signals: introduce do_send_sig_info() helper
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/events/sched.h>
31
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
37
38 /*
39 * SLAB caches for signal bits.
40 */
41
42 static struct kmem_cache *sigqueue_cachep;
43
44 static void __user *sig_handler(struct task_struct *t, int sig)
45 {
46 return t->sighand->action[sig - 1].sa.sa_handler;
47 }
48
49 static int sig_handler_ignored(void __user *handler, int sig)
50 {
51 /* Is it explicitly or implicitly ignored? */
52 return handler == SIG_IGN ||
53 (handler == SIG_DFL && sig_kernel_ignore(sig));
54 }
55
56 static int sig_task_ignored(struct task_struct *t, int sig,
57 int from_ancestor_ns)
58 {
59 void __user *handler;
60
61 handler = sig_handler(t, sig);
62
63 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
64 handler == SIG_DFL && !from_ancestor_ns)
65 return 1;
66
67 return sig_handler_ignored(handler, sig);
68 }
69
70 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
71 {
72 /*
73 * Blocked signals are never ignored, since the
74 * signal handler may change by the time it is
75 * unblocked.
76 */
77 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
78 return 0;
79
80 if (!sig_task_ignored(t, sig, from_ancestor_ns))
81 return 0;
82
83 /*
84 * Tracers may want to know about even ignored signals.
85 */
86 return !tracehook_consider_ignored_signal(t, sig);
87 }
88
89 /*
90 * Re-calculate pending state from the set of locally pending
91 * signals, globally pending signals, and blocked signals.
92 */
93 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
94 {
95 unsigned long ready;
96 long i;
97
98 switch (_NSIG_WORDS) {
99 default:
100 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
101 ready |= signal->sig[i] &~ blocked->sig[i];
102 break;
103
104 case 4: ready = signal->sig[3] &~ blocked->sig[3];
105 ready |= signal->sig[2] &~ blocked->sig[2];
106 ready |= signal->sig[1] &~ blocked->sig[1];
107 ready |= signal->sig[0] &~ blocked->sig[0];
108 break;
109
110 case 2: ready = signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 1: ready = signal->sig[0] &~ blocked->sig[0];
115 }
116 return ready != 0;
117 }
118
119 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
120
121 static int recalc_sigpending_tsk(struct task_struct *t)
122 {
123 if (t->signal->group_stop_count > 0 ||
124 PENDING(&t->pending, &t->blocked) ||
125 PENDING(&t->signal->shared_pending, &t->blocked)) {
126 set_tsk_thread_flag(t, TIF_SIGPENDING);
127 return 1;
128 }
129 /*
130 * We must never clear the flag in another thread, or in current
131 * when it's possible the current syscall is returning -ERESTART*.
132 * So we don't clear it here, and only callers who know they should do.
133 */
134 return 0;
135 }
136
137 /*
138 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
139 * This is superfluous when called on current, the wakeup is a harmless no-op.
140 */
141 void recalc_sigpending_and_wake(struct task_struct *t)
142 {
143 if (recalc_sigpending_tsk(t))
144 signal_wake_up(t, 0);
145 }
146
147 void recalc_sigpending(void)
148 {
149 if (unlikely(tracehook_force_sigpending()))
150 set_thread_flag(TIF_SIGPENDING);
151 else if (!recalc_sigpending_tsk(current) && !freezing(current))
152 clear_thread_flag(TIF_SIGPENDING);
153
154 }
155
156 /* Given the mask, find the first available signal that should be serviced. */
157
158 int next_signal(struct sigpending *pending, sigset_t *mask)
159 {
160 unsigned long i, *s, *m, x;
161 int sig = 0;
162
163 s = pending->signal.sig;
164 m = mask->sig;
165 switch (_NSIG_WORDS) {
166 default:
167 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
168 if ((x = *s &~ *m) != 0) {
169 sig = ffz(~x) + i*_NSIG_BPW + 1;
170 break;
171 }
172 break;
173
174 case 2: if ((x = s[0] &~ m[0]) != 0)
175 sig = 1;
176 else if ((x = s[1] &~ m[1]) != 0)
177 sig = _NSIG_BPW + 1;
178 else
179 break;
180 sig += ffz(~x);
181 break;
182
183 case 1: if ((x = *s &~ *m) != 0)
184 sig = ffz(~x) + 1;
185 break;
186 }
187
188 return sig;
189 }
190
191 /*
192 * allocate a new signal queue record
193 * - this may be called without locks if and only if t == current, otherwise an
194 * appopriate lock must be held to stop the target task from exiting
195 */
196 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
197 int override_rlimit)
198 {
199 struct sigqueue *q = NULL;
200 struct user_struct *user;
201
202 /*
203 * We won't get problems with the target's UID changing under us
204 * because changing it requires RCU be used, and if t != current, the
205 * caller must be holding the RCU readlock (by way of a spinlock) and
206 * we use RCU protection here
207 */
208 user = get_uid(__task_cred(t)->user);
209 atomic_inc(&user->sigpending);
210 if (override_rlimit ||
211 atomic_read(&user->sigpending) <=
212 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
213 q = kmem_cache_alloc(sigqueue_cachep, flags);
214 if (unlikely(q == NULL)) {
215 atomic_dec(&user->sigpending);
216 free_uid(user);
217 } else {
218 INIT_LIST_HEAD(&q->list);
219 q->flags = 0;
220 q->user = user;
221 }
222
223 return q;
224 }
225
226 static void __sigqueue_free(struct sigqueue *q)
227 {
228 if (q->flags & SIGQUEUE_PREALLOC)
229 return;
230 atomic_dec(&q->user->sigpending);
231 free_uid(q->user);
232 kmem_cache_free(sigqueue_cachep, q);
233 }
234
235 void flush_sigqueue(struct sigpending *queue)
236 {
237 struct sigqueue *q;
238
239 sigemptyset(&queue->signal);
240 while (!list_empty(&queue->list)) {
241 q = list_entry(queue->list.next, struct sigqueue , list);
242 list_del_init(&q->list);
243 __sigqueue_free(q);
244 }
245 }
246
247 /*
248 * Flush all pending signals for a task.
249 */
250 void __flush_signals(struct task_struct *t)
251 {
252 clear_tsk_thread_flag(t, TIF_SIGPENDING);
253 flush_sigqueue(&t->pending);
254 flush_sigqueue(&t->signal->shared_pending);
255 }
256
257 void flush_signals(struct task_struct *t)
258 {
259 unsigned long flags;
260
261 spin_lock_irqsave(&t->sighand->siglock, flags);
262 __flush_signals(t);
263 spin_unlock_irqrestore(&t->sighand->siglock, flags);
264 }
265
266 static void __flush_itimer_signals(struct sigpending *pending)
267 {
268 sigset_t signal, retain;
269 struct sigqueue *q, *n;
270
271 signal = pending->signal;
272 sigemptyset(&retain);
273
274 list_for_each_entry_safe(q, n, &pending->list, list) {
275 int sig = q->info.si_signo;
276
277 if (likely(q->info.si_code != SI_TIMER)) {
278 sigaddset(&retain, sig);
279 } else {
280 sigdelset(&signal, sig);
281 list_del_init(&q->list);
282 __sigqueue_free(q);
283 }
284 }
285
286 sigorsets(&pending->signal, &signal, &retain);
287 }
288
289 void flush_itimer_signals(void)
290 {
291 struct task_struct *tsk = current;
292 unsigned long flags;
293
294 spin_lock_irqsave(&tsk->sighand->siglock, flags);
295 __flush_itimer_signals(&tsk->pending);
296 __flush_itimer_signals(&tsk->signal->shared_pending);
297 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
298 }
299
300 void ignore_signals(struct task_struct *t)
301 {
302 int i;
303
304 for (i = 0; i < _NSIG; ++i)
305 t->sighand->action[i].sa.sa_handler = SIG_IGN;
306
307 flush_signals(t);
308 }
309
310 /*
311 * Flush all handlers for a task.
312 */
313
314 void
315 flush_signal_handlers(struct task_struct *t, int force_default)
316 {
317 int i;
318 struct k_sigaction *ka = &t->sighand->action[0];
319 for (i = _NSIG ; i != 0 ; i--) {
320 if (force_default || ka->sa.sa_handler != SIG_IGN)
321 ka->sa.sa_handler = SIG_DFL;
322 ka->sa.sa_flags = 0;
323 sigemptyset(&ka->sa.sa_mask);
324 ka++;
325 }
326 }
327
328 int unhandled_signal(struct task_struct *tsk, int sig)
329 {
330 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
331 if (is_global_init(tsk))
332 return 1;
333 if (handler != SIG_IGN && handler != SIG_DFL)
334 return 0;
335 return !tracehook_consider_fatal_signal(tsk, sig);
336 }
337
338
339 /* Notify the system that a driver wants to block all signals for this
340 * process, and wants to be notified if any signals at all were to be
341 * sent/acted upon. If the notifier routine returns non-zero, then the
342 * signal will be acted upon after all. If the notifier routine returns 0,
343 * then then signal will be blocked. Only one block per process is
344 * allowed. priv is a pointer to private data that the notifier routine
345 * can use to determine if the signal should be blocked or not. */
346
347 void
348 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
349 {
350 unsigned long flags;
351
352 spin_lock_irqsave(&current->sighand->siglock, flags);
353 current->notifier_mask = mask;
354 current->notifier_data = priv;
355 current->notifier = notifier;
356 spin_unlock_irqrestore(&current->sighand->siglock, flags);
357 }
358
359 /* Notify the system that blocking has ended. */
360
361 void
362 unblock_all_signals(void)
363 {
364 unsigned long flags;
365
366 spin_lock_irqsave(&current->sighand->siglock, flags);
367 current->notifier = NULL;
368 current->notifier_data = NULL;
369 recalc_sigpending();
370 spin_unlock_irqrestore(&current->sighand->siglock, flags);
371 }
372
373 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
374 {
375 struct sigqueue *q, *first = NULL;
376
377 /*
378 * Collect the siginfo appropriate to this signal. Check if
379 * there is another siginfo for the same signal.
380 */
381 list_for_each_entry(q, &list->list, list) {
382 if (q->info.si_signo == sig) {
383 if (first)
384 goto still_pending;
385 first = q;
386 }
387 }
388
389 sigdelset(&list->signal, sig);
390
391 if (first) {
392 still_pending:
393 list_del_init(&first->list);
394 copy_siginfo(info, &first->info);
395 __sigqueue_free(first);
396 } else {
397 /* Ok, it wasn't in the queue. This must be
398 a fast-pathed signal or we must have been
399 out of queue space. So zero out the info.
400 */
401 info->si_signo = sig;
402 info->si_errno = 0;
403 info->si_code = 0;
404 info->si_pid = 0;
405 info->si_uid = 0;
406 }
407 }
408
409 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
410 siginfo_t *info)
411 {
412 int sig = next_signal(pending, mask);
413
414 if (sig) {
415 if (current->notifier) {
416 if (sigismember(current->notifier_mask, sig)) {
417 if (!(current->notifier)(current->notifier_data)) {
418 clear_thread_flag(TIF_SIGPENDING);
419 return 0;
420 }
421 }
422 }
423
424 collect_signal(sig, pending, info);
425 }
426
427 return sig;
428 }
429
430 /*
431 * Dequeue a signal and return the element to the caller, which is
432 * expected to free it.
433 *
434 * All callers have to hold the siglock.
435 */
436 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
437 {
438 int signr;
439
440 /* We only dequeue private signals from ourselves, we don't let
441 * signalfd steal them
442 */
443 signr = __dequeue_signal(&tsk->pending, mask, info);
444 if (!signr) {
445 signr = __dequeue_signal(&tsk->signal->shared_pending,
446 mask, info);
447 /*
448 * itimer signal ?
449 *
450 * itimers are process shared and we restart periodic
451 * itimers in the signal delivery path to prevent DoS
452 * attacks in the high resolution timer case. This is
453 * compliant with the old way of self restarting
454 * itimers, as the SIGALRM is a legacy signal and only
455 * queued once. Changing the restart behaviour to
456 * restart the timer in the signal dequeue path is
457 * reducing the timer noise on heavy loaded !highres
458 * systems too.
459 */
460 if (unlikely(signr == SIGALRM)) {
461 struct hrtimer *tmr = &tsk->signal->real_timer;
462
463 if (!hrtimer_is_queued(tmr) &&
464 tsk->signal->it_real_incr.tv64 != 0) {
465 hrtimer_forward(tmr, tmr->base->get_time(),
466 tsk->signal->it_real_incr);
467 hrtimer_restart(tmr);
468 }
469 }
470 }
471
472 recalc_sigpending();
473 if (!signr)
474 return 0;
475
476 if (unlikely(sig_kernel_stop(signr))) {
477 /*
478 * Set a marker that we have dequeued a stop signal. Our
479 * caller might release the siglock and then the pending
480 * stop signal it is about to process is no longer in the
481 * pending bitmasks, but must still be cleared by a SIGCONT
482 * (and overruled by a SIGKILL). So those cases clear this
483 * shared flag after we've set it. Note that this flag may
484 * remain set after the signal we return is ignored or
485 * handled. That doesn't matter because its only purpose
486 * is to alert stop-signal processing code when another
487 * processor has come along and cleared the flag.
488 */
489 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
490 }
491 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
492 /*
493 * Release the siglock to ensure proper locking order
494 * of timer locks outside of siglocks. Note, we leave
495 * irqs disabled here, since the posix-timers code is
496 * about to disable them again anyway.
497 */
498 spin_unlock(&tsk->sighand->siglock);
499 do_schedule_next_timer(info);
500 spin_lock(&tsk->sighand->siglock);
501 }
502 return signr;
503 }
504
505 /*
506 * Tell a process that it has a new active signal..
507 *
508 * NOTE! we rely on the previous spin_lock to
509 * lock interrupts for us! We can only be called with
510 * "siglock" held, and the local interrupt must
511 * have been disabled when that got acquired!
512 *
513 * No need to set need_resched since signal event passing
514 * goes through ->blocked
515 */
516 void signal_wake_up(struct task_struct *t, int resume)
517 {
518 unsigned int mask;
519
520 set_tsk_thread_flag(t, TIF_SIGPENDING);
521
522 /*
523 * For SIGKILL, we want to wake it up in the stopped/traced/killable
524 * case. We don't check t->state here because there is a race with it
525 * executing another processor and just now entering stopped state.
526 * By using wake_up_state, we ensure the process will wake up and
527 * handle its death signal.
528 */
529 mask = TASK_INTERRUPTIBLE;
530 if (resume)
531 mask |= TASK_WAKEKILL;
532 if (!wake_up_state(t, mask))
533 kick_process(t);
534 }
535
536 /*
537 * Remove signals in mask from the pending set and queue.
538 * Returns 1 if any signals were found.
539 *
540 * All callers must be holding the siglock.
541 *
542 * This version takes a sigset mask and looks at all signals,
543 * not just those in the first mask word.
544 */
545 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
546 {
547 struct sigqueue *q, *n;
548 sigset_t m;
549
550 sigandsets(&m, mask, &s->signal);
551 if (sigisemptyset(&m))
552 return 0;
553
554 signandsets(&s->signal, &s->signal, mask);
555 list_for_each_entry_safe(q, n, &s->list, list) {
556 if (sigismember(mask, q->info.si_signo)) {
557 list_del_init(&q->list);
558 __sigqueue_free(q);
559 }
560 }
561 return 1;
562 }
563 /*
564 * Remove signals in mask from the pending set and queue.
565 * Returns 1 if any signals were found.
566 *
567 * All callers must be holding the siglock.
568 */
569 static int rm_from_queue(unsigned long mask, struct sigpending *s)
570 {
571 struct sigqueue *q, *n;
572
573 if (!sigtestsetmask(&s->signal, mask))
574 return 0;
575
576 sigdelsetmask(&s->signal, mask);
577 list_for_each_entry_safe(q, n, &s->list, list) {
578 if (q->info.si_signo < SIGRTMIN &&
579 (mask & sigmask(q->info.si_signo))) {
580 list_del_init(&q->list);
581 __sigqueue_free(q);
582 }
583 }
584 return 1;
585 }
586
587 /*
588 * Bad permissions for sending the signal
589 * - the caller must hold at least the RCU read lock
590 */
591 static int check_kill_permission(int sig, struct siginfo *info,
592 struct task_struct *t)
593 {
594 const struct cred *cred = current_cred(), *tcred;
595 struct pid *sid;
596 int error;
597
598 if (!valid_signal(sig))
599 return -EINVAL;
600
601 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
602 return 0;
603
604 error = audit_signal_info(sig, t); /* Let audit system see the signal */
605 if (error)
606 return error;
607
608 tcred = __task_cred(t);
609 if ((cred->euid ^ tcred->suid) &&
610 (cred->euid ^ tcred->uid) &&
611 (cred->uid ^ tcred->suid) &&
612 (cred->uid ^ tcred->uid) &&
613 !capable(CAP_KILL)) {
614 switch (sig) {
615 case SIGCONT:
616 sid = task_session(t);
617 /*
618 * We don't return the error if sid == NULL. The
619 * task was unhashed, the caller must notice this.
620 */
621 if (!sid || sid == task_session(current))
622 break;
623 default:
624 return -EPERM;
625 }
626 }
627
628 return security_task_kill(t, info, sig, 0);
629 }
630
631 /*
632 * Handle magic process-wide effects of stop/continue signals. Unlike
633 * the signal actions, these happen immediately at signal-generation
634 * time regardless of blocking, ignoring, or handling. This does the
635 * actual continuing for SIGCONT, but not the actual stopping for stop
636 * signals. The process stop is done as a signal action for SIG_DFL.
637 *
638 * Returns true if the signal should be actually delivered, otherwise
639 * it should be dropped.
640 */
641 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
642 {
643 struct signal_struct *signal = p->signal;
644 struct task_struct *t;
645
646 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
647 /*
648 * The process is in the middle of dying, nothing to do.
649 */
650 } else if (sig_kernel_stop(sig)) {
651 /*
652 * This is a stop signal. Remove SIGCONT from all queues.
653 */
654 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
655 t = p;
656 do {
657 rm_from_queue(sigmask(SIGCONT), &t->pending);
658 } while_each_thread(p, t);
659 } else if (sig == SIGCONT) {
660 unsigned int why;
661 /*
662 * Remove all stop signals from all queues,
663 * and wake all threads.
664 */
665 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
666 t = p;
667 do {
668 unsigned int state;
669 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
670 /*
671 * If there is a handler for SIGCONT, we must make
672 * sure that no thread returns to user mode before
673 * we post the signal, in case it was the only
674 * thread eligible to run the signal handler--then
675 * it must not do anything between resuming and
676 * running the handler. With the TIF_SIGPENDING
677 * flag set, the thread will pause and acquire the
678 * siglock that we hold now and until we've queued
679 * the pending signal.
680 *
681 * Wake up the stopped thread _after_ setting
682 * TIF_SIGPENDING
683 */
684 state = __TASK_STOPPED;
685 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
686 set_tsk_thread_flag(t, TIF_SIGPENDING);
687 state |= TASK_INTERRUPTIBLE;
688 }
689 wake_up_state(t, state);
690 } while_each_thread(p, t);
691
692 /*
693 * Notify the parent with CLD_CONTINUED if we were stopped.
694 *
695 * If we were in the middle of a group stop, we pretend it
696 * was already finished, and then continued. Since SIGCHLD
697 * doesn't queue we report only CLD_STOPPED, as if the next
698 * CLD_CONTINUED was dropped.
699 */
700 why = 0;
701 if (signal->flags & SIGNAL_STOP_STOPPED)
702 why |= SIGNAL_CLD_CONTINUED;
703 else if (signal->group_stop_count)
704 why |= SIGNAL_CLD_STOPPED;
705
706 if (why) {
707 /*
708 * The first thread which returns from do_signal_stop()
709 * will take ->siglock, notice SIGNAL_CLD_MASK, and
710 * notify its parent. See get_signal_to_deliver().
711 */
712 signal->flags = why | SIGNAL_STOP_CONTINUED;
713 signal->group_stop_count = 0;
714 signal->group_exit_code = 0;
715 } else {
716 /*
717 * We are not stopped, but there could be a stop
718 * signal in the middle of being processed after
719 * being removed from the queue. Clear that too.
720 */
721 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
722 }
723 }
724
725 return !sig_ignored(p, sig, from_ancestor_ns);
726 }
727
728 /*
729 * Test if P wants to take SIG. After we've checked all threads with this,
730 * it's equivalent to finding no threads not blocking SIG. Any threads not
731 * blocking SIG were ruled out because they are not running and already
732 * have pending signals. Such threads will dequeue from the shared queue
733 * as soon as they're available, so putting the signal on the shared queue
734 * will be equivalent to sending it to one such thread.
735 */
736 static inline int wants_signal(int sig, struct task_struct *p)
737 {
738 if (sigismember(&p->blocked, sig))
739 return 0;
740 if (p->flags & PF_EXITING)
741 return 0;
742 if (sig == SIGKILL)
743 return 1;
744 if (task_is_stopped_or_traced(p))
745 return 0;
746 return task_curr(p) || !signal_pending(p);
747 }
748
749 static void complete_signal(int sig, struct task_struct *p, int group)
750 {
751 struct signal_struct *signal = p->signal;
752 struct task_struct *t;
753
754 /*
755 * Now find a thread we can wake up to take the signal off the queue.
756 *
757 * If the main thread wants the signal, it gets first crack.
758 * Probably the least surprising to the average bear.
759 */
760 if (wants_signal(sig, p))
761 t = p;
762 else if (!group || thread_group_empty(p))
763 /*
764 * There is just one thread and it does not need to be woken.
765 * It will dequeue unblocked signals before it runs again.
766 */
767 return;
768 else {
769 /*
770 * Otherwise try to find a suitable thread.
771 */
772 t = signal->curr_target;
773 while (!wants_signal(sig, t)) {
774 t = next_thread(t);
775 if (t == signal->curr_target)
776 /*
777 * No thread needs to be woken.
778 * Any eligible threads will see
779 * the signal in the queue soon.
780 */
781 return;
782 }
783 signal->curr_target = t;
784 }
785
786 /*
787 * Found a killable thread. If the signal will be fatal,
788 * then start taking the whole group down immediately.
789 */
790 if (sig_fatal(p, sig) &&
791 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
792 !sigismember(&t->real_blocked, sig) &&
793 (sig == SIGKILL ||
794 !tracehook_consider_fatal_signal(t, sig))) {
795 /*
796 * This signal will be fatal to the whole group.
797 */
798 if (!sig_kernel_coredump(sig)) {
799 /*
800 * Start a group exit and wake everybody up.
801 * This way we don't have other threads
802 * running and doing things after a slower
803 * thread has the fatal signal pending.
804 */
805 signal->flags = SIGNAL_GROUP_EXIT;
806 signal->group_exit_code = sig;
807 signal->group_stop_count = 0;
808 t = p;
809 do {
810 sigaddset(&t->pending.signal, SIGKILL);
811 signal_wake_up(t, 1);
812 } while_each_thread(p, t);
813 return;
814 }
815 }
816
817 /*
818 * The signal is already in the shared-pending queue.
819 * Tell the chosen thread to wake up and dequeue it.
820 */
821 signal_wake_up(t, sig == SIGKILL);
822 return;
823 }
824
825 static inline int legacy_queue(struct sigpending *signals, int sig)
826 {
827 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
828 }
829
830 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
831 int group, int from_ancestor_ns)
832 {
833 struct sigpending *pending;
834 struct sigqueue *q;
835 int override_rlimit;
836
837 trace_sched_signal_send(sig, t);
838
839 assert_spin_locked(&t->sighand->siglock);
840
841 if (!prepare_signal(sig, t, from_ancestor_ns))
842 return 0;
843
844 pending = group ? &t->signal->shared_pending : &t->pending;
845 /*
846 * Short-circuit ignored signals and support queuing
847 * exactly one non-rt signal, so that we can get more
848 * detailed information about the cause of the signal.
849 */
850 if (legacy_queue(pending, sig))
851 return 0;
852 /*
853 * fast-pathed signals for kernel-internal things like SIGSTOP
854 * or SIGKILL.
855 */
856 if (info == SEND_SIG_FORCED)
857 goto out_set;
858
859 /* Real-time signals must be queued if sent by sigqueue, or
860 some other real-time mechanism. It is implementation
861 defined whether kill() does so. We attempt to do so, on
862 the principle of least surprise, but since kill is not
863 allowed to fail with EAGAIN when low on memory we just
864 make sure at least one signal gets delivered and don't
865 pass on the info struct. */
866
867 if (sig < SIGRTMIN)
868 override_rlimit = (is_si_special(info) || info->si_code >= 0);
869 else
870 override_rlimit = 0;
871
872 q = __sigqueue_alloc(t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
873 override_rlimit);
874 if (q) {
875 list_add_tail(&q->list, &pending->list);
876 switch ((unsigned long) info) {
877 case (unsigned long) SEND_SIG_NOINFO:
878 q->info.si_signo = sig;
879 q->info.si_errno = 0;
880 q->info.si_code = SI_USER;
881 q->info.si_pid = task_tgid_nr_ns(current,
882 task_active_pid_ns(t));
883 q->info.si_uid = current_uid();
884 break;
885 case (unsigned long) SEND_SIG_PRIV:
886 q->info.si_signo = sig;
887 q->info.si_errno = 0;
888 q->info.si_code = SI_KERNEL;
889 q->info.si_pid = 0;
890 q->info.si_uid = 0;
891 break;
892 default:
893 copy_siginfo(&q->info, info);
894 if (from_ancestor_ns)
895 q->info.si_pid = 0;
896 break;
897 }
898 } else if (!is_si_special(info)) {
899 if (sig >= SIGRTMIN && info->si_code != SI_USER)
900 /*
901 * Queue overflow, abort. We may abort if the signal was rt
902 * and sent by user using something other than kill().
903 */
904 return -EAGAIN;
905 }
906
907 out_set:
908 signalfd_notify(t, sig);
909 sigaddset(&pending->signal, sig);
910 complete_signal(sig, t, group);
911 return 0;
912 }
913
914 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
915 int group)
916 {
917 int from_ancestor_ns = 0;
918
919 #ifdef CONFIG_PID_NS
920 if (!is_si_special(info) && SI_FROMUSER(info) &&
921 task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0)
922 from_ancestor_ns = 1;
923 #endif
924
925 return __send_signal(sig, info, t, group, from_ancestor_ns);
926 }
927
928 int print_fatal_signals;
929
930 static void print_fatal_signal(struct pt_regs *regs, int signr)
931 {
932 printk("%s/%d: potentially unexpected fatal signal %d.\n",
933 current->comm, task_pid_nr(current), signr);
934
935 #if defined(__i386__) && !defined(__arch_um__)
936 printk("code at %08lx: ", regs->ip);
937 {
938 int i;
939 for (i = 0; i < 16; i++) {
940 unsigned char insn;
941
942 __get_user(insn, (unsigned char *)(regs->ip + i));
943 printk("%02x ", insn);
944 }
945 }
946 #endif
947 printk("\n");
948 preempt_disable();
949 show_regs(regs);
950 preempt_enable();
951 }
952
953 static int __init setup_print_fatal_signals(char *str)
954 {
955 get_option (&str, &print_fatal_signals);
956
957 return 1;
958 }
959
960 __setup("print-fatal-signals=", setup_print_fatal_signals);
961
962 int
963 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
964 {
965 return send_signal(sig, info, p, 1);
966 }
967
968 static int
969 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
970 {
971 return send_signal(sig, info, t, 0);
972 }
973
974 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
975 bool group)
976 {
977 unsigned long flags;
978 int ret = -ESRCH;
979
980 if (lock_task_sighand(p, &flags)) {
981 ret = send_signal(sig, info, p, group);
982 unlock_task_sighand(p, &flags);
983 }
984
985 return ret;
986 }
987
988 /*
989 * Force a signal that the process can't ignore: if necessary
990 * we unblock the signal and change any SIG_IGN to SIG_DFL.
991 *
992 * Note: If we unblock the signal, we always reset it to SIG_DFL,
993 * since we do not want to have a signal handler that was blocked
994 * be invoked when user space had explicitly blocked it.
995 *
996 * We don't want to have recursive SIGSEGV's etc, for example,
997 * that is why we also clear SIGNAL_UNKILLABLE.
998 */
999 int
1000 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1001 {
1002 unsigned long int flags;
1003 int ret, blocked, ignored;
1004 struct k_sigaction *action;
1005
1006 spin_lock_irqsave(&t->sighand->siglock, flags);
1007 action = &t->sighand->action[sig-1];
1008 ignored = action->sa.sa_handler == SIG_IGN;
1009 blocked = sigismember(&t->blocked, sig);
1010 if (blocked || ignored) {
1011 action->sa.sa_handler = SIG_DFL;
1012 if (blocked) {
1013 sigdelset(&t->blocked, sig);
1014 recalc_sigpending_and_wake(t);
1015 }
1016 }
1017 if (action->sa.sa_handler == SIG_DFL)
1018 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1019 ret = specific_send_sig_info(sig, info, t);
1020 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1021
1022 return ret;
1023 }
1024
1025 void
1026 force_sig_specific(int sig, struct task_struct *t)
1027 {
1028 force_sig_info(sig, SEND_SIG_FORCED, t);
1029 }
1030
1031 /*
1032 * Nuke all other threads in the group.
1033 */
1034 void zap_other_threads(struct task_struct *p)
1035 {
1036 struct task_struct *t;
1037
1038 p->signal->group_stop_count = 0;
1039
1040 for (t = next_thread(p); t != p; t = next_thread(t)) {
1041 /*
1042 * Don't bother with already dead threads
1043 */
1044 if (t->exit_state)
1045 continue;
1046
1047 /* SIGKILL will be handled before any pending SIGSTOP */
1048 sigaddset(&t->pending.signal, SIGKILL);
1049 signal_wake_up(t, 1);
1050 }
1051 }
1052
1053 int __fatal_signal_pending(struct task_struct *tsk)
1054 {
1055 return sigismember(&tsk->pending.signal, SIGKILL);
1056 }
1057 EXPORT_SYMBOL(__fatal_signal_pending);
1058
1059 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1060 {
1061 struct sighand_struct *sighand;
1062
1063 rcu_read_lock();
1064 for (;;) {
1065 sighand = rcu_dereference(tsk->sighand);
1066 if (unlikely(sighand == NULL))
1067 break;
1068
1069 spin_lock_irqsave(&sighand->siglock, *flags);
1070 if (likely(sighand == tsk->sighand))
1071 break;
1072 spin_unlock_irqrestore(&sighand->siglock, *flags);
1073 }
1074 rcu_read_unlock();
1075
1076 return sighand;
1077 }
1078
1079 /*
1080 * send signal info to all the members of a group
1081 * - the caller must hold the RCU read lock at least
1082 */
1083 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1084 {
1085 int ret = check_kill_permission(sig, info, p);
1086
1087 if (!ret && sig)
1088 ret = do_send_sig_info(sig, info, p, true);
1089
1090 return ret;
1091 }
1092
1093 /*
1094 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1095 * control characters do (^C, ^Z etc)
1096 * - the caller must hold at least a readlock on tasklist_lock
1097 */
1098 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1099 {
1100 struct task_struct *p = NULL;
1101 int retval, success;
1102
1103 success = 0;
1104 retval = -ESRCH;
1105 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1106 int err = group_send_sig_info(sig, info, p);
1107 success |= !err;
1108 retval = err;
1109 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1110 return success ? 0 : retval;
1111 }
1112
1113 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1114 {
1115 int error = -ESRCH;
1116 struct task_struct *p;
1117
1118 rcu_read_lock();
1119 retry:
1120 p = pid_task(pid, PIDTYPE_PID);
1121 if (p) {
1122 error = group_send_sig_info(sig, info, p);
1123 if (unlikely(error == -ESRCH))
1124 /*
1125 * The task was unhashed in between, try again.
1126 * If it is dead, pid_task() will return NULL,
1127 * if we race with de_thread() it will find the
1128 * new leader.
1129 */
1130 goto retry;
1131 }
1132 rcu_read_unlock();
1133
1134 return error;
1135 }
1136
1137 int
1138 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1139 {
1140 int error;
1141 rcu_read_lock();
1142 error = kill_pid_info(sig, info, find_vpid(pid));
1143 rcu_read_unlock();
1144 return error;
1145 }
1146
1147 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1148 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1149 uid_t uid, uid_t euid, u32 secid)
1150 {
1151 int ret = -EINVAL;
1152 struct task_struct *p;
1153 const struct cred *pcred;
1154
1155 if (!valid_signal(sig))
1156 return ret;
1157
1158 read_lock(&tasklist_lock);
1159 p = pid_task(pid, PIDTYPE_PID);
1160 if (!p) {
1161 ret = -ESRCH;
1162 goto out_unlock;
1163 }
1164 pcred = __task_cred(p);
1165 if ((info == SEND_SIG_NOINFO ||
1166 (!is_si_special(info) && SI_FROMUSER(info))) &&
1167 euid != pcred->suid && euid != pcred->uid &&
1168 uid != pcred->suid && uid != pcred->uid) {
1169 ret = -EPERM;
1170 goto out_unlock;
1171 }
1172 ret = security_task_kill(p, info, sig, secid);
1173 if (ret)
1174 goto out_unlock;
1175 if (sig && p->sighand) {
1176 unsigned long flags;
1177 spin_lock_irqsave(&p->sighand->siglock, flags);
1178 ret = __send_signal(sig, info, p, 1, 0);
1179 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1180 }
1181 out_unlock:
1182 read_unlock(&tasklist_lock);
1183 return ret;
1184 }
1185 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1186
1187 /*
1188 * kill_something_info() interprets pid in interesting ways just like kill(2).
1189 *
1190 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1191 * is probably wrong. Should make it like BSD or SYSV.
1192 */
1193
1194 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1195 {
1196 int ret;
1197
1198 if (pid > 0) {
1199 rcu_read_lock();
1200 ret = kill_pid_info(sig, info, find_vpid(pid));
1201 rcu_read_unlock();
1202 return ret;
1203 }
1204
1205 read_lock(&tasklist_lock);
1206 if (pid != -1) {
1207 ret = __kill_pgrp_info(sig, info,
1208 pid ? find_vpid(-pid) : task_pgrp(current));
1209 } else {
1210 int retval = 0, count = 0;
1211 struct task_struct * p;
1212
1213 for_each_process(p) {
1214 if (task_pid_vnr(p) > 1 &&
1215 !same_thread_group(p, current)) {
1216 int err = group_send_sig_info(sig, info, p);
1217 ++count;
1218 if (err != -EPERM)
1219 retval = err;
1220 }
1221 }
1222 ret = count ? retval : -ESRCH;
1223 }
1224 read_unlock(&tasklist_lock);
1225
1226 return ret;
1227 }
1228
1229 /*
1230 * These are for backward compatibility with the rest of the kernel source.
1231 */
1232
1233 int
1234 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1235 {
1236 /*
1237 * Make sure legacy kernel users don't send in bad values
1238 * (normal paths check this in check_kill_permission).
1239 */
1240 if (!valid_signal(sig))
1241 return -EINVAL;
1242
1243 return do_send_sig_info(sig, info, p, false);
1244 }
1245
1246 #define __si_special(priv) \
1247 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1248
1249 int
1250 send_sig(int sig, struct task_struct *p, int priv)
1251 {
1252 return send_sig_info(sig, __si_special(priv), p);
1253 }
1254
1255 void
1256 force_sig(int sig, struct task_struct *p)
1257 {
1258 force_sig_info(sig, SEND_SIG_PRIV, p);
1259 }
1260
1261 /*
1262 * When things go south during signal handling, we
1263 * will force a SIGSEGV. And if the signal that caused
1264 * the problem was already a SIGSEGV, we'll want to
1265 * make sure we don't even try to deliver the signal..
1266 */
1267 int
1268 force_sigsegv(int sig, struct task_struct *p)
1269 {
1270 if (sig == SIGSEGV) {
1271 unsigned long flags;
1272 spin_lock_irqsave(&p->sighand->siglock, flags);
1273 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1274 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1275 }
1276 force_sig(SIGSEGV, p);
1277 return 0;
1278 }
1279
1280 int kill_pgrp(struct pid *pid, int sig, int priv)
1281 {
1282 int ret;
1283
1284 read_lock(&tasklist_lock);
1285 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1286 read_unlock(&tasklist_lock);
1287
1288 return ret;
1289 }
1290 EXPORT_SYMBOL(kill_pgrp);
1291
1292 int kill_pid(struct pid *pid, int sig, int priv)
1293 {
1294 return kill_pid_info(sig, __si_special(priv), pid);
1295 }
1296 EXPORT_SYMBOL(kill_pid);
1297
1298 /*
1299 * These functions support sending signals using preallocated sigqueue
1300 * structures. This is needed "because realtime applications cannot
1301 * afford to lose notifications of asynchronous events, like timer
1302 * expirations or I/O completions". In the case of Posix Timers
1303 * we allocate the sigqueue structure from the timer_create. If this
1304 * allocation fails we are able to report the failure to the application
1305 * with an EAGAIN error.
1306 */
1307
1308 struct sigqueue *sigqueue_alloc(void)
1309 {
1310 struct sigqueue *q;
1311
1312 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1313 q->flags |= SIGQUEUE_PREALLOC;
1314 return(q);
1315 }
1316
1317 void sigqueue_free(struct sigqueue *q)
1318 {
1319 unsigned long flags;
1320 spinlock_t *lock = &current->sighand->siglock;
1321
1322 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1323 /*
1324 * We must hold ->siglock while testing q->list
1325 * to serialize with collect_signal() or with
1326 * __exit_signal()->flush_sigqueue().
1327 */
1328 spin_lock_irqsave(lock, flags);
1329 q->flags &= ~SIGQUEUE_PREALLOC;
1330 /*
1331 * If it is queued it will be freed when dequeued,
1332 * like the "regular" sigqueue.
1333 */
1334 if (!list_empty(&q->list))
1335 q = NULL;
1336 spin_unlock_irqrestore(lock, flags);
1337
1338 if (q)
1339 __sigqueue_free(q);
1340 }
1341
1342 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1343 {
1344 int sig = q->info.si_signo;
1345 struct sigpending *pending;
1346 unsigned long flags;
1347 int ret;
1348
1349 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1350
1351 ret = -1;
1352 if (!likely(lock_task_sighand(t, &flags)))
1353 goto ret;
1354
1355 ret = 1; /* the signal is ignored */
1356 if (!prepare_signal(sig, t, 0))
1357 goto out;
1358
1359 ret = 0;
1360 if (unlikely(!list_empty(&q->list))) {
1361 /*
1362 * If an SI_TIMER entry is already queue just increment
1363 * the overrun count.
1364 */
1365 BUG_ON(q->info.si_code != SI_TIMER);
1366 q->info.si_overrun++;
1367 goto out;
1368 }
1369 q->info.si_overrun = 0;
1370
1371 signalfd_notify(t, sig);
1372 pending = group ? &t->signal->shared_pending : &t->pending;
1373 list_add_tail(&q->list, &pending->list);
1374 sigaddset(&pending->signal, sig);
1375 complete_signal(sig, t, group);
1376 out:
1377 unlock_task_sighand(t, &flags);
1378 ret:
1379 return ret;
1380 }
1381
1382 /*
1383 * Let a parent know about the death of a child.
1384 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1385 *
1386 * Returns -1 if our parent ignored us and so we've switched to
1387 * self-reaping, or else @sig.
1388 */
1389 int do_notify_parent(struct task_struct *tsk, int sig)
1390 {
1391 struct siginfo info;
1392 unsigned long flags;
1393 struct sighand_struct *psig;
1394 int ret = sig;
1395
1396 BUG_ON(sig == -1);
1397
1398 /* do_notify_parent_cldstop should have been called instead. */
1399 BUG_ON(task_is_stopped_or_traced(tsk));
1400
1401 BUG_ON(!task_ptrace(tsk) &&
1402 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1403
1404 info.si_signo = sig;
1405 info.si_errno = 0;
1406 /*
1407 * we are under tasklist_lock here so our parent is tied to
1408 * us and cannot exit and release its namespace.
1409 *
1410 * the only it can is to switch its nsproxy with sys_unshare,
1411 * bu uncharing pid namespaces is not allowed, so we'll always
1412 * see relevant namespace
1413 *
1414 * write_lock() currently calls preempt_disable() which is the
1415 * same as rcu_read_lock(), but according to Oleg, this is not
1416 * correct to rely on this
1417 */
1418 rcu_read_lock();
1419 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1420 info.si_uid = __task_cred(tsk)->uid;
1421 rcu_read_unlock();
1422
1423 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1424 tsk->signal->utime));
1425 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1426 tsk->signal->stime));
1427
1428 info.si_status = tsk->exit_code & 0x7f;
1429 if (tsk->exit_code & 0x80)
1430 info.si_code = CLD_DUMPED;
1431 else if (tsk->exit_code & 0x7f)
1432 info.si_code = CLD_KILLED;
1433 else {
1434 info.si_code = CLD_EXITED;
1435 info.si_status = tsk->exit_code >> 8;
1436 }
1437
1438 psig = tsk->parent->sighand;
1439 spin_lock_irqsave(&psig->siglock, flags);
1440 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1441 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1442 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1443 /*
1444 * We are exiting and our parent doesn't care. POSIX.1
1445 * defines special semantics for setting SIGCHLD to SIG_IGN
1446 * or setting the SA_NOCLDWAIT flag: we should be reaped
1447 * automatically and not left for our parent's wait4 call.
1448 * Rather than having the parent do it as a magic kind of
1449 * signal handler, we just set this to tell do_exit that we
1450 * can be cleaned up without becoming a zombie. Note that
1451 * we still call __wake_up_parent in this case, because a
1452 * blocked sys_wait4 might now return -ECHILD.
1453 *
1454 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1455 * is implementation-defined: we do (if you don't want
1456 * it, just use SIG_IGN instead).
1457 */
1458 ret = tsk->exit_signal = -1;
1459 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1460 sig = -1;
1461 }
1462 if (valid_signal(sig) && sig > 0)
1463 __group_send_sig_info(sig, &info, tsk->parent);
1464 __wake_up_parent(tsk, tsk->parent);
1465 spin_unlock_irqrestore(&psig->siglock, flags);
1466
1467 return ret;
1468 }
1469
1470 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1471 {
1472 struct siginfo info;
1473 unsigned long flags;
1474 struct task_struct *parent;
1475 struct sighand_struct *sighand;
1476
1477 if (task_ptrace(tsk))
1478 parent = tsk->parent;
1479 else {
1480 tsk = tsk->group_leader;
1481 parent = tsk->real_parent;
1482 }
1483
1484 info.si_signo = SIGCHLD;
1485 info.si_errno = 0;
1486 /*
1487 * see comment in do_notify_parent() abot the following 3 lines
1488 */
1489 rcu_read_lock();
1490 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1491 info.si_uid = __task_cred(tsk)->uid;
1492 rcu_read_unlock();
1493
1494 info.si_utime = cputime_to_clock_t(tsk->utime);
1495 info.si_stime = cputime_to_clock_t(tsk->stime);
1496
1497 info.si_code = why;
1498 switch (why) {
1499 case CLD_CONTINUED:
1500 info.si_status = SIGCONT;
1501 break;
1502 case CLD_STOPPED:
1503 info.si_status = tsk->signal->group_exit_code & 0x7f;
1504 break;
1505 case CLD_TRAPPED:
1506 info.si_status = tsk->exit_code & 0x7f;
1507 break;
1508 default:
1509 BUG();
1510 }
1511
1512 sighand = parent->sighand;
1513 spin_lock_irqsave(&sighand->siglock, flags);
1514 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1515 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1516 __group_send_sig_info(SIGCHLD, &info, parent);
1517 /*
1518 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1519 */
1520 __wake_up_parent(tsk, parent);
1521 spin_unlock_irqrestore(&sighand->siglock, flags);
1522 }
1523
1524 static inline int may_ptrace_stop(void)
1525 {
1526 if (!likely(task_ptrace(current)))
1527 return 0;
1528 /*
1529 * Are we in the middle of do_coredump?
1530 * If so and our tracer is also part of the coredump stopping
1531 * is a deadlock situation, and pointless because our tracer
1532 * is dead so don't allow us to stop.
1533 * If SIGKILL was already sent before the caller unlocked
1534 * ->siglock we must see ->core_state != NULL. Otherwise it
1535 * is safe to enter schedule().
1536 */
1537 if (unlikely(current->mm->core_state) &&
1538 unlikely(current->mm == current->parent->mm))
1539 return 0;
1540
1541 return 1;
1542 }
1543
1544 /*
1545 * Return nonzero if there is a SIGKILL that should be waking us up.
1546 * Called with the siglock held.
1547 */
1548 static int sigkill_pending(struct task_struct *tsk)
1549 {
1550 return sigismember(&tsk->pending.signal, SIGKILL) ||
1551 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1552 }
1553
1554 /*
1555 * This must be called with current->sighand->siglock held.
1556 *
1557 * This should be the path for all ptrace stops.
1558 * We always set current->last_siginfo while stopped here.
1559 * That makes it a way to test a stopped process for
1560 * being ptrace-stopped vs being job-control-stopped.
1561 *
1562 * If we actually decide not to stop at all because the tracer
1563 * is gone, we keep current->exit_code unless clear_code.
1564 */
1565 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1566 {
1567 if (arch_ptrace_stop_needed(exit_code, info)) {
1568 /*
1569 * The arch code has something special to do before a
1570 * ptrace stop. This is allowed to block, e.g. for faults
1571 * on user stack pages. We can't keep the siglock while
1572 * calling arch_ptrace_stop, so we must release it now.
1573 * To preserve proper semantics, we must do this before
1574 * any signal bookkeeping like checking group_stop_count.
1575 * Meanwhile, a SIGKILL could come in before we retake the
1576 * siglock. That must prevent us from sleeping in TASK_TRACED.
1577 * So after regaining the lock, we must check for SIGKILL.
1578 */
1579 spin_unlock_irq(&current->sighand->siglock);
1580 arch_ptrace_stop(exit_code, info);
1581 spin_lock_irq(&current->sighand->siglock);
1582 if (sigkill_pending(current))
1583 return;
1584 }
1585
1586 /*
1587 * If there is a group stop in progress,
1588 * we must participate in the bookkeeping.
1589 */
1590 if (current->signal->group_stop_count > 0)
1591 --current->signal->group_stop_count;
1592
1593 current->last_siginfo = info;
1594 current->exit_code = exit_code;
1595
1596 /* Let the debugger run. */
1597 __set_current_state(TASK_TRACED);
1598 spin_unlock_irq(&current->sighand->siglock);
1599 read_lock(&tasklist_lock);
1600 if (may_ptrace_stop()) {
1601 do_notify_parent_cldstop(current, CLD_TRAPPED);
1602 /*
1603 * Don't want to allow preemption here, because
1604 * sys_ptrace() needs this task to be inactive.
1605 *
1606 * XXX: implement read_unlock_no_resched().
1607 */
1608 preempt_disable();
1609 read_unlock(&tasklist_lock);
1610 preempt_enable_no_resched();
1611 schedule();
1612 } else {
1613 /*
1614 * By the time we got the lock, our tracer went away.
1615 * Don't drop the lock yet, another tracer may come.
1616 */
1617 __set_current_state(TASK_RUNNING);
1618 if (clear_code)
1619 current->exit_code = 0;
1620 read_unlock(&tasklist_lock);
1621 }
1622
1623 /*
1624 * While in TASK_TRACED, we were considered "frozen enough".
1625 * Now that we woke up, it's crucial if we're supposed to be
1626 * frozen that we freeze now before running anything substantial.
1627 */
1628 try_to_freeze();
1629
1630 /*
1631 * We are back. Now reacquire the siglock before touching
1632 * last_siginfo, so that we are sure to have synchronized with
1633 * any signal-sending on another CPU that wants to examine it.
1634 */
1635 spin_lock_irq(&current->sighand->siglock);
1636 current->last_siginfo = NULL;
1637
1638 /*
1639 * Queued signals ignored us while we were stopped for tracing.
1640 * So check for any that we should take before resuming user mode.
1641 * This sets TIF_SIGPENDING, but never clears it.
1642 */
1643 recalc_sigpending_tsk(current);
1644 }
1645
1646 void ptrace_notify(int exit_code)
1647 {
1648 siginfo_t info;
1649
1650 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1651
1652 memset(&info, 0, sizeof info);
1653 info.si_signo = SIGTRAP;
1654 info.si_code = exit_code;
1655 info.si_pid = task_pid_vnr(current);
1656 info.si_uid = current_uid();
1657
1658 /* Let the debugger run. */
1659 spin_lock_irq(&current->sighand->siglock);
1660 ptrace_stop(exit_code, 1, &info);
1661 spin_unlock_irq(&current->sighand->siglock);
1662 }
1663
1664 /*
1665 * This performs the stopping for SIGSTOP and other stop signals.
1666 * We have to stop all threads in the thread group.
1667 * Returns nonzero if we've actually stopped and released the siglock.
1668 * Returns zero if we didn't stop and still hold the siglock.
1669 */
1670 static int do_signal_stop(int signr)
1671 {
1672 struct signal_struct *sig = current->signal;
1673 int notify;
1674
1675 if (!sig->group_stop_count) {
1676 struct task_struct *t;
1677
1678 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1679 unlikely(signal_group_exit(sig)))
1680 return 0;
1681 /*
1682 * There is no group stop already in progress.
1683 * We must initiate one now.
1684 */
1685 sig->group_exit_code = signr;
1686
1687 sig->group_stop_count = 1;
1688 for (t = next_thread(current); t != current; t = next_thread(t))
1689 /*
1690 * Setting state to TASK_STOPPED for a group
1691 * stop is always done with the siglock held,
1692 * so this check has no races.
1693 */
1694 if (!(t->flags & PF_EXITING) &&
1695 !task_is_stopped_or_traced(t)) {
1696 sig->group_stop_count++;
1697 signal_wake_up(t, 0);
1698 }
1699 }
1700 /*
1701 * If there are no other threads in the group, or if there is
1702 * a group stop in progress and we are the last to stop, report
1703 * to the parent. When ptraced, every thread reports itself.
1704 */
1705 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1706 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1707 /*
1708 * tracehook_notify_jctl() can drop and reacquire siglock, so
1709 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1710 * or SIGKILL comes in between ->group_stop_count == 0.
1711 */
1712 if (sig->group_stop_count) {
1713 if (!--sig->group_stop_count)
1714 sig->flags = SIGNAL_STOP_STOPPED;
1715 current->exit_code = sig->group_exit_code;
1716 __set_current_state(TASK_STOPPED);
1717 }
1718 spin_unlock_irq(&current->sighand->siglock);
1719
1720 if (notify) {
1721 read_lock(&tasklist_lock);
1722 do_notify_parent_cldstop(current, notify);
1723 read_unlock(&tasklist_lock);
1724 }
1725
1726 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1727 do {
1728 schedule();
1729 } while (try_to_freeze());
1730
1731 tracehook_finish_jctl();
1732 current->exit_code = 0;
1733
1734 return 1;
1735 }
1736
1737 static int ptrace_signal(int signr, siginfo_t *info,
1738 struct pt_regs *regs, void *cookie)
1739 {
1740 if (!task_ptrace(current))
1741 return signr;
1742
1743 ptrace_signal_deliver(regs, cookie);
1744
1745 /* Let the debugger run. */
1746 ptrace_stop(signr, 0, info);
1747
1748 /* We're back. Did the debugger cancel the sig? */
1749 signr = current->exit_code;
1750 if (signr == 0)
1751 return signr;
1752
1753 current->exit_code = 0;
1754
1755 /* Update the siginfo structure if the signal has
1756 changed. If the debugger wanted something
1757 specific in the siginfo structure then it should
1758 have updated *info via PTRACE_SETSIGINFO. */
1759 if (signr != info->si_signo) {
1760 info->si_signo = signr;
1761 info->si_errno = 0;
1762 info->si_code = SI_USER;
1763 info->si_pid = task_pid_vnr(current->parent);
1764 info->si_uid = task_uid(current->parent);
1765 }
1766
1767 /* If the (new) signal is now blocked, requeue it. */
1768 if (sigismember(&current->blocked, signr)) {
1769 specific_send_sig_info(signr, info, current);
1770 signr = 0;
1771 }
1772
1773 return signr;
1774 }
1775
1776 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1777 struct pt_regs *regs, void *cookie)
1778 {
1779 struct sighand_struct *sighand = current->sighand;
1780 struct signal_struct *signal = current->signal;
1781 int signr;
1782
1783 relock:
1784 /*
1785 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1786 * While in TASK_STOPPED, we were considered "frozen enough".
1787 * Now that we woke up, it's crucial if we're supposed to be
1788 * frozen that we freeze now before running anything substantial.
1789 */
1790 try_to_freeze();
1791
1792 spin_lock_irq(&sighand->siglock);
1793 /*
1794 * Every stopped thread goes here after wakeup. Check to see if
1795 * we should notify the parent, prepare_signal(SIGCONT) encodes
1796 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1797 */
1798 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1799 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1800 ? CLD_CONTINUED : CLD_STOPPED;
1801 signal->flags &= ~SIGNAL_CLD_MASK;
1802
1803 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1804 spin_unlock_irq(&sighand->siglock);
1805
1806 if (why) {
1807 read_lock(&tasklist_lock);
1808 do_notify_parent_cldstop(current->group_leader, why);
1809 read_unlock(&tasklist_lock);
1810 }
1811 goto relock;
1812 }
1813
1814 for (;;) {
1815 struct k_sigaction *ka;
1816
1817 if (unlikely(signal->group_stop_count > 0) &&
1818 do_signal_stop(0))
1819 goto relock;
1820
1821 /*
1822 * Tracing can induce an artifical signal and choose sigaction.
1823 * The return value in @signr determines the default action,
1824 * but @info->si_signo is the signal number we will report.
1825 */
1826 signr = tracehook_get_signal(current, regs, info, return_ka);
1827 if (unlikely(signr < 0))
1828 goto relock;
1829 if (unlikely(signr != 0))
1830 ka = return_ka;
1831 else {
1832 signr = dequeue_signal(current, &current->blocked,
1833 info);
1834
1835 if (!signr)
1836 break; /* will return 0 */
1837
1838 if (signr != SIGKILL) {
1839 signr = ptrace_signal(signr, info,
1840 regs, cookie);
1841 if (!signr)
1842 continue;
1843 }
1844
1845 ka = &sighand->action[signr-1];
1846 }
1847
1848 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1849 continue;
1850 if (ka->sa.sa_handler != SIG_DFL) {
1851 /* Run the handler. */
1852 *return_ka = *ka;
1853
1854 if (ka->sa.sa_flags & SA_ONESHOT)
1855 ka->sa.sa_handler = SIG_DFL;
1856
1857 break; /* will return non-zero "signr" value */
1858 }
1859
1860 /*
1861 * Now we are doing the default action for this signal.
1862 */
1863 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1864 continue;
1865
1866 /*
1867 * Global init gets no signals it doesn't want.
1868 * Container-init gets no signals it doesn't want from same
1869 * container.
1870 *
1871 * Note that if global/container-init sees a sig_kernel_only()
1872 * signal here, the signal must have been generated internally
1873 * or must have come from an ancestor namespace. In either
1874 * case, the signal cannot be dropped.
1875 */
1876 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1877 !sig_kernel_only(signr))
1878 continue;
1879
1880 if (sig_kernel_stop(signr)) {
1881 /*
1882 * The default action is to stop all threads in
1883 * the thread group. The job control signals
1884 * do nothing in an orphaned pgrp, but SIGSTOP
1885 * always works. Note that siglock needs to be
1886 * dropped during the call to is_orphaned_pgrp()
1887 * because of lock ordering with tasklist_lock.
1888 * This allows an intervening SIGCONT to be posted.
1889 * We need to check for that and bail out if necessary.
1890 */
1891 if (signr != SIGSTOP) {
1892 spin_unlock_irq(&sighand->siglock);
1893
1894 /* signals can be posted during this window */
1895
1896 if (is_current_pgrp_orphaned())
1897 goto relock;
1898
1899 spin_lock_irq(&sighand->siglock);
1900 }
1901
1902 if (likely(do_signal_stop(info->si_signo))) {
1903 /* It released the siglock. */
1904 goto relock;
1905 }
1906
1907 /*
1908 * We didn't actually stop, due to a race
1909 * with SIGCONT or something like that.
1910 */
1911 continue;
1912 }
1913
1914 spin_unlock_irq(&sighand->siglock);
1915
1916 /*
1917 * Anything else is fatal, maybe with a core dump.
1918 */
1919 current->flags |= PF_SIGNALED;
1920
1921 if (sig_kernel_coredump(signr)) {
1922 if (print_fatal_signals)
1923 print_fatal_signal(regs, info->si_signo);
1924 /*
1925 * If it was able to dump core, this kills all
1926 * other threads in the group and synchronizes with
1927 * their demise. If we lost the race with another
1928 * thread getting here, it set group_exit_code
1929 * first and our do_group_exit call below will use
1930 * that value and ignore the one we pass it.
1931 */
1932 do_coredump(info->si_signo, info->si_signo, regs);
1933 }
1934
1935 /*
1936 * Death signals, no core dump.
1937 */
1938 do_group_exit(info->si_signo);
1939 /* NOTREACHED */
1940 }
1941 spin_unlock_irq(&sighand->siglock);
1942 return signr;
1943 }
1944
1945 void exit_signals(struct task_struct *tsk)
1946 {
1947 int group_stop = 0;
1948 struct task_struct *t;
1949
1950 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1951 tsk->flags |= PF_EXITING;
1952 return;
1953 }
1954
1955 spin_lock_irq(&tsk->sighand->siglock);
1956 /*
1957 * From now this task is not visible for group-wide signals,
1958 * see wants_signal(), do_signal_stop().
1959 */
1960 tsk->flags |= PF_EXITING;
1961 if (!signal_pending(tsk))
1962 goto out;
1963
1964 /* It could be that __group_complete_signal() choose us to
1965 * notify about group-wide signal. Another thread should be
1966 * woken now to take the signal since we will not.
1967 */
1968 for (t = tsk; (t = next_thread(t)) != tsk; )
1969 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1970 recalc_sigpending_and_wake(t);
1971
1972 if (unlikely(tsk->signal->group_stop_count) &&
1973 !--tsk->signal->group_stop_count) {
1974 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1975 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
1976 }
1977 out:
1978 spin_unlock_irq(&tsk->sighand->siglock);
1979
1980 if (unlikely(group_stop)) {
1981 read_lock(&tasklist_lock);
1982 do_notify_parent_cldstop(tsk, group_stop);
1983 read_unlock(&tasklist_lock);
1984 }
1985 }
1986
1987 EXPORT_SYMBOL(recalc_sigpending);
1988 EXPORT_SYMBOL_GPL(dequeue_signal);
1989 EXPORT_SYMBOL(flush_signals);
1990 EXPORT_SYMBOL(force_sig);
1991 EXPORT_SYMBOL(send_sig);
1992 EXPORT_SYMBOL(send_sig_info);
1993 EXPORT_SYMBOL(sigprocmask);
1994 EXPORT_SYMBOL(block_all_signals);
1995 EXPORT_SYMBOL(unblock_all_signals);
1996
1997
1998 /*
1999 * System call entry points.
2000 */
2001
2002 SYSCALL_DEFINE0(restart_syscall)
2003 {
2004 struct restart_block *restart = &current_thread_info()->restart_block;
2005 return restart->fn(restart);
2006 }
2007
2008 long do_no_restart_syscall(struct restart_block *param)
2009 {
2010 return -EINTR;
2011 }
2012
2013 /*
2014 * We don't need to get the kernel lock - this is all local to this
2015 * particular thread.. (and that's good, because this is _heavily_
2016 * used by various programs)
2017 */
2018
2019 /*
2020 * This is also useful for kernel threads that want to temporarily
2021 * (or permanently) block certain signals.
2022 *
2023 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2024 * interface happily blocks "unblockable" signals like SIGKILL
2025 * and friends.
2026 */
2027 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2028 {
2029 int error;
2030
2031 spin_lock_irq(&current->sighand->siglock);
2032 if (oldset)
2033 *oldset = current->blocked;
2034
2035 error = 0;
2036 switch (how) {
2037 case SIG_BLOCK:
2038 sigorsets(&current->blocked, &current->blocked, set);
2039 break;
2040 case SIG_UNBLOCK:
2041 signandsets(&current->blocked, &current->blocked, set);
2042 break;
2043 case SIG_SETMASK:
2044 current->blocked = *set;
2045 break;
2046 default:
2047 error = -EINVAL;
2048 }
2049 recalc_sigpending();
2050 spin_unlock_irq(&current->sighand->siglock);
2051
2052 return error;
2053 }
2054
2055 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2056 sigset_t __user *, oset, size_t, sigsetsize)
2057 {
2058 int error = -EINVAL;
2059 sigset_t old_set, new_set;
2060
2061 /* XXX: Don't preclude handling different sized sigset_t's. */
2062 if (sigsetsize != sizeof(sigset_t))
2063 goto out;
2064
2065 if (set) {
2066 error = -EFAULT;
2067 if (copy_from_user(&new_set, set, sizeof(*set)))
2068 goto out;
2069 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2070
2071 error = sigprocmask(how, &new_set, &old_set);
2072 if (error)
2073 goto out;
2074 if (oset)
2075 goto set_old;
2076 } else if (oset) {
2077 spin_lock_irq(&current->sighand->siglock);
2078 old_set = current->blocked;
2079 spin_unlock_irq(&current->sighand->siglock);
2080
2081 set_old:
2082 error = -EFAULT;
2083 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2084 goto out;
2085 }
2086 error = 0;
2087 out:
2088 return error;
2089 }
2090
2091 long do_sigpending(void __user *set, unsigned long sigsetsize)
2092 {
2093 long error = -EINVAL;
2094 sigset_t pending;
2095
2096 if (sigsetsize > sizeof(sigset_t))
2097 goto out;
2098
2099 spin_lock_irq(&current->sighand->siglock);
2100 sigorsets(&pending, &current->pending.signal,
2101 &current->signal->shared_pending.signal);
2102 spin_unlock_irq(&current->sighand->siglock);
2103
2104 /* Outside the lock because only this thread touches it. */
2105 sigandsets(&pending, &current->blocked, &pending);
2106
2107 error = -EFAULT;
2108 if (!copy_to_user(set, &pending, sigsetsize))
2109 error = 0;
2110
2111 out:
2112 return error;
2113 }
2114
2115 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2116 {
2117 return do_sigpending(set, sigsetsize);
2118 }
2119
2120 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2121
2122 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2123 {
2124 int err;
2125
2126 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2127 return -EFAULT;
2128 if (from->si_code < 0)
2129 return __copy_to_user(to, from, sizeof(siginfo_t))
2130 ? -EFAULT : 0;
2131 /*
2132 * If you change siginfo_t structure, please be sure
2133 * this code is fixed accordingly.
2134 * Please remember to update the signalfd_copyinfo() function
2135 * inside fs/signalfd.c too, in case siginfo_t changes.
2136 * It should never copy any pad contained in the structure
2137 * to avoid security leaks, but must copy the generic
2138 * 3 ints plus the relevant union member.
2139 */
2140 err = __put_user(from->si_signo, &to->si_signo);
2141 err |= __put_user(from->si_errno, &to->si_errno);
2142 err |= __put_user((short)from->si_code, &to->si_code);
2143 switch (from->si_code & __SI_MASK) {
2144 case __SI_KILL:
2145 err |= __put_user(from->si_pid, &to->si_pid);
2146 err |= __put_user(from->si_uid, &to->si_uid);
2147 break;
2148 case __SI_TIMER:
2149 err |= __put_user(from->si_tid, &to->si_tid);
2150 err |= __put_user(from->si_overrun, &to->si_overrun);
2151 err |= __put_user(from->si_ptr, &to->si_ptr);
2152 break;
2153 case __SI_POLL:
2154 err |= __put_user(from->si_band, &to->si_band);
2155 err |= __put_user(from->si_fd, &to->si_fd);
2156 break;
2157 case __SI_FAULT:
2158 err |= __put_user(from->si_addr, &to->si_addr);
2159 #ifdef __ARCH_SI_TRAPNO
2160 err |= __put_user(from->si_trapno, &to->si_trapno);
2161 #endif
2162 break;
2163 case __SI_CHLD:
2164 err |= __put_user(from->si_pid, &to->si_pid);
2165 err |= __put_user(from->si_uid, &to->si_uid);
2166 err |= __put_user(from->si_status, &to->si_status);
2167 err |= __put_user(from->si_utime, &to->si_utime);
2168 err |= __put_user(from->si_stime, &to->si_stime);
2169 break;
2170 case __SI_RT: /* This is not generated by the kernel as of now. */
2171 case __SI_MESGQ: /* But this is */
2172 err |= __put_user(from->si_pid, &to->si_pid);
2173 err |= __put_user(from->si_uid, &to->si_uid);
2174 err |= __put_user(from->si_ptr, &to->si_ptr);
2175 break;
2176 default: /* this is just in case for now ... */
2177 err |= __put_user(from->si_pid, &to->si_pid);
2178 err |= __put_user(from->si_uid, &to->si_uid);
2179 break;
2180 }
2181 return err;
2182 }
2183
2184 #endif
2185
2186 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2187 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2188 size_t, sigsetsize)
2189 {
2190 int ret, sig;
2191 sigset_t these;
2192 struct timespec ts;
2193 siginfo_t info;
2194 long timeout = 0;
2195
2196 /* XXX: Don't preclude handling different sized sigset_t's. */
2197 if (sigsetsize != sizeof(sigset_t))
2198 return -EINVAL;
2199
2200 if (copy_from_user(&these, uthese, sizeof(these)))
2201 return -EFAULT;
2202
2203 /*
2204 * Invert the set of allowed signals to get those we
2205 * want to block.
2206 */
2207 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2208 signotset(&these);
2209
2210 if (uts) {
2211 if (copy_from_user(&ts, uts, sizeof(ts)))
2212 return -EFAULT;
2213 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2214 || ts.tv_sec < 0)
2215 return -EINVAL;
2216 }
2217
2218 spin_lock_irq(&current->sighand->siglock);
2219 sig = dequeue_signal(current, &these, &info);
2220 if (!sig) {
2221 timeout = MAX_SCHEDULE_TIMEOUT;
2222 if (uts)
2223 timeout = (timespec_to_jiffies(&ts)
2224 + (ts.tv_sec || ts.tv_nsec));
2225
2226 if (timeout) {
2227 /* None ready -- temporarily unblock those we're
2228 * interested while we are sleeping in so that we'll
2229 * be awakened when they arrive. */
2230 current->real_blocked = current->blocked;
2231 sigandsets(&current->blocked, &current->blocked, &these);
2232 recalc_sigpending();
2233 spin_unlock_irq(&current->sighand->siglock);
2234
2235 timeout = schedule_timeout_interruptible(timeout);
2236
2237 spin_lock_irq(&current->sighand->siglock);
2238 sig = dequeue_signal(current, &these, &info);
2239 current->blocked = current->real_blocked;
2240 siginitset(&current->real_blocked, 0);
2241 recalc_sigpending();
2242 }
2243 }
2244 spin_unlock_irq(&current->sighand->siglock);
2245
2246 if (sig) {
2247 ret = sig;
2248 if (uinfo) {
2249 if (copy_siginfo_to_user(uinfo, &info))
2250 ret = -EFAULT;
2251 }
2252 } else {
2253 ret = -EAGAIN;
2254 if (timeout)
2255 ret = -EINTR;
2256 }
2257
2258 return ret;
2259 }
2260
2261 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2262 {
2263 struct siginfo info;
2264
2265 info.si_signo = sig;
2266 info.si_errno = 0;
2267 info.si_code = SI_USER;
2268 info.si_pid = task_tgid_vnr(current);
2269 info.si_uid = current_uid();
2270
2271 return kill_something_info(sig, &info, pid);
2272 }
2273
2274 static int
2275 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2276 {
2277 struct task_struct *p;
2278 int error = -ESRCH;
2279
2280 rcu_read_lock();
2281 p = find_task_by_vpid(pid);
2282 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2283 error = check_kill_permission(sig, info, p);
2284 /*
2285 * The null signal is a permissions and process existence
2286 * probe. No signal is actually delivered.
2287 */
2288 if (!error && sig) {
2289 error = do_send_sig_info(sig, info, p, false);
2290 /*
2291 * If lock_task_sighand() failed we pretend the task
2292 * dies after receiving the signal. The window is tiny,
2293 * and the signal is private anyway.
2294 */
2295 if (unlikely(error == -ESRCH))
2296 error = 0;
2297 }
2298 }
2299 rcu_read_unlock();
2300
2301 return error;
2302 }
2303
2304 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2305 {
2306 struct siginfo info;
2307
2308 info.si_signo = sig;
2309 info.si_errno = 0;
2310 info.si_code = SI_TKILL;
2311 info.si_pid = task_tgid_vnr(current);
2312 info.si_uid = current_uid();
2313
2314 return do_send_specific(tgid, pid, sig, &info);
2315 }
2316
2317 /**
2318 * sys_tgkill - send signal to one specific thread
2319 * @tgid: the thread group ID of the thread
2320 * @pid: the PID of the thread
2321 * @sig: signal to be sent
2322 *
2323 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2324 * exists but it's not belonging to the target process anymore. This
2325 * method solves the problem of threads exiting and PIDs getting reused.
2326 */
2327 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2328 {
2329 /* This is only valid for single tasks */
2330 if (pid <= 0 || tgid <= 0)
2331 return -EINVAL;
2332
2333 return do_tkill(tgid, pid, sig);
2334 }
2335
2336 /*
2337 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2338 */
2339 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2340 {
2341 /* This is only valid for single tasks */
2342 if (pid <= 0)
2343 return -EINVAL;
2344
2345 return do_tkill(0, pid, sig);
2346 }
2347
2348 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2349 siginfo_t __user *, uinfo)
2350 {
2351 siginfo_t info;
2352
2353 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2354 return -EFAULT;
2355
2356 /* Not even root can pretend to send signals from the kernel.
2357 Nor can they impersonate a kill(), which adds source info. */
2358 if (info.si_code >= 0)
2359 return -EPERM;
2360 info.si_signo = sig;
2361
2362 /* POSIX.1b doesn't mention process groups. */
2363 return kill_proc_info(sig, &info, pid);
2364 }
2365
2366 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2367 {
2368 /* This is only valid for single tasks */
2369 if (pid <= 0 || tgid <= 0)
2370 return -EINVAL;
2371
2372 /* Not even root can pretend to send signals from the kernel.
2373 Nor can they impersonate a kill(), which adds source info. */
2374 if (info->si_code >= 0)
2375 return -EPERM;
2376 info->si_signo = sig;
2377
2378 return do_send_specific(tgid, pid, sig, info);
2379 }
2380
2381 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2382 siginfo_t __user *, uinfo)
2383 {
2384 siginfo_t info;
2385
2386 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2387 return -EFAULT;
2388
2389 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2390 }
2391
2392 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2393 {
2394 struct task_struct *t = current;
2395 struct k_sigaction *k;
2396 sigset_t mask;
2397
2398 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2399 return -EINVAL;
2400
2401 k = &t->sighand->action[sig-1];
2402
2403 spin_lock_irq(&current->sighand->siglock);
2404 if (oact)
2405 *oact = *k;
2406
2407 if (act) {
2408 sigdelsetmask(&act->sa.sa_mask,
2409 sigmask(SIGKILL) | sigmask(SIGSTOP));
2410 *k = *act;
2411 /*
2412 * POSIX 3.3.1.3:
2413 * "Setting a signal action to SIG_IGN for a signal that is
2414 * pending shall cause the pending signal to be discarded,
2415 * whether or not it is blocked."
2416 *
2417 * "Setting a signal action to SIG_DFL for a signal that is
2418 * pending and whose default action is to ignore the signal
2419 * (for example, SIGCHLD), shall cause the pending signal to
2420 * be discarded, whether or not it is blocked"
2421 */
2422 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2423 sigemptyset(&mask);
2424 sigaddset(&mask, sig);
2425 rm_from_queue_full(&mask, &t->signal->shared_pending);
2426 do {
2427 rm_from_queue_full(&mask, &t->pending);
2428 t = next_thread(t);
2429 } while (t != current);
2430 }
2431 }
2432
2433 spin_unlock_irq(&current->sighand->siglock);
2434 return 0;
2435 }
2436
2437 int
2438 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2439 {
2440 stack_t oss;
2441 int error;
2442
2443 oss.ss_sp = (void __user *) current->sas_ss_sp;
2444 oss.ss_size = current->sas_ss_size;
2445 oss.ss_flags = sas_ss_flags(sp);
2446
2447 if (uss) {
2448 void __user *ss_sp;
2449 size_t ss_size;
2450 int ss_flags;
2451
2452 error = -EFAULT;
2453 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2454 goto out;
2455 error = __get_user(ss_sp, &uss->ss_sp) |
2456 __get_user(ss_flags, &uss->ss_flags) |
2457 __get_user(ss_size, &uss->ss_size);
2458 if (error)
2459 goto out;
2460
2461 error = -EPERM;
2462 if (on_sig_stack(sp))
2463 goto out;
2464
2465 error = -EINVAL;
2466 /*
2467 *
2468 * Note - this code used to test ss_flags incorrectly
2469 * old code may have been written using ss_flags==0
2470 * to mean ss_flags==SS_ONSTACK (as this was the only
2471 * way that worked) - this fix preserves that older
2472 * mechanism
2473 */
2474 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2475 goto out;
2476
2477 if (ss_flags == SS_DISABLE) {
2478 ss_size = 0;
2479 ss_sp = NULL;
2480 } else {
2481 error = -ENOMEM;
2482 if (ss_size < MINSIGSTKSZ)
2483 goto out;
2484 }
2485
2486 current->sas_ss_sp = (unsigned long) ss_sp;
2487 current->sas_ss_size = ss_size;
2488 }
2489
2490 error = 0;
2491 if (uoss) {
2492 error = -EFAULT;
2493 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2494 goto out;
2495 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2496 __put_user(oss.ss_size, &uoss->ss_size) |
2497 __put_user(oss.ss_flags, &uoss->ss_flags);
2498 }
2499
2500 out:
2501 return error;
2502 }
2503
2504 #ifdef __ARCH_WANT_SYS_SIGPENDING
2505
2506 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2507 {
2508 return do_sigpending(set, sizeof(*set));
2509 }
2510
2511 #endif
2512
2513 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2514 /* Some platforms have their own version with special arguments others
2515 support only sys_rt_sigprocmask. */
2516
2517 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2518 old_sigset_t __user *, oset)
2519 {
2520 int error;
2521 old_sigset_t old_set, new_set;
2522
2523 if (set) {
2524 error = -EFAULT;
2525 if (copy_from_user(&new_set, set, sizeof(*set)))
2526 goto out;
2527 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2528
2529 spin_lock_irq(&current->sighand->siglock);
2530 old_set = current->blocked.sig[0];
2531
2532 error = 0;
2533 switch (how) {
2534 default:
2535 error = -EINVAL;
2536 break;
2537 case SIG_BLOCK:
2538 sigaddsetmask(&current->blocked, new_set);
2539 break;
2540 case SIG_UNBLOCK:
2541 sigdelsetmask(&current->blocked, new_set);
2542 break;
2543 case SIG_SETMASK:
2544 current->blocked.sig[0] = new_set;
2545 break;
2546 }
2547
2548 recalc_sigpending();
2549 spin_unlock_irq(&current->sighand->siglock);
2550 if (error)
2551 goto out;
2552 if (oset)
2553 goto set_old;
2554 } else if (oset) {
2555 old_set = current->blocked.sig[0];
2556 set_old:
2557 error = -EFAULT;
2558 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2559 goto out;
2560 }
2561 error = 0;
2562 out:
2563 return error;
2564 }
2565 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2566
2567 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2568 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2569 const struct sigaction __user *, act,
2570 struct sigaction __user *, oact,
2571 size_t, sigsetsize)
2572 {
2573 struct k_sigaction new_sa, old_sa;
2574 int ret = -EINVAL;
2575
2576 /* XXX: Don't preclude handling different sized sigset_t's. */
2577 if (sigsetsize != sizeof(sigset_t))
2578 goto out;
2579
2580 if (act) {
2581 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2582 return -EFAULT;
2583 }
2584
2585 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2586
2587 if (!ret && oact) {
2588 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2589 return -EFAULT;
2590 }
2591 out:
2592 return ret;
2593 }
2594 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2595
2596 #ifdef __ARCH_WANT_SYS_SGETMASK
2597
2598 /*
2599 * For backwards compatibility. Functionality superseded by sigprocmask.
2600 */
2601 SYSCALL_DEFINE0(sgetmask)
2602 {
2603 /* SMP safe */
2604 return current->blocked.sig[0];
2605 }
2606
2607 SYSCALL_DEFINE1(ssetmask, int, newmask)
2608 {
2609 int old;
2610
2611 spin_lock_irq(&current->sighand->siglock);
2612 old = current->blocked.sig[0];
2613
2614 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2615 sigmask(SIGSTOP)));
2616 recalc_sigpending();
2617 spin_unlock_irq(&current->sighand->siglock);
2618
2619 return old;
2620 }
2621 #endif /* __ARCH_WANT_SGETMASK */
2622
2623 #ifdef __ARCH_WANT_SYS_SIGNAL
2624 /*
2625 * For backwards compatibility. Functionality superseded by sigaction.
2626 */
2627 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2628 {
2629 struct k_sigaction new_sa, old_sa;
2630 int ret;
2631
2632 new_sa.sa.sa_handler = handler;
2633 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2634 sigemptyset(&new_sa.sa.sa_mask);
2635
2636 ret = do_sigaction(sig, &new_sa, &old_sa);
2637
2638 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2639 }
2640 #endif /* __ARCH_WANT_SYS_SIGNAL */
2641
2642 #ifdef __ARCH_WANT_SYS_PAUSE
2643
2644 SYSCALL_DEFINE0(pause)
2645 {
2646 current->state = TASK_INTERRUPTIBLE;
2647 schedule();
2648 return -ERESTARTNOHAND;
2649 }
2650
2651 #endif
2652
2653 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2654 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2655 {
2656 sigset_t newset;
2657
2658 /* XXX: Don't preclude handling different sized sigset_t's. */
2659 if (sigsetsize != sizeof(sigset_t))
2660 return -EINVAL;
2661
2662 if (copy_from_user(&newset, unewset, sizeof(newset)))
2663 return -EFAULT;
2664 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2665
2666 spin_lock_irq(&current->sighand->siglock);
2667 current->saved_sigmask = current->blocked;
2668 current->blocked = newset;
2669 recalc_sigpending();
2670 spin_unlock_irq(&current->sighand->siglock);
2671
2672 current->state = TASK_INTERRUPTIBLE;
2673 schedule();
2674 set_restore_sigmask();
2675 return -ERESTARTNOHAND;
2676 }
2677 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2678
2679 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2680 {
2681 return NULL;
2682 }
2683
2684 void __init signals_init(void)
2685 {
2686 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2687 }
This page took 0.089317 seconds and 5 git commands to generate.