cgroups: use task_lock() for access tsk->cgroups safe in cgroup_clone()
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 static inline struct task_struct *task_of(struct sched_entity *se)
83 {
84 return container_of(se, struct task_struct, se);
85 }
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103 {
104 return p->se.cfs_rq;
105 }
106
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109 {
110 return se->cfs_rq;
111 }
112
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115 {
116 return grp->my_q;
117 }
118
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123 {
124 return cfs_rq->tg->cfs_rq[this_cpu];
125 }
126
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
134 {
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139 }
140
141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
142 {
143 return se->parent;
144 }
145
146 /* return depth at which a sched entity is present in the hierarchy */
147 static inline int depth_se(struct sched_entity *se)
148 {
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155 }
156
157 static void
158 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159 {
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187 }
188
189 #else /* CONFIG_FAIR_GROUP_SCHED */
190
191 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192 {
193 return container_of(cfs_rq, struct rq, cfs);
194 }
195
196 #define entity_is_task(se) 1
197
198 #define for_each_sched_entity(se) \
199 for (; se; se = NULL)
200
201 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202 {
203 return &task_rq(p)->cfs;
204 }
205
206 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207 {
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212 }
213
214 /* runqueue "owned" by this group */
215 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216 {
217 return NULL;
218 }
219
220 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221 {
222 return &cpu_rq(this_cpu)->cfs;
223 }
224
225 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228 static inline int
229 is_same_group(struct sched_entity *se, struct sched_entity *pse)
230 {
231 return 1;
232 }
233
234 static inline struct sched_entity *parent_entity(struct sched_entity *se)
235 {
236 return NULL;
237 }
238
239 static inline void
240 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241 {
242 }
243
244 #endif /* CONFIG_FAIR_GROUP_SCHED */
245
246
247 /**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
251 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252 {
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258 }
259
260 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
261 {
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267 }
268
269 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270 {
271 return se->vruntime - cfs_rq->min_vruntime;
272 }
273
274 static void update_min_vruntime(struct cfs_rq *cfs_rq)
275 {
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
286 if (vruntime == cfs_rq->min_vruntime)
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293 }
294
295 /*
296 * Enqueue an entity into the rb-tree:
297 */
298 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 {
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
303 s64 key = entity_key(cfs_rq, se);
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
316 if (key < entity_key(cfs_rq, entry)) {
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
328 if (leftmost)
329 cfs_rq->rb_leftmost = &se->run_node;
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
333 }
334
335 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336 {
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
342 }
343
344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
345 }
346
347 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348 {
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
355 }
356
357 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
358 {
359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
360
361 if (!last)
362 return NULL;
363
364 return rb_entry(last, struct sched_entity, run_node);
365 }
366
367 /**************************************************************
368 * Scheduling class statistics methods:
369 */
370
371 #ifdef CONFIG_SCHED_DEBUG
372 int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375 {
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385 }
386 #endif
387
388 /*
389 * delta /= w
390 */
391 static inline unsigned long
392 calc_delta_fair(unsigned long delta, struct sched_entity *se)
393 {
394 if (unlikely(se->load.weight != NICE_0_LOAD))
395 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
396
397 return delta;
398 }
399
400 /*
401 * The idea is to set a period in which each task runs once.
402 *
403 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
404 * this period because otherwise the slices get too small.
405 *
406 * p = (nr <= nl) ? l : l*nr/nl
407 */
408 static u64 __sched_period(unsigned long nr_running)
409 {
410 u64 period = sysctl_sched_latency;
411 unsigned long nr_latency = sched_nr_latency;
412
413 if (unlikely(nr_running > nr_latency)) {
414 period = sysctl_sched_min_granularity;
415 period *= nr_running;
416 }
417
418 return period;
419 }
420
421 /*
422 * We calculate the wall-time slice from the period by taking a part
423 * proportional to the weight.
424 *
425 * s = p*P[w/rw]
426 */
427 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
428 {
429 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
430
431 for_each_sched_entity(se) {
432 struct load_weight *load = &cfs_rq->load;
433
434 if (unlikely(!se->on_rq)) {
435 struct load_weight lw = cfs_rq->load;
436
437 update_load_add(&lw, se->load.weight);
438 load = &lw;
439 }
440 slice = calc_delta_mine(slice, se->load.weight, load);
441 }
442 return slice;
443 }
444
445 /*
446 * We calculate the vruntime slice of a to be inserted task
447 *
448 * vs = s/w
449 */
450 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
451 {
452 return calc_delta_fair(sched_slice(cfs_rq, se), se);
453 }
454
455 /*
456 * Update the current task's runtime statistics. Skip current tasks that
457 * are not in our scheduling class.
458 */
459 static inline void
460 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
461 unsigned long delta_exec)
462 {
463 unsigned long delta_exec_weighted;
464
465 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
466
467 curr->sum_exec_runtime += delta_exec;
468 schedstat_add(cfs_rq, exec_clock, delta_exec);
469 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
470 curr->vruntime += delta_exec_weighted;
471 update_min_vruntime(cfs_rq);
472 }
473
474 static void update_curr(struct cfs_rq *cfs_rq)
475 {
476 struct sched_entity *curr = cfs_rq->curr;
477 u64 now = rq_of(cfs_rq)->clock;
478 unsigned long delta_exec;
479
480 if (unlikely(!curr))
481 return;
482
483 /*
484 * Get the amount of time the current task was running
485 * since the last time we changed load (this cannot
486 * overflow on 32 bits):
487 */
488 delta_exec = (unsigned long)(now - curr->exec_start);
489 if (!delta_exec)
490 return;
491
492 __update_curr(cfs_rq, curr, delta_exec);
493 curr->exec_start = now;
494
495 if (entity_is_task(curr)) {
496 struct task_struct *curtask = task_of(curr);
497
498 cpuacct_charge(curtask, delta_exec);
499 account_group_exec_runtime(curtask, delta_exec);
500 }
501 }
502
503 static inline void
504 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
505 {
506 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
507 }
508
509 /*
510 * Task is being enqueued - update stats:
511 */
512 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
513 {
514 /*
515 * Are we enqueueing a waiting task? (for current tasks
516 * a dequeue/enqueue event is a NOP)
517 */
518 if (se != cfs_rq->curr)
519 update_stats_wait_start(cfs_rq, se);
520 }
521
522 static void
523 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525 schedstat_set(se->wait_max, max(se->wait_max,
526 rq_of(cfs_rq)->clock - se->wait_start));
527 schedstat_set(se->wait_count, se->wait_count + 1);
528 schedstat_set(se->wait_sum, se->wait_sum +
529 rq_of(cfs_rq)->clock - se->wait_start);
530 schedstat_set(se->wait_start, 0);
531 }
532
533 static inline void
534 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
535 {
536 /*
537 * Mark the end of the wait period if dequeueing a
538 * waiting task:
539 */
540 if (se != cfs_rq->curr)
541 update_stats_wait_end(cfs_rq, se);
542 }
543
544 /*
545 * We are picking a new current task - update its stats:
546 */
547 static inline void
548 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 {
550 /*
551 * We are starting a new run period:
552 */
553 se->exec_start = rq_of(cfs_rq)->clock;
554 }
555
556 /**************************************************
557 * Scheduling class queueing methods:
558 */
559
560 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
561 static void
562 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
563 {
564 cfs_rq->task_weight += weight;
565 }
566 #else
567 static inline void
568 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
569 {
570 }
571 #endif
572
573 static void
574 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
575 {
576 update_load_add(&cfs_rq->load, se->load.weight);
577 if (!parent_entity(se))
578 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
579 if (entity_is_task(se)) {
580 add_cfs_task_weight(cfs_rq, se->load.weight);
581 list_add(&se->group_node, &cfs_rq->tasks);
582 }
583 cfs_rq->nr_running++;
584 se->on_rq = 1;
585 }
586
587 static void
588 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
589 {
590 update_load_sub(&cfs_rq->load, se->load.weight);
591 if (!parent_entity(se))
592 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
593 if (entity_is_task(se)) {
594 add_cfs_task_weight(cfs_rq, -se->load.weight);
595 list_del_init(&se->group_node);
596 }
597 cfs_rq->nr_running--;
598 se->on_rq = 0;
599 }
600
601 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
602 {
603 #ifdef CONFIG_SCHEDSTATS
604 if (se->sleep_start) {
605 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
606 struct task_struct *tsk = task_of(se);
607
608 if ((s64)delta < 0)
609 delta = 0;
610
611 if (unlikely(delta > se->sleep_max))
612 se->sleep_max = delta;
613
614 se->sleep_start = 0;
615 se->sum_sleep_runtime += delta;
616
617 account_scheduler_latency(tsk, delta >> 10, 1);
618 }
619 if (se->block_start) {
620 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
621 struct task_struct *tsk = task_of(se);
622
623 if ((s64)delta < 0)
624 delta = 0;
625
626 if (unlikely(delta > se->block_max))
627 se->block_max = delta;
628
629 se->block_start = 0;
630 se->sum_sleep_runtime += delta;
631
632 /*
633 * Blocking time is in units of nanosecs, so shift by 20 to
634 * get a milliseconds-range estimation of the amount of
635 * time that the task spent sleeping:
636 */
637 if (unlikely(prof_on == SLEEP_PROFILING)) {
638
639 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
640 delta >> 20);
641 }
642 account_scheduler_latency(tsk, delta >> 10, 0);
643 }
644 #endif
645 }
646
647 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
648 {
649 #ifdef CONFIG_SCHED_DEBUG
650 s64 d = se->vruntime - cfs_rq->min_vruntime;
651
652 if (d < 0)
653 d = -d;
654
655 if (d > 3*sysctl_sched_latency)
656 schedstat_inc(cfs_rq, nr_spread_over);
657 #endif
658 }
659
660 static void
661 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
662 {
663 u64 vruntime = cfs_rq->min_vruntime;
664
665 /*
666 * The 'current' period is already promised to the current tasks,
667 * however the extra weight of the new task will slow them down a
668 * little, place the new task so that it fits in the slot that
669 * stays open at the end.
670 */
671 if (initial && sched_feat(START_DEBIT))
672 vruntime += sched_vslice(cfs_rq, se);
673
674 if (!initial) {
675 /* sleeps upto a single latency don't count. */
676 if (sched_feat(NEW_FAIR_SLEEPERS)) {
677 unsigned long thresh = sysctl_sched_latency;
678
679 /*
680 * convert the sleeper threshold into virtual time
681 */
682 if (sched_feat(NORMALIZED_SLEEPER))
683 thresh = calc_delta_fair(thresh, se);
684
685 vruntime -= thresh;
686 }
687
688 /* ensure we never gain time by being placed backwards. */
689 vruntime = max_vruntime(se->vruntime, vruntime);
690 }
691
692 se->vruntime = vruntime;
693 }
694
695 static void
696 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
697 {
698 /*
699 * Update run-time statistics of the 'current'.
700 */
701 update_curr(cfs_rq);
702 account_entity_enqueue(cfs_rq, se);
703
704 if (wakeup) {
705 place_entity(cfs_rq, se, 0);
706 enqueue_sleeper(cfs_rq, se);
707 }
708
709 update_stats_enqueue(cfs_rq, se);
710 check_spread(cfs_rq, se);
711 if (se != cfs_rq->curr)
712 __enqueue_entity(cfs_rq, se);
713 }
714
715 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
716 {
717 if (cfs_rq->last == se)
718 cfs_rq->last = NULL;
719
720 if (cfs_rq->next == se)
721 cfs_rq->next = NULL;
722 }
723
724 static void
725 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
726 {
727 /*
728 * Update run-time statistics of the 'current'.
729 */
730 update_curr(cfs_rq);
731
732 update_stats_dequeue(cfs_rq, se);
733 if (sleep) {
734 #ifdef CONFIG_SCHEDSTATS
735 if (entity_is_task(se)) {
736 struct task_struct *tsk = task_of(se);
737
738 if (tsk->state & TASK_INTERRUPTIBLE)
739 se->sleep_start = rq_of(cfs_rq)->clock;
740 if (tsk->state & TASK_UNINTERRUPTIBLE)
741 se->block_start = rq_of(cfs_rq)->clock;
742 }
743 #endif
744 }
745
746 clear_buddies(cfs_rq, se);
747
748 if (se != cfs_rq->curr)
749 __dequeue_entity(cfs_rq, se);
750 account_entity_dequeue(cfs_rq, se);
751 update_min_vruntime(cfs_rq);
752 }
753
754 /*
755 * Preempt the current task with a newly woken task if needed:
756 */
757 static void
758 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
759 {
760 unsigned long ideal_runtime, delta_exec;
761
762 ideal_runtime = sched_slice(cfs_rq, curr);
763 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
764 if (delta_exec > ideal_runtime)
765 resched_task(rq_of(cfs_rq)->curr);
766 }
767
768 static void
769 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 {
771 /* 'current' is not kept within the tree. */
772 if (se->on_rq) {
773 /*
774 * Any task has to be enqueued before it get to execute on
775 * a CPU. So account for the time it spent waiting on the
776 * runqueue.
777 */
778 update_stats_wait_end(cfs_rq, se);
779 __dequeue_entity(cfs_rq, se);
780 }
781
782 update_stats_curr_start(cfs_rq, se);
783 cfs_rq->curr = se;
784 #ifdef CONFIG_SCHEDSTATS
785 /*
786 * Track our maximum slice length, if the CPU's load is at
787 * least twice that of our own weight (i.e. dont track it
788 * when there are only lesser-weight tasks around):
789 */
790 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
791 se->slice_max = max(se->slice_max,
792 se->sum_exec_runtime - se->prev_sum_exec_runtime);
793 }
794 #endif
795 se->prev_sum_exec_runtime = se->sum_exec_runtime;
796 }
797
798 static int
799 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
800
801 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
802 {
803 struct sched_entity *se = __pick_next_entity(cfs_rq);
804
805 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
806 return cfs_rq->next;
807
808 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
809 return cfs_rq->last;
810
811 return se;
812 }
813
814 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
815 {
816 /*
817 * If still on the runqueue then deactivate_task()
818 * was not called and update_curr() has to be done:
819 */
820 if (prev->on_rq)
821 update_curr(cfs_rq);
822
823 check_spread(cfs_rq, prev);
824 if (prev->on_rq) {
825 update_stats_wait_start(cfs_rq, prev);
826 /* Put 'current' back into the tree. */
827 __enqueue_entity(cfs_rq, prev);
828 }
829 cfs_rq->curr = NULL;
830 }
831
832 static void
833 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
834 {
835 /*
836 * Update run-time statistics of the 'current'.
837 */
838 update_curr(cfs_rq);
839
840 #ifdef CONFIG_SCHED_HRTICK
841 /*
842 * queued ticks are scheduled to match the slice, so don't bother
843 * validating it and just reschedule.
844 */
845 if (queued) {
846 resched_task(rq_of(cfs_rq)->curr);
847 return;
848 }
849 /*
850 * don't let the period tick interfere with the hrtick preemption
851 */
852 if (!sched_feat(DOUBLE_TICK) &&
853 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
854 return;
855 #endif
856
857 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
858 check_preempt_tick(cfs_rq, curr);
859 }
860
861 /**************************************************
862 * CFS operations on tasks:
863 */
864
865 #ifdef CONFIG_SCHED_HRTICK
866 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
867 {
868 struct sched_entity *se = &p->se;
869 struct cfs_rq *cfs_rq = cfs_rq_of(se);
870
871 WARN_ON(task_rq(p) != rq);
872
873 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
874 u64 slice = sched_slice(cfs_rq, se);
875 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
876 s64 delta = slice - ran;
877
878 if (delta < 0) {
879 if (rq->curr == p)
880 resched_task(p);
881 return;
882 }
883
884 /*
885 * Don't schedule slices shorter than 10000ns, that just
886 * doesn't make sense. Rely on vruntime for fairness.
887 */
888 if (rq->curr != p)
889 delta = max_t(s64, 10000LL, delta);
890
891 hrtick_start(rq, delta);
892 }
893 }
894
895 /*
896 * called from enqueue/dequeue and updates the hrtick when the
897 * current task is from our class and nr_running is low enough
898 * to matter.
899 */
900 static void hrtick_update(struct rq *rq)
901 {
902 struct task_struct *curr = rq->curr;
903
904 if (curr->sched_class != &fair_sched_class)
905 return;
906
907 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
908 hrtick_start_fair(rq, curr);
909 }
910 #else /* !CONFIG_SCHED_HRTICK */
911 static inline void
912 hrtick_start_fair(struct rq *rq, struct task_struct *p)
913 {
914 }
915
916 static inline void hrtick_update(struct rq *rq)
917 {
918 }
919 #endif
920
921 /*
922 * The enqueue_task method is called before nr_running is
923 * increased. Here we update the fair scheduling stats and
924 * then put the task into the rbtree:
925 */
926 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
927 {
928 struct cfs_rq *cfs_rq;
929 struct sched_entity *se = &p->se;
930
931 for_each_sched_entity(se) {
932 if (se->on_rq)
933 break;
934 cfs_rq = cfs_rq_of(se);
935 enqueue_entity(cfs_rq, se, wakeup);
936 wakeup = 1;
937 }
938
939 hrtick_update(rq);
940 }
941
942 /*
943 * The dequeue_task method is called before nr_running is
944 * decreased. We remove the task from the rbtree and
945 * update the fair scheduling stats:
946 */
947 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
948 {
949 struct cfs_rq *cfs_rq;
950 struct sched_entity *se = &p->se;
951
952 for_each_sched_entity(se) {
953 cfs_rq = cfs_rq_of(se);
954 dequeue_entity(cfs_rq, se, sleep);
955 /* Don't dequeue parent if it has other entities besides us */
956 if (cfs_rq->load.weight)
957 break;
958 sleep = 1;
959 }
960
961 hrtick_update(rq);
962 }
963
964 /*
965 * sched_yield() support is very simple - we dequeue and enqueue.
966 *
967 * If compat_yield is turned on then we requeue to the end of the tree.
968 */
969 static void yield_task_fair(struct rq *rq)
970 {
971 struct task_struct *curr = rq->curr;
972 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
973 struct sched_entity *rightmost, *se = &curr->se;
974
975 /*
976 * Are we the only task in the tree?
977 */
978 if (unlikely(cfs_rq->nr_running == 1))
979 return;
980
981 clear_buddies(cfs_rq, se);
982
983 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
984 update_rq_clock(rq);
985 /*
986 * Update run-time statistics of the 'current'.
987 */
988 update_curr(cfs_rq);
989
990 return;
991 }
992 /*
993 * Find the rightmost entry in the rbtree:
994 */
995 rightmost = __pick_last_entity(cfs_rq);
996 /*
997 * Already in the rightmost position?
998 */
999 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1000 return;
1001
1002 /*
1003 * Minimally necessary key value to be last in the tree:
1004 * Upon rescheduling, sched_class::put_prev_task() will place
1005 * 'current' within the tree based on its new key value.
1006 */
1007 se->vruntime = rightmost->vruntime + 1;
1008 }
1009
1010 /*
1011 * wake_idle() will wake a task on an idle cpu if task->cpu is
1012 * not idle and an idle cpu is available. The span of cpus to
1013 * search starts with cpus closest then further out as needed,
1014 * so we always favor a closer, idle cpu.
1015 * Domains may include CPUs that are not usable for migration,
1016 * hence we need to mask them out (cpu_active_mask)
1017 *
1018 * Returns the CPU we should wake onto.
1019 */
1020 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1021 static int wake_idle(int cpu, struct task_struct *p)
1022 {
1023 struct sched_domain *sd;
1024 int i;
1025 unsigned int chosen_wakeup_cpu;
1026 int this_cpu;
1027
1028 /*
1029 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1030 * are idle and this is not a kernel thread and this task's affinity
1031 * allows it to be moved to preferred cpu, then just move!
1032 */
1033
1034 this_cpu = smp_processor_id();
1035 chosen_wakeup_cpu =
1036 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1037
1038 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1039 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1040 p->mm && !(p->flags & PF_KTHREAD) &&
1041 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1042 return chosen_wakeup_cpu;
1043
1044 /*
1045 * If it is idle, then it is the best cpu to run this task.
1046 *
1047 * This cpu is also the best, if it has more than one task already.
1048 * Siblings must be also busy(in most cases) as they didn't already
1049 * pickup the extra load from this cpu and hence we need not check
1050 * sibling runqueue info. This will avoid the checks and cache miss
1051 * penalities associated with that.
1052 */
1053 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1054 return cpu;
1055
1056 for_each_domain(cpu, sd) {
1057 if ((sd->flags & SD_WAKE_IDLE)
1058 || ((sd->flags & SD_WAKE_IDLE_FAR)
1059 && !task_hot(p, task_rq(p)->clock, sd))) {
1060 for_each_cpu_and(i, sched_domain_span(sd),
1061 &p->cpus_allowed) {
1062 if (cpu_active(i) && idle_cpu(i)) {
1063 if (i != task_cpu(p)) {
1064 schedstat_inc(p,
1065 se.nr_wakeups_idle);
1066 }
1067 return i;
1068 }
1069 }
1070 } else {
1071 break;
1072 }
1073 }
1074 return cpu;
1075 }
1076 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1077 static inline int wake_idle(int cpu, struct task_struct *p)
1078 {
1079 return cpu;
1080 }
1081 #endif
1082
1083 #ifdef CONFIG_SMP
1084
1085 #ifdef CONFIG_FAIR_GROUP_SCHED
1086 /*
1087 * effective_load() calculates the load change as seen from the root_task_group
1088 *
1089 * Adding load to a group doesn't make a group heavier, but can cause movement
1090 * of group shares between cpus. Assuming the shares were perfectly aligned one
1091 * can calculate the shift in shares.
1092 *
1093 * The problem is that perfectly aligning the shares is rather expensive, hence
1094 * we try to avoid doing that too often - see update_shares(), which ratelimits
1095 * this change.
1096 *
1097 * We compensate this by not only taking the current delta into account, but
1098 * also considering the delta between when the shares were last adjusted and
1099 * now.
1100 *
1101 * We still saw a performance dip, some tracing learned us that between
1102 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1103 * significantly. Therefore try to bias the error in direction of failing
1104 * the affine wakeup.
1105 *
1106 */
1107 static long effective_load(struct task_group *tg, int cpu,
1108 long wl, long wg)
1109 {
1110 struct sched_entity *se = tg->se[cpu];
1111
1112 if (!tg->parent)
1113 return wl;
1114
1115 /*
1116 * By not taking the decrease of shares on the other cpu into
1117 * account our error leans towards reducing the affine wakeups.
1118 */
1119 if (!wl && sched_feat(ASYM_EFF_LOAD))
1120 return wl;
1121
1122 for_each_sched_entity(se) {
1123 long S, rw, s, a, b;
1124 long more_w;
1125
1126 /*
1127 * Instead of using this increment, also add the difference
1128 * between when the shares were last updated and now.
1129 */
1130 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1131 wl += more_w;
1132 wg += more_w;
1133
1134 S = se->my_q->tg->shares;
1135 s = se->my_q->shares;
1136 rw = se->my_q->rq_weight;
1137
1138 a = S*(rw + wl);
1139 b = S*rw + s*wg;
1140
1141 wl = s*(a-b);
1142
1143 if (likely(b))
1144 wl /= b;
1145
1146 /*
1147 * Assume the group is already running and will
1148 * thus already be accounted for in the weight.
1149 *
1150 * That is, moving shares between CPUs, does not
1151 * alter the group weight.
1152 */
1153 wg = 0;
1154 }
1155
1156 return wl;
1157 }
1158
1159 #else
1160
1161 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1162 unsigned long wl, unsigned long wg)
1163 {
1164 return wl;
1165 }
1166
1167 #endif
1168
1169 static int
1170 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1171 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1172 int idx, unsigned long load, unsigned long this_load,
1173 unsigned int imbalance)
1174 {
1175 struct task_struct *curr = this_rq->curr;
1176 struct task_group *tg;
1177 unsigned long tl = this_load;
1178 unsigned long tl_per_task;
1179 unsigned long weight;
1180 int balanced;
1181
1182 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1183 return 0;
1184
1185 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1186 p->se.avg_overlap > sysctl_sched_migration_cost))
1187 sync = 0;
1188
1189 /*
1190 * If sync wakeup then subtract the (maximum possible)
1191 * effect of the currently running task from the load
1192 * of the current CPU:
1193 */
1194 if (sync) {
1195 tg = task_group(current);
1196 weight = current->se.load.weight;
1197
1198 tl += effective_load(tg, this_cpu, -weight, -weight);
1199 load += effective_load(tg, prev_cpu, 0, -weight);
1200 }
1201
1202 tg = task_group(p);
1203 weight = p->se.load.weight;
1204
1205 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1206 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1207
1208 /*
1209 * If the currently running task will sleep within
1210 * a reasonable amount of time then attract this newly
1211 * woken task:
1212 */
1213 if (sync && balanced)
1214 return 1;
1215
1216 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1217 tl_per_task = cpu_avg_load_per_task(this_cpu);
1218
1219 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1220 tl_per_task)) {
1221 /*
1222 * This domain has SD_WAKE_AFFINE and
1223 * p is cache cold in this domain, and
1224 * there is no bad imbalance.
1225 */
1226 schedstat_inc(this_sd, ttwu_move_affine);
1227 schedstat_inc(p, se.nr_wakeups_affine);
1228
1229 return 1;
1230 }
1231 return 0;
1232 }
1233
1234 static int select_task_rq_fair(struct task_struct *p, int sync)
1235 {
1236 struct sched_domain *sd, *this_sd = NULL;
1237 int prev_cpu, this_cpu, new_cpu;
1238 unsigned long load, this_load;
1239 struct rq *this_rq;
1240 unsigned int imbalance;
1241 int idx;
1242
1243 prev_cpu = task_cpu(p);
1244 this_cpu = smp_processor_id();
1245 this_rq = cpu_rq(this_cpu);
1246 new_cpu = prev_cpu;
1247
1248 if (prev_cpu == this_cpu)
1249 goto out;
1250 /*
1251 * 'this_sd' is the first domain that both
1252 * this_cpu and prev_cpu are present in:
1253 */
1254 for_each_domain(this_cpu, sd) {
1255 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1256 this_sd = sd;
1257 break;
1258 }
1259 }
1260
1261 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1262 goto out;
1263
1264 /*
1265 * Check for affine wakeup and passive balancing possibilities.
1266 */
1267 if (!this_sd)
1268 goto out;
1269
1270 idx = this_sd->wake_idx;
1271
1272 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1273
1274 load = source_load(prev_cpu, idx);
1275 this_load = target_load(this_cpu, idx);
1276
1277 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1278 load, this_load, imbalance))
1279 return this_cpu;
1280
1281 /*
1282 * Start passive balancing when half the imbalance_pct
1283 * limit is reached.
1284 */
1285 if (this_sd->flags & SD_WAKE_BALANCE) {
1286 if (imbalance*this_load <= 100*load) {
1287 schedstat_inc(this_sd, ttwu_move_balance);
1288 schedstat_inc(p, se.nr_wakeups_passive);
1289 return this_cpu;
1290 }
1291 }
1292
1293 out:
1294 return wake_idle(new_cpu, p);
1295 }
1296 #endif /* CONFIG_SMP */
1297
1298 static unsigned long wakeup_gran(struct sched_entity *se)
1299 {
1300 unsigned long gran = sysctl_sched_wakeup_granularity;
1301
1302 /*
1303 * More easily preempt - nice tasks, while not making it harder for
1304 * + nice tasks.
1305 */
1306 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1307 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1308
1309 return gran;
1310 }
1311
1312 /*
1313 * Should 'se' preempt 'curr'.
1314 *
1315 * |s1
1316 * |s2
1317 * |s3
1318 * g
1319 * |<--->|c
1320 *
1321 * w(c, s1) = -1
1322 * w(c, s2) = 0
1323 * w(c, s3) = 1
1324 *
1325 */
1326 static int
1327 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1328 {
1329 s64 gran, vdiff = curr->vruntime - se->vruntime;
1330
1331 if (vdiff <= 0)
1332 return -1;
1333
1334 gran = wakeup_gran(curr);
1335 if (vdiff > gran)
1336 return 1;
1337
1338 return 0;
1339 }
1340
1341 static void set_last_buddy(struct sched_entity *se)
1342 {
1343 for_each_sched_entity(se)
1344 cfs_rq_of(se)->last = se;
1345 }
1346
1347 static void set_next_buddy(struct sched_entity *se)
1348 {
1349 for_each_sched_entity(se)
1350 cfs_rq_of(se)->next = se;
1351 }
1352
1353 /*
1354 * Preempt the current task with a newly woken task if needed:
1355 */
1356 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1357 {
1358 struct task_struct *curr = rq->curr;
1359 struct sched_entity *se = &curr->se, *pse = &p->se;
1360 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1361
1362 update_curr(cfs_rq);
1363
1364 if (unlikely(rt_prio(p->prio))) {
1365 resched_task(curr);
1366 return;
1367 }
1368
1369 if (unlikely(p->sched_class != &fair_sched_class))
1370 return;
1371
1372 if (unlikely(se == pse))
1373 return;
1374
1375 /*
1376 * Only set the backward buddy when the current task is still on the
1377 * rq. This can happen when a wakeup gets interleaved with schedule on
1378 * the ->pre_schedule() or idle_balance() point, either of which can
1379 * drop the rq lock.
1380 *
1381 * Also, during early boot the idle thread is in the fair class, for
1382 * obvious reasons its a bad idea to schedule back to the idle thread.
1383 */
1384 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1385 set_last_buddy(se);
1386 set_next_buddy(pse);
1387
1388 /*
1389 * We can come here with TIF_NEED_RESCHED already set from new task
1390 * wake up path.
1391 */
1392 if (test_tsk_need_resched(curr))
1393 return;
1394
1395 /*
1396 * Batch tasks do not preempt (their preemption is driven by
1397 * the tick):
1398 */
1399 if (unlikely(p->policy == SCHED_BATCH))
1400 return;
1401
1402 if (!sched_feat(WAKEUP_PREEMPT))
1403 return;
1404
1405 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1406 (se->avg_overlap < sysctl_sched_migration_cost &&
1407 pse->avg_overlap < sysctl_sched_migration_cost))) {
1408 resched_task(curr);
1409 return;
1410 }
1411
1412 find_matching_se(&se, &pse);
1413
1414 while (se) {
1415 BUG_ON(!pse);
1416
1417 if (wakeup_preempt_entity(se, pse) == 1) {
1418 resched_task(curr);
1419 break;
1420 }
1421
1422 se = parent_entity(se);
1423 pse = parent_entity(pse);
1424 }
1425 }
1426
1427 static struct task_struct *pick_next_task_fair(struct rq *rq)
1428 {
1429 struct task_struct *p;
1430 struct cfs_rq *cfs_rq = &rq->cfs;
1431 struct sched_entity *se;
1432
1433 if (unlikely(!cfs_rq->nr_running))
1434 return NULL;
1435
1436 do {
1437 se = pick_next_entity(cfs_rq);
1438 set_next_entity(cfs_rq, se);
1439 cfs_rq = group_cfs_rq(se);
1440 } while (cfs_rq);
1441
1442 p = task_of(se);
1443 hrtick_start_fair(rq, p);
1444
1445 return p;
1446 }
1447
1448 /*
1449 * Account for a descheduled task:
1450 */
1451 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1452 {
1453 struct sched_entity *se = &prev->se;
1454 struct cfs_rq *cfs_rq;
1455
1456 for_each_sched_entity(se) {
1457 cfs_rq = cfs_rq_of(se);
1458 put_prev_entity(cfs_rq, se);
1459 }
1460 }
1461
1462 #ifdef CONFIG_SMP
1463 /**************************************************
1464 * Fair scheduling class load-balancing methods:
1465 */
1466
1467 /*
1468 * Load-balancing iterator. Note: while the runqueue stays locked
1469 * during the whole iteration, the current task might be
1470 * dequeued so the iterator has to be dequeue-safe. Here we
1471 * achieve that by always pre-iterating before returning
1472 * the current task:
1473 */
1474 static struct task_struct *
1475 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1476 {
1477 struct task_struct *p = NULL;
1478 struct sched_entity *se;
1479
1480 if (next == &cfs_rq->tasks)
1481 return NULL;
1482
1483 se = list_entry(next, struct sched_entity, group_node);
1484 p = task_of(se);
1485 cfs_rq->balance_iterator = next->next;
1486
1487 return p;
1488 }
1489
1490 static struct task_struct *load_balance_start_fair(void *arg)
1491 {
1492 struct cfs_rq *cfs_rq = arg;
1493
1494 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1495 }
1496
1497 static struct task_struct *load_balance_next_fair(void *arg)
1498 {
1499 struct cfs_rq *cfs_rq = arg;
1500
1501 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1502 }
1503
1504 static unsigned long
1505 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1506 unsigned long max_load_move, struct sched_domain *sd,
1507 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1508 struct cfs_rq *cfs_rq)
1509 {
1510 struct rq_iterator cfs_rq_iterator;
1511
1512 cfs_rq_iterator.start = load_balance_start_fair;
1513 cfs_rq_iterator.next = load_balance_next_fair;
1514 cfs_rq_iterator.arg = cfs_rq;
1515
1516 return balance_tasks(this_rq, this_cpu, busiest,
1517 max_load_move, sd, idle, all_pinned,
1518 this_best_prio, &cfs_rq_iterator);
1519 }
1520
1521 #ifdef CONFIG_FAIR_GROUP_SCHED
1522 static unsigned long
1523 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1524 unsigned long max_load_move,
1525 struct sched_domain *sd, enum cpu_idle_type idle,
1526 int *all_pinned, int *this_best_prio)
1527 {
1528 long rem_load_move = max_load_move;
1529 int busiest_cpu = cpu_of(busiest);
1530 struct task_group *tg;
1531
1532 rcu_read_lock();
1533 update_h_load(busiest_cpu);
1534
1535 list_for_each_entry_rcu(tg, &task_groups, list) {
1536 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1537 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1538 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1539 u64 rem_load, moved_load;
1540
1541 /*
1542 * empty group
1543 */
1544 if (!busiest_cfs_rq->task_weight)
1545 continue;
1546
1547 rem_load = (u64)rem_load_move * busiest_weight;
1548 rem_load = div_u64(rem_load, busiest_h_load + 1);
1549
1550 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1551 rem_load, sd, idle, all_pinned, this_best_prio,
1552 tg->cfs_rq[busiest_cpu]);
1553
1554 if (!moved_load)
1555 continue;
1556
1557 moved_load *= busiest_h_load;
1558 moved_load = div_u64(moved_load, busiest_weight + 1);
1559
1560 rem_load_move -= moved_load;
1561 if (rem_load_move < 0)
1562 break;
1563 }
1564 rcu_read_unlock();
1565
1566 return max_load_move - rem_load_move;
1567 }
1568 #else
1569 static unsigned long
1570 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1571 unsigned long max_load_move,
1572 struct sched_domain *sd, enum cpu_idle_type idle,
1573 int *all_pinned, int *this_best_prio)
1574 {
1575 return __load_balance_fair(this_rq, this_cpu, busiest,
1576 max_load_move, sd, idle, all_pinned,
1577 this_best_prio, &busiest->cfs);
1578 }
1579 #endif
1580
1581 static int
1582 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1583 struct sched_domain *sd, enum cpu_idle_type idle)
1584 {
1585 struct cfs_rq *busy_cfs_rq;
1586 struct rq_iterator cfs_rq_iterator;
1587
1588 cfs_rq_iterator.start = load_balance_start_fair;
1589 cfs_rq_iterator.next = load_balance_next_fair;
1590
1591 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1592 /*
1593 * pass busy_cfs_rq argument into
1594 * load_balance_[start|next]_fair iterators
1595 */
1596 cfs_rq_iterator.arg = busy_cfs_rq;
1597 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1598 &cfs_rq_iterator))
1599 return 1;
1600 }
1601
1602 return 0;
1603 }
1604 #endif /* CONFIG_SMP */
1605
1606 /*
1607 * scheduler tick hitting a task of our scheduling class:
1608 */
1609 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1610 {
1611 struct cfs_rq *cfs_rq;
1612 struct sched_entity *se = &curr->se;
1613
1614 for_each_sched_entity(se) {
1615 cfs_rq = cfs_rq_of(se);
1616 entity_tick(cfs_rq, se, queued);
1617 }
1618 }
1619
1620 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1621
1622 /*
1623 * Share the fairness runtime between parent and child, thus the
1624 * total amount of pressure for CPU stays equal - new tasks
1625 * get a chance to run but frequent forkers are not allowed to
1626 * monopolize the CPU. Note: the parent runqueue is locked,
1627 * the child is not running yet.
1628 */
1629 static void task_new_fair(struct rq *rq, struct task_struct *p)
1630 {
1631 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1632 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1633 int this_cpu = smp_processor_id();
1634
1635 sched_info_queued(p);
1636
1637 update_curr(cfs_rq);
1638 place_entity(cfs_rq, se, 1);
1639
1640 /* 'curr' will be NULL if the child belongs to a different group */
1641 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1642 curr && curr->vruntime < se->vruntime) {
1643 /*
1644 * Upon rescheduling, sched_class::put_prev_task() will place
1645 * 'current' within the tree based on its new key value.
1646 */
1647 swap(curr->vruntime, se->vruntime);
1648 resched_task(rq->curr);
1649 }
1650
1651 enqueue_task_fair(rq, p, 0);
1652 }
1653
1654 /*
1655 * Priority of the task has changed. Check to see if we preempt
1656 * the current task.
1657 */
1658 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1659 int oldprio, int running)
1660 {
1661 /*
1662 * Reschedule if we are currently running on this runqueue and
1663 * our priority decreased, or if we are not currently running on
1664 * this runqueue and our priority is higher than the current's
1665 */
1666 if (running) {
1667 if (p->prio > oldprio)
1668 resched_task(rq->curr);
1669 } else
1670 check_preempt_curr(rq, p, 0);
1671 }
1672
1673 /*
1674 * We switched to the sched_fair class.
1675 */
1676 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1677 int running)
1678 {
1679 /*
1680 * We were most likely switched from sched_rt, so
1681 * kick off the schedule if running, otherwise just see
1682 * if we can still preempt the current task.
1683 */
1684 if (running)
1685 resched_task(rq->curr);
1686 else
1687 check_preempt_curr(rq, p, 0);
1688 }
1689
1690 /* Account for a task changing its policy or group.
1691 *
1692 * This routine is mostly called to set cfs_rq->curr field when a task
1693 * migrates between groups/classes.
1694 */
1695 static void set_curr_task_fair(struct rq *rq)
1696 {
1697 struct sched_entity *se = &rq->curr->se;
1698
1699 for_each_sched_entity(se)
1700 set_next_entity(cfs_rq_of(se), se);
1701 }
1702
1703 #ifdef CONFIG_FAIR_GROUP_SCHED
1704 static void moved_group_fair(struct task_struct *p)
1705 {
1706 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1707
1708 update_curr(cfs_rq);
1709 place_entity(cfs_rq, &p->se, 1);
1710 }
1711 #endif
1712
1713 /*
1714 * All the scheduling class methods:
1715 */
1716 static const struct sched_class fair_sched_class = {
1717 .next = &idle_sched_class,
1718 .enqueue_task = enqueue_task_fair,
1719 .dequeue_task = dequeue_task_fair,
1720 .yield_task = yield_task_fair,
1721
1722 .check_preempt_curr = check_preempt_wakeup,
1723
1724 .pick_next_task = pick_next_task_fair,
1725 .put_prev_task = put_prev_task_fair,
1726
1727 #ifdef CONFIG_SMP
1728 .select_task_rq = select_task_rq_fair,
1729
1730 .load_balance = load_balance_fair,
1731 .move_one_task = move_one_task_fair,
1732 #endif
1733
1734 .set_curr_task = set_curr_task_fair,
1735 .task_tick = task_tick_fair,
1736 .task_new = task_new_fair,
1737
1738 .prio_changed = prio_changed_fair,
1739 .switched_to = switched_to_fair,
1740
1741 #ifdef CONFIG_FAIR_GROUP_SCHED
1742 .moved_group = moved_group_fair,
1743 #endif
1744 };
1745
1746 #ifdef CONFIG_SCHED_DEBUG
1747 static void print_cfs_stats(struct seq_file *m, int cpu)
1748 {
1749 struct cfs_rq *cfs_rq;
1750
1751 rcu_read_lock();
1752 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1753 print_cfs_rq(m, cpu, cfs_rq);
1754 rcu_read_unlock();
1755 }
1756 #endif
This page took 0.069687 seconds and 5 git commands to generate.