sched: clean up schedstat block in dequeue_entity()
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78
79 unsigned int sysctl_sched_runtime_limit __read_mostly;
80
81 extern struct sched_class fair_sched_class;
82
83 /**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 #else /* CONFIG_FAIR_GROUP_SCHED */
99
100 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101 {
102 return container_of(cfs_rq, struct rq, cfs);
103 }
104
105 #define entity_is_task(se) 1
106
107 #endif /* CONFIG_FAIR_GROUP_SCHED */
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 return container_of(se, struct task_struct, se);
112 }
113
114
115 /**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
119 static inline void
120 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
121 {
122 struct sched_entity *se;
123
124 cfs_rq->rb_leftmost = leftmost;
125 if (leftmost) {
126 se = rb_entry(leftmost, struct sched_entity, run_node);
127 if ((se->vruntime > cfs_rq->min_vruntime) ||
128 (cfs_rq->min_vruntime > (1ULL << 61) &&
129 se->vruntime < (1ULL << 50)))
130 cfs_rq->min_vruntime = se->vruntime;
131 }
132 }
133
134 s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
135 {
136 return se->fair_key - cfs_rq->min_vruntime;
137 }
138
139 /*
140 * Enqueue an entity into the rb-tree:
141 */
142 static void
143 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
144 {
145 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
146 struct rb_node *parent = NULL;
147 struct sched_entity *entry;
148 s64 key = entity_key(cfs_rq, se);
149 int leftmost = 1;
150
151 /*
152 * Find the right place in the rbtree:
153 */
154 while (*link) {
155 parent = *link;
156 entry = rb_entry(parent, struct sched_entity, run_node);
157 /*
158 * We dont care about collisions. Nodes with
159 * the same key stay together.
160 */
161 if (key < entity_key(cfs_rq, entry)) {
162 link = &parent->rb_left;
163 } else {
164 link = &parent->rb_right;
165 leftmost = 0;
166 }
167 }
168
169 /*
170 * Maintain a cache of leftmost tree entries (it is frequently
171 * used):
172 */
173 if (leftmost)
174 set_leftmost(cfs_rq, &se->run_node);
175
176 rb_link_node(&se->run_node, parent, link);
177 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
178 update_load_add(&cfs_rq->load, se->load.weight);
179 cfs_rq->nr_running++;
180 se->on_rq = 1;
181 }
182
183 static void
184 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
185 {
186 if (cfs_rq->rb_leftmost == &se->run_node)
187 set_leftmost(cfs_rq, rb_next(&se->run_node));
188
189 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
190 update_load_sub(&cfs_rq->load, se->load.weight);
191 cfs_rq->nr_running--;
192 se->on_rq = 0;
193 }
194
195 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
196 {
197 return cfs_rq->rb_leftmost;
198 }
199
200 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
201 {
202 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
203 }
204
205 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
206 {
207 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
208 struct sched_entity *se = NULL;
209 struct rb_node *parent;
210
211 while (*link) {
212 parent = *link;
213 se = rb_entry(parent, struct sched_entity, run_node);
214 link = &parent->rb_right;
215 }
216
217 return se;
218 }
219
220 /**************************************************************
221 * Scheduling class statistics methods:
222 */
223
224 static u64 __sched_period(unsigned long nr_running)
225 {
226 u64 period = sysctl_sched_latency;
227 unsigned long nr_latency =
228 sysctl_sched_latency / sysctl_sched_min_granularity;
229
230 if (unlikely(nr_running > nr_latency)) {
231 period *= nr_running;
232 do_div(period, nr_latency);
233 }
234
235 return period;
236 }
237
238 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
239 {
240 u64 period = __sched_period(cfs_rq->nr_running);
241
242 period *= se->load.weight;
243 do_div(period, cfs_rq->load.weight);
244
245 return period;
246 }
247
248 /*
249 * Update the current task's runtime statistics. Skip current tasks that
250 * are not in our scheduling class.
251 */
252 static inline void
253 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
254 unsigned long delta_exec)
255 {
256 unsigned long delta_exec_weighted;
257
258 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
259
260 curr->sum_exec_runtime += delta_exec;
261 schedstat_add(cfs_rq, exec_clock, delta_exec);
262 delta_exec_weighted = delta_exec;
263 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
264 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
265 &curr->load);
266 }
267 curr->vruntime += delta_exec_weighted;
268 }
269
270 static void update_curr(struct cfs_rq *cfs_rq)
271 {
272 struct sched_entity *curr = cfs_rq->curr;
273 u64 now = rq_of(cfs_rq)->clock;
274 unsigned long delta_exec;
275
276 if (unlikely(!curr))
277 return;
278
279 /*
280 * Get the amount of time the current task was running
281 * since the last time we changed load (this cannot
282 * overflow on 32 bits):
283 */
284 delta_exec = (unsigned long)(now - curr->exec_start);
285
286 __update_curr(cfs_rq, curr, delta_exec);
287 curr->exec_start = now;
288 }
289
290 static inline void
291 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
292 {
293 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
294 }
295
296 static inline unsigned long
297 calc_weighted(unsigned long delta, struct sched_entity *se)
298 {
299 unsigned long weight = se->load.weight;
300
301 if (unlikely(weight != NICE_0_LOAD))
302 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
303 else
304 return delta;
305 }
306
307 /*
308 * Task is being enqueued - update stats:
309 */
310 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
311 {
312 /*
313 * Are we enqueueing a waiting task? (for current tasks
314 * a dequeue/enqueue event is a NOP)
315 */
316 if (se != cfs_rq->curr)
317 update_stats_wait_start(cfs_rq, se);
318 /*
319 * Update the key:
320 */
321 se->fair_key = se->vruntime;
322 }
323
324 static void
325 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
326 {
327 schedstat_set(se->wait_max, max(se->wait_max,
328 rq_of(cfs_rq)->clock - se->wait_start));
329 schedstat_set(se->wait_start, 0);
330 }
331
332 static inline void
333 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
334 {
335 update_curr(cfs_rq);
336 /*
337 * Mark the end of the wait period if dequeueing a
338 * waiting task:
339 */
340 if (se != cfs_rq->curr)
341 update_stats_wait_end(cfs_rq, se);
342 }
343
344 /*
345 * We are picking a new current task - update its stats:
346 */
347 static inline void
348 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
349 {
350 /*
351 * We are starting a new run period:
352 */
353 se->exec_start = rq_of(cfs_rq)->clock;
354 }
355
356 /*
357 * We are descheduling a task - update its stats:
358 */
359 static inline void
360 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
361 {
362 se->exec_start = 0;
363 }
364
365 /**************************************************
366 * Scheduling class queueing methods:
367 */
368
369 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
370 {
371 #ifdef CONFIG_SCHEDSTATS
372 if (se->sleep_start) {
373 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
374
375 if ((s64)delta < 0)
376 delta = 0;
377
378 if (unlikely(delta > se->sleep_max))
379 se->sleep_max = delta;
380
381 se->sleep_start = 0;
382 se->sum_sleep_runtime += delta;
383 }
384 if (se->block_start) {
385 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
386
387 if ((s64)delta < 0)
388 delta = 0;
389
390 if (unlikely(delta > se->block_max))
391 se->block_max = delta;
392
393 se->block_start = 0;
394 se->sum_sleep_runtime += delta;
395
396 /*
397 * Blocking time is in units of nanosecs, so shift by 20 to
398 * get a milliseconds-range estimation of the amount of
399 * time that the task spent sleeping:
400 */
401 if (unlikely(prof_on == SLEEP_PROFILING)) {
402 struct task_struct *tsk = task_of(se);
403
404 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
405 delta >> 20);
406 }
407 }
408 #endif
409 }
410
411 static void
412 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
413 {
414 u64 min_runtime, latency;
415
416 min_runtime = cfs_rq->min_vruntime;
417
418 if (sched_feat(USE_TREE_AVG)) {
419 struct sched_entity *last = __pick_last_entity(cfs_rq);
420 if (last) {
421 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
422 min_runtime += last->vruntime;
423 min_runtime >>= 1;
424 }
425 } else if (sched_feat(APPROX_AVG))
426 min_runtime += sysctl_sched_latency/2;
427
428 if (initial && sched_feat(START_DEBIT))
429 min_runtime += sched_slice(cfs_rq, se);
430
431 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
432 latency = sysctl_sched_latency;
433 if (min_runtime > latency)
434 min_runtime -= latency;
435 else
436 min_runtime = 0;
437 }
438
439 se->vruntime = max(se->vruntime, min_runtime);
440 }
441
442 static void
443 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
444 {
445 /*
446 * Update the fair clock.
447 */
448 update_curr(cfs_rq);
449
450 if (wakeup) {
451 place_entity(cfs_rq, se, 0);
452 enqueue_sleeper(cfs_rq, se);
453 }
454
455 update_stats_enqueue(cfs_rq, se);
456 __enqueue_entity(cfs_rq, se);
457 }
458
459 static void
460 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
461 {
462 update_stats_dequeue(cfs_rq, se);
463 #ifdef CONFIG_SCHEDSTATS
464 if (sleep) {
465 if (entity_is_task(se)) {
466 struct task_struct *tsk = task_of(se);
467
468 if (tsk->state & TASK_INTERRUPTIBLE)
469 se->sleep_start = rq_of(cfs_rq)->clock;
470 if (tsk->state & TASK_UNINTERRUPTIBLE)
471 se->block_start = rq_of(cfs_rq)->clock;
472 }
473 }
474 #endif
475 __dequeue_entity(cfs_rq, se);
476 }
477
478 /*
479 * Preempt the current task with a newly woken task if needed:
480 */
481 static void
482 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
483 {
484 unsigned long ideal_runtime, delta_exec;
485
486 ideal_runtime = sched_slice(cfs_rq, curr);
487 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
488 if (delta_exec > ideal_runtime)
489 resched_task(rq_of(cfs_rq)->curr);
490 }
491
492 static inline void
493 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 {
495 /*
496 * Any task has to be enqueued before it get to execute on
497 * a CPU. So account for the time it spent waiting on the
498 * runqueue.
499 */
500 update_stats_wait_end(cfs_rq, se);
501 update_stats_curr_start(cfs_rq, se);
502 cfs_rq->curr = se;
503 #ifdef CONFIG_SCHEDSTATS
504 /*
505 * Track our maximum slice length, if the CPU's load is at
506 * least twice that of our own weight (i.e. dont track it
507 * when there are only lesser-weight tasks around):
508 */
509 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
510 se->slice_max = max(se->slice_max,
511 se->sum_exec_runtime - se->prev_sum_exec_runtime);
512 }
513 #endif
514 se->prev_sum_exec_runtime = se->sum_exec_runtime;
515 }
516
517 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
518 {
519 struct sched_entity *se = __pick_next_entity(cfs_rq);
520
521 set_next_entity(cfs_rq, se);
522
523 return se;
524 }
525
526 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
527 {
528 /*
529 * If still on the runqueue then deactivate_task()
530 * was not called and update_curr() has to be done:
531 */
532 if (prev->on_rq)
533 update_curr(cfs_rq);
534
535 update_stats_curr_end(cfs_rq, prev);
536
537 if (prev->on_rq)
538 update_stats_wait_start(cfs_rq, prev);
539 cfs_rq->curr = NULL;
540 }
541
542 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
543 {
544 /*
545 * Dequeue and enqueue the task to update its
546 * position within the tree:
547 */
548 dequeue_entity(cfs_rq, curr, 0);
549 enqueue_entity(cfs_rq, curr, 0);
550
551 if (cfs_rq->nr_running > 1)
552 check_preempt_tick(cfs_rq, curr);
553 }
554
555 /**************************************************
556 * CFS operations on tasks:
557 */
558
559 #ifdef CONFIG_FAIR_GROUP_SCHED
560
561 /* Walk up scheduling entities hierarchy */
562 #define for_each_sched_entity(se) \
563 for (; se; se = se->parent)
564
565 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
566 {
567 return p->se.cfs_rq;
568 }
569
570 /* runqueue on which this entity is (to be) queued */
571 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
572 {
573 return se->cfs_rq;
574 }
575
576 /* runqueue "owned" by this group */
577 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
578 {
579 return grp->my_q;
580 }
581
582 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
583 * another cpu ('this_cpu')
584 */
585 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
586 {
587 /* A later patch will take group into account */
588 return &cpu_rq(this_cpu)->cfs;
589 }
590
591 /* Iterate thr' all leaf cfs_rq's on a runqueue */
592 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
593 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
594
595 /* Do the two (enqueued) tasks belong to the same group ? */
596 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
597 {
598 if (curr->se.cfs_rq == p->se.cfs_rq)
599 return 1;
600
601 return 0;
602 }
603
604 #else /* CONFIG_FAIR_GROUP_SCHED */
605
606 #define for_each_sched_entity(se) \
607 for (; se; se = NULL)
608
609 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
610 {
611 return &task_rq(p)->cfs;
612 }
613
614 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
615 {
616 struct task_struct *p = task_of(se);
617 struct rq *rq = task_rq(p);
618
619 return &rq->cfs;
620 }
621
622 /* runqueue "owned" by this group */
623 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
624 {
625 return NULL;
626 }
627
628 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
629 {
630 return &cpu_rq(this_cpu)->cfs;
631 }
632
633 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
634 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
635
636 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
637 {
638 return 1;
639 }
640
641 #endif /* CONFIG_FAIR_GROUP_SCHED */
642
643 /*
644 * The enqueue_task method is called before nr_running is
645 * increased. Here we update the fair scheduling stats and
646 * then put the task into the rbtree:
647 */
648 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
649 {
650 struct cfs_rq *cfs_rq;
651 struct sched_entity *se = &p->se;
652
653 for_each_sched_entity(se) {
654 if (se->on_rq)
655 break;
656 cfs_rq = cfs_rq_of(se);
657 enqueue_entity(cfs_rq, se, wakeup);
658 }
659 }
660
661 /*
662 * The dequeue_task method is called before nr_running is
663 * decreased. We remove the task from the rbtree and
664 * update the fair scheduling stats:
665 */
666 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
667 {
668 struct cfs_rq *cfs_rq;
669 struct sched_entity *se = &p->se;
670
671 for_each_sched_entity(se) {
672 cfs_rq = cfs_rq_of(se);
673 dequeue_entity(cfs_rq, se, sleep);
674 /* Don't dequeue parent if it has other entities besides us */
675 if (cfs_rq->load.weight)
676 break;
677 }
678 }
679
680 /*
681 * sched_yield() support is very simple - we dequeue and enqueue.
682 *
683 * If compat_yield is turned on then we requeue to the end of the tree.
684 */
685 static void yield_task_fair(struct rq *rq, struct task_struct *p)
686 {
687 struct cfs_rq *cfs_rq = task_cfs_rq(p);
688 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
689 struct sched_entity *rightmost, *se = &p->se;
690 struct rb_node *parent;
691
692 /*
693 * Are we the only task in the tree?
694 */
695 if (unlikely(cfs_rq->nr_running == 1))
696 return;
697
698 if (likely(!sysctl_sched_compat_yield)) {
699 __update_rq_clock(rq);
700 /*
701 * Dequeue and enqueue the task to update its
702 * position within the tree:
703 */
704 dequeue_entity(cfs_rq, &p->se, 0);
705 enqueue_entity(cfs_rq, &p->se, 0);
706
707 return;
708 }
709 /*
710 * Find the rightmost entry in the rbtree:
711 */
712 do {
713 parent = *link;
714 link = &parent->rb_right;
715 } while (*link);
716
717 rightmost = rb_entry(parent, struct sched_entity, run_node);
718 /*
719 * Already in the rightmost position?
720 */
721 if (unlikely(rightmost == se))
722 return;
723
724 /*
725 * Minimally necessary key value to be last in the tree:
726 */
727 se->fair_key = rightmost->fair_key + 1;
728
729 if (cfs_rq->rb_leftmost == &se->run_node)
730 cfs_rq->rb_leftmost = rb_next(&se->run_node);
731 /*
732 * Relink the task to the rightmost position:
733 */
734 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
735 rb_link_node(&se->run_node, parent, link);
736 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
737 }
738
739 /*
740 * Preempt the current task with a newly woken task if needed:
741 */
742 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
743 {
744 struct task_struct *curr = rq->curr;
745 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
746
747 if (unlikely(rt_prio(p->prio))) {
748 update_rq_clock(rq);
749 update_curr(cfs_rq);
750 resched_task(curr);
751 return;
752 }
753 if (is_same_group(curr, p)) {
754 s64 delta = curr->se.vruntime - p->se.vruntime;
755
756 if (delta > (s64)sysctl_sched_wakeup_granularity)
757 resched_task(curr);
758 }
759 }
760
761 static struct task_struct *pick_next_task_fair(struct rq *rq)
762 {
763 struct cfs_rq *cfs_rq = &rq->cfs;
764 struct sched_entity *se;
765
766 if (unlikely(!cfs_rq->nr_running))
767 return NULL;
768
769 do {
770 se = pick_next_entity(cfs_rq);
771 cfs_rq = group_cfs_rq(se);
772 } while (cfs_rq);
773
774 return task_of(se);
775 }
776
777 /*
778 * Account for a descheduled task:
779 */
780 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
781 {
782 struct sched_entity *se = &prev->se;
783 struct cfs_rq *cfs_rq;
784
785 for_each_sched_entity(se) {
786 cfs_rq = cfs_rq_of(se);
787 put_prev_entity(cfs_rq, se);
788 }
789 }
790
791 /**************************************************
792 * Fair scheduling class load-balancing methods:
793 */
794
795 /*
796 * Load-balancing iterator. Note: while the runqueue stays locked
797 * during the whole iteration, the current task might be
798 * dequeued so the iterator has to be dequeue-safe. Here we
799 * achieve that by always pre-iterating before returning
800 * the current task:
801 */
802 static inline struct task_struct *
803 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
804 {
805 struct task_struct *p;
806
807 if (!curr)
808 return NULL;
809
810 p = rb_entry(curr, struct task_struct, se.run_node);
811 cfs_rq->rb_load_balance_curr = rb_next(curr);
812
813 return p;
814 }
815
816 static struct task_struct *load_balance_start_fair(void *arg)
817 {
818 struct cfs_rq *cfs_rq = arg;
819
820 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
821 }
822
823 static struct task_struct *load_balance_next_fair(void *arg)
824 {
825 struct cfs_rq *cfs_rq = arg;
826
827 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
828 }
829
830 #ifdef CONFIG_FAIR_GROUP_SCHED
831 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
832 {
833 struct sched_entity *curr;
834 struct task_struct *p;
835
836 if (!cfs_rq->nr_running)
837 return MAX_PRIO;
838
839 curr = __pick_next_entity(cfs_rq);
840 p = task_of(curr);
841
842 return p->prio;
843 }
844 #endif
845
846 static unsigned long
847 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
848 unsigned long max_nr_move, unsigned long max_load_move,
849 struct sched_domain *sd, enum cpu_idle_type idle,
850 int *all_pinned, int *this_best_prio)
851 {
852 struct cfs_rq *busy_cfs_rq;
853 unsigned long load_moved, total_nr_moved = 0, nr_moved;
854 long rem_load_move = max_load_move;
855 struct rq_iterator cfs_rq_iterator;
856
857 cfs_rq_iterator.start = load_balance_start_fair;
858 cfs_rq_iterator.next = load_balance_next_fair;
859
860 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
861 #ifdef CONFIG_FAIR_GROUP_SCHED
862 struct cfs_rq *this_cfs_rq;
863 long imbalance;
864 unsigned long maxload;
865
866 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
867
868 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
869 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
870 if (imbalance <= 0)
871 continue;
872
873 /* Don't pull more than imbalance/2 */
874 imbalance /= 2;
875 maxload = min(rem_load_move, imbalance);
876
877 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
878 #else
879 # define maxload rem_load_move
880 #endif
881 /* pass busy_cfs_rq argument into
882 * load_balance_[start|next]_fair iterators
883 */
884 cfs_rq_iterator.arg = busy_cfs_rq;
885 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
886 max_nr_move, maxload, sd, idle, all_pinned,
887 &load_moved, this_best_prio, &cfs_rq_iterator);
888
889 total_nr_moved += nr_moved;
890 max_nr_move -= nr_moved;
891 rem_load_move -= load_moved;
892
893 if (max_nr_move <= 0 || rem_load_move <= 0)
894 break;
895 }
896
897 return max_load_move - rem_load_move;
898 }
899
900 /*
901 * scheduler tick hitting a task of our scheduling class:
902 */
903 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
904 {
905 struct cfs_rq *cfs_rq;
906 struct sched_entity *se = &curr->se;
907
908 for_each_sched_entity(se) {
909 cfs_rq = cfs_rq_of(se);
910 entity_tick(cfs_rq, se);
911 }
912 }
913
914 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
915
916 /*
917 * Share the fairness runtime between parent and child, thus the
918 * total amount of pressure for CPU stays equal - new tasks
919 * get a chance to run but frequent forkers are not allowed to
920 * monopolize the CPU. Note: the parent runqueue is locked,
921 * the child is not running yet.
922 */
923 static void task_new_fair(struct rq *rq, struct task_struct *p)
924 {
925 struct cfs_rq *cfs_rq = task_cfs_rq(p);
926 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
927
928 sched_info_queued(p);
929
930 update_curr(cfs_rq);
931 place_entity(cfs_rq, se, 1);
932
933 if (sysctl_sched_child_runs_first &&
934 curr->vruntime < se->vruntime) {
935
936 dequeue_entity(cfs_rq, curr, 0);
937 swap(curr->vruntime, se->vruntime);
938 enqueue_entity(cfs_rq, curr, 0);
939 }
940
941 update_stats_enqueue(cfs_rq, se);
942 __enqueue_entity(cfs_rq, se);
943 resched_task(rq->curr);
944 }
945
946 #ifdef CONFIG_FAIR_GROUP_SCHED
947 /* Account for a task changing its policy or group.
948 *
949 * This routine is mostly called to set cfs_rq->curr field when a task
950 * migrates between groups/classes.
951 */
952 static void set_curr_task_fair(struct rq *rq)
953 {
954 struct sched_entity *se = &rq->curr->se;
955
956 for_each_sched_entity(se)
957 set_next_entity(cfs_rq_of(se), se);
958 }
959 #else
960 static void set_curr_task_fair(struct rq *rq)
961 {
962 }
963 #endif
964
965 /*
966 * All the scheduling class methods:
967 */
968 struct sched_class fair_sched_class __read_mostly = {
969 .enqueue_task = enqueue_task_fair,
970 .dequeue_task = dequeue_task_fair,
971 .yield_task = yield_task_fair,
972
973 .check_preempt_curr = check_preempt_wakeup,
974
975 .pick_next_task = pick_next_task_fair,
976 .put_prev_task = put_prev_task_fair,
977
978 .load_balance = load_balance_fair,
979
980 .set_curr_task = set_curr_task_fair,
981 .task_tick = task_tick_fair,
982 .task_new = task_new_fair,
983 };
984
985 #ifdef CONFIG_SCHED_DEBUG
986 static void print_cfs_stats(struct seq_file *m, int cpu)
987 {
988 struct cfs_rq *cfs_rq;
989
990 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
991 print_cfs_rq(m, cpu, cfs_rq);
992 }
993 #endif
This page took 0.067772 seconds and 6 git commands to generate.