sched debug: check spread
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78
79 extern struct sched_class fair_sched_class;
80
81 /**************************************************************
82 * CFS operations on generic schedulable entities:
83 */
84
85 #ifdef CONFIG_FAIR_GROUP_SCHED
86
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89 {
90 return cfs_rq->rq;
91 }
92
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
95
96 #else /* CONFIG_FAIR_GROUP_SCHED */
97
98 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
99 {
100 return container_of(cfs_rq, struct rq, cfs);
101 }
102
103 #define entity_is_task(se) 1
104
105 #endif /* CONFIG_FAIR_GROUP_SCHED */
106
107 static inline struct task_struct *task_of(struct sched_entity *se)
108 {
109 return container_of(se, struct task_struct, se);
110 }
111
112
113 /**************************************************************
114 * Scheduling class tree data structure manipulation methods:
115 */
116
117 static inline u64
118 max_vruntime(u64 min_vruntime, u64 vruntime)
119 {
120 if ((vruntime > min_vruntime) ||
121 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
122 min_vruntime = vruntime;
123
124 return min_vruntime;
125 }
126
127 static inline void
128 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
129 {
130 struct sched_entity *se;
131
132 cfs_rq->rb_leftmost = leftmost;
133 if (leftmost)
134 se = rb_entry(leftmost, struct sched_entity, run_node);
135 }
136
137 static inline s64
138 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
139 {
140 return se->vruntime - cfs_rq->min_vruntime;
141 }
142
143 /*
144 * Enqueue an entity into the rb-tree:
145 */
146 static void
147 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
148 {
149 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
150 struct rb_node *parent = NULL;
151 struct sched_entity *entry;
152 s64 key = entity_key(cfs_rq, se);
153 int leftmost = 1;
154
155 /*
156 * Find the right place in the rbtree:
157 */
158 while (*link) {
159 parent = *link;
160 entry = rb_entry(parent, struct sched_entity, run_node);
161 /*
162 * We dont care about collisions. Nodes with
163 * the same key stay together.
164 */
165 if (key < entity_key(cfs_rq, entry)) {
166 link = &parent->rb_left;
167 } else {
168 link = &parent->rb_right;
169 leftmost = 0;
170 }
171 }
172
173 /*
174 * Maintain a cache of leftmost tree entries (it is frequently
175 * used):
176 */
177 if (leftmost)
178 set_leftmost(cfs_rq, &se->run_node);
179
180 rb_link_node(&se->run_node, parent, link);
181 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
182 }
183
184 static void
185 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
186 {
187 if (cfs_rq->rb_leftmost == &se->run_node)
188 set_leftmost(cfs_rq, rb_next(&se->run_node));
189
190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
191 }
192
193 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
194 {
195 return cfs_rq->rb_leftmost;
196 }
197
198 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
199 {
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201 }
202
203 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
204 {
205 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
206 struct sched_entity *se = NULL;
207 struct rb_node *parent;
208
209 while (*link) {
210 parent = *link;
211 se = rb_entry(parent, struct sched_entity, run_node);
212 link = &parent->rb_right;
213 }
214
215 return se;
216 }
217
218 /**************************************************************
219 * Scheduling class statistics methods:
220 */
221
222 static u64 __sched_period(unsigned long nr_running)
223 {
224 u64 period = sysctl_sched_latency;
225 unsigned long nr_latency =
226 sysctl_sched_latency / sysctl_sched_min_granularity;
227
228 if (unlikely(nr_running > nr_latency)) {
229 period *= nr_running;
230 do_div(period, nr_latency);
231 }
232
233 return period;
234 }
235
236 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
237 {
238 u64 period = __sched_period(cfs_rq->nr_running);
239
240 period *= se->load.weight;
241 do_div(period, cfs_rq->load.weight);
242
243 return period;
244 }
245
246 static u64 __sched_vslice(unsigned long nr_running)
247 {
248 u64 period = __sched_period(nr_running);
249
250 do_div(period, nr_running);
251
252 return period;
253 }
254
255 /*
256 * Update the current task's runtime statistics. Skip current tasks that
257 * are not in our scheduling class.
258 */
259 static inline void
260 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
261 unsigned long delta_exec)
262 {
263 unsigned long delta_exec_weighted;
264 u64 next_vruntime, min_vruntime;
265
266 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
267
268 curr->sum_exec_runtime += delta_exec;
269 schedstat_add(cfs_rq, exec_clock, delta_exec);
270 delta_exec_weighted = delta_exec;
271 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
272 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
273 &curr->load);
274 }
275 curr->vruntime += delta_exec_weighted;
276
277 /*
278 * maintain cfs_rq->min_vruntime to be a monotonic increasing
279 * value tracking the leftmost vruntime in the tree.
280 */
281 if (first_fair(cfs_rq)) {
282 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
283
284 /* min_vruntime() := !max_vruntime() */
285 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
286 if (min_vruntime == next_vruntime)
287 min_vruntime = curr->vruntime;
288 else
289 min_vruntime = next_vruntime;
290 } else
291 min_vruntime = curr->vruntime;
292
293 cfs_rq->min_vruntime =
294 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
295 }
296
297 static void update_curr(struct cfs_rq *cfs_rq)
298 {
299 struct sched_entity *curr = cfs_rq->curr;
300 u64 now = rq_of(cfs_rq)->clock;
301 unsigned long delta_exec;
302
303 if (unlikely(!curr))
304 return;
305
306 /*
307 * Get the amount of time the current task was running
308 * since the last time we changed load (this cannot
309 * overflow on 32 bits):
310 */
311 delta_exec = (unsigned long)(now - curr->exec_start);
312
313 __update_curr(cfs_rq, curr, delta_exec);
314 curr->exec_start = now;
315 }
316
317 static inline void
318 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
319 {
320 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
321 }
322
323 static inline unsigned long
324 calc_weighted(unsigned long delta, struct sched_entity *se)
325 {
326 unsigned long weight = se->load.weight;
327
328 if (unlikely(weight != NICE_0_LOAD))
329 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
330 else
331 return delta;
332 }
333
334 /*
335 * Task is being enqueued - update stats:
336 */
337 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
338 {
339 /*
340 * Are we enqueueing a waiting task? (for current tasks
341 * a dequeue/enqueue event is a NOP)
342 */
343 if (se != cfs_rq->curr)
344 update_stats_wait_start(cfs_rq, se);
345 }
346
347 static void
348 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
349 {
350 schedstat_set(se->wait_max, max(se->wait_max,
351 rq_of(cfs_rq)->clock - se->wait_start));
352 schedstat_set(se->wait_start, 0);
353 }
354
355 static inline void
356 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
357 {
358 update_curr(cfs_rq);
359 /*
360 * Mark the end of the wait period if dequeueing a
361 * waiting task:
362 */
363 if (se != cfs_rq->curr)
364 update_stats_wait_end(cfs_rq, se);
365 }
366
367 /*
368 * We are picking a new current task - update its stats:
369 */
370 static inline void
371 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
372 {
373 /*
374 * We are starting a new run period:
375 */
376 se->exec_start = rq_of(cfs_rq)->clock;
377 }
378
379 /*
380 * We are descheduling a task - update its stats:
381 */
382 static inline void
383 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
384 {
385 se->exec_start = 0;
386 }
387
388 /**************************************************
389 * Scheduling class queueing methods:
390 */
391
392 static void
393 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
394 {
395 update_load_add(&cfs_rq->load, se->load.weight);
396 cfs_rq->nr_running++;
397 se->on_rq = 1;
398 }
399
400 static void
401 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
402 {
403 update_load_sub(&cfs_rq->load, se->load.weight);
404 cfs_rq->nr_running--;
405 se->on_rq = 0;
406 }
407
408 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
409 {
410 #ifdef CONFIG_SCHEDSTATS
411 if (se->sleep_start) {
412 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
413
414 if ((s64)delta < 0)
415 delta = 0;
416
417 if (unlikely(delta > se->sleep_max))
418 se->sleep_max = delta;
419
420 se->sleep_start = 0;
421 se->sum_sleep_runtime += delta;
422 }
423 if (se->block_start) {
424 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
425
426 if ((s64)delta < 0)
427 delta = 0;
428
429 if (unlikely(delta > se->block_max))
430 se->block_max = delta;
431
432 se->block_start = 0;
433 se->sum_sleep_runtime += delta;
434
435 /*
436 * Blocking time is in units of nanosecs, so shift by 20 to
437 * get a milliseconds-range estimation of the amount of
438 * time that the task spent sleeping:
439 */
440 if (unlikely(prof_on == SLEEP_PROFILING)) {
441 struct task_struct *tsk = task_of(se);
442
443 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
444 delta >> 20);
445 }
446 }
447 #endif
448 }
449
450 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
451 {
452 #ifdef CONFIG_SCHED_DEBUG
453 s64 d = se->vruntime - cfs_rq->min_vruntime;
454
455 if (d < 0)
456 d = -d;
457
458 if (d > 3*sysctl_sched_latency)
459 schedstat_inc(cfs_rq, nr_spread_over);
460 #endif
461 }
462
463 static void
464 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
465 {
466 u64 vruntime;
467
468 vruntime = cfs_rq->min_vruntime;
469
470 if (sched_feat(USE_TREE_AVG)) {
471 struct sched_entity *last = __pick_last_entity(cfs_rq);
472 if (last) {
473 vruntime += last->vruntime;
474 vruntime >>= 1;
475 }
476 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
477 vruntime += __sched_vslice(cfs_rq->nr_running)/2;
478
479 if (initial && sched_feat(START_DEBIT))
480 vruntime += __sched_vslice(cfs_rq->nr_running + 1);
481
482 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
483 s64 latency = cfs_rq->min_vruntime - se->last_min_vruntime;
484 if (latency < 0 || !cfs_rq->nr_running)
485 latency = 0;
486 else
487 latency = min_t(s64, latency, sysctl_sched_latency);
488 vruntime -= latency;
489 }
490
491 se->vruntime = vruntime;
492
493 }
494
495 static void
496 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
497 {
498 /*
499 * Update the fair clock.
500 */
501 update_curr(cfs_rq);
502
503 if (wakeup) {
504 /* se->vruntime += cfs_rq->min_vruntime; */
505 place_entity(cfs_rq, se, 0);
506 enqueue_sleeper(cfs_rq, se);
507 }
508
509 update_stats_enqueue(cfs_rq, se);
510 check_spread(cfs_rq, se);
511 if (se != cfs_rq->curr)
512 __enqueue_entity(cfs_rq, se);
513 account_entity_enqueue(cfs_rq, se);
514 }
515
516 static void
517 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
518 {
519 update_stats_dequeue(cfs_rq, se);
520 if (sleep) {
521 #ifdef CONFIG_SCHEDSTATS
522 if (entity_is_task(se)) {
523 struct task_struct *tsk = task_of(se);
524
525 if (tsk->state & TASK_INTERRUPTIBLE)
526 se->sleep_start = rq_of(cfs_rq)->clock;
527 if (tsk->state & TASK_UNINTERRUPTIBLE)
528 se->block_start = rq_of(cfs_rq)->clock;
529 }
530 #endif
531 /* se->vruntime = entity_key(cfs_rq, se); */
532 se->last_min_vruntime = cfs_rq->min_vruntime;
533 }
534
535 if (se != cfs_rq->curr)
536 __dequeue_entity(cfs_rq, se);
537 account_entity_dequeue(cfs_rq, se);
538 }
539
540 /*
541 * Preempt the current task with a newly woken task if needed:
542 */
543 static void
544 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
545 {
546 unsigned long ideal_runtime, delta_exec;
547
548 ideal_runtime = sched_slice(cfs_rq, curr);
549 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
550 if (delta_exec > ideal_runtime)
551 resched_task(rq_of(cfs_rq)->curr);
552 }
553
554 static void
555 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 {
557 /* 'current' is not kept within the tree. */
558 if (se->on_rq) {
559 /*
560 * Any task has to be enqueued before it get to execute on
561 * a CPU. So account for the time it spent waiting on the
562 * runqueue.
563 */
564 update_stats_wait_end(cfs_rq, se);
565 __dequeue_entity(cfs_rq, se);
566 }
567
568 update_stats_curr_start(cfs_rq, se);
569 cfs_rq->curr = se;
570 #ifdef CONFIG_SCHEDSTATS
571 /*
572 * Track our maximum slice length, if the CPU's load is at
573 * least twice that of our own weight (i.e. dont track it
574 * when there are only lesser-weight tasks around):
575 */
576 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
577 se->slice_max = max(se->slice_max,
578 se->sum_exec_runtime - se->prev_sum_exec_runtime);
579 }
580 #endif
581 se->prev_sum_exec_runtime = se->sum_exec_runtime;
582 }
583
584 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
585 {
586 struct sched_entity *se = __pick_next_entity(cfs_rq);
587
588 set_next_entity(cfs_rq, se);
589
590 return se;
591 }
592
593 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
594 {
595 /*
596 * If still on the runqueue then deactivate_task()
597 * was not called and update_curr() has to be done:
598 */
599 if (prev->on_rq)
600 update_curr(cfs_rq);
601
602 update_stats_curr_end(cfs_rq, prev);
603
604 check_spread(cfs_rq, prev);
605 if (prev->on_rq) {
606 update_stats_wait_start(cfs_rq, prev);
607 /* Put 'current' back into the tree. */
608 __enqueue_entity(cfs_rq, prev);
609 }
610 cfs_rq->curr = NULL;
611 }
612
613 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
614 {
615 /*
616 * Update run-time statistics of the 'current'.
617 */
618 update_curr(cfs_rq);
619
620 if (cfs_rq->nr_running > 1)
621 check_preempt_tick(cfs_rq, curr);
622 }
623
624 /**************************************************
625 * CFS operations on tasks:
626 */
627
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629
630 /* Walk up scheduling entities hierarchy */
631 #define for_each_sched_entity(se) \
632 for (; se; se = se->parent)
633
634 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
635 {
636 return p->se.cfs_rq;
637 }
638
639 /* runqueue on which this entity is (to be) queued */
640 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
641 {
642 return se->cfs_rq;
643 }
644
645 /* runqueue "owned" by this group */
646 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
647 {
648 return grp->my_q;
649 }
650
651 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
652 * another cpu ('this_cpu')
653 */
654 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
655 {
656 return cfs_rq->tg->cfs_rq[this_cpu];
657 }
658
659 /* Iterate thr' all leaf cfs_rq's on a runqueue */
660 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
661 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
662
663 /* Do the two (enqueued) tasks belong to the same group ? */
664 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
665 {
666 if (curr->se.cfs_rq == p->se.cfs_rq)
667 return 1;
668
669 return 0;
670 }
671
672 #else /* CONFIG_FAIR_GROUP_SCHED */
673
674 #define for_each_sched_entity(se) \
675 for (; se; se = NULL)
676
677 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
678 {
679 return &task_rq(p)->cfs;
680 }
681
682 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
683 {
684 struct task_struct *p = task_of(se);
685 struct rq *rq = task_rq(p);
686
687 return &rq->cfs;
688 }
689
690 /* runqueue "owned" by this group */
691 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
692 {
693 return NULL;
694 }
695
696 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
697 {
698 return &cpu_rq(this_cpu)->cfs;
699 }
700
701 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
702 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
703
704 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
705 {
706 return 1;
707 }
708
709 #endif /* CONFIG_FAIR_GROUP_SCHED */
710
711 /*
712 * The enqueue_task method is called before nr_running is
713 * increased. Here we update the fair scheduling stats and
714 * then put the task into the rbtree:
715 */
716 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
717 {
718 struct cfs_rq *cfs_rq;
719 struct sched_entity *se = &p->se;
720
721 for_each_sched_entity(se) {
722 if (se->on_rq)
723 break;
724 cfs_rq = cfs_rq_of(se);
725 enqueue_entity(cfs_rq, se, wakeup);
726 }
727 }
728
729 /*
730 * The dequeue_task method is called before nr_running is
731 * decreased. We remove the task from the rbtree and
732 * update the fair scheduling stats:
733 */
734 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
735 {
736 struct cfs_rq *cfs_rq;
737 struct sched_entity *se = &p->se;
738
739 for_each_sched_entity(se) {
740 cfs_rq = cfs_rq_of(se);
741 dequeue_entity(cfs_rq, se, sleep);
742 /* Don't dequeue parent if it has other entities besides us */
743 if (cfs_rq->load.weight)
744 break;
745 }
746 }
747
748 /*
749 * sched_yield() support is very simple - we dequeue and enqueue.
750 *
751 * If compat_yield is turned on then we requeue to the end of the tree.
752 */
753 static void yield_task_fair(struct rq *rq)
754 {
755 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
756 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
757 struct sched_entity *rightmost, *se = &rq->curr->se;
758 struct rb_node *parent;
759
760 /*
761 * Are we the only task in the tree?
762 */
763 if (unlikely(cfs_rq->nr_running == 1))
764 return;
765
766 if (likely(!sysctl_sched_compat_yield)) {
767 __update_rq_clock(rq);
768 /*
769 * Dequeue and enqueue the task to update its
770 * position within the tree:
771 */
772 dequeue_entity(cfs_rq, se, 0);
773 enqueue_entity(cfs_rq, se, 0);
774
775 return;
776 }
777 /*
778 * Find the rightmost entry in the rbtree:
779 */
780 do {
781 parent = *link;
782 link = &parent->rb_right;
783 } while (*link);
784
785 rightmost = rb_entry(parent, struct sched_entity, run_node);
786 /*
787 * Already in the rightmost position?
788 */
789 if (unlikely(rightmost == se))
790 return;
791
792 /*
793 * Minimally necessary key value to be last in the tree:
794 */
795 se->vruntime = rightmost->vruntime + 1;
796
797 if (cfs_rq->rb_leftmost == &se->run_node)
798 cfs_rq->rb_leftmost = rb_next(&se->run_node);
799 /*
800 * Relink the task to the rightmost position:
801 */
802 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
803 rb_link_node(&se->run_node, parent, link);
804 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
805 }
806
807 /*
808 * Preempt the current task with a newly woken task if needed:
809 */
810 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
811 {
812 struct task_struct *curr = rq->curr;
813 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
814
815 if (unlikely(rt_prio(p->prio))) {
816 update_rq_clock(rq);
817 update_curr(cfs_rq);
818 resched_task(curr);
819 return;
820 }
821 if (is_same_group(curr, p)) {
822 s64 delta = curr->se.vruntime - p->se.vruntime;
823
824 if (delta > (s64)sysctl_sched_wakeup_granularity)
825 resched_task(curr);
826 }
827 }
828
829 static struct task_struct *pick_next_task_fair(struct rq *rq)
830 {
831 struct cfs_rq *cfs_rq = &rq->cfs;
832 struct sched_entity *se;
833
834 if (unlikely(!cfs_rq->nr_running))
835 return NULL;
836
837 do {
838 se = pick_next_entity(cfs_rq);
839 cfs_rq = group_cfs_rq(se);
840 } while (cfs_rq);
841
842 return task_of(se);
843 }
844
845 /*
846 * Account for a descheduled task:
847 */
848 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
849 {
850 struct sched_entity *se = &prev->se;
851 struct cfs_rq *cfs_rq;
852
853 for_each_sched_entity(se) {
854 cfs_rq = cfs_rq_of(se);
855 put_prev_entity(cfs_rq, se);
856 }
857 }
858
859 /**************************************************
860 * Fair scheduling class load-balancing methods:
861 */
862
863 /*
864 * Load-balancing iterator. Note: while the runqueue stays locked
865 * during the whole iteration, the current task might be
866 * dequeued so the iterator has to be dequeue-safe. Here we
867 * achieve that by always pre-iterating before returning
868 * the current task:
869 */
870 static inline struct task_struct *
871 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
872 {
873 struct task_struct *p;
874
875 if (!curr)
876 return NULL;
877
878 p = rb_entry(curr, struct task_struct, se.run_node);
879 cfs_rq->rb_load_balance_curr = rb_next(curr);
880
881 return p;
882 }
883
884 static struct task_struct *load_balance_start_fair(void *arg)
885 {
886 struct cfs_rq *cfs_rq = arg;
887
888 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
889 }
890
891 static struct task_struct *load_balance_next_fair(void *arg)
892 {
893 struct cfs_rq *cfs_rq = arg;
894
895 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
896 }
897
898 #ifdef CONFIG_FAIR_GROUP_SCHED
899 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
900 {
901 struct sched_entity *curr;
902 struct task_struct *p;
903
904 if (!cfs_rq->nr_running)
905 return MAX_PRIO;
906
907 curr = cfs_rq->curr;
908 if (!curr)
909 curr = __pick_next_entity(cfs_rq);
910
911 p = task_of(curr);
912
913 return p->prio;
914 }
915 #endif
916
917 static unsigned long
918 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
919 unsigned long max_nr_move, unsigned long max_load_move,
920 struct sched_domain *sd, enum cpu_idle_type idle,
921 int *all_pinned, int *this_best_prio)
922 {
923 struct cfs_rq *busy_cfs_rq;
924 unsigned long load_moved, total_nr_moved = 0, nr_moved;
925 long rem_load_move = max_load_move;
926 struct rq_iterator cfs_rq_iterator;
927
928 cfs_rq_iterator.start = load_balance_start_fair;
929 cfs_rq_iterator.next = load_balance_next_fair;
930
931 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
932 #ifdef CONFIG_FAIR_GROUP_SCHED
933 struct cfs_rq *this_cfs_rq;
934 long imbalance;
935 unsigned long maxload;
936
937 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
938
939 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
940 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
941 if (imbalance <= 0)
942 continue;
943
944 /* Don't pull more than imbalance/2 */
945 imbalance /= 2;
946 maxload = min(rem_load_move, imbalance);
947
948 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
949 #else
950 # define maxload rem_load_move
951 #endif
952 /* pass busy_cfs_rq argument into
953 * load_balance_[start|next]_fair iterators
954 */
955 cfs_rq_iterator.arg = busy_cfs_rq;
956 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
957 max_nr_move, maxload, sd, idle, all_pinned,
958 &load_moved, this_best_prio, &cfs_rq_iterator);
959
960 total_nr_moved += nr_moved;
961 max_nr_move -= nr_moved;
962 rem_load_move -= load_moved;
963
964 if (max_nr_move <= 0 || rem_load_move <= 0)
965 break;
966 }
967
968 return max_load_move - rem_load_move;
969 }
970
971 /*
972 * scheduler tick hitting a task of our scheduling class:
973 */
974 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
975 {
976 struct cfs_rq *cfs_rq;
977 struct sched_entity *se = &curr->se;
978
979 for_each_sched_entity(se) {
980 cfs_rq = cfs_rq_of(se);
981 entity_tick(cfs_rq, se);
982 }
983 }
984
985 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
986
987 /*
988 * Share the fairness runtime between parent and child, thus the
989 * total amount of pressure for CPU stays equal - new tasks
990 * get a chance to run but frequent forkers are not allowed to
991 * monopolize the CPU. Note: the parent runqueue is locked,
992 * the child is not running yet.
993 */
994 static void task_new_fair(struct rq *rq, struct task_struct *p)
995 {
996 struct cfs_rq *cfs_rq = task_cfs_rq(p);
997 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
998
999 sched_info_queued(p);
1000
1001 update_curr(cfs_rq);
1002 place_entity(cfs_rq, se, 1);
1003
1004 if (sysctl_sched_child_runs_first &&
1005 curr->vruntime < se->vruntime) {
1006 /*
1007 * Upon rescheduling, sched_class::put_prev_task() will place
1008 * 'current' within the tree based on its new key value.
1009 */
1010 swap(curr->vruntime, se->vruntime);
1011 }
1012
1013 update_stats_enqueue(cfs_rq, se);
1014 check_spread(cfs_rq, se);
1015 check_spread(cfs_rq, curr);
1016 __enqueue_entity(cfs_rq, se);
1017 account_entity_enqueue(cfs_rq, se);
1018 resched_task(rq->curr);
1019 }
1020
1021 /* Account for a task changing its policy or group.
1022 *
1023 * This routine is mostly called to set cfs_rq->curr field when a task
1024 * migrates between groups/classes.
1025 */
1026 static void set_curr_task_fair(struct rq *rq)
1027 {
1028 struct sched_entity *se = &rq->curr->se;
1029
1030 for_each_sched_entity(se)
1031 set_next_entity(cfs_rq_of(se), se);
1032 }
1033
1034 /*
1035 * All the scheduling class methods:
1036 */
1037 struct sched_class fair_sched_class __read_mostly = {
1038 .enqueue_task = enqueue_task_fair,
1039 .dequeue_task = dequeue_task_fair,
1040 .yield_task = yield_task_fair,
1041
1042 .check_preempt_curr = check_preempt_wakeup,
1043
1044 .pick_next_task = pick_next_task_fair,
1045 .put_prev_task = put_prev_task_fair,
1046
1047 .load_balance = load_balance_fair,
1048
1049 .set_curr_task = set_curr_task_fair,
1050 .task_tick = task_tick_fair,
1051 .task_new = task_new_fair,
1052 };
1053
1054 #ifdef CONFIG_SCHED_DEBUG
1055 static void print_cfs_stats(struct seq_file *m, int cpu)
1056 {
1057 struct cfs_rq *cfs_rq;
1058
1059 #ifdef CONFIG_FAIR_GROUP_SCHED
1060 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1061 #endif
1062 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1063 print_cfs_rq(m, cpu, cfs_rq);
1064 }
1065 #endif
This page took 0.065336 seconds and 6 git commands to generate.