ARM: 7165/2: PL330: Fix typo in _prepare_ccr()
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26
27 /*
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 *
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
35 *
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
38 */
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
41
42 /*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 */
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
60
61 /*
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
64 static unsigned int sched_nr_latency = 8;
65
66 /*
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
69 */
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
71
72 /*
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
82
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
85 /*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
92 #ifdef CONFIG_CFS_BANDWIDTH
93 /*
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
96 *
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
100 *
101 * default: 5 msec, units: microseconds
102 */
103 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104 #endif
105
106 static const struct sched_class fair_sched_class;
107
108 /**************************************************************
109 * CFS operations on generic schedulable entities:
110 */
111
112 #ifdef CONFIG_FAIR_GROUP_SCHED
113
114 /* cpu runqueue to which this cfs_rq is attached */
115 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116 {
117 return cfs_rq->rq;
118 }
119
120 /* An entity is a task if it doesn't "own" a runqueue */
121 #define entity_is_task(se) (!se->my_q)
122
123 static inline struct task_struct *task_of(struct sched_entity *se)
124 {
125 #ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127 #endif
128 return container_of(se, struct task_struct, se);
129 }
130
131 /* Walk up scheduling entities hierarchy */
132 #define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
134
135 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
136 {
137 return p->se.cfs_rq;
138 }
139
140 /* runqueue on which this entity is (to be) queued */
141 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
142 {
143 return se->cfs_rq;
144 }
145
146 /* runqueue "owned" by this group */
147 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
148 {
149 return grp->my_q;
150 }
151
152 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
153 {
154 if (!cfs_rq->on_list) {
155 /*
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
160 */
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
168 }
169
170 cfs_rq->on_list = 1;
171 }
172 }
173
174 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
175 {
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
179 }
180 }
181
182 /* Iterate thr' all leaf cfs_rq's on a runqueue */
183 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
185
186 /* Do the two (enqueued) entities belong to the same group ? */
187 static inline int
188 is_same_group(struct sched_entity *se, struct sched_entity *pse)
189 {
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
192
193 return 0;
194 }
195
196 static inline struct sched_entity *parent_entity(struct sched_entity *se)
197 {
198 return se->parent;
199 }
200
201 /* return depth at which a sched entity is present in the hierarchy */
202 static inline int depth_se(struct sched_entity *se)
203 {
204 int depth = 0;
205
206 for_each_sched_entity(se)
207 depth++;
208
209 return depth;
210 }
211
212 static void
213 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
214 {
215 int se_depth, pse_depth;
216
217 /*
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
222 */
223
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
227
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
231 }
232
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
236 }
237
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
241 }
242 }
243
244 #else /* !CONFIG_FAIR_GROUP_SCHED */
245
246 static inline struct task_struct *task_of(struct sched_entity *se)
247 {
248 return container_of(se, struct task_struct, se);
249 }
250
251 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
252 {
253 return container_of(cfs_rq, struct rq, cfs);
254 }
255
256 #define entity_is_task(se) 1
257
258 #define for_each_sched_entity(se) \
259 for (; se; se = NULL)
260
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 return &task_rq(p)->cfs;
264 }
265
266 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267 {
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
270
271 return &rq->cfs;
272 }
273
274 /* runqueue "owned" by this group */
275 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
276 {
277 return NULL;
278 }
279
280 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
281 {
282 }
283
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 }
287
288 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290
291 static inline int
292 is_same_group(struct sched_entity *se, struct sched_entity *pse)
293 {
294 return 1;
295 }
296
297 static inline struct sched_entity *parent_entity(struct sched_entity *se)
298 {
299 return NULL;
300 }
301
302 static inline void
303 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
304 {
305 }
306
307 #endif /* CONFIG_FAIR_GROUP_SCHED */
308
309 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
311
312 /**************************************************************
313 * Scheduling class tree data structure manipulation methods:
314 */
315
316 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
317 {
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
320 min_vruntime = vruntime;
321
322 return min_vruntime;
323 }
324
325 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
326 {
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
330
331 return min_vruntime;
332 }
333
334 static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
336 {
337 return (s64)(a->vruntime - b->vruntime) < 0;
338 }
339
340 static void update_min_vruntime(struct cfs_rq *cfs_rq)
341 {
342 u64 vruntime = cfs_rq->min_vruntime;
343
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
346
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
351
352 if (!cfs_rq->curr)
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
356 }
357
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
359 #ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362 #endif
363 }
364
365 /*
366 * Enqueue an entity into the rb-tree:
367 */
368 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
369 {
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
373 int leftmost = 1;
374
375 /*
376 * Find the right place in the rbtree:
377 */
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
381 /*
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
384 */
385 if (entity_before(se, entry)) {
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
390 }
391 }
392
393 /*
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
396 */
397 if (leftmost)
398 cfs_rq->rb_leftmost = &se->run_node;
399
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
402 }
403
404 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 {
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
408
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
411 }
412
413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
414 }
415
416 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
417 {
418 struct rb_node *left = cfs_rq->rb_leftmost;
419
420 if (!left)
421 return NULL;
422
423 return rb_entry(left, struct sched_entity, run_node);
424 }
425
426 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427 {
428 struct rb_node *next = rb_next(&se->run_node);
429
430 if (!next)
431 return NULL;
432
433 return rb_entry(next, struct sched_entity, run_node);
434 }
435
436 #ifdef CONFIG_SCHED_DEBUG
437 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
438 {
439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
440
441 if (!last)
442 return NULL;
443
444 return rb_entry(last, struct sched_entity, run_node);
445 }
446
447 /**************************************************************
448 * Scheduling class statistics methods:
449 */
450
451 int sched_proc_update_handler(struct ctl_table *table, int write,
452 void __user *buffer, size_t *lenp,
453 loff_t *ppos)
454 {
455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
456 int factor = get_update_sysctl_factor();
457
458 if (ret || !write)
459 return ret;
460
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
463
464 #define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
469 #undef WRT_SYSCTL
470
471 return 0;
472 }
473 #endif
474
475 /*
476 * delta /= w
477 */
478 static inline unsigned long
479 calc_delta_fair(unsigned long delta, struct sched_entity *se)
480 {
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
483
484 return delta;
485 }
486
487 /*
488 * The idea is to set a period in which each task runs once.
489 *
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
492 *
493 * p = (nr <= nl) ? l : l*nr/nl
494 */
495 static u64 __sched_period(unsigned long nr_running)
496 {
497 u64 period = sysctl_sched_latency;
498 unsigned long nr_latency = sched_nr_latency;
499
500 if (unlikely(nr_running > nr_latency)) {
501 period = sysctl_sched_min_granularity;
502 period *= nr_running;
503 }
504
505 return period;
506 }
507
508 /*
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
511 *
512 * s = p*P[w/rw]
513 */
514 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
517
518 for_each_sched_entity(se) {
519 struct load_weight *load;
520 struct load_weight lw;
521
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
524
525 if (unlikely(!se->on_rq)) {
526 lw = cfs_rq->load;
527
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
530 }
531 slice = calc_delta_mine(slice, se->load.weight, load);
532 }
533 return slice;
534 }
535
536 /*
537 * We calculate the vruntime slice of a to be inserted task
538 *
539 * vs = s/w
540 */
541 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
544 }
545
546 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
547 static void update_cfs_shares(struct cfs_rq *cfs_rq);
548
549 /*
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
552 */
553 static inline void
554 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
556 {
557 unsigned long delta_exec_weighted;
558
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
561
562 curr->sum_exec_runtime += delta_exec;
563 schedstat_add(cfs_rq, exec_clock, delta_exec);
564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
565
566 curr->vruntime += delta_exec_weighted;
567 update_min_vruntime(cfs_rq);
568
569 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
570 cfs_rq->load_unacc_exec_time += delta_exec;
571 #endif
572 }
573
574 static void update_curr(struct cfs_rq *cfs_rq)
575 {
576 struct sched_entity *curr = cfs_rq->curr;
577 u64 now = rq_of(cfs_rq)->clock_task;
578 unsigned long delta_exec;
579
580 if (unlikely(!curr))
581 return;
582
583 /*
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
587 */
588 delta_exec = (unsigned long)(now - curr->exec_start);
589 if (!delta_exec)
590 return;
591
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
594
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
597
598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
599 cpuacct_charge(curtask, delta_exec);
600 account_group_exec_runtime(curtask, delta_exec);
601 }
602
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
604 }
605
606 static inline void
607 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
608 {
609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
610 }
611
612 /*
613 * Task is being enqueued - update stats:
614 */
615 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
616 {
617 /*
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
620 */
621 if (se != cfs_rq->curr)
622 update_stats_wait_start(cfs_rq, se);
623 }
624
625 static void
626 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
633 #ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
637 }
638 #endif
639 schedstat_set(se->statistics.wait_start, 0);
640 }
641
642 static inline void
643 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
644 {
645 /*
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
648 */
649 if (se != cfs_rq->curr)
650 update_stats_wait_end(cfs_rq, se);
651 }
652
653 /*
654 * We are picking a new current task - update its stats:
655 */
656 static inline void
657 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
658 {
659 /*
660 * We are starting a new run period:
661 */
662 se->exec_start = rq_of(cfs_rq)->clock_task;
663 }
664
665 /**************************************************
666 * Scheduling class queueing methods:
667 */
668
669 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670 static void
671 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672 {
673 cfs_rq->task_weight += weight;
674 }
675 #else
676 static inline void
677 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
678 {
679 }
680 #endif
681
682 static void
683 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
684 {
685 update_load_add(&cfs_rq->load, se->load.weight);
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
688 if (entity_is_task(se)) {
689 add_cfs_task_weight(cfs_rq, se->load.weight);
690 list_add(&se->group_node, &cfs_rq->tasks);
691 }
692 cfs_rq->nr_running++;
693 }
694
695 static void
696 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
697 {
698 update_load_sub(&cfs_rq->load, se->load.weight);
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
701 if (entity_is_task(se)) {
702 add_cfs_task_weight(cfs_rq, -se->load.weight);
703 list_del_init(&se->group_node);
704 }
705 cfs_rq->nr_running--;
706 }
707
708 #ifdef CONFIG_FAIR_GROUP_SCHED
709 /* we need this in update_cfs_load and load-balance functions below */
710 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
711 # ifdef CONFIG_SMP
712 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
713 int global_update)
714 {
715 struct task_group *tg = cfs_rq->tg;
716 long load_avg;
717
718 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
719 load_avg -= cfs_rq->load_contribution;
720
721 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
722 atomic_add(load_avg, &tg->load_weight);
723 cfs_rq->load_contribution += load_avg;
724 }
725 }
726
727 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
728 {
729 u64 period = sysctl_sched_shares_window;
730 u64 now, delta;
731 unsigned long load = cfs_rq->load.weight;
732
733 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
734 return;
735
736 now = rq_of(cfs_rq)->clock_task;
737 delta = now - cfs_rq->load_stamp;
738
739 /* truncate load history at 4 idle periods */
740 if (cfs_rq->load_stamp > cfs_rq->load_last &&
741 now - cfs_rq->load_last > 4 * period) {
742 cfs_rq->load_period = 0;
743 cfs_rq->load_avg = 0;
744 delta = period - 1;
745 }
746
747 cfs_rq->load_stamp = now;
748 cfs_rq->load_unacc_exec_time = 0;
749 cfs_rq->load_period += delta;
750 if (load) {
751 cfs_rq->load_last = now;
752 cfs_rq->load_avg += delta * load;
753 }
754
755 /* consider updating load contribution on each fold or truncate */
756 if (global_update || cfs_rq->load_period > period
757 || !cfs_rq->load_period)
758 update_cfs_rq_load_contribution(cfs_rq, global_update);
759
760 while (cfs_rq->load_period > period) {
761 /*
762 * Inline assembly required to prevent the compiler
763 * optimising this loop into a divmod call.
764 * See __iter_div_u64_rem() for another example of this.
765 */
766 asm("" : "+rm" (cfs_rq->load_period));
767 cfs_rq->load_period /= 2;
768 cfs_rq->load_avg /= 2;
769 }
770
771 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
772 list_del_leaf_cfs_rq(cfs_rq);
773 }
774
775 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
776 {
777 long load_weight, load, shares;
778
779 load = cfs_rq->load.weight;
780
781 load_weight = atomic_read(&tg->load_weight);
782 load_weight += load;
783 load_weight -= cfs_rq->load_contribution;
784
785 shares = (tg->shares * load);
786 if (load_weight)
787 shares /= load_weight;
788
789 if (shares < MIN_SHARES)
790 shares = MIN_SHARES;
791 if (shares > tg->shares)
792 shares = tg->shares;
793
794 return shares;
795 }
796
797 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
798 {
799 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
800 update_cfs_load(cfs_rq, 0);
801 update_cfs_shares(cfs_rq);
802 }
803 }
804 # else /* CONFIG_SMP */
805 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
806 {
807 }
808
809 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
810 {
811 return tg->shares;
812 }
813
814 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
815 {
816 }
817 # endif /* CONFIG_SMP */
818 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
819 unsigned long weight)
820 {
821 if (se->on_rq) {
822 /* commit outstanding execution time */
823 if (cfs_rq->curr == se)
824 update_curr(cfs_rq);
825 account_entity_dequeue(cfs_rq, se);
826 }
827
828 update_load_set(&se->load, weight);
829
830 if (se->on_rq)
831 account_entity_enqueue(cfs_rq, se);
832 }
833
834 static void update_cfs_shares(struct cfs_rq *cfs_rq)
835 {
836 struct task_group *tg;
837 struct sched_entity *se;
838 long shares;
839
840 tg = cfs_rq->tg;
841 se = tg->se[cpu_of(rq_of(cfs_rq))];
842 if (!se || throttled_hierarchy(cfs_rq))
843 return;
844 #ifndef CONFIG_SMP
845 if (likely(se->load.weight == tg->shares))
846 return;
847 #endif
848 shares = calc_cfs_shares(cfs_rq, tg);
849
850 reweight_entity(cfs_rq_of(se), se, shares);
851 }
852 #else /* CONFIG_FAIR_GROUP_SCHED */
853 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
854 {
855 }
856
857 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
858 {
859 }
860
861 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
862 {
863 }
864 #endif /* CONFIG_FAIR_GROUP_SCHED */
865
866 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
867 {
868 #ifdef CONFIG_SCHEDSTATS
869 struct task_struct *tsk = NULL;
870
871 if (entity_is_task(se))
872 tsk = task_of(se);
873
874 if (se->statistics.sleep_start) {
875 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
876
877 if ((s64)delta < 0)
878 delta = 0;
879
880 if (unlikely(delta > se->statistics.sleep_max))
881 se->statistics.sleep_max = delta;
882
883 se->statistics.sleep_start = 0;
884 se->statistics.sum_sleep_runtime += delta;
885
886 if (tsk) {
887 account_scheduler_latency(tsk, delta >> 10, 1);
888 trace_sched_stat_sleep(tsk, delta);
889 }
890 }
891 if (se->statistics.block_start) {
892 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
893
894 if ((s64)delta < 0)
895 delta = 0;
896
897 if (unlikely(delta > se->statistics.block_max))
898 se->statistics.block_max = delta;
899
900 se->statistics.block_start = 0;
901 se->statistics.sum_sleep_runtime += delta;
902
903 if (tsk) {
904 if (tsk->in_iowait) {
905 se->statistics.iowait_sum += delta;
906 se->statistics.iowait_count++;
907 trace_sched_stat_iowait(tsk, delta);
908 }
909
910 /*
911 * Blocking time is in units of nanosecs, so shift by
912 * 20 to get a milliseconds-range estimation of the
913 * amount of time that the task spent sleeping:
914 */
915 if (unlikely(prof_on == SLEEP_PROFILING)) {
916 profile_hits(SLEEP_PROFILING,
917 (void *)get_wchan(tsk),
918 delta >> 20);
919 }
920 account_scheduler_latency(tsk, delta >> 10, 0);
921 }
922 }
923 #endif
924 }
925
926 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
927 {
928 #ifdef CONFIG_SCHED_DEBUG
929 s64 d = se->vruntime - cfs_rq->min_vruntime;
930
931 if (d < 0)
932 d = -d;
933
934 if (d > 3*sysctl_sched_latency)
935 schedstat_inc(cfs_rq, nr_spread_over);
936 #endif
937 }
938
939 static void
940 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
941 {
942 u64 vruntime = cfs_rq->min_vruntime;
943
944 /*
945 * The 'current' period is already promised to the current tasks,
946 * however the extra weight of the new task will slow them down a
947 * little, place the new task so that it fits in the slot that
948 * stays open at the end.
949 */
950 if (initial && sched_feat(START_DEBIT))
951 vruntime += sched_vslice(cfs_rq, se);
952
953 /* sleeps up to a single latency don't count. */
954 if (!initial) {
955 unsigned long thresh = sysctl_sched_latency;
956
957 /*
958 * Halve their sleep time's effect, to allow
959 * for a gentler effect of sleepers:
960 */
961 if (sched_feat(GENTLE_FAIR_SLEEPERS))
962 thresh >>= 1;
963
964 vruntime -= thresh;
965 }
966
967 /* ensure we never gain time by being placed backwards. */
968 vruntime = max_vruntime(se->vruntime, vruntime);
969
970 se->vruntime = vruntime;
971 }
972
973 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
974
975 static void
976 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
977 {
978 /*
979 * Update the normalized vruntime before updating min_vruntime
980 * through callig update_curr().
981 */
982 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
983 se->vruntime += cfs_rq->min_vruntime;
984
985 /*
986 * Update run-time statistics of the 'current'.
987 */
988 update_curr(cfs_rq);
989 update_cfs_load(cfs_rq, 0);
990 account_entity_enqueue(cfs_rq, se);
991 update_cfs_shares(cfs_rq);
992
993 if (flags & ENQUEUE_WAKEUP) {
994 place_entity(cfs_rq, se, 0);
995 enqueue_sleeper(cfs_rq, se);
996 }
997
998 update_stats_enqueue(cfs_rq, se);
999 check_spread(cfs_rq, se);
1000 if (se != cfs_rq->curr)
1001 __enqueue_entity(cfs_rq, se);
1002 se->on_rq = 1;
1003
1004 if (cfs_rq->nr_running == 1) {
1005 list_add_leaf_cfs_rq(cfs_rq);
1006 check_enqueue_throttle(cfs_rq);
1007 }
1008 }
1009
1010 static void __clear_buddies_last(struct sched_entity *se)
1011 {
1012 for_each_sched_entity(se) {
1013 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1014 if (cfs_rq->last == se)
1015 cfs_rq->last = NULL;
1016 else
1017 break;
1018 }
1019 }
1020
1021 static void __clear_buddies_next(struct sched_entity *se)
1022 {
1023 for_each_sched_entity(se) {
1024 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1025 if (cfs_rq->next == se)
1026 cfs_rq->next = NULL;
1027 else
1028 break;
1029 }
1030 }
1031
1032 static void __clear_buddies_skip(struct sched_entity *se)
1033 {
1034 for_each_sched_entity(se) {
1035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1036 if (cfs_rq->skip == se)
1037 cfs_rq->skip = NULL;
1038 else
1039 break;
1040 }
1041 }
1042
1043 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1044 {
1045 if (cfs_rq->last == se)
1046 __clear_buddies_last(se);
1047
1048 if (cfs_rq->next == se)
1049 __clear_buddies_next(se);
1050
1051 if (cfs_rq->skip == se)
1052 __clear_buddies_skip(se);
1053 }
1054
1055 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1056
1057 static void
1058 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1059 {
1060 /*
1061 * Update run-time statistics of the 'current'.
1062 */
1063 update_curr(cfs_rq);
1064
1065 update_stats_dequeue(cfs_rq, se);
1066 if (flags & DEQUEUE_SLEEP) {
1067 #ifdef CONFIG_SCHEDSTATS
1068 if (entity_is_task(se)) {
1069 struct task_struct *tsk = task_of(se);
1070
1071 if (tsk->state & TASK_INTERRUPTIBLE)
1072 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1073 if (tsk->state & TASK_UNINTERRUPTIBLE)
1074 se->statistics.block_start = rq_of(cfs_rq)->clock;
1075 }
1076 #endif
1077 }
1078
1079 clear_buddies(cfs_rq, se);
1080
1081 if (se != cfs_rq->curr)
1082 __dequeue_entity(cfs_rq, se);
1083 se->on_rq = 0;
1084 update_cfs_load(cfs_rq, 0);
1085 account_entity_dequeue(cfs_rq, se);
1086
1087 /*
1088 * Normalize the entity after updating the min_vruntime because the
1089 * update can refer to the ->curr item and we need to reflect this
1090 * movement in our normalized position.
1091 */
1092 if (!(flags & DEQUEUE_SLEEP))
1093 se->vruntime -= cfs_rq->min_vruntime;
1094
1095 /* return excess runtime on last dequeue */
1096 return_cfs_rq_runtime(cfs_rq);
1097
1098 update_min_vruntime(cfs_rq);
1099 update_cfs_shares(cfs_rq);
1100 }
1101
1102 /*
1103 * Preempt the current task with a newly woken task if needed:
1104 */
1105 static void
1106 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1107 {
1108 unsigned long ideal_runtime, delta_exec;
1109 struct sched_entity *se;
1110 s64 delta;
1111
1112 ideal_runtime = sched_slice(cfs_rq, curr);
1113 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1114 if (delta_exec > ideal_runtime) {
1115 resched_task(rq_of(cfs_rq)->curr);
1116 /*
1117 * The current task ran long enough, ensure it doesn't get
1118 * re-elected due to buddy favours.
1119 */
1120 clear_buddies(cfs_rq, curr);
1121 return;
1122 }
1123
1124 /*
1125 * Ensure that a task that missed wakeup preemption by a
1126 * narrow margin doesn't have to wait for a full slice.
1127 * This also mitigates buddy induced latencies under load.
1128 */
1129 if (delta_exec < sysctl_sched_min_granularity)
1130 return;
1131
1132 se = __pick_first_entity(cfs_rq);
1133 delta = curr->vruntime - se->vruntime;
1134
1135 if (delta < 0)
1136 return;
1137
1138 if (delta > ideal_runtime)
1139 resched_task(rq_of(cfs_rq)->curr);
1140 }
1141
1142 static void
1143 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1144 {
1145 /* 'current' is not kept within the tree. */
1146 if (se->on_rq) {
1147 /*
1148 * Any task has to be enqueued before it get to execute on
1149 * a CPU. So account for the time it spent waiting on the
1150 * runqueue.
1151 */
1152 update_stats_wait_end(cfs_rq, se);
1153 __dequeue_entity(cfs_rq, se);
1154 }
1155
1156 update_stats_curr_start(cfs_rq, se);
1157 cfs_rq->curr = se;
1158 #ifdef CONFIG_SCHEDSTATS
1159 /*
1160 * Track our maximum slice length, if the CPU's load is at
1161 * least twice that of our own weight (i.e. dont track it
1162 * when there are only lesser-weight tasks around):
1163 */
1164 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1165 se->statistics.slice_max = max(se->statistics.slice_max,
1166 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1167 }
1168 #endif
1169 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1170 }
1171
1172 static int
1173 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1174
1175 /*
1176 * Pick the next process, keeping these things in mind, in this order:
1177 * 1) keep things fair between processes/task groups
1178 * 2) pick the "next" process, since someone really wants that to run
1179 * 3) pick the "last" process, for cache locality
1180 * 4) do not run the "skip" process, if something else is available
1181 */
1182 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1183 {
1184 struct sched_entity *se = __pick_first_entity(cfs_rq);
1185 struct sched_entity *left = se;
1186
1187 /*
1188 * Avoid running the skip buddy, if running something else can
1189 * be done without getting too unfair.
1190 */
1191 if (cfs_rq->skip == se) {
1192 struct sched_entity *second = __pick_next_entity(se);
1193 if (second && wakeup_preempt_entity(second, left) < 1)
1194 se = second;
1195 }
1196
1197 /*
1198 * Prefer last buddy, try to return the CPU to a preempted task.
1199 */
1200 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1201 se = cfs_rq->last;
1202
1203 /*
1204 * Someone really wants this to run. If it's not unfair, run it.
1205 */
1206 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1207 se = cfs_rq->next;
1208
1209 clear_buddies(cfs_rq, se);
1210
1211 return se;
1212 }
1213
1214 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1215
1216 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1217 {
1218 /*
1219 * If still on the runqueue then deactivate_task()
1220 * was not called and update_curr() has to be done:
1221 */
1222 if (prev->on_rq)
1223 update_curr(cfs_rq);
1224
1225 /* throttle cfs_rqs exceeding runtime */
1226 check_cfs_rq_runtime(cfs_rq);
1227
1228 check_spread(cfs_rq, prev);
1229 if (prev->on_rq) {
1230 update_stats_wait_start(cfs_rq, prev);
1231 /* Put 'current' back into the tree. */
1232 __enqueue_entity(cfs_rq, prev);
1233 }
1234 cfs_rq->curr = NULL;
1235 }
1236
1237 static void
1238 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1239 {
1240 /*
1241 * Update run-time statistics of the 'current'.
1242 */
1243 update_curr(cfs_rq);
1244
1245 /*
1246 * Update share accounting for long-running entities.
1247 */
1248 update_entity_shares_tick(cfs_rq);
1249
1250 #ifdef CONFIG_SCHED_HRTICK
1251 /*
1252 * queued ticks are scheduled to match the slice, so don't bother
1253 * validating it and just reschedule.
1254 */
1255 if (queued) {
1256 resched_task(rq_of(cfs_rq)->curr);
1257 return;
1258 }
1259 /*
1260 * don't let the period tick interfere with the hrtick preemption
1261 */
1262 if (!sched_feat(DOUBLE_TICK) &&
1263 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1264 return;
1265 #endif
1266
1267 if (cfs_rq->nr_running > 1)
1268 check_preempt_tick(cfs_rq, curr);
1269 }
1270
1271
1272 /**************************************************
1273 * CFS bandwidth control machinery
1274 */
1275
1276 #ifdef CONFIG_CFS_BANDWIDTH
1277 /*
1278 * default period for cfs group bandwidth.
1279 * default: 0.1s, units: nanoseconds
1280 */
1281 static inline u64 default_cfs_period(void)
1282 {
1283 return 100000000ULL;
1284 }
1285
1286 static inline u64 sched_cfs_bandwidth_slice(void)
1287 {
1288 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1289 }
1290
1291 /*
1292 * Replenish runtime according to assigned quota and update expiration time.
1293 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1294 * additional synchronization around rq->lock.
1295 *
1296 * requires cfs_b->lock
1297 */
1298 static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1299 {
1300 u64 now;
1301
1302 if (cfs_b->quota == RUNTIME_INF)
1303 return;
1304
1305 now = sched_clock_cpu(smp_processor_id());
1306 cfs_b->runtime = cfs_b->quota;
1307 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1308 }
1309
1310 /* returns 0 on failure to allocate runtime */
1311 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1312 {
1313 struct task_group *tg = cfs_rq->tg;
1314 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1315 u64 amount = 0, min_amount, expires;
1316
1317 /* note: this is a positive sum as runtime_remaining <= 0 */
1318 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1319
1320 raw_spin_lock(&cfs_b->lock);
1321 if (cfs_b->quota == RUNTIME_INF)
1322 amount = min_amount;
1323 else {
1324 /*
1325 * If the bandwidth pool has become inactive, then at least one
1326 * period must have elapsed since the last consumption.
1327 * Refresh the global state and ensure bandwidth timer becomes
1328 * active.
1329 */
1330 if (!cfs_b->timer_active) {
1331 __refill_cfs_bandwidth_runtime(cfs_b);
1332 __start_cfs_bandwidth(cfs_b);
1333 }
1334
1335 if (cfs_b->runtime > 0) {
1336 amount = min(cfs_b->runtime, min_amount);
1337 cfs_b->runtime -= amount;
1338 cfs_b->idle = 0;
1339 }
1340 }
1341 expires = cfs_b->runtime_expires;
1342 raw_spin_unlock(&cfs_b->lock);
1343
1344 cfs_rq->runtime_remaining += amount;
1345 /*
1346 * we may have advanced our local expiration to account for allowed
1347 * spread between our sched_clock and the one on which runtime was
1348 * issued.
1349 */
1350 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1351 cfs_rq->runtime_expires = expires;
1352
1353 return cfs_rq->runtime_remaining > 0;
1354 }
1355
1356 /*
1357 * Note: This depends on the synchronization provided by sched_clock and the
1358 * fact that rq->clock snapshots this value.
1359 */
1360 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1361 {
1362 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1363 struct rq *rq = rq_of(cfs_rq);
1364
1365 /* if the deadline is ahead of our clock, nothing to do */
1366 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1367 return;
1368
1369 if (cfs_rq->runtime_remaining < 0)
1370 return;
1371
1372 /*
1373 * If the local deadline has passed we have to consider the
1374 * possibility that our sched_clock is 'fast' and the global deadline
1375 * has not truly expired.
1376 *
1377 * Fortunately we can check determine whether this the case by checking
1378 * whether the global deadline has advanced.
1379 */
1380
1381 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1382 /* extend local deadline, drift is bounded above by 2 ticks */
1383 cfs_rq->runtime_expires += TICK_NSEC;
1384 } else {
1385 /* global deadline is ahead, expiration has passed */
1386 cfs_rq->runtime_remaining = 0;
1387 }
1388 }
1389
1390 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1391 unsigned long delta_exec)
1392 {
1393 /* dock delta_exec before expiring quota (as it could span periods) */
1394 cfs_rq->runtime_remaining -= delta_exec;
1395 expire_cfs_rq_runtime(cfs_rq);
1396
1397 if (likely(cfs_rq->runtime_remaining > 0))
1398 return;
1399
1400 /*
1401 * if we're unable to extend our runtime we resched so that the active
1402 * hierarchy can be throttled
1403 */
1404 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1405 resched_task(rq_of(cfs_rq)->curr);
1406 }
1407
1408 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1409 unsigned long delta_exec)
1410 {
1411 if (!cfs_rq->runtime_enabled)
1412 return;
1413
1414 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1415 }
1416
1417 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1418 {
1419 return cfs_rq->throttled;
1420 }
1421
1422 /* check whether cfs_rq, or any parent, is throttled */
1423 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1424 {
1425 return cfs_rq->throttle_count;
1426 }
1427
1428 /*
1429 * Ensure that neither of the group entities corresponding to src_cpu or
1430 * dest_cpu are members of a throttled hierarchy when performing group
1431 * load-balance operations.
1432 */
1433 static inline int throttled_lb_pair(struct task_group *tg,
1434 int src_cpu, int dest_cpu)
1435 {
1436 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1437
1438 src_cfs_rq = tg->cfs_rq[src_cpu];
1439 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1440
1441 return throttled_hierarchy(src_cfs_rq) ||
1442 throttled_hierarchy(dest_cfs_rq);
1443 }
1444
1445 /* updated child weight may affect parent so we have to do this bottom up */
1446 static int tg_unthrottle_up(struct task_group *tg, void *data)
1447 {
1448 struct rq *rq = data;
1449 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1450
1451 cfs_rq->throttle_count--;
1452 #ifdef CONFIG_SMP
1453 if (!cfs_rq->throttle_count) {
1454 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1455
1456 /* leaving throttled state, advance shares averaging windows */
1457 cfs_rq->load_stamp += delta;
1458 cfs_rq->load_last += delta;
1459
1460 /* update entity weight now that we are on_rq again */
1461 update_cfs_shares(cfs_rq);
1462 }
1463 #endif
1464
1465 return 0;
1466 }
1467
1468 static int tg_throttle_down(struct task_group *tg, void *data)
1469 {
1470 struct rq *rq = data;
1471 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1472
1473 /* group is entering throttled state, record last load */
1474 if (!cfs_rq->throttle_count)
1475 update_cfs_load(cfs_rq, 0);
1476 cfs_rq->throttle_count++;
1477
1478 return 0;
1479 }
1480
1481 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1482 {
1483 struct rq *rq = rq_of(cfs_rq);
1484 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1485 struct sched_entity *se;
1486 long task_delta, dequeue = 1;
1487
1488 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1489
1490 /* account load preceding throttle */
1491 rcu_read_lock();
1492 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1493 rcu_read_unlock();
1494
1495 task_delta = cfs_rq->h_nr_running;
1496 for_each_sched_entity(se) {
1497 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1498 /* throttled entity or throttle-on-deactivate */
1499 if (!se->on_rq)
1500 break;
1501
1502 if (dequeue)
1503 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1504 qcfs_rq->h_nr_running -= task_delta;
1505
1506 if (qcfs_rq->load.weight)
1507 dequeue = 0;
1508 }
1509
1510 if (!se)
1511 rq->nr_running -= task_delta;
1512
1513 cfs_rq->throttled = 1;
1514 cfs_rq->throttled_timestamp = rq->clock;
1515 raw_spin_lock(&cfs_b->lock);
1516 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1517 raw_spin_unlock(&cfs_b->lock);
1518 }
1519
1520 static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1521 {
1522 struct rq *rq = rq_of(cfs_rq);
1523 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1524 struct sched_entity *se;
1525 int enqueue = 1;
1526 long task_delta;
1527
1528 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1529
1530 cfs_rq->throttled = 0;
1531 raw_spin_lock(&cfs_b->lock);
1532 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1533 list_del_rcu(&cfs_rq->throttled_list);
1534 raw_spin_unlock(&cfs_b->lock);
1535 cfs_rq->throttled_timestamp = 0;
1536
1537 update_rq_clock(rq);
1538 /* update hierarchical throttle state */
1539 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1540
1541 if (!cfs_rq->load.weight)
1542 return;
1543
1544 task_delta = cfs_rq->h_nr_running;
1545 for_each_sched_entity(se) {
1546 if (se->on_rq)
1547 enqueue = 0;
1548
1549 cfs_rq = cfs_rq_of(se);
1550 if (enqueue)
1551 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1552 cfs_rq->h_nr_running += task_delta;
1553
1554 if (cfs_rq_throttled(cfs_rq))
1555 break;
1556 }
1557
1558 if (!se)
1559 rq->nr_running += task_delta;
1560
1561 /* determine whether we need to wake up potentially idle cpu */
1562 if (rq->curr == rq->idle && rq->cfs.nr_running)
1563 resched_task(rq->curr);
1564 }
1565
1566 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1567 u64 remaining, u64 expires)
1568 {
1569 struct cfs_rq *cfs_rq;
1570 u64 runtime = remaining;
1571
1572 rcu_read_lock();
1573 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1574 throttled_list) {
1575 struct rq *rq = rq_of(cfs_rq);
1576
1577 raw_spin_lock(&rq->lock);
1578 if (!cfs_rq_throttled(cfs_rq))
1579 goto next;
1580
1581 runtime = -cfs_rq->runtime_remaining + 1;
1582 if (runtime > remaining)
1583 runtime = remaining;
1584 remaining -= runtime;
1585
1586 cfs_rq->runtime_remaining += runtime;
1587 cfs_rq->runtime_expires = expires;
1588
1589 /* we check whether we're throttled above */
1590 if (cfs_rq->runtime_remaining > 0)
1591 unthrottle_cfs_rq(cfs_rq);
1592
1593 next:
1594 raw_spin_unlock(&rq->lock);
1595
1596 if (!remaining)
1597 break;
1598 }
1599 rcu_read_unlock();
1600
1601 return remaining;
1602 }
1603
1604 /*
1605 * Responsible for refilling a task_group's bandwidth and unthrottling its
1606 * cfs_rqs as appropriate. If there has been no activity within the last
1607 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1608 * used to track this state.
1609 */
1610 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1611 {
1612 u64 runtime, runtime_expires;
1613 int idle = 1, throttled;
1614
1615 raw_spin_lock(&cfs_b->lock);
1616 /* no need to continue the timer with no bandwidth constraint */
1617 if (cfs_b->quota == RUNTIME_INF)
1618 goto out_unlock;
1619
1620 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1621 /* idle depends on !throttled (for the case of a large deficit) */
1622 idle = cfs_b->idle && !throttled;
1623 cfs_b->nr_periods += overrun;
1624
1625 /* if we're going inactive then everything else can be deferred */
1626 if (idle)
1627 goto out_unlock;
1628
1629 __refill_cfs_bandwidth_runtime(cfs_b);
1630
1631 if (!throttled) {
1632 /* mark as potentially idle for the upcoming period */
1633 cfs_b->idle = 1;
1634 goto out_unlock;
1635 }
1636
1637 /* account preceding periods in which throttling occurred */
1638 cfs_b->nr_throttled += overrun;
1639
1640 /*
1641 * There are throttled entities so we must first use the new bandwidth
1642 * to unthrottle them before making it generally available. This
1643 * ensures that all existing debts will be paid before a new cfs_rq is
1644 * allowed to run.
1645 */
1646 runtime = cfs_b->runtime;
1647 runtime_expires = cfs_b->runtime_expires;
1648 cfs_b->runtime = 0;
1649
1650 /*
1651 * This check is repeated as we are holding onto the new bandwidth
1652 * while we unthrottle. This can potentially race with an unthrottled
1653 * group trying to acquire new bandwidth from the global pool.
1654 */
1655 while (throttled && runtime > 0) {
1656 raw_spin_unlock(&cfs_b->lock);
1657 /* we can't nest cfs_b->lock while distributing bandwidth */
1658 runtime = distribute_cfs_runtime(cfs_b, runtime,
1659 runtime_expires);
1660 raw_spin_lock(&cfs_b->lock);
1661
1662 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1663 }
1664
1665 /* return (any) remaining runtime */
1666 cfs_b->runtime = runtime;
1667 /*
1668 * While we are ensured activity in the period following an
1669 * unthrottle, this also covers the case in which the new bandwidth is
1670 * insufficient to cover the existing bandwidth deficit. (Forcing the
1671 * timer to remain active while there are any throttled entities.)
1672 */
1673 cfs_b->idle = 0;
1674 out_unlock:
1675 if (idle)
1676 cfs_b->timer_active = 0;
1677 raw_spin_unlock(&cfs_b->lock);
1678
1679 return idle;
1680 }
1681
1682 /* a cfs_rq won't donate quota below this amount */
1683 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1684 /* minimum remaining period time to redistribute slack quota */
1685 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1686 /* how long we wait to gather additional slack before distributing */
1687 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1688
1689 /* are we near the end of the current quota period? */
1690 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1691 {
1692 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1693 u64 remaining;
1694
1695 /* if the call-back is running a quota refresh is already occurring */
1696 if (hrtimer_callback_running(refresh_timer))
1697 return 1;
1698
1699 /* is a quota refresh about to occur? */
1700 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1701 if (remaining < min_expire)
1702 return 1;
1703
1704 return 0;
1705 }
1706
1707 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1708 {
1709 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1710
1711 /* if there's a quota refresh soon don't bother with slack */
1712 if (runtime_refresh_within(cfs_b, min_left))
1713 return;
1714
1715 start_bandwidth_timer(&cfs_b->slack_timer,
1716 ns_to_ktime(cfs_bandwidth_slack_period));
1717 }
1718
1719 /* we know any runtime found here is valid as update_curr() precedes return */
1720 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1721 {
1722 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1723 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1724
1725 if (slack_runtime <= 0)
1726 return;
1727
1728 raw_spin_lock(&cfs_b->lock);
1729 if (cfs_b->quota != RUNTIME_INF &&
1730 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1731 cfs_b->runtime += slack_runtime;
1732
1733 /* we are under rq->lock, defer unthrottling using a timer */
1734 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1735 !list_empty(&cfs_b->throttled_cfs_rq))
1736 start_cfs_slack_bandwidth(cfs_b);
1737 }
1738 raw_spin_unlock(&cfs_b->lock);
1739
1740 /* even if it's not valid for return we don't want to try again */
1741 cfs_rq->runtime_remaining -= slack_runtime;
1742 }
1743
1744 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1745 {
1746 if (!cfs_rq->runtime_enabled || !cfs_rq->nr_running)
1747 return;
1748
1749 __return_cfs_rq_runtime(cfs_rq);
1750 }
1751
1752 /*
1753 * This is done with a timer (instead of inline with bandwidth return) since
1754 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1755 */
1756 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1757 {
1758 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1759 u64 expires;
1760
1761 /* confirm we're still not at a refresh boundary */
1762 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1763 return;
1764
1765 raw_spin_lock(&cfs_b->lock);
1766 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1767 runtime = cfs_b->runtime;
1768 cfs_b->runtime = 0;
1769 }
1770 expires = cfs_b->runtime_expires;
1771 raw_spin_unlock(&cfs_b->lock);
1772
1773 if (!runtime)
1774 return;
1775
1776 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1777
1778 raw_spin_lock(&cfs_b->lock);
1779 if (expires == cfs_b->runtime_expires)
1780 cfs_b->runtime = runtime;
1781 raw_spin_unlock(&cfs_b->lock);
1782 }
1783
1784 /*
1785 * When a group wakes up we want to make sure that its quota is not already
1786 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1787 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1788 */
1789 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1790 {
1791 /* an active group must be handled by the update_curr()->put() path */
1792 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1793 return;
1794
1795 /* ensure the group is not already throttled */
1796 if (cfs_rq_throttled(cfs_rq))
1797 return;
1798
1799 /* update runtime allocation */
1800 account_cfs_rq_runtime(cfs_rq, 0);
1801 if (cfs_rq->runtime_remaining <= 0)
1802 throttle_cfs_rq(cfs_rq);
1803 }
1804
1805 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1806 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1807 {
1808 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1809 return;
1810
1811 /*
1812 * it's possible for a throttled entity to be forced into a running
1813 * state (e.g. set_curr_task), in this case we're finished.
1814 */
1815 if (cfs_rq_throttled(cfs_rq))
1816 return;
1817
1818 throttle_cfs_rq(cfs_rq);
1819 }
1820 #else
1821 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1822 unsigned long delta_exec) {}
1823 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
1824 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
1825 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
1826
1827 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1828 {
1829 return 0;
1830 }
1831
1832 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1833 {
1834 return 0;
1835 }
1836
1837 static inline int throttled_lb_pair(struct task_group *tg,
1838 int src_cpu, int dest_cpu)
1839 {
1840 return 0;
1841 }
1842 #endif
1843
1844 /**************************************************
1845 * CFS operations on tasks:
1846 */
1847
1848 #ifdef CONFIG_SCHED_HRTICK
1849 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1850 {
1851 struct sched_entity *se = &p->se;
1852 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1853
1854 WARN_ON(task_rq(p) != rq);
1855
1856 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1857 u64 slice = sched_slice(cfs_rq, se);
1858 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1859 s64 delta = slice - ran;
1860
1861 if (delta < 0) {
1862 if (rq->curr == p)
1863 resched_task(p);
1864 return;
1865 }
1866
1867 /*
1868 * Don't schedule slices shorter than 10000ns, that just
1869 * doesn't make sense. Rely on vruntime for fairness.
1870 */
1871 if (rq->curr != p)
1872 delta = max_t(s64, 10000LL, delta);
1873
1874 hrtick_start(rq, delta);
1875 }
1876 }
1877
1878 /*
1879 * called from enqueue/dequeue and updates the hrtick when the
1880 * current task is from our class and nr_running is low enough
1881 * to matter.
1882 */
1883 static void hrtick_update(struct rq *rq)
1884 {
1885 struct task_struct *curr = rq->curr;
1886
1887 if (curr->sched_class != &fair_sched_class)
1888 return;
1889
1890 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1891 hrtick_start_fair(rq, curr);
1892 }
1893 #else /* !CONFIG_SCHED_HRTICK */
1894 static inline void
1895 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1896 {
1897 }
1898
1899 static inline void hrtick_update(struct rq *rq)
1900 {
1901 }
1902 #endif
1903
1904 /*
1905 * The enqueue_task method is called before nr_running is
1906 * increased. Here we update the fair scheduling stats and
1907 * then put the task into the rbtree:
1908 */
1909 static void
1910 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1911 {
1912 struct cfs_rq *cfs_rq;
1913 struct sched_entity *se = &p->se;
1914
1915 for_each_sched_entity(se) {
1916 if (se->on_rq)
1917 break;
1918 cfs_rq = cfs_rq_of(se);
1919 enqueue_entity(cfs_rq, se, flags);
1920
1921 /*
1922 * end evaluation on encountering a throttled cfs_rq
1923 *
1924 * note: in the case of encountering a throttled cfs_rq we will
1925 * post the final h_nr_running increment below.
1926 */
1927 if (cfs_rq_throttled(cfs_rq))
1928 break;
1929 cfs_rq->h_nr_running++;
1930
1931 flags = ENQUEUE_WAKEUP;
1932 }
1933
1934 for_each_sched_entity(se) {
1935 cfs_rq = cfs_rq_of(se);
1936 cfs_rq->h_nr_running++;
1937
1938 if (cfs_rq_throttled(cfs_rq))
1939 break;
1940
1941 update_cfs_load(cfs_rq, 0);
1942 update_cfs_shares(cfs_rq);
1943 }
1944
1945 if (!se)
1946 inc_nr_running(rq);
1947 hrtick_update(rq);
1948 }
1949
1950 static void set_next_buddy(struct sched_entity *se);
1951
1952 /*
1953 * The dequeue_task method is called before nr_running is
1954 * decreased. We remove the task from the rbtree and
1955 * update the fair scheduling stats:
1956 */
1957 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1958 {
1959 struct cfs_rq *cfs_rq;
1960 struct sched_entity *se = &p->se;
1961 int task_sleep = flags & DEQUEUE_SLEEP;
1962
1963 for_each_sched_entity(se) {
1964 cfs_rq = cfs_rq_of(se);
1965 dequeue_entity(cfs_rq, se, flags);
1966
1967 /*
1968 * end evaluation on encountering a throttled cfs_rq
1969 *
1970 * note: in the case of encountering a throttled cfs_rq we will
1971 * post the final h_nr_running decrement below.
1972 */
1973 if (cfs_rq_throttled(cfs_rq))
1974 break;
1975 cfs_rq->h_nr_running--;
1976
1977 /* Don't dequeue parent if it has other entities besides us */
1978 if (cfs_rq->load.weight) {
1979 /*
1980 * Bias pick_next to pick a task from this cfs_rq, as
1981 * p is sleeping when it is within its sched_slice.
1982 */
1983 if (task_sleep && parent_entity(se))
1984 set_next_buddy(parent_entity(se));
1985
1986 /* avoid re-evaluating load for this entity */
1987 se = parent_entity(se);
1988 break;
1989 }
1990 flags |= DEQUEUE_SLEEP;
1991 }
1992
1993 for_each_sched_entity(se) {
1994 cfs_rq = cfs_rq_of(se);
1995 cfs_rq->h_nr_running--;
1996
1997 if (cfs_rq_throttled(cfs_rq))
1998 break;
1999
2000 update_cfs_load(cfs_rq, 0);
2001 update_cfs_shares(cfs_rq);
2002 }
2003
2004 if (!se)
2005 dec_nr_running(rq);
2006 hrtick_update(rq);
2007 }
2008
2009 #ifdef CONFIG_SMP
2010
2011 static void task_waking_fair(struct task_struct *p)
2012 {
2013 struct sched_entity *se = &p->se;
2014 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2015 u64 min_vruntime;
2016
2017 #ifndef CONFIG_64BIT
2018 u64 min_vruntime_copy;
2019
2020 do {
2021 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2022 smp_rmb();
2023 min_vruntime = cfs_rq->min_vruntime;
2024 } while (min_vruntime != min_vruntime_copy);
2025 #else
2026 min_vruntime = cfs_rq->min_vruntime;
2027 #endif
2028
2029 se->vruntime -= min_vruntime;
2030 }
2031
2032 #ifdef CONFIG_FAIR_GROUP_SCHED
2033 /*
2034 * effective_load() calculates the load change as seen from the root_task_group
2035 *
2036 * Adding load to a group doesn't make a group heavier, but can cause movement
2037 * of group shares between cpus. Assuming the shares were perfectly aligned one
2038 * can calculate the shift in shares.
2039 */
2040 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2041 {
2042 struct sched_entity *se = tg->se[cpu];
2043
2044 if (!tg->parent)
2045 return wl;
2046
2047 for_each_sched_entity(se) {
2048 long lw, w;
2049
2050 tg = se->my_q->tg;
2051 w = se->my_q->load.weight;
2052
2053 /* use this cpu's instantaneous contribution */
2054 lw = atomic_read(&tg->load_weight);
2055 lw -= se->my_q->load_contribution;
2056 lw += w + wg;
2057
2058 wl += w;
2059
2060 if (lw > 0 && wl < lw)
2061 wl = (wl * tg->shares) / lw;
2062 else
2063 wl = tg->shares;
2064
2065 /* zero point is MIN_SHARES */
2066 if (wl < MIN_SHARES)
2067 wl = MIN_SHARES;
2068 wl -= se->load.weight;
2069 wg = 0;
2070 }
2071
2072 return wl;
2073 }
2074 #else
2075
2076 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2077 unsigned long wl, unsigned long wg)
2078 {
2079 return wl;
2080 }
2081
2082 #endif
2083
2084 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2085 {
2086 s64 this_load, load;
2087 int idx, this_cpu, prev_cpu;
2088 unsigned long tl_per_task;
2089 struct task_group *tg;
2090 unsigned long weight;
2091 int balanced;
2092
2093 idx = sd->wake_idx;
2094 this_cpu = smp_processor_id();
2095 prev_cpu = task_cpu(p);
2096 load = source_load(prev_cpu, idx);
2097 this_load = target_load(this_cpu, idx);
2098
2099 /*
2100 * If sync wakeup then subtract the (maximum possible)
2101 * effect of the currently running task from the load
2102 * of the current CPU:
2103 */
2104 if (sync) {
2105 tg = task_group(current);
2106 weight = current->se.load.weight;
2107
2108 this_load += effective_load(tg, this_cpu, -weight, -weight);
2109 load += effective_load(tg, prev_cpu, 0, -weight);
2110 }
2111
2112 tg = task_group(p);
2113 weight = p->se.load.weight;
2114
2115 /*
2116 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2117 * due to the sync cause above having dropped this_load to 0, we'll
2118 * always have an imbalance, but there's really nothing you can do
2119 * about that, so that's good too.
2120 *
2121 * Otherwise check if either cpus are near enough in load to allow this
2122 * task to be woken on this_cpu.
2123 */
2124 if (this_load > 0) {
2125 s64 this_eff_load, prev_eff_load;
2126
2127 this_eff_load = 100;
2128 this_eff_load *= power_of(prev_cpu);
2129 this_eff_load *= this_load +
2130 effective_load(tg, this_cpu, weight, weight);
2131
2132 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2133 prev_eff_load *= power_of(this_cpu);
2134 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2135
2136 balanced = this_eff_load <= prev_eff_load;
2137 } else
2138 balanced = true;
2139
2140 /*
2141 * If the currently running task will sleep within
2142 * a reasonable amount of time then attract this newly
2143 * woken task:
2144 */
2145 if (sync && balanced)
2146 return 1;
2147
2148 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2149 tl_per_task = cpu_avg_load_per_task(this_cpu);
2150
2151 if (balanced ||
2152 (this_load <= load &&
2153 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2154 /*
2155 * This domain has SD_WAKE_AFFINE and
2156 * p is cache cold in this domain, and
2157 * there is no bad imbalance.
2158 */
2159 schedstat_inc(sd, ttwu_move_affine);
2160 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2161
2162 return 1;
2163 }
2164 return 0;
2165 }
2166
2167 /*
2168 * find_idlest_group finds and returns the least busy CPU group within the
2169 * domain.
2170 */
2171 static struct sched_group *
2172 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2173 int this_cpu, int load_idx)
2174 {
2175 struct sched_group *idlest = NULL, *group = sd->groups;
2176 unsigned long min_load = ULONG_MAX, this_load = 0;
2177 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2178
2179 do {
2180 unsigned long load, avg_load;
2181 int local_group;
2182 int i;
2183
2184 /* Skip over this group if it has no CPUs allowed */
2185 if (!cpumask_intersects(sched_group_cpus(group),
2186 tsk_cpus_allowed(p)))
2187 continue;
2188
2189 local_group = cpumask_test_cpu(this_cpu,
2190 sched_group_cpus(group));
2191
2192 /* Tally up the load of all CPUs in the group */
2193 avg_load = 0;
2194
2195 for_each_cpu(i, sched_group_cpus(group)) {
2196 /* Bias balancing toward cpus of our domain */
2197 if (local_group)
2198 load = source_load(i, load_idx);
2199 else
2200 load = target_load(i, load_idx);
2201
2202 avg_load += load;
2203 }
2204
2205 /* Adjust by relative CPU power of the group */
2206 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2207
2208 if (local_group) {
2209 this_load = avg_load;
2210 } else if (avg_load < min_load) {
2211 min_load = avg_load;
2212 idlest = group;
2213 }
2214 } while (group = group->next, group != sd->groups);
2215
2216 if (!idlest || 100*this_load < imbalance*min_load)
2217 return NULL;
2218 return idlest;
2219 }
2220
2221 /*
2222 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2223 */
2224 static int
2225 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2226 {
2227 unsigned long load, min_load = ULONG_MAX;
2228 int idlest = -1;
2229 int i;
2230
2231 /* Traverse only the allowed CPUs */
2232 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2233 load = weighted_cpuload(i);
2234
2235 if (load < min_load || (load == min_load && i == this_cpu)) {
2236 min_load = load;
2237 idlest = i;
2238 }
2239 }
2240
2241 return idlest;
2242 }
2243
2244 /*
2245 * Try and locate an idle CPU in the sched_domain.
2246 */
2247 static int select_idle_sibling(struct task_struct *p, int target)
2248 {
2249 int cpu = smp_processor_id();
2250 int prev_cpu = task_cpu(p);
2251 struct sched_domain *sd;
2252 int i;
2253
2254 /*
2255 * If the task is going to be woken-up on this cpu and if it is
2256 * already idle, then it is the right target.
2257 */
2258 if (target == cpu && idle_cpu(cpu))
2259 return cpu;
2260
2261 /*
2262 * If the task is going to be woken-up on the cpu where it previously
2263 * ran and if it is currently idle, then it the right target.
2264 */
2265 if (target == prev_cpu && idle_cpu(prev_cpu))
2266 return prev_cpu;
2267
2268 /*
2269 * Otherwise, iterate the domains and find an elegible idle cpu.
2270 */
2271 rcu_read_lock();
2272 for_each_domain(target, sd) {
2273 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
2274 break;
2275
2276 for_each_cpu_and(i, sched_domain_span(sd), tsk_cpus_allowed(p)) {
2277 if (idle_cpu(i)) {
2278 target = i;
2279 break;
2280 }
2281 }
2282
2283 /*
2284 * Lets stop looking for an idle sibling when we reached
2285 * the domain that spans the current cpu and prev_cpu.
2286 */
2287 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
2288 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
2289 break;
2290 }
2291 rcu_read_unlock();
2292
2293 return target;
2294 }
2295
2296 /*
2297 * sched_balance_self: balance the current task (running on cpu) in domains
2298 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2299 * SD_BALANCE_EXEC.
2300 *
2301 * Balance, ie. select the least loaded group.
2302 *
2303 * Returns the target CPU number, or the same CPU if no balancing is needed.
2304 *
2305 * preempt must be disabled.
2306 */
2307 static int
2308 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2309 {
2310 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2311 int cpu = smp_processor_id();
2312 int prev_cpu = task_cpu(p);
2313 int new_cpu = cpu;
2314 int want_affine = 0;
2315 int want_sd = 1;
2316 int sync = wake_flags & WF_SYNC;
2317
2318 if (sd_flag & SD_BALANCE_WAKE) {
2319 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2320 want_affine = 1;
2321 new_cpu = prev_cpu;
2322 }
2323
2324 rcu_read_lock();
2325 for_each_domain(cpu, tmp) {
2326 if (!(tmp->flags & SD_LOAD_BALANCE))
2327 continue;
2328
2329 /*
2330 * If power savings logic is enabled for a domain, see if we
2331 * are not overloaded, if so, don't balance wider.
2332 */
2333 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2334 unsigned long power = 0;
2335 unsigned long nr_running = 0;
2336 unsigned long capacity;
2337 int i;
2338
2339 for_each_cpu(i, sched_domain_span(tmp)) {
2340 power += power_of(i);
2341 nr_running += cpu_rq(i)->cfs.nr_running;
2342 }
2343
2344 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2345
2346 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2347 nr_running /= 2;
2348
2349 if (nr_running < capacity)
2350 want_sd = 0;
2351 }
2352
2353 /*
2354 * If both cpu and prev_cpu are part of this domain,
2355 * cpu is a valid SD_WAKE_AFFINE target.
2356 */
2357 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2358 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2359 affine_sd = tmp;
2360 want_affine = 0;
2361 }
2362
2363 if (!want_sd && !want_affine)
2364 break;
2365
2366 if (!(tmp->flags & sd_flag))
2367 continue;
2368
2369 if (want_sd)
2370 sd = tmp;
2371 }
2372
2373 if (affine_sd) {
2374 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2375 prev_cpu = cpu;
2376
2377 new_cpu = select_idle_sibling(p, prev_cpu);
2378 goto unlock;
2379 }
2380
2381 while (sd) {
2382 int load_idx = sd->forkexec_idx;
2383 struct sched_group *group;
2384 int weight;
2385
2386 if (!(sd->flags & sd_flag)) {
2387 sd = sd->child;
2388 continue;
2389 }
2390
2391 if (sd_flag & SD_BALANCE_WAKE)
2392 load_idx = sd->wake_idx;
2393
2394 group = find_idlest_group(sd, p, cpu, load_idx);
2395 if (!group) {
2396 sd = sd->child;
2397 continue;
2398 }
2399
2400 new_cpu = find_idlest_cpu(group, p, cpu);
2401 if (new_cpu == -1 || new_cpu == cpu) {
2402 /* Now try balancing at a lower domain level of cpu */
2403 sd = sd->child;
2404 continue;
2405 }
2406
2407 /* Now try balancing at a lower domain level of new_cpu */
2408 cpu = new_cpu;
2409 weight = sd->span_weight;
2410 sd = NULL;
2411 for_each_domain(cpu, tmp) {
2412 if (weight <= tmp->span_weight)
2413 break;
2414 if (tmp->flags & sd_flag)
2415 sd = tmp;
2416 }
2417 /* while loop will break here if sd == NULL */
2418 }
2419 unlock:
2420 rcu_read_unlock();
2421
2422 return new_cpu;
2423 }
2424 #endif /* CONFIG_SMP */
2425
2426 static unsigned long
2427 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2428 {
2429 unsigned long gran = sysctl_sched_wakeup_granularity;
2430
2431 /*
2432 * Since its curr running now, convert the gran from real-time
2433 * to virtual-time in his units.
2434 *
2435 * By using 'se' instead of 'curr' we penalize light tasks, so
2436 * they get preempted easier. That is, if 'se' < 'curr' then
2437 * the resulting gran will be larger, therefore penalizing the
2438 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2439 * be smaller, again penalizing the lighter task.
2440 *
2441 * This is especially important for buddies when the leftmost
2442 * task is higher priority than the buddy.
2443 */
2444 return calc_delta_fair(gran, se);
2445 }
2446
2447 /*
2448 * Should 'se' preempt 'curr'.
2449 *
2450 * |s1
2451 * |s2
2452 * |s3
2453 * g
2454 * |<--->|c
2455 *
2456 * w(c, s1) = -1
2457 * w(c, s2) = 0
2458 * w(c, s3) = 1
2459 *
2460 */
2461 static int
2462 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2463 {
2464 s64 gran, vdiff = curr->vruntime - se->vruntime;
2465
2466 if (vdiff <= 0)
2467 return -1;
2468
2469 gran = wakeup_gran(curr, se);
2470 if (vdiff > gran)
2471 return 1;
2472
2473 return 0;
2474 }
2475
2476 static void set_last_buddy(struct sched_entity *se)
2477 {
2478 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2479 return;
2480
2481 for_each_sched_entity(se)
2482 cfs_rq_of(se)->last = se;
2483 }
2484
2485 static void set_next_buddy(struct sched_entity *se)
2486 {
2487 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2488 return;
2489
2490 for_each_sched_entity(se)
2491 cfs_rq_of(se)->next = se;
2492 }
2493
2494 static void set_skip_buddy(struct sched_entity *se)
2495 {
2496 for_each_sched_entity(se)
2497 cfs_rq_of(se)->skip = se;
2498 }
2499
2500 /*
2501 * Preempt the current task with a newly woken task if needed:
2502 */
2503 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2504 {
2505 struct task_struct *curr = rq->curr;
2506 struct sched_entity *se = &curr->se, *pse = &p->se;
2507 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2508 int scale = cfs_rq->nr_running >= sched_nr_latency;
2509 int next_buddy_marked = 0;
2510
2511 if (unlikely(se == pse))
2512 return;
2513
2514 /*
2515 * This is possible from callers such as pull_task(), in which we
2516 * unconditionally check_prempt_curr() after an enqueue (which may have
2517 * lead to a throttle). This both saves work and prevents false
2518 * next-buddy nomination below.
2519 */
2520 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2521 return;
2522
2523 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2524 set_next_buddy(pse);
2525 next_buddy_marked = 1;
2526 }
2527
2528 /*
2529 * We can come here with TIF_NEED_RESCHED already set from new task
2530 * wake up path.
2531 *
2532 * Note: this also catches the edge-case of curr being in a throttled
2533 * group (e.g. via set_curr_task), since update_curr() (in the
2534 * enqueue of curr) will have resulted in resched being set. This
2535 * prevents us from potentially nominating it as a false LAST_BUDDY
2536 * below.
2537 */
2538 if (test_tsk_need_resched(curr))
2539 return;
2540
2541 /* Idle tasks are by definition preempted by non-idle tasks. */
2542 if (unlikely(curr->policy == SCHED_IDLE) &&
2543 likely(p->policy != SCHED_IDLE))
2544 goto preempt;
2545
2546 /*
2547 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2548 * is driven by the tick):
2549 */
2550 if (unlikely(p->policy != SCHED_NORMAL))
2551 return;
2552
2553 find_matching_se(&se, &pse);
2554 update_curr(cfs_rq_of(se));
2555 BUG_ON(!pse);
2556 if (wakeup_preempt_entity(se, pse) == 1) {
2557 /*
2558 * Bias pick_next to pick the sched entity that is
2559 * triggering this preemption.
2560 */
2561 if (!next_buddy_marked)
2562 set_next_buddy(pse);
2563 goto preempt;
2564 }
2565
2566 return;
2567
2568 preempt:
2569 resched_task(curr);
2570 /*
2571 * Only set the backward buddy when the current task is still
2572 * on the rq. This can happen when a wakeup gets interleaved
2573 * with schedule on the ->pre_schedule() or idle_balance()
2574 * point, either of which can * drop the rq lock.
2575 *
2576 * Also, during early boot the idle thread is in the fair class,
2577 * for obvious reasons its a bad idea to schedule back to it.
2578 */
2579 if (unlikely(!se->on_rq || curr == rq->idle))
2580 return;
2581
2582 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2583 set_last_buddy(se);
2584 }
2585
2586 static struct task_struct *pick_next_task_fair(struct rq *rq)
2587 {
2588 struct task_struct *p;
2589 struct cfs_rq *cfs_rq = &rq->cfs;
2590 struct sched_entity *se;
2591
2592 if (!cfs_rq->nr_running)
2593 return NULL;
2594
2595 do {
2596 se = pick_next_entity(cfs_rq);
2597 set_next_entity(cfs_rq, se);
2598 cfs_rq = group_cfs_rq(se);
2599 } while (cfs_rq);
2600
2601 p = task_of(se);
2602 hrtick_start_fair(rq, p);
2603
2604 return p;
2605 }
2606
2607 /*
2608 * Account for a descheduled task:
2609 */
2610 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
2611 {
2612 struct sched_entity *se = &prev->se;
2613 struct cfs_rq *cfs_rq;
2614
2615 for_each_sched_entity(se) {
2616 cfs_rq = cfs_rq_of(se);
2617 put_prev_entity(cfs_rq, se);
2618 }
2619 }
2620
2621 /*
2622 * sched_yield() is very simple
2623 *
2624 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2625 */
2626 static void yield_task_fair(struct rq *rq)
2627 {
2628 struct task_struct *curr = rq->curr;
2629 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2630 struct sched_entity *se = &curr->se;
2631
2632 /*
2633 * Are we the only task in the tree?
2634 */
2635 if (unlikely(rq->nr_running == 1))
2636 return;
2637
2638 clear_buddies(cfs_rq, se);
2639
2640 if (curr->policy != SCHED_BATCH) {
2641 update_rq_clock(rq);
2642 /*
2643 * Update run-time statistics of the 'current'.
2644 */
2645 update_curr(cfs_rq);
2646 }
2647
2648 set_skip_buddy(se);
2649 }
2650
2651 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2652 {
2653 struct sched_entity *se = &p->se;
2654
2655 /* throttled hierarchies are not runnable */
2656 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
2657 return false;
2658
2659 /* Tell the scheduler that we'd really like pse to run next. */
2660 set_next_buddy(se);
2661
2662 yield_task_fair(rq);
2663
2664 return true;
2665 }
2666
2667 #ifdef CONFIG_SMP
2668 /**************************************************
2669 * Fair scheduling class load-balancing methods:
2670 */
2671
2672 /*
2673 * pull_task - move a task from a remote runqueue to the local runqueue.
2674 * Both runqueues must be locked.
2675 */
2676 static void pull_task(struct rq *src_rq, struct task_struct *p,
2677 struct rq *this_rq, int this_cpu)
2678 {
2679 deactivate_task(src_rq, p, 0);
2680 set_task_cpu(p, this_cpu);
2681 activate_task(this_rq, p, 0);
2682 check_preempt_curr(this_rq, p, 0);
2683 }
2684
2685 /*
2686 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2687 */
2688 static
2689 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2690 struct sched_domain *sd, enum cpu_idle_type idle,
2691 int *all_pinned)
2692 {
2693 int tsk_cache_hot = 0;
2694 /*
2695 * We do not migrate tasks that are:
2696 * 1) running (obviously), or
2697 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2698 * 3) are cache-hot on their current CPU.
2699 */
2700 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
2701 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2702 return 0;
2703 }
2704 *all_pinned = 0;
2705
2706 if (task_running(rq, p)) {
2707 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2708 return 0;
2709 }
2710
2711 /*
2712 * Aggressive migration if:
2713 * 1) task is cache cold, or
2714 * 2) too many balance attempts have failed.
2715 */
2716
2717 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2718 if (!tsk_cache_hot ||
2719 sd->nr_balance_failed > sd->cache_nice_tries) {
2720 #ifdef CONFIG_SCHEDSTATS
2721 if (tsk_cache_hot) {
2722 schedstat_inc(sd, lb_hot_gained[idle]);
2723 schedstat_inc(p, se.statistics.nr_forced_migrations);
2724 }
2725 #endif
2726 return 1;
2727 }
2728
2729 if (tsk_cache_hot) {
2730 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2731 return 0;
2732 }
2733 return 1;
2734 }
2735
2736 /*
2737 * move_one_task tries to move exactly one task from busiest to this_rq, as
2738 * part of active balancing operations within "domain".
2739 * Returns 1 if successful and 0 otherwise.
2740 *
2741 * Called with both runqueues locked.
2742 */
2743 static int
2744 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2745 struct sched_domain *sd, enum cpu_idle_type idle)
2746 {
2747 struct task_struct *p, *n;
2748 struct cfs_rq *cfs_rq;
2749 int pinned = 0;
2750
2751 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2752 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2753 if (throttled_lb_pair(task_group(p),
2754 busiest->cpu, this_cpu))
2755 break;
2756
2757 if (!can_migrate_task(p, busiest, this_cpu,
2758 sd, idle, &pinned))
2759 continue;
2760
2761 pull_task(busiest, p, this_rq, this_cpu);
2762 /*
2763 * Right now, this is only the second place pull_task()
2764 * is called, so we can safely collect pull_task()
2765 * stats here rather than inside pull_task().
2766 */
2767 schedstat_inc(sd, lb_gained[idle]);
2768 return 1;
2769 }
2770 }
2771
2772 return 0;
2773 }
2774
2775 static unsigned long
2776 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2777 unsigned long max_load_move, struct sched_domain *sd,
2778 enum cpu_idle_type idle, int *all_pinned,
2779 struct cfs_rq *busiest_cfs_rq)
2780 {
2781 int loops = 0, pulled = 0;
2782 long rem_load_move = max_load_move;
2783 struct task_struct *p, *n;
2784
2785 if (max_load_move == 0)
2786 goto out;
2787
2788 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2789 if (loops++ > sysctl_sched_nr_migrate)
2790 break;
2791
2792 if ((p->se.load.weight >> 1) > rem_load_move ||
2793 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2794 all_pinned))
2795 continue;
2796
2797 pull_task(busiest, p, this_rq, this_cpu);
2798 pulled++;
2799 rem_load_move -= p->se.load.weight;
2800
2801 #ifdef CONFIG_PREEMPT
2802 /*
2803 * NEWIDLE balancing is a source of latency, so preemptible
2804 * kernels will stop after the first task is pulled to minimize
2805 * the critical section.
2806 */
2807 if (idle == CPU_NEWLY_IDLE)
2808 break;
2809 #endif
2810
2811 /*
2812 * We only want to steal up to the prescribed amount of
2813 * weighted load.
2814 */
2815 if (rem_load_move <= 0)
2816 break;
2817 }
2818 out:
2819 /*
2820 * Right now, this is one of only two places pull_task() is called,
2821 * so we can safely collect pull_task() stats here rather than
2822 * inside pull_task().
2823 */
2824 schedstat_add(sd, lb_gained[idle], pulled);
2825
2826 return max_load_move - rem_load_move;
2827 }
2828
2829 #ifdef CONFIG_FAIR_GROUP_SCHED
2830 /*
2831 * update tg->load_weight by folding this cpu's load_avg
2832 */
2833 static int update_shares_cpu(struct task_group *tg, int cpu)
2834 {
2835 struct cfs_rq *cfs_rq;
2836 unsigned long flags;
2837 struct rq *rq;
2838
2839 if (!tg->se[cpu])
2840 return 0;
2841
2842 rq = cpu_rq(cpu);
2843 cfs_rq = tg->cfs_rq[cpu];
2844
2845 raw_spin_lock_irqsave(&rq->lock, flags);
2846
2847 update_rq_clock(rq);
2848 update_cfs_load(cfs_rq, 1);
2849
2850 /*
2851 * We need to update shares after updating tg->load_weight in
2852 * order to adjust the weight of groups with long running tasks.
2853 */
2854 update_cfs_shares(cfs_rq);
2855
2856 raw_spin_unlock_irqrestore(&rq->lock, flags);
2857
2858 return 0;
2859 }
2860
2861 static void update_shares(int cpu)
2862 {
2863 struct cfs_rq *cfs_rq;
2864 struct rq *rq = cpu_rq(cpu);
2865
2866 rcu_read_lock();
2867 /*
2868 * Iterates the task_group tree in a bottom up fashion, see
2869 * list_add_leaf_cfs_rq() for details.
2870 */
2871 for_each_leaf_cfs_rq(rq, cfs_rq) {
2872 /* throttled entities do not contribute to load */
2873 if (throttled_hierarchy(cfs_rq))
2874 continue;
2875
2876 update_shares_cpu(cfs_rq->tg, cpu);
2877 }
2878 rcu_read_unlock();
2879 }
2880
2881 /*
2882 * Compute the cpu's hierarchical load factor for each task group.
2883 * This needs to be done in a top-down fashion because the load of a child
2884 * group is a fraction of its parents load.
2885 */
2886 static int tg_load_down(struct task_group *tg, void *data)
2887 {
2888 unsigned long load;
2889 long cpu = (long)data;
2890
2891 if (!tg->parent) {
2892 load = cpu_rq(cpu)->load.weight;
2893 } else {
2894 load = tg->parent->cfs_rq[cpu]->h_load;
2895 load *= tg->se[cpu]->load.weight;
2896 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2897 }
2898
2899 tg->cfs_rq[cpu]->h_load = load;
2900
2901 return 0;
2902 }
2903
2904 static void update_h_load(long cpu)
2905 {
2906 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2907 }
2908
2909 static unsigned long
2910 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2911 unsigned long max_load_move,
2912 struct sched_domain *sd, enum cpu_idle_type idle,
2913 int *all_pinned)
2914 {
2915 long rem_load_move = max_load_move;
2916 struct cfs_rq *busiest_cfs_rq;
2917
2918 rcu_read_lock();
2919 update_h_load(cpu_of(busiest));
2920
2921 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
2922 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2923 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2924 u64 rem_load, moved_load;
2925
2926 /*
2927 * empty group or part of a throttled hierarchy
2928 */
2929 if (!busiest_cfs_rq->task_weight ||
2930 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
2931 continue;
2932
2933 rem_load = (u64)rem_load_move * busiest_weight;
2934 rem_load = div_u64(rem_load, busiest_h_load + 1);
2935
2936 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2937 rem_load, sd, idle, all_pinned,
2938 busiest_cfs_rq);
2939
2940 if (!moved_load)
2941 continue;
2942
2943 moved_load *= busiest_h_load;
2944 moved_load = div_u64(moved_load, busiest_weight + 1);
2945
2946 rem_load_move -= moved_load;
2947 if (rem_load_move < 0)
2948 break;
2949 }
2950 rcu_read_unlock();
2951
2952 return max_load_move - rem_load_move;
2953 }
2954 #else
2955 static inline void update_shares(int cpu)
2956 {
2957 }
2958
2959 static unsigned long
2960 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2961 unsigned long max_load_move,
2962 struct sched_domain *sd, enum cpu_idle_type idle,
2963 int *all_pinned)
2964 {
2965 return balance_tasks(this_rq, this_cpu, busiest,
2966 max_load_move, sd, idle, all_pinned,
2967 &busiest->cfs);
2968 }
2969 #endif
2970
2971 /*
2972 * move_tasks tries to move up to max_load_move weighted load from busiest to
2973 * this_rq, as part of a balancing operation within domain "sd".
2974 * Returns 1 if successful and 0 otherwise.
2975 *
2976 * Called with both runqueues locked.
2977 */
2978 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2979 unsigned long max_load_move,
2980 struct sched_domain *sd, enum cpu_idle_type idle,
2981 int *all_pinned)
2982 {
2983 unsigned long total_load_moved = 0, load_moved;
2984
2985 do {
2986 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2987 max_load_move - total_load_moved,
2988 sd, idle, all_pinned);
2989
2990 total_load_moved += load_moved;
2991
2992 #ifdef CONFIG_PREEMPT
2993 /*
2994 * NEWIDLE balancing is a source of latency, so preemptible
2995 * kernels will stop after the first task is pulled to minimize
2996 * the critical section.
2997 */
2998 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2999 break;
3000
3001 if (raw_spin_is_contended(&this_rq->lock) ||
3002 raw_spin_is_contended(&busiest->lock))
3003 break;
3004 #endif
3005 } while (load_moved && max_load_move > total_load_moved);
3006
3007 return total_load_moved > 0;
3008 }
3009
3010 /********** Helpers for find_busiest_group ************************/
3011 /*
3012 * sd_lb_stats - Structure to store the statistics of a sched_domain
3013 * during load balancing.
3014 */
3015 struct sd_lb_stats {
3016 struct sched_group *busiest; /* Busiest group in this sd */
3017 struct sched_group *this; /* Local group in this sd */
3018 unsigned long total_load; /* Total load of all groups in sd */
3019 unsigned long total_pwr; /* Total power of all groups in sd */
3020 unsigned long avg_load; /* Average load across all groups in sd */
3021
3022 /** Statistics of this group */
3023 unsigned long this_load;
3024 unsigned long this_load_per_task;
3025 unsigned long this_nr_running;
3026 unsigned long this_has_capacity;
3027 unsigned int this_idle_cpus;
3028
3029 /* Statistics of the busiest group */
3030 unsigned int busiest_idle_cpus;
3031 unsigned long max_load;
3032 unsigned long busiest_load_per_task;
3033 unsigned long busiest_nr_running;
3034 unsigned long busiest_group_capacity;
3035 unsigned long busiest_has_capacity;
3036 unsigned int busiest_group_weight;
3037
3038 int group_imb; /* Is there imbalance in this sd */
3039 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3040 int power_savings_balance; /* Is powersave balance needed for this sd */
3041 struct sched_group *group_min; /* Least loaded group in sd */
3042 struct sched_group *group_leader; /* Group which relieves group_min */
3043 unsigned long min_load_per_task; /* load_per_task in group_min */
3044 unsigned long leader_nr_running; /* Nr running of group_leader */
3045 unsigned long min_nr_running; /* Nr running of group_min */
3046 #endif
3047 };
3048
3049 /*
3050 * sg_lb_stats - stats of a sched_group required for load_balancing
3051 */
3052 struct sg_lb_stats {
3053 unsigned long avg_load; /*Avg load across the CPUs of the group */
3054 unsigned long group_load; /* Total load over the CPUs of the group */
3055 unsigned long sum_nr_running; /* Nr tasks running in the group */
3056 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3057 unsigned long group_capacity;
3058 unsigned long idle_cpus;
3059 unsigned long group_weight;
3060 int group_imb; /* Is there an imbalance in the group ? */
3061 int group_has_capacity; /* Is there extra capacity in the group? */
3062 };
3063
3064 /**
3065 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3066 * @group: The group whose first cpu is to be returned.
3067 */
3068 static inline unsigned int group_first_cpu(struct sched_group *group)
3069 {
3070 return cpumask_first(sched_group_cpus(group));
3071 }
3072
3073 /**
3074 * get_sd_load_idx - Obtain the load index for a given sched domain.
3075 * @sd: The sched_domain whose load_idx is to be obtained.
3076 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3077 */
3078 static inline int get_sd_load_idx(struct sched_domain *sd,
3079 enum cpu_idle_type idle)
3080 {
3081 int load_idx;
3082
3083 switch (idle) {
3084 case CPU_NOT_IDLE:
3085 load_idx = sd->busy_idx;
3086 break;
3087
3088 case CPU_NEWLY_IDLE:
3089 load_idx = sd->newidle_idx;
3090 break;
3091 default:
3092 load_idx = sd->idle_idx;
3093 break;
3094 }
3095
3096 return load_idx;
3097 }
3098
3099
3100 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3101 /**
3102 * init_sd_power_savings_stats - Initialize power savings statistics for
3103 * the given sched_domain, during load balancing.
3104 *
3105 * @sd: Sched domain whose power-savings statistics are to be initialized.
3106 * @sds: Variable containing the statistics for sd.
3107 * @idle: Idle status of the CPU at which we're performing load-balancing.
3108 */
3109 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3110 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3111 {
3112 /*
3113 * Busy processors will not participate in power savings
3114 * balance.
3115 */
3116 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3117 sds->power_savings_balance = 0;
3118 else {
3119 sds->power_savings_balance = 1;
3120 sds->min_nr_running = ULONG_MAX;
3121 sds->leader_nr_running = 0;
3122 }
3123 }
3124
3125 /**
3126 * update_sd_power_savings_stats - Update the power saving stats for a
3127 * sched_domain while performing load balancing.
3128 *
3129 * @group: sched_group belonging to the sched_domain under consideration.
3130 * @sds: Variable containing the statistics of the sched_domain
3131 * @local_group: Does group contain the CPU for which we're performing
3132 * load balancing ?
3133 * @sgs: Variable containing the statistics of the group.
3134 */
3135 static inline void update_sd_power_savings_stats(struct sched_group *group,
3136 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3137 {
3138
3139 if (!sds->power_savings_balance)
3140 return;
3141
3142 /*
3143 * If the local group is idle or completely loaded
3144 * no need to do power savings balance at this domain
3145 */
3146 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3147 !sds->this_nr_running))
3148 sds->power_savings_balance = 0;
3149
3150 /*
3151 * If a group is already running at full capacity or idle,
3152 * don't include that group in power savings calculations
3153 */
3154 if (!sds->power_savings_balance ||
3155 sgs->sum_nr_running >= sgs->group_capacity ||
3156 !sgs->sum_nr_running)
3157 return;
3158
3159 /*
3160 * Calculate the group which has the least non-idle load.
3161 * This is the group from where we need to pick up the load
3162 * for saving power
3163 */
3164 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3165 (sgs->sum_nr_running == sds->min_nr_running &&
3166 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3167 sds->group_min = group;
3168 sds->min_nr_running = sgs->sum_nr_running;
3169 sds->min_load_per_task = sgs->sum_weighted_load /
3170 sgs->sum_nr_running;
3171 }
3172
3173 /*
3174 * Calculate the group which is almost near its
3175 * capacity but still has some space to pick up some load
3176 * from other group and save more power
3177 */
3178 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3179 return;
3180
3181 if (sgs->sum_nr_running > sds->leader_nr_running ||
3182 (sgs->sum_nr_running == sds->leader_nr_running &&
3183 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3184 sds->group_leader = group;
3185 sds->leader_nr_running = sgs->sum_nr_running;
3186 }
3187 }
3188
3189 /**
3190 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3191 * @sds: Variable containing the statistics of the sched_domain
3192 * under consideration.
3193 * @this_cpu: Cpu at which we're currently performing load-balancing.
3194 * @imbalance: Variable to store the imbalance.
3195 *
3196 * Description:
3197 * Check if we have potential to perform some power-savings balance.
3198 * If yes, set the busiest group to be the least loaded group in the
3199 * sched_domain, so that it's CPUs can be put to idle.
3200 *
3201 * Returns 1 if there is potential to perform power-savings balance.
3202 * Else returns 0.
3203 */
3204 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3205 int this_cpu, unsigned long *imbalance)
3206 {
3207 if (!sds->power_savings_balance)
3208 return 0;
3209
3210 if (sds->this != sds->group_leader ||
3211 sds->group_leader == sds->group_min)
3212 return 0;
3213
3214 *imbalance = sds->min_load_per_task;
3215 sds->busiest = sds->group_min;
3216
3217 return 1;
3218
3219 }
3220 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3221 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3222 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3223 {
3224 return;
3225 }
3226
3227 static inline void update_sd_power_savings_stats(struct sched_group *group,
3228 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3229 {
3230 return;
3231 }
3232
3233 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3234 int this_cpu, unsigned long *imbalance)
3235 {
3236 return 0;
3237 }
3238 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3239
3240
3241 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3242 {
3243 return SCHED_POWER_SCALE;
3244 }
3245
3246 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3247 {
3248 return default_scale_freq_power(sd, cpu);
3249 }
3250
3251 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3252 {
3253 unsigned long weight = sd->span_weight;
3254 unsigned long smt_gain = sd->smt_gain;
3255
3256 smt_gain /= weight;
3257
3258 return smt_gain;
3259 }
3260
3261 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3262 {
3263 return default_scale_smt_power(sd, cpu);
3264 }
3265
3266 unsigned long scale_rt_power(int cpu)
3267 {
3268 struct rq *rq = cpu_rq(cpu);
3269 u64 total, available;
3270
3271 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3272
3273 if (unlikely(total < rq->rt_avg)) {
3274 /* Ensures that power won't end up being negative */
3275 available = 0;
3276 } else {
3277 available = total - rq->rt_avg;
3278 }
3279
3280 if (unlikely((s64)total < SCHED_POWER_SCALE))
3281 total = SCHED_POWER_SCALE;
3282
3283 total >>= SCHED_POWER_SHIFT;
3284
3285 return div_u64(available, total);
3286 }
3287
3288 static void update_cpu_power(struct sched_domain *sd, int cpu)
3289 {
3290 unsigned long weight = sd->span_weight;
3291 unsigned long power = SCHED_POWER_SCALE;
3292 struct sched_group *sdg = sd->groups;
3293
3294 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3295 if (sched_feat(ARCH_POWER))
3296 power *= arch_scale_smt_power(sd, cpu);
3297 else
3298 power *= default_scale_smt_power(sd, cpu);
3299
3300 power >>= SCHED_POWER_SHIFT;
3301 }
3302
3303 sdg->sgp->power_orig = power;
3304
3305 if (sched_feat(ARCH_POWER))
3306 power *= arch_scale_freq_power(sd, cpu);
3307 else
3308 power *= default_scale_freq_power(sd, cpu);
3309
3310 power >>= SCHED_POWER_SHIFT;
3311
3312 power *= scale_rt_power(cpu);
3313 power >>= SCHED_POWER_SHIFT;
3314
3315 if (!power)
3316 power = 1;
3317
3318 cpu_rq(cpu)->cpu_power = power;
3319 sdg->sgp->power = power;
3320 }
3321
3322 static void update_group_power(struct sched_domain *sd, int cpu)
3323 {
3324 struct sched_domain *child = sd->child;
3325 struct sched_group *group, *sdg = sd->groups;
3326 unsigned long power;
3327
3328 if (!child) {
3329 update_cpu_power(sd, cpu);
3330 return;
3331 }
3332
3333 power = 0;
3334
3335 group = child->groups;
3336 do {
3337 power += group->sgp->power;
3338 group = group->next;
3339 } while (group != child->groups);
3340
3341 sdg->sgp->power = power;
3342 }
3343
3344 /*
3345 * Try and fix up capacity for tiny siblings, this is needed when
3346 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3347 * which on its own isn't powerful enough.
3348 *
3349 * See update_sd_pick_busiest() and check_asym_packing().
3350 */
3351 static inline int
3352 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3353 {
3354 /*
3355 * Only siblings can have significantly less than SCHED_POWER_SCALE
3356 */
3357 if (!(sd->flags & SD_SHARE_CPUPOWER))
3358 return 0;
3359
3360 /*
3361 * If ~90% of the cpu_power is still there, we're good.
3362 */
3363 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3364 return 1;
3365
3366 return 0;
3367 }
3368
3369 /**
3370 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3371 * @sd: The sched_domain whose statistics are to be updated.
3372 * @group: sched_group whose statistics are to be updated.
3373 * @this_cpu: Cpu for which load balance is currently performed.
3374 * @idle: Idle status of this_cpu
3375 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3376 * @local_group: Does group contain this_cpu.
3377 * @cpus: Set of cpus considered for load balancing.
3378 * @balance: Should we balance.
3379 * @sgs: variable to hold the statistics for this group.
3380 */
3381 static inline void update_sg_lb_stats(struct sched_domain *sd,
3382 struct sched_group *group, int this_cpu,
3383 enum cpu_idle_type idle, int load_idx,
3384 int local_group, const struct cpumask *cpus,
3385 int *balance, struct sg_lb_stats *sgs)
3386 {
3387 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3388 int i;
3389 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3390 unsigned long avg_load_per_task = 0;
3391
3392 if (local_group)
3393 balance_cpu = group_first_cpu(group);
3394
3395 /* Tally up the load of all CPUs in the group */
3396 max_cpu_load = 0;
3397 min_cpu_load = ~0UL;
3398 max_nr_running = 0;
3399
3400 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3401 struct rq *rq = cpu_rq(i);
3402
3403 /* Bias balancing toward cpus of our domain */
3404 if (local_group) {
3405 if (idle_cpu(i) && !first_idle_cpu) {
3406 first_idle_cpu = 1;
3407 balance_cpu = i;
3408 }
3409
3410 load = target_load(i, load_idx);
3411 } else {
3412 load = source_load(i, load_idx);
3413 if (load > max_cpu_load) {
3414 max_cpu_load = load;
3415 max_nr_running = rq->nr_running;
3416 }
3417 if (min_cpu_load > load)
3418 min_cpu_load = load;
3419 }
3420
3421 sgs->group_load += load;
3422 sgs->sum_nr_running += rq->nr_running;
3423 sgs->sum_weighted_load += weighted_cpuload(i);
3424 if (idle_cpu(i))
3425 sgs->idle_cpus++;
3426 }
3427
3428 /*
3429 * First idle cpu or the first cpu(busiest) in this sched group
3430 * is eligible for doing load balancing at this and above
3431 * domains. In the newly idle case, we will allow all the cpu's
3432 * to do the newly idle load balance.
3433 */
3434 if (idle != CPU_NEWLY_IDLE && local_group) {
3435 if (balance_cpu != this_cpu) {
3436 *balance = 0;
3437 return;
3438 }
3439 update_group_power(sd, this_cpu);
3440 }
3441
3442 /* Adjust by relative CPU power of the group */
3443 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3444
3445 /*
3446 * Consider the group unbalanced when the imbalance is larger
3447 * than the average weight of a task.
3448 *
3449 * APZ: with cgroup the avg task weight can vary wildly and
3450 * might not be a suitable number - should we keep a
3451 * normalized nr_running number somewhere that negates
3452 * the hierarchy?
3453 */
3454 if (sgs->sum_nr_running)
3455 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3456
3457 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3458 sgs->group_imb = 1;
3459
3460 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3461 SCHED_POWER_SCALE);
3462 if (!sgs->group_capacity)
3463 sgs->group_capacity = fix_small_capacity(sd, group);
3464 sgs->group_weight = group->group_weight;
3465
3466 if (sgs->group_capacity > sgs->sum_nr_running)
3467 sgs->group_has_capacity = 1;
3468 }
3469
3470 /**
3471 * update_sd_pick_busiest - return 1 on busiest group
3472 * @sd: sched_domain whose statistics are to be checked
3473 * @sds: sched_domain statistics
3474 * @sg: sched_group candidate to be checked for being the busiest
3475 * @sgs: sched_group statistics
3476 * @this_cpu: the current cpu
3477 *
3478 * Determine if @sg is a busier group than the previously selected
3479 * busiest group.
3480 */
3481 static bool update_sd_pick_busiest(struct sched_domain *sd,
3482 struct sd_lb_stats *sds,
3483 struct sched_group *sg,
3484 struct sg_lb_stats *sgs,
3485 int this_cpu)
3486 {
3487 if (sgs->avg_load <= sds->max_load)
3488 return false;
3489
3490 if (sgs->sum_nr_running > sgs->group_capacity)
3491 return true;
3492
3493 if (sgs->group_imb)
3494 return true;
3495
3496 /*
3497 * ASYM_PACKING needs to move all the work to the lowest
3498 * numbered CPUs in the group, therefore mark all groups
3499 * higher than ourself as busy.
3500 */
3501 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3502 this_cpu < group_first_cpu(sg)) {
3503 if (!sds->busiest)
3504 return true;
3505
3506 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3507 return true;
3508 }
3509
3510 return false;
3511 }
3512
3513 /**
3514 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3515 * @sd: sched_domain whose statistics are to be updated.
3516 * @this_cpu: Cpu for which load balance is currently performed.
3517 * @idle: Idle status of this_cpu
3518 * @cpus: Set of cpus considered for load balancing.
3519 * @balance: Should we balance.
3520 * @sds: variable to hold the statistics for this sched_domain.
3521 */
3522 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3523 enum cpu_idle_type idle, const struct cpumask *cpus,
3524 int *balance, struct sd_lb_stats *sds)
3525 {
3526 struct sched_domain *child = sd->child;
3527 struct sched_group *sg = sd->groups;
3528 struct sg_lb_stats sgs;
3529 int load_idx, prefer_sibling = 0;
3530
3531 if (child && child->flags & SD_PREFER_SIBLING)
3532 prefer_sibling = 1;
3533
3534 init_sd_power_savings_stats(sd, sds, idle);
3535 load_idx = get_sd_load_idx(sd, idle);
3536
3537 do {
3538 int local_group;
3539
3540 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3541 memset(&sgs, 0, sizeof(sgs));
3542 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3543 local_group, cpus, balance, &sgs);
3544
3545 if (local_group && !(*balance))
3546 return;
3547
3548 sds->total_load += sgs.group_load;
3549 sds->total_pwr += sg->sgp->power;
3550
3551 /*
3552 * In case the child domain prefers tasks go to siblings
3553 * first, lower the sg capacity to one so that we'll try
3554 * and move all the excess tasks away. We lower the capacity
3555 * of a group only if the local group has the capacity to fit
3556 * these excess tasks, i.e. nr_running < group_capacity. The
3557 * extra check prevents the case where you always pull from the
3558 * heaviest group when it is already under-utilized (possible
3559 * with a large weight task outweighs the tasks on the system).
3560 */
3561 if (prefer_sibling && !local_group && sds->this_has_capacity)
3562 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3563
3564 if (local_group) {
3565 sds->this_load = sgs.avg_load;
3566 sds->this = sg;
3567 sds->this_nr_running = sgs.sum_nr_running;
3568 sds->this_load_per_task = sgs.sum_weighted_load;
3569 sds->this_has_capacity = sgs.group_has_capacity;
3570 sds->this_idle_cpus = sgs.idle_cpus;
3571 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
3572 sds->max_load = sgs.avg_load;
3573 sds->busiest = sg;
3574 sds->busiest_nr_running = sgs.sum_nr_running;
3575 sds->busiest_idle_cpus = sgs.idle_cpus;
3576 sds->busiest_group_capacity = sgs.group_capacity;
3577 sds->busiest_load_per_task = sgs.sum_weighted_load;
3578 sds->busiest_has_capacity = sgs.group_has_capacity;
3579 sds->busiest_group_weight = sgs.group_weight;
3580 sds->group_imb = sgs.group_imb;
3581 }
3582
3583 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3584 sg = sg->next;
3585 } while (sg != sd->groups);
3586 }
3587
3588 int __weak arch_sd_sibling_asym_packing(void)
3589 {
3590 return 0*SD_ASYM_PACKING;
3591 }
3592
3593 /**
3594 * check_asym_packing - Check to see if the group is packed into the
3595 * sched doman.
3596 *
3597 * This is primarily intended to used at the sibling level. Some
3598 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3599 * case of POWER7, it can move to lower SMT modes only when higher
3600 * threads are idle. When in lower SMT modes, the threads will
3601 * perform better since they share less core resources. Hence when we
3602 * have idle threads, we want them to be the higher ones.
3603 *
3604 * This packing function is run on idle threads. It checks to see if
3605 * the busiest CPU in this domain (core in the P7 case) has a higher
3606 * CPU number than the packing function is being run on. Here we are
3607 * assuming lower CPU number will be equivalent to lower a SMT thread
3608 * number.
3609 *
3610 * Returns 1 when packing is required and a task should be moved to
3611 * this CPU. The amount of the imbalance is returned in *imbalance.
3612 *
3613 * @sd: The sched_domain whose packing is to be checked.
3614 * @sds: Statistics of the sched_domain which is to be packed
3615 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3616 * @imbalance: returns amount of imbalanced due to packing.
3617 */
3618 static int check_asym_packing(struct sched_domain *sd,
3619 struct sd_lb_stats *sds,
3620 int this_cpu, unsigned long *imbalance)
3621 {
3622 int busiest_cpu;
3623
3624 if (!(sd->flags & SD_ASYM_PACKING))
3625 return 0;
3626
3627 if (!sds->busiest)
3628 return 0;
3629
3630 busiest_cpu = group_first_cpu(sds->busiest);
3631 if (this_cpu > busiest_cpu)
3632 return 0;
3633
3634 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
3635 SCHED_POWER_SCALE);
3636 return 1;
3637 }
3638
3639 /**
3640 * fix_small_imbalance - Calculate the minor imbalance that exists
3641 * amongst the groups of a sched_domain, during
3642 * load balancing.
3643 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3644 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3645 * @imbalance: Variable to store the imbalance.
3646 */
3647 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3648 int this_cpu, unsigned long *imbalance)
3649 {
3650 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3651 unsigned int imbn = 2;
3652 unsigned long scaled_busy_load_per_task;
3653
3654 if (sds->this_nr_running) {
3655 sds->this_load_per_task /= sds->this_nr_running;
3656 if (sds->busiest_load_per_task >
3657 sds->this_load_per_task)
3658 imbn = 1;
3659 } else
3660 sds->this_load_per_task =
3661 cpu_avg_load_per_task(this_cpu);
3662
3663 scaled_busy_load_per_task = sds->busiest_load_per_task
3664 * SCHED_POWER_SCALE;
3665 scaled_busy_load_per_task /= sds->busiest->sgp->power;
3666
3667 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3668 (scaled_busy_load_per_task * imbn)) {
3669 *imbalance = sds->busiest_load_per_task;
3670 return;
3671 }
3672
3673 /*
3674 * OK, we don't have enough imbalance to justify moving tasks,
3675 * however we may be able to increase total CPU power used by
3676 * moving them.
3677 */
3678
3679 pwr_now += sds->busiest->sgp->power *
3680 min(sds->busiest_load_per_task, sds->max_load);
3681 pwr_now += sds->this->sgp->power *
3682 min(sds->this_load_per_task, sds->this_load);
3683 pwr_now /= SCHED_POWER_SCALE;
3684
3685 /* Amount of load we'd subtract */
3686 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3687 sds->busiest->sgp->power;
3688 if (sds->max_load > tmp)
3689 pwr_move += sds->busiest->sgp->power *
3690 min(sds->busiest_load_per_task, sds->max_load - tmp);
3691
3692 /* Amount of load we'd add */
3693 if (sds->max_load * sds->busiest->sgp->power <
3694 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3695 tmp = (sds->max_load * sds->busiest->sgp->power) /
3696 sds->this->sgp->power;
3697 else
3698 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3699 sds->this->sgp->power;
3700 pwr_move += sds->this->sgp->power *
3701 min(sds->this_load_per_task, sds->this_load + tmp);
3702 pwr_move /= SCHED_POWER_SCALE;
3703
3704 /* Move if we gain throughput */
3705 if (pwr_move > pwr_now)
3706 *imbalance = sds->busiest_load_per_task;
3707 }
3708
3709 /**
3710 * calculate_imbalance - Calculate the amount of imbalance present within the
3711 * groups of a given sched_domain during load balance.
3712 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3713 * @this_cpu: Cpu for which currently load balance is being performed.
3714 * @imbalance: The variable to store the imbalance.
3715 */
3716 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3717 unsigned long *imbalance)
3718 {
3719 unsigned long max_pull, load_above_capacity = ~0UL;
3720
3721 sds->busiest_load_per_task /= sds->busiest_nr_running;
3722 if (sds->group_imb) {
3723 sds->busiest_load_per_task =
3724 min(sds->busiest_load_per_task, sds->avg_load);
3725 }
3726
3727 /*
3728 * In the presence of smp nice balancing, certain scenarios can have
3729 * max load less than avg load(as we skip the groups at or below
3730 * its cpu_power, while calculating max_load..)
3731 */
3732 if (sds->max_load < sds->avg_load) {
3733 *imbalance = 0;
3734 return fix_small_imbalance(sds, this_cpu, imbalance);
3735 }
3736
3737 if (!sds->group_imb) {
3738 /*
3739 * Don't want to pull so many tasks that a group would go idle.
3740 */
3741 load_above_capacity = (sds->busiest_nr_running -
3742 sds->busiest_group_capacity);
3743
3744 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3745
3746 load_above_capacity /= sds->busiest->sgp->power;
3747 }
3748
3749 /*
3750 * We're trying to get all the cpus to the average_load, so we don't
3751 * want to push ourselves above the average load, nor do we wish to
3752 * reduce the max loaded cpu below the average load. At the same time,
3753 * we also don't want to reduce the group load below the group capacity
3754 * (so that we can implement power-savings policies etc). Thus we look
3755 * for the minimum possible imbalance.
3756 * Be careful of negative numbers as they'll appear as very large values
3757 * with unsigned longs.
3758 */
3759 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3760
3761 /* How much load to actually move to equalise the imbalance */
3762 *imbalance = min(max_pull * sds->busiest->sgp->power,
3763 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
3764 / SCHED_POWER_SCALE;
3765
3766 /*
3767 * if *imbalance is less than the average load per runnable task
3768 * there is no guarantee that any tasks will be moved so we'll have
3769 * a think about bumping its value to force at least one task to be
3770 * moved
3771 */
3772 if (*imbalance < sds->busiest_load_per_task)
3773 return fix_small_imbalance(sds, this_cpu, imbalance);
3774
3775 }
3776
3777 /******* find_busiest_group() helpers end here *********************/
3778
3779 /**
3780 * find_busiest_group - Returns the busiest group within the sched_domain
3781 * if there is an imbalance. If there isn't an imbalance, and
3782 * the user has opted for power-savings, it returns a group whose
3783 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3784 * such a group exists.
3785 *
3786 * Also calculates the amount of weighted load which should be moved
3787 * to restore balance.
3788 *
3789 * @sd: The sched_domain whose busiest group is to be returned.
3790 * @this_cpu: The cpu for which load balancing is currently being performed.
3791 * @imbalance: Variable which stores amount of weighted load which should
3792 * be moved to restore balance/put a group to idle.
3793 * @idle: The idle status of this_cpu.
3794 * @cpus: The set of CPUs under consideration for load-balancing.
3795 * @balance: Pointer to a variable indicating if this_cpu
3796 * is the appropriate cpu to perform load balancing at this_level.
3797 *
3798 * Returns: - the busiest group if imbalance exists.
3799 * - If no imbalance and user has opted for power-savings balance,
3800 * return the least loaded group whose CPUs can be
3801 * put to idle by rebalancing its tasks onto our group.
3802 */
3803 static struct sched_group *
3804 find_busiest_group(struct sched_domain *sd, int this_cpu,
3805 unsigned long *imbalance, enum cpu_idle_type idle,
3806 const struct cpumask *cpus, int *balance)
3807 {
3808 struct sd_lb_stats sds;
3809
3810 memset(&sds, 0, sizeof(sds));
3811
3812 /*
3813 * Compute the various statistics relavent for load balancing at
3814 * this level.
3815 */
3816 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3817
3818 /*
3819 * this_cpu is not the appropriate cpu to perform load balancing at
3820 * this level.
3821 */
3822 if (!(*balance))
3823 goto ret;
3824
3825 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3826 check_asym_packing(sd, &sds, this_cpu, imbalance))
3827 return sds.busiest;
3828
3829 /* There is no busy sibling group to pull tasks from */
3830 if (!sds.busiest || sds.busiest_nr_running == 0)
3831 goto out_balanced;
3832
3833 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
3834
3835 /*
3836 * If the busiest group is imbalanced the below checks don't
3837 * work because they assumes all things are equal, which typically
3838 * isn't true due to cpus_allowed constraints and the like.
3839 */
3840 if (sds.group_imb)
3841 goto force_balance;
3842
3843 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3844 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3845 !sds.busiest_has_capacity)
3846 goto force_balance;
3847
3848 /*
3849 * If the local group is more busy than the selected busiest group
3850 * don't try and pull any tasks.
3851 */
3852 if (sds.this_load >= sds.max_load)
3853 goto out_balanced;
3854
3855 /*
3856 * Don't pull any tasks if this group is already above the domain
3857 * average load.
3858 */
3859 if (sds.this_load >= sds.avg_load)
3860 goto out_balanced;
3861
3862 if (idle == CPU_IDLE) {
3863 /*
3864 * This cpu is idle. If the busiest group load doesn't
3865 * have more tasks than the number of available cpu's and
3866 * there is no imbalance between this and busiest group
3867 * wrt to idle cpu's, it is balanced.
3868 */
3869 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3870 sds.busiest_nr_running <= sds.busiest_group_weight)
3871 goto out_balanced;
3872 } else {
3873 /*
3874 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3875 * imbalance_pct to be conservative.
3876 */
3877 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3878 goto out_balanced;
3879 }
3880
3881 force_balance:
3882 /* Looks like there is an imbalance. Compute it */
3883 calculate_imbalance(&sds, this_cpu, imbalance);
3884 return sds.busiest;
3885
3886 out_balanced:
3887 /*
3888 * There is no obvious imbalance. But check if we can do some balancing
3889 * to save power.
3890 */
3891 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3892 return sds.busiest;
3893 ret:
3894 *imbalance = 0;
3895 return NULL;
3896 }
3897
3898 /*
3899 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3900 */
3901 static struct rq *
3902 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3903 enum cpu_idle_type idle, unsigned long imbalance,
3904 const struct cpumask *cpus)
3905 {
3906 struct rq *busiest = NULL, *rq;
3907 unsigned long max_load = 0;
3908 int i;
3909
3910 for_each_cpu(i, sched_group_cpus(group)) {
3911 unsigned long power = power_of(i);
3912 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3913 SCHED_POWER_SCALE);
3914 unsigned long wl;
3915
3916 if (!capacity)
3917 capacity = fix_small_capacity(sd, group);
3918
3919 if (!cpumask_test_cpu(i, cpus))
3920 continue;
3921
3922 rq = cpu_rq(i);
3923 wl = weighted_cpuload(i);
3924
3925 /*
3926 * When comparing with imbalance, use weighted_cpuload()
3927 * which is not scaled with the cpu power.
3928 */
3929 if (capacity && rq->nr_running == 1 && wl > imbalance)
3930 continue;
3931
3932 /*
3933 * For the load comparisons with the other cpu's, consider
3934 * the weighted_cpuload() scaled with the cpu power, so that
3935 * the load can be moved away from the cpu that is potentially
3936 * running at a lower capacity.
3937 */
3938 wl = (wl * SCHED_POWER_SCALE) / power;
3939
3940 if (wl > max_load) {
3941 max_load = wl;
3942 busiest = rq;
3943 }
3944 }
3945
3946 return busiest;
3947 }
3948
3949 /*
3950 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3951 * so long as it is large enough.
3952 */
3953 #define MAX_PINNED_INTERVAL 512
3954
3955 /* Working cpumask for load_balance and load_balance_newidle. */
3956 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3957
3958 static int need_active_balance(struct sched_domain *sd, int idle,
3959 int busiest_cpu, int this_cpu)
3960 {
3961 if (idle == CPU_NEWLY_IDLE) {
3962
3963 /*
3964 * ASYM_PACKING needs to force migrate tasks from busy but
3965 * higher numbered CPUs in order to pack all tasks in the
3966 * lowest numbered CPUs.
3967 */
3968 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3969 return 1;
3970
3971 /*
3972 * The only task running in a non-idle cpu can be moved to this
3973 * cpu in an attempt to completely freeup the other CPU
3974 * package.
3975 *
3976 * The package power saving logic comes from
3977 * find_busiest_group(). If there are no imbalance, then
3978 * f_b_g() will return NULL. However when sched_mc={1,2} then
3979 * f_b_g() will select a group from which a running task may be
3980 * pulled to this cpu in order to make the other package idle.
3981 * If there is no opportunity to make a package idle and if
3982 * there are no imbalance, then f_b_g() will return NULL and no
3983 * action will be taken in load_balance_newidle().
3984 *
3985 * Under normal task pull operation due to imbalance, there
3986 * will be more than one task in the source run queue and
3987 * move_tasks() will succeed. ld_moved will be true and this
3988 * active balance code will not be triggered.
3989 */
3990 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3991 return 0;
3992 }
3993
3994 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3995 }
3996
3997 static int active_load_balance_cpu_stop(void *data);
3998
3999 /*
4000 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4001 * tasks if there is an imbalance.
4002 */
4003 static int load_balance(int this_cpu, struct rq *this_rq,
4004 struct sched_domain *sd, enum cpu_idle_type idle,
4005 int *balance)
4006 {
4007 int ld_moved, all_pinned = 0, active_balance = 0;
4008 struct sched_group *group;
4009 unsigned long imbalance;
4010 struct rq *busiest;
4011 unsigned long flags;
4012 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4013
4014 cpumask_copy(cpus, cpu_active_mask);
4015
4016 schedstat_inc(sd, lb_count[idle]);
4017
4018 redo:
4019 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4020 cpus, balance);
4021
4022 if (*balance == 0)
4023 goto out_balanced;
4024
4025 if (!group) {
4026 schedstat_inc(sd, lb_nobusyg[idle]);
4027 goto out_balanced;
4028 }
4029
4030 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4031 if (!busiest) {
4032 schedstat_inc(sd, lb_nobusyq[idle]);
4033 goto out_balanced;
4034 }
4035
4036 BUG_ON(busiest == this_rq);
4037
4038 schedstat_add(sd, lb_imbalance[idle], imbalance);
4039
4040 ld_moved = 0;
4041 if (busiest->nr_running > 1) {
4042 /*
4043 * Attempt to move tasks. If find_busiest_group has found
4044 * an imbalance but busiest->nr_running <= 1, the group is
4045 * still unbalanced. ld_moved simply stays zero, so it is
4046 * correctly treated as an imbalance.
4047 */
4048 all_pinned = 1;
4049 local_irq_save(flags);
4050 double_rq_lock(this_rq, busiest);
4051 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4052 imbalance, sd, idle, &all_pinned);
4053 double_rq_unlock(this_rq, busiest);
4054 local_irq_restore(flags);
4055
4056 /*
4057 * some other cpu did the load balance for us.
4058 */
4059 if (ld_moved && this_cpu != smp_processor_id())
4060 resched_cpu(this_cpu);
4061
4062 /* All tasks on this runqueue were pinned by CPU affinity */
4063 if (unlikely(all_pinned)) {
4064 cpumask_clear_cpu(cpu_of(busiest), cpus);
4065 if (!cpumask_empty(cpus))
4066 goto redo;
4067 goto out_balanced;
4068 }
4069 }
4070
4071 if (!ld_moved) {
4072 schedstat_inc(sd, lb_failed[idle]);
4073 /*
4074 * Increment the failure counter only on periodic balance.
4075 * We do not want newidle balance, which can be very
4076 * frequent, pollute the failure counter causing
4077 * excessive cache_hot migrations and active balances.
4078 */
4079 if (idle != CPU_NEWLY_IDLE)
4080 sd->nr_balance_failed++;
4081
4082 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4083 raw_spin_lock_irqsave(&busiest->lock, flags);
4084
4085 /* don't kick the active_load_balance_cpu_stop,
4086 * if the curr task on busiest cpu can't be
4087 * moved to this_cpu
4088 */
4089 if (!cpumask_test_cpu(this_cpu,
4090 tsk_cpus_allowed(busiest->curr))) {
4091 raw_spin_unlock_irqrestore(&busiest->lock,
4092 flags);
4093 all_pinned = 1;
4094 goto out_one_pinned;
4095 }
4096
4097 /*
4098 * ->active_balance synchronizes accesses to
4099 * ->active_balance_work. Once set, it's cleared
4100 * only after active load balance is finished.
4101 */
4102 if (!busiest->active_balance) {
4103 busiest->active_balance = 1;
4104 busiest->push_cpu = this_cpu;
4105 active_balance = 1;
4106 }
4107 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4108
4109 if (active_balance)
4110 stop_one_cpu_nowait(cpu_of(busiest),
4111 active_load_balance_cpu_stop, busiest,
4112 &busiest->active_balance_work);
4113
4114 /*
4115 * We've kicked active balancing, reset the failure
4116 * counter.
4117 */
4118 sd->nr_balance_failed = sd->cache_nice_tries+1;
4119 }
4120 } else
4121 sd->nr_balance_failed = 0;
4122
4123 if (likely(!active_balance)) {
4124 /* We were unbalanced, so reset the balancing interval */
4125 sd->balance_interval = sd->min_interval;
4126 } else {
4127 /*
4128 * If we've begun active balancing, start to back off. This
4129 * case may not be covered by the all_pinned logic if there
4130 * is only 1 task on the busy runqueue (because we don't call
4131 * move_tasks).
4132 */
4133 if (sd->balance_interval < sd->max_interval)
4134 sd->balance_interval *= 2;
4135 }
4136
4137 goto out;
4138
4139 out_balanced:
4140 schedstat_inc(sd, lb_balanced[idle]);
4141
4142 sd->nr_balance_failed = 0;
4143
4144 out_one_pinned:
4145 /* tune up the balancing interval */
4146 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4147 (sd->balance_interval < sd->max_interval))
4148 sd->balance_interval *= 2;
4149
4150 ld_moved = 0;
4151 out:
4152 return ld_moved;
4153 }
4154
4155 /*
4156 * idle_balance is called by schedule() if this_cpu is about to become
4157 * idle. Attempts to pull tasks from other CPUs.
4158 */
4159 static void idle_balance(int this_cpu, struct rq *this_rq)
4160 {
4161 struct sched_domain *sd;
4162 int pulled_task = 0;
4163 unsigned long next_balance = jiffies + HZ;
4164
4165 this_rq->idle_stamp = this_rq->clock;
4166
4167 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4168 return;
4169
4170 /*
4171 * Drop the rq->lock, but keep IRQ/preempt disabled.
4172 */
4173 raw_spin_unlock(&this_rq->lock);
4174
4175 update_shares(this_cpu);
4176 rcu_read_lock();
4177 for_each_domain(this_cpu, sd) {
4178 unsigned long interval;
4179 int balance = 1;
4180
4181 if (!(sd->flags & SD_LOAD_BALANCE))
4182 continue;
4183
4184 if (sd->flags & SD_BALANCE_NEWIDLE) {
4185 /* If we've pulled tasks over stop searching: */
4186 pulled_task = load_balance(this_cpu, this_rq,
4187 sd, CPU_NEWLY_IDLE, &balance);
4188 }
4189
4190 interval = msecs_to_jiffies(sd->balance_interval);
4191 if (time_after(next_balance, sd->last_balance + interval))
4192 next_balance = sd->last_balance + interval;
4193 if (pulled_task) {
4194 this_rq->idle_stamp = 0;
4195 break;
4196 }
4197 }
4198 rcu_read_unlock();
4199
4200 raw_spin_lock(&this_rq->lock);
4201
4202 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4203 /*
4204 * We are going idle. next_balance may be set based on
4205 * a busy processor. So reset next_balance.
4206 */
4207 this_rq->next_balance = next_balance;
4208 }
4209 }
4210
4211 /*
4212 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4213 * running tasks off the busiest CPU onto idle CPUs. It requires at
4214 * least 1 task to be running on each physical CPU where possible, and
4215 * avoids physical / logical imbalances.
4216 */
4217 static int active_load_balance_cpu_stop(void *data)
4218 {
4219 struct rq *busiest_rq = data;
4220 int busiest_cpu = cpu_of(busiest_rq);
4221 int target_cpu = busiest_rq->push_cpu;
4222 struct rq *target_rq = cpu_rq(target_cpu);
4223 struct sched_domain *sd;
4224
4225 raw_spin_lock_irq(&busiest_rq->lock);
4226
4227 /* make sure the requested cpu hasn't gone down in the meantime */
4228 if (unlikely(busiest_cpu != smp_processor_id() ||
4229 !busiest_rq->active_balance))
4230 goto out_unlock;
4231
4232 /* Is there any task to move? */
4233 if (busiest_rq->nr_running <= 1)
4234 goto out_unlock;
4235
4236 /*
4237 * This condition is "impossible", if it occurs
4238 * we need to fix it. Originally reported by
4239 * Bjorn Helgaas on a 128-cpu setup.
4240 */
4241 BUG_ON(busiest_rq == target_rq);
4242
4243 /* move a task from busiest_rq to target_rq */
4244 double_lock_balance(busiest_rq, target_rq);
4245
4246 /* Search for an sd spanning us and the target CPU. */
4247 rcu_read_lock();
4248 for_each_domain(target_cpu, sd) {
4249 if ((sd->flags & SD_LOAD_BALANCE) &&
4250 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4251 break;
4252 }
4253
4254 if (likely(sd)) {
4255 schedstat_inc(sd, alb_count);
4256
4257 if (move_one_task(target_rq, target_cpu, busiest_rq,
4258 sd, CPU_IDLE))
4259 schedstat_inc(sd, alb_pushed);
4260 else
4261 schedstat_inc(sd, alb_failed);
4262 }
4263 rcu_read_unlock();
4264 double_unlock_balance(busiest_rq, target_rq);
4265 out_unlock:
4266 busiest_rq->active_balance = 0;
4267 raw_spin_unlock_irq(&busiest_rq->lock);
4268 return 0;
4269 }
4270
4271 #ifdef CONFIG_NO_HZ
4272 /*
4273 * idle load balancing details
4274 * - One of the idle CPUs nominates itself as idle load_balancer, while
4275 * entering idle.
4276 * - This idle load balancer CPU will also go into tickless mode when
4277 * it is idle, just like all other idle CPUs
4278 * - When one of the busy CPUs notice that there may be an idle rebalancing
4279 * needed, they will kick the idle load balancer, which then does idle
4280 * load balancing for all the idle CPUs.
4281 */
4282 static struct {
4283 atomic_t load_balancer;
4284 atomic_t first_pick_cpu;
4285 atomic_t second_pick_cpu;
4286 cpumask_var_t idle_cpus_mask;
4287 cpumask_var_t grp_idle_mask;
4288 unsigned long next_balance; /* in jiffy units */
4289 } nohz ____cacheline_aligned;
4290
4291 int get_nohz_load_balancer(void)
4292 {
4293 return atomic_read(&nohz.load_balancer);
4294 }
4295
4296 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4297 /**
4298 * lowest_flag_domain - Return lowest sched_domain containing flag.
4299 * @cpu: The cpu whose lowest level of sched domain is to
4300 * be returned.
4301 * @flag: The flag to check for the lowest sched_domain
4302 * for the given cpu.
4303 *
4304 * Returns the lowest sched_domain of a cpu which contains the given flag.
4305 */
4306 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4307 {
4308 struct sched_domain *sd;
4309
4310 for_each_domain(cpu, sd)
4311 if (sd->flags & flag)
4312 break;
4313
4314 return sd;
4315 }
4316
4317 /**
4318 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4319 * @cpu: The cpu whose domains we're iterating over.
4320 * @sd: variable holding the value of the power_savings_sd
4321 * for cpu.
4322 * @flag: The flag to filter the sched_domains to be iterated.
4323 *
4324 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4325 * set, starting from the lowest sched_domain to the highest.
4326 */
4327 #define for_each_flag_domain(cpu, sd, flag) \
4328 for (sd = lowest_flag_domain(cpu, flag); \
4329 (sd && (sd->flags & flag)); sd = sd->parent)
4330
4331 /**
4332 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4333 * @ilb_group: group to be checked for semi-idleness
4334 *
4335 * Returns: 1 if the group is semi-idle. 0 otherwise.
4336 *
4337 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4338 * and atleast one non-idle CPU. This helper function checks if the given
4339 * sched_group is semi-idle or not.
4340 */
4341 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4342 {
4343 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
4344 sched_group_cpus(ilb_group));
4345
4346 /*
4347 * A sched_group is semi-idle when it has atleast one busy cpu
4348 * and atleast one idle cpu.
4349 */
4350 if (cpumask_empty(nohz.grp_idle_mask))
4351 return 0;
4352
4353 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
4354 return 0;
4355
4356 return 1;
4357 }
4358 /**
4359 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4360 * @cpu: The cpu which is nominating a new idle_load_balancer.
4361 *
4362 * Returns: Returns the id of the idle load balancer if it exists,
4363 * Else, returns >= nr_cpu_ids.
4364 *
4365 * This algorithm picks the idle load balancer such that it belongs to a
4366 * semi-idle powersavings sched_domain. The idea is to try and avoid
4367 * completely idle packages/cores just for the purpose of idle load balancing
4368 * when there are other idle cpu's which are better suited for that job.
4369 */
4370 static int find_new_ilb(int cpu)
4371 {
4372 struct sched_domain *sd;
4373 struct sched_group *ilb_group;
4374 int ilb = nr_cpu_ids;
4375
4376 /*
4377 * Have idle load balancer selection from semi-idle packages only
4378 * when power-aware load balancing is enabled
4379 */
4380 if (!(sched_smt_power_savings || sched_mc_power_savings))
4381 goto out_done;
4382
4383 /*
4384 * Optimize for the case when we have no idle CPUs or only one
4385 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4386 */
4387 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4388 goto out_done;
4389
4390 rcu_read_lock();
4391 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4392 ilb_group = sd->groups;
4393
4394 do {
4395 if (is_semi_idle_group(ilb_group)) {
4396 ilb = cpumask_first(nohz.grp_idle_mask);
4397 goto unlock;
4398 }
4399
4400 ilb_group = ilb_group->next;
4401
4402 } while (ilb_group != sd->groups);
4403 }
4404 unlock:
4405 rcu_read_unlock();
4406
4407 out_done:
4408 return ilb;
4409 }
4410 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4411 static inline int find_new_ilb(int call_cpu)
4412 {
4413 return nr_cpu_ids;
4414 }
4415 #endif
4416
4417 /*
4418 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4419 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4420 * CPU (if there is one).
4421 */
4422 static void nohz_balancer_kick(int cpu)
4423 {
4424 int ilb_cpu;
4425
4426 nohz.next_balance++;
4427
4428 ilb_cpu = get_nohz_load_balancer();
4429
4430 if (ilb_cpu >= nr_cpu_ids) {
4431 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4432 if (ilb_cpu >= nr_cpu_ids)
4433 return;
4434 }
4435
4436 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
4437 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
4438
4439 smp_mb();
4440 /*
4441 * Use smp_send_reschedule() instead of resched_cpu().
4442 * This way we generate a sched IPI on the target cpu which
4443 * is idle. And the softirq performing nohz idle load balance
4444 * will be run before returning from the IPI.
4445 */
4446 smp_send_reschedule(ilb_cpu);
4447 }
4448 return;
4449 }
4450
4451 /*
4452 * This routine will try to nominate the ilb (idle load balancing)
4453 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4454 * load balancing on behalf of all those cpus.
4455 *
4456 * When the ilb owner becomes busy, we will not have new ilb owner until some
4457 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4458 * idle load balancing by kicking one of the idle CPUs.
4459 *
4460 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4461 * ilb owner CPU in future (when there is a need for idle load balancing on
4462 * behalf of all idle CPUs).
4463 */
4464 void select_nohz_load_balancer(int stop_tick)
4465 {
4466 int cpu = smp_processor_id();
4467
4468 if (stop_tick) {
4469 if (!cpu_active(cpu)) {
4470 if (atomic_read(&nohz.load_balancer) != cpu)
4471 return;
4472
4473 /*
4474 * If we are going offline and still the leader,
4475 * give up!
4476 */
4477 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4478 nr_cpu_ids) != cpu)
4479 BUG();
4480
4481 return;
4482 }
4483
4484 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4485
4486 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4487 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4488 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4489 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4490
4491 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
4492 int new_ilb;
4493
4494 /* make me the ilb owner */
4495 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4496 cpu) != nr_cpu_ids)
4497 return;
4498
4499 /*
4500 * Check to see if there is a more power-efficient
4501 * ilb.
4502 */
4503 new_ilb = find_new_ilb(cpu);
4504 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4505 atomic_set(&nohz.load_balancer, nr_cpu_ids);
4506 resched_cpu(new_ilb);
4507 return;
4508 }
4509 return;
4510 }
4511 } else {
4512 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4513 return;
4514
4515 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4516
4517 if (atomic_read(&nohz.load_balancer) == cpu)
4518 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4519 nr_cpu_ids) != cpu)
4520 BUG();
4521 }
4522 return;
4523 }
4524 #endif
4525
4526 static DEFINE_SPINLOCK(balancing);
4527
4528 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4529
4530 /*
4531 * Scale the max load_balance interval with the number of CPUs in the system.
4532 * This trades load-balance latency on larger machines for less cross talk.
4533 */
4534 static void update_max_interval(void)
4535 {
4536 max_load_balance_interval = HZ*num_online_cpus()/10;
4537 }
4538
4539 /*
4540 * It checks each scheduling domain to see if it is due to be balanced,
4541 * and initiates a balancing operation if so.
4542 *
4543 * Balancing parameters are set up in arch_init_sched_domains.
4544 */
4545 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4546 {
4547 int balance = 1;
4548 struct rq *rq = cpu_rq(cpu);
4549 unsigned long interval;
4550 struct sched_domain *sd;
4551 /* Earliest time when we have to do rebalance again */
4552 unsigned long next_balance = jiffies + 60*HZ;
4553 int update_next_balance = 0;
4554 int need_serialize;
4555
4556 update_shares(cpu);
4557
4558 rcu_read_lock();
4559 for_each_domain(cpu, sd) {
4560 if (!(sd->flags & SD_LOAD_BALANCE))
4561 continue;
4562
4563 interval = sd->balance_interval;
4564 if (idle != CPU_IDLE)
4565 interval *= sd->busy_factor;
4566
4567 /* scale ms to jiffies */
4568 interval = msecs_to_jiffies(interval);
4569 interval = clamp(interval, 1UL, max_load_balance_interval);
4570
4571 need_serialize = sd->flags & SD_SERIALIZE;
4572
4573 if (need_serialize) {
4574 if (!spin_trylock(&balancing))
4575 goto out;
4576 }
4577
4578 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4579 if (load_balance(cpu, rq, sd, idle, &balance)) {
4580 /*
4581 * We've pulled tasks over so either we're no
4582 * longer idle.
4583 */
4584 idle = CPU_NOT_IDLE;
4585 }
4586 sd->last_balance = jiffies;
4587 }
4588 if (need_serialize)
4589 spin_unlock(&balancing);
4590 out:
4591 if (time_after(next_balance, sd->last_balance + interval)) {
4592 next_balance = sd->last_balance + interval;
4593 update_next_balance = 1;
4594 }
4595
4596 /*
4597 * Stop the load balance at this level. There is another
4598 * CPU in our sched group which is doing load balancing more
4599 * actively.
4600 */
4601 if (!balance)
4602 break;
4603 }
4604 rcu_read_unlock();
4605
4606 /*
4607 * next_balance will be updated only when there is a need.
4608 * When the cpu is attached to null domain for ex, it will not be
4609 * updated.
4610 */
4611 if (likely(update_next_balance))
4612 rq->next_balance = next_balance;
4613 }
4614
4615 #ifdef CONFIG_NO_HZ
4616 /*
4617 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4618 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4619 */
4620 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4621 {
4622 struct rq *this_rq = cpu_rq(this_cpu);
4623 struct rq *rq;
4624 int balance_cpu;
4625
4626 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4627 return;
4628
4629 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4630 if (balance_cpu == this_cpu)
4631 continue;
4632
4633 /*
4634 * If this cpu gets work to do, stop the load balancing
4635 * work being done for other cpus. Next load
4636 * balancing owner will pick it up.
4637 */
4638 if (need_resched()) {
4639 this_rq->nohz_balance_kick = 0;
4640 break;
4641 }
4642
4643 raw_spin_lock_irq(&this_rq->lock);
4644 update_rq_clock(this_rq);
4645 update_cpu_load(this_rq);
4646 raw_spin_unlock_irq(&this_rq->lock);
4647
4648 rebalance_domains(balance_cpu, CPU_IDLE);
4649
4650 rq = cpu_rq(balance_cpu);
4651 if (time_after(this_rq->next_balance, rq->next_balance))
4652 this_rq->next_balance = rq->next_balance;
4653 }
4654 nohz.next_balance = this_rq->next_balance;
4655 this_rq->nohz_balance_kick = 0;
4656 }
4657
4658 /*
4659 * Current heuristic for kicking the idle load balancer
4660 * - first_pick_cpu is the one of the busy CPUs. It will kick
4661 * idle load balancer when it has more than one process active. This
4662 * eliminates the need for idle load balancing altogether when we have
4663 * only one running process in the system (common case).
4664 * - If there are more than one busy CPU, idle load balancer may have
4665 * to run for active_load_balance to happen (i.e., two busy CPUs are
4666 * SMT or core siblings and can run better if they move to different
4667 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4668 * which will kick idle load balancer as soon as it has any load.
4669 */
4670 static inline int nohz_kick_needed(struct rq *rq, int cpu)
4671 {
4672 unsigned long now = jiffies;
4673 int ret;
4674 int first_pick_cpu, second_pick_cpu;
4675
4676 if (time_before(now, nohz.next_balance))
4677 return 0;
4678
4679 if (idle_cpu(cpu))
4680 return 0;
4681
4682 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4683 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4684
4685 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4686 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4687 return 0;
4688
4689 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4690 if (ret == nr_cpu_ids || ret == cpu) {
4691 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4692 if (rq->nr_running > 1)
4693 return 1;
4694 } else {
4695 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4696 if (ret == nr_cpu_ids || ret == cpu) {
4697 if (rq->nr_running)
4698 return 1;
4699 }
4700 }
4701 return 0;
4702 }
4703 #else
4704 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4705 #endif
4706
4707 /*
4708 * run_rebalance_domains is triggered when needed from the scheduler tick.
4709 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4710 */
4711 static void run_rebalance_domains(struct softirq_action *h)
4712 {
4713 int this_cpu = smp_processor_id();
4714 struct rq *this_rq = cpu_rq(this_cpu);
4715 enum cpu_idle_type idle = this_rq->idle_balance ?
4716 CPU_IDLE : CPU_NOT_IDLE;
4717
4718 rebalance_domains(this_cpu, idle);
4719
4720 /*
4721 * If this cpu has a pending nohz_balance_kick, then do the
4722 * balancing on behalf of the other idle cpus whose ticks are
4723 * stopped.
4724 */
4725 nohz_idle_balance(this_cpu, idle);
4726 }
4727
4728 static inline int on_null_domain(int cpu)
4729 {
4730 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4731 }
4732
4733 /*
4734 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4735 */
4736 static inline void trigger_load_balance(struct rq *rq, int cpu)
4737 {
4738 /* Don't need to rebalance while attached to NULL domain */
4739 if (time_after_eq(jiffies, rq->next_balance) &&
4740 likely(!on_null_domain(cpu)))
4741 raise_softirq(SCHED_SOFTIRQ);
4742 #ifdef CONFIG_NO_HZ
4743 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4744 nohz_balancer_kick(cpu);
4745 #endif
4746 }
4747
4748 static void rq_online_fair(struct rq *rq)
4749 {
4750 update_sysctl();
4751 }
4752
4753 static void rq_offline_fair(struct rq *rq)
4754 {
4755 update_sysctl();
4756 }
4757
4758 #else /* CONFIG_SMP */
4759
4760 /*
4761 * on UP we do not need to balance between CPUs:
4762 */
4763 static inline void idle_balance(int cpu, struct rq *rq)
4764 {
4765 }
4766
4767 #endif /* CONFIG_SMP */
4768
4769 /*
4770 * scheduler tick hitting a task of our scheduling class:
4771 */
4772 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4773 {
4774 struct cfs_rq *cfs_rq;
4775 struct sched_entity *se = &curr->se;
4776
4777 for_each_sched_entity(se) {
4778 cfs_rq = cfs_rq_of(se);
4779 entity_tick(cfs_rq, se, queued);
4780 }
4781 }
4782
4783 /*
4784 * called on fork with the child task as argument from the parent's context
4785 * - child not yet on the tasklist
4786 * - preemption disabled
4787 */
4788 static void task_fork_fair(struct task_struct *p)
4789 {
4790 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4791 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4792 int this_cpu = smp_processor_id();
4793 struct rq *rq = this_rq();
4794 unsigned long flags;
4795
4796 raw_spin_lock_irqsave(&rq->lock, flags);
4797
4798 update_rq_clock(rq);
4799
4800 if (unlikely(task_cpu(p) != this_cpu)) {
4801 rcu_read_lock();
4802 __set_task_cpu(p, this_cpu);
4803 rcu_read_unlock();
4804 }
4805
4806 update_curr(cfs_rq);
4807
4808 if (curr)
4809 se->vruntime = curr->vruntime;
4810 place_entity(cfs_rq, se, 1);
4811
4812 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4813 /*
4814 * Upon rescheduling, sched_class::put_prev_task() will place
4815 * 'current' within the tree based on its new key value.
4816 */
4817 swap(curr->vruntime, se->vruntime);
4818 resched_task(rq->curr);
4819 }
4820
4821 se->vruntime -= cfs_rq->min_vruntime;
4822
4823 raw_spin_unlock_irqrestore(&rq->lock, flags);
4824 }
4825
4826 /*
4827 * Priority of the task has changed. Check to see if we preempt
4828 * the current task.
4829 */
4830 static void
4831 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4832 {
4833 if (!p->se.on_rq)
4834 return;
4835
4836 /*
4837 * Reschedule if we are currently running on this runqueue and
4838 * our priority decreased, or if we are not currently running on
4839 * this runqueue and our priority is higher than the current's
4840 */
4841 if (rq->curr == p) {
4842 if (p->prio > oldprio)
4843 resched_task(rq->curr);
4844 } else
4845 check_preempt_curr(rq, p, 0);
4846 }
4847
4848 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4849 {
4850 struct sched_entity *se = &p->se;
4851 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4852
4853 /*
4854 * Ensure the task's vruntime is normalized, so that when its
4855 * switched back to the fair class the enqueue_entity(.flags=0) will
4856 * do the right thing.
4857 *
4858 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4859 * have normalized the vruntime, if it was !on_rq, then only when
4860 * the task is sleeping will it still have non-normalized vruntime.
4861 */
4862 if (!se->on_rq && p->state != TASK_RUNNING) {
4863 /*
4864 * Fix up our vruntime so that the current sleep doesn't
4865 * cause 'unlimited' sleep bonus.
4866 */
4867 place_entity(cfs_rq, se, 0);
4868 se->vruntime -= cfs_rq->min_vruntime;
4869 }
4870 }
4871
4872 /*
4873 * We switched to the sched_fair class.
4874 */
4875 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4876 {
4877 if (!p->se.on_rq)
4878 return;
4879
4880 /*
4881 * We were most likely switched from sched_rt, so
4882 * kick off the schedule if running, otherwise just see
4883 * if we can still preempt the current task.
4884 */
4885 if (rq->curr == p)
4886 resched_task(rq->curr);
4887 else
4888 check_preempt_curr(rq, p, 0);
4889 }
4890
4891 /* Account for a task changing its policy or group.
4892 *
4893 * This routine is mostly called to set cfs_rq->curr field when a task
4894 * migrates between groups/classes.
4895 */
4896 static void set_curr_task_fair(struct rq *rq)
4897 {
4898 struct sched_entity *se = &rq->curr->se;
4899
4900 for_each_sched_entity(se) {
4901 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4902
4903 set_next_entity(cfs_rq, se);
4904 /* ensure bandwidth has been allocated on our new cfs_rq */
4905 account_cfs_rq_runtime(cfs_rq, 0);
4906 }
4907 }
4908
4909 #ifdef CONFIG_FAIR_GROUP_SCHED
4910 static void task_move_group_fair(struct task_struct *p, int on_rq)
4911 {
4912 /*
4913 * If the task was not on the rq at the time of this cgroup movement
4914 * it must have been asleep, sleeping tasks keep their ->vruntime
4915 * absolute on their old rq until wakeup (needed for the fair sleeper
4916 * bonus in place_entity()).
4917 *
4918 * If it was on the rq, we've just 'preempted' it, which does convert
4919 * ->vruntime to a relative base.
4920 *
4921 * Make sure both cases convert their relative position when migrating
4922 * to another cgroup's rq. This does somewhat interfere with the
4923 * fair sleeper stuff for the first placement, but who cares.
4924 */
4925 if (!on_rq)
4926 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4927 set_task_rq(p, task_cpu(p));
4928 if (!on_rq)
4929 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4930 }
4931 #endif
4932
4933 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4934 {
4935 struct sched_entity *se = &task->se;
4936 unsigned int rr_interval = 0;
4937
4938 /*
4939 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4940 * idle runqueue:
4941 */
4942 if (rq->cfs.load.weight)
4943 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4944
4945 return rr_interval;
4946 }
4947
4948 /*
4949 * All the scheduling class methods:
4950 */
4951 static const struct sched_class fair_sched_class = {
4952 .next = &idle_sched_class,
4953 .enqueue_task = enqueue_task_fair,
4954 .dequeue_task = dequeue_task_fair,
4955 .yield_task = yield_task_fair,
4956 .yield_to_task = yield_to_task_fair,
4957
4958 .check_preempt_curr = check_preempt_wakeup,
4959
4960 .pick_next_task = pick_next_task_fair,
4961 .put_prev_task = put_prev_task_fair,
4962
4963 #ifdef CONFIG_SMP
4964 .select_task_rq = select_task_rq_fair,
4965
4966 .rq_online = rq_online_fair,
4967 .rq_offline = rq_offline_fair,
4968
4969 .task_waking = task_waking_fair,
4970 #endif
4971
4972 .set_curr_task = set_curr_task_fair,
4973 .task_tick = task_tick_fair,
4974 .task_fork = task_fork_fair,
4975
4976 .prio_changed = prio_changed_fair,
4977 .switched_from = switched_from_fair,
4978 .switched_to = switched_to_fair,
4979
4980 .get_rr_interval = get_rr_interval_fair,
4981
4982 #ifdef CONFIG_FAIR_GROUP_SCHED
4983 .task_move_group = task_move_group_fair,
4984 #endif
4985 };
4986
4987 #ifdef CONFIG_SCHED_DEBUG
4988 static void print_cfs_stats(struct seq_file *m, int cpu)
4989 {
4990 struct cfs_rq *cfs_rq;
4991
4992 rcu_read_lock();
4993 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4994 print_cfs_rq(m, cpu, cfs_rq);
4995 rcu_read_unlock();
4996 }
4997 #endif
This page took 0.138093 seconds and 5 git commands to generate.