sched: Make separate sched*.c translation units
[deliverable/linux.git] / kernel / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/mutex.h>
4 #include <linux/spinlock.h>
5 #include <linux/stop_machine.h>
6
7 #include "sched_cpupri.h"
8
9 extern __read_mostly int scheduler_running;
10
11 /*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20 /*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29 /*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34 #define NICE_0_LOAD SCHED_LOAD_SCALE
35 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37 /*
38 * These are the 'tuning knobs' of the scheduler:
39 *
40 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
41 * Timeslices get refilled after they expire.
42 */
43 #define DEF_TIMESLICE (100 * HZ / 1000)
44
45 /*
46 * single value that denotes runtime == period, ie unlimited time.
47 */
48 #define RUNTIME_INF ((u64)~0ULL)
49
50 static inline int rt_policy(int policy)
51 {
52 if (policy == SCHED_FIFO || policy == SCHED_RR)
53 return 1;
54 return 0;
55 }
56
57 static inline int task_has_rt_policy(struct task_struct *p)
58 {
59 return rt_policy(p->policy);
60 }
61
62 /*
63 * This is the priority-queue data structure of the RT scheduling class:
64 */
65 struct rt_prio_array {
66 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
67 struct list_head queue[MAX_RT_PRIO];
68 };
69
70 struct rt_bandwidth {
71 /* nests inside the rq lock: */
72 raw_spinlock_t rt_runtime_lock;
73 ktime_t rt_period;
74 u64 rt_runtime;
75 struct hrtimer rt_period_timer;
76 };
77
78 extern struct mutex sched_domains_mutex;
79
80 #ifdef CONFIG_CGROUP_SCHED
81
82 #include <linux/cgroup.h>
83
84 struct cfs_rq;
85 struct rt_rq;
86
87 static LIST_HEAD(task_groups);
88
89 struct cfs_bandwidth {
90 #ifdef CONFIG_CFS_BANDWIDTH
91 raw_spinlock_t lock;
92 ktime_t period;
93 u64 quota, runtime;
94 s64 hierarchal_quota;
95 u64 runtime_expires;
96
97 int idle, timer_active;
98 struct hrtimer period_timer, slack_timer;
99 struct list_head throttled_cfs_rq;
100
101 /* statistics */
102 int nr_periods, nr_throttled;
103 u64 throttled_time;
104 #endif
105 };
106
107 /* task group related information */
108 struct task_group {
109 struct cgroup_subsys_state css;
110
111 #ifdef CONFIG_FAIR_GROUP_SCHED
112 /* schedulable entities of this group on each cpu */
113 struct sched_entity **se;
114 /* runqueue "owned" by this group on each cpu */
115 struct cfs_rq **cfs_rq;
116 unsigned long shares;
117
118 atomic_t load_weight;
119 #endif
120
121 #ifdef CONFIG_RT_GROUP_SCHED
122 struct sched_rt_entity **rt_se;
123 struct rt_rq **rt_rq;
124
125 struct rt_bandwidth rt_bandwidth;
126 #endif
127
128 struct rcu_head rcu;
129 struct list_head list;
130
131 struct task_group *parent;
132 struct list_head siblings;
133 struct list_head children;
134
135 #ifdef CONFIG_SCHED_AUTOGROUP
136 struct autogroup *autogroup;
137 #endif
138
139 struct cfs_bandwidth cfs_bandwidth;
140 };
141
142 #ifdef CONFIG_FAIR_GROUP_SCHED
143 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
144
145 /*
146 * A weight of 0 or 1 can cause arithmetics problems.
147 * A weight of a cfs_rq is the sum of weights of which entities
148 * are queued on this cfs_rq, so a weight of a entity should not be
149 * too large, so as the shares value of a task group.
150 * (The default weight is 1024 - so there's no practical
151 * limitation from this.)
152 */
153 #define MIN_SHARES (1UL << 1)
154 #define MAX_SHARES (1UL << 18)
155 #endif
156
157 /* Default task group.
158 * Every task in system belong to this group at bootup.
159 */
160 extern struct task_group root_task_group;
161
162 typedef int (*tg_visitor)(struct task_group *, void *);
163
164 extern int walk_tg_tree_from(struct task_group *from,
165 tg_visitor down, tg_visitor up, void *data);
166
167 /*
168 * Iterate the full tree, calling @down when first entering a node and @up when
169 * leaving it for the final time.
170 *
171 * Caller must hold rcu_lock or sufficient equivalent.
172 */
173 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
174 {
175 return walk_tg_tree_from(&root_task_group, down, up, data);
176 }
177
178 extern int tg_nop(struct task_group *tg, void *data);
179
180 extern void free_fair_sched_group(struct task_group *tg);
181 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
182 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
183 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
184 struct sched_entity *se, int cpu,
185 struct sched_entity *parent);
186 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
188
189 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
190 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
191 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
192
193 extern void free_rt_sched_group(struct task_group *tg);
194 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
195 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
196 struct sched_rt_entity *rt_se, int cpu,
197 struct sched_rt_entity *parent);
198
199 #else /* CONFIG_CGROUP_SCHED */
200
201 struct cfs_bandwidth { };
202
203 #endif /* CONFIG_CGROUP_SCHED */
204
205 /* CFS-related fields in a runqueue */
206 struct cfs_rq {
207 struct load_weight load;
208 unsigned long nr_running, h_nr_running;
209
210 u64 exec_clock;
211 u64 min_vruntime;
212 #ifndef CONFIG_64BIT
213 u64 min_vruntime_copy;
214 #endif
215
216 struct rb_root tasks_timeline;
217 struct rb_node *rb_leftmost;
218
219 struct list_head tasks;
220 struct list_head *balance_iterator;
221
222 /*
223 * 'curr' points to currently running entity on this cfs_rq.
224 * It is set to NULL otherwise (i.e when none are currently running).
225 */
226 struct sched_entity *curr, *next, *last, *skip;
227
228 #ifdef CONFIG_SCHED_DEBUG
229 unsigned int nr_spread_over;
230 #endif
231
232 #ifdef CONFIG_FAIR_GROUP_SCHED
233 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
234
235 /*
236 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
237 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
238 * (like users, containers etc.)
239 *
240 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
241 * list is used during load balance.
242 */
243 int on_list;
244 struct list_head leaf_cfs_rq_list;
245 struct task_group *tg; /* group that "owns" this runqueue */
246
247 #ifdef CONFIG_SMP
248 /*
249 * the part of load.weight contributed by tasks
250 */
251 unsigned long task_weight;
252
253 /*
254 * h_load = weight * f(tg)
255 *
256 * Where f(tg) is the recursive weight fraction assigned to
257 * this group.
258 */
259 unsigned long h_load;
260
261 /*
262 * Maintaining per-cpu shares distribution for group scheduling
263 *
264 * load_stamp is the last time we updated the load average
265 * load_last is the last time we updated the load average and saw load
266 * load_unacc_exec_time is currently unaccounted execution time
267 */
268 u64 load_avg;
269 u64 load_period;
270 u64 load_stamp, load_last, load_unacc_exec_time;
271
272 unsigned long load_contribution;
273 #endif /* CONFIG_SMP */
274 #ifdef CONFIG_CFS_BANDWIDTH
275 int runtime_enabled;
276 u64 runtime_expires;
277 s64 runtime_remaining;
278
279 u64 throttled_timestamp;
280 int throttled, throttle_count;
281 struct list_head throttled_list;
282 #endif /* CONFIG_CFS_BANDWIDTH */
283 #endif /* CONFIG_FAIR_GROUP_SCHED */
284 };
285
286 static inline int rt_bandwidth_enabled(void)
287 {
288 return sysctl_sched_rt_runtime >= 0;
289 }
290
291 /* Real-Time classes' related field in a runqueue: */
292 struct rt_rq {
293 struct rt_prio_array active;
294 unsigned long rt_nr_running;
295 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
296 struct {
297 int curr; /* highest queued rt task prio */
298 #ifdef CONFIG_SMP
299 int next; /* next highest */
300 #endif
301 } highest_prio;
302 #endif
303 #ifdef CONFIG_SMP
304 unsigned long rt_nr_migratory;
305 unsigned long rt_nr_total;
306 int overloaded;
307 struct plist_head pushable_tasks;
308 #endif
309 int rt_throttled;
310 u64 rt_time;
311 u64 rt_runtime;
312 /* Nests inside the rq lock: */
313 raw_spinlock_t rt_runtime_lock;
314
315 #ifdef CONFIG_RT_GROUP_SCHED
316 unsigned long rt_nr_boosted;
317
318 struct rq *rq;
319 struct list_head leaf_rt_rq_list;
320 struct task_group *tg;
321 #endif
322 };
323
324 #ifdef CONFIG_SMP
325
326 /*
327 * We add the notion of a root-domain which will be used to define per-domain
328 * variables. Each exclusive cpuset essentially defines an island domain by
329 * fully partitioning the member cpus from any other cpuset. Whenever a new
330 * exclusive cpuset is created, we also create and attach a new root-domain
331 * object.
332 *
333 */
334 struct root_domain {
335 atomic_t refcount;
336 atomic_t rto_count;
337 struct rcu_head rcu;
338 cpumask_var_t span;
339 cpumask_var_t online;
340
341 /*
342 * The "RT overload" flag: it gets set if a CPU has more than
343 * one runnable RT task.
344 */
345 cpumask_var_t rto_mask;
346 struct cpupri cpupri;
347 };
348
349 extern struct root_domain def_root_domain;
350
351 #endif /* CONFIG_SMP */
352
353 /*
354 * This is the main, per-CPU runqueue data structure.
355 *
356 * Locking rule: those places that want to lock multiple runqueues
357 * (such as the load balancing or the thread migration code), lock
358 * acquire operations must be ordered by ascending &runqueue.
359 */
360 struct rq {
361 /* runqueue lock: */
362 raw_spinlock_t lock;
363
364 /*
365 * nr_running and cpu_load should be in the same cacheline because
366 * remote CPUs use both these fields when doing load calculation.
367 */
368 unsigned long nr_running;
369 #define CPU_LOAD_IDX_MAX 5
370 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
371 unsigned long last_load_update_tick;
372 #ifdef CONFIG_NO_HZ
373 u64 nohz_stamp;
374 unsigned char nohz_balance_kick;
375 #endif
376 int skip_clock_update;
377
378 /* capture load from *all* tasks on this cpu: */
379 struct load_weight load;
380 unsigned long nr_load_updates;
381 u64 nr_switches;
382
383 struct cfs_rq cfs;
384 struct rt_rq rt;
385
386 #ifdef CONFIG_FAIR_GROUP_SCHED
387 /* list of leaf cfs_rq on this cpu: */
388 struct list_head leaf_cfs_rq_list;
389 #endif
390 #ifdef CONFIG_RT_GROUP_SCHED
391 struct list_head leaf_rt_rq_list;
392 #endif
393
394 /*
395 * This is part of a global counter where only the total sum
396 * over all CPUs matters. A task can increase this counter on
397 * one CPU and if it got migrated afterwards it may decrease
398 * it on another CPU. Always updated under the runqueue lock:
399 */
400 unsigned long nr_uninterruptible;
401
402 struct task_struct *curr, *idle, *stop;
403 unsigned long next_balance;
404 struct mm_struct *prev_mm;
405
406 u64 clock;
407 u64 clock_task;
408
409 atomic_t nr_iowait;
410
411 #ifdef CONFIG_SMP
412 struct root_domain *rd;
413 struct sched_domain *sd;
414
415 unsigned long cpu_power;
416
417 unsigned char idle_balance;
418 /* For active balancing */
419 int post_schedule;
420 int active_balance;
421 int push_cpu;
422 struct cpu_stop_work active_balance_work;
423 /* cpu of this runqueue: */
424 int cpu;
425 int online;
426
427 u64 rt_avg;
428 u64 age_stamp;
429 u64 idle_stamp;
430 u64 avg_idle;
431 #endif
432
433 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
434 u64 prev_irq_time;
435 #endif
436 #ifdef CONFIG_PARAVIRT
437 u64 prev_steal_time;
438 #endif
439 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
440 u64 prev_steal_time_rq;
441 #endif
442
443 /* calc_load related fields */
444 unsigned long calc_load_update;
445 long calc_load_active;
446
447 #ifdef CONFIG_SCHED_HRTICK
448 #ifdef CONFIG_SMP
449 int hrtick_csd_pending;
450 struct call_single_data hrtick_csd;
451 #endif
452 struct hrtimer hrtick_timer;
453 #endif
454
455 #ifdef CONFIG_SCHEDSTATS
456 /* latency stats */
457 struct sched_info rq_sched_info;
458 unsigned long long rq_cpu_time;
459 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
460
461 /* sys_sched_yield() stats */
462 unsigned int yld_count;
463
464 /* schedule() stats */
465 unsigned int sched_switch;
466 unsigned int sched_count;
467 unsigned int sched_goidle;
468
469 /* try_to_wake_up() stats */
470 unsigned int ttwu_count;
471 unsigned int ttwu_local;
472 #endif
473
474 #ifdef CONFIG_SMP
475 struct llist_head wake_list;
476 #endif
477 };
478
479 static inline int cpu_of(struct rq *rq)
480 {
481 #ifdef CONFIG_SMP
482 return rq->cpu;
483 #else
484 return 0;
485 #endif
486 }
487
488 DECLARE_PER_CPU(struct rq, runqueues);
489
490 #define rcu_dereference_check_sched_domain(p) \
491 rcu_dereference_check((p), \
492 lockdep_is_held(&sched_domains_mutex))
493
494 /*
495 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
496 * See detach_destroy_domains: synchronize_sched for details.
497 *
498 * The domain tree of any CPU may only be accessed from within
499 * preempt-disabled sections.
500 */
501 #define for_each_domain(cpu, __sd) \
502 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
503
504 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
505 #define this_rq() (&__get_cpu_var(runqueues))
506 #define task_rq(p) cpu_rq(task_cpu(p))
507 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
508 #define raw_rq() (&__raw_get_cpu_var(runqueues))
509
510 #include "sched_stats.h"
511 #include "sched_autogroup.h"
512
513 #ifdef CONFIG_CGROUP_SCHED
514
515 /*
516 * Return the group to which this tasks belongs.
517 *
518 * We use task_subsys_state_check() and extend the RCU verification with
519 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
520 * task it moves into the cgroup. Therefore by holding either of those locks,
521 * we pin the task to the current cgroup.
522 */
523 static inline struct task_group *task_group(struct task_struct *p)
524 {
525 struct task_group *tg;
526 struct cgroup_subsys_state *css;
527
528 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
529 lockdep_is_held(&p->pi_lock) ||
530 lockdep_is_held(&task_rq(p)->lock));
531 tg = container_of(css, struct task_group, css);
532
533 return autogroup_task_group(p, tg);
534 }
535
536 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
537 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
538 {
539 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
540 struct task_group *tg = task_group(p);
541 #endif
542
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 p->se.cfs_rq = tg->cfs_rq[cpu];
545 p->se.parent = tg->se[cpu];
546 #endif
547
548 #ifdef CONFIG_RT_GROUP_SCHED
549 p->rt.rt_rq = tg->rt_rq[cpu];
550 p->rt.parent = tg->rt_se[cpu];
551 #endif
552 }
553
554 #else /* CONFIG_CGROUP_SCHED */
555
556 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
557 static inline struct task_group *task_group(struct task_struct *p)
558 {
559 return NULL;
560 }
561
562 #endif /* CONFIG_CGROUP_SCHED */
563
564 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
565 {
566 set_task_rq(p, cpu);
567 #ifdef CONFIG_SMP
568 /*
569 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
570 * successfuly executed on another CPU. We must ensure that updates of
571 * per-task data have been completed by this moment.
572 */
573 smp_wmb();
574 task_thread_info(p)->cpu = cpu;
575 #endif
576 }
577
578 /*
579 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
580 */
581 #ifdef CONFIG_SCHED_DEBUG
582 # define const_debug __read_mostly
583 #else
584 # define const_debug const
585 #endif
586
587 extern const_debug unsigned int sysctl_sched_features;
588
589 #define SCHED_FEAT(name, enabled) \
590 __SCHED_FEAT_##name ,
591
592 enum {
593 #include "sched_features.h"
594 };
595
596 #undef SCHED_FEAT
597
598 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
599
600 static inline u64 global_rt_period(void)
601 {
602 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
603 }
604
605 static inline u64 global_rt_runtime(void)
606 {
607 if (sysctl_sched_rt_runtime < 0)
608 return RUNTIME_INF;
609
610 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
611 }
612
613
614
615 static inline int task_current(struct rq *rq, struct task_struct *p)
616 {
617 return rq->curr == p;
618 }
619
620 static inline int task_running(struct rq *rq, struct task_struct *p)
621 {
622 #ifdef CONFIG_SMP
623 return p->on_cpu;
624 #else
625 return task_current(rq, p);
626 #endif
627 }
628
629
630 #ifndef prepare_arch_switch
631 # define prepare_arch_switch(next) do { } while (0)
632 #endif
633 #ifndef finish_arch_switch
634 # define finish_arch_switch(prev) do { } while (0)
635 #endif
636
637 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
638 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
639 {
640 #ifdef CONFIG_SMP
641 /*
642 * We can optimise this out completely for !SMP, because the
643 * SMP rebalancing from interrupt is the only thing that cares
644 * here.
645 */
646 next->on_cpu = 1;
647 #endif
648 }
649
650 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
651 {
652 #ifdef CONFIG_SMP
653 /*
654 * After ->on_cpu is cleared, the task can be moved to a different CPU.
655 * We must ensure this doesn't happen until the switch is completely
656 * finished.
657 */
658 smp_wmb();
659 prev->on_cpu = 0;
660 #endif
661 #ifdef CONFIG_DEBUG_SPINLOCK
662 /* this is a valid case when another task releases the spinlock */
663 rq->lock.owner = current;
664 #endif
665 /*
666 * If we are tracking spinlock dependencies then we have to
667 * fix up the runqueue lock - which gets 'carried over' from
668 * prev into current:
669 */
670 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
671
672 raw_spin_unlock_irq(&rq->lock);
673 }
674
675 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
676 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
677 {
678 #ifdef CONFIG_SMP
679 /*
680 * We can optimise this out completely for !SMP, because the
681 * SMP rebalancing from interrupt is the only thing that cares
682 * here.
683 */
684 next->on_cpu = 1;
685 #endif
686 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
687 raw_spin_unlock_irq(&rq->lock);
688 #else
689 raw_spin_unlock(&rq->lock);
690 #endif
691 }
692
693 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
694 {
695 #ifdef CONFIG_SMP
696 /*
697 * After ->on_cpu is cleared, the task can be moved to a different CPU.
698 * We must ensure this doesn't happen until the switch is completely
699 * finished.
700 */
701 smp_wmb();
702 prev->on_cpu = 0;
703 #endif
704 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
705 local_irq_enable();
706 #endif
707 }
708 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
709
710
711 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
712 {
713 lw->weight += inc;
714 lw->inv_weight = 0;
715 }
716
717 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
718 {
719 lw->weight -= dec;
720 lw->inv_weight = 0;
721 }
722
723 static inline void update_load_set(struct load_weight *lw, unsigned long w)
724 {
725 lw->weight = w;
726 lw->inv_weight = 0;
727 }
728
729 /*
730 * To aid in avoiding the subversion of "niceness" due to uneven distribution
731 * of tasks with abnormal "nice" values across CPUs the contribution that
732 * each task makes to its run queue's load is weighted according to its
733 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
734 * scaled version of the new time slice allocation that they receive on time
735 * slice expiry etc.
736 */
737
738 #define WEIGHT_IDLEPRIO 3
739 #define WMULT_IDLEPRIO 1431655765
740
741 /*
742 * Nice levels are multiplicative, with a gentle 10% change for every
743 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
744 * nice 1, it will get ~10% less CPU time than another CPU-bound task
745 * that remained on nice 0.
746 *
747 * The "10% effect" is relative and cumulative: from _any_ nice level,
748 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
749 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
750 * If a task goes up by ~10% and another task goes down by ~10% then
751 * the relative distance between them is ~25%.)
752 */
753 static const int prio_to_weight[40] = {
754 /* -20 */ 88761, 71755, 56483, 46273, 36291,
755 /* -15 */ 29154, 23254, 18705, 14949, 11916,
756 /* -10 */ 9548, 7620, 6100, 4904, 3906,
757 /* -5 */ 3121, 2501, 1991, 1586, 1277,
758 /* 0 */ 1024, 820, 655, 526, 423,
759 /* 5 */ 335, 272, 215, 172, 137,
760 /* 10 */ 110, 87, 70, 56, 45,
761 /* 15 */ 36, 29, 23, 18, 15,
762 };
763
764 /*
765 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
766 *
767 * In cases where the weight does not change often, we can use the
768 * precalculated inverse to speed up arithmetics by turning divisions
769 * into multiplications:
770 */
771 static const u32 prio_to_wmult[40] = {
772 /* -20 */ 48388, 59856, 76040, 92818, 118348,
773 /* -15 */ 147320, 184698, 229616, 287308, 360437,
774 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
775 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
776 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
777 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
778 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
779 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
780 };
781
782 /* Time spent by the tasks of the cpu accounting group executing in ... */
783 enum cpuacct_stat_index {
784 CPUACCT_STAT_USER, /* ... user mode */
785 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
786
787 CPUACCT_STAT_NSTATS,
788 };
789
790
791 #define sched_class_highest (&stop_sched_class)
792 #define for_each_class(class) \
793 for (class = sched_class_highest; class; class = class->next)
794
795 extern const struct sched_class stop_sched_class;
796 extern const struct sched_class rt_sched_class;
797 extern const struct sched_class fair_sched_class;
798 extern const struct sched_class idle_sched_class;
799
800
801 #ifdef CONFIG_SMP
802
803 extern void trigger_load_balance(struct rq *rq, int cpu);
804 extern void idle_balance(int this_cpu, struct rq *this_rq);
805
806 #else /* CONFIG_SMP */
807
808 static inline void idle_balance(int cpu, struct rq *rq)
809 {
810 }
811
812 #endif
813
814 extern void sysrq_sched_debug_show(void);
815 extern void sched_init_granularity(void);
816 extern void update_max_interval(void);
817 extern void update_group_power(struct sched_domain *sd, int cpu);
818 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
819 extern void init_sched_rt_class(void);
820 extern void init_sched_fair_class(void);
821
822 extern void resched_task(struct task_struct *p);
823 extern void resched_cpu(int cpu);
824
825 extern struct rt_bandwidth def_rt_bandwidth;
826 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
827
828 extern void update_cpu_load(struct rq *this_rq);
829
830 #ifdef CONFIG_CGROUP_CPUACCT
831 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
832 extern void cpuacct_update_stats(struct task_struct *tsk,
833 enum cpuacct_stat_index idx, cputime_t val);
834 #else
835 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
836 static inline void cpuacct_update_stats(struct task_struct *tsk,
837 enum cpuacct_stat_index idx, cputime_t val) {}
838 #endif
839
840 static inline void inc_nr_running(struct rq *rq)
841 {
842 rq->nr_running++;
843 }
844
845 static inline void dec_nr_running(struct rq *rq)
846 {
847 rq->nr_running--;
848 }
849
850 extern void update_rq_clock(struct rq *rq);
851
852 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
853 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
854
855 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
856
857 extern const_debug unsigned int sysctl_sched_time_avg;
858 extern const_debug unsigned int sysctl_sched_nr_migrate;
859 extern const_debug unsigned int sysctl_sched_migration_cost;
860
861 static inline u64 sched_avg_period(void)
862 {
863 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
864 }
865
866 void calc_load_account_idle(struct rq *this_rq);
867
868 #ifdef CONFIG_SCHED_HRTICK
869
870 /*
871 * Use hrtick when:
872 * - enabled by features
873 * - hrtimer is actually high res
874 */
875 static inline int hrtick_enabled(struct rq *rq)
876 {
877 if (!sched_feat(HRTICK))
878 return 0;
879 if (!cpu_active(cpu_of(rq)))
880 return 0;
881 return hrtimer_is_hres_active(&rq->hrtick_timer);
882 }
883
884 void hrtick_start(struct rq *rq, u64 delay);
885
886 #endif /* CONFIG_SCHED_HRTICK */
887
888 #ifdef CONFIG_SMP
889 extern void sched_avg_update(struct rq *rq);
890 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
891 {
892 rq->rt_avg += rt_delta;
893 sched_avg_update(rq);
894 }
895 #else
896 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
897 static inline void sched_avg_update(struct rq *rq) { }
898 #endif
899
900 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
901
902 #ifdef CONFIG_SMP
903 #ifdef CONFIG_PREEMPT
904
905 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
906
907 /*
908 * fair double_lock_balance: Safely acquires both rq->locks in a fair
909 * way at the expense of forcing extra atomic operations in all
910 * invocations. This assures that the double_lock is acquired using the
911 * same underlying policy as the spinlock_t on this architecture, which
912 * reduces latency compared to the unfair variant below. However, it
913 * also adds more overhead and therefore may reduce throughput.
914 */
915 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
916 __releases(this_rq->lock)
917 __acquires(busiest->lock)
918 __acquires(this_rq->lock)
919 {
920 raw_spin_unlock(&this_rq->lock);
921 double_rq_lock(this_rq, busiest);
922
923 return 1;
924 }
925
926 #else
927 /*
928 * Unfair double_lock_balance: Optimizes throughput at the expense of
929 * latency by eliminating extra atomic operations when the locks are
930 * already in proper order on entry. This favors lower cpu-ids and will
931 * grant the double lock to lower cpus over higher ids under contention,
932 * regardless of entry order into the function.
933 */
934 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
935 __releases(this_rq->lock)
936 __acquires(busiest->lock)
937 __acquires(this_rq->lock)
938 {
939 int ret = 0;
940
941 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
942 if (busiest < this_rq) {
943 raw_spin_unlock(&this_rq->lock);
944 raw_spin_lock(&busiest->lock);
945 raw_spin_lock_nested(&this_rq->lock,
946 SINGLE_DEPTH_NESTING);
947 ret = 1;
948 } else
949 raw_spin_lock_nested(&busiest->lock,
950 SINGLE_DEPTH_NESTING);
951 }
952 return ret;
953 }
954
955 #endif /* CONFIG_PREEMPT */
956
957 /*
958 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
959 */
960 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
961 {
962 if (unlikely(!irqs_disabled())) {
963 /* printk() doesn't work good under rq->lock */
964 raw_spin_unlock(&this_rq->lock);
965 BUG_ON(1);
966 }
967
968 return _double_lock_balance(this_rq, busiest);
969 }
970
971 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
972 __releases(busiest->lock)
973 {
974 raw_spin_unlock(&busiest->lock);
975 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
976 }
977
978 /*
979 * double_rq_lock - safely lock two runqueues
980 *
981 * Note this does not disable interrupts like task_rq_lock,
982 * you need to do so manually before calling.
983 */
984 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
985 __acquires(rq1->lock)
986 __acquires(rq2->lock)
987 {
988 BUG_ON(!irqs_disabled());
989 if (rq1 == rq2) {
990 raw_spin_lock(&rq1->lock);
991 __acquire(rq2->lock); /* Fake it out ;) */
992 } else {
993 if (rq1 < rq2) {
994 raw_spin_lock(&rq1->lock);
995 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
996 } else {
997 raw_spin_lock(&rq2->lock);
998 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
999 }
1000 }
1001 }
1002
1003 /*
1004 * double_rq_unlock - safely unlock two runqueues
1005 *
1006 * Note this does not restore interrupts like task_rq_unlock,
1007 * you need to do so manually after calling.
1008 */
1009 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1010 __releases(rq1->lock)
1011 __releases(rq2->lock)
1012 {
1013 raw_spin_unlock(&rq1->lock);
1014 if (rq1 != rq2)
1015 raw_spin_unlock(&rq2->lock);
1016 else
1017 __release(rq2->lock);
1018 }
1019
1020 #else /* CONFIG_SMP */
1021
1022 /*
1023 * double_rq_lock - safely lock two runqueues
1024 *
1025 * Note this does not disable interrupts like task_rq_lock,
1026 * you need to do so manually before calling.
1027 */
1028 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1029 __acquires(rq1->lock)
1030 __acquires(rq2->lock)
1031 {
1032 BUG_ON(!irqs_disabled());
1033 BUG_ON(rq1 != rq2);
1034 raw_spin_lock(&rq1->lock);
1035 __acquire(rq2->lock); /* Fake it out ;) */
1036 }
1037
1038 /*
1039 * double_rq_unlock - safely unlock two runqueues
1040 *
1041 * Note this does not restore interrupts like task_rq_unlock,
1042 * you need to do so manually after calling.
1043 */
1044 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1045 __releases(rq1->lock)
1046 __releases(rq2->lock)
1047 {
1048 BUG_ON(rq1 != rq2);
1049 raw_spin_unlock(&rq1->lock);
1050 __release(rq2->lock);
1051 }
1052
1053 #endif
1054
1055 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1056 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1057 extern void print_cfs_stats(struct seq_file *m, int cpu);
1058 extern void print_rt_stats(struct seq_file *m, int cpu);
1059
1060 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1061 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1062 extern void unthrottle_offline_cfs_rqs(struct rq *rq);
1063
1064 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
This page took 0.079168 seconds and 5 git commands to generate.