->lock, flags);
7314 break;
7315 #endif
7316 }
7317 return NOTIFY_OK;
7318 }
7319
7320 /* Register at highest priority so that task migration (migrate_all_tasks)
7321 * happens before everything else.
7322 */
7323 static struct notifier_block __cpuinitdata migration_notifier = {
7324 .notifier_call = migration_call,
7325 .priority = 10
7326 };
7327
7328 static int __init migration_init(void)
7329 {
7330 void *cpu = (void *)(long)smp_processor_id();
7331 int err;
7332
7333 /* Start one for the boot CPU: */
7334 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7335 BUG_ON(err == NOTIFY_BAD);
7336 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7337 register_cpu_notifier(&migration_notifier);
7338
7339 return err;
7340 }
7341 early_initcall(migration_init);
7342 #endif
7343
7344 #ifdef CONFIG_SMP
7345
7346 #ifdef CONFIG_SCHED_DEBUG
7347
7348 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7349 struct cpumask *groupmask)
7350 {
7351 struct sched_group *group = sd->groups;
7352 char str[256];
7353
7354 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7355 cpumask_clear(groupmask);
7356
7357 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7358
7359 if (!(sd->flags & SD_LOAD_BALANCE)) {
7360 printk("does not load-balance\n");
7361 if (sd->parent)
7362 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7363 " has parent");
7364 return -1;
7365 }
7366
7367 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7368
7369 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7370 printk(KERN_ERR "ERROR: domain->span does not contain "
7371 "CPU%d\n", cpu);
7372 }
7373 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7374 printk(KERN_ERR "ERROR: domain->groups does not contain"
7375 " CPU%d\n", cpu);
7376 }
7377
7378 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7379 do {
7380 if (!group) {
7381 printk("\n");
7382 printk(KERN_ERR "ERROR: group is NULL\n");
7383 break;
7384 }
7385
7386 if (!group->__cpu_power) {
7387 printk(KERN_CONT "\n");
7388 printk(KERN_ERR "ERROR: domain->cpu_power not "
7389 "set\n");
7390 break;
7391 }
7392
7393 if (!cpumask_weight(sched_group_cpus(group))) {
7394 printk(KERN_CONT "\n");
7395 printk(KERN_ERR "ERROR: empty group\n");
7396 break;
7397 }
7398
7399 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7400 printk(KERN_CONT "\n");
7401 printk(KERN_ERR "ERROR: repeated CPUs\n");
7402 break;
7403 }
7404
7405 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7406
7407 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7408
7409 printk(KERN_CONT " %s", str);
7410 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7411 printk(KERN_CONT " (__cpu_power = %d)",
7412 group->__cpu_power);
7413 }
7414
7415 group = group->next;
7416 } while (group != sd->groups);
7417 printk(KERN_CONT "\n");
7418
7419 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7420 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7421
7422 if (sd->parent &&
7423 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7424 printk(KERN_ERR "ERROR: parent span is not a superset "
7425 "of domain->span\n");
7426 return 0;
7427 }
7428
7429 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7430 {
7431 cpumask_var_t groupmask;
7432 int level = 0;
7433
7434 if (!sd) {
7435 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7436 return;
7437 }
7438
7439 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7440
7441 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7442 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7443 return;
7444 }
7445
7446 for (;;) {
7447 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7448 break;
7449 level++;
7450 sd = sd->parent;
7451 if (!sd)
7452 break;
7453 }
7454 free_cpumask_var(groupmask);
7455 }
7456 #else /* !CONFIG_SCHED_DEBUG */
7457 # define sched_domain_debug(sd, cpu) do { } while (0)
7458 #endif /* CONFIG_SCHED_DEBUG */
7459
7460 static int sd_degenerate(struct sched_domain *sd)
7461 {
7462 if (cpumask_weight(sched_domain_span(sd)) == 1)
7463 return 1;
7464
7465 /* Following flags need at least 2 groups */
7466 if (sd->flags & (SD_LOAD_BALANCE |
7467 SD_BALANCE_NEWIDLE |
7468 SD_BALANCE_FORK |
7469 SD_BALANCE_EXEC |
7470 SD_SHARE_CPUPOWER |
7471 SD_SHARE_PKG_RESOURCES)) {
7472 if (sd->groups != sd->groups->next)
7473 return 0;
7474 }
7475
7476 /* Following flags don't use groups */
7477 if (sd->flags & (SD_WAKE_IDLE |
7478 SD_WAKE_AFFINE |
7479 SD_WAKE_BALANCE))
7480 return 0;
7481
7482 return 1;
7483 }
7484
7485 static int
7486 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7487 {
7488 unsigned long cflags = sd->flags, pflags = parent->flags;
7489
7490 if (sd_degenerate(parent))
7491 return 1;
7492
7493 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7494 return 0;
7495
7496 /* Does parent contain flags not in child? */
7497 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7498 if (cflags & SD_WAKE_AFFINE)
7499 pflags &= ~SD_WAKE_BALANCE;
7500 /* Flags needing groups don't count if only 1 group in parent */
7501 if (parent->groups == parent->groups->next) {
7502 pflags &= ~(SD_LOAD_BALANCE |
7503 SD_BALANCE_NEWIDLE |
7504 SD_BALANCE_FORK |
7505 SD_BALANCE_EXEC |
7506 SD_SHARE_CPUPOWER |
7507 SD_SHARE_PKG_RESOURCES);
7508 if (nr_node_ids == 1)
7509 pflags &= ~SD_SERIALIZE;
7510 }
7511 if (~cflags & pflags)
7512 return 0;
7513
7514 return 1;
7515 }
7516
7517 static void free_rootdomain(struct root_domain *rd)
7518 {
7519 cpupri_cleanup(&rd->cpupri);
7520
7521 free_cpumask_var(rd->rto_mask);
7522 free_cpumask_var(rd->online);
7523 free_cpumask_var(rd->span);
7524 kfree(rd);
7525 }
7526
7527 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7528 {
7529 struct root_domain *old_rd = NULL;
7530 unsigned long flags;
7531
7532 spin_lock_irqsave(&rq->lock, flags);
7533
7534 if (rq->rd) {
7535 old_rd = rq->rd;
7536
7537 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7538 set_rq_offline(rq);
7539
7540 cpumask_clear_cpu(rq->cpu, old_rd->span);
7541
7542 /*
7543 * If we dont want to free the old_rt yet then
7544 * set old_rd to NULL to skip the freeing later
7545 * in this function:
7546 */
7547 if (!atomic_dec_and_test(&old_rd->refcount))
7548 old_rd = NULL;
7549 }
7550
7551 atomic_inc(&rd->refcount);
7552 rq->rd = rd;
7553
7554 cpumask_set_cpu(rq->cpu, rd->span);
7555 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7556 set_rq_online(rq);
7557
7558 spin_unlock_irqrestore(&rq->lock, flags);
7559
7560 if (old_rd)
7561 free_rootdomain(old_rd);
7562 }
7563
7564 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7565 {
7566 memset(rd, 0, sizeof(*rd));
7567
7568 if (bootmem) {
7569 alloc_bootmem_cpumask_var(&def_root_domain.span);
7570 alloc_bootmem_cpumask_var(&def_root_domain.online);
7571 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7572 cpupri_init(&rd->cpupri, true);
7573 return 0;
7574 }
7575
7576 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7577 goto out;
7578 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7579 goto free_span;
7580 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7581 goto free_online;
7582
7583 if (cpupri_init(&rd->cpupri, false) != 0)
7584 goto free_rto_mask;
7585 return 0;
7586
7587 free_rto_mask:
7588 free_cpumask_var(rd->rto_mask);
7589 free_online:
7590 free_cpumask_var(rd->online);
7591 free_span:
7592 free_cpumask_var(rd->span);
7593 out:
7594 return -ENOMEM;
7595 }
7596
7597 static void init_defrootdomain(void)
7598 {
7599 init_rootdomain(&def_root_domain, true);
7600
7601 atomic_set(&def_root_domain.refcount, 1);
7602 }
7603
7604 static struct root_domain *alloc_rootdomain(void)
7605 {
7606 struct root_domain *rd;
7607
7608 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7609 if (!rd)
7610 return NULL;
7611
7612 if (init_rootdomain(rd, false) != 0) {
7613 kfree(rd);
7614 return NULL;
7615 }
7616
7617 return rd;
7618 }
7619
7620 /*
7621 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7622 * hold the hotplug lock.
7623 */
7624 static void
7625 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7626 {
7627 struct rq *rq = cpu_rq(cpu);
7628 struct sched_domain *tmp;
7629
7630 /* Remove the sched domains which do not contribute to scheduling. */
7631 for (tmp = sd; tmp; ) {
7632 struct sched_domain *parent = tmp->parent;
7633 if (!parent)
7634 break;
7635
7636 if (sd_parent_degenerate(tmp, parent)) {
7637 tmp->parent = parent->parent;
7638 if (parent->parent)
7639 parent->parent->child = tmp;
7640 } else
7641 tmp = tmp->parent;
7642 }
7643
7644 if (sd && sd_degenerate(sd)) {
7645 sd = sd->parent;
7646 if (sd)
7647 sd->child = NULL;
7648 }
7649
7650 sched_domain_debug(sd, cpu);
7651
7652 rq_attach_root(rq, rd);
7653 rcu_assign_pointer(rq->sd, sd);
7654 }
7655
7656 /* cpus with isolated domains */
7657 static cpumask_var_t cpu_isolated_map;
7658
7659 /* Setup the mask of cpus configured for isolated domains */
7660 static int __init isolated_cpu_setup(char *str)
7661 {
7662 cpulist_parse(str, cpu_isolated_map);
7663 return 1;
7664 }
7665
7666 __setup("isolcpus=", isolated_cpu_setup);
7667
7668 /*
7669 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7670 * to a function which identifies what group(along with sched group) a CPU
7671 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7672 * (due to the fact that we keep track of groups covered with a struct cpumask).
7673 *
7674 * init_sched_build_groups will build a circular linked list of the groups
7675 * covered by the given span, and will set each group's ->cpumask correctly,
7676 * and ->cpu_power to 0.
7677 */
7678 static void
7679 init_sched_build_groups(const struct cpumask *span,
7680 const struct cpumask *cpu_map,
7681 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7682 struct sched_group **sg,
7683 struct cpumask *tmpmask),
7684 struct cpumask *covered, struct cpumask *tmpmask)
7685 {
7686 struct sched_group *first = NULL, *last = NULL;
7687 int i;
7688
7689 cpumask_clear(covered);
7690
7691 for_each_cpu(i, span) {
7692 struct sched_group *sg;
7693 int group = group_fn(i, cpu_map, &sg, tmpmask);
7694 int j;
7695
7696 if (cpumask_test_cpu(i, covered))
7697 continue;
7698
7699 cpumask_clear(sched_group_cpus(sg));
7700 sg->__cpu_power = 0;
7701
7702 for_each_cpu(j, span) {
7703 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7704 continue;
7705
7706 cpumask_set_cpu(j, covered);
7707 cpumask_set_cpu(j, sched_group_cpus(sg));
7708 }
7709 if (!first)
7710 first = sg;
7711 if (last)
7712 last->next = sg;
7713 last = sg;
7714 }
7715 last->next = first;
7716 }
7717
7718 #define SD_NODES_PER_DOMAIN 16
7719
7720 #ifdef CONFIG_NUMA
7721
7722 /**
7723 * find_next_best_node - find the next node to include in a sched_domain
7724 * @node: node whose sched_domain we're building
7725 * @used_nodes: nodes already in the sched_domain
7726 *
7727 * Find the next node to include in a given scheduling domain. Simply
7728 * finds the closest node not already in the @used_nodes map.
7729 *
7730 * Should use nodemask_t.
7731 */
7732 static int find_next_best_node(int node, nodemask_t *used_nodes)
7733 {
7734 int i, n, val, min_val, best_node = 0;
7735
7736 min_val = INT_MAX;
7737
7738 for (i = 0; i < nr_node_ids; i++) {
7739 /* Start at @node */
7740 n = (node + i) % nr_node_ids;
7741
7742 if (!nr_cpus_node(n))
7743 continue;
7744
7745 /* Skip already used nodes */
7746 if (node_isset(n, *used_nodes))
7747 continue;
7748
7749 /* Simple min distance search */
7750 val = node_distance(node, n);
7751
7752 if (val < min_val) {
7753 min_val = val;
7754 best_node = n;
7755 }
7756 }
7757
7758 node_set(best_node, *used_nodes);
7759 return best_node;
7760 }
7761
7762 /**
7763 * sched_domain_node_span - get a cpumask for a node's sched_domain
7764 * @node: node whose cpumask we're constructing
7765 * @span: resulting cpumask
7766 *
7767 * Given a node, construct a good cpumask for its sched_domain to span. It
7768 * should be one that prevents unnecessary balancing, but also spreads tasks
7769 * out optimally.
7770 */
7771 static void sched_domain_node_span(int node, struct cpumask *span)
7772 {
7773 nodemask_t used_nodes;
7774 int i;
7775
7776 cpumask_clear(span);
7777 nodes_clear(used_nodes);
7778
7779 cpumask_or(span, span, cpumask_of_node(node));
7780 node_set(node, used_nodes);
7781
7782 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7783 int next_node = find_next_best_node(node, &used_nodes);
7784
7785 cpumask_or(span, span, cpumask_of_node(next_node));
7786 }
7787 }
7788 #endif /* CONFIG_NUMA */
7789
7790 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7791
7792 /*
7793 * The cpus mask in sched_group and sched_domain hangs off the end.
7794 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7795 * for nr_cpu_ids < CONFIG_NR_CPUS.
7796 */
7797 struct static_sched_group {
7798 struct sched_group sg;
7799 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7800 };
7801
7802 struct static_sched_domain {
7803 struct sched_domain sd;
7804 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7805 };
7806
7807 /*
7808 * SMT sched-domains:
7809 */
7810 #ifdef CONFIG_SCHED_SMT
7811 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7812 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7813
7814 static int
7815 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7816 struct sched_group **sg, struct cpumask *unused)
7817 {
7818 if (sg)
7819 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7820 return cpu;
7821 }
7822 #endif /* CONFIG_SCHED_SMT */
7823
7824 /*
7825 * multi-core sched-domains:
7826 */
7827 #ifdef CONFIG_SCHED_MC
7828 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7829 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7830 #endif /* CONFIG_SCHED_MC */
7831
7832 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7833 static int
7834 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7835 struct sched_group **sg, struct cpumask *mask)
7836 {
7837 int group;
7838
7839 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7840 group = cpumask_first(mask);
7841 if (sg)
7842 *sg = &per_cpu(sched_group_core, group).sg;
7843 return group;
7844 }
7845 #elif defined(CONFIG_SCHED_MC)
7846 static int
7847 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7848 struct sched_group **sg, struct cpumask *unused)
7849 {
7850 if (sg)
7851 *sg = &per_cpu(sched_group_core, cpu).sg;
7852 return cpu;
7853 }
7854 #endif
7855
7856 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7857 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7858
7859 static int
7860 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7861 struct sched_group **sg, struct cpumask *mask)
7862 {
7863 int group;
7864 #ifdef CONFIG_SCHED_MC
7865 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7866 group = cpumask_first(mask);
7867 #elif defined(CONFIG_SCHED_SMT)
7868 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7869 group = cpumask_first(mask);
7870 #else
7871 group = cpu;
7872 #endif
7873 if (sg)
7874 *sg = &per_cpu(sched_group_phys, group).sg;
7875 return group;
7876 }
7877
7878 #ifdef CONFIG_NUMA
7879 /*
7880 * The init_sched_build_groups can't handle what we want to do with node
7881 * groups, so roll our own. Now each node has its own list of groups which
7882 * gets dynamically allocated.
7883 */
7884 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7885 static struct sched_group ***sched_group_nodes_bycpu;
7886
7887 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7888 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7889
7890 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7891 struct sched_group **sg,
7892 struct cpumask *nodemask)
7893 {
7894 int group;
7895
7896 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7897 group = cpumask_first(nodemask);
7898
7899 if (sg)
7900 *sg = &per_cpu(sched_group_allnodes, group).sg;
7901 return group;
7902 }
7903
7904 static void init_numa_sched_groups_power(struct sched_group *group_head)
7905 {
7906 struct sched_group *sg = group_head;
7907 int j;
7908
7909 if (!sg)
7910 return;
7911 do {
7912 for_each_cpu(j, sched_group_cpus(sg)) {
7913 struct sched_domain *sd;
7914
7915 sd = &per_cpu(phys_domains, j).sd;
7916 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7917 /*
7918 * Only add "power" once for each
7919 * physical package.
7920 */
7921 continue;
7922 }
7923
7924 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7925 }
7926 sg = sg->next;
7927 } while (sg != group_head);
7928 }
7929 #endif /* CONFIG_NUMA */
7930
7931 #ifdef CONFIG_NUMA
7932 /* Free memory allocated for various sched_group structures */
7933 static void free_sched_groups(const struct cpumask *cpu_map,
7934 struct cpumask *nodemask)
7935 {
7936 int cpu, i;
7937
7938 for_each_cpu(cpu, cpu_map) {
7939 struct sched_group **sched_group_nodes
7940 = sched_group_nodes_bycpu[cpu];
7941
7942 if (!sched_group_nodes)
7943 continue;
7944
7945 for (i = 0; i < nr_node_ids; i++) {
7946 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7947
7948 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7949 if (cpumask_empty(nodemask))
7950 continue;
7951
7952 if (sg == NULL)
7953 continue;
7954 sg = sg->next;
7955 next_sg:
7956 oldsg = sg;
7957 sg = sg->next;
7958 kfree(oldsg);
7959 if (oldsg != sched_group_nodes[i])
7960 goto next_sg;
7961 }
7962 kfree(sched_group_nodes);
7963 sched_group_nodes_bycpu[cpu] = NULL;
7964 }
7965 }
7966 #else /* !CONFIG_NUMA */
7967 static void free_sched_groups(const struct cpumask *cpu_map,
7968 struct cpumask *nodemask)
7969 {
7970 }
7971 #endif /* CONFIG_NUMA */
7972
7973 /*
7974 * Initialize sched groups cpu_power.
7975 *
7976 * cpu_power indicates the capacity of sched group, which is used while
7977 * distributing the load between different sched groups in a sched domain.
7978 * Typically cpu_power for all the groups in a sched domain will be same unless
7979 * there are asymmetries in the topology. If there are asymmetries, group
7980 * having more cpu_power will pickup more load compared to the group having
7981 * less cpu_power.
7982 *
7983 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7984 * the maximum number of tasks a group can handle in the presence of other idle
7985 * or lightly loaded groups in the same sched domain.
7986 */
7987 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7988 {
7989 struct sched_domain *child;
7990 struct sched_group *group;
7991
7992 WARN_ON(!sd || !sd->groups);
7993
7994 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7995 return;
7996
7997 child = sd->child;
7998
7999 sd->groups->__cpu_power = 0;
8000
8001 /*
8002 * For perf policy, if the groups in child domain share resources
8003 * (for example cores sharing some portions of the cache hierarchy
8004 * or SMT), then set this domain groups cpu_power such that each group
8005 * can handle only one task, when there are other idle groups in the
8006 * same sched domain.
8007 */
8008 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8009 (child->flags &
8010 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8011 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8012 return;
8013 }
8014
8015 /*
8016 * add cpu_power of each child group to this groups cpu_power
8017 */
8018 group = child->groups;
8019 do {
8020 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8021 group = group->next;
8022 } while (group != child->groups);
8023 }
8024
8025 /*
8026 * Initializers for schedule domains
8027 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8028 */
8029
8030 #ifdef CONFIG_SCHED_DEBUG
8031 # define SD_INIT_NAME(sd, type) sd->name = #type
8032 #else
8033 # define SD_INIT_NAME(sd, type) do { } while (0)
8034 #endif
8035
8036 #define SD_INIT(sd, type) sd_init_##type(sd)
8037
8038 #define SD_INIT_FUNC(type) \
8039 static noinline void sd_init_##type(struct sched_domain *sd) \
8040 { \
8041 memset(sd, 0, sizeof(*sd)); \
8042 *sd = SD_##type##_INIT; \
8043 sd->level = SD_LV_##type; \
8044 SD_INIT_NAME(sd, type); \
8045 }
8046
8047 SD_INIT_FUNC(CPU)
8048 #ifdef CONFIG_NUMA
8049 SD_INIT_FUNC(ALLNODES)
8050 SD_INIT_FUNC(NODE)
8051 #endif
8052 #ifdef CONFIG_SCHED_SMT
8053 SD_INIT_FUNC(SIBLING)
8054 #endif
8055 #ifdef CONFIG_SCHED_MC
8056 SD_INIT_FUNC(MC)
8057 #endif
8058
8059 static int default_relax_domain_level = -1;
8060
8061 static int __init setup_relax_domain_level(char *str)
8062 {
8063 unsigned long val;
8064
8065 val = simple_strtoul(str, NULL, 0);
8066 if (val < SD_LV_MAX)
8067 default_relax_domain_level = val;
8068
8069 return 1;
8070 }
8071 __setup("relax_domain_level=", setup_relax_domain_level);
8072
8073 static void set_domain_attribute(struct sched_domain *sd,
8074 struct sched_domain_attr *attr)
8075 {
8076 int request;
8077
8078 if (!attr || attr->relax_domain_level < 0) {
8079 if (default_relax_domain_level < 0)
8080 return;
8081 else
8082 request = default_relax_domain_level;
8083 } else
8084 request = attr->relax_domain_level;
8085 if (request < sd->level) {
8086 /* turn off idle balance on this domain */
8087 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8088 } else {
8089 /* turn on idle balance on this domain */
8090 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8091 }
8092 }
8093
8094 /*
8095 * Build sched domains for a given set of cpus and attach the sched domains
8096 * to the individual cpus
8097 */
8098 static int __build_sched_domains(const struct cpumask *cpu_map,
8099 struct sched_domain_attr *attr)
8100 {
8101 int i, err = -ENOMEM;
8102 struct root_domain *rd;
8103 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8104 tmpmask;
8105 #ifdef CONFIG_NUMA
8106 cpumask_var_t domainspan, covered, notcovered;
8107 struct sched_group **sched_group_nodes = NULL;
8108 int sd_allnodes = 0;
8109
8110 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8111 goto out;
8112 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8113 goto free_domainspan;
8114 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8115 goto free_covered;
8116 #endif
8117
8118 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8119 goto free_notcovered;
8120 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8121 goto free_nodemask;
8122 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8123 goto free_this_sibling_map;
8124 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8125 goto free_this_core_map;
8126 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8127 goto free_send_covered;
8128
8129 #ifdef CONFIG_NUMA
8130 /*
8131 * Allocate the per-node list of sched groups
8132 */
8133 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8134 GFP_KERNEL);
8135 if (!sched_group_nodes) {
8136 printk(KERN_WARNING "Can not alloc sched group node list\n");
8137 goto free_tmpmask;
8138 }
8139 #endif
8140
8141 rd = alloc_rootdomain();
8142 if (!rd) {
8143 printk(KERN_WARNING "Cannot alloc root domain\n");
8144 goto free_sched_groups;
8145 }
8146
8147 #ifdef CONFIG_NUMA
8148 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8149 #endif
8150
8151 /*
8152 * Set up domains for cpus specified by the cpu_map.
8153 */
8154 for_each_cpu(i, cpu_map) {
8155 struct sched_domain *sd = NULL, *p;
8156
8157 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8158
8159 #ifdef CONFIG_NUMA
8160 if (cpumask_weight(cpu_map) >
8161 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8162 sd = &per_cpu(allnodes_domains, i).sd;
8163 SD_INIT(sd, ALLNODES);
8164 set_domain_attribute(sd, attr);
8165 cpumask_copy(sched_domain_span(sd), cpu_map);
8166 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8167 p = sd;
8168 sd_allnodes = 1;
8169 } else
8170 p = NULL;
8171
8172 sd = &per_cpu(node_domains, i).sd;
8173 SD_INIT(sd, NODE);
8174 set_domain_attribute(sd, attr);
8175 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8176 sd->parent = p;
8177 if (p)
8178 p->child = sd;
8179 cpumask_and(sched_domain_span(sd),
8180 sched_domain_span(sd), cpu_map);
8181 #endif
8182
8183 p = sd;
8184 sd = &per_cpu(phys_domains, i).sd;
8185 SD_INIT(sd, CPU);
8186 set_domain_attribute(sd, attr);
8187 cpumask_copy(sched_domain_span(sd), nodemask);
8188 sd->parent = p;
8189 if (p)
8190 p->child = sd;
8191 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8192
8193 #ifdef CONFIG_SCHED_MC
8194 p = sd;
8195 sd = &per_cpu(core_domains, i).sd;
8196 SD_INIT(sd, MC);
8197 set_domain_attribute(sd, attr);
8198 cpumask_and(sched_domain_span(sd), cpu_map,
8199 cpu_coregroup_mask(i));
8200 sd->parent = p;
8201 p->child = sd;
8202 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8203 #endif
8204
8205 #ifdef CONFIG_SCHED_SMT
8206 p = sd;
8207 sd = &per_cpu(cpu_domains, i).sd;
8208 SD_INIT(sd, SIBLING);
8209 set_domain_attribute(sd, attr);
8210 cpumask_and(sched_domain_span(sd),
8211 topology_thread_cpumask(i), cpu_map);
8212 sd->parent = p;
8213 p->child = sd;
8214 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8215 #endif
8216 }
8217
8218 #ifdef CONFIG_SCHED_SMT
8219 /* Set up CPU (sibling) groups */
8220 for_each_cpu(i, cpu_map) {
8221 cpumask_and(this_sibling_map,
8222 topology_thread_cpumask(i), cpu_map);
8223 if (i != cpumask_first(this_sibling_map))
8224 continue;
8225
8226 init_sched_build_groups(this_sibling_map, cpu_map,
8227 &cpu_to_cpu_group,
8228 send_covered, tmpmask);
8229 }
8230 #endif
8231
8232 #ifdef CONFIG_SCHED_MC
8233 /* Set up multi-core groups */
8234 for_each_cpu(i, cpu_map) {
8235 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8236 if (i != cpumask_first(this_core_map))
8237 continue;
8238
8239 init_sched_build_groups(this_core_map, cpu_map,
8240 &cpu_to_core_group,
8241 send_covered, tmpmask);
8242 }
8243 #endif
8244
8245 /* Set up physical groups */
8246 for (i = 0; i < nr_node_ids; i++) {
8247 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8248 if (cpumask_empty(nodemask))
8249 continue;
8250
8251 init_sched_build_groups(nodemask, cpu_map,
8252 &cpu_to_phys_group,
8253 send_covered, tmpmask);
8254 }
8255
8256 #ifdef CONFIG_NUMA
8257 /* Set up node groups */
8258 if (sd_allnodes) {
8259 init_sched_build_groups(cpu_map, cpu_map,
8260 &cpu_to_allnodes_group,
8261 send_covered, tmpmask);
8262 }
8263
8264 for (i = 0; i < nr_node_ids; i++) {
8265 /* Set up node groups */
8266 struct sched_group *sg, *prev;
8267 int j;
8268
8269 cpumask_clear(covered);
8270 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8271 if (cpumask_empty(nodemask)) {
8272 sched_group_nodes[i] = NULL;
8273 continue;
8274 }
8275
8276 sched_domain_node_span(i, domainspan);
8277 cpumask_and(domainspan, domainspan, cpu_map);
8278
8279 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8280 GFP_KERNEL, i);
8281 if (!sg) {
8282 printk(KERN_WARNING "Can not alloc domain group for "
8283 "node %d\n", i);
8284 goto error;
8285 }
8286 sched_group_nodes[i] = sg;
8287 for_each_cpu(j, nodemask) {
8288 struct sched_domain *sd;
8289
8290 sd = &per_cpu(node_domains, j).sd;
8291 sd->groups = sg;
8292 }
8293 sg->__cpu_power = 0;
8294 cpumask_copy(sched_group_cpus(sg), nodemask);
8295 sg->next = sg;
8296 cpumask_or(covered, covered, nodemask);
8297 prev = sg;
8298
8299 for (j = 0; j < nr_node_ids; j++) {
8300 int n = (i + j) % nr_node_ids;
8301
8302 cpumask_complement(notcovered, covered);
8303 cpumask_and(tmpmask, notcovered, cpu_map);
8304 cpumask_and(tmpmask, tmpmask, domainspan);
8305 if (cpumask_empty(tmpmask))
8306 break;
8307
8308 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8309 if (cpumask_empty(tmpmask))
8310 continue;
8311
8312 sg = kmalloc_node(sizeof(struct sched_group) +
8313 cpumask_size(),
8314 GFP_KERNEL, i);
8315 if (!sg) {
8316 printk(KERN_WARNING
8317 "Can not alloc domain group for node %d\n", j);
8318 goto error;
8319 }
8320 sg->__cpu_power = 0;
8321 cpumask_copy(sched_group_cpus(sg), tmpmask);
8322 sg->next = prev->next;
8323 cpumask_or(covered, covered, tmpmask);
8324 prev->next = sg;
8325 prev = sg;
8326 }
8327 }
8328 #endif
8329
8330 /* Calculate CPU power for physical packages and nodes */
8331 #ifdef CONFIG_SCHED_SMT
8332 for_each_cpu(i, cpu_map) {
8333 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8334
8335 init_sched_groups_power(i, sd);
8336 }
8337 #endif
8338 #ifdef CONFIG_SCHED_MC
8339 for_each_cpu(i, cpu_map) {
8340 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8341
8342 init_sched_groups_power(i, sd);
8343 }
8344 #endif
8345
8346 for_each_cpu(i, cpu_map) {
8347 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8348
8349 init_sched_groups_power(i, sd);
8350 }
8351
8352 #ifdef CONFIG_NUMA
8353 for (i = 0; i < nr_node_ids; i++)
8354 init_numa_sched_groups_power(sched_group_nodes[i]);
8355
8356 if (sd_allnodes) {
8357 struct sched_group *sg;
8358
8359 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8360 tmpmask);
8361 init_numa_sched_groups_power(sg);
8362 }
8363 #endif
8364
8365 /* Attach the domains */
8366 for_each_cpu(i, cpu_map) {
8367 struct sched_domain *sd;
8368 #ifdef CONFIG_SCHED_SMT
8369 sd = &per_cpu(cpu_domains, i).sd;
8370 #elif defined(CONFIG_SCHED_MC)
8371 sd = &per_cpu(core_domains, i).sd;
8372 #else
8373 sd = &per_cpu(phys_domains, i).sd;
8374 #endif
8375 cpu_attach_domain(sd, rd, i);
8376 }
8377
8378 err = 0;
8379
8380 free_tmpmask:
8381 free_cpumask_var(tmpmask);
8382 free_send_covered:
8383 free_cpumask_var(send_covered);
8384 free_this_core_map:
8385 free_cpumask_var(this_core_map);
8386 free_this_sibling_map:
8387 free_cpumask_var(this_sibling_map);
8388 free_nodemask:
8389 free_cpumask_var(nodemask);
8390 free_notcovered:
8391 #ifdef CONFIG_NUMA
8392 free_cpumask_var(notcovered);
8393 free_covered:
8394 free_cpumask_var(covered);
8395 free_domainspan:
8396 free_cpumask_var(domainspan);
8397 out:
8398 #endif
8399 return err;
8400
8401 free_sched_groups:
8402 #ifdef CONFIG_NUMA
8403 kfree(sched_group_nodes);
8404 #endif
8405 goto free_tmpmask;
8406
8407 #ifdef CONFIG_NUMA
8408 error:
8409 free_sched_groups(cpu_map, tmpmask);
8410 free_rootdomain(rd);
8411 goto free_tmpmask;
8412 #endif
8413 }
8414
8415 static int build_sched_domains(const struct cpumask *cpu_map)
8416 {
8417 return __build_sched_domains(cpu_map, NULL);
8418 }
8419
8420 static struct cpumask *doms_cur; /* current sched domains */
8421 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8422 static struct sched_domain_attr *dattr_cur;
8423 /* attribues of custom domains in 'doms_cur' */
8424
8425 /*
8426 * Special case: If a kmalloc of a doms_cur partition (array of
8427 * cpumask) fails, then fallback to a single sched domain,
8428 * as determined by the single cpumask fallback_doms.
8429 */
8430 static cpumask_var_t fallback_doms;
8431
8432 /*
8433 * arch_update_cpu_topology lets virtualized architectures update the
8434 * cpu core maps. It is supposed to return 1 if the topology changed
8435 * or 0 if it stayed the same.
8436 */
8437 int __attribute__((weak)) arch_update_cpu_topology(void)
8438 {
8439 return 0;
8440 }
8441
8442 /*
8443 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8444 * For now this just excludes isolated cpus, but could be used to
8445 * exclude other special cases in the future.
8446 */
8447 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8448 {
8449 int err;
8450
8451 arch_update_cpu_topology();
8452 ndoms_cur = 1;
8453 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8454 if (!doms_cur)
8455 doms_cur = fallback_doms;
8456 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8457 dattr_cur = NULL;
8458 err = build_sched_domains(doms_cur);
8459 register_sched_domain_sysctl();
8460
8461 return err;
8462 }
8463
8464 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8465 struct cpumask *tmpmask)
8466 {
8467 free_sched_groups(cpu_map, tmpmask);
8468 }
8469
8470 /*
8471 * Detach sched domains from a group of cpus specified in cpu_map
8472 * These cpus will now be attached to the NULL domain
8473 */
8474 static void detach_destroy_domains(const struct cpumask *cpu_map)
8475 {
8476 /* Save because hotplug lock held. */
8477 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8478 int i;
8479
8480 for_each_cpu(i, cpu_map)
8481 cpu_attach_domain(NULL, &def_root_domain, i);
8482 synchronize_sched();
8483 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8484 }
8485
8486 /* handle null as "default" */
8487 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8488 struct sched_domain_attr *new, int idx_new)
8489 {
8490 struct sched_domain_attr tmp;
8491
8492 /* fast path */
8493 if (!new && !cur)
8494 return 1;
8495
8496 tmp = SD_ATTR_INIT;
8497 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8498 new ? (new + idx_new) : &tmp,
8499 sizeof(struct sched_domain_attr));
8500 }
8501
8502 /*
8503 * Partition sched domains as specified by the 'ndoms_new'
8504 * cpumasks in the array doms_new[] of cpumasks. This compares
8505 * doms_new[] to the current sched domain partitioning, doms_cur[].
8506 * It destroys each deleted domain and builds each new domain.
8507 *
8508 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8509 * The masks don't intersect (don't overlap.) We should setup one
8510 * sched domain for each mask. CPUs not in any of the cpumasks will
8511 * not be load balanced. If the same cpumask appears both in the
8512 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8513 * it as it is.
8514 *
8515 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8516 * ownership of it and will kfree it when done with it. If the caller
8517 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8518 * ndoms_new == 1, and partition_sched_domains() will fallback to
8519 * the single partition 'fallback_doms', it also forces the domains
8520 * to be rebuilt.
8521 *
8522 * If doms_new == NULL it will be replaced with cpu_online_mask.
8523 * ndoms_new == 0 is a special case for destroying existing domains,
8524 * and it will not create the default domain.
8525 *
8526 * Call with hotplug lock held
8527 */
8528 /* FIXME: Change to struct cpumask *doms_new[] */
8529 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8530 struct sched_domain_attr *dattr_new)
8531 {
8532 int i, j, n;
8533 int new_topology;
8534
8535 mutex_lock(&sched_domains_mutex);
8536
8537 /* always unregister in case we don't destroy any domains */
8538 unregister_sched_domain_sysctl();
8539
8540 /* Let architecture update cpu core mappings. */
8541 new_topology = arch_update_cpu_topology();
8542
8543 n = doms_new ? ndoms_new : 0;
8544
8545 /* Destroy deleted domains */
8546 for (i = 0; i < ndoms_cur; i++) {
8547 for (j = 0; j < n && !new_topology; j++) {
8548 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8549 && dattrs_equal(dattr_cur, i, dattr_new, j))
8550 goto match1;
8551 }
8552 /* no match - a current sched domain not in new doms_new[] */
8553 detach_destroy_domains(doms_cur + i);
8554 match1:
8555 ;
8556 }
8557
8558 if (doms_new == NULL) {
8559 ndoms_cur = 0;
8560 doms_new = fallback_doms;
8561 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8562 WARN_ON_ONCE(dattr_new);
8563 }
8564
8565 /* Build new domains */
8566 for (i = 0; i < ndoms_new; i++) {
8567 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8568 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8569 && dattrs_equal(dattr_new, i, dattr_cur, j))
8570 goto match2;
8571 }
8572 /* no match - add a new doms_new */
8573 __build_sched_domains(doms_new + i,
8574 dattr_new ? dattr_new + i : NULL);
8575 match2:
8576 ;
8577 }
8578
8579 /* Remember the new sched domains */
8580 if (doms_cur != fallback_doms)
8581 kfree(doms_cur);
8582 kfree(dattr_cur); /* kfree(NULL) is safe */
8583 doms_cur = doms_new;
8584 dattr_cur = dattr_new;
8585 ndoms_cur = ndoms_new;
8586
8587 register_sched_domain_sysctl();
8588
8589 mutex_unlock(&sched_domains_mutex);
8590 }
8591
8592 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8593 static void arch_reinit_sched_domains(void)
8594 {
8595 get_online_cpus();
8596
8597 /* Destroy domains first to force the rebuild */
8598 partition_sched_domains(0, NULL, NULL);
8599
8600 rebuild_sched_domains();
8601 put_online_cpus();
8602 }
8603
8604 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8605 {
8606 unsigned int level = 0;
8607
8608 if (sscanf(buf, "%u", &level) != 1)
8609 return -EINVAL;
8610
8611 /*
8612 * level is always be positive so don't check for
8613 * level < POWERSAVINGS_BALANCE_NONE which is 0
8614 * What happens on 0 or 1 byte write,
8615 * need to check for count as well?
8616 */
8617
8618 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8619 return -EINVAL;
8620
8621 if (smt)
8622 sched_smt_power_savings = level;
8623 else
8624 sched_mc_power_savings = level;
8625
8626 arch_reinit_sched_domains();
8627
8628 return count;
8629 }
8630
8631 #ifdef CONFIG_SCHED_MC
8632 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8633 char *page)
8634 {
8635 return sprintf(page, "%u\n", sched_mc_power_savings);
8636 }
8637 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8638 const char *buf, size_t count)
8639 {
8640 return sched_power_savings_store(buf, count, 0);
8641 }
8642 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8643 sched_mc_power_savings_show,
8644 sched_mc_power_savings_store);
8645 #endif
8646
8647 #ifdef CONFIG_SCHED_SMT
8648 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8649 char *page)
8650 {
8651 return sprintf(page, "%u\n", sched_smt_power_savings);
8652 }
8653 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8654 const char *buf, size_t count)
8655 {
8656 return sched_power_savings_store(buf, count, 1);
8657 }
8658 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8659 sched_smt_power_savings_show,
8660 sched_smt_power_savings_store);
8661 #endif
8662
8663 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8664 {
8665 int err = 0;
8666
8667 #ifdef CONFIG_SCHED_SMT
8668 if (smt_capable())
8669 err = sysfs_create_file(&cls->kset.kobj,
8670 &attr_sched_smt_power_savings.attr);
8671 #endif
8672 #ifdef CONFIG_SCHED_MC
8673 if (!err && mc_capable())
8674 err = sysfs_create_file(&cls->kset.kobj,
8675 &attr_sched_mc_power_savings.attr);
8676 #endif
8677 return err;
8678 }
8679 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8680
8681 #ifndef CONFIG_CPUSETS
8682 /*
8683 * Add online and remove offline CPUs from the scheduler domains.
8684 * When cpusets are enabled they take over this function.
8685 */
8686 static int update_sched_domains(struct notifier_block *nfb,
8687 unsigned long action, void *hcpu)
8688 {
8689 switch (action) {
8690 case CPU_ONLINE:
8691 case CPU_ONLINE_FROZEN:
8692 case CPU_DEAD:
8693 case CPU_DEAD_FROZEN:
8694 partition_sched_domains(1, NULL, NULL);
8695 return NOTIFY_OK;
8696
8697 default:
8698 return NOTIFY_DONE;
8699 }
8700 }
8701 #endif
8702
8703 static int update_runtime(struct notifier_block *nfb,
8704 unsigned long action, void *hcpu)
8705 {
8706 int cpu = (int)(long)hcpu;
8707
8708 switch (action) {
8709 case CPU_DOWN_PREPARE:
8710 case CPU_DOWN_PREPARE_FROZEN:
8711 disable_runtime(cpu_rq(cpu));
8712 return NOTIFY_OK;
8713
8714 case CPU_DOWN_FAILED:
8715 case CPU_DOWN_FAILED_FROZEN:
8716 case CPU_ONLINE:
8717 case CPU_ONLINE_FROZEN:
8718 enable_runtime(cpu_rq(cpu));
8719 return NOTIFY_OK;
8720
8721 default:
8722 return NOTIFY_DONE;
8723 }
8724 }
8725
8726 void __init sched_init_smp(void)
8727 {
8728 cpumask_var_t non_isolated_cpus;
8729
8730 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8731
8732 #if defined(CONFIG_NUMA)
8733 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8734 GFP_KERNEL);
8735 BUG_ON(sched_group_nodes_bycpu == NULL);
8736 #endif
8737 get_online_cpus();
8738 mutex_lock(&sched_domains_mutex);
8739 arch_init_sched_domains(cpu_online_mask);
8740 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8741 if (cpumask_empty(non_isolated_cpus))
8742 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8743 mutex_unlock(&sched_domains_mutex);
8744 put_online_cpus();
8745
8746 #ifndef CONFIG_CPUSETS
8747 /* XXX: Theoretical race here - CPU may be hotplugged now */
8748 hotcpu_notifier(update_sched_domains, 0);
8749 #endif
8750
8751 /* RT runtime code needs to handle some hotplug events */
8752 hotcpu_notifier(update_runtime, 0);
8753
8754 init_hrtick();
8755
8756 /* Move init over to a non-isolated CPU */
8757 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8758 BUG();
8759 sched_init_granularity();
8760 free_cpumask_var(non_isolated_cpus);
8761
8762 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8763 init_sched_rt_class();
8764 }
8765 #else
8766 void __init sched_init_smp(void)
8767 {
8768 sched_init_granularity();
8769 }
8770 #endif /* CONFIG_SMP */
8771
8772 int in_sched_functions(unsigned long addr)
8773 {
8774 return in_lock_functions(addr) ||
8775 (addr >= (unsigned long)__sched_text_start
8776 && addr < (unsigned long)__sched_text_end);
8777 }
8778
8779 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8780 {
8781 cfs_rq->tasks_timeline = RB_ROOT;
8782 INIT_LIST_HEAD(&cfs_rq->tasks);
8783 #ifdef CONFIG_FAIR_GROUP_SCHED
8784 cfs_rq->rq = rq;
8785 #endif
8786 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8787 }
8788
8789 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8790 {
8791 struct rt_prio_array *array;
8792 int i;
8793
8794 array = &rt_rq->active;
8795 for (i = 0; i < MAX_RT_PRIO; i++) {
8796 INIT_LIST_HEAD(array->queue + i);
8797 __clear_bit(i, array->bitmap);
8798 }
8799 /* delimiter for bitsearch: */
8800 __set_bit(MAX_RT_PRIO, array->bitmap);
8801
8802 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8803 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8804 #ifdef CONFIG_SMP
8805 rt_rq->highest_prio.next = MAX_RT_PRIO;
8806 #endif
8807 #endif
8808 #ifdef CONFIG_SMP
8809 rt_rq->rt_nr_migratory = 0;
8810 rt_rq->overloaded = 0;
8811 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8812 #endif
8813
8814 rt_rq->rt_time = 0;
8815 rt_rq->rt_throttled = 0;
8816 rt_rq->rt_runtime = 0;
8817 spin_lock_init(&rt_rq->rt_runtime_lock);
8818
8819 #ifdef CONFIG_RT_GROUP_SCHED
8820 rt_rq->rt_nr_boosted = 0;
8821 rt_rq->rq = rq;
8822 #endif
8823 }
8824
8825 #ifdef CONFIG_FAIR_GROUP_SCHED
8826 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8827 struct sched_entity *se, int cpu, int add,
8828 struct sched_entity *parent)
8829 {
8830 struct rq *rq = cpu_rq(cpu);
8831 tg->cfs_rq[cpu] = cfs_rq;
8832 init_cfs_rq(cfs_rq, rq);
8833 cfs_rq->tg = tg;
8834 if (add)
8835 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8836
8837 tg->se[cpu] = se;
8838 /* se could be NULL for init_task_group */
8839 if (!se)
8840 return;
8841
8842 if (!parent)
8843 se->cfs_rq = &rq->cfs;
8844 else
8845 se->cfs_rq = parent->my_q;
8846
8847 se->my_q = cfs_rq;
8848 se->load.weight = tg->shares;
8849 se->load.inv_weight = 0;
8850 se->parent = parent;
8851 }
8852 #endif
8853
8854 #ifdef CONFIG_RT_GROUP_SCHED
8855 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8856 struct sched_rt_entity *rt_se, int cpu, int add,
8857 struct sched_rt_entity *parent)
8858 {
8859 struct rq *rq = cpu_rq(cpu);
8860
8861 tg->rt_rq[cpu] = rt_rq;
8862 init_rt_rq(rt_rq, rq);
8863 rt_rq->tg = tg;
8864 rt_rq->rt_se = rt_se;
8865 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8866 if (add)
8867 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8868
8869 tg->rt_se[cpu] = rt_se;
8870 if (!rt_se)
8871 return;
8872
8873 if (!parent)
8874 rt_se->rt_rq = &rq->rt;
8875 else
8876 rt_se->rt_rq = parent->my_q;
8877
8878 rt_se->my_q = rt_rq;
8879 rt_se->parent = parent;
8880 INIT_LIST_HEAD(&rt_se->run_list);
8881 }
8882 #endif
8883
8884 void __init sched_init(void)
8885 {
8886 int i, j;
8887 unsigned long alloc_size = 0, ptr;
8888
8889 #ifdef CONFIG_FAIR_GROUP_SCHED
8890 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8891 #endif
8892 #ifdef CONFIG_RT_GROUP_SCHED
8893 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8894 #endif
8895 #ifdef CONFIG_USER_SCHED
8896 alloc_size *= 2;
8897 #endif
8898 #ifdef CONFIG_CPUMASK_OFFSTACK
8899 alloc_size += num_possible_cpus() * cpumask_size();
8900 #endif
8901 /*
8902 * As sched_init() is called before page_alloc is setup,
8903 * we use alloc_bootmem().
8904 */
8905 if (alloc_size) {
8906 ptr = (unsigned long)alloc_bootmem(alloc_size);
8907
8908 #ifdef CONFIG_FAIR_GROUP_SCHED
8909 init_task_group.se = (struct sched_entity **)ptr;
8910 ptr += nr_cpu_ids * sizeof(void **);
8911
8912 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8913 ptr += nr_cpu_ids * sizeof(void **);
8914
8915 #ifdef CONFIG_USER_SCHED
8916 root_task_group.se = (struct sched_entity **)ptr;
8917 ptr += nr_cpu_ids * sizeof(void **);
8918
8919 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8920 ptr += nr_cpu_ids * sizeof(void **);
8921 #endif /* CONFIG_USER_SCHED */
8922 #endif /* CONFIG_FAIR_GROUP_SCHED */
8923 #ifdef CONFIG_RT_GROUP_SCHED
8924 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8925 ptr += nr_cpu_ids * sizeof(void **);
8926
8927 init_task_group.rt_rq = (struct rt_rq **)ptr;
8928 ptr += nr_cpu_ids * sizeof(void **);
8929
8930 #ifdef CONFIG_USER_SCHED
8931 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8932 ptr += nr_cpu_ids * sizeof(void **);
8933
8934 root_task_group.rt_rq = (struct rt_rq **)ptr;
8935 ptr += nr_cpu_ids * sizeof(void **);
8936 #endif /* CONFIG_USER_SCHED */
8937 #endif /* CONFIG_RT_GROUP_SCHED */
8938 #ifdef CONFIG_CPUMASK_OFFSTACK
8939 for_each_possible_cpu(i) {
8940 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8941 ptr += cpumask_size();
8942 }
8943 #endif /* CONFIG_CPUMASK_OFFSTACK */
8944 }
8945
8946 #ifdef CONFIG_SMP
8947 init_defrootdomain();
8948 #endif
8949
8950 init_rt_bandwidth(&def_rt_bandwidth,
8951 global_rt_period(), global_rt_runtime());
8952
8953 #ifdef CONFIG_RT_GROUP_SCHED
8954 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8955 global_rt_period(), global_rt_runtime());
8956 #ifdef CONFIG_USER_SCHED
8957 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8958 global_rt_period(), RUNTIME_INF);
8959 #endif /* CONFIG_USER_SCHED */
8960 #endif /* CONFIG_RT_GROUP_SCHED */
8961
8962 #ifdef CONFIG_GROUP_SCHED
8963 list_add(&init_task_group.list, &task_groups);
8964 INIT_LIST_HEAD(&init_task_group.children);
8965
8966 #ifdef CONFIG_USER_SCHED
8967 INIT_LIST_HEAD(&root_task_group.children);
8968 init_task_group.parent = &root_task_group;
8969 list_add(&init_task_group.siblings, &root_task_group.children);
8970 #endif /* CONFIG_USER_SCHED */
8971 #endif /* CONFIG_GROUP_SCHED */
8972
8973 for_each_possible_cpu(i) {
8974 struct rq *rq;
8975
8976 rq = cpu_rq(i);
8977 spin_lock_init(&rq->lock);
8978 rq->nr_running = 0;
8979 init_cfs_rq(&rq->cfs, rq);
8980 init_rt_rq(&rq->rt, rq);
8981 #ifdef CONFIG_FAIR_GROUP_SCHED
8982 init_task_group.shares = init_task_group_load;
8983 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8984 #ifdef CONFIG_CGROUP_SCHED
8985 /*
8986 * How much cpu bandwidth does init_task_group get?
8987 *
8988 * In case of task-groups formed thr' the cgroup filesystem, it
8989 * gets 100% of the cpu resources in the system. This overall
8990 * system cpu resource is divided among the tasks of
8991 * init_task_group and its child task-groups in a fair manner,
8992 * based on each entity's (task or task-group's) weight
8993 * (se->load.weight).
8994 *
8995 * In other words, if init_task_group has 10 tasks of weight
8996 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8997 * then A0's share of the cpu resource is:
8998 *
8999 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9000 *
9001 * We achieve this by letting init_task_group's tasks sit
9002 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9003 */
9004 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9005 #elif defined CONFIG_USER_SCHED
9006 root_task_group.shares = NICE_0_LOAD;
9007 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9008 /*
9009 * In case of task-groups formed thr' the user id of tasks,
9010 * init_task_group represents tasks belonging to root user.
9011 * Hence it forms a sibling of all subsequent groups formed.
9012 * In this case, init_task_group gets only a fraction of overall
9013 * system cpu resource, based on the weight assigned to root
9014 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9015 * by letting tasks of init_task_group sit in a separate cfs_rq
9016 * (init_cfs_rq) and having one entity represent this group of
9017 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9018 */
9019 init_tg_cfs_entry(&init_task_group,
9020 &per_cpu(init_cfs_rq, i),
9021 &per_cpu(init_sched_entity, i), i, 1,
9022 root_task_group.se[i]);
9023
9024 #endif
9025 #endif /* CONFIG_FAIR_GROUP_SCHED */
9026
9027 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9028 #ifdef CONFIG_RT_GROUP_SCHED
9029 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9030 #ifdef CONFIG_CGROUP_SCHED
9031 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9032 #elif defined CONFIG_USER_SCHED
9033 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9034 init_tg_rt_entry(&init_task_group,
9035 &per_cpu(init_rt_rq, i),
9036 &per_cpu(init_sched_rt_entity, i), i, 1,
9037 root_task_group.rt_se[i]);
9038 #endif
9039 #endif
9040
9041 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9042 rq->cpu_load[j] = 0;
9043 #ifdef CONFIG_SMP
9044 rq->sd = NULL;
9045 rq->rd = NULL;
9046 rq->active_balance = 0;
9047 rq->next_balance = jiffies;
9048 rq->push_cpu = 0;
9049 rq->cpu = i;
9050 rq->online = 0;
9051 rq->migration_thread = NULL;
9052 INIT_LIST_HEAD(&rq->migration_queue);
9053 rq_attach_root(rq, &def_root_domain);
9054 #endif
9055 init_rq_hrtick(rq);
9056 atomic_set(&rq->nr_iowait, 0);
9057 }
9058
9059 set_load_weight(&init_task);
9060
9061 #ifdef CONFIG_PREEMPT_NOTIFIERS
9062 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9063 #endif
9064
9065 #ifdef CONFIG_SMP
9066 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9067 #endif
9068
9069 #ifdef CONFIG_RT_MUTEXES
9070 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9071 #endif
9072
9073 /*
9074 * The boot idle thread does lazy MMU switching as well:
9075 */
9076 atomic_inc(&init_mm.mm_count);
9077 enter_lazy_tlb(&init_mm, current);
9078
9079 /*
9080 * Make us the idle thread. Technically, schedule() should not be
9081 * called from this thread, however somewhere below it might be,
9082 * but because we are the idle thread, we just pick up running again
9083 * when this runqueue becomes "idle".
9084 */
9085 init_idle(current, smp_processor_id());
9086 /*
9087 * During early bootup we pretend to be a normal task:
9088 */
9089 current->sched_class = &fair_sched_class;
9090
9091 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9092 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9093 #ifdef CONFIG_SMP
9094 #ifdef CONFIG_NO_HZ
9095 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9096 #endif
9097 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9098 #endif /* SMP */
9099
9100 scheduler_running = 1;
9101 }
9102
9103 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9104 void __might_sleep(char *file, int line)
9105 {
9106 #ifdef in_atomic
9107 static unsigned long prev_jiffy; /* ratelimiting */
9108
9109 if ((!in_atomic() && !irqs_disabled()) ||
9110 system_state != SYSTEM_RUNNING || oops_in_progress)
9111 return;
9112 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9113 return;
9114 prev_jiffy = jiffies;
9115
9116 printk(KERN_ERR
9117 "BUG: sleeping function called from invalid context at %s:%d\n",
9118 file, line);
9119 printk(KERN_ERR
9120 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9121 in_atomic(), irqs_disabled(),
9122 current->pid, current->comm);
9123
9124 debug_show_held_locks(current);
9125 if (irqs_disabled())
9126 print_irqtrace_events(current);
9127 dump_stack();
9128 #endif
9129 }
9130 EXPORT_SYMBOL(__might_sleep);
9131 #endif
9132
9133 #ifdef CONFIG_MAGIC_SYSRQ
9134 static void normalize_task(struct rq *rq, struct task_struct *p)
9135 {
9136 int on_rq;
9137
9138 update_rq_clock(rq);
9139 on_rq = p->se.on_rq;
9140 if (on_rq)
9141 deactivate_task(rq, p, 0);
9142 __setscheduler(rq, p, SCHED_NORMAL, 0);
9143 if (on_rq) {
9144 activate_task(rq, p, 0);
9145 resched_task(rq->curr);
9146 }
9147 }
9148
9149 void normalize_rt_tasks(void)
9150 {
9151 struct task_struct *g, *p;
9152 unsigned long flags;
9153 struct rq *rq;
9154
9155 read_lock_irqsave(&tasklist_lock, flags);
9156 do_each_thread(g, p) {
9157 /*
9158 * Only normalize user tasks:
9159 */
9160 if (!p->mm)
9161 continue;
9162
9163 p->se.exec_start = 0;
9164 #ifdef CONFIG_SCHEDSTATS
9165 p->se.wait_start = 0;
9166 p->se.sleep_start = 0;
9167 p->se.block_start = 0;
9168 #endif
9169
9170 if (!rt_task(p)) {
9171 /*
9172 * Renice negative nice level userspace
9173 * tasks back to 0:
9174 */
9175 if (TASK_NICE(p) < 0 && p->mm)
9176 set_user_nice(p, 0);
9177 continue;
9178 }
9179
9180 spin_lock(&p->pi_lock);
9181 rq = __task_rq_lock(p);
9182
9183 normalize_task(rq, p);
9184
9185 __task_rq_unlock(rq);
9186 spin_unlock(&p->pi_lock);
9187 } while_each_thread(g, p);
9188
9189 read_unlock_irqrestore(&tasklist_lock, flags);
9190 }
9191
9192 #endif /* CONFIG_MAGIC_SYSRQ */
9193
9194 #ifdef CONFIG_IA64
9195 /*
9196 * These functions are only useful for the IA64 MCA handling.
9197 *
9198 * They can only be called when the whole system has been
9199 * stopped - every CPU needs to be quiescent, and no scheduling
9200 * activity can take place. Using them for anything else would
9201 * be a serious bug, and as a result, they aren't even visible
9202 * under any other configuration.
9203 */
9204
9205 /**
9206 * curr_task - return the current task for a given cpu.
9207 * @cpu: the processor in question.
9208 *
9209 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9210 */
9211 struct task_struct *curr_task(int cpu)
9212 {
9213 return cpu_curr(cpu);
9214 }
9215
9216 /**
9217 * set_curr_task - set the current task for a given cpu.
9218 * @cpu: the processor in question.
9219 * @p: the task pointer to set.
9220 *
9221 * Description: This function must only be used when non-maskable interrupts
9222 * are serviced on a separate stack. It allows the architecture to switch the
9223 * notion of the current task on a cpu in a non-blocking manner. This function
9224 * must be called with all CPU's synchronized, and interrupts disabled, the
9225 * and caller must save the original value of the current task (see
9226 * curr_task() above) and restore that value before reenabling interrupts and
9227 * re-starting the system.
9228 *
9229 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9230 */
9231 void set_curr_task(int cpu, struct task_struct *p)
9232 {
9233 cpu_curr(cpu) = p;
9234 }
9235
9236 #endif
9237
9238 #ifdef CONFIG_FAIR_GROUP_SCHED
9239 static void free_fair_sched_group(struct task_group *tg)
9240 {
9241 int i;
9242
9243 for_each_possible_cpu(i) {
9244 if (tg->cfs_rq)
9245 kfree(tg->cfs_rq[i]);
9246 if (tg->se)
9247 kfree(tg->se[i]);
9248 }
9249
9250 kfree(tg->cfs_rq);
9251 kfree(tg->se);
9252 }
9253
9254 static
9255 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9256 {
9257 struct cfs_rq *cfs_rq;
9258 struct sched_entity *se;
9259 struct rq *rq;
9260 int i;
9261
9262 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9263 if (!tg->cfs_rq)
9264 goto err;
9265 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9266 if (!tg->se)
9267 goto err;
9268
9269 tg->shares = NICE_0_LOAD;
9270
9271 for_each_possible_cpu(i) {
9272 rq = cpu_rq(i);
9273
9274 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9275 GFP_KERNEL, cpu_to_node(i));
9276 if (!cfs_rq)
9277 goto err;
9278
9279 se = kzalloc_node(sizeof(struct sched_entity),
9280 GFP_KERNEL, cpu_to_node(i));
9281 if (!se)
9282 goto err;
9283
9284 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9285 }
9286
9287 return 1;
9288
9289 err:
9290 return 0;
9291 }
9292
9293 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9294 {
9295 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9296 &cpu_rq(cpu)->leaf_cfs_rq_list);
9297 }
9298
9299 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9300 {
9301 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9302 }
9303 #else /* !CONFG_FAIR_GROUP_SCHED */
9304 static inline void free_fair_sched_group(struct task_group *tg)
9305 {
9306 }
9307
9308 static inline
9309 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9310 {
9311 return 1;
9312 }
9313
9314 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9315 {
9316 }
9317
9318 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9319 {
9320 }
9321 #endif /* CONFIG_FAIR_GROUP_SCHED */
9322
9323 #ifdef CONFIG_RT_GROUP_SCHED
9324 static void free_rt_sched_group(struct task_group *tg)
9325 {
9326 int i;
9327
9328 destroy_rt_bandwidth(&tg->rt_bandwidth);
9329
9330 for_each_possible_cpu(i) {
9331 if (tg->rt_rq)
9332 kfree(tg->rt_rq[i]);
9333 if (tg->rt_se)
9334 kfree(tg->rt_se[i]);
9335 }
9336
9337 kfree(tg->rt_rq);
9338 kfree(tg->rt_se);
9339 }
9340
9341 static
9342 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9343 {
9344 struct rt_rq *rt_rq;
9345 struct sched_rt_entity *rt_se;
9346 struct rq *rq;
9347 int i;
9348
9349 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9350 if (!tg->rt_rq)
9351 goto err;
9352 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9353 if (!tg->rt_se)
9354 goto err;
9355
9356 init_rt_bandwidth(&tg->rt_bandwidth,
9357 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9358
9359 for_each_possible_cpu(i) {
9360 rq = cpu_rq(i);
9361
9362 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9363 GFP_KERNEL, cpu_to_node(i));
9364 if (!rt_rq)
9365 goto err;
9366
9367 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9368 GFP_KERNEL, cpu_to_node(i));
9369 if (!rt_se)
9370 goto err;
9371
9372 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9373 }
9374
9375 return 1;
9376
9377 err:
9378 return 0;
9379 }
9380
9381 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9382 {
9383 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9384 &cpu_rq(cpu)->leaf_rt_rq_list);
9385 }
9386
9387 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9388 {
9389 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9390 }
9391 #else /* !CONFIG_RT_GROUP_SCHED */
9392 static inline void free_rt_sched_group(struct task_group *tg)
9393 {
9394 }
9395
9396 static inline
9397 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9398 {
9399 return 1;
9400 }
9401
9402 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9403 {
9404 }
9405
9406 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9407 {
9408 }
9409 #endif /* CONFIG_RT_GROUP_SCHED */
9410
9411 #ifdef CONFIG_GROUP_SCHED
9412 static void free_sched_group(struct task_group *tg)
9413 {
9414 free_fair_sched_group(tg);
9415 free_rt_sched_group(tg);
9416 kfree(tg);
9417 }
9418
9419 /* allocate runqueue etc for a new task group */
9420 struct task_group *sched_create_group(struct task_group *parent)
9421 {
9422 struct task_group *tg;
9423 unsigned long flags;
9424 int i;
9425
9426 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9427 if (!tg)
9428 return ERR_PTR(-ENOMEM);
9429
9430 if (!alloc_fair_sched_group(tg, parent))
9431 goto err;
9432
9433 if (!alloc_rt_sched_group(tg, parent))
9434 goto err;
9435
9436 spin_lock_irqsave(&task_group_lock, flags);
9437 for_each_possible_cpu(i) {
9438 register_fair_sched_group(tg, i);
9439 register_rt_sched_group(tg, i);
9440 }
9441 list_add_rcu(&tg->list, &task_groups);
9442
9443 WARN_ON(!parent); /* root should already exist */
9444
9445 tg->parent = parent;
9446 INIT_LIST_HEAD(&tg->children);
9447 list_add_rcu(&tg->siblings, &parent->children);
9448 spin_unlock_irqrestore(&task_group_lock, flags);
9449
9450 return tg;
9451
9452 err:
9453 free_sched_group(tg);
9454 return ERR_PTR(-ENOMEM);
9455 }
9456
9457 /* rcu callback to free various structures associated with a task group */
9458 static void free_sched_group_rcu(struct rcu_head *rhp)
9459 {
9460 /* now it should be safe to free those cfs_rqs */
9461 free_sched_group(container_of(rhp, struct task_group, rcu));
9462 }
9463
9464 /* Destroy runqueue etc associated with a task group */
9465 void sched_destroy_group(struct task_group *tg)
9466 {
9467 unsigned long flags;
9468 int i;
9469
9470 spin_lock_irqsave(&task_group_lock, flags);
9471 for_each_possible_cpu(i) {
9472 unregister_fair_sched_group(tg, i);
9473 unregister_rt_sched_group(tg, i);
9474 }
9475 list_del_rcu(&tg->list);
9476 list_del_rcu(&tg->siblings);
9477 spin_unlock_irqrestore(&task_group_lock, flags);
9478
9479 /* wait for possible concurrent references to cfs_rqs complete */
9480 call_rcu(&tg->rcu, free_sched_group_rcu);
9481 }
9482
9483 /* change task's runqueue when it moves between groups.
9484 * The caller of this function should have put the task in its new group
9485 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9486 * reflect its new group.
9487 */
9488 void sched_move_task(struct task_struct *tsk)
9489 {
9490 int on_rq, running;
9491 unsigned long flags;
9492 struct rq *rq;
9493
9494 rq = task_rq_lock(tsk, &flags);
9495
9496 update_rq_clock(rq);
9497
9498 running = task_current(rq, tsk);
9499 on_rq = tsk->se.on_rq;
9500
9501 if (on_rq)
9502 dequeue_task(rq, tsk, 0);
9503 if (unlikely(running))
9504 tsk->sched_class->put_prev_task(rq, tsk);
9505
9506 set_task_rq(tsk, task_cpu(tsk));
9507
9508 #ifdef CONFIG_FAIR_GROUP_SCHED
9509 if (tsk->sched_class->moved_group)
9510 tsk->sched_class->moved_group(tsk);
9511 #endif
9512
9513 if (unlikely(running))
9514 tsk->sched_class->set_curr_task(rq);
9515 if (on_rq)
9516 enqueue_task(rq, tsk, 0);
9517
9518 task_rq_unlock(rq, &flags);
9519 }
9520 #endif /* CONFIG_GROUP_SCHED */
9521
9522 #ifdef CONFIG_FAIR_GROUP_SCHED
9523 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9524 {
9525 struct cfs_rq *cfs_rq = se->cfs_rq;
9526 int on_rq;
9527
9528 on_rq = se->on_rq;
9529 if (on_rq)
9530 dequeue_entity(cfs_rq, se, 0);
9531
9532 se->load.weight = shares;
9533 se->load.inv_weight = 0;
9534
9535 if (on_rq)
9536 enqueue_entity(cfs_rq, se, 0);
9537 }
9538
9539 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9540 {
9541 struct cfs_rq *cfs_rq = se->cfs_rq;
9542 struct rq *rq = cfs_rq->rq;
9543 unsigned long flags;
9544
9545 spin_lock_irqsave(&rq->lock, flags);
9546 __set_se_shares(se, shares);
9547 spin_unlock_irqrestore(&rq->lock, flags);
9548 }
9549
9550 static DEFINE_MUTEX(shares_mutex);
9551
9552 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9553 {
9554 int i;
9555 unsigned long flags;
9556
9557 /*
9558 * We can't change the weight of the root cgroup.
9559 */
9560 if (!tg->se[0])
9561 return -EINVAL;
9562
9563 if (shares < MIN_SHARES)
9564 shares = MIN_SHARES;
9565 else if (shares > MAX_SHARES)
9566 shares = MAX_SHARES;
9567
9568 mutex_lock(&shares_mutex);
9569 if (tg->shares == shares)
9570 goto done;
9571
9572 spin_lock_irqsave(&task_group_lock, flags);
9573 for_each_possible_cpu(i)
9574 unregister_fair_sched_group(tg, i);
9575 list_del_rcu(&tg->siblings);
9576 spin_unlock_irqrestore(&task_group_lock, flags);
9577
9578 /* wait for any ongoing reference to this group to finish */
9579 synchronize_sched();
9580
9581 /*
9582 * Now we are free to modify the group's share on each cpu
9583 * w/o tripping rebalance_share or load_balance_fair.
9584 */
9585 tg->shares = shares;
9586 for_each_possible_cpu(i) {
9587 /*
9588 * force a rebalance
9589 */
9590 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9591 set_se_shares(tg->se[i], shares);
9592 }
9593
9594 /*
9595 * Enable load balance activity on this group, by inserting it back on
9596 * each cpu's rq->leaf_cfs_rq_list.
9597 */
9598 spin_lock_irqsave(&task_group_lock, flags);
9599 for_each_possible_cpu(i)
9600 register_fair_sched_group(tg, i);
9601 list_add_rcu(&tg->siblings, &tg->parent->children);
9602 spin_unlock_irqrestore(&task_group_lock, flags);
9603 done:
9604 mutex_unlock(&shares_mutex);
9605 return 0;
9606 }
9607
9608 unsigned long sched_group_shares(struct task_group *tg)
9609 {
9610 return tg->shares;
9611 }
9612 #endif
9613
9614 #ifdef CONFIG_RT_GROUP_SCHED
9615 /*
9616 * Ensure that the real time constraints are schedulable.
9617 */
9618 static DEFINE_MUTEX(rt_constraints_mutex);
9619
9620 static unsigned long to_ratio(u64 period, u64 runtime)
9621 {
9622 if (runtime == RUNTIME_INF)
9623 return 1ULL << 20;
9624
9625 return div64_u64(runtime << 20, period);
9626 }
9627
9628 /* Must be called with tasklist_lock held */
9629 static inline int tg_has_rt_tasks(struct task_group *tg)
9630 {
9631 struct task_struct *g, *p;
9632
9633 do_each_thread(g, p) {
9634 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9635 return 1;
9636 } while_each_thread(g, p);
9637
9638 return 0;
9639 }
9640
9641 struct rt_schedulable_data {
9642 struct task_group *tg;
9643 u64 rt_period;
9644 u64 rt_runtime;
9645 };
9646
9647 static int tg_schedulable(struct task_group *tg, void *data)
9648 {
9649 struct rt_schedulable_data *d = data;
9650 struct task_group *child;
9651 unsigned long total, sum = 0;
9652 u64 period, runtime;
9653
9654 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9655 runtime = tg->rt_bandwidth.rt_runtime;
9656
9657 if (tg == d->tg) {
9658 period = d->rt_period;
9659 runtime = d->rt_runtime;
9660 }
9661
9662 #ifdef CONFIG_USER_SCHED
9663 if (tg == &root_task_group) {
9664 period = global_rt_period();
9665 runtime = global_rt_runtime();
9666 }
9667 #endif
9668
9669 /*
9670 * Cannot have more runtime than the period.
9671 */
9672 if (runtime > period && runtime != RUNTIME_INF)
9673 return -EINVAL;
9674
9675 /*
9676 * Ensure we don't starve existing RT tasks.
9677 */
9678 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9679 return -EBUSY;
9680
9681 total = to_ratio(period, runtime);
9682
9683 /*
9684 * Nobody can have more than the global setting allows.
9685 */
9686 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9687 return -EINVAL;
9688
9689 /*
9690 * The sum of our children's runtime should not exceed our own.
9691 */
9692 list_for_each_entry_rcu(child, &tg->children, siblings) {
9693 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9694 runtime = child->rt_bandwidth.rt_runtime;
9695
9696 if (child == d->tg) {
9697 period = d->rt_period;
9698 runtime = d->rt_runtime;
9699 }
9700
9701 sum += to_ratio(period, runtime);
9702 }
9703
9704 if (sum > total)
9705 return -EINVAL;
9706
9707 return 0;
9708 }
9709
9710 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9711 {
9712 struct rt_schedulable_data data = {
9713 .tg = tg,
9714 .rt_period = period,
9715 .rt_runtime = runtime,
9716 };
9717
9718 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9719 }
9720
9721 static int tg_set_bandwidth(struct task_group *tg,
9722 u64 rt_period, u64 rt_runtime)
9723 {
9724 int i, err = 0;
9725
9726 mutex_lock(&rt_constraints_mutex);
9727 read_lock(&tasklist_lock);
9728 err = __rt_schedulable(tg, rt_period, rt_runtime);
9729 if (err)
9730 goto unlock;
9731
9732 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9733 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9734 tg->rt_bandwidth.rt_runtime = rt_runtime;
9735
9736 for_each_possible_cpu(i) {
9737 struct rt_rq *rt_rq = tg->rt_rq[i];
9738
9739 spin_lock(&rt_rq->rt_runtime_lock);
9740 rt_rq->rt_runtime = rt_runtime;
9741 spin_unlock(&rt_rq->rt_runtime_lock);
9742 }
9743 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9744 unlock:
9745 read_unlock(&tasklist_lock);
9746 mutex_unlock(&rt_constraints_mutex);
9747
9748 return err;
9749 }
9750
9751 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9752 {
9753 u64 rt_runtime, rt_period;
9754
9755 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9756 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9757 if (rt_runtime_us < 0)
9758 rt_runtime = RUNTIME_INF;
9759
9760 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9761 }
9762
9763 long sched_group_rt_runtime(struct task_group *tg)
9764 {
9765 u64 rt_runtime_us;
9766
9767 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9768 return -1;
9769
9770 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9771 do_div(rt_runtime_us, NSEC_PER_USEC);
9772 return rt_runtime_us;
9773 }
9774
9775 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9776 {
9777 u64 rt_runtime, rt_period;
9778
9779 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9780 rt_runtime = tg->rt_bandwidth.rt_runtime;
9781
9782 if (rt_period == 0)
9783 return -EINVAL;
9784
9785 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9786 }
9787
9788 long sched_group_rt_period(struct task_group *tg)
9789 {
9790 u64 rt_period_us;
9791
9792 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9793 do_div(rt_period_us, NSEC_PER_USEC);
9794 return rt_period_us;
9795 }
9796
9797 static int sched_rt_global_constraints(void)
9798 {
9799 u64 runtime, period;
9800 int ret = 0;
9801
9802 if (sysctl_sched_rt_period <= 0)
9803 return -EINVAL;
9804
9805 runtime = global_rt_runtime();
9806 period = global_rt_period();
9807
9808 /*
9809 * Sanity check on the sysctl variables.
9810 */
9811 if (runtime > period && runtime != RUNTIME_INF)
9812 return -EINVAL;
9813
9814 mutex_lock(&rt_constraints_mutex);
9815 read_lock(&tasklist_lock);
9816 ret = __rt_schedulable(NULL, 0, 0);
9817 read_unlock(&tasklist_lock);
9818 mutex_unlock(&rt_constraints_mutex);
9819
9820 return ret;
9821 }
9822
9823 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9824 {
9825 /* Don't accept realtime tasks when there is no way for them to run */
9826 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9827 return 0;
9828
9829 return 1;
9830 }
9831
9832 #else /* !CONFIG_RT_GROUP_SCHED */
9833 static int sched_rt_global_constraints(void)
9834 {
9835 unsigned long flags;
9836 int i;
9837
9838 if (sysctl_sched_rt_period <= 0)
9839 return -EINVAL;
9840
9841 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9842 for_each_possible_cpu(i) {
9843 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9844
9845 spin_lock(&rt_rq->rt_runtime_lock);
9846 rt_rq->rt_runtime = global_rt_runtime();
9847 spin_unlock(&rt_rq->rt_runtime_lock);
9848 }
9849 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9850
9851 return 0;
9852 }
9853 #endif /* CONFIG_RT_GROUP_SCHED */
9854
9855 int sched_rt_handler(struct ctl_table *table, int write,
9856 struct file *filp, void __user *buffer, size_t *lenp,
9857 loff_t *ppos)
9858 {
9859 int ret;
9860 int old_period, old_runtime;
9861 static DEFINE_MUTEX(mutex);
9862
9863 mutex_lock(&mutex);
9864 old_period = sysctl_sched_rt_period;
9865 old_runtime = sysctl_sched_rt_runtime;
9866
9867 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9868
9869 if (!ret && write) {
9870 ret = sched_rt_global_constraints();
9871 if (ret) {
9872 sysctl_sched_rt_period = old_period;
9873 sysctl_sched_rt_runtime = old_runtime;
9874 } else {
9875 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9876 def_rt_bandwidth.rt_period =
9877 ns_to_ktime(global_rt_period());
9878 }
9879 }
9880 mutex_unlock(&mutex);
9881
9882 return ret;
9883 }
9884
9885 #ifdef CONFIG_CGROUP_SCHED
9886
9887 /* return corresponding task_group object of a cgroup */
9888 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9889 {
9890 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9891 struct task_group, css);
9892 }
9893
9894 static struct cgroup_subsys_state *
9895 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9896 {
9897 struct task_group *tg, *parent;
9898
9899 if (!cgrp->parent) {
9900 /* This is early initialization for the top cgroup */
9901 return &init_task_group.css;
9902 }
9903
9904 parent = cgroup_tg(cgrp->parent);
9905 tg = sched_create_group(parent);
9906 if (IS_ERR(tg))
9907 return ERR_PTR(-ENOMEM);
9908
9909 return &tg->css;
9910 }
9911
9912 static void
9913 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9914 {
9915 struct task_group *tg = cgroup_tg(cgrp);
9916
9917 sched_destroy_group(tg);
9918 }
9919
9920 static int
9921 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9922 struct task_struct *tsk)
9923 {
9924 #ifdef CONFIG_RT_GROUP_SCHED
9925 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9926 return -EINVAL;
9927 #else
9928 /* We don't support RT-tasks being in separate groups */
9929 if (tsk->sched_class != &fair_sched_class)
9930 return -EINVAL;
9931 #endif
9932
9933 return 0;
9934 }
9935
9936 static void
9937 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9938 struct cgroup *old_cont, struct task_struct *tsk)
9939 {
9940 sched_move_task(tsk);
9941 }
9942
9943 #ifdef CONFIG_FAIR_GROUP_SCHED
9944 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9945 u64 shareval)
9946 {
9947 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9948 }
9949
9950 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9951 {
9952 struct task_group *tg = cgroup_tg(cgrp);
9953
9954 return (u64) tg->shares;
9955 }
9956 #endif /* CONFIG_FAIR_GROUP_SCHED */
9957
9958 #ifdef CONFIG_RT_GROUP_SCHED
9959 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9960 s64 val)
9961 {
9962 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9963 }
9964
9965 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9966 {
9967 return sched_group_rt_runtime(cgroup_tg(cgrp));
9968 }
9969
9970 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9971 u64 rt_period_us)
9972 {
9973 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9974 }
9975
9976 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9977 {
9978 return sched_group_rt_period(cgroup_tg(cgrp));
9979 }
9980 #endif /* CONFIG_RT_GROUP_SCHED */
9981
9982 static struct cftype cpu_files[] = {
9983 #ifdef CONFIG_FAIR_GROUP_SCHED
9984 {
9985 .name = "shares",
9986 .read_u64 = cpu_shares_read_u64,
9987 .write_u64 = cpu_shares_write_u64,
9988 },
9989 #endif
9990 #ifdef CONFIG_RT_GROUP_SCHED
9991 {
9992 .name = "rt_runtime_us",
9993 .read_s64 = cpu_rt_runtime_read,
9994 .write_s64 = cpu_rt_runtime_write,
9995 },
9996 {
9997 .name = "rt_period_us",
9998 .read_u64 = cpu_rt_period_read_uint,
9999 .write_u64 = cpu_rt_period_write_uint,
10000 },
10001 #endif
10002 };
10003
10004 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10005 {
10006 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10007 }
10008
10009 struct cgroup_subsys cpu_cgroup_subsys = {
10010 .name = "cpu",
10011 .create = cpu_cgroup_create,
10012 .destroy = cpu_cgroup_destroy,
10013 .can_attach = cpu_cgroup_can_attach,
10014 .attach = cpu_cgroup_attach,
10015 .populate = cpu_cgroup_populate,
10016 .subsys_id = cpu_cgroup_subsys_id,
10017 .early_init = 1,
10018 };
10019
10020 #endif /* CONFIG_CGROUP_SCHED */
10021
10022 #ifdef CONFIG_CGROUP_CPUACCT
10023
10024 /*
10025 * CPU accounting code for task groups.
10026 *
10027 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10028 * (balbir@in.ibm.com).
10029 */
10030
10031 /* track cpu usage of a group of tasks and its child groups */
10032 struct cpuacct {
10033 struct cgroup_subsys_state css;
10034 /* cpuusage holds pointer to a u64-type object on every cpu */
10035 u64 *cpuusage;
10036 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10037 struct cpuacct *parent;
10038 };
10039
10040 struct cgroup_subsys cpuacct_subsys;
10041
10042 /* return cpu accounting group corresponding to this container */
10043 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10044 {
10045 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10046 struct cpuacct, css);
10047 }
10048
10049 /* return cpu accounting group to which this task belongs */
10050 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10051 {
10052 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10053 struct cpuacct, css);
10054 }
10055
10056 /* create a new cpu accounting group */
10057 static struct cgroup_subsys_state *cpuacct_create(
10058 struct cgroup_subsys *ss, struct cgroup *cgrp)
10059 {
10060 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10061 int i;
10062
10063 if (!ca)
10064 goto out;
10065
10066 ca->cpuusage = alloc_percpu(u64);
10067 if (!ca->cpuusage)
10068 goto out_free_ca;
10069
10070 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10071 if (percpu_counter_init(&ca->cpustat[i], 0))
10072 goto out_free_counters;
10073
10074 if (cgrp->parent)
10075 ca->parent = cgroup_ca(cgrp->parent);
10076
10077 return &ca->css;
10078
10079 out_free_counters:
10080 while (--i >= 0)
10081 percpu_counter_destroy(&ca->cpustat[i]);
10082 free_percpu(ca->cpuusage);
10083 out_free_ca:
10084 kfree(ca);
10085 out:
10086 return ERR_PTR(-ENOMEM);
10087 }
10088
10089 /* destroy an existing cpu accounting group */
10090 static void
10091 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10092 {
10093 struct cpuacct *ca = cgroup_ca(cgrp);
10094 int i;
10095
10096 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10097 percpu_counter_destroy(&ca->cpustat[i]);
10098 free_percpu(ca->cpuusage);
10099 kfree(ca);
10100 }
10101
10102 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10103 {
10104 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10105 u64 data;
10106
10107 #ifndef CONFIG_64BIT
10108 /*
10109 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10110 */
10111 spin_lock_irq(&cpu_rq(cpu)->lock);
10112 data = *cpuusage;
10113 spin_unlock_irq(&cpu_rq(cpu)->lock);
10114 #else
10115 data = *cpuusage;
10116 #endif
10117
10118 return data;
10119 }
10120
10121 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10122 {
10123 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10124
10125 #ifndef CONFIG_64BIT
10126 /*
10127 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10128 */
10129 spin_lock_irq(&cpu_rq(cpu)->lock);
10130 *cpuusage = val;
10131 spin_unlock_irq(&cpu_rq(cpu)->lock);
10132 #else
10133 *cpuusage = val;
10134 #endif
10135 }
10136
10137 /* return total cpu usage (in nanoseconds) of a group */
10138 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10139 {
10140 struct cpuacct *ca = cgroup_ca(cgrp);
10141 u64 totalcpuusage = 0;
10142 int i;
10143
10144 for_each_present_cpu(i)
10145 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10146
10147 return totalcpuusage;
10148 }
10149
10150 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10151 u64 reset)
10152 {
10153 struct cpuacct *ca = cgroup_ca(cgrp);
10154 int err = 0;
10155 int i;
10156
10157 if (reset) {
10158 err = -EINVAL;
10159 goto out;
10160 }
10161
10162 for_each_present_cpu(i)
10163 cpuacct_cpuusage_write(ca, i, 0);
10164
10165 out:
10166 return err;
10167 }
10168
10169 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10170 struct seq_file *m)
10171 {
10172 struct cpuacct *ca = cgroup_ca(cgroup);
10173 u64 percpu;
10174 int i;
10175
10176 for_each_present_cpu(i) {
10177 percpu = cpuacct_cpuusage_read(ca, i);
10178 seq_printf(m, "%llu ", (unsigned long long) percpu);
10179 }
10180 seq_printf(m, "\n");
10181 return 0;
10182 }
10183
10184 static const char *cpuacct_stat_desc[] = {
10185 [CPUACCT_STAT_USER] = "user",
10186 [CPUACCT_STAT_SYSTEM] = "system",
10187 };
10188
10189 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10190 struct cgroup_map_cb *cb)
10191 {
10192 struct cpuacct *ca = cgroup_ca(cgrp);
10193 int i;
10194
10195 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10196 s64 val = percpu_counter_read(&ca->cpustat[i]);
10197 val = cputime64_to_clock_t(val);
10198 cb->fill(cb, cpuacct_stat_desc[i], val);
10199 }
10200 return 0;
10201 }
10202
10203 static struct cftype files[] = {
10204 {
10205 .name = "usage",
10206 .read_u64 = cpuusage_read,
10207 .write_u64 = cpuusage_write,
10208 },
10209 {
10210 .name = "usage_percpu",
10211 .read_seq_string = cpuacct_percpu_seq_read,
10212 },
10213 {
10214 .name = "stat",
10215 .read_map = cpuacct_stats_show,
10216 },
10217 };
10218
10219 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10220 {
10221 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10222 }
10223
10224 /*
10225 * charge this task's execution time to its accounting group.
10226 *
10227 * called with rq->lock held.
10228 */
10229 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10230 {
10231 struct cpuacct *ca;
10232 int cpu;
10233
10234 if (unlikely(!cpuacct_subsys.active))
10235 return;
10236
10237 cpu = task_cpu(tsk);
10238
10239 rcu_read_lock();
10240
10241 ca = task_ca(tsk);
10242
10243 for (; ca; ca = ca->parent) {
10244 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10245 *cpuusage += cputime;
10246 }
10247
10248 rcu_read_unlock();
10249 }
10250
10251 /*
10252 * Charge the system/user time to the task's accounting group.
10253 */
10254 static void cpuacct_update_stats(struct task_struct *tsk,
10255 enum cpuacct_stat_index idx, cputime_t val)
10256 {
10257 struct cpuacct *ca;
10258
10259 if (unlikely(!cpuacct_subsys.active))
10260 return;
10261
10262 rcu_read_lock();
10263 ca = task_ca(tsk);
10264
10265 do {
10266 percpu_counter_add(&ca->cpustat[idx], val);
10267 ca = ca->parent;
10268 } while (ca);
10269 rcu_read_unlock();
10270 }
10271
10272 struct cgroup_subsys cpuacct_subsys = {
10273 .name = "cpuacct",
10274 .create = cpuacct_create,
10275 .destroy = cpuacct_destroy,
10276 .populate = cpuacct_populate,
10277 .subsys_id = cpuacct_subsys_id,
10278 };
10279 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.566873 seconds and 6 git commands to generate.