Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 5000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 1000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first.
53 */
54 unsigned int sysctl_sched_child_runs_first __read_mostly;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 #ifdef CONFIG_FAIR_GROUP_SCHED
83
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86 {
87 return cfs_rq->rq;
88 }
89
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se) (!se->my_q)
92
93 static inline struct task_struct *task_of(struct sched_entity *se)
94 {
95 #ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98 return container_of(se, struct task_struct, se);
99 }
100
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106 {
107 return p->se.cfs_rq;
108 }
109
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112 {
113 return se->cfs_rq;
114 }
115
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118 {
119 return grp->my_q;
120 }
121
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126 {
127 return cfs_rq->tg->cfs_rq[this_cpu];
128 }
129
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
137 {
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142 }
143
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
145 {
146 return se->parent;
147 }
148
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
151 {
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158 }
159
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162 {
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190 }
191
192 #else /* !CONFIG_FAIR_GROUP_SCHED */
193
194 static inline struct task_struct *task_of(struct sched_entity *se)
195 {
196 return container_of(se, struct task_struct, se);
197 }
198
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200 {
201 return container_of(cfs_rq, struct rq, cfs);
202 }
203
204 #define entity_is_task(se) 1
205
206 #define for_each_sched_entity(se) \
207 for (; se; se = NULL)
208
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210 {
211 return &task_rq(p)->cfs;
212 }
213
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215 {
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220 }
221
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224 {
225 return NULL;
226 }
227
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229 {
230 return &cpu_rq(this_cpu)->cfs;
231 }
232
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
238 {
239 return 1;
240 }
241
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
243 {
244 return NULL;
245 }
246
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249 {
250 }
251
252 #endif /* CONFIG_FAIR_GROUP_SCHED */
253
254
255 /**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260 {
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266 }
267
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269 {
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275 }
276
277 static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279 {
280 return (s64)(a->vruntime - b->vruntime) < 0;
281 }
282
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284 {
285 return se->vruntime - cfs_rq->min_vruntime;
286 }
287
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
289 {
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
300 if (!cfs_rq->curr)
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307 }
308
309 /*
310 * Enqueue an entity into the rb-tree:
311 */
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 {
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
317 s64 key = entity_key(cfs_rq, se);
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
330 if (key < entity_key(cfs_rq, entry)) {
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
342 if (leftmost)
343 cfs_rq->rb_leftmost = &se->run_node;
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347 }
348
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
356 }
357
358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359 }
360
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362 {
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
369 }
370
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372 {
373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375 if (!last)
376 return NULL;
377
378 return rb_entry(last, struct sched_entity, run_node);
379 }
380
381 /**************************************************************
382 * Scheduling class statistics methods:
383 */
384
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387 void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389 {
390 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399 }
400 #endif
401
402 /*
403 * delta /= w
404 */
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
407 {
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411 return delta;
412 }
413
414 /*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
422 static u64 __sched_period(unsigned long nr_running)
423 {
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
426
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
430 }
431
432 return period;
433 }
434
435 /*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
439 * s = p*P[w/rw]
440 */
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442 {
443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445 for_each_sched_entity(se) {
446 struct load_weight *load;
447 struct load_weight lw;
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
451
452 if (unlikely(!se->on_rq)) {
453 lw = cfs_rq->load;
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
461 }
462
463 /*
464 * We calculate the vruntime slice of a to be inserted task
465 *
466 * vs = s/w
467 */
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 }
472
473 /*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
480 {
481 unsigned long delta_exec_weighted;
482
483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq);
490 }
491
492 static void update_curr(struct cfs_rq *cfs_rq)
493 {
494 struct sched_entity *curr = cfs_rq->curr;
495 u64 now = rq_of(cfs_rq)->clock;
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
506 delta_exec = (unsigned long)(now - curr->exec_start);
507 if (!delta_exec)
508 return;
509
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
517 cpuacct_charge(curtask, delta_exec);
518 account_group_exec_runtime(curtask, delta_exec);
519 }
520 }
521
522 static inline void
523 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
526 }
527
528 /*
529 * Task is being enqueued - update stats:
530 */
531 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 /*
534 * Are we enqueueing a waiting task? (for current tasks
535 * a dequeue/enqueue event is a NOP)
536 */
537 if (se != cfs_rq->curr)
538 update_stats_wait_start(cfs_rq, se);
539 }
540
541 static void
542 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 {
544 schedstat_set(se->wait_max, max(se->wait_max,
545 rq_of(cfs_rq)->clock - se->wait_start));
546 schedstat_set(se->wait_count, se->wait_count + 1);
547 schedstat_set(se->wait_sum, se->wait_sum +
548 rq_of(cfs_rq)->clock - se->wait_start);
549 #ifdef CONFIG_SCHEDSTATS
550 if (entity_is_task(se)) {
551 trace_sched_stat_wait(task_of(se),
552 rq_of(cfs_rq)->clock - se->wait_start);
553 }
554 #endif
555 schedstat_set(se->wait_start, 0);
556 }
557
558 static inline void
559 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 {
561 /*
562 * Mark the end of the wait period if dequeueing a
563 * waiting task:
564 */
565 if (se != cfs_rq->curr)
566 update_stats_wait_end(cfs_rq, se);
567 }
568
569 /*
570 * We are picking a new current task - update its stats:
571 */
572 static inline void
573 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574 {
575 /*
576 * We are starting a new run period:
577 */
578 se->exec_start = rq_of(cfs_rq)->clock;
579 }
580
581 /**************************************************
582 * Scheduling class queueing methods:
583 */
584
585 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586 static void
587 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588 {
589 cfs_rq->task_weight += weight;
590 }
591 #else
592 static inline void
593 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
594 {
595 }
596 #endif
597
598 static void
599 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600 {
601 update_load_add(&cfs_rq->load, se->load.weight);
602 if (!parent_entity(se))
603 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604 if (entity_is_task(se)) {
605 add_cfs_task_weight(cfs_rq, se->load.weight);
606 list_add(&se->group_node, &cfs_rq->tasks);
607 }
608 cfs_rq->nr_running++;
609 se->on_rq = 1;
610 }
611
612 static void
613 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614 {
615 update_load_sub(&cfs_rq->load, se->load.weight);
616 if (!parent_entity(se))
617 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618 if (entity_is_task(se)) {
619 add_cfs_task_weight(cfs_rq, -se->load.weight);
620 list_del_init(&se->group_node);
621 }
622 cfs_rq->nr_running--;
623 se->on_rq = 0;
624 }
625
626 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 #ifdef CONFIG_SCHEDSTATS
629 struct task_struct *tsk = NULL;
630
631 if (entity_is_task(se))
632 tsk = task_of(se);
633
634 if (se->sleep_start) {
635 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636
637 if ((s64)delta < 0)
638 delta = 0;
639
640 if (unlikely(delta > se->sleep_max))
641 se->sleep_max = delta;
642
643 se->sleep_start = 0;
644 se->sum_sleep_runtime += delta;
645
646 if (tsk) {
647 account_scheduler_latency(tsk, delta >> 10, 1);
648 trace_sched_stat_sleep(tsk, delta);
649 }
650 }
651 if (se->block_start) {
652 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653
654 if ((s64)delta < 0)
655 delta = 0;
656
657 if (unlikely(delta > se->block_max))
658 se->block_max = delta;
659
660 se->block_start = 0;
661 se->sum_sleep_runtime += delta;
662
663 if (tsk) {
664 if (tsk->in_iowait) {
665 se->iowait_sum += delta;
666 se->iowait_count++;
667 trace_sched_stat_iowait(tsk, delta);
668 }
669
670 /*
671 * Blocking time is in units of nanosecs, so shift by
672 * 20 to get a milliseconds-range estimation of the
673 * amount of time that the task spent sleeping:
674 */
675 if (unlikely(prof_on == SLEEP_PROFILING)) {
676 profile_hits(SLEEP_PROFILING,
677 (void *)get_wchan(tsk),
678 delta >> 20);
679 }
680 account_scheduler_latency(tsk, delta >> 10, 0);
681 }
682 }
683 #endif
684 }
685
686 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687 {
688 #ifdef CONFIG_SCHED_DEBUG
689 s64 d = se->vruntime - cfs_rq->min_vruntime;
690
691 if (d < 0)
692 d = -d;
693
694 if (d > 3*sysctl_sched_latency)
695 schedstat_inc(cfs_rq, nr_spread_over);
696 #endif
697 }
698
699 static void
700 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701 {
702 u64 vruntime = cfs_rq->min_vruntime;
703
704 /*
705 * The 'current' period is already promised to the current tasks,
706 * however the extra weight of the new task will slow them down a
707 * little, place the new task so that it fits in the slot that
708 * stays open at the end.
709 */
710 if (initial && sched_feat(START_DEBIT))
711 vruntime += sched_vslice(cfs_rq, se);
712
713 /* sleeps up to a single latency don't count. */
714 if (!initial && sched_feat(FAIR_SLEEPERS)) {
715 unsigned long thresh = sysctl_sched_latency;
716
717 /*
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
722 */
723 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
724 task_of(se)->policy != SCHED_IDLE))
725 thresh = calc_delta_fair(thresh, se);
726
727 /*
728 * Halve their sleep time's effect, to allow
729 * for a gentler effect of sleepers:
730 */
731 if (sched_feat(GENTLE_FAIR_SLEEPERS))
732 thresh >>= 1;
733
734 vruntime -= thresh;
735 }
736
737 /* ensure we never gain time by being placed backwards. */
738 vruntime = max_vruntime(se->vruntime, vruntime);
739
740 se->vruntime = vruntime;
741 }
742
743 static void
744 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
745 {
746 /*
747 * Update run-time statistics of the 'current'.
748 */
749 update_curr(cfs_rq);
750 account_entity_enqueue(cfs_rq, se);
751
752 if (wakeup) {
753 place_entity(cfs_rq, se, 0);
754 enqueue_sleeper(cfs_rq, se);
755 }
756
757 update_stats_enqueue(cfs_rq, se);
758 check_spread(cfs_rq, se);
759 if (se != cfs_rq->curr)
760 __enqueue_entity(cfs_rq, se);
761 }
762
763 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
764 {
765 if (!se || cfs_rq->last == se)
766 cfs_rq->last = NULL;
767
768 if (!se || cfs_rq->next == se)
769 cfs_rq->next = NULL;
770 }
771
772 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 for_each_sched_entity(se)
775 __clear_buddies(cfs_rq_of(se), se);
776 }
777
778 static void
779 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
780 {
781 /*
782 * Update run-time statistics of the 'current'.
783 */
784 update_curr(cfs_rq);
785
786 update_stats_dequeue(cfs_rq, se);
787 if (sleep) {
788 #ifdef CONFIG_SCHEDSTATS
789 if (entity_is_task(se)) {
790 struct task_struct *tsk = task_of(se);
791
792 if (tsk->state & TASK_INTERRUPTIBLE)
793 se->sleep_start = rq_of(cfs_rq)->clock;
794 if (tsk->state & TASK_UNINTERRUPTIBLE)
795 se->block_start = rq_of(cfs_rq)->clock;
796 }
797 #endif
798 }
799
800 clear_buddies(cfs_rq, se);
801
802 if (se != cfs_rq->curr)
803 __dequeue_entity(cfs_rq, se);
804 account_entity_dequeue(cfs_rq, se);
805 update_min_vruntime(cfs_rq);
806 }
807
808 /*
809 * Preempt the current task with a newly woken task if needed:
810 */
811 static void
812 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
813 {
814 unsigned long ideal_runtime, delta_exec;
815
816 ideal_runtime = sched_slice(cfs_rq, curr);
817 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
818 if (delta_exec > ideal_runtime) {
819 resched_task(rq_of(cfs_rq)->curr);
820 /*
821 * The current task ran long enough, ensure it doesn't get
822 * re-elected due to buddy favours.
823 */
824 clear_buddies(cfs_rq, curr);
825 return;
826 }
827
828 /*
829 * Ensure that a task that missed wakeup preemption by a
830 * narrow margin doesn't have to wait for a full slice.
831 * This also mitigates buddy induced latencies under load.
832 */
833 if (!sched_feat(WAKEUP_PREEMPT))
834 return;
835
836 if (delta_exec < sysctl_sched_min_granularity)
837 return;
838
839 if (cfs_rq->nr_running > 1) {
840 struct sched_entity *se = __pick_next_entity(cfs_rq);
841 s64 delta = curr->vruntime - se->vruntime;
842
843 if (delta > ideal_runtime)
844 resched_task(rq_of(cfs_rq)->curr);
845 }
846 }
847
848 static void
849 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
850 {
851 /* 'current' is not kept within the tree. */
852 if (se->on_rq) {
853 /*
854 * Any task has to be enqueued before it get to execute on
855 * a CPU. So account for the time it spent waiting on the
856 * runqueue.
857 */
858 update_stats_wait_end(cfs_rq, se);
859 __dequeue_entity(cfs_rq, se);
860 }
861
862 update_stats_curr_start(cfs_rq, se);
863 cfs_rq->curr = se;
864 #ifdef CONFIG_SCHEDSTATS
865 /*
866 * Track our maximum slice length, if the CPU's load is at
867 * least twice that of our own weight (i.e. dont track it
868 * when there are only lesser-weight tasks around):
869 */
870 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
871 se->slice_max = max(se->slice_max,
872 se->sum_exec_runtime - se->prev_sum_exec_runtime);
873 }
874 #endif
875 se->prev_sum_exec_runtime = se->sum_exec_runtime;
876 }
877
878 static int
879 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
880
881 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
882 {
883 struct sched_entity *se = __pick_next_entity(cfs_rq);
884 struct sched_entity *left = se;
885
886 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
887 se = cfs_rq->next;
888
889 /*
890 * Prefer last buddy, try to return the CPU to a preempted task.
891 */
892 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
893 se = cfs_rq->last;
894
895 clear_buddies(cfs_rq, se);
896
897 return se;
898 }
899
900 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
901 {
902 /*
903 * If still on the runqueue then deactivate_task()
904 * was not called and update_curr() has to be done:
905 */
906 if (prev->on_rq)
907 update_curr(cfs_rq);
908
909 check_spread(cfs_rq, prev);
910 if (prev->on_rq) {
911 update_stats_wait_start(cfs_rq, prev);
912 /* Put 'current' back into the tree. */
913 __enqueue_entity(cfs_rq, prev);
914 }
915 cfs_rq->curr = NULL;
916 }
917
918 static void
919 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
920 {
921 /*
922 * Update run-time statistics of the 'current'.
923 */
924 update_curr(cfs_rq);
925
926 #ifdef CONFIG_SCHED_HRTICK
927 /*
928 * queued ticks are scheduled to match the slice, so don't bother
929 * validating it and just reschedule.
930 */
931 if (queued) {
932 resched_task(rq_of(cfs_rq)->curr);
933 return;
934 }
935 /*
936 * don't let the period tick interfere with the hrtick preemption
937 */
938 if (!sched_feat(DOUBLE_TICK) &&
939 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
940 return;
941 #endif
942
943 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
944 check_preempt_tick(cfs_rq, curr);
945 }
946
947 /**************************************************
948 * CFS operations on tasks:
949 */
950
951 #ifdef CONFIG_SCHED_HRTICK
952 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
953 {
954 struct sched_entity *se = &p->se;
955 struct cfs_rq *cfs_rq = cfs_rq_of(se);
956
957 WARN_ON(task_rq(p) != rq);
958
959 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
960 u64 slice = sched_slice(cfs_rq, se);
961 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
962 s64 delta = slice - ran;
963
964 if (delta < 0) {
965 if (rq->curr == p)
966 resched_task(p);
967 return;
968 }
969
970 /*
971 * Don't schedule slices shorter than 10000ns, that just
972 * doesn't make sense. Rely on vruntime for fairness.
973 */
974 if (rq->curr != p)
975 delta = max_t(s64, 10000LL, delta);
976
977 hrtick_start(rq, delta);
978 }
979 }
980
981 /*
982 * called from enqueue/dequeue and updates the hrtick when the
983 * current task is from our class and nr_running is low enough
984 * to matter.
985 */
986 static void hrtick_update(struct rq *rq)
987 {
988 struct task_struct *curr = rq->curr;
989
990 if (curr->sched_class != &fair_sched_class)
991 return;
992
993 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
994 hrtick_start_fair(rq, curr);
995 }
996 #else /* !CONFIG_SCHED_HRTICK */
997 static inline void
998 hrtick_start_fair(struct rq *rq, struct task_struct *p)
999 {
1000 }
1001
1002 static inline void hrtick_update(struct rq *rq)
1003 {
1004 }
1005 #endif
1006
1007 /*
1008 * The enqueue_task method is called before nr_running is
1009 * increased. Here we update the fair scheduling stats and
1010 * then put the task into the rbtree:
1011 */
1012 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1013 {
1014 struct cfs_rq *cfs_rq;
1015 struct sched_entity *se = &p->se;
1016
1017 for_each_sched_entity(se) {
1018 if (se->on_rq)
1019 break;
1020 cfs_rq = cfs_rq_of(se);
1021 enqueue_entity(cfs_rq, se, wakeup);
1022 wakeup = 1;
1023 }
1024
1025 hrtick_update(rq);
1026 }
1027
1028 /*
1029 * The dequeue_task method is called before nr_running is
1030 * decreased. We remove the task from the rbtree and
1031 * update the fair scheduling stats:
1032 */
1033 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1034 {
1035 struct cfs_rq *cfs_rq;
1036 struct sched_entity *se = &p->se;
1037
1038 for_each_sched_entity(se) {
1039 cfs_rq = cfs_rq_of(se);
1040 dequeue_entity(cfs_rq, se, sleep);
1041 /* Don't dequeue parent if it has other entities besides us */
1042 if (cfs_rq->load.weight)
1043 break;
1044 sleep = 1;
1045 }
1046
1047 hrtick_update(rq);
1048 }
1049
1050 /*
1051 * sched_yield() support is very simple - we dequeue and enqueue.
1052 *
1053 * If compat_yield is turned on then we requeue to the end of the tree.
1054 */
1055 static void yield_task_fair(struct rq *rq)
1056 {
1057 struct task_struct *curr = rq->curr;
1058 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1059 struct sched_entity *rightmost, *se = &curr->se;
1060
1061 /*
1062 * Are we the only task in the tree?
1063 */
1064 if (unlikely(cfs_rq->nr_running == 1))
1065 return;
1066
1067 clear_buddies(cfs_rq, se);
1068
1069 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1070 update_rq_clock(rq);
1071 /*
1072 * Update run-time statistics of the 'current'.
1073 */
1074 update_curr(cfs_rq);
1075
1076 return;
1077 }
1078 /*
1079 * Find the rightmost entry in the rbtree:
1080 */
1081 rightmost = __pick_last_entity(cfs_rq);
1082 /*
1083 * Already in the rightmost position?
1084 */
1085 if (unlikely(!rightmost || entity_before(rightmost, se)))
1086 return;
1087
1088 /*
1089 * Minimally necessary key value to be last in the tree:
1090 * Upon rescheduling, sched_class::put_prev_task() will place
1091 * 'current' within the tree based on its new key value.
1092 */
1093 se->vruntime = rightmost->vruntime + 1;
1094 }
1095
1096 #ifdef CONFIG_SMP
1097
1098 #ifdef CONFIG_FAIR_GROUP_SCHED
1099 /*
1100 * effective_load() calculates the load change as seen from the root_task_group
1101 *
1102 * Adding load to a group doesn't make a group heavier, but can cause movement
1103 * of group shares between cpus. Assuming the shares were perfectly aligned one
1104 * can calculate the shift in shares.
1105 *
1106 * The problem is that perfectly aligning the shares is rather expensive, hence
1107 * we try to avoid doing that too often - see update_shares(), which ratelimits
1108 * this change.
1109 *
1110 * We compensate this by not only taking the current delta into account, but
1111 * also considering the delta between when the shares were last adjusted and
1112 * now.
1113 *
1114 * We still saw a performance dip, some tracing learned us that between
1115 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1116 * significantly. Therefore try to bias the error in direction of failing
1117 * the affine wakeup.
1118 *
1119 */
1120 static long effective_load(struct task_group *tg, int cpu,
1121 long wl, long wg)
1122 {
1123 struct sched_entity *se = tg->se[cpu];
1124
1125 if (!tg->parent)
1126 return wl;
1127
1128 /*
1129 * By not taking the decrease of shares on the other cpu into
1130 * account our error leans towards reducing the affine wakeups.
1131 */
1132 if (!wl && sched_feat(ASYM_EFF_LOAD))
1133 return wl;
1134
1135 for_each_sched_entity(se) {
1136 long S, rw, s, a, b;
1137 long more_w;
1138
1139 /*
1140 * Instead of using this increment, also add the difference
1141 * between when the shares were last updated and now.
1142 */
1143 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1144 wl += more_w;
1145 wg += more_w;
1146
1147 S = se->my_q->tg->shares;
1148 s = se->my_q->shares;
1149 rw = se->my_q->rq_weight;
1150
1151 a = S*(rw + wl);
1152 b = S*rw + s*wg;
1153
1154 wl = s*(a-b);
1155
1156 if (likely(b))
1157 wl /= b;
1158
1159 /*
1160 * Assume the group is already running and will
1161 * thus already be accounted for in the weight.
1162 *
1163 * That is, moving shares between CPUs, does not
1164 * alter the group weight.
1165 */
1166 wg = 0;
1167 }
1168
1169 return wl;
1170 }
1171
1172 #else
1173
1174 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1175 unsigned long wl, unsigned long wg)
1176 {
1177 return wl;
1178 }
1179
1180 #endif
1181
1182 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1183 {
1184 struct task_struct *curr = current;
1185 unsigned long this_load, load;
1186 int idx, this_cpu, prev_cpu;
1187 unsigned long tl_per_task;
1188 unsigned int imbalance;
1189 struct task_group *tg;
1190 unsigned long weight;
1191 int balanced;
1192
1193 idx = sd->wake_idx;
1194 this_cpu = smp_processor_id();
1195 prev_cpu = task_cpu(p);
1196 load = source_load(prev_cpu, idx);
1197 this_load = target_load(this_cpu, idx);
1198
1199 if (sync) {
1200 if (sched_feat(SYNC_LESS) &&
1201 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1202 p->se.avg_overlap > sysctl_sched_migration_cost))
1203 sync = 0;
1204 } else {
1205 if (sched_feat(SYNC_MORE) &&
1206 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1207 p->se.avg_overlap < sysctl_sched_migration_cost))
1208 sync = 1;
1209 }
1210
1211 /*
1212 * If sync wakeup then subtract the (maximum possible)
1213 * effect of the currently running task from the load
1214 * of the current CPU:
1215 */
1216 if (sync) {
1217 tg = task_group(current);
1218 weight = current->se.load.weight;
1219
1220 this_load += effective_load(tg, this_cpu, -weight, -weight);
1221 load += effective_load(tg, prev_cpu, 0, -weight);
1222 }
1223
1224 tg = task_group(p);
1225 weight = p->se.load.weight;
1226
1227 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1228
1229 /*
1230 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1231 * due to the sync cause above having dropped this_load to 0, we'll
1232 * always have an imbalance, but there's really nothing you can do
1233 * about that, so that's good too.
1234 *
1235 * Otherwise check if either cpus are near enough in load to allow this
1236 * task to be woken on this_cpu.
1237 */
1238 balanced = !this_load ||
1239 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1240 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1241
1242 /*
1243 * If the currently running task will sleep within
1244 * a reasonable amount of time then attract this newly
1245 * woken task:
1246 */
1247 if (sync && balanced)
1248 return 1;
1249
1250 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1251 tl_per_task = cpu_avg_load_per_task(this_cpu);
1252
1253 if (balanced ||
1254 (this_load <= load &&
1255 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1256 /*
1257 * This domain has SD_WAKE_AFFINE and
1258 * p is cache cold in this domain, and
1259 * there is no bad imbalance.
1260 */
1261 schedstat_inc(sd, ttwu_move_affine);
1262 schedstat_inc(p, se.nr_wakeups_affine);
1263
1264 return 1;
1265 }
1266 return 0;
1267 }
1268
1269 /*
1270 * find_idlest_group finds and returns the least busy CPU group within the
1271 * domain.
1272 */
1273 static struct sched_group *
1274 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1275 int this_cpu, int load_idx)
1276 {
1277 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1278 unsigned long min_load = ULONG_MAX, this_load = 0;
1279 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1280
1281 do {
1282 unsigned long load, avg_load;
1283 int local_group;
1284 int i;
1285
1286 /* Skip over this group if it has no CPUs allowed */
1287 if (!cpumask_intersects(sched_group_cpus(group),
1288 &p->cpus_allowed))
1289 continue;
1290
1291 local_group = cpumask_test_cpu(this_cpu,
1292 sched_group_cpus(group));
1293
1294 /* Tally up the load of all CPUs in the group */
1295 avg_load = 0;
1296
1297 for_each_cpu(i, sched_group_cpus(group)) {
1298 /* Bias balancing toward cpus of our domain */
1299 if (local_group)
1300 load = source_load(i, load_idx);
1301 else
1302 load = target_load(i, load_idx);
1303
1304 avg_load += load;
1305 }
1306
1307 /* Adjust by relative CPU power of the group */
1308 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1309
1310 if (local_group) {
1311 this_load = avg_load;
1312 this = group;
1313 } else if (avg_load < min_load) {
1314 min_load = avg_load;
1315 idlest = group;
1316 }
1317 } while (group = group->next, group != sd->groups);
1318
1319 if (!idlest || 100*this_load < imbalance*min_load)
1320 return NULL;
1321 return idlest;
1322 }
1323
1324 /*
1325 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1326 */
1327 static int
1328 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1329 {
1330 unsigned long load, min_load = ULONG_MAX;
1331 int idlest = -1;
1332 int i;
1333
1334 /* Traverse only the allowed CPUs */
1335 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1336 load = weighted_cpuload(i);
1337
1338 if (load < min_load || (load == min_load && i == this_cpu)) {
1339 min_load = load;
1340 idlest = i;
1341 }
1342 }
1343
1344 return idlest;
1345 }
1346
1347 /*
1348 * Try and locate an idle CPU in the sched_domain.
1349 */
1350 static int
1351 select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1352 {
1353 int cpu = smp_processor_id();
1354 int prev_cpu = task_cpu(p);
1355 int i;
1356
1357 /*
1358 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1359 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1360 * always a better target than the current cpu.
1361 */
1362 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1363 return prev_cpu;
1364
1365 /*
1366 * Otherwise, iterate the domain and find an elegible idle cpu.
1367 */
1368 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1369 if (!cpu_rq(i)->cfs.nr_running) {
1370 target = i;
1371 break;
1372 }
1373 }
1374
1375 return target;
1376 }
1377
1378 /*
1379 * sched_balance_self: balance the current task (running on cpu) in domains
1380 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1381 * SD_BALANCE_EXEC.
1382 *
1383 * Balance, ie. select the least loaded group.
1384 *
1385 * Returns the target CPU number, or the same CPU if no balancing is needed.
1386 *
1387 * preempt must be disabled.
1388 */
1389 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1390 {
1391 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1392 int cpu = smp_processor_id();
1393 int prev_cpu = task_cpu(p);
1394 int new_cpu = cpu;
1395 int want_affine = 0;
1396 int want_sd = 1;
1397 int sync = wake_flags & WF_SYNC;
1398
1399 if (sd_flag & SD_BALANCE_WAKE) {
1400 if (sched_feat(AFFINE_WAKEUPS) &&
1401 cpumask_test_cpu(cpu, &p->cpus_allowed))
1402 want_affine = 1;
1403 new_cpu = prev_cpu;
1404 }
1405
1406 rcu_read_lock();
1407 for_each_domain(cpu, tmp) {
1408 /*
1409 * If power savings logic is enabled for a domain, see if we
1410 * are not overloaded, if so, don't balance wider.
1411 */
1412 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1413 unsigned long power = 0;
1414 unsigned long nr_running = 0;
1415 unsigned long capacity;
1416 int i;
1417
1418 for_each_cpu(i, sched_domain_span(tmp)) {
1419 power += power_of(i);
1420 nr_running += cpu_rq(i)->cfs.nr_running;
1421 }
1422
1423 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1424
1425 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1426 nr_running /= 2;
1427
1428 if (nr_running < capacity)
1429 want_sd = 0;
1430 }
1431
1432 /*
1433 * While iterating the domains looking for a spanning
1434 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1435 * in cache sharing domains along the way.
1436 */
1437 if (want_affine) {
1438 int target = -1;
1439
1440 /*
1441 * If both cpu and prev_cpu are part of this domain,
1442 * cpu is a valid SD_WAKE_AFFINE target.
1443 */
1444 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1445 target = cpu;
1446
1447 /*
1448 * If there's an idle sibling in this domain, make that
1449 * the wake_affine target instead of the current cpu.
1450 */
1451 if (tmp->flags & SD_PREFER_SIBLING)
1452 target = select_idle_sibling(p, tmp, target);
1453
1454 if (target >= 0) {
1455 if (tmp->flags & SD_WAKE_AFFINE) {
1456 affine_sd = tmp;
1457 want_affine = 0;
1458 }
1459 cpu = target;
1460 }
1461 }
1462
1463 if (!want_sd && !want_affine)
1464 break;
1465
1466 if (!(tmp->flags & sd_flag))
1467 continue;
1468
1469 if (want_sd)
1470 sd = tmp;
1471 }
1472
1473 if (sched_feat(LB_SHARES_UPDATE)) {
1474 /*
1475 * Pick the largest domain to update shares over
1476 */
1477 tmp = sd;
1478 if (affine_sd && (!tmp ||
1479 cpumask_weight(sched_domain_span(affine_sd)) >
1480 cpumask_weight(sched_domain_span(sd))))
1481 tmp = affine_sd;
1482
1483 if (tmp)
1484 update_shares(tmp);
1485 }
1486
1487 if (affine_sd && wake_affine(affine_sd, p, sync)) {
1488 new_cpu = cpu;
1489 goto out;
1490 }
1491
1492 while (sd) {
1493 int load_idx = sd->forkexec_idx;
1494 struct sched_group *group;
1495 int weight;
1496
1497 if (!(sd->flags & sd_flag)) {
1498 sd = sd->child;
1499 continue;
1500 }
1501
1502 if (sd_flag & SD_BALANCE_WAKE)
1503 load_idx = sd->wake_idx;
1504
1505 group = find_idlest_group(sd, p, cpu, load_idx);
1506 if (!group) {
1507 sd = sd->child;
1508 continue;
1509 }
1510
1511 new_cpu = find_idlest_cpu(group, p, cpu);
1512 if (new_cpu == -1 || new_cpu == cpu) {
1513 /* Now try balancing at a lower domain level of cpu */
1514 sd = sd->child;
1515 continue;
1516 }
1517
1518 /* Now try balancing at a lower domain level of new_cpu */
1519 cpu = new_cpu;
1520 weight = cpumask_weight(sched_domain_span(sd));
1521 sd = NULL;
1522 for_each_domain(cpu, tmp) {
1523 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1524 break;
1525 if (tmp->flags & sd_flag)
1526 sd = tmp;
1527 }
1528 /* while loop will break here if sd == NULL */
1529 }
1530
1531 out:
1532 rcu_read_unlock();
1533 return new_cpu;
1534 }
1535 #endif /* CONFIG_SMP */
1536
1537 /*
1538 * Adaptive granularity
1539 *
1540 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1541 * with the limit of wakeup_gran -- when it never does a wakeup.
1542 *
1543 * So the smaller avg_wakeup is the faster we want this task to preempt,
1544 * but we don't want to treat the preemptee unfairly and therefore allow it
1545 * to run for at least the amount of time we'd like to run.
1546 *
1547 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1548 *
1549 * NOTE: we use *nr_running to scale with load, this nicely matches the
1550 * degrading latency on load.
1551 */
1552 static unsigned long
1553 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1554 {
1555 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1556 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1557 u64 gran = 0;
1558
1559 if (this_run < expected_wakeup)
1560 gran = expected_wakeup - this_run;
1561
1562 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1563 }
1564
1565 static unsigned long
1566 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1567 {
1568 unsigned long gran = sysctl_sched_wakeup_granularity;
1569
1570 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1571 gran = adaptive_gran(curr, se);
1572
1573 /*
1574 * Since its curr running now, convert the gran from real-time
1575 * to virtual-time in his units.
1576 */
1577 if (sched_feat(ASYM_GRAN)) {
1578 /*
1579 * By using 'se' instead of 'curr' we penalize light tasks, so
1580 * they get preempted easier. That is, if 'se' < 'curr' then
1581 * the resulting gran will be larger, therefore penalizing the
1582 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1583 * be smaller, again penalizing the lighter task.
1584 *
1585 * This is especially important for buddies when the leftmost
1586 * task is higher priority than the buddy.
1587 */
1588 if (unlikely(se->load.weight != NICE_0_LOAD))
1589 gran = calc_delta_fair(gran, se);
1590 } else {
1591 if (unlikely(curr->load.weight != NICE_0_LOAD))
1592 gran = calc_delta_fair(gran, curr);
1593 }
1594
1595 return gran;
1596 }
1597
1598 /*
1599 * Should 'se' preempt 'curr'.
1600 *
1601 * |s1
1602 * |s2
1603 * |s3
1604 * g
1605 * |<--->|c
1606 *
1607 * w(c, s1) = -1
1608 * w(c, s2) = 0
1609 * w(c, s3) = 1
1610 *
1611 */
1612 static int
1613 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1614 {
1615 s64 gran, vdiff = curr->vruntime - se->vruntime;
1616
1617 if (vdiff <= 0)
1618 return -1;
1619
1620 gran = wakeup_gran(curr, se);
1621 if (vdiff > gran)
1622 return 1;
1623
1624 return 0;
1625 }
1626
1627 static void set_last_buddy(struct sched_entity *se)
1628 {
1629 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1630 for_each_sched_entity(se)
1631 cfs_rq_of(se)->last = se;
1632 }
1633 }
1634
1635 static void set_next_buddy(struct sched_entity *se)
1636 {
1637 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1638 for_each_sched_entity(se)
1639 cfs_rq_of(se)->next = se;
1640 }
1641 }
1642
1643 /*
1644 * Preempt the current task with a newly woken task if needed:
1645 */
1646 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1647 {
1648 struct task_struct *curr = rq->curr;
1649 struct sched_entity *se = &curr->se, *pse = &p->se;
1650 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1651 int sync = wake_flags & WF_SYNC;
1652 int scale = cfs_rq->nr_running >= sched_nr_latency;
1653
1654 update_curr(cfs_rq);
1655
1656 if (unlikely(rt_prio(p->prio))) {
1657 resched_task(curr);
1658 return;
1659 }
1660
1661 if (unlikely(p->sched_class != &fair_sched_class))
1662 return;
1663
1664 if (unlikely(se == pse))
1665 return;
1666
1667 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1668 set_next_buddy(pse);
1669
1670 /*
1671 * We can come here with TIF_NEED_RESCHED already set from new task
1672 * wake up path.
1673 */
1674 if (test_tsk_need_resched(curr))
1675 return;
1676
1677 /*
1678 * Batch and idle tasks do not preempt (their preemption is driven by
1679 * the tick):
1680 */
1681 if (unlikely(p->policy != SCHED_NORMAL))
1682 return;
1683
1684 /* Idle tasks are by definition preempted by everybody. */
1685 if (unlikely(curr->policy == SCHED_IDLE)) {
1686 resched_task(curr);
1687 return;
1688 }
1689
1690 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1691 (sched_feat(WAKEUP_OVERLAP) &&
1692 (se->avg_overlap < sysctl_sched_migration_cost &&
1693 pse->avg_overlap < sysctl_sched_migration_cost))) {
1694 resched_task(curr);
1695 return;
1696 }
1697
1698 if (sched_feat(WAKEUP_RUNNING)) {
1699 if (pse->avg_running < se->avg_running) {
1700 set_next_buddy(pse);
1701 resched_task(curr);
1702 return;
1703 }
1704 }
1705
1706 if (!sched_feat(WAKEUP_PREEMPT))
1707 return;
1708
1709 find_matching_se(&se, &pse);
1710
1711 BUG_ON(!pse);
1712
1713 if (wakeup_preempt_entity(se, pse) == 1) {
1714 resched_task(curr);
1715 /*
1716 * Only set the backward buddy when the current task is still
1717 * on the rq. This can happen when a wakeup gets interleaved
1718 * with schedule on the ->pre_schedule() or idle_balance()
1719 * point, either of which can * drop the rq lock.
1720 *
1721 * Also, during early boot the idle thread is in the fair class,
1722 * for obvious reasons its a bad idea to schedule back to it.
1723 */
1724 if (unlikely(!se->on_rq || curr == rq->idle))
1725 return;
1726 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1727 set_last_buddy(se);
1728 }
1729 }
1730
1731 static struct task_struct *pick_next_task_fair(struct rq *rq)
1732 {
1733 struct task_struct *p;
1734 struct cfs_rq *cfs_rq = &rq->cfs;
1735 struct sched_entity *se;
1736
1737 if (!cfs_rq->nr_running)
1738 return NULL;
1739
1740 do {
1741 se = pick_next_entity(cfs_rq);
1742 set_next_entity(cfs_rq, se);
1743 cfs_rq = group_cfs_rq(se);
1744 } while (cfs_rq);
1745
1746 p = task_of(se);
1747 hrtick_start_fair(rq, p);
1748
1749 return p;
1750 }
1751
1752 /*
1753 * Account for a descheduled task:
1754 */
1755 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1756 {
1757 struct sched_entity *se = &prev->se;
1758 struct cfs_rq *cfs_rq;
1759
1760 for_each_sched_entity(se) {
1761 cfs_rq = cfs_rq_of(se);
1762 put_prev_entity(cfs_rq, se);
1763 }
1764 }
1765
1766 #ifdef CONFIG_SMP
1767 /**************************************************
1768 * Fair scheduling class load-balancing methods:
1769 */
1770
1771 /*
1772 * Load-balancing iterator. Note: while the runqueue stays locked
1773 * during the whole iteration, the current task might be
1774 * dequeued so the iterator has to be dequeue-safe. Here we
1775 * achieve that by always pre-iterating before returning
1776 * the current task:
1777 */
1778 static struct task_struct *
1779 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1780 {
1781 struct task_struct *p = NULL;
1782 struct sched_entity *se;
1783
1784 if (next == &cfs_rq->tasks)
1785 return NULL;
1786
1787 se = list_entry(next, struct sched_entity, group_node);
1788 p = task_of(se);
1789 cfs_rq->balance_iterator = next->next;
1790
1791 return p;
1792 }
1793
1794 static struct task_struct *load_balance_start_fair(void *arg)
1795 {
1796 struct cfs_rq *cfs_rq = arg;
1797
1798 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1799 }
1800
1801 static struct task_struct *load_balance_next_fair(void *arg)
1802 {
1803 struct cfs_rq *cfs_rq = arg;
1804
1805 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1806 }
1807
1808 static unsigned long
1809 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1810 unsigned long max_load_move, struct sched_domain *sd,
1811 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1812 struct cfs_rq *cfs_rq)
1813 {
1814 struct rq_iterator cfs_rq_iterator;
1815
1816 cfs_rq_iterator.start = load_balance_start_fair;
1817 cfs_rq_iterator.next = load_balance_next_fair;
1818 cfs_rq_iterator.arg = cfs_rq;
1819
1820 return balance_tasks(this_rq, this_cpu, busiest,
1821 max_load_move, sd, idle, all_pinned,
1822 this_best_prio, &cfs_rq_iterator);
1823 }
1824
1825 #ifdef CONFIG_FAIR_GROUP_SCHED
1826 static unsigned long
1827 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1828 unsigned long max_load_move,
1829 struct sched_domain *sd, enum cpu_idle_type idle,
1830 int *all_pinned, int *this_best_prio)
1831 {
1832 long rem_load_move = max_load_move;
1833 int busiest_cpu = cpu_of(busiest);
1834 struct task_group *tg;
1835
1836 rcu_read_lock();
1837 update_h_load(busiest_cpu);
1838
1839 list_for_each_entry_rcu(tg, &task_groups, list) {
1840 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1841 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1842 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1843 u64 rem_load, moved_load;
1844
1845 /*
1846 * empty group
1847 */
1848 if (!busiest_cfs_rq->task_weight)
1849 continue;
1850
1851 rem_load = (u64)rem_load_move * busiest_weight;
1852 rem_load = div_u64(rem_load, busiest_h_load + 1);
1853
1854 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1855 rem_load, sd, idle, all_pinned, this_best_prio,
1856 tg->cfs_rq[busiest_cpu]);
1857
1858 if (!moved_load)
1859 continue;
1860
1861 moved_load *= busiest_h_load;
1862 moved_load = div_u64(moved_load, busiest_weight + 1);
1863
1864 rem_load_move -= moved_load;
1865 if (rem_load_move < 0)
1866 break;
1867 }
1868 rcu_read_unlock();
1869
1870 return max_load_move - rem_load_move;
1871 }
1872 #else
1873 static unsigned long
1874 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1875 unsigned long max_load_move,
1876 struct sched_domain *sd, enum cpu_idle_type idle,
1877 int *all_pinned, int *this_best_prio)
1878 {
1879 return __load_balance_fair(this_rq, this_cpu, busiest,
1880 max_load_move, sd, idle, all_pinned,
1881 this_best_prio, &busiest->cfs);
1882 }
1883 #endif
1884
1885 static int
1886 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1887 struct sched_domain *sd, enum cpu_idle_type idle)
1888 {
1889 struct cfs_rq *busy_cfs_rq;
1890 struct rq_iterator cfs_rq_iterator;
1891
1892 cfs_rq_iterator.start = load_balance_start_fair;
1893 cfs_rq_iterator.next = load_balance_next_fair;
1894
1895 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1896 /*
1897 * pass busy_cfs_rq argument into
1898 * load_balance_[start|next]_fair iterators
1899 */
1900 cfs_rq_iterator.arg = busy_cfs_rq;
1901 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1902 &cfs_rq_iterator))
1903 return 1;
1904 }
1905
1906 return 0;
1907 }
1908 #endif /* CONFIG_SMP */
1909
1910 /*
1911 * scheduler tick hitting a task of our scheduling class:
1912 */
1913 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1914 {
1915 struct cfs_rq *cfs_rq;
1916 struct sched_entity *se = &curr->se;
1917
1918 for_each_sched_entity(se) {
1919 cfs_rq = cfs_rq_of(se);
1920 entity_tick(cfs_rq, se, queued);
1921 }
1922 }
1923
1924 /*
1925 * Share the fairness runtime between parent and child, thus the
1926 * total amount of pressure for CPU stays equal - new tasks
1927 * get a chance to run but frequent forkers are not allowed to
1928 * monopolize the CPU. Note: the parent runqueue is locked,
1929 * the child is not running yet.
1930 */
1931 static void task_new_fair(struct rq *rq, struct task_struct *p)
1932 {
1933 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1934 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1935 int this_cpu = smp_processor_id();
1936
1937 sched_info_queued(p);
1938
1939 update_curr(cfs_rq);
1940 if (curr)
1941 se->vruntime = curr->vruntime;
1942 place_entity(cfs_rq, se, 1);
1943
1944 /* 'curr' will be NULL if the child belongs to a different group */
1945 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1946 curr && entity_before(curr, se)) {
1947 /*
1948 * Upon rescheduling, sched_class::put_prev_task() will place
1949 * 'current' within the tree based on its new key value.
1950 */
1951 swap(curr->vruntime, se->vruntime);
1952 resched_task(rq->curr);
1953 }
1954
1955 enqueue_task_fair(rq, p, 0);
1956 }
1957
1958 /*
1959 * Priority of the task has changed. Check to see if we preempt
1960 * the current task.
1961 */
1962 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1963 int oldprio, int running)
1964 {
1965 /*
1966 * Reschedule if we are currently running on this runqueue and
1967 * our priority decreased, or if we are not currently running on
1968 * this runqueue and our priority is higher than the current's
1969 */
1970 if (running) {
1971 if (p->prio > oldprio)
1972 resched_task(rq->curr);
1973 } else
1974 check_preempt_curr(rq, p, 0);
1975 }
1976
1977 /*
1978 * We switched to the sched_fair class.
1979 */
1980 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1981 int running)
1982 {
1983 /*
1984 * We were most likely switched from sched_rt, so
1985 * kick off the schedule if running, otherwise just see
1986 * if we can still preempt the current task.
1987 */
1988 if (running)
1989 resched_task(rq->curr);
1990 else
1991 check_preempt_curr(rq, p, 0);
1992 }
1993
1994 /* Account for a task changing its policy or group.
1995 *
1996 * This routine is mostly called to set cfs_rq->curr field when a task
1997 * migrates between groups/classes.
1998 */
1999 static void set_curr_task_fair(struct rq *rq)
2000 {
2001 struct sched_entity *se = &rq->curr->se;
2002
2003 for_each_sched_entity(se)
2004 set_next_entity(cfs_rq_of(se), se);
2005 }
2006
2007 #ifdef CONFIG_FAIR_GROUP_SCHED
2008 static void moved_group_fair(struct task_struct *p)
2009 {
2010 struct cfs_rq *cfs_rq = task_cfs_rq(p);
2011
2012 update_curr(cfs_rq);
2013 place_entity(cfs_rq, &p->se, 1);
2014 }
2015 #endif
2016
2017 unsigned int get_rr_interval_fair(struct task_struct *task)
2018 {
2019 struct sched_entity *se = &task->se;
2020 unsigned long flags;
2021 struct rq *rq;
2022 unsigned int rr_interval = 0;
2023
2024 /*
2025 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2026 * idle runqueue:
2027 */
2028 rq = task_rq_lock(task, &flags);
2029 if (rq->cfs.load.weight)
2030 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
2031 task_rq_unlock(rq, &flags);
2032
2033 return rr_interval;
2034 }
2035
2036 /*
2037 * All the scheduling class methods:
2038 */
2039 static const struct sched_class fair_sched_class = {
2040 .next = &idle_sched_class,
2041 .enqueue_task = enqueue_task_fair,
2042 .dequeue_task = dequeue_task_fair,
2043 .yield_task = yield_task_fair,
2044
2045 .check_preempt_curr = check_preempt_wakeup,
2046
2047 .pick_next_task = pick_next_task_fair,
2048 .put_prev_task = put_prev_task_fair,
2049
2050 #ifdef CONFIG_SMP
2051 .select_task_rq = select_task_rq_fair,
2052
2053 .load_balance = load_balance_fair,
2054 .move_one_task = move_one_task_fair,
2055 #endif
2056
2057 .set_curr_task = set_curr_task_fair,
2058 .task_tick = task_tick_fair,
2059 .task_new = task_new_fair,
2060
2061 .prio_changed = prio_changed_fair,
2062 .switched_to = switched_to_fair,
2063
2064 .get_rr_interval = get_rr_interval_fair,
2065
2066 #ifdef CONFIG_FAIR_GROUP_SCHED
2067 .moved_group = moved_group_fair,
2068 #endif
2069 };
2070
2071 #ifdef CONFIG_SCHED_DEBUG
2072 static void print_cfs_stats(struct seq_file *m, int cpu)
2073 {
2074 struct cfs_rq *cfs_rq;
2075
2076 rcu_read_lock();
2077 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2078 print_cfs_rq(m, cpu, cfs_rq);
2079 rcu_read_unlock();
2080 }
2081 #endif
This page took 0.089803 seconds and 6 git commands to generate.