cgroups: use task_lock() for access tsk->cgroups safe in cgroup_clone()
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
31
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
37
38 /*
39 * SLAB caches for signal bits.
40 */
41
42 static struct kmem_cache *sigqueue_cachep;
43
44 DEFINE_TRACE(sched_signal_send);
45
46 static void __user *sig_handler(struct task_struct *t, int sig)
47 {
48 return t->sighand->action[sig - 1].sa.sa_handler;
49 }
50
51 static int sig_handler_ignored(void __user *handler, int sig)
52 {
53 /* Is it explicitly or implicitly ignored? */
54 return handler == SIG_IGN ||
55 (handler == SIG_DFL && sig_kernel_ignore(sig));
56 }
57
58 static int sig_ignored(struct task_struct *t, int sig)
59 {
60 void __user *handler;
61
62 /*
63 * Blocked signals are never ignored, since the
64 * signal handler may change by the time it is
65 * unblocked.
66 */
67 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
68 return 0;
69
70 handler = sig_handler(t, sig);
71 if (!sig_handler_ignored(handler, sig))
72 return 0;
73
74 /*
75 * Tracers may want to know about even ignored signals.
76 */
77 return !tracehook_consider_ignored_signal(t, sig, handler);
78 }
79
80 /*
81 * Re-calculate pending state from the set of locally pending
82 * signals, globally pending signals, and blocked signals.
83 */
84 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
85 {
86 unsigned long ready;
87 long i;
88
89 switch (_NSIG_WORDS) {
90 default:
91 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
92 ready |= signal->sig[i] &~ blocked->sig[i];
93 break;
94
95 case 4: ready = signal->sig[3] &~ blocked->sig[3];
96 ready |= signal->sig[2] &~ blocked->sig[2];
97 ready |= signal->sig[1] &~ blocked->sig[1];
98 ready |= signal->sig[0] &~ blocked->sig[0];
99 break;
100
101 case 2: ready = signal->sig[1] &~ blocked->sig[1];
102 ready |= signal->sig[0] &~ blocked->sig[0];
103 break;
104
105 case 1: ready = signal->sig[0] &~ blocked->sig[0];
106 }
107 return ready != 0;
108 }
109
110 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
111
112 static int recalc_sigpending_tsk(struct task_struct *t)
113 {
114 if (t->signal->group_stop_count > 0 ||
115 PENDING(&t->pending, &t->blocked) ||
116 PENDING(&t->signal->shared_pending, &t->blocked)) {
117 set_tsk_thread_flag(t, TIF_SIGPENDING);
118 return 1;
119 }
120 /*
121 * We must never clear the flag in another thread, or in current
122 * when it's possible the current syscall is returning -ERESTART*.
123 * So we don't clear it here, and only callers who know they should do.
124 */
125 return 0;
126 }
127
128 /*
129 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
130 * This is superfluous when called on current, the wakeup is a harmless no-op.
131 */
132 void recalc_sigpending_and_wake(struct task_struct *t)
133 {
134 if (recalc_sigpending_tsk(t))
135 signal_wake_up(t, 0);
136 }
137
138 void recalc_sigpending(void)
139 {
140 if (unlikely(tracehook_force_sigpending()))
141 set_thread_flag(TIF_SIGPENDING);
142 else if (!recalc_sigpending_tsk(current) && !freezing(current))
143 clear_thread_flag(TIF_SIGPENDING);
144
145 }
146
147 /* Given the mask, find the first available signal that should be serviced. */
148
149 int next_signal(struct sigpending *pending, sigset_t *mask)
150 {
151 unsigned long i, *s, *m, x;
152 int sig = 0;
153
154 s = pending->signal.sig;
155 m = mask->sig;
156 switch (_NSIG_WORDS) {
157 default:
158 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
159 if ((x = *s &~ *m) != 0) {
160 sig = ffz(~x) + i*_NSIG_BPW + 1;
161 break;
162 }
163 break;
164
165 case 2: if ((x = s[0] &~ m[0]) != 0)
166 sig = 1;
167 else if ((x = s[1] &~ m[1]) != 0)
168 sig = _NSIG_BPW + 1;
169 else
170 break;
171 sig += ffz(~x);
172 break;
173
174 case 1: if ((x = *s &~ *m) != 0)
175 sig = ffz(~x) + 1;
176 break;
177 }
178
179 return sig;
180 }
181
182 /*
183 * allocate a new signal queue record
184 * - this may be called without locks if and only if t == current, otherwise an
185 * appopriate lock must be held to stop the target task from exiting
186 */
187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
188 int override_rlimit)
189 {
190 struct sigqueue *q = NULL;
191 struct user_struct *user;
192
193 /*
194 * We won't get problems with the target's UID changing under us
195 * because changing it requires RCU be used, and if t != current, the
196 * caller must be holding the RCU readlock (by way of a spinlock) and
197 * we use RCU protection here
198 */
199 user = get_uid(__task_cred(t)->user);
200 atomic_inc(&user->sigpending);
201 if (override_rlimit ||
202 atomic_read(&user->sigpending) <=
203 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
204 q = kmem_cache_alloc(sigqueue_cachep, flags);
205 if (unlikely(q == NULL)) {
206 atomic_dec(&user->sigpending);
207 free_uid(user);
208 } else {
209 INIT_LIST_HEAD(&q->list);
210 q->flags = 0;
211 q->user = user;
212 }
213
214 return q;
215 }
216
217 static void __sigqueue_free(struct sigqueue *q)
218 {
219 if (q->flags & SIGQUEUE_PREALLOC)
220 return;
221 atomic_dec(&q->user->sigpending);
222 free_uid(q->user);
223 kmem_cache_free(sigqueue_cachep, q);
224 }
225
226 void flush_sigqueue(struct sigpending *queue)
227 {
228 struct sigqueue *q;
229
230 sigemptyset(&queue->signal);
231 while (!list_empty(&queue->list)) {
232 q = list_entry(queue->list.next, struct sigqueue , list);
233 list_del_init(&q->list);
234 __sigqueue_free(q);
235 }
236 }
237
238 /*
239 * Flush all pending signals for a task.
240 */
241 void flush_signals(struct task_struct *t)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(&t->sighand->siglock, flags);
246 clear_tsk_thread_flag(t, TIF_SIGPENDING);
247 flush_sigqueue(&t->pending);
248 flush_sigqueue(&t->signal->shared_pending);
249 spin_unlock_irqrestore(&t->sighand->siglock, flags);
250 }
251
252 static void __flush_itimer_signals(struct sigpending *pending)
253 {
254 sigset_t signal, retain;
255 struct sigqueue *q, *n;
256
257 signal = pending->signal;
258 sigemptyset(&retain);
259
260 list_for_each_entry_safe(q, n, &pending->list, list) {
261 int sig = q->info.si_signo;
262
263 if (likely(q->info.si_code != SI_TIMER)) {
264 sigaddset(&retain, sig);
265 } else {
266 sigdelset(&signal, sig);
267 list_del_init(&q->list);
268 __sigqueue_free(q);
269 }
270 }
271
272 sigorsets(&pending->signal, &signal, &retain);
273 }
274
275 void flush_itimer_signals(void)
276 {
277 struct task_struct *tsk = current;
278 unsigned long flags;
279
280 spin_lock_irqsave(&tsk->sighand->siglock, flags);
281 __flush_itimer_signals(&tsk->pending);
282 __flush_itimer_signals(&tsk->signal->shared_pending);
283 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
284 }
285
286 void ignore_signals(struct task_struct *t)
287 {
288 int i;
289
290 for (i = 0; i < _NSIG; ++i)
291 t->sighand->action[i].sa.sa_handler = SIG_IGN;
292
293 flush_signals(t);
294 }
295
296 /*
297 * Flush all handlers for a task.
298 */
299
300 void
301 flush_signal_handlers(struct task_struct *t, int force_default)
302 {
303 int i;
304 struct k_sigaction *ka = &t->sighand->action[0];
305 for (i = _NSIG ; i != 0 ; i--) {
306 if (force_default || ka->sa.sa_handler != SIG_IGN)
307 ka->sa.sa_handler = SIG_DFL;
308 ka->sa.sa_flags = 0;
309 sigemptyset(&ka->sa.sa_mask);
310 ka++;
311 }
312 }
313
314 int unhandled_signal(struct task_struct *tsk, int sig)
315 {
316 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
317 if (is_global_init(tsk))
318 return 1;
319 if (handler != SIG_IGN && handler != SIG_DFL)
320 return 0;
321 return !tracehook_consider_fatal_signal(tsk, sig, handler);
322 }
323
324
325 /* Notify the system that a driver wants to block all signals for this
326 * process, and wants to be notified if any signals at all were to be
327 * sent/acted upon. If the notifier routine returns non-zero, then the
328 * signal will be acted upon after all. If the notifier routine returns 0,
329 * then then signal will be blocked. Only one block per process is
330 * allowed. priv is a pointer to private data that the notifier routine
331 * can use to determine if the signal should be blocked or not. */
332
333 void
334 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
335 {
336 unsigned long flags;
337
338 spin_lock_irqsave(&current->sighand->siglock, flags);
339 current->notifier_mask = mask;
340 current->notifier_data = priv;
341 current->notifier = notifier;
342 spin_unlock_irqrestore(&current->sighand->siglock, flags);
343 }
344
345 /* Notify the system that blocking has ended. */
346
347 void
348 unblock_all_signals(void)
349 {
350 unsigned long flags;
351
352 spin_lock_irqsave(&current->sighand->siglock, flags);
353 current->notifier = NULL;
354 current->notifier_data = NULL;
355 recalc_sigpending();
356 spin_unlock_irqrestore(&current->sighand->siglock, flags);
357 }
358
359 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
360 {
361 struct sigqueue *q, *first = NULL;
362
363 /*
364 * Collect the siginfo appropriate to this signal. Check if
365 * there is another siginfo for the same signal.
366 */
367 list_for_each_entry(q, &list->list, list) {
368 if (q->info.si_signo == sig) {
369 if (first)
370 goto still_pending;
371 first = q;
372 }
373 }
374
375 sigdelset(&list->signal, sig);
376
377 if (first) {
378 still_pending:
379 list_del_init(&first->list);
380 copy_siginfo(info, &first->info);
381 __sigqueue_free(first);
382 } else {
383 /* Ok, it wasn't in the queue. This must be
384 a fast-pathed signal or we must have been
385 out of queue space. So zero out the info.
386 */
387 info->si_signo = sig;
388 info->si_errno = 0;
389 info->si_code = 0;
390 info->si_pid = 0;
391 info->si_uid = 0;
392 }
393 }
394
395 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
396 siginfo_t *info)
397 {
398 int sig = next_signal(pending, mask);
399
400 if (sig) {
401 if (current->notifier) {
402 if (sigismember(current->notifier_mask, sig)) {
403 if (!(current->notifier)(current->notifier_data)) {
404 clear_thread_flag(TIF_SIGPENDING);
405 return 0;
406 }
407 }
408 }
409
410 collect_signal(sig, pending, info);
411 }
412
413 return sig;
414 }
415
416 /*
417 * Dequeue a signal and return the element to the caller, which is
418 * expected to free it.
419 *
420 * All callers have to hold the siglock.
421 */
422 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
423 {
424 int signr;
425
426 /* We only dequeue private signals from ourselves, we don't let
427 * signalfd steal them
428 */
429 signr = __dequeue_signal(&tsk->pending, mask, info);
430 if (!signr) {
431 signr = __dequeue_signal(&tsk->signal->shared_pending,
432 mask, info);
433 /*
434 * itimer signal ?
435 *
436 * itimers are process shared and we restart periodic
437 * itimers in the signal delivery path to prevent DoS
438 * attacks in the high resolution timer case. This is
439 * compliant with the old way of self restarting
440 * itimers, as the SIGALRM is a legacy signal and only
441 * queued once. Changing the restart behaviour to
442 * restart the timer in the signal dequeue path is
443 * reducing the timer noise on heavy loaded !highres
444 * systems too.
445 */
446 if (unlikely(signr == SIGALRM)) {
447 struct hrtimer *tmr = &tsk->signal->real_timer;
448
449 if (!hrtimer_is_queued(tmr) &&
450 tsk->signal->it_real_incr.tv64 != 0) {
451 hrtimer_forward(tmr, tmr->base->get_time(),
452 tsk->signal->it_real_incr);
453 hrtimer_restart(tmr);
454 }
455 }
456 }
457
458 recalc_sigpending();
459 if (!signr)
460 return 0;
461
462 if (unlikely(sig_kernel_stop(signr))) {
463 /*
464 * Set a marker that we have dequeued a stop signal. Our
465 * caller might release the siglock and then the pending
466 * stop signal it is about to process is no longer in the
467 * pending bitmasks, but must still be cleared by a SIGCONT
468 * (and overruled by a SIGKILL). So those cases clear this
469 * shared flag after we've set it. Note that this flag may
470 * remain set after the signal we return is ignored or
471 * handled. That doesn't matter because its only purpose
472 * is to alert stop-signal processing code when another
473 * processor has come along and cleared the flag.
474 */
475 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
476 }
477 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
478 /*
479 * Release the siglock to ensure proper locking order
480 * of timer locks outside of siglocks. Note, we leave
481 * irqs disabled here, since the posix-timers code is
482 * about to disable them again anyway.
483 */
484 spin_unlock(&tsk->sighand->siglock);
485 do_schedule_next_timer(info);
486 spin_lock(&tsk->sighand->siglock);
487 }
488 return signr;
489 }
490
491 /*
492 * Tell a process that it has a new active signal..
493 *
494 * NOTE! we rely on the previous spin_lock to
495 * lock interrupts for us! We can only be called with
496 * "siglock" held, and the local interrupt must
497 * have been disabled when that got acquired!
498 *
499 * No need to set need_resched since signal event passing
500 * goes through ->blocked
501 */
502 void signal_wake_up(struct task_struct *t, int resume)
503 {
504 unsigned int mask;
505
506 set_tsk_thread_flag(t, TIF_SIGPENDING);
507
508 /*
509 * For SIGKILL, we want to wake it up in the stopped/traced/killable
510 * case. We don't check t->state here because there is a race with it
511 * executing another processor and just now entering stopped state.
512 * By using wake_up_state, we ensure the process will wake up and
513 * handle its death signal.
514 */
515 mask = TASK_INTERRUPTIBLE;
516 if (resume)
517 mask |= TASK_WAKEKILL;
518 if (!wake_up_state(t, mask))
519 kick_process(t);
520 }
521
522 /*
523 * Remove signals in mask from the pending set and queue.
524 * Returns 1 if any signals were found.
525 *
526 * All callers must be holding the siglock.
527 *
528 * This version takes a sigset mask and looks at all signals,
529 * not just those in the first mask word.
530 */
531 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
532 {
533 struct sigqueue *q, *n;
534 sigset_t m;
535
536 sigandsets(&m, mask, &s->signal);
537 if (sigisemptyset(&m))
538 return 0;
539
540 signandsets(&s->signal, &s->signal, mask);
541 list_for_each_entry_safe(q, n, &s->list, list) {
542 if (sigismember(mask, q->info.si_signo)) {
543 list_del_init(&q->list);
544 __sigqueue_free(q);
545 }
546 }
547 return 1;
548 }
549 /*
550 * Remove signals in mask from the pending set and queue.
551 * Returns 1 if any signals were found.
552 *
553 * All callers must be holding the siglock.
554 */
555 static int rm_from_queue(unsigned long mask, struct sigpending *s)
556 {
557 struct sigqueue *q, *n;
558
559 if (!sigtestsetmask(&s->signal, mask))
560 return 0;
561
562 sigdelsetmask(&s->signal, mask);
563 list_for_each_entry_safe(q, n, &s->list, list) {
564 if (q->info.si_signo < SIGRTMIN &&
565 (mask & sigmask(q->info.si_signo))) {
566 list_del_init(&q->list);
567 __sigqueue_free(q);
568 }
569 }
570 return 1;
571 }
572
573 /*
574 * Bad permissions for sending the signal
575 * - the caller must hold at least the RCU read lock
576 */
577 static int check_kill_permission(int sig, struct siginfo *info,
578 struct task_struct *t)
579 {
580 const struct cred *cred = current_cred(), *tcred;
581 struct pid *sid;
582 int error;
583
584 if (!valid_signal(sig))
585 return -EINVAL;
586
587 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
588 return 0;
589
590 error = audit_signal_info(sig, t); /* Let audit system see the signal */
591 if (error)
592 return error;
593
594 tcred = __task_cred(t);
595 if ((cred->euid ^ tcred->suid) &&
596 (cred->euid ^ tcred->uid) &&
597 (cred->uid ^ tcred->suid) &&
598 (cred->uid ^ tcred->uid) &&
599 !capable(CAP_KILL)) {
600 switch (sig) {
601 case SIGCONT:
602 sid = task_session(t);
603 /*
604 * We don't return the error if sid == NULL. The
605 * task was unhashed, the caller must notice this.
606 */
607 if (!sid || sid == task_session(current))
608 break;
609 default:
610 return -EPERM;
611 }
612 }
613
614 return security_task_kill(t, info, sig, 0);
615 }
616
617 /*
618 * Handle magic process-wide effects of stop/continue signals. Unlike
619 * the signal actions, these happen immediately at signal-generation
620 * time regardless of blocking, ignoring, or handling. This does the
621 * actual continuing for SIGCONT, but not the actual stopping for stop
622 * signals. The process stop is done as a signal action for SIG_DFL.
623 *
624 * Returns true if the signal should be actually delivered, otherwise
625 * it should be dropped.
626 */
627 static int prepare_signal(int sig, struct task_struct *p)
628 {
629 struct signal_struct *signal = p->signal;
630 struct task_struct *t;
631
632 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
633 /*
634 * The process is in the middle of dying, nothing to do.
635 */
636 } else if (sig_kernel_stop(sig)) {
637 /*
638 * This is a stop signal. Remove SIGCONT from all queues.
639 */
640 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
641 t = p;
642 do {
643 rm_from_queue(sigmask(SIGCONT), &t->pending);
644 } while_each_thread(p, t);
645 } else if (sig == SIGCONT) {
646 unsigned int why;
647 /*
648 * Remove all stop signals from all queues,
649 * and wake all threads.
650 */
651 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
652 t = p;
653 do {
654 unsigned int state;
655 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
656 /*
657 * If there is a handler for SIGCONT, we must make
658 * sure that no thread returns to user mode before
659 * we post the signal, in case it was the only
660 * thread eligible to run the signal handler--then
661 * it must not do anything between resuming and
662 * running the handler. With the TIF_SIGPENDING
663 * flag set, the thread will pause and acquire the
664 * siglock that we hold now and until we've queued
665 * the pending signal.
666 *
667 * Wake up the stopped thread _after_ setting
668 * TIF_SIGPENDING
669 */
670 state = __TASK_STOPPED;
671 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
672 set_tsk_thread_flag(t, TIF_SIGPENDING);
673 state |= TASK_INTERRUPTIBLE;
674 }
675 wake_up_state(t, state);
676 } while_each_thread(p, t);
677
678 /*
679 * Notify the parent with CLD_CONTINUED if we were stopped.
680 *
681 * If we were in the middle of a group stop, we pretend it
682 * was already finished, and then continued. Since SIGCHLD
683 * doesn't queue we report only CLD_STOPPED, as if the next
684 * CLD_CONTINUED was dropped.
685 */
686 why = 0;
687 if (signal->flags & SIGNAL_STOP_STOPPED)
688 why |= SIGNAL_CLD_CONTINUED;
689 else if (signal->group_stop_count)
690 why |= SIGNAL_CLD_STOPPED;
691
692 if (why) {
693 /*
694 * The first thread which returns from finish_stop()
695 * will take ->siglock, notice SIGNAL_CLD_MASK, and
696 * notify its parent. See get_signal_to_deliver().
697 */
698 signal->flags = why | SIGNAL_STOP_CONTINUED;
699 signal->group_stop_count = 0;
700 signal->group_exit_code = 0;
701 } else {
702 /*
703 * We are not stopped, but there could be a stop
704 * signal in the middle of being processed after
705 * being removed from the queue. Clear that too.
706 */
707 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
708 }
709 }
710
711 return !sig_ignored(p, sig);
712 }
713
714 /*
715 * Test if P wants to take SIG. After we've checked all threads with this,
716 * it's equivalent to finding no threads not blocking SIG. Any threads not
717 * blocking SIG were ruled out because they are not running and already
718 * have pending signals. Such threads will dequeue from the shared queue
719 * as soon as they're available, so putting the signal on the shared queue
720 * will be equivalent to sending it to one such thread.
721 */
722 static inline int wants_signal(int sig, struct task_struct *p)
723 {
724 if (sigismember(&p->blocked, sig))
725 return 0;
726 if (p->flags & PF_EXITING)
727 return 0;
728 if (sig == SIGKILL)
729 return 1;
730 if (task_is_stopped_or_traced(p))
731 return 0;
732 return task_curr(p) || !signal_pending(p);
733 }
734
735 static void complete_signal(int sig, struct task_struct *p, int group)
736 {
737 struct signal_struct *signal = p->signal;
738 struct task_struct *t;
739
740 /*
741 * Now find a thread we can wake up to take the signal off the queue.
742 *
743 * If the main thread wants the signal, it gets first crack.
744 * Probably the least surprising to the average bear.
745 */
746 if (wants_signal(sig, p))
747 t = p;
748 else if (!group || thread_group_empty(p))
749 /*
750 * There is just one thread and it does not need to be woken.
751 * It will dequeue unblocked signals before it runs again.
752 */
753 return;
754 else {
755 /*
756 * Otherwise try to find a suitable thread.
757 */
758 t = signal->curr_target;
759 while (!wants_signal(sig, t)) {
760 t = next_thread(t);
761 if (t == signal->curr_target)
762 /*
763 * No thread needs to be woken.
764 * Any eligible threads will see
765 * the signal in the queue soon.
766 */
767 return;
768 }
769 signal->curr_target = t;
770 }
771
772 /*
773 * Found a killable thread. If the signal will be fatal,
774 * then start taking the whole group down immediately.
775 */
776 if (sig_fatal(p, sig) &&
777 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
778 !sigismember(&t->real_blocked, sig) &&
779 (sig == SIGKILL ||
780 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) {
781 /*
782 * This signal will be fatal to the whole group.
783 */
784 if (!sig_kernel_coredump(sig)) {
785 /*
786 * Start a group exit and wake everybody up.
787 * This way we don't have other threads
788 * running and doing things after a slower
789 * thread has the fatal signal pending.
790 */
791 signal->flags = SIGNAL_GROUP_EXIT;
792 signal->group_exit_code = sig;
793 signal->group_stop_count = 0;
794 t = p;
795 do {
796 sigaddset(&t->pending.signal, SIGKILL);
797 signal_wake_up(t, 1);
798 } while_each_thread(p, t);
799 return;
800 }
801 }
802
803 /*
804 * The signal is already in the shared-pending queue.
805 * Tell the chosen thread to wake up and dequeue it.
806 */
807 signal_wake_up(t, sig == SIGKILL);
808 return;
809 }
810
811 static inline int legacy_queue(struct sigpending *signals, int sig)
812 {
813 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
814 }
815
816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
817 int group)
818 {
819 struct sigpending *pending;
820 struct sigqueue *q;
821
822 trace_sched_signal_send(sig, t);
823
824 assert_spin_locked(&t->sighand->siglock);
825 if (!prepare_signal(sig, t))
826 return 0;
827
828 pending = group ? &t->signal->shared_pending : &t->pending;
829 /*
830 * Short-circuit ignored signals and support queuing
831 * exactly one non-rt signal, so that we can get more
832 * detailed information about the cause of the signal.
833 */
834 if (legacy_queue(pending, sig))
835 return 0;
836 /*
837 * fast-pathed signals for kernel-internal things like SIGSTOP
838 * or SIGKILL.
839 */
840 if (info == SEND_SIG_FORCED)
841 goto out_set;
842
843 /* Real-time signals must be queued if sent by sigqueue, or
844 some other real-time mechanism. It is implementation
845 defined whether kill() does so. We attempt to do so, on
846 the principle of least surprise, but since kill is not
847 allowed to fail with EAGAIN when low on memory we just
848 make sure at least one signal gets delivered and don't
849 pass on the info struct. */
850
851 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
852 (is_si_special(info) ||
853 info->si_code >= 0)));
854 if (q) {
855 list_add_tail(&q->list, &pending->list);
856 switch ((unsigned long) info) {
857 case (unsigned long) SEND_SIG_NOINFO:
858 q->info.si_signo = sig;
859 q->info.si_errno = 0;
860 q->info.si_code = SI_USER;
861 q->info.si_pid = task_tgid_nr_ns(current,
862 task_active_pid_ns(t));
863 q->info.si_uid = current_uid();
864 break;
865 case (unsigned long) SEND_SIG_PRIV:
866 q->info.si_signo = sig;
867 q->info.si_errno = 0;
868 q->info.si_code = SI_KERNEL;
869 q->info.si_pid = 0;
870 q->info.si_uid = 0;
871 break;
872 default:
873 copy_siginfo(&q->info, info);
874 break;
875 }
876 } else if (!is_si_special(info)) {
877 if (sig >= SIGRTMIN && info->si_code != SI_USER)
878 /*
879 * Queue overflow, abort. We may abort if the signal was rt
880 * and sent by user using something other than kill().
881 */
882 return -EAGAIN;
883 }
884
885 out_set:
886 signalfd_notify(t, sig);
887 sigaddset(&pending->signal, sig);
888 complete_signal(sig, t, group);
889 return 0;
890 }
891
892 int print_fatal_signals;
893
894 static void print_fatal_signal(struct pt_regs *regs, int signr)
895 {
896 printk("%s/%d: potentially unexpected fatal signal %d.\n",
897 current->comm, task_pid_nr(current), signr);
898
899 #if defined(__i386__) && !defined(__arch_um__)
900 printk("code at %08lx: ", regs->ip);
901 {
902 int i;
903 for (i = 0; i < 16; i++) {
904 unsigned char insn;
905
906 __get_user(insn, (unsigned char *)(regs->ip + i));
907 printk("%02x ", insn);
908 }
909 }
910 #endif
911 printk("\n");
912 show_regs(regs);
913 }
914
915 static int __init setup_print_fatal_signals(char *str)
916 {
917 get_option (&str, &print_fatal_signals);
918
919 return 1;
920 }
921
922 __setup("print-fatal-signals=", setup_print_fatal_signals);
923
924 int
925 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
926 {
927 return send_signal(sig, info, p, 1);
928 }
929
930 static int
931 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
932 {
933 return send_signal(sig, info, t, 0);
934 }
935
936 /*
937 * Force a signal that the process can't ignore: if necessary
938 * we unblock the signal and change any SIG_IGN to SIG_DFL.
939 *
940 * Note: If we unblock the signal, we always reset it to SIG_DFL,
941 * since we do not want to have a signal handler that was blocked
942 * be invoked when user space had explicitly blocked it.
943 *
944 * We don't want to have recursive SIGSEGV's etc, for example,
945 * that is why we also clear SIGNAL_UNKILLABLE.
946 */
947 int
948 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
949 {
950 unsigned long int flags;
951 int ret, blocked, ignored;
952 struct k_sigaction *action;
953
954 spin_lock_irqsave(&t->sighand->siglock, flags);
955 action = &t->sighand->action[sig-1];
956 ignored = action->sa.sa_handler == SIG_IGN;
957 blocked = sigismember(&t->blocked, sig);
958 if (blocked || ignored) {
959 action->sa.sa_handler = SIG_DFL;
960 if (blocked) {
961 sigdelset(&t->blocked, sig);
962 recalc_sigpending_and_wake(t);
963 }
964 }
965 if (action->sa.sa_handler == SIG_DFL)
966 t->signal->flags &= ~SIGNAL_UNKILLABLE;
967 ret = specific_send_sig_info(sig, info, t);
968 spin_unlock_irqrestore(&t->sighand->siglock, flags);
969
970 return ret;
971 }
972
973 void
974 force_sig_specific(int sig, struct task_struct *t)
975 {
976 force_sig_info(sig, SEND_SIG_FORCED, t);
977 }
978
979 /*
980 * Nuke all other threads in the group.
981 */
982 void zap_other_threads(struct task_struct *p)
983 {
984 struct task_struct *t;
985
986 p->signal->group_stop_count = 0;
987
988 for (t = next_thread(p); t != p; t = next_thread(t)) {
989 /*
990 * Don't bother with already dead threads
991 */
992 if (t->exit_state)
993 continue;
994
995 /* SIGKILL will be handled before any pending SIGSTOP */
996 sigaddset(&t->pending.signal, SIGKILL);
997 signal_wake_up(t, 1);
998 }
999 }
1000
1001 int __fatal_signal_pending(struct task_struct *tsk)
1002 {
1003 return sigismember(&tsk->pending.signal, SIGKILL);
1004 }
1005 EXPORT_SYMBOL(__fatal_signal_pending);
1006
1007 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1008 {
1009 struct sighand_struct *sighand;
1010
1011 rcu_read_lock();
1012 for (;;) {
1013 sighand = rcu_dereference(tsk->sighand);
1014 if (unlikely(sighand == NULL))
1015 break;
1016
1017 spin_lock_irqsave(&sighand->siglock, *flags);
1018 if (likely(sighand == tsk->sighand))
1019 break;
1020 spin_unlock_irqrestore(&sighand->siglock, *flags);
1021 }
1022 rcu_read_unlock();
1023
1024 return sighand;
1025 }
1026
1027 /*
1028 * send signal info to all the members of a group
1029 * - the caller must hold the RCU read lock at least
1030 */
1031 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1032 {
1033 unsigned long flags;
1034 int ret;
1035
1036 ret = check_kill_permission(sig, info, p);
1037
1038 if (!ret && sig) {
1039 ret = -ESRCH;
1040 if (lock_task_sighand(p, &flags)) {
1041 ret = __group_send_sig_info(sig, info, p);
1042 unlock_task_sighand(p, &flags);
1043 }
1044 }
1045
1046 return ret;
1047 }
1048
1049 /*
1050 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1051 * control characters do (^C, ^Z etc)
1052 * - the caller must hold at least a readlock on tasklist_lock
1053 */
1054 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1055 {
1056 struct task_struct *p = NULL;
1057 int retval, success;
1058
1059 success = 0;
1060 retval = -ESRCH;
1061 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1062 int err = group_send_sig_info(sig, info, p);
1063 success |= !err;
1064 retval = err;
1065 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1066 return success ? 0 : retval;
1067 }
1068
1069 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1070 {
1071 int error = -ESRCH;
1072 struct task_struct *p;
1073
1074 rcu_read_lock();
1075 retry:
1076 p = pid_task(pid, PIDTYPE_PID);
1077 if (p) {
1078 error = group_send_sig_info(sig, info, p);
1079 if (unlikely(error == -ESRCH))
1080 /*
1081 * The task was unhashed in between, try again.
1082 * If it is dead, pid_task() will return NULL,
1083 * if we race with de_thread() it will find the
1084 * new leader.
1085 */
1086 goto retry;
1087 }
1088 rcu_read_unlock();
1089
1090 return error;
1091 }
1092
1093 int
1094 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1095 {
1096 int error;
1097 rcu_read_lock();
1098 error = kill_pid_info(sig, info, find_vpid(pid));
1099 rcu_read_unlock();
1100 return error;
1101 }
1102
1103 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1104 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1105 uid_t uid, uid_t euid, u32 secid)
1106 {
1107 int ret = -EINVAL;
1108 struct task_struct *p;
1109 const struct cred *pcred;
1110
1111 if (!valid_signal(sig))
1112 return ret;
1113
1114 read_lock(&tasklist_lock);
1115 p = pid_task(pid, PIDTYPE_PID);
1116 if (!p) {
1117 ret = -ESRCH;
1118 goto out_unlock;
1119 }
1120 pcred = __task_cred(p);
1121 if ((info == SEND_SIG_NOINFO ||
1122 (!is_si_special(info) && SI_FROMUSER(info))) &&
1123 euid != pcred->suid && euid != pcred->uid &&
1124 uid != pcred->suid && uid != pcred->uid) {
1125 ret = -EPERM;
1126 goto out_unlock;
1127 }
1128 ret = security_task_kill(p, info, sig, secid);
1129 if (ret)
1130 goto out_unlock;
1131 if (sig && p->sighand) {
1132 unsigned long flags;
1133 spin_lock_irqsave(&p->sighand->siglock, flags);
1134 ret = __group_send_sig_info(sig, info, p);
1135 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1136 }
1137 out_unlock:
1138 read_unlock(&tasklist_lock);
1139 return ret;
1140 }
1141 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1142
1143 /*
1144 * kill_something_info() interprets pid in interesting ways just like kill(2).
1145 *
1146 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1147 * is probably wrong. Should make it like BSD or SYSV.
1148 */
1149
1150 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1151 {
1152 int ret;
1153
1154 if (pid > 0) {
1155 rcu_read_lock();
1156 ret = kill_pid_info(sig, info, find_vpid(pid));
1157 rcu_read_unlock();
1158 return ret;
1159 }
1160
1161 read_lock(&tasklist_lock);
1162 if (pid != -1) {
1163 ret = __kill_pgrp_info(sig, info,
1164 pid ? find_vpid(-pid) : task_pgrp(current));
1165 } else {
1166 int retval = 0, count = 0;
1167 struct task_struct * p;
1168
1169 for_each_process(p) {
1170 if (task_pid_vnr(p) > 1 &&
1171 !same_thread_group(p, current)) {
1172 int err = group_send_sig_info(sig, info, p);
1173 ++count;
1174 if (err != -EPERM)
1175 retval = err;
1176 }
1177 }
1178 ret = count ? retval : -ESRCH;
1179 }
1180 read_unlock(&tasklist_lock);
1181
1182 return ret;
1183 }
1184
1185 /*
1186 * These are for backward compatibility with the rest of the kernel source.
1187 */
1188
1189 /*
1190 * The caller must ensure the task can't exit.
1191 */
1192 int
1193 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1194 {
1195 int ret;
1196 unsigned long flags;
1197
1198 /*
1199 * Make sure legacy kernel users don't send in bad values
1200 * (normal paths check this in check_kill_permission).
1201 */
1202 if (!valid_signal(sig))
1203 return -EINVAL;
1204
1205 spin_lock_irqsave(&p->sighand->siglock, flags);
1206 ret = specific_send_sig_info(sig, info, p);
1207 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1208 return ret;
1209 }
1210
1211 #define __si_special(priv) \
1212 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1213
1214 int
1215 send_sig(int sig, struct task_struct *p, int priv)
1216 {
1217 return send_sig_info(sig, __si_special(priv), p);
1218 }
1219
1220 void
1221 force_sig(int sig, struct task_struct *p)
1222 {
1223 force_sig_info(sig, SEND_SIG_PRIV, p);
1224 }
1225
1226 /*
1227 * When things go south during signal handling, we
1228 * will force a SIGSEGV. And if the signal that caused
1229 * the problem was already a SIGSEGV, we'll want to
1230 * make sure we don't even try to deliver the signal..
1231 */
1232 int
1233 force_sigsegv(int sig, struct task_struct *p)
1234 {
1235 if (sig == SIGSEGV) {
1236 unsigned long flags;
1237 spin_lock_irqsave(&p->sighand->siglock, flags);
1238 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1239 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1240 }
1241 force_sig(SIGSEGV, p);
1242 return 0;
1243 }
1244
1245 int kill_pgrp(struct pid *pid, int sig, int priv)
1246 {
1247 int ret;
1248
1249 read_lock(&tasklist_lock);
1250 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1251 read_unlock(&tasklist_lock);
1252
1253 return ret;
1254 }
1255 EXPORT_SYMBOL(kill_pgrp);
1256
1257 int kill_pid(struct pid *pid, int sig, int priv)
1258 {
1259 return kill_pid_info(sig, __si_special(priv), pid);
1260 }
1261 EXPORT_SYMBOL(kill_pid);
1262
1263 /*
1264 * These functions support sending signals using preallocated sigqueue
1265 * structures. This is needed "because realtime applications cannot
1266 * afford to lose notifications of asynchronous events, like timer
1267 * expirations or I/O completions". In the case of Posix Timers
1268 * we allocate the sigqueue structure from the timer_create. If this
1269 * allocation fails we are able to report the failure to the application
1270 * with an EAGAIN error.
1271 */
1272
1273 struct sigqueue *sigqueue_alloc(void)
1274 {
1275 struct sigqueue *q;
1276
1277 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1278 q->flags |= SIGQUEUE_PREALLOC;
1279 return(q);
1280 }
1281
1282 void sigqueue_free(struct sigqueue *q)
1283 {
1284 unsigned long flags;
1285 spinlock_t *lock = &current->sighand->siglock;
1286
1287 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1288 /*
1289 * We must hold ->siglock while testing q->list
1290 * to serialize with collect_signal() or with
1291 * __exit_signal()->flush_sigqueue().
1292 */
1293 spin_lock_irqsave(lock, flags);
1294 q->flags &= ~SIGQUEUE_PREALLOC;
1295 /*
1296 * If it is queued it will be freed when dequeued,
1297 * like the "regular" sigqueue.
1298 */
1299 if (!list_empty(&q->list))
1300 q = NULL;
1301 spin_unlock_irqrestore(lock, flags);
1302
1303 if (q)
1304 __sigqueue_free(q);
1305 }
1306
1307 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1308 {
1309 int sig = q->info.si_signo;
1310 struct sigpending *pending;
1311 unsigned long flags;
1312 int ret;
1313
1314 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1315
1316 ret = -1;
1317 if (!likely(lock_task_sighand(t, &flags)))
1318 goto ret;
1319
1320 ret = 1; /* the signal is ignored */
1321 if (!prepare_signal(sig, t))
1322 goto out;
1323
1324 ret = 0;
1325 if (unlikely(!list_empty(&q->list))) {
1326 /*
1327 * If an SI_TIMER entry is already queue just increment
1328 * the overrun count.
1329 */
1330 BUG_ON(q->info.si_code != SI_TIMER);
1331 q->info.si_overrun++;
1332 goto out;
1333 }
1334 q->info.si_overrun = 0;
1335
1336 signalfd_notify(t, sig);
1337 pending = group ? &t->signal->shared_pending : &t->pending;
1338 list_add_tail(&q->list, &pending->list);
1339 sigaddset(&pending->signal, sig);
1340 complete_signal(sig, t, group);
1341 out:
1342 unlock_task_sighand(t, &flags);
1343 ret:
1344 return ret;
1345 }
1346
1347 /*
1348 * Wake up any threads in the parent blocked in wait* syscalls.
1349 */
1350 static inline void __wake_up_parent(struct task_struct *p,
1351 struct task_struct *parent)
1352 {
1353 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1354 }
1355
1356 /*
1357 * Let a parent know about the death of a child.
1358 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1359 *
1360 * Returns -1 if our parent ignored us and so we've switched to
1361 * self-reaping, or else @sig.
1362 */
1363 int do_notify_parent(struct task_struct *tsk, int sig)
1364 {
1365 struct siginfo info;
1366 unsigned long flags;
1367 struct sighand_struct *psig;
1368 struct task_cputime cputime;
1369 int ret = sig;
1370
1371 BUG_ON(sig == -1);
1372
1373 /* do_notify_parent_cldstop should have been called instead. */
1374 BUG_ON(task_is_stopped_or_traced(tsk));
1375
1376 BUG_ON(!tsk->ptrace &&
1377 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1378
1379 info.si_signo = sig;
1380 info.si_errno = 0;
1381 /*
1382 * we are under tasklist_lock here so our parent is tied to
1383 * us and cannot exit and release its namespace.
1384 *
1385 * the only it can is to switch its nsproxy with sys_unshare,
1386 * bu uncharing pid namespaces is not allowed, so we'll always
1387 * see relevant namespace
1388 *
1389 * write_lock() currently calls preempt_disable() which is the
1390 * same as rcu_read_lock(), but according to Oleg, this is not
1391 * correct to rely on this
1392 */
1393 rcu_read_lock();
1394 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1395 info.si_uid = __task_cred(tsk)->uid;
1396 rcu_read_unlock();
1397
1398 thread_group_cputime(tsk, &cputime);
1399 info.si_utime = cputime_to_jiffies(cputime.utime);
1400 info.si_stime = cputime_to_jiffies(cputime.stime);
1401
1402 info.si_status = tsk->exit_code & 0x7f;
1403 if (tsk->exit_code & 0x80)
1404 info.si_code = CLD_DUMPED;
1405 else if (tsk->exit_code & 0x7f)
1406 info.si_code = CLD_KILLED;
1407 else {
1408 info.si_code = CLD_EXITED;
1409 info.si_status = tsk->exit_code >> 8;
1410 }
1411
1412 psig = tsk->parent->sighand;
1413 spin_lock_irqsave(&psig->siglock, flags);
1414 if (!tsk->ptrace && sig == SIGCHLD &&
1415 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1416 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1417 /*
1418 * We are exiting and our parent doesn't care. POSIX.1
1419 * defines special semantics for setting SIGCHLD to SIG_IGN
1420 * or setting the SA_NOCLDWAIT flag: we should be reaped
1421 * automatically and not left for our parent's wait4 call.
1422 * Rather than having the parent do it as a magic kind of
1423 * signal handler, we just set this to tell do_exit that we
1424 * can be cleaned up without becoming a zombie. Note that
1425 * we still call __wake_up_parent in this case, because a
1426 * blocked sys_wait4 might now return -ECHILD.
1427 *
1428 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1429 * is implementation-defined: we do (if you don't want
1430 * it, just use SIG_IGN instead).
1431 */
1432 ret = tsk->exit_signal = -1;
1433 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1434 sig = -1;
1435 }
1436 if (valid_signal(sig) && sig > 0)
1437 __group_send_sig_info(sig, &info, tsk->parent);
1438 __wake_up_parent(tsk, tsk->parent);
1439 spin_unlock_irqrestore(&psig->siglock, flags);
1440
1441 return ret;
1442 }
1443
1444 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1445 {
1446 struct siginfo info;
1447 unsigned long flags;
1448 struct task_struct *parent;
1449 struct sighand_struct *sighand;
1450
1451 if (tsk->ptrace & PT_PTRACED)
1452 parent = tsk->parent;
1453 else {
1454 tsk = tsk->group_leader;
1455 parent = tsk->real_parent;
1456 }
1457
1458 info.si_signo = SIGCHLD;
1459 info.si_errno = 0;
1460 /*
1461 * see comment in do_notify_parent() abot the following 3 lines
1462 */
1463 rcu_read_lock();
1464 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1465 info.si_uid = __task_cred(tsk)->uid;
1466 rcu_read_unlock();
1467
1468 info.si_utime = cputime_to_clock_t(tsk->utime);
1469 info.si_stime = cputime_to_clock_t(tsk->stime);
1470
1471 info.si_code = why;
1472 switch (why) {
1473 case CLD_CONTINUED:
1474 info.si_status = SIGCONT;
1475 break;
1476 case CLD_STOPPED:
1477 info.si_status = tsk->signal->group_exit_code & 0x7f;
1478 break;
1479 case CLD_TRAPPED:
1480 info.si_status = tsk->exit_code & 0x7f;
1481 break;
1482 default:
1483 BUG();
1484 }
1485
1486 sighand = parent->sighand;
1487 spin_lock_irqsave(&sighand->siglock, flags);
1488 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1489 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1490 __group_send_sig_info(SIGCHLD, &info, parent);
1491 /*
1492 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1493 */
1494 __wake_up_parent(tsk, parent);
1495 spin_unlock_irqrestore(&sighand->siglock, flags);
1496 }
1497
1498 static inline int may_ptrace_stop(void)
1499 {
1500 if (!likely(current->ptrace & PT_PTRACED))
1501 return 0;
1502 /*
1503 * Are we in the middle of do_coredump?
1504 * If so and our tracer is also part of the coredump stopping
1505 * is a deadlock situation, and pointless because our tracer
1506 * is dead so don't allow us to stop.
1507 * If SIGKILL was already sent before the caller unlocked
1508 * ->siglock we must see ->core_state != NULL. Otherwise it
1509 * is safe to enter schedule().
1510 */
1511 if (unlikely(current->mm->core_state) &&
1512 unlikely(current->mm == current->parent->mm))
1513 return 0;
1514
1515 return 1;
1516 }
1517
1518 /*
1519 * Return nonzero if there is a SIGKILL that should be waking us up.
1520 * Called with the siglock held.
1521 */
1522 static int sigkill_pending(struct task_struct *tsk)
1523 {
1524 return sigismember(&tsk->pending.signal, SIGKILL) ||
1525 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1526 }
1527
1528 /*
1529 * This must be called with current->sighand->siglock held.
1530 *
1531 * This should be the path for all ptrace stops.
1532 * We always set current->last_siginfo while stopped here.
1533 * That makes it a way to test a stopped process for
1534 * being ptrace-stopped vs being job-control-stopped.
1535 *
1536 * If we actually decide not to stop at all because the tracer
1537 * is gone, we keep current->exit_code unless clear_code.
1538 */
1539 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1540 {
1541 if (arch_ptrace_stop_needed(exit_code, info)) {
1542 /*
1543 * The arch code has something special to do before a
1544 * ptrace stop. This is allowed to block, e.g. for faults
1545 * on user stack pages. We can't keep the siglock while
1546 * calling arch_ptrace_stop, so we must release it now.
1547 * To preserve proper semantics, we must do this before
1548 * any signal bookkeeping like checking group_stop_count.
1549 * Meanwhile, a SIGKILL could come in before we retake the
1550 * siglock. That must prevent us from sleeping in TASK_TRACED.
1551 * So after regaining the lock, we must check for SIGKILL.
1552 */
1553 spin_unlock_irq(&current->sighand->siglock);
1554 arch_ptrace_stop(exit_code, info);
1555 spin_lock_irq(&current->sighand->siglock);
1556 if (sigkill_pending(current))
1557 return;
1558 }
1559
1560 /*
1561 * If there is a group stop in progress,
1562 * we must participate in the bookkeeping.
1563 */
1564 if (current->signal->group_stop_count > 0)
1565 --current->signal->group_stop_count;
1566
1567 current->last_siginfo = info;
1568 current->exit_code = exit_code;
1569
1570 /* Let the debugger run. */
1571 __set_current_state(TASK_TRACED);
1572 spin_unlock_irq(&current->sighand->siglock);
1573 read_lock(&tasklist_lock);
1574 if (may_ptrace_stop()) {
1575 do_notify_parent_cldstop(current, CLD_TRAPPED);
1576 read_unlock(&tasklist_lock);
1577 schedule();
1578 } else {
1579 /*
1580 * By the time we got the lock, our tracer went away.
1581 * Don't drop the lock yet, another tracer may come.
1582 */
1583 __set_current_state(TASK_RUNNING);
1584 if (clear_code)
1585 current->exit_code = 0;
1586 read_unlock(&tasklist_lock);
1587 }
1588
1589 /*
1590 * While in TASK_TRACED, we were considered "frozen enough".
1591 * Now that we woke up, it's crucial if we're supposed to be
1592 * frozen that we freeze now before running anything substantial.
1593 */
1594 try_to_freeze();
1595
1596 /*
1597 * We are back. Now reacquire the siglock before touching
1598 * last_siginfo, so that we are sure to have synchronized with
1599 * any signal-sending on another CPU that wants to examine it.
1600 */
1601 spin_lock_irq(&current->sighand->siglock);
1602 current->last_siginfo = NULL;
1603
1604 /*
1605 * Queued signals ignored us while we were stopped for tracing.
1606 * So check for any that we should take before resuming user mode.
1607 * This sets TIF_SIGPENDING, but never clears it.
1608 */
1609 recalc_sigpending_tsk(current);
1610 }
1611
1612 void ptrace_notify(int exit_code)
1613 {
1614 siginfo_t info;
1615
1616 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1617
1618 memset(&info, 0, sizeof info);
1619 info.si_signo = SIGTRAP;
1620 info.si_code = exit_code;
1621 info.si_pid = task_pid_vnr(current);
1622 info.si_uid = current_uid();
1623
1624 /* Let the debugger run. */
1625 spin_lock_irq(&current->sighand->siglock);
1626 ptrace_stop(exit_code, 1, &info);
1627 spin_unlock_irq(&current->sighand->siglock);
1628 }
1629
1630 static void
1631 finish_stop(int stop_count)
1632 {
1633 /*
1634 * If there are no other threads in the group, or if there is
1635 * a group stop in progress and we are the last to stop,
1636 * report to the parent. When ptraced, every thread reports itself.
1637 */
1638 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1639 read_lock(&tasklist_lock);
1640 do_notify_parent_cldstop(current, CLD_STOPPED);
1641 read_unlock(&tasklist_lock);
1642 }
1643
1644 do {
1645 schedule();
1646 } while (try_to_freeze());
1647 /*
1648 * Now we don't run again until continued.
1649 */
1650 current->exit_code = 0;
1651 }
1652
1653 /*
1654 * This performs the stopping for SIGSTOP and other stop signals.
1655 * We have to stop all threads in the thread group.
1656 * Returns nonzero if we've actually stopped and released the siglock.
1657 * Returns zero if we didn't stop and still hold the siglock.
1658 */
1659 static int do_signal_stop(int signr)
1660 {
1661 struct signal_struct *sig = current->signal;
1662 int stop_count;
1663
1664 if (sig->group_stop_count > 0) {
1665 /*
1666 * There is a group stop in progress. We don't need to
1667 * start another one.
1668 */
1669 stop_count = --sig->group_stop_count;
1670 } else {
1671 struct task_struct *t;
1672
1673 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1674 unlikely(signal_group_exit(sig)))
1675 return 0;
1676 /*
1677 * There is no group stop already in progress.
1678 * We must initiate one now.
1679 */
1680 sig->group_exit_code = signr;
1681
1682 stop_count = 0;
1683 for (t = next_thread(current); t != current; t = next_thread(t))
1684 /*
1685 * Setting state to TASK_STOPPED for a group
1686 * stop is always done with the siglock held,
1687 * so this check has no races.
1688 */
1689 if (!(t->flags & PF_EXITING) &&
1690 !task_is_stopped_or_traced(t)) {
1691 stop_count++;
1692 signal_wake_up(t, 0);
1693 }
1694 sig->group_stop_count = stop_count;
1695 }
1696
1697 if (stop_count == 0)
1698 sig->flags = SIGNAL_STOP_STOPPED;
1699 current->exit_code = sig->group_exit_code;
1700 __set_current_state(TASK_STOPPED);
1701
1702 spin_unlock_irq(&current->sighand->siglock);
1703 finish_stop(stop_count);
1704 return 1;
1705 }
1706
1707 static int ptrace_signal(int signr, siginfo_t *info,
1708 struct pt_regs *regs, void *cookie)
1709 {
1710 if (!(current->ptrace & PT_PTRACED))
1711 return signr;
1712
1713 ptrace_signal_deliver(regs, cookie);
1714
1715 /* Let the debugger run. */
1716 ptrace_stop(signr, 0, info);
1717
1718 /* We're back. Did the debugger cancel the sig? */
1719 signr = current->exit_code;
1720 if (signr == 0)
1721 return signr;
1722
1723 current->exit_code = 0;
1724
1725 /* Update the siginfo structure if the signal has
1726 changed. If the debugger wanted something
1727 specific in the siginfo structure then it should
1728 have updated *info via PTRACE_SETSIGINFO. */
1729 if (signr != info->si_signo) {
1730 info->si_signo = signr;
1731 info->si_errno = 0;
1732 info->si_code = SI_USER;
1733 info->si_pid = task_pid_vnr(current->parent);
1734 info->si_uid = task_uid(current->parent);
1735 }
1736
1737 /* If the (new) signal is now blocked, requeue it. */
1738 if (sigismember(&current->blocked, signr)) {
1739 specific_send_sig_info(signr, info, current);
1740 signr = 0;
1741 }
1742
1743 return signr;
1744 }
1745
1746 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1747 struct pt_regs *regs, void *cookie)
1748 {
1749 struct sighand_struct *sighand = current->sighand;
1750 struct signal_struct *signal = current->signal;
1751 int signr;
1752
1753 relock:
1754 /*
1755 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1756 * While in TASK_STOPPED, we were considered "frozen enough".
1757 * Now that we woke up, it's crucial if we're supposed to be
1758 * frozen that we freeze now before running anything substantial.
1759 */
1760 try_to_freeze();
1761
1762 spin_lock_irq(&sighand->siglock);
1763 /*
1764 * Every stopped thread goes here after wakeup. Check to see if
1765 * we should notify the parent, prepare_signal(SIGCONT) encodes
1766 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1767 */
1768 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1769 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1770 ? CLD_CONTINUED : CLD_STOPPED;
1771 signal->flags &= ~SIGNAL_CLD_MASK;
1772 spin_unlock_irq(&sighand->siglock);
1773
1774 if (unlikely(!tracehook_notify_jctl(1, why)))
1775 goto relock;
1776
1777 read_lock(&tasklist_lock);
1778 do_notify_parent_cldstop(current->group_leader, why);
1779 read_unlock(&tasklist_lock);
1780 goto relock;
1781 }
1782
1783 for (;;) {
1784 struct k_sigaction *ka;
1785
1786 if (unlikely(signal->group_stop_count > 0) &&
1787 do_signal_stop(0))
1788 goto relock;
1789
1790 /*
1791 * Tracing can induce an artifical signal and choose sigaction.
1792 * The return value in @signr determines the default action,
1793 * but @info->si_signo is the signal number we will report.
1794 */
1795 signr = tracehook_get_signal(current, regs, info, return_ka);
1796 if (unlikely(signr < 0))
1797 goto relock;
1798 if (unlikely(signr != 0))
1799 ka = return_ka;
1800 else {
1801 signr = dequeue_signal(current, &current->blocked,
1802 info);
1803
1804 if (!signr)
1805 break; /* will return 0 */
1806
1807 if (signr != SIGKILL) {
1808 signr = ptrace_signal(signr, info,
1809 regs, cookie);
1810 if (!signr)
1811 continue;
1812 }
1813
1814 ka = &sighand->action[signr-1];
1815 }
1816
1817 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1818 continue;
1819 if (ka->sa.sa_handler != SIG_DFL) {
1820 /* Run the handler. */
1821 *return_ka = *ka;
1822
1823 if (ka->sa.sa_flags & SA_ONESHOT)
1824 ka->sa.sa_handler = SIG_DFL;
1825
1826 break; /* will return non-zero "signr" value */
1827 }
1828
1829 /*
1830 * Now we are doing the default action for this signal.
1831 */
1832 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1833 continue;
1834
1835 /*
1836 * Global init gets no signals it doesn't want.
1837 */
1838 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1839 !signal_group_exit(signal))
1840 continue;
1841
1842 if (sig_kernel_stop(signr)) {
1843 /*
1844 * The default action is to stop all threads in
1845 * the thread group. The job control signals
1846 * do nothing in an orphaned pgrp, but SIGSTOP
1847 * always works. Note that siglock needs to be
1848 * dropped during the call to is_orphaned_pgrp()
1849 * because of lock ordering with tasklist_lock.
1850 * This allows an intervening SIGCONT to be posted.
1851 * We need to check for that and bail out if necessary.
1852 */
1853 if (signr != SIGSTOP) {
1854 spin_unlock_irq(&sighand->siglock);
1855
1856 /* signals can be posted during this window */
1857
1858 if (is_current_pgrp_orphaned())
1859 goto relock;
1860
1861 spin_lock_irq(&sighand->siglock);
1862 }
1863
1864 if (likely(do_signal_stop(info->si_signo))) {
1865 /* It released the siglock. */
1866 goto relock;
1867 }
1868
1869 /*
1870 * We didn't actually stop, due to a race
1871 * with SIGCONT or something like that.
1872 */
1873 continue;
1874 }
1875
1876 spin_unlock_irq(&sighand->siglock);
1877
1878 /*
1879 * Anything else is fatal, maybe with a core dump.
1880 */
1881 current->flags |= PF_SIGNALED;
1882
1883 if (sig_kernel_coredump(signr)) {
1884 if (print_fatal_signals)
1885 print_fatal_signal(regs, info->si_signo);
1886 /*
1887 * If it was able to dump core, this kills all
1888 * other threads in the group and synchronizes with
1889 * their demise. If we lost the race with another
1890 * thread getting here, it set group_exit_code
1891 * first and our do_group_exit call below will use
1892 * that value and ignore the one we pass it.
1893 */
1894 do_coredump(info->si_signo, info->si_signo, regs);
1895 }
1896
1897 /*
1898 * Death signals, no core dump.
1899 */
1900 do_group_exit(info->si_signo);
1901 /* NOTREACHED */
1902 }
1903 spin_unlock_irq(&sighand->siglock);
1904 return signr;
1905 }
1906
1907 void exit_signals(struct task_struct *tsk)
1908 {
1909 int group_stop = 0;
1910 struct task_struct *t;
1911
1912 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1913 tsk->flags |= PF_EXITING;
1914 return;
1915 }
1916
1917 spin_lock_irq(&tsk->sighand->siglock);
1918 /*
1919 * From now this task is not visible for group-wide signals,
1920 * see wants_signal(), do_signal_stop().
1921 */
1922 tsk->flags |= PF_EXITING;
1923 if (!signal_pending(tsk))
1924 goto out;
1925
1926 /* It could be that __group_complete_signal() choose us to
1927 * notify about group-wide signal. Another thread should be
1928 * woken now to take the signal since we will not.
1929 */
1930 for (t = tsk; (t = next_thread(t)) != tsk; )
1931 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1932 recalc_sigpending_and_wake(t);
1933
1934 if (unlikely(tsk->signal->group_stop_count) &&
1935 !--tsk->signal->group_stop_count) {
1936 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1937 group_stop = 1;
1938 }
1939 out:
1940 spin_unlock_irq(&tsk->sighand->siglock);
1941
1942 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1943 read_lock(&tasklist_lock);
1944 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1945 read_unlock(&tasklist_lock);
1946 }
1947 }
1948
1949 EXPORT_SYMBOL(recalc_sigpending);
1950 EXPORT_SYMBOL_GPL(dequeue_signal);
1951 EXPORT_SYMBOL(flush_signals);
1952 EXPORT_SYMBOL(force_sig);
1953 EXPORT_SYMBOL(send_sig);
1954 EXPORT_SYMBOL(send_sig_info);
1955 EXPORT_SYMBOL(sigprocmask);
1956 EXPORT_SYMBOL(block_all_signals);
1957 EXPORT_SYMBOL(unblock_all_signals);
1958
1959
1960 /*
1961 * System call entry points.
1962 */
1963
1964 asmlinkage long sys_restart_syscall(void)
1965 {
1966 struct restart_block *restart = &current_thread_info()->restart_block;
1967 return restart->fn(restart);
1968 }
1969
1970 long do_no_restart_syscall(struct restart_block *param)
1971 {
1972 return -EINTR;
1973 }
1974
1975 /*
1976 * We don't need to get the kernel lock - this is all local to this
1977 * particular thread.. (and that's good, because this is _heavily_
1978 * used by various programs)
1979 */
1980
1981 /*
1982 * This is also useful for kernel threads that want to temporarily
1983 * (or permanently) block certain signals.
1984 *
1985 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1986 * interface happily blocks "unblockable" signals like SIGKILL
1987 * and friends.
1988 */
1989 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1990 {
1991 int error;
1992
1993 spin_lock_irq(&current->sighand->siglock);
1994 if (oldset)
1995 *oldset = current->blocked;
1996
1997 error = 0;
1998 switch (how) {
1999 case SIG_BLOCK:
2000 sigorsets(&current->blocked, &current->blocked, set);
2001 break;
2002 case SIG_UNBLOCK:
2003 signandsets(&current->blocked, &current->blocked, set);
2004 break;
2005 case SIG_SETMASK:
2006 current->blocked = *set;
2007 break;
2008 default:
2009 error = -EINVAL;
2010 }
2011 recalc_sigpending();
2012 spin_unlock_irq(&current->sighand->siglock);
2013
2014 return error;
2015 }
2016
2017 asmlinkage long
2018 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2019 {
2020 int error = -EINVAL;
2021 sigset_t old_set, new_set;
2022
2023 /* XXX: Don't preclude handling different sized sigset_t's. */
2024 if (sigsetsize != sizeof(sigset_t))
2025 goto out;
2026
2027 if (set) {
2028 error = -EFAULT;
2029 if (copy_from_user(&new_set, set, sizeof(*set)))
2030 goto out;
2031 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2032
2033 error = sigprocmask(how, &new_set, &old_set);
2034 if (error)
2035 goto out;
2036 if (oset)
2037 goto set_old;
2038 } else if (oset) {
2039 spin_lock_irq(&current->sighand->siglock);
2040 old_set = current->blocked;
2041 spin_unlock_irq(&current->sighand->siglock);
2042
2043 set_old:
2044 error = -EFAULT;
2045 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2046 goto out;
2047 }
2048 error = 0;
2049 out:
2050 return error;
2051 }
2052
2053 long do_sigpending(void __user *set, unsigned long sigsetsize)
2054 {
2055 long error = -EINVAL;
2056 sigset_t pending;
2057
2058 if (sigsetsize > sizeof(sigset_t))
2059 goto out;
2060
2061 spin_lock_irq(&current->sighand->siglock);
2062 sigorsets(&pending, &current->pending.signal,
2063 &current->signal->shared_pending.signal);
2064 spin_unlock_irq(&current->sighand->siglock);
2065
2066 /* Outside the lock because only this thread touches it. */
2067 sigandsets(&pending, &current->blocked, &pending);
2068
2069 error = -EFAULT;
2070 if (!copy_to_user(set, &pending, sigsetsize))
2071 error = 0;
2072
2073 out:
2074 return error;
2075 }
2076
2077 asmlinkage long
2078 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2079 {
2080 return do_sigpending(set, sigsetsize);
2081 }
2082
2083 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2084
2085 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2086 {
2087 int err;
2088
2089 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2090 return -EFAULT;
2091 if (from->si_code < 0)
2092 return __copy_to_user(to, from, sizeof(siginfo_t))
2093 ? -EFAULT : 0;
2094 /*
2095 * If you change siginfo_t structure, please be sure
2096 * this code is fixed accordingly.
2097 * Please remember to update the signalfd_copyinfo() function
2098 * inside fs/signalfd.c too, in case siginfo_t changes.
2099 * It should never copy any pad contained in the structure
2100 * to avoid security leaks, but must copy the generic
2101 * 3 ints plus the relevant union member.
2102 */
2103 err = __put_user(from->si_signo, &to->si_signo);
2104 err |= __put_user(from->si_errno, &to->si_errno);
2105 err |= __put_user((short)from->si_code, &to->si_code);
2106 switch (from->si_code & __SI_MASK) {
2107 case __SI_KILL:
2108 err |= __put_user(from->si_pid, &to->si_pid);
2109 err |= __put_user(from->si_uid, &to->si_uid);
2110 break;
2111 case __SI_TIMER:
2112 err |= __put_user(from->si_tid, &to->si_tid);
2113 err |= __put_user(from->si_overrun, &to->si_overrun);
2114 err |= __put_user(from->si_ptr, &to->si_ptr);
2115 break;
2116 case __SI_POLL:
2117 err |= __put_user(from->si_band, &to->si_band);
2118 err |= __put_user(from->si_fd, &to->si_fd);
2119 break;
2120 case __SI_FAULT:
2121 err |= __put_user(from->si_addr, &to->si_addr);
2122 #ifdef __ARCH_SI_TRAPNO
2123 err |= __put_user(from->si_trapno, &to->si_trapno);
2124 #endif
2125 break;
2126 case __SI_CHLD:
2127 err |= __put_user(from->si_pid, &to->si_pid);
2128 err |= __put_user(from->si_uid, &to->si_uid);
2129 err |= __put_user(from->si_status, &to->si_status);
2130 err |= __put_user(from->si_utime, &to->si_utime);
2131 err |= __put_user(from->si_stime, &to->si_stime);
2132 break;
2133 case __SI_RT: /* This is not generated by the kernel as of now. */
2134 case __SI_MESGQ: /* But this is */
2135 err |= __put_user(from->si_pid, &to->si_pid);
2136 err |= __put_user(from->si_uid, &to->si_uid);
2137 err |= __put_user(from->si_ptr, &to->si_ptr);
2138 break;
2139 default: /* this is just in case for now ... */
2140 err |= __put_user(from->si_pid, &to->si_pid);
2141 err |= __put_user(from->si_uid, &to->si_uid);
2142 break;
2143 }
2144 return err;
2145 }
2146
2147 #endif
2148
2149 asmlinkage long
2150 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2151 siginfo_t __user *uinfo,
2152 const struct timespec __user *uts,
2153 size_t sigsetsize)
2154 {
2155 int ret, sig;
2156 sigset_t these;
2157 struct timespec ts;
2158 siginfo_t info;
2159 long timeout = 0;
2160
2161 /* XXX: Don't preclude handling different sized sigset_t's. */
2162 if (sigsetsize != sizeof(sigset_t))
2163 return -EINVAL;
2164
2165 if (copy_from_user(&these, uthese, sizeof(these)))
2166 return -EFAULT;
2167
2168 /*
2169 * Invert the set of allowed signals to get those we
2170 * want to block.
2171 */
2172 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2173 signotset(&these);
2174
2175 if (uts) {
2176 if (copy_from_user(&ts, uts, sizeof(ts)))
2177 return -EFAULT;
2178 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2179 || ts.tv_sec < 0)
2180 return -EINVAL;
2181 }
2182
2183 spin_lock_irq(&current->sighand->siglock);
2184 sig = dequeue_signal(current, &these, &info);
2185 if (!sig) {
2186 timeout = MAX_SCHEDULE_TIMEOUT;
2187 if (uts)
2188 timeout = (timespec_to_jiffies(&ts)
2189 + (ts.tv_sec || ts.tv_nsec));
2190
2191 if (timeout) {
2192 /* None ready -- temporarily unblock those we're
2193 * interested while we are sleeping in so that we'll
2194 * be awakened when they arrive. */
2195 current->real_blocked = current->blocked;
2196 sigandsets(&current->blocked, &current->blocked, &these);
2197 recalc_sigpending();
2198 spin_unlock_irq(&current->sighand->siglock);
2199
2200 timeout = schedule_timeout_interruptible(timeout);
2201
2202 spin_lock_irq(&current->sighand->siglock);
2203 sig = dequeue_signal(current, &these, &info);
2204 current->blocked = current->real_blocked;
2205 siginitset(&current->real_blocked, 0);
2206 recalc_sigpending();
2207 }
2208 }
2209 spin_unlock_irq(&current->sighand->siglock);
2210
2211 if (sig) {
2212 ret = sig;
2213 if (uinfo) {
2214 if (copy_siginfo_to_user(uinfo, &info))
2215 ret = -EFAULT;
2216 }
2217 } else {
2218 ret = -EAGAIN;
2219 if (timeout)
2220 ret = -EINTR;
2221 }
2222
2223 return ret;
2224 }
2225
2226 asmlinkage long
2227 sys_kill(pid_t pid, int sig)
2228 {
2229 struct siginfo info;
2230
2231 info.si_signo = sig;
2232 info.si_errno = 0;
2233 info.si_code = SI_USER;
2234 info.si_pid = task_tgid_vnr(current);
2235 info.si_uid = current_uid();
2236
2237 return kill_something_info(sig, &info, pid);
2238 }
2239
2240 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2241 {
2242 int error;
2243 struct siginfo info;
2244 struct task_struct *p;
2245 unsigned long flags;
2246
2247 error = -ESRCH;
2248 info.si_signo = sig;
2249 info.si_errno = 0;
2250 info.si_code = SI_TKILL;
2251 info.si_pid = task_tgid_vnr(current);
2252 info.si_uid = current_uid();
2253
2254 rcu_read_lock();
2255 p = find_task_by_vpid(pid);
2256 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2257 error = check_kill_permission(sig, &info, p);
2258 /*
2259 * The null signal is a permissions and process existence
2260 * probe. No signal is actually delivered.
2261 *
2262 * If lock_task_sighand() fails we pretend the task dies
2263 * after receiving the signal. The window is tiny, and the
2264 * signal is private anyway.
2265 */
2266 if (!error && sig && lock_task_sighand(p, &flags)) {
2267 error = specific_send_sig_info(sig, &info, p);
2268 unlock_task_sighand(p, &flags);
2269 }
2270 }
2271 rcu_read_unlock();
2272
2273 return error;
2274 }
2275
2276 /**
2277 * sys_tgkill - send signal to one specific thread
2278 * @tgid: the thread group ID of the thread
2279 * @pid: the PID of the thread
2280 * @sig: signal to be sent
2281 *
2282 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2283 * exists but it's not belonging to the target process anymore. This
2284 * method solves the problem of threads exiting and PIDs getting reused.
2285 */
2286 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig)
2287 {
2288 /* This is only valid for single tasks */
2289 if (pid <= 0 || tgid <= 0)
2290 return -EINVAL;
2291
2292 return do_tkill(tgid, pid, sig);
2293 }
2294
2295 /*
2296 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2297 */
2298 asmlinkage long
2299 sys_tkill(pid_t pid, int sig)
2300 {
2301 /* This is only valid for single tasks */
2302 if (pid <= 0)
2303 return -EINVAL;
2304
2305 return do_tkill(0, pid, sig);
2306 }
2307
2308 asmlinkage long
2309 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo)
2310 {
2311 siginfo_t info;
2312
2313 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2314 return -EFAULT;
2315
2316 /* Not even root can pretend to send signals from the kernel.
2317 Nor can they impersonate a kill(), which adds source info. */
2318 if (info.si_code >= 0)
2319 return -EPERM;
2320 info.si_signo = sig;
2321
2322 /* POSIX.1b doesn't mention process groups. */
2323 return kill_proc_info(sig, &info, pid);
2324 }
2325
2326 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2327 {
2328 struct task_struct *t = current;
2329 struct k_sigaction *k;
2330 sigset_t mask;
2331
2332 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2333 return -EINVAL;
2334
2335 k = &t->sighand->action[sig-1];
2336
2337 spin_lock_irq(&current->sighand->siglock);
2338 if (oact)
2339 *oact = *k;
2340
2341 if (act) {
2342 sigdelsetmask(&act->sa.sa_mask,
2343 sigmask(SIGKILL) | sigmask(SIGSTOP));
2344 *k = *act;
2345 /*
2346 * POSIX 3.3.1.3:
2347 * "Setting a signal action to SIG_IGN for a signal that is
2348 * pending shall cause the pending signal to be discarded,
2349 * whether or not it is blocked."
2350 *
2351 * "Setting a signal action to SIG_DFL for a signal that is
2352 * pending and whose default action is to ignore the signal
2353 * (for example, SIGCHLD), shall cause the pending signal to
2354 * be discarded, whether or not it is blocked"
2355 */
2356 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2357 sigemptyset(&mask);
2358 sigaddset(&mask, sig);
2359 rm_from_queue_full(&mask, &t->signal->shared_pending);
2360 do {
2361 rm_from_queue_full(&mask, &t->pending);
2362 t = next_thread(t);
2363 } while (t != current);
2364 }
2365 }
2366
2367 spin_unlock_irq(&current->sighand->siglock);
2368 return 0;
2369 }
2370
2371 int
2372 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2373 {
2374 stack_t oss;
2375 int error;
2376
2377 if (uoss) {
2378 oss.ss_sp = (void __user *) current->sas_ss_sp;
2379 oss.ss_size = current->sas_ss_size;
2380 oss.ss_flags = sas_ss_flags(sp);
2381 }
2382
2383 if (uss) {
2384 void __user *ss_sp;
2385 size_t ss_size;
2386 int ss_flags;
2387
2388 error = -EFAULT;
2389 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2390 || __get_user(ss_sp, &uss->ss_sp)
2391 || __get_user(ss_flags, &uss->ss_flags)
2392 || __get_user(ss_size, &uss->ss_size))
2393 goto out;
2394
2395 error = -EPERM;
2396 if (on_sig_stack(sp))
2397 goto out;
2398
2399 error = -EINVAL;
2400 /*
2401 *
2402 * Note - this code used to test ss_flags incorrectly
2403 * old code may have been written using ss_flags==0
2404 * to mean ss_flags==SS_ONSTACK (as this was the only
2405 * way that worked) - this fix preserves that older
2406 * mechanism
2407 */
2408 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2409 goto out;
2410
2411 if (ss_flags == SS_DISABLE) {
2412 ss_size = 0;
2413 ss_sp = NULL;
2414 } else {
2415 error = -ENOMEM;
2416 if (ss_size < MINSIGSTKSZ)
2417 goto out;
2418 }
2419
2420 current->sas_ss_sp = (unsigned long) ss_sp;
2421 current->sas_ss_size = ss_size;
2422 }
2423
2424 if (uoss) {
2425 error = -EFAULT;
2426 if (copy_to_user(uoss, &oss, sizeof(oss)))
2427 goto out;
2428 }
2429
2430 error = 0;
2431 out:
2432 return error;
2433 }
2434
2435 #ifdef __ARCH_WANT_SYS_SIGPENDING
2436
2437 asmlinkage long
2438 sys_sigpending(old_sigset_t __user *set)
2439 {
2440 return do_sigpending(set, sizeof(*set));
2441 }
2442
2443 #endif
2444
2445 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2446 /* Some platforms have their own version with special arguments others
2447 support only sys_rt_sigprocmask. */
2448
2449 asmlinkage long
2450 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2451 {
2452 int error;
2453 old_sigset_t old_set, new_set;
2454
2455 if (set) {
2456 error = -EFAULT;
2457 if (copy_from_user(&new_set, set, sizeof(*set)))
2458 goto out;
2459 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2460
2461 spin_lock_irq(&current->sighand->siglock);
2462 old_set = current->blocked.sig[0];
2463
2464 error = 0;
2465 switch (how) {
2466 default:
2467 error = -EINVAL;
2468 break;
2469 case SIG_BLOCK:
2470 sigaddsetmask(&current->blocked, new_set);
2471 break;
2472 case SIG_UNBLOCK:
2473 sigdelsetmask(&current->blocked, new_set);
2474 break;
2475 case SIG_SETMASK:
2476 current->blocked.sig[0] = new_set;
2477 break;
2478 }
2479
2480 recalc_sigpending();
2481 spin_unlock_irq(&current->sighand->siglock);
2482 if (error)
2483 goto out;
2484 if (oset)
2485 goto set_old;
2486 } else if (oset) {
2487 old_set = current->blocked.sig[0];
2488 set_old:
2489 error = -EFAULT;
2490 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2491 goto out;
2492 }
2493 error = 0;
2494 out:
2495 return error;
2496 }
2497 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2498
2499 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2500 asmlinkage long
2501 sys_rt_sigaction(int sig,
2502 const struct sigaction __user *act,
2503 struct sigaction __user *oact,
2504 size_t sigsetsize)
2505 {
2506 struct k_sigaction new_sa, old_sa;
2507 int ret = -EINVAL;
2508
2509 /* XXX: Don't preclude handling different sized sigset_t's. */
2510 if (sigsetsize != sizeof(sigset_t))
2511 goto out;
2512
2513 if (act) {
2514 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2515 return -EFAULT;
2516 }
2517
2518 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2519
2520 if (!ret && oact) {
2521 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2522 return -EFAULT;
2523 }
2524 out:
2525 return ret;
2526 }
2527 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2528
2529 #ifdef __ARCH_WANT_SYS_SGETMASK
2530
2531 /*
2532 * For backwards compatibility. Functionality superseded by sigprocmask.
2533 */
2534 asmlinkage long
2535 sys_sgetmask(void)
2536 {
2537 /* SMP safe */
2538 return current->blocked.sig[0];
2539 }
2540
2541 asmlinkage long
2542 sys_ssetmask(int newmask)
2543 {
2544 int old;
2545
2546 spin_lock_irq(&current->sighand->siglock);
2547 old = current->blocked.sig[0];
2548
2549 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2550 sigmask(SIGSTOP)));
2551 recalc_sigpending();
2552 spin_unlock_irq(&current->sighand->siglock);
2553
2554 return old;
2555 }
2556 #endif /* __ARCH_WANT_SGETMASK */
2557
2558 #ifdef __ARCH_WANT_SYS_SIGNAL
2559 /*
2560 * For backwards compatibility. Functionality superseded by sigaction.
2561 */
2562 asmlinkage unsigned long
2563 sys_signal(int sig, __sighandler_t handler)
2564 {
2565 struct k_sigaction new_sa, old_sa;
2566 int ret;
2567
2568 new_sa.sa.sa_handler = handler;
2569 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2570 sigemptyset(&new_sa.sa.sa_mask);
2571
2572 ret = do_sigaction(sig, &new_sa, &old_sa);
2573
2574 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2575 }
2576 #endif /* __ARCH_WANT_SYS_SIGNAL */
2577
2578 #ifdef __ARCH_WANT_SYS_PAUSE
2579
2580 asmlinkage long
2581 sys_pause(void)
2582 {
2583 current->state = TASK_INTERRUPTIBLE;
2584 schedule();
2585 return -ERESTARTNOHAND;
2586 }
2587
2588 #endif
2589
2590 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2591 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2592 {
2593 sigset_t newset;
2594
2595 /* XXX: Don't preclude handling different sized sigset_t's. */
2596 if (sigsetsize != sizeof(sigset_t))
2597 return -EINVAL;
2598
2599 if (copy_from_user(&newset, unewset, sizeof(newset)))
2600 return -EFAULT;
2601 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2602
2603 spin_lock_irq(&current->sighand->siglock);
2604 current->saved_sigmask = current->blocked;
2605 current->blocked = newset;
2606 recalc_sigpending();
2607 spin_unlock_irq(&current->sighand->siglock);
2608
2609 current->state = TASK_INTERRUPTIBLE;
2610 schedule();
2611 set_restore_sigmask();
2612 return -ERESTARTNOHAND;
2613 }
2614 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2615
2616 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2617 {
2618 return NULL;
2619 }
2620
2621 void __init signals_init(void)
2622 {
2623 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2624 }
This page took 0.128895 seconds and 5 git commands to generate.