Merge tag 'edac_3.9' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
37
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h" /* audit_signal_info() */
44
45 /*
46 * SLAB caches for signal bits.
47 */
48
49 static struct kmem_cache *sigqueue_cachep;
50
51 int print_fatal_signals __read_mostly;
52
53 static void __user *sig_handler(struct task_struct *t, int sig)
54 {
55 return t->sighand->action[sig - 1].sa.sa_handler;
56 }
57
58 static int sig_handler_ignored(void __user *handler, int sig)
59 {
60 /* Is it explicitly or implicitly ignored? */
61 return handler == SIG_IGN ||
62 (handler == SIG_DFL && sig_kernel_ignore(sig));
63 }
64
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
66 {
67 void __user *handler;
68
69 handler = sig_handler(t, sig);
70
71 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 handler == SIG_DFL && !force)
73 return 1;
74
75 return sig_handler_ignored(handler, sig);
76 }
77
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 {
80 /*
81 * Blocked signals are never ignored, since the
82 * signal handler may change by the time it is
83 * unblocked.
84 */
85 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 return 0;
87
88 if (!sig_task_ignored(t, sig, force))
89 return 0;
90
91 /*
92 * Tracers may want to know about even ignored signals.
93 */
94 return !t->ptrace;
95 }
96
97 /*
98 * Re-calculate pending state from the set of locally pending
99 * signals, globally pending signals, and blocked signals.
100 */
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
102 {
103 unsigned long ready;
104 long i;
105
106 switch (_NSIG_WORDS) {
107 default:
108 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 ready |= signal->sig[i] &~ blocked->sig[i];
110 break;
111
112 case 4: ready = signal->sig[3] &~ blocked->sig[3];
113 ready |= signal->sig[2] &~ blocked->sig[2];
114 ready |= signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 2: ready = signal->sig[1] &~ blocked->sig[1];
119 ready |= signal->sig[0] &~ blocked->sig[0];
120 break;
121
122 case 1: ready = signal->sig[0] &~ blocked->sig[0];
123 }
124 return ready != 0;
125 }
126
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
128
129 static int recalc_sigpending_tsk(struct task_struct *t)
130 {
131 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 PENDING(&t->pending, &t->blocked) ||
133 PENDING(&t->signal->shared_pending, &t->blocked)) {
134 set_tsk_thread_flag(t, TIF_SIGPENDING);
135 return 1;
136 }
137 /*
138 * We must never clear the flag in another thread, or in current
139 * when it's possible the current syscall is returning -ERESTART*.
140 * So we don't clear it here, and only callers who know they should do.
141 */
142 return 0;
143 }
144
145 /*
146 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147 * This is superfluous when called on current, the wakeup is a harmless no-op.
148 */
149 void recalc_sigpending_and_wake(struct task_struct *t)
150 {
151 if (recalc_sigpending_tsk(t))
152 signal_wake_up(t, 0);
153 }
154
155 void recalc_sigpending(void)
156 {
157 if (!recalc_sigpending_tsk(current) && !freezing(current))
158 clear_thread_flag(TIF_SIGPENDING);
159
160 }
161
162 /* Given the mask, find the first available signal that should be serviced. */
163
164 #define SYNCHRONOUS_MASK \
165 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
167
168 int next_signal(struct sigpending *pending, sigset_t *mask)
169 {
170 unsigned long i, *s, *m, x;
171 int sig = 0;
172
173 s = pending->signal.sig;
174 m = mask->sig;
175
176 /*
177 * Handle the first word specially: it contains the
178 * synchronous signals that need to be dequeued first.
179 */
180 x = *s &~ *m;
181 if (x) {
182 if (x & SYNCHRONOUS_MASK)
183 x &= SYNCHRONOUS_MASK;
184 sig = ffz(~x) + 1;
185 return sig;
186 }
187
188 switch (_NSIG_WORDS) {
189 default:
190 for (i = 1; i < _NSIG_WORDS; ++i) {
191 x = *++s &~ *++m;
192 if (!x)
193 continue;
194 sig = ffz(~x) + i*_NSIG_BPW + 1;
195 break;
196 }
197 break;
198
199 case 2:
200 x = s[1] &~ m[1];
201 if (!x)
202 break;
203 sig = ffz(~x) + _NSIG_BPW + 1;
204 break;
205
206 case 1:
207 /* Nothing to do */
208 break;
209 }
210
211 return sig;
212 }
213
214 static inline void print_dropped_signal(int sig)
215 {
216 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
217
218 if (!print_fatal_signals)
219 return;
220
221 if (!__ratelimit(&ratelimit_state))
222 return;
223
224 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 current->comm, current->pid, sig);
226 }
227
228 /**
229 * task_set_jobctl_pending - set jobctl pending bits
230 * @task: target task
231 * @mask: pending bits to set
232 *
233 * Clear @mask from @task->jobctl. @mask must be subset of
234 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
236 * cleared. If @task is already being killed or exiting, this function
237 * becomes noop.
238 *
239 * CONTEXT:
240 * Must be called with @task->sighand->siglock held.
241 *
242 * RETURNS:
243 * %true if @mask is set, %false if made noop because @task was dying.
244 */
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
246 {
247 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
250
251 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 return false;
253
254 if (mask & JOBCTL_STOP_SIGMASK)
255 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
256
257 task->jobctl |= mask;
258 return true;
259 }
260
261 /**
262 * task_clear_jobctl_trapping - clear jobctl trapping bit
263 * @task: target task
264 *
265 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266 * Clear it and wake up the ptracer. Note that we don't need any further
267 * locking. @task->siglock guarantees that @task->parent points to the
268 * ptracer.
269 *
270 * CONTEXT:
271 * Must be called with @task->sighand->siglock held.
272 */
273 void task_clear_jobctl_trapping(struct task_struct *task)
274 {
275 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 task->jobctl &= ~JOBCTL_TRAPPING;
277 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278 }
279 }
280
281 /**
282 * task_clear_jobctl_pending - clear jobctl pending bits
283 * @task: target task
284 * @mask: pending bits to clear
285 *
286 * Clear @mask from @task->jobctl. @mask must be subset of
287 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
288 * STOP bits are cleared together.
289 *
290 * If clearing of @mask leaves no stop or trap pending, this function calls
291 * task_clear_jobctl_trapping().
292 *
293 * CONTEXT:
294 * Must be called with @task->sighand->siglock held.
295 */
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
297 {
298 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
299
300 if (mask & JOBCTL_STOP_PENDING)
301 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
302
303 task->jobctl &= ~mask;
304
305 if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 task_clear_jobctl_trapping(task);
307 }
308
309 /**
310 * task_participate_group_stop - participate in a group stop
311 * @task: task participating in a group stop
312 *
313 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314 * Group stop states are cleared and the group stop count is consumed if
315 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
316 * stop, the appropriate %SIGNAL_* flags are set.
317 *
318 * CONTEXT:
319 * Must be called with @task->sighand->siglock held.
320 *
321 * RETURNS:
322 * %true if group stop completion should be notified to the parent, %false
323 * otherwise.
324 */
325 static bool task_participate_group_stop(struct task_struct *task)
326 {
327 struct signal_struct *sig = task->signal;
328 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
329
330 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
331
332 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
333
334 if (!consume)
335 return false;
336
337 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 sig->group_stop_count--;
339
340 /*
341 * Tell the caller to notify completion iff we are entering into a
342 * fresh group stop. Read comment in do_signal_stop() for details.
343 */
344 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 sig->flags = SIGNAL_STOP_STOPPED;
346 return true;
347 }
348 return false;
349 }
350
351 /*
352 * allocate a new signal queue record
353 * - this may be called without locks if and only if t == current, otherwise an
354 * appropriate lock must be held to stop the target task from exiting
355 */
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
358 {
359 struct sigqueue *q = NULL;
360 struct user_struct *user;
361
362 /*
363 * Protect access to @t credentials. This can go away when all
364 * callers hold rcu read lock.
365 */
366 rcu_read_lock();
367 user = get_uid(__task_cred(t)->user);
368 atomic_inc(&user->sigpending);
369 rcu_read_unlock();
370
371 if (override_rlimit ||
372 atomic_read(&user->sigpending) <=
373 task_rlimit(t, RLIMIT_SIGPENDING)) {
374 q = kmem_cache_alloc(sigqueue_cachep, flags);
375 } else {
376 print_dropped_signal(sig);
377 }
378
379 if (unlikely(q == NULL)) {
380 atomic_dec(&user->sigpending);
381 free_uid(user);
382 } else {
383 INIT_LIST_HEAD(&q->list);
384 q->flags = 0;
385 q->user = user;
386 }
387
388 return q;
389 }
390
391 static void __sigqueue_free(struct sigqueue *q)
392 {
393 if (q->flags & SIGQUEUE_PREALLOC)
394 return;
395 atomic_dec(&q->user->sigpending);
396 free_uid(q->user);
397 kmem_cache_free(sigqueue_cachep, q);
398 }
399
400 void flush_sigqueue(struct sigpending *queue)
401 {
402 struct sigqueue *q;
403
404 sigemptyset(&queue->signal);
405 while (!list_empty(&queue->list)) {
406 q = list_entry(queue->list.next, struct sigqueue , list);
407 list_del_init(&q->list);
408 __sigqueue_free(q);
409 }
410 }
411
412 /*
413 * Flush all pending signals for a task.
414 */
415 void __flush_signals(struct task_struct *t)
416 {
417 clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 flush_sigqueue(&t->pending);
419 flush_sigqueue(&t->signal->shared_pending);
420 }
421
422 void flush_signals(struct task_struct *t)
423 {
424 unsigned long flags;
425
426 spin_lock_irqsave(&t->sighand->siglock, flags);
427 __flush_signals(t);
428 spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433 sigset_t signal, retain;
434 struct sigqueue *q, *n;
435
436 signal = pending->signal;
437 sigemptyset(&retain);
438
439 list_for_each_entry_safe(q, n, &pending->list, list) {
440 int sig = q->info.si_signo;
441
442 if (likely(q->info.si_code != SI_TIMER)) {
443 sigaddset(&retain, sig);
444 } else {
445 sigdelset(&signal, sig);
446 list_del_init(&q->list);
447 __sigqueue_free(q);
448 }
449 }
450
451 sigorsets(&pending->signal, &signal, &retain);
452 }
453
454 void flush_itimer_signals(void)
455 {
456 struct task_struct *tsk = current;
457 unsigned long flags;
458
459 spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 __flush_itimer_signals(&tsk->pending);
461 __flush_itimer_signals(&tsk->signal->shared_pending);
462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464
465 void ignore_signals(struct task_struct *t)
466 {
467 int i;
468
469 for (i = 0; i < _NSIG; ++i)
470 t->sighand->action[i].sa.sa_handler = SIG_IGN;
471
472 flush_signals(t);
473 }
474
475 /*
476 * Flush all handlers for a task.
477 */
478
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
481 {
482 int i;
483 struct k_sigaction *ka = &t->sighand->action[0];
484 for (i = _NSIG ; i != 0 ; i--) {
485 if (force_default || ka->sa.sa_handler != SIG_IGN)
486 ka->sa.sa_handler = SIG_DFL;
487 ka->sa.sa_flags = 0;
488 sigemptyset(&ka->sa.sa_mask);
489 ka++;
490 }
491 }
492
493 int unhandled_signal(struct task_struct *tsk, int sig)
494 {
495 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496 if (is_global_init(tsk))
497 return 1;
498 if (handler != SIG_IGN && handler != SIG_DFL)
499 return 0;
500 /* if ptraced, let the tracer determine */
501 return !tsk->ptrace;
502 }
503
504 /*
505 * Notify the system that a driver wants to block all signals for this
506 * process, and wants to be notified if any signals at all were to be
507 * sent/acted upon. If the notifier routine returns non-zero, then the
508 * signal will be acted upon after all. If the notifier routine returns 0,
509 * then then signal will be blocked. Only one block per process is
510 * allowed. priv is a pointer to private data that the notifier routine
511 * can use to determine if the signal should be blocked or not.
512 */
513 void
514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
515 {
516 unsigned long flags;
517
518 spin_lock_irqsave(&current->sighand->siglock, flags);
519 current->notifier_mask = mask;
520 current->notifier_data = priv;
521 current->notifier = notifier;
522 spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 }
524
525 /* Notify the system that blocking has ended. */
526
527 void
528 unblock_all_signals(void)
529 {
530 unsigned long flags;
531
532 spin_lock_irqsave(&current->sighand->siglock, flags);
533 current->notifier = NULL;
534 current->notifier_data = NULL;
535 recalc_sigpending();
536 spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 }
538
539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
540 {
541 struct sigqueue *q, *first = NULL;
542
543 /*
544 * Collect the siginfo appropriate to this signal. Check if
545 * there is another siginfo for the same signal.
546 */
547 list_for_each_entry(q, &list->list, list) {
548 if (q->info.si_signo == sig) {
549 if (first)
550 goto still_pending;
551 first = q;
552 }
553 }
554
555 sigdelset(&list->signal, sig);
556
557 if (first) {
558 still_pending:
559 list_del_init(&first->list);
560 copy_siginfo(info, &first->info);
561 __sigqueue_free(first);
562 } else {
563 /*
564 * Ok, it wasn't in the queue. This must be
565 * a fast-pathed signal or we must have been
566 * out of queue space. So zero out the info.
567 */
568 info->si_signo = sig;
569 info->si_errno = 0;
570 info->si_code = SI_USER;
571 info->si_pid = 0;
572 info->si_uid = 0;
573 }
574 }
575
576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577 siginfo_t *info)
578 {
579 int sig = next_signal(pending, mask);
580
581 if (sig) {
582 if (current->notifier) {
583 if (sigismember(current->notifier_mask, sig)) {
584 if (!(current->notifier)(current->notifier_data)) {
585 clear_thread_flag(TIF_SIGPENDING);
586 return 0;
587 }
588 }
589 }
590
591 collect_signal(sig, pending, info);
592 }
593
594 return sig;
595 }
596
597 /*
598 * Dequeue a signal and return the element to the caller, which is
599 * expected to free it.
600 *
601 * All callers have to hold the siglock.
602 */
603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
604 {
605 int signr;
606
607 /* We only dequeue private signals from ourselves, we don't let
608 * signalfd steal them
609 */
610 signr = __dequeue_signal(&tsk->pending, mask, info);
611 if (!signr) {
612 signr = __dequeue_signal(&tsk->signal->shared_pending,
613 mask, info);
614 /*
615 * itimer signal ?
616 *
617 * itimers are process shared and we restart periodic
618 * itimers in the signal delivery path to prevent DoS
619 * attacks in the high resolution timer case. This is
620 * compliant with the old way of self-restarting
621 * itimers, as the SIGALRM is a legacy signal and only
622 * queued once. Changing the restart behaviour to
623 * restart the timer in the signal dequeue path is
624 * reducing the timer noise on heavy loaded !highres
625 * systems too.
626 */
627 if (unlikely(signr == SIGALRM)) {
628 struct hrtimer *tmr = &tsk->signal->real_timer;
629
630 if (!hrtimer_is_queued(tmr) &&
631 tsk->signal->it_real_incr.tv64 != 0) {
632 hrtimer_forward(tmr, tmr->base->get_time(),
633 tsk->signal->it_real_incr);
634 hrtimer_restart(tmr);
635 }
636 }
637 }
638
639 recalc_sigpending();
640 if (!signr)
641 return 0;
642
643 if (unlikely(sig_kernel_stop(signr))) {
644 /*
645 * Set a marker that we have dequeued a stop signal. Our
646 * caller might release the siglock and then the pending
647 * stop signal it is about to process is no longer in the
648 * pending bitmasks, but must still be cleared by a SIGCONT
649 * (and overruled by a SIGKILL). So those cases clear this
650 * shared flag after we've set it. Note that this flag may
651 * remain set after the signal we return is ignored or
652 * handled. That doesn't matter because its only purpose
653 * is to alert stop-signal processing code when another
654 * processor has come along and cleared the flag.
655 */
656 current->jobctl |= JOBCTL_STOP_DEQUEUED;
657 }
658 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
659 /*
660 * Release the siglock to ensure proper locking order
661 * of timer locks outside of siglocks. Note, we leave
662 * irqs disabled here, since the posix-timers code is
663 * about to disable them again anyway.
664 */
665 spin_unlock(&tsk->sighand->siglock);
666 do_schedule_next_timer(info);
667 spin_lock(&tsk->sighand->siglock);
668 }
669 return signr;
670 }
671
672 /*
673 * Tell a process that it has a new active signal..
674 *
675 * NOTE! we rely on the previous spin_lock to
676 * lock interrupts for us! We can only be called with
677 * "siglock" held, and the local interrupt must
678 * have been disabled when that got acquired!
679 *
680 * No need to set need_resched since signal event passing
681 * goes through ->blocked
682 */
683 void signal_wake_up_state(struct task_struct *t, unsigned int state)
684 {
685 set_tsk_thread_flag(t, TIF_SIGPENDING);
686 /*
687 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
688 * case. We don't check t->state here because there is a race with it
689 * executing another processor and just now entering stopped state.
690 * By using wake_up_state, we ensure the process will wake up and
691 * handle its death signal.
692 */
693 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
694 kick_process(t);
695 }
696
697 /*
698 * Remove signals in mask from the pending set and queue.
699 * Returns 1 if any signals were found.
700 *
701 * All callers must be holding the siglock.
702 *
703 * This version takes a sigset mask and looks at all signals,
704 * not just those in the first mask word.
705 */
706 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
707 {
708 struct sigqueue *q, *n;
709 sigset_t m;
710
711 sigandsets(&m, mask, &s->signal);
712 if (sigisemptyset(&m))
713 return 0;
714
715 sigandnsets(&s->signal, &s->signal, mask);
716 list_for_each_entry_safe(q, n, &s->list, list) {
717 if (sigismember(mask, q->info.si_signo)) {
718 list_del_init(&q->list);
719 __sigqueue_free(q);
720 }
721 }
722 return 1;
723 }
724 /*
725 * Remove signals in mask from the pending set and queue.
726 * Returns 1 if any signals were found.
727 *
728 * All callers must be holding the siglock.
729 */
730 static int rm_from_queue(unsigned long mask, struct sigpending *s)
731 {
732 struct sigqueue *q, *n;
733
734 if (!sigtestsetmask(&s->signal, mask))
735 return 0;
736
737 sigdelsetmask(&s->signal, mask);
738 list_for_each_entry_safe(q, n, &s->list, list) {
739 if (q->info.si_signo < SIGRTMIN &&
740 (mask & sigmask(q->info.si_signo))) {
741 list_del_init(&q->list);
742 __sigqueue_free(q);
743 }
744 }
745 return 1;
746 }
747
748 static inline int is_si_special(const struct siginfo *info)
749 {
750 return info <= SEND_SIG_FORCED;
751 }
752
753 static inline bool si_fromuser(const struct siginfo *info)
754 {
755 return info == SEND_SIG_NOINFO ||
756 (!is_si_special(info) && SI_FROMUSER(info));
757 }
758
759 /*
760 * called with RCU read lock from check_kill_permission()
761 */
762 static int kill_ok_by_cred(struct task_struct *t)
763 {
764 const struct cred *cred = current_cred();
765 const struct cred *tcred = __task_cred(t);
766
767 if (uid_eq(cred->euid, tcred->suid) ||
768 uid_eq(cred->euid, tcred->uid) ||
769 uid_eq(cred->uid, tcred->suid) ||
770 uid_eq(cred->uid, tcred->uid))
771 return 1;
772
773 if (ns_capable(tcred->user_ns, CAP_KILL))
774 return 1;
775
776 return 0;
777 }
778
779 /*
780 * Bad permissions for sending the signal
781 * - the caller must hold the RCU read lock
782 */
783 static int check_kill_permission(int sig, struct siginfo *info,
784 struct task_struct *t)
785 {
786 struct pid *sid;
787 int error;
788
789 if (!valid_signal(sig))
790 return -EINVAL;
791
792 if (!si_fromuser(info))
793 return 0;
794
795 error = audit_signal_info(sig, t); /* Let audit system see the signal */
796 if (error)
797 return error;
798
799 if (!same_thread_group(current, t) &&
800 !kill_ok_by_cred(t)) {
801 switch (sig) {
802 case SIGCONT:
803 sid = task_session(t);
804 /*
805 * We don't return the error if sid == NULL. The
806 * task was unhashed, the caller must notice this.
807 */
808 if (!sid || sid == task_session(current))
809 break;
810 default:
811 return -EPERM;
812 }
813 }
814
815 return security_task_kill(t, info, sig, 0);
816 }
817
818 /**
819 * ptrace_trap_notify - schedule trap to notify ptracer
820 * @t: tracee wanting to notify tracer
821 *
822 * This function schedules sticky ptrace trap which is cleared on the next
823 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
824 * ptracer.
825 *
826 * If @t is running, STOP trap will be taken. If trapped for STOP and
827 * ptracer is listening for events, tracee is woken up so that it can
828 * re-trap for the new event. If trapped otherwise, STOP trap will be
829 * eventually taken without returning to userland after the existing traps
830 * are finished by PTRACE_CONT.
831 *
832 * CONTEXT:
833 * Must be called with @task->sighand->siglock held.
834 */
835 static void ptrace_trap_notify(struct task_struct *t)
836 {
837 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
838 assert_spin_locked(&t->sighand->siglock);
839
840 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
841 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
842 }
843
844 /*
845 * Handle magic process-wide effects of stop/continue signals. Unlike
846 * the signal actions, these happen immediately at signal-generation
847 * time regardless of blocking, ignoring, or handling. This does the
848 * actual continuing for SIGCONT, but not the actual stopping for stop
849 * signals. The process stop is done as a signal action for SIG_DFL.
850 *
851 * Returns true if the signal should be actually delivered, otherwise
852 * it should be dropped.
853 */
854 static int prepare_signal(int sig, struct task_struct *p, bool force)
855 {
856 struct signal_struct *signal = p->signal;
857 struct task_struct *t;
858
859 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
860 /*
861 * The process is in the middle of dying, nothing to do.
862 */
863 } else if (sig_kernel_stop(sig)) {
864 /*
865 * This is a stop signal. Remove SIGCONT from all queues.
866 */
867 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
868 t = p;
869 do {
870 rm_from_queue(sigmask(SIGCONT), &t->pending);
871 } while_each_thread(p, t);
872 } else if (sig == SIGCONT) {
873 unsigned int why;
874 /*
875 * Remove all stop signals from all queues, wake all threads.
876 */
877 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
878 t = p;
879 do {
880 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
881 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
882 if (likely(!(t->ptrace & PT_SEIZED)))
883 wake_up_state(t, __TASK_STOPPED);
884 else
885 ptrace_trap_notify(t);
886 } while_each_thread(p, t);
887
888 /*
889 * Notify the parent with CLD_CONTINUED if we were stopped.
890 *
891 * If we were in the middle of a group stop, we pretend it
892 * was already finished, and then continued. Since SIGCHLD
893 * doesn't queue we report only CLD_STOPPED, as if the next
894 * CLD_CONTINUED was dropped.
895 */
896 why = 0;
897 if (signal->flags & SIGNAL_STOP_STOPPED)
898 why |= SIGNAL_CLD_CONTINUED;
899 else if (signal->group_stop_count)
900 why |= SIGNAL_CLD_STOPPED;
901
902 if (why) {
903 /*
904 * The first thread which returns from do_signal_stop()
905 * will take ->siglock, notice SIGNAL_CLD_MASK, and
906 * notify its parent. See get_signal_to_deliver().
907 */
908 signal->flags = why | SIGNAL_STOP_CONTINUED;
909 signal->group_stop_count = 0;
910 signal->group_exit_code = 0;
911 }
912 }
913
914 return !sig_ignored(p, sig, force);
915 }
916
917 /*
918 * Test if P wants to take SIG. After we've checked all threads with this,
919 * it's equivalent to finding no threads not blocking SIG. Any threads not
920 * blocking SIG were ruled out because they are not running and already
921 * have pending signals. Such threads will dequeue from the shared queue
922 * as soon as they're available, so putting the signal on the shared queue
923 * will be equivalent to sending it to one such thread.
924 */
925 static inline int wants_signal(int sig, struct task_struct *p)
926 {
927 if (sigismember(&p->blocked, sig))
928 return 0;
929 if (p->flags & PF_EXITING)
930 return 0;
931 if (sig == SIGKILL)
932 return 1;
933 if (task_is_stopped_or_traced(p))
934 return 0;
935 return task_curr(p) || !signal_pending(p);
936 }
937
938 static void complete_signal(int sig, struct task_struct *p, int group)
939 {
940 struct signal_struct *signal = p->signal;
941 struct task_struct *t;
942
943 /*
944 * Now find a thread we can wake up to take the signal off the queue.
945 *
946 * If the main thread wants the signal, it gets first crack.
947 * Probably the least surprising to the average bear.
948 */
949 if (wants_signal(sig, p))
950 t = p;
951 else if (!group || thread_group_empty(p))
952 /*
953 * There is just one thread and it does not need to be woken.
954 * It will dequeue unblocked signals before it runs again.
955 */
956 return;
957 else {
958 /*
959 * Otherwise try to find a suitable thread.
960 */
961 t = signal->curr_target;
962 while (!wants_signal(sig, t)) {
963 t = next_thread(t);
964 if (t == signal->curr_target)
965 /*
966 * No thread needs to be woken.
967 * Any eligible threads will see
968 * the signal in the queue soon.
969 */
970 return;
971 }
972 signal->curr_target = t;
973 }
974
975 /*
976 * Found a killable thread. If the signal will be fatal,
977 * then start taking the whole group down immediately.
978 */
979 if (sig_fatal(p, sig) &&
980 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
981 !sigismember(&t->real_blocked, sig) &&
982 (sig == SIGKILL || !t->ptrace)) {
983 /*
984 * This signal will be fatal to the whole group.
985 */
986 if (!sig_kernel_coredump(sig)) {
987 /*
988 * Start a group exit and wake everybody up.
989 * This way we don't have other threads
990 * running and doing things after a slower
991 * thread has the fatal signal pending.
992 */
993 signal->flags = SIGNAL_GROUP_EXIT;
994 signal->group_exit_code = sig;
995 signal->group_stop_count = 0;
996 t = p;
997 do {
998 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
999 sigaddset(&t->pending.signal, SIGKILL);
1000 signal_wake_up(t, 1);
1001 } while_each_thread(p, t);
1002 return;
1003 }
1004 }
1005
1006 /*
1007 * The signal is already in the shared-pending queue.
1008 * Tell the chosen thread to wake up and dequeue it.
1009 */
1010 signal_wake_up(t, sig == SIGKILL);
1011 return;
1012 }
1013
1014 static inline int legacy_queue(struct sigpending *signals, int sig)
1015 {
1016 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1017 }
1018
1019 #ifdef CONFIG_USER_NS
1020 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1021 {
1022 if (current_user_ns() == task_cred_xxx(t, user_ns))
1023 return;
1024
1025 if (SI_FROMKERNEL(info))
1026 return;
1027
1028 rcu_read_lock();
1029 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1030 make_kuid(current_user_ns(), info->si_uid));
1031 rcu_read_unlock();
1032 }
1033 #else
1034 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1035 {
1036 return;
1037 }
1038 #endif
1039
1040 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1041 int group, int from_ancestor_ns)
1042 {
1043 struct sigpending *pending;
1044 struct sigqueue *q;
1045 int override_rlimit;
1046 int ret = 0, result;
1047
1048 assert_spin_locked(&t->sighand->siglock);
1049
1050 result = TRACE_SIGNAL_IGNORED;
1051 if (!prepare_signal(sig, t,
1052 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1053 goto ret;
1054
1055 pending = group ? &t->signal->shared_pending : &t->pending;
1056 /*
1057 * Short-circuit ignored signals and support queuing
1058 * exactly one non-rt signal, so that we can get more
1059 * detailed information about the cause of the signal.
1060 */
1061 result = TRACE_SIGNAL_ALREADY_PENDING;
1062 if (legacy_queue(pending, sig))
1063 goto ret;
1064
1065 result = TRACE_SIGNAL_DELIVERED;
1066 /*
1067 * fast-pathed signals for kernel-internal things like SIGSTOP
1068 * or SIGKILL.
1069 */
1070 if (info == SEND_SIG_FORCED)
1071 goto out_set;
1072
1073 /*
1074 * Real-time signals must be queued if sent by sigqueue, or
1075 * some other real-time mechanism. It is implementation
1076 * defined whether kill() does so. We attempt to do so, on
1077 * the principle of least surprise, but since kill is not
1078 * allowed to fail with EAGAIN when low on memory we just
1079 * make sure at least one signal gets delivered and don't
1080 * pass on the info struct.
1081 */
1082 if (sig < SIGRTMIN)
1083 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1084 else
1085 override_rlimit = 0;
1086
1087 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1088 override_rlimit);
1089 if (q) {
1090 list_add_tail(&q->list, &pending->list);
1091 switch ((unsigned long) info) {
1092 case (unsigned long) SEND_SIG_NOINFO:
1093 q->info.si_signo = sig;
1094 q->info.si_errno = 0;
1095 q->info.si_code = SI_USER;
1096 q->info.si_pid = task_tgid_nr_ns(current,
1097 task_active_pid_ns(t));
1098 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1099 break;
1100 case (unsigned long) SEND_SIG_PRIV:
1101 q->info.si_signo = sig;
1102 q->info.si_errno = 0;
1103 q->info.si_code = SI_KERNEL;
1104 q->info.si_pid = 0;
1105 q->info.si_uid = 0;
1106 break;
1107 default:
1108 copy_siginfo(&q->info, info);
1109 if (from_ancestor_ns)
1110 q->info.si_pid = 0;
1111 break;
1112 }
1113
1114 userns_fixup_signal_uid(&q->info, t);
1115
1116 } else if (!is_si_special(info)) {
1117 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 /*
1119 * Queue overflow, abort. We may abort if the
1120 * signal was rt and sent by user using something
1121 * other than kill().
1122 */
1123 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 ret = -EAGAIN;
1125 goto ret;
1126 } else {
1127 /*
1128 * This is a silent loss of information. We still
1129 * send the signal, but the *info bits are lost.
1130 */
1131 result = TRACE_SIGNAL_LOSE_INFO;
1132 }
1133 }
1134
1135 out_set:
1136 signalfd_notify(t, sig);
1137 sigaddset(&pending->signal, sig);
1138 complete_signal(sig, t, group);
1139 ret:
1140 trace_signal_generate(sig, info, t, group, result);
1141 return ret;
1142 }
1143
1144 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1145 int group)
1146 {
1147 int from_ancestor_ns = 0;
1148
1149 #ifdef CONFIG_PID_NS
1150 from_ancestor_ns = si_fromuser(info) &&
1151 !task_pid_nr_ns(current, task_active_pid_ns(t));
1152 #endif
1153
1154 return __send_signal(sig, info, t, group, from_ancestor_ns);
1155 }
1156
1157 static void print_fatal_signal(int signr)
1158 {
1159 struct pt_regs *regs = signal_pt_regs();
1160 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1161 current->comm, task_pid_nr(current), signr);
1162
1163 #if defined(__i386__) && !defined(__arch_um__)
1164 printk("code at %08lx: ", regs->ip);
1165 {
1166 int i;
1167 for (i = 0; i < 16; i++) {
1168 unsigned char insn;
1169
1170 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1171 break;
1172 printk("%02x ", insn);
1173 }
1174 }
1175 #endif
1176 printk("\n");
1177 preempt_disable();
1178 show_regs(regs);
1179 preempt_enable();
1180 }
1181
1182 static int __init setup_print_fatal_signals(char *str)
1183 {
1184 get_option (&str, &print_fatal_signals);
1185
1186 return 1;
1187 }
1188
1189 __setup("print-fatal-signals=", setup_print_fatal_signals);
1190
1191 int
1192 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1193 {
1194 return send_signal(sig, info, p, 1);
1195 }
1196
1197 static int
1198 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1199 {
1200 return send_signal(sig, info, t, 0);
1201 }
1202
1203 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1204 bool group)
1205 {
1206 unsigned long flags;
1207 int ret = -ESRCH;
1208
1209 if (lock_task_sighand(p, &flags)) {
1210 ret = send_signal(sig, info, p, group);
1211 unlock_task_sighand(p, &flags);
1212 }
1213
1214 return ret;
1215 }
1216
1217 /*
1218 * Force a signal that the process can't ignore: if necessary
1219 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1220 *
1221 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1222 * since we do not want to have a signal handler that was blocked
1223 * be invoked when user space had explicitly blocked it.
1224 *
1225 * We don't want to have recursive SIGSEGV's etc, for example,
1226 * that is why we also clear SIGNAL_UNKILLABLE.
1227 */
1228 int
1229 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1230 {
1231 unsigned long int flags;
1232 int ret, blocked, ignored;
1233 struct k_sigaction *action;
1234
1235 spin_lock_irqsave(&t->sighand->siglock, flags);
1236 action = &t->sighand->action[sig-1];
1237 ignored = action->sa.sa_handler == SIG_IGN;
1238 blocked = sigismember(&t->blocked, sig);
1239 if (blocked || ignored) {
1240 action->sa.sa_handler = SIG_DFL;
1241 if (blocked) {
1242 sigdelset(&t->blocked, sig);
1243 recalc_sigpending_and_wake(t);
1244 }
1245 }
1246 if (action->sa.sa_handler == SIG_DFL)
1247 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1248 ret = specific_send_sig_info(sig, info, t);
1249 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1250
1251 return ret;
1252 }
1253
1254 /*
1255 * Nuke all other threads in the group.
1256 */
1257 int zap_other_threads(struct task_struct *p)
1258 {
1259 struct task_struct *t = p;
1260 int count = 0;
1261
1262 p->signal->group_stop_count = 0;
1263
1264 while_each_thread(p, t) {
1265 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1266 count++;
1267
1268 /* Don't bother with already dead threads */
1269 if (t->exit_state)
1270 continue;
1271 sigaddset(&t->pending.signal, SIGKILL);
1272 signal_wake_up(t, 1);
1273 }
1274
1275 return count;
1276 }
1277
1278 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1279 unsigned long *flags)
1280 {
1281 struct sighand_struct *sighand;
1282
1283 for (;;) {
1284 local_irq_save(*flags);
1285 rcu_read_lock();
1286 sighand = rcu_dereference(tsk->sighand);
1287 if (unlikely(sighand == NULL)) {
1288 rcu_read_unlock();
1289 local_irq_restore(*flags);
1290 break;
1291 }
1292
1293 spin_lock(&sighand->siglock);
1294 if (likely(sighand == tsk->sighand)) {
1295 rcu_read_unlock();
1296 break;
1297 }
1298 spin_unlock(&sighand->siglock);
1299 rcu_read_unlock();
1300 local_irq_restore(*flags);
1301 }
1302
1303 return sighand;
1304 }
1305
1306 /*
1307 * send signal info to all the members of a group
1308 */
1309 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1310 {
1311 int ret;
1312
1313 rcu_read_lock();
1314 ret = check_kill_permission(sig, info, p);
1315 rcu_read_unlock();
1316
1317 if (!ret && sig)
1318 ret = do_send_sig_info(sig, info, p, true);
1319
1320 return ret;
1321 }
1322
1323 /*
1324 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1325 * control characters do (^C, ^Z etc)
1326 * - the caller must hold at least a readlock on tasklist_lock
1327 */
1328 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1329 {
1330 struct task_struct *p = NULL;
1331 int retval, success;
1332
1333 success = 0;
1334 retval = -ESRCH;
1335 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1336 int err = group_send_sig_info(sig, info, p);
1337 success |= !err;
1338 retval = err;
1339 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1340 return success ? 0 : retval;
1341 }
1342
1343 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1344 {
1345 int error = -ESRCH;
1346 struct task_struct *p;
1347
1348 rcu_read_lock();
1349 retry:
1350 p = pid_task(pid, PIDTYPE_PID);
1351 if (p) {
1352 error = group_send_sig_info(sig, info, p);
1353 if (unlikely(error == -ESRCH))
1354 /*
1355 * The task was unhashed in between, try again.
1356 * If it is dead, pid_task() will return NULL,
1357 * if we race with de_thread() it will find the
1358 * new leader.
1359 */
1360 goto retry;
1361 }
1362 rcu_read_unlock();
1363
1364 return error;
1365 }
1366
1367 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1368 {
1369 int error;
1370 rcu_read_lock();
1371 error = kill_pid_info(sig, info, find_vpid(pid));
1372 rcu_read_unlock();
1373 return error;
1374 }
1375
1376 static int kill_as_cred_perm(const struct cred *cred,
1377 struct task_struct *target)
1378 {
1379 const struct cred *pcred = __task_cred(target);
1380 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1381 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1382 return 0;
1383 return 1;
1384 }
1385
1386 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1387 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1388 const struct cred *cred, u32 secid)
1389 {
1390 int ret = -EINVAL;
1391 struct task_struct *p;
1392 unsigned long flags;
1393
1394 if (!valid_signal(sig))
1395 return ret;
1396
1397 rcu_read_lock();
1398 p = pid_task(pid, PIDTYPE_PID);
1399 if (!p) {
1400 ret = -ESRCH;
1401 goto out_unlock;
1402 }
1403 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1404 ret = -EPERM;
1405 goto out_unlock;
1406 }
1407 ret = security_task_kill(p, info, sig, secid);
1408 if (ret)
1409 goto out_unlock;
1410
1411 if (sig) {
1412 if (lock_task_sighand(p, &flags)) {
1413 ret = __send_signal(sig, info, p, 1, 0);
1414 unlock_task_sighand(p, &flags);
1415 } else
1416 ret = -ESRCH;
1417 }
1418 out_unlock:
1419 rcu_read_unlock();
1420 return ret;
1421 }
1422 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1423
1424 /*
1425 * kill_something_info() interprets pid in interesting ways just like kill(2).
1426 *
1427 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1428 * is probably wrong. Should make it like BSD or SYSV.
1429 */
1430
1431 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1432 {
1433 int ret;
1434
1435 if (pid > 0) {
1436 rcu_read_lock();
1437 ret = kill_pid_info(sig, info, find_vpid(pid));
1438 rcu_read_unlock();
1439 return ret;
1440 }
1441
1442 read_lock(&tasklist_lock);
1443 if (pid != -1) {
1444 ret = __kill_pgrp_info(sig, info,
1445 pid ? find_vpid(-pid) : task_pgrp(current));
1446 } else {
1447 int retval = 0, count = 0;
1448 struct task_struct * p;
1449
1450 for_each_process(p) {
1451 if (task_pid_vnr(p) > 1 &&
1452 !same_thread_group(p, current)) {
1453 int err = group_send_sig_info(sig, info, p);
1454 ++count;
1455 if (err != -EPERM)
1456 retval = err;
1457 }
1458 }
1459 ret = count ? retval : -ESRCH;
1460 }
1461 read_unlock(&tasklist_lock);
1462
1463 return ret;
1464 }
1465
1466 /*
1467 * These are for backward compatibility with the rest of the kernel source.
1468 */
1469
1470 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1471 {
1472 /*
1473 * Make sure legacy kernel users don't send in bad values
1474 * (normal paths check this in check_kill_permission).
1475 */
1476 if (!valid_signal(sig))
1477 return -EINVAL;
1478
1479 return do_send_sig_info(sig, info, p, false);
1480 }
1481
1482 #define __si_special(priv) \
1483 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1484
1485 int
1486 send_sig(int sig, struct task_struct *p, int priv)
1487 {
1488 return send_sig_info(sig, __si_special(priv), p);
1489 }
1490
1491 void
1492 force_sig(int sig, struct task_struct *p)
1493 {
1494 force_sig_info(sig, SEND_SIG_PRIV, p);
1495 }
1496
1497 /*
1498 * When things go south during signal handling, we
1499 * will force a SIGSEGV. And if the signal that caused
1500 * the problem was already a SIGSEGV, we'll want to
1501 * make sure we don't even try to deliver the signal..
1502 */
1503 int
1504 force_sigsegv(int sig, struct task_struct *p)
1505 {
1506 if (sig == SIGSEGV) {
1507 unsigned long flags;
1508 spin_lock_irqsave(&p->sighand->siglock, flags);
1509 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1510 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1511 }
1512 force_sig(SIGSEGV, p);
1513 return 0;
1514 }
1515
1516 int kill_pgrp(struct pid *pid, int sig, int priv)
1517 {
1518 int ret;
1519
1520 read_lock(&tasklist_lock);
1521 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1522 read_unlock(&tasklist_lock);
1523
1524 return ret;
1525 }
1526 EXPORT_SYMBOL(kill_pgrp);
1527
1528 int kill_pid(struct pid *pid, int sig, int priv)
1529 {
1530 return kill_pid_info(sig, __si_special(priv), pid);
1531 }
1532 EXPORT_SYMBOL(kill_pid);
1533
1534 /*
1535 * These functions support sending signals using preallocated sigqueue
1536 * structures. This is needed "because realtime applications cannot
1537 * afford to lose notifications of asynchronous events, like timer
1538 * expirations or I/O completions". In the case of POSIX Timers
1539 * we allocate the sigqueue structure from the timer_create. If this
1540 * allocation fails we are able to report the failure to the application
1541 * with an EAGAIN error.
1542 */
1543 struct sigqueue *sigqueue_alloc(void)
1544 {
1545 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1546
1547 if (q)
1548 q->flags |= SIGQUEUE_PREALLOC;
1549
1550 return q;
1551 }
1552
1553 void sigqueue_free(struct sigqueue *q)
1554 {
1555 unsigned long flags;
1556 spinlock_t *lock = &current->sighand->siglock;
1557
1558 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1559 /*
1560 * We must hold ->siglock while testing q->list
1561 * to serialize with collect_signal() or with
1562 * __exit_signal()->flush_sigqueue().
1563 */
1564 spin_lock_irqsave(lock, flags);
1565 q->flags &= ~SIGQUEUE_PREALLOC;
1566 /*
1567 * If it is queued it will be freed when dequeued,
1568 * like the "regular" sigqueue.
1569 */
1570 if (!list_empty(&q->list))
1571 q = NULL;
1572 spin_unlock_irqrestore(lock, flags);
1573
1574 if (q)
1575 __sigqueue_free(q);
1576 }
1577
1578 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1579 {
1580 int sig = q->info.si_signo;
1581 struct sigpending *pending;
1582 unsigned long flags;
1583 int ret, result;
1584
1585 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1586
1587 ret = -1;
1588 if (!likely(lock_task_sighand(t, &flags)))
1589 goto ret;
1590
1591 ret = 1; /* the signal is ignored */
1592 result = TRACE_SIGNAL_IGNORED;
1593 if (!prepare_signal(sig, t, false))
1594 goto out;
1595
1596 ret = 0;
1597 if (unlikely(!list_empty(&q->list))) {
1598 /*
1599 * If an SI_TIMER entry is already queue just increment
1600 * the overrun count.
1601 */
1602 BUG_ON(q->info.si_code != SI_TIMER);
1603 q->info.si_overrun++;
1604 result = TRACE_SIGNAL_ALREADY_PENDING;
1605 goto out;
1606 }
1607 q->info.si_overrun = 0;
1608
1609 signalfd_notify(t, sig);
1610 pending = group ? &t->signal->shared_pending : &t->pending;
1611 list_add_tail(&q->list, &pending->list);
1612 sigaddset(&pending->signal, sig);
1613 complete_signal(sig, t, group);
1614 result = TRACE_SIGNAL_DELIVERED;
1615 out:
1616 trace_signal_generate(sig, &q->info, t, group, result);
1617 unlock_task_sighand(t, &flags);
1618 ret:
1619 return ret;
1620 }
1621
1622 /*
1623 * Let a parent know about the death of a child.
1624 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1625 *
1626 * Returns true if our parent ignored us and so we've switched to
1627 * self-reaping.
1628 */
1629 bool do_notify_parent(struct task_struct *tsk, int sig)
1630 {
1631 struct siginfo info;
1632 unsigned long flags;
1633 struct sighand_struct *psig;
1634 bool autoreap = false;
1635 cputime_t utime, stime;
1636
1637 BUG_ON(sig == -1);
1638
1639 /* do_notify_parent_cldstop should have been called instead. */
1640 BUG_ON(task_is_stopped_or_traced(tsk));
1641
1642 BUG_ON(!tsk->ptrace &&
1643 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1644
1645 if (sig != SIGCHLD) {
1646 /*
1647 * This is only possible if parent == real_parent.
1648 * Check if it has changed security domain.
1649 */
1650 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1651 sig = SIGCHLD;
1652 }
1653
1654 info.si_signo = sig;
1655 info.si_errno = 0;
1656 /*
1657 * We are under tasklist_lock here so our parent is tied to
1658 * us and cannot change.
1659 *
1660 * task_active_pid_ns will always return the same pid namespace
1661 * until a task passes through release_task.
1662 *
1663 * write_lock() currently calls preempt_disable() which is the
1664 * same as rcu_read_lock(), but according to Oleg, this is not
1665 * correct to rely on this
1666 */
1667 rcu_read_lock();
1668 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1669 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1670 task_uid(tsk));
1671 rcu_read_unlock();
1672
1673 task_cputime(tsk, &utime, &stime);
1674 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1675 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1676
1677 info.si_status = tsk->exit_code & 0x7f;
1678 if (tsk->exit_code & 0x80)
1679 info.si_code = CLD_DUMPED;
1680 else if (tsk->exit_code & 0x7f)
1681 info.si_code = CLD_KILLED;
1682 else {
1683 info.si_code = CLD_EXITED;
1684 info.si_status = tsk->exit_code >> 8;
1685 }
1686
1687 psig = tsk->parent->sighand;
1688 spin_lock_irqsave(&psig->siglock, flags);
1689 if (!tsk->ptrace && sig == SIGCHLD &&
1690 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1691 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1692 /*
1693 * We are exiting and our parent doesn't care. POSIX.1
1694 * defines special semantics for setting SIGCHLD to SIG_IGN
1695 * or setting the SA_NOCLDWAIT flag: we should be reaped
1696 * automatically and not left for our parent's wait4 call.
1697 * Rather than having the parent do it as a magic kind of
1698 * signal handler, we just set this to tell do_exit that we
1699 * can be cleaned up without becoming a zombie. Note that
1700 * we still call __wake_up_parent in this case, because a
1701 * blocked sys_wait4 might now return -ECHILD.
1702 *
1703 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1704 * is implementation-defined: we do (if you don't want
1705 * it, just use SIG_IGN instead).
1706 */
1707 autoreap = true;
1708 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1709 sig = 0;
1710 }
1711 if (valid_signal(sig) && sig)
1712 __group_send_sig_info(sig, &info, tsk->parent);
1713 __wake_up_parent(tsk, tsk->parent);
1714 spin_unlock_irqrestore(&psig->siglock, flags);
1715
1716 return autoreap;
1717 }
1718
1719 /**
1720 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1721 * @tsk: task reporting the state change
1722 * @for_ptracer: the notification is for ptracer
1723 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1724 *
1725 * Notify @tsk's parent that the stopped/continued state has changed. If
1726 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1727 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1728 *
1729 * CONTEXT:
1730 * Must be called with tasklist_lock at least read locked.
1731 */
1732 static void do_notify_parent_cldstop(struct task_struct *tsk,
1733 bool for_ptracer, int why)
1734 {
1735 struct siginfo info;
1736 unsigned long flags;
1737 struct task_struct *parent;
1738 struct sighand_struct *sighand;
1739 cputime_t utime, stime;
1740
1741 if (for_ptracer) {
1742 parent = tsk->parent;
1743 } else {
1744 tsk = tsk->group_leader;
1745 parent = tsk->real_parent;
1746 }
1747
1748 info.si_signo = SIGCHLD;
1749 info.si_errno = 0;
1750 /*
1751 * see comment in do_notify_parent() about the following 4 lines
1752 */
1753 rcu_read_lock();
1754 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1755 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756 rcu_read_unlock();
1757
1758 task_cputime(tsk, &utime, &stime);
1759 info.si_utime = cputime_to_clock_t(utime);
1760 info.si_stime = cputime_to_clock_t(stime);
1761
1762 info.si_code = why;
1763 switch (why) {
1764 case CLD_CONTINUED:
1765 info.si_status = SIGCONT;
1766 break;
1767 case CLD_STOPPED:
1768 info.si_status = tsk->signal->group_exit_code & 0x7f;
1769 break;
1770 case CLD_TRAPPED:
1771 info.si_status = tsk->exit_code & 0x7f;
1772 break;
1773 default:
1774 BUG();
1775 }
1776
1777 sighand = parent->sighand;
1778 spin_lock_irqsave(&sighand->siglock, flags);
1779 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1780 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1781 __group_send_sig_info(SIGCHLD, &info, parent);
1782 /*
1783 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1784 */
1785 __wake_up_parent(tsk, parent);
1786 spin_unlock_irqrestore(&sighand->siglock, flags);
1787 }
1788
1789 static inline int may_ptrace_stop(void)
1790 {
1791 if (!likely(current->ptrace))
1792 return 0;
1793 /*
1794 * Are we in the middle of do_coredump?
1795 * If so and our tracer is also part of the coredump stopping
1796 * is a deadlock situation, and pointless because our tracer
1797 * is dead so don't allow us to stop.
1798 * If SIGKILL was already sent before the caller unlocked
1799 * ->siglock we must see ->core_state != NULL. Otherwise it
1800 * is safe to enter schedule().
1801 *
1802 * This is almost outdated, a task with the pending SIGKILL can't
1803 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1804 * after SIGKILL was already dequeued.
1805 */
1806 if (unlikely(current->mm->core_state) &&
1807 unlikely(current->mm == current->parent->mm))
1808 return 0;
1809
1810 return 1;
1811 }
1812
1813 /*
1814 * Return non-zero if there is a SIGKILL that should be waking us up.
1815 * Called with the siglock held.
1816 */
1817 static int sigkill_pending(struct task_struct *tsk)
1818 {
1819 return sigismember(&tsk->pending.signal, SIGKILL) ||
1820 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1821 }
1822
1823 /*
1824 * This must be called with current->sighand->siglock held.
1825 *
1826 * This should be the path for all ptrace stops.
1827 * We always set current->last_siginfo while stopped here.
1828 * That makes it a way to test a stopped process for
1829 * being ptrace-stopped vs being job-control-stopped.
1830 *
1831 * If we actually decide not to stop at all because the tracer
1832 * is gone, we keep current->exit_code unless clear_code.
1833 */
1834 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1835 __releases(&current->sighand->siglock)
1836 __acquires(&current->sighand->siglock)
1837 {
1838 bool gstop_done = false;
1839
1840 if (arch_ptrace_stop_needed(exit_code, info)) {
1841 /*
1842 * The arch code has something special to do before a
1843 * ptrace stop. This is allowed to block, e.g. for faults
1844 * on user stack pages. We can't keep the siglock while
1845 * calling arch_ptrace_stop, so we must release it now.
1846 * To preserve proper semantics, we must do this before
1847 * any signal bookkeeping like checking group_stop_count.
1848 * Meanwhile, a SIGKILL could come in before we retake the
1849 * siglock. That must prevent us from sleeping in TASK_TRACED.
1850 * So after regaining the lock, we must check for SIGKILL.
1851 */
1852 spin_unlock_irq(&current->sighand->siglock);
1853 arch_ptrace_stop(exit_code, info);
1854 spin_lock_irq(&current->sighand->siglock);
1855 if (sigkill_pending(current))
1856 return;
1857 }
1858
1859 /*
1860 * We're committing to trapping. TRACED should be visible before
1861 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1862 * Also, transition to TRACED and updates to ->jobctl should be
1863 * atomic with respect to siglock and should be done after the arch
1864 * hook as siglock is released and regrabbed across it.
1865 */
1866 set_current_state(TASK_TRACED);
1867
1868 current->last_siginfo = info;
1869 current->exit_code = exit_code;
1870
1871 /*
1872 * If @why is CLD_STOPPED, we're trapping to participate in a group
1873 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1874 * across siglock relocks since INTERRUPT was scheduled, PENDING
1875 * could be clear now. We act as if SIGCONT is received after
1876 * TASK_TRACED is entered - ignore it.
1877 */
1878 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1879 gstop_done = task_participate_group_stop(current);
1880
1881 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1882 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1883 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1884 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1885
1886 /* entering a trap, clear TRAPPING */
1887 task_clear_jobctl_trapping(current);
1888
1889 spin_unlock_irq(&current->sighand->siglock);
1890 read_lock(&tasklist_lock);
1891 if (may_ptrace_stop()) {
1892 /*
1893 * Notify parents of the stop.
1894 *
1895 * While ptraced, there are two parents - the ptracer and
1896 * the real_parent of the group_leader. The ptracer should
1897 * know about every stop while the real parent is only
1898 * interested in the completion of group stop. The states
1899 * for the two don't interact with each other. Notify
1900 * separately unless they're gonna be duplicates.
1901 */
1902 do_notify_parent_cldstop(current, true, why);
1903 if (gstop_done && ptrace_reparented(current))
1904 do_notify_parent_cldstop(current, false, why);
1905
1906 /*
1907 * Don't want to allow preemption here, because
1908 * sys_ptrace() needs this task to be inactive.
1909 *
1910 * XXX: implement read_unlock_no_resched().
1911 */
1912 preempt_disable();
1913 read_unlock(&tasklist_lock);
1914 preempt_enable_no_resched();
1915 freezable_schedule();
1916 } else {
1917 /*
1918 * By the time we got the lock, our tracer went away.
1919 * Don't drop the lock yet, another tracer may come.
1920 *
1921 * If @gstop_done, the ptracer went away between group stop
1922 * completion and here. During detach, it would have set
1923 * JOBCTL_STOP_PENDING on us and we'll re-enter
1924 * TASK_STOPPED in do_signal_stop() on return, so notifying
1925 * the real parent of the group stop completion is enough.
1926 */
1927 if (gstop_done)
1928 do_notify_parent_cldstop(current, false, why);
1929
1930 /* tasklist protects us from ptrace_freeze_traced() */
1931 __set_current_state(TASK_RUNNING);
1932 if (clear_code)
1933 current->exit_code = 0;
1934 read_unlock(&tasklist_lock);
1935 }
1936
1937 /*
1938 * We are back. Now reacquire the siglock before touching
1939 * last_siginfo, so that we are sure to have synchronized with
1940 * any signal-sending on another CPU that wants to examine it.
1941 */
1942 spin_lock_irq(&current->sighand->siglock);
1943 current->last_siginfo = NULL;
1944
1945 /* LISTENING can be set only during STOP traps, clear it */
1946 current->jobctl &= ~JOBCTL_LISTENING;
1947
1948 /*
1949 * Queued signals ignored us while we were stopped for tracing.
1950 * So check for any that we should take before resuming user mode.
1951 * This sets TIF_SIGPENDING, but never clears it.
1952 */
1953 recalc_sigpending_tsk(current);
1954 }
1955
1956 static void ptrace_do_notify(int signr, int exit_code, int why)
1957 {
1958 siginfo_t info;
1959
1960 memset(&info, 0, sizeof info);
1961 info.si_signo = signr;
1962 info.si_code = exit_code;
1963 info.si_pid = task_pid_vnr(current);
1964 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1965
1966 /* Let the debugger run. */
1967 ptrace_stop(exit_code, why, 1, &info);
1968 }
1969
1970 void ptrace_notify(int exit_code)
1971 {
1972 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1973 if (unlikely(current->task_works))
1974 task_work_run();
1975
1976 spin_lock_irq(&current->sighand->siglock);
1977 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1978 spin_unlock_irq(&current->sighand->siglock);
1979 }
1980
1981 /**
1982 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1983 * @signr: signr causing group stop if initiating
1984 *
1985 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1986 * and participate in it. If already set, participate in the existing
1987 * group stop. If participated in a group stop (and thus slept), %true is
1988 * returned with siglock released.
1989 *
1990 * If ptraced, this function doesn't handle stop itself. Instead,
1991 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1992 * untouched. The caller must ensure that INTERRUPT trap handling takes
1993 * places afterwards.
1994 *
1995 * CONTEXT:
1996 * Must be called with @current->sighand->siglock held, which is released
1997 * on %true return.
1998 *
1999 * RETURNS:
2000 * %false if group stop is already cancelled or ptrace trap is scheduled.
2001 * %true if participated in group stop.
2002 */
2003 static bool do_signal_stop(int signr)
2004 __releases(&current->sighand->siglock)
2005 {
2006 struct signal_struct *sig = current->signal;
2007
2008 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2009 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2010 struct task_struct *t;
2011
2012 /* signr will be recorded in task->jobctl for retries */
2013 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2014
2015 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2016 unlikely(signal_group_exit(sig)))
2017 return false;
2018 /*
2019 * There is no group stop already in progress. We must
2020 * initiate one now.
2021 *
2022 * While ptraced, a task may be resumed while group stop is
2023 * still in effect and then receive a stop signal and
2024 * initiate another group stop. This deviates from the
2025 * usual behavior as two consecutive stop signals can't
2026 * cause two group stops when !ptraced. That is why we
2027 * also check !task_is_stopped(t) below.
2028 *
2029 * The condition can be distinguished by testing whether
2030 * SIGNAL_STOP_STOPPED is already set. Don't generate
2031 * group_exit_code in such case.
2032 *
2033 * This is not necessary for SIGNAL_STOP_CONTINUED because
2034 * an intervening stop signal is required to cause two
2035 * continued events regardless of ptrace.
2036 */
2037 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2038 sig->group_exit_code = signr;
2039
2040 sig->group_stop_count = 0;
2041
2042 if (task_set_jobctl_pending(current, signr | gstop))
2043 sig->group_stop_count++;
2044
2045 for (t = next_thread(current); t != current;
2046 t = next_thread(t)) {
2047 /*
2048 * Setting state to TASK_STOPPED for a group
2049 * stop is always done with the siglock held,
2050 * so this check has no races.
2051 */
2052 if (!task_is_stopped(t) &&
2053 task_set_jobctl_pending(t, signr | gstop)) {
2054 sig->group_stop_count++;
2055 if (likely(!(t->ptrace & PT_SEIZED)))
2056 signal_wake_up(t, 0);
2057 else
2058 ptrace_trap_notify(t);
2059 }
2060 }
2061 }
2062
2063 if (likely(!current->ptrace)) {
2064 int notify = 0;
2065
2066 /*
2067 * If there are no other threads in the group, or if there
2068 * is a group stop in progress and we are the last to stop,
2069 * report to the parent.
2070 */
2071 if (task_participate_group_stop(current))
2072 notify = CLD_STOPPED;
2073
2074 __set_current_state(TASK_STOPPED);
2075 spin_unlock_irq(&current->sighand->siglock);
2076
2077 /*
2078 * Notify the parent of the group stop completion. Because
2079 * we're not holding either the siglock or tasklist_lock
2080 * here, ptracer may attach inbetween; however, this is for
2081 * group stop and should always be delivered to the real
2082 * parent of the group leader. The new ptracer will get
2083 * its notification when this task transitions into
2084 * TASK_TRACED.
2085 */
2086 if (notify) {
2087 read_lock(&tasklist_lock);
2088 do_notify_parent_cldstop(current, false, notify);
2089 read_unlock(&tasklist_lock);
2090 }
2091
2092 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2093 freezable_schedule();
2094 return true;
2095 } else {
2096 /*
2097 * While ptraced, group stop is handled by STOP trap.
2098 * Schedule it and let the caller deal with it.
2099 */
2100 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2101 return false;
2102 }
2103 }
2104
2105 /**
2106 * do_jobctl_trap - take care of ptrace jobctl traps
2107 *
2108 * When PT_SEIZED, it's used for both group stop and explicit
2109 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2110 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2111 * the stop signal; otherwise, %SIGTRAP.
2112 *
2113 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2114 * number as exit_code and no siginfo.
2115 *
2116 * CONTEXT:
2117 * Must be called with @current->sighand->siglock held, which may be
2118 * released and re-acquired before returning with intervening sleep.
2119 */
2120 static void do_jobctl_trap(void)
2121 {
2122 struct signal_struct *signal = current->signal;
2123 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2124
2125 if (current->ptrace & PT_SEIZED) {
2126 if (!signal->group_stop_count &&
2127 !(signal->flags & SIGNAL_STOP_STOPPED))
2128 signr = SIGTRAP;
2129 WARN_ON_ONCE(!signr);
2130 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2131 CLD_STOPPED);
2132 } else {
2133 WARN_ON_ONCE(!signr);
2134 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2135 current->exit_code = 0;
2136 }
2137 }
2138
2139 static int ptrace_signal(int signr, siginfo_t *info)
2140 {
2141 ptrace_signal_deliver();
2142 /*
2143 * We do not check sig_kernel_stop(signr) but set this marker
2144 * unconditionally because we do not know whether debugger will
2145 * change signr. This flag has no meaning unless we are going
2146 * to stop after return from ptrace_stop(). In this case it will
2147 * be checked in do_signal_stop(), we should only stop if it was
2148 * not cleared by SIGCONT while we were sleeping. See also the
2149 * comment in dequeue_signal().
2150 */
2151 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153
2154 /* We're back. Did the debugger cancel the sig? */
2155 signr = current->exit_code;
2156 if (signr == 0)
2157 return signr;
2158
2159 current->exit_code = 0;
2160
2161 /*
2162 * Update the siginfo structure if the signal has
2163 * changed. If the debugger wanted something
2164 * specific in the siginfo structure then it should
2165 * have updated *info via PTRACE_SETSIGINFO.
2166 */
2167 if (signr != info->si_signo) {
2168 info->si_signo = signr;
2169 info->si_errno = 0;
2170 info->si_code = SI_USER;
2171 rcu_read_lock();
2172 info->si_pid = task_pid_vnr(current->parent);
2173 info->si_uid = from_kuid_munged(current_user_ns(),
2174 task_uid(current->parent));
2175 rcu_read_unlock();
2176 }
2177
2178 /* If the (new) signal is now blocked, requeue it. */
2179 if (sigismember(&current->blocked, signr)) {
2180 specific_send_sig_info(signr, info, current);
2181 signr = 0;
2182 }
2183
2184 return signr;
2185 }
2186
2187 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188 struct pt_regs *regs, void *cookie)
2189 {
2190 struct sighand_struct *sighand = current->sighand;
2191 struct signal_struct *signal = current->signal;
2192 int signr;
2193
2194 if (unlikely(current->task_works))
2195 task_work_run();
2196
2197 if (unlikely(uprobe_deny_signal()))
2198 return 0;
2199
2200 /*
2201 * Do this once, we can't return to user-mode if freezing() == T.
2202 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2203 * thus do not need another check after return.
2204 */
2205 try_to_freeze();
2206
2207 relock:
2208 spin_lock_irq(&sighand->siglock);
2209 /*
2210 * Every stopped thread goes here after wakeup. Check to see if
2211 * we should notify the parent, prepare_signal(SIGCONT) encodes
2212 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2213 */
2214 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2215 int why;
2216
2217 if (signal->flags & SIGNAL_CLD_CONTINUED)
2218 why = CLD_CONTINUED;
2219 else
2220 why = CLD_STOPPED;
2221
2222 signal->flags &= ~SIGNAL_CLD_MASK;
2223
2224 spin_unlock_irq(&sighand->siglock);
2225
2226 /*
2227 * Notify the parent that we're continuing. This event is
2228 * always per-process and doesn't make whole lot of sense
2229 * for ptracers, who shouldn't consume the state via
2230 * wait(2) either, but, for backward compatibility, notify
2231 * the ptracer of the group leader too unless it's gonna be
2232 * a duplicate.
2233 */
2234 read_lock(&tasklist_lock);
2235 do_notify_parent_cldstop(current, false, why);
2236
2237 if (ptrace_reparented(current->group_leader))
2238 do_notify_parent_cldstop(current->group_leader,
2239 true, why);
2240 read_unlock(&tasklist_lock);
2241
2242 goto relock;
2243 }
2244
2245 for (;;) {
2246 struct k_sigaction *ka;
2247
2248 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2249 do_signal_stop(0))
2250 goto relock;
2251
2252 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2253 do_jobctl_trap();
2254 spin_unlock_irq(&sighand->siglock);
2255 goto relock;
2256 }
2257
2258 signr = dequeue_signal(current, &current->blocked, info);
2259
2260 if (!signr)
2261 break; /* will return 0 */
2262
2263 if (unlikely(current->ptrace) && signr != SIGKILL) {
2264 signr = ptrace_signal(signr, info);
2265 if (!signr)
2266 continue;
2267 }
2268
2269 ka = &sighand->action[signr-1];
2270
2271 /* Trace actually delivered signals. */
2272 trace_signal_deliver(signr, info, ka);
2273
2274 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2275 continue;
2276 if (ka->sa.sa_handler != SIG_DFL) {
2277 /* Run the handler. */
2278 *return_ka = *ka;
2279
2280 if (ka->sa.sa_flags & SA_ONESHOT)
2281 ka->sa.sa_handler = SIG_DFL;
2282
2283 break; /* will return non-zero "signr" value */
2284 }
2285
2286 /*
2287 * Now we are doing the default action for this signal.
2288 */
2289 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2290 continue;
2291
2292 /*
2293 * Global init gets no signals it doesn't want.
2294 * Container-init gets no signals it doesn't want from same
2295 * container.
2296 *
2297 * Note that if global/container-init sees a sig_kernel_only()
2298 * signal here, the signal must have been generated internally
2299 * or must have come from an ancestor namespace. In either
2300 * case, the signal cannot be dropped.
2301 */
2302 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2303 !sig_kernel_only(signr))
2304 continue;
2305
2306 if (sig_kernel_stop(signr)) {
2307 /*
2308 * The default action is to stop all threads in
2309 * the thread group. The job control signals
2310 * do nothing in an orphaned pgrp, but SIGSTOP
2311 * always works. Note that siglock needs to be
2312 * dropped during the call to is_orphaned_pgrp()
2313 * because of lock ordering with tasklist_lock.
2314 * This allows an intervening SIGCONT to be posted.
2315 * We need to check for that and bail out if necessary.
2316 */
2317 if (signr != SIGSTOP) {
2318 spin_unlock_irq(&sighand->siglock);
2319
2320 /* signals can be posted during this window */
2321
2322 if (is_current_pgrp_orphaned())
2323 goto relock;
2324
2325 spin_lock_irq(&sighand->siglock);
2326 }
2327
2328 if (likely(do_signal_stop(info->si_signo))) {
2329 /* It released the siglock. */
2330 goto relock;
2331 }
2332
2333 /*
2334 * We didn't actually stop, due to a race
2335 * with SIGCONT or something like that.
2336 */
2337 continue;
2338 }
2339
2340 spin_unlock_irq(&sighand->siglock);
2341
2342 /*
2343 * Anything else is fatal, maybe with a core dump.
2344 */
2345 current->flags |= PF_SIGNALED;
2346
2347 if (sig_kernel_coredump(signr)) {
2348 if (print_fatal_signals)
2349 print_fatal_signal(info->si_signo);
2350 /*
2351 * If it was able to dump core, this kills all
2352 * other threads in the group and synchronizes with
2353 * their demise. If we lost the race with another
2354 * thread getting here, it set group_exit_code
2355 * first and our do_group_exit call below will use
2356 * that value and ignore the one we pass it.
2357 */
2358 do_coredump(info);
2359 }
2360
2361 /*
2362 * Death signals, no core dump.
2363 */
2364 do_group_exit(info->si_signo);
2365 /* NOTREACHED */
2366 }
2367 spin_unlock_irq(&sighand->siglock);
2368 return signr;
2369 }
2370
2371 /**
2372 * signal_delivered -
2373 * @sig: number of signal being delivered
2374 * @info: siginfo_t of signal being delivered
2375 * @ka: sigaction setting that chose the handler
2376 * @regs: user register state
2377 * @stepping: nonzero if debugger single-step or block-step in use
2378 *
2379 * This function should be called when a signal has succesfully been
2380 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2381 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2382 * is set in @ka->sa.sa_flags. Tracing is notified.
2383 */
2384 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2385 struct pt_regs *regs, int stepping)
2386 {
2387 sigset_t blocked;
2388
2389 /* A signal was successfully delivered, and the
2390 saved sigmask was stored on the signal frame,
2391 and will be restored by sigreturn. So we can
2392 simply clear the restore sigmask flag. */
2393 clear_restore_sigmask();
2394
2395 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2396 if (!(ka->sa.sa_flags & SA_NODEFER))
2397 sigaddset(&blocked, sig);
2398 set_current_blocked(&blocked);
2399 tracehook_signal_handler(sig, info, ka, regs, stepping);
2400 }
2401
2402 /*
2403 * It could be that complete_signal() picked us to notify about the
2404 * group-wide signal. Other threads should be notified now to take
2405 * the shared signals in @which since we will not.
2406 */
2407 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2408 {
2409 sigset_t retarget;
2410 struct task_struct *t;
2411
2412 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2413 if (sigisemptyset(&retarget))
2414 return;
2415
2416 t = tsk;
2417 while_each_thread(tsk, t) {
2418 if (t->flags & PF_EXITING)
2419 continue;
2420
2421 if (!has_pending_signals(&retarget, &t->blocked))
2422 continue;
2423 /* Remove the signals this thread can handle. */
2424 sigandsets(&retarget, &retarget, &t->blocked);
2425
2426 if (!signal_pending(t))
2427 signal_wake_up(t, 0);
2428
2429 if (sigisemptyset(&retarget))
2430 break;
2431 }
2432 }
2433
2434 void exit_signals(struct task_struct *tsk)
2435 {
2436 int group_stop = 0;
2437 sigset_t unblocked;
2438
2439 /*
2440 * @tsk is about to have PF_EXITING set - lock out users which
2441 * expect stable threadgroup.
2442 */
2443 threadgroup_change_begin(tsk);
2444
2445 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2446 tsk->flags |= PF_EXITING;
2447 threadgroup_change_end(tsk);
2448 return;
2449 }
2450
2451 spin_lock_irq(&tsk->sighand->siglock);
2452 /*
2453 * From now this task is not visible for group-wide signals,
2454 * see wants_signal(), do_signal_stop().
2455 */
2456 tsk->flags |= PF_EXITING;
2457
2458 threadgroup_change_end(tsk);
2459
2460 if (!signal_pending(tsk))
2461 goto out;
2462
2463 unblocked = tsk->blocked;
2464 signotset(&unblocked);
2465 retarget_shared_pending(tsk, &unblocked);
2466
2467 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2468 task_participate_group_stop(tsk))
2469 group_stop = CLD_STOPPED;
2470 out:
2471 spin_unlock_irq(&tsk->sighand->siglock);
2472
2473 /*
2474 * If group stop has completed, deliver the notification. This
2475 * should always go to the real parent of the group leader.
2476 */
2477 if (unlikely(group_stop)) {
2478 read_lock(&tasklist_lock);
2479 do_notify_parent_cldstop(tsk, false, group_stop);
2480 read_unlock(&tasklist_lock);
2481 }
2482 }
2483
2484 EXPORT_SYMBOL(recalc_sigpending);
2485 EXPORT_SYMBOL_GPL(dequeue_signal);
2486 EXPORT_SYMBOL(flush_signals);
2487 EXPORT_SYMBOL(force_sig);
2488 EXPORT_SYMBOL(send_sig);
2489 EXPORT_SYMBOL(send_sig_info);
2490 EXPORT_SYMBOL(sigprocmask);
2491 EXPORT_SYMBOL(block_all_signals);
2492 EXPORT_SYMBOL(unblock_all_signals);
2493
2494
2495 /*
2496 * System call entry points.
2497 */
2498
2499 /**
2500 * sys_restart_syscall - restart a system call
2501 */
2502 SYSCALL_DEFINE0(restart_syscall)
2503 {
2504 struct restart_block *restart = &current_thread_info()->restart_block;
2505 return restart->fn(restart);
2506 }
2507
2508 long do_no_restart_syscall(struct restart_block *param)
2509 {
2510 return -EINTR;
2511 }
2512
2513 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2514 {
2515 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2516 sigset_t newblocked;
2517 /* A set of now blocked but previously unblocked signals. */
2518 sigandnsets(&newblocked, newset, &current->blocked);
2519 retarget_shared_pending(tsk, &newblocked);
2520 }
2521 tsk->blocked = *newset;
2522 recalc_sigpending();
2523 }
2524
2525 /**
2526 * set_current_blocked - change current->blocked mask
2527 * @newset: new mask
2528 *
2529 * It is wrong to change ->blocked directly, this helper should be used
2530 * to ensure the process can't miss a shared signal we are going to block.
2531 */
2532 void set_current_blocked(sigset_t *newset)
2533 {
2534 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535 __set_current_blocked(newset);
2536 }
2537
2538 void __set_current_blocked(const sigset_t *newset)
2539 {
2540 struct task_struct *tsk = current;
2541
2542 spin_lock_irq(&tsk->sighand->siglock);
2543 __set_task_blocked(tsk, newset);
2544 spin_unlock_irq(&tsk->sighand->siglock);
2545 }
2546
2547 /*
2548 * This is also useful for kernel threads that want to temporarily
2549 * (or permanently) block certain signals.
2550 *
2551 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2552 * interface happily blocks "unblockable" signals like SIGKILL
2553 * and friends.
2554 */
2555 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2556 {
2557 struct task_struct *tsk = current;
2558 sigset_t newset;
2559
2560 /* Lockless, only current can change ->blocked, never from irq */
2561 if (oldset)
2562 *oldset = tsk->blocked;
2563
2564 switch (how) {
2565 case SIG_BLOCK:
2566 sigorsets(&newset, &tsk->blocked, set);
2567 break;
2568 case SIG_UNBLOCK:
2569 sigandnsets(&newset, &tsk->blocked, set);
2570 break;
2571 case SIG_SETMASK:
2572 newset = *set;
2573 break;
2574 default:
2575 return -EINVAL;
2576 }
2577
2578 __set_current_blocked(&newset);
2579 return 0;
2580 }
2581
2582 /**
2583 * sys_rt_sigprocmask - change the list of currently blocked signals
2584 * @how: whether to add, remove, or set signals
2585 * @nset: stores pending signals
2586 * @oset: previous value of signal mask if non-null
2587 * @sigsetsize: size of sigset_t type
2588 */
2589 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2590 sigset_t __user *, oset, size_t, sigsetsize)
2591 {
2592 sigset_t old_set, new_set;
2593 int error;
2594
2595 /* XXX: Don't preclude handling different sized sigset_t's. */
2596 if (sigsetsize != sizeof(sigset_t))
2597 return -EINVAL;
2598
2599 old_set = current->blocked;
2600
2601 if (nset) {
2602 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2603 return -EFAULT;
2604 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2605
2606 error = sigprocmask(how, &new_set, NULL);
2607 if (error)
2608 return error;
2609 }
2610
2611 if (oset) {
2612 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2613 return -EFAULT;
2614 }
2615
2616 return 0;
2617 }
2618
2619 long do_sigpending(void __user *set, unsigned long sigsetsize)
2620 {
2621 long error = -EINVAL;
2622 sigset_t pending;
2623
2624 if (sigsetsize > sizeof(sigset_t))
2625 goto out;
2626
2627 spin_lock_irq(&current->sighand->siglock);
2628 sigorsets(&pending, &current->pending.signal,
2629 &current->signal->shared_pending.signal);
2630 spin_unlock_irq(&current->sighand->siglock);
2631
2632 /* Outside the lock because only this thread touches it. */
2633 sigandsets(&pending, &current->blocked, &pending);
2634
2635 error = -EFAULT;
2636 if (!copy_to_user(set, &pending, sigsetsize))
2637 error = 0;
2638
2639 out:
2640 return error;
2641 }
2642
2643 /**
2644 * sys_rt_sigpending - examine a pending signal that has been raised
2645 * while blocked
2646 * @set: stores pending signals
2647 * @sigsetsize: size of sigset_t type or larger
2648 */
2649 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2650 {
2651 return do_sigpending(set, sigsetsize);
2652 }
2653
2654 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2655
2656 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2657 {
2658 int err;
2659
2660 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2661 return -EFAULT;
2662 if (from->si_code < 0)
2663 return __copy_to_user(to, from, sizeof(siginfo_t))
2664 ? -EFAULT : 0;
2665 /*
2666 * If you change siginfo_t structure, please be sure
2667 * this code is fixed accordingly.
2668 * Please remember to update the signalfd_copyinfo() function
2669 * inside fs/signalfd.c too, in case siginfo_t changes.
2670 * It should never copy any pad contained in the structure
2671 * to avoid security leaks, but must copy the generic
2672 * 3 ints plus the relevant union member.
2673 */
2674 err = __put_user(from->si_signo, &to->si_signo);
2675 err |= __put_user(from->si_errno, &to->si_errno);
2676 err |= __put_user((short)from->si_code, &to->si_code);
2677 switch (from->si_code & __SI_MASK) {
2678 case __SI_KILL:
2679 err |= __put_user(from->si_pid, &to->si_pid);
2680 err |= __put_user(from->si_uid, &to->si_uid);
2681 break;
2682 case __SI_TIMER:
2683 err |= __put_user(from->si_tid, &to->si_tid);
2684 err |= __put_user(from->si_overrun, &to->si_overrun);
2685 err |= __put_user(from->si_ptr, &to->si_ptr);
2686 break;
2687 case __SI_POLL:
2688 err |= __put_user(from->si_band, &to->si_band);
2689 err |= __put_user(from->si_fd, &to->si_fd);
2690 break;
2691 case __SI_FAULT:
2692 err |= __put_user(from->si_addr, &to->si_addr);
2693 #ifdef __ARCH_SI_TRAPNO
2694 err |= __put_user(from->si_trapno, &to->si_trapno);
2695 #endif
2696 #ifdef BUS_MCEERR_AO
2697 /*
2698 * Other callers might not initialize the si_lsb field,
2699 * so check explicitly for the right codes here.
2700 */
2701 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2702 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2703 #endif
2704 break;
2705 case __SI_CHLD:
2706 err |= __put_user(from->si_pid, &to->si_pid);
2707 err |= __put_user(from->si_uid, &to->si_uid);
2708 err |= __put_user(from->si_status, &to->si_status);
2709 err |= __put_user(from->si_utime, &to->si_utime);
2710 err |= __put_user(from->si_stime, &to->si_stime);
2711 break;
2712 case __SI_RT: /* This is not generated by the kernel as of now. */
2713 case __SI_MESGQ: /* But this is */
2714 err |= __put_user(from->si_pid, &to->si_pid);
2715 err |= __put_user(from->si_uid, &to->si_uid);
2716 err |= __put_user(from->si_ptr, &to->si_ptr);
2717 break;
2718 #ifdef __ARCH_SIGSYS
2719 case __SI_SYS:
2720 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2721 err |= __put_user(from->si_syscall, &to->si_syscall);
2722 err |= __put_user(from->si_arch, &to->si_arch);
2723 break;
2724 #endif
2725 default: /* this is just in case for now ... */
2726 err |= __put_user(from->si_pid, &to->si_pid);
2727 err |= __put_user(from->si_uid, &to->si_uid);
2728 break;
2729 }
2730 return err;
2731 }
2732
2733 #endif
2734
2735 /**
2736 * do_sigtimedwait - wait for queued signals specified in @which
2737 * @which: queued signals to wait for
2738 * @info: if non-null, the signal's siginfo is returned here
2739 * @ts: upper bound on process time suspension
2740 */
2741 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2742 const struct timespec *ts)
2743 {
2744 struct task_struct *tsk = current;
2745 long timeout = MAX_SCHEDULE_TIMEOUT;
2746 sigset_t mask = *which;
2747 int sig;
2748
2749 if (ts) {
2750 if (!timespec_valid(ts))
2751 return -EINVAL;
2752 timeout = timespec_to_jiffies(ts);
2753 /*
2754 * We can be close to the next tick, add another one
2755 * to ensure we will wait at least the time asked for.
2756 */
2757 if (ts->tv_sec || ts->tv_nsec)
2758 timeout++;
2759 }
2760
2761 /*
2762 * Invert the set of allowed signals to get those we want to block.
2763 */
2764 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2765 signotset(&mask);
2766
2767 spin_lock_irq(&tsk->sighand->siglock);
2768 sig = dequeue_signal(tsk, &mask, info);
2769 if (!sig && timeout) {
2770 /*
2771 * None ready, temporarily unblock those we're interested
2772 * while we are sleeping in so that we'll be awakened when
2773 * they arrive. Unblocking is always fine, we can avoid
2774 * set_current_blocked().
2775 */
2776 tsk->real_blocked = tsk->blocked;
2777 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2778 recalc_sigpending();
2779 spin_unlock_irq(&tsk->sighand->siglock);
2780
2781 timeout = schedule_timeout_interruptible(timeout);
2782
2783 spin_lock_irq(&tsk->sighand->siglock);
2784 __set_task_blocked(tsk, &tsk->real_blocked);
2785 siginitset(&tsk->real_blocked, 0);
2786 sig = dequeue_signal(tsk, &mask, info);
2787 }
2788 spin_unlock_irq(&tsk->sighand->siglock);
2789
2790 if (sig)
2791 return sig;
2792 return timeout ? -EINTR : -EAGAIN;
2793 }
2794
2795 /**
2796 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2797 * in @uthese
2798 * @uthese: queued signals to wait for
2799 * @uinfo: if non-null, the signal's siginfo is returned here
2800 * @uts: upper bound on process time suspension
2801 * @sigsetsize: size of sigset_t type
2802 */
2803 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2804 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2805 size_t, sigsetsize)
2806 {
2807 sigset_t these;
2808 struct timespec ts;
2809 siginfo_t info;
2810 int ret;
2811
2812 /* XXX: Don't preclude handling different sized sigset_t's. */
2813 if (sigsetsize != sizeof(sigset_t))
2814 return -EINVAL;
2815
2816 if (copy_from_user(&these, uthese, sizeof(these)))
2817 return -EFAULT;
2818
2819 if (uts) {
2820 if (copy_from_user(&ts, uts, sizeof(ts)))
2821 return -EFAULT;
2822 }
2823
2824 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2825
2826 if (ret > 0 && uinfo) {
2827 if (copy_siginfo_to_user(uinfo, &info))
2828 ret = -EFAULT;
2829 }
2830
2831 return ret;
2832 }
2833
2834 /**
2835 * sys_kill - send a signal to a process
2836 * @pid: the PID of the process
2837 * @sig: signal to be sent
2838 */
2839 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2840 {
2841 struct siginfo info;
2842
2843 info.si_signo = sig;
2844 info.si_errno = 0;
2845 info.si_code = SI_USER;
2846 info.si_pid = task_tgid_vnr(current);
2847 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2848
2849 return kill_something_info(sig, &info, pid);
2850 }
2851
2852 static int
2853 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2854 {
2855 struct task_struct *p;
2856 int error = -ESRCH;
2857
2858 rcu_read_lock();
2859 p = find_task_by_vpid(pid);
2860 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2861 error = check_kill_permission(sig, info, p);
2862 /*
2863 * The null signal is a permissions and process existence
2864 * probe. No signal is actually delivered.
2865 */
2866 if (!error && sig) {
2867 error = do_send_sig_info(sig, info, p, false);
2868 /*
2869 * If lock_task_sighand() failed we pretend the task
2870 * dies after receiving the signal. The window is tiny,
2871 * and the signal is private anyway.
2872 */
2873 if (unlikely(error == -ESRCH))
2874 error = 0;
2875 }
2876 }
2877 rcu_read_unlock();
2878
2879 return error;
2880 }
2881
2882 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2883 {
2884 struct siginfo info;
2885
2886 info.si_signo = sig;
2887 info.si_errno = 0;
2888 info.si_code = SI_TKILL;
2889 info.si_pid = task_tgid_vnr(current);
2890 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2891
2892 return do_send_specific(tgid, pid, sig, &info);
2893 }
2894
2895 /**
2896 * sys_tgkill - send signal to one specific thread
2897 * @tgid: the thread group ID of the thread
2898 * @pid: the PID of the thread
2899 * @sig: signal to be sent
2900 *
2901 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2902 * exists but it's not belonging to the target process anymore. This
2903 * method solves the problem of threads exiting and PIDs getting reused.
2904 */
2905 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2906 {
2907 /* This is only valid for single tasks */
2908 if (pid <= 0 || tgid <= 0)
2909 return -EINVAL;
2910
2911 return do_tkill(tgid, pid, sig);
2912 }
2913
2914 /**
2915 * sys_tkill - send signal to one specific task
2916 * @pid: the PID of the task
2917 * @sig: signal to be sent
2918 *
2919 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2920 */
2921 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2922 {
2923 /* This is only valid for single tasks */
2924 if (pid <= 0)
2925 return -EINVAL;
2926
2927 return do_tkill(0, pid, sig);
2928 }
2929
2930 /**
2931 * sys_rt_sigqueueinfo - send signal information to a signal
2932 * @pid: the PID of the thread
2933 * @sig: signal to be sent
2934 * @uinfo: signal info to be sent
2935 */
2936 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2937 siginfo_t __user *, uinfo)
2938 {
2939 siginfo_t info;
2940
2941 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2942 return -EFAULT;
2943
2944 /* Not even root can pretend to send signals from the kernel.
2945 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2946 */
2947 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2948 /* We used to allow any < 0 si_code */
2949 WARN_ON_ONCE(info.si_code < 0);
2950 return -EPERM;
2951 }
2952 info.si_signo = sig;
2953
2954 /* POSIX.1b doesn't mention process groups. */
2955 return kill_proc_info(sig, &info, pid);
2956 }
2957
2958 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2959 {
2960 /* This is only valid for single tasks */
2961 if (pid <= 0 || tgid <= 0)
2962 return -EINVAL;
2963
2964 /* Not even root can pretend to send signals from the kernel.
2965 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2966 */
2967 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2968 /* We used to allow any < 0 si_code */
2969 WARN_ON_ONCE(info->si_code < 0);
2970 return -EPERM;
2971 }
2972 info->si_signo = sig;
2973
2974 return do_send_specific(tgid, pid, sig, info);
2975 }
2976
2977 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2978 siginfo_t __user *, uinfo)
2979 {
2980 siginfo_t info;
2981
2982 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2983 return -EFAULT;
2984
2985 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2986 }
2987
2988 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2989 {
2990 struct task_struct *t = current;
2991 struct k_sigaction *k;
2992 sigset_t mask;
2993
2994 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2995 return -EINVAL;
2996
2997 k = &t->sighand->action[sig-1];
2998
2999 spin_lock_irq(&current->sighand->siglock);
3000 if (oact)
3001 *oact = *k;
3002
3003 if (act) {
3004 sigdelsetmask(&act->sa.sa_mask,
3005 sigmask(SIGKILL) | sigmask(SIGSTOP));
3006 *k = *act;
3007 /*
3008 * POSIX 3.3.1.3:
3009 * "Setting a signal action to SIG_IGN for a signal that is
3010 * pending shall cause the pending signal to be discarded,
3011 * whether or not it is blocked."
3012 *
3013 * "Setting a signal action to SIG_DFL for a signal that is
3014 * pending and whose default action is to ignore the signal
3015 * (for example, SIGCHLD), shall cause the pending signal to
3016 * be discarded, whether or not it is blocked"
3017 */
3018 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3019 sigemptyset(&mask);
3020 sigaddset(&mask, sig);
3021 rm_from_queue_full(&mask, &t->signal->shared_pending);
3022 do {
3023 rm_from_queue_full(&mask, &t->pending);
3024 t = next_thread(t);
3025 } while (t != current);
3026 }
3027 }
3028
3029 spin_unlock_irq(&current->sighand->siglock);
3030 return 0;
3031 }
3032
3033 int
3034 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3035 {
3036 stack_t oss;
3037 int error;
3038
3039 oss.ss_sp = (void __user *) current->sas_ss_sp;
3040 oss.ss_size = current->sas_ss_size;
3041 oss.ss_flags = sas_ss_flags(sp);
3042
3043 if (uss) {
3044 void __user *ss_sp;
3045 size_t ss_size;
3046 int ss_flags;
3047
3048 error = -EFAULT;
3049 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3050 goto out;
3051 error = __get_user(ss_sp, &uss->ss_sp) |
3052 __get_user(ss_flags, &uss->ss_flags) |
3053 __get_user(ss_size, &uss->ss_size);
3054 if (error)
3055 goto out;
3056
3057 error = -EPERM;
3058 if (on_sig_stack(sp))
3059 goto out;
3060
3061 error = -EINVAL;
3062 /*
3063 * Note - this code used to test ss_flags incorrectly:
3064 * old code may have been written using ss_flags==0
3065 * to mean ss_flags==SS_ONSTACK (as this was the only
3066 * way that worked) - this fix preserves that older
3067 * mechanism.
3068 */
3069 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3070 goto out;
3071
3072 if (ss_flags == SS_DISABLE) {
3073 ss_size = 0;
3074 ss_sp = NULL;
3075 } else {
3076 error = -ENOMEM;
3077 if (ss_size < MINSIGSTKSZ)
3078 goto out;
3079 }
3080
3081 current->sas_ss_sp = (unsigned long) ss_sp;
3082 current->sas_ss_size = ss_size;
3083 }
3084
3085 error = 0;
3086 if (uoss) {
3087 error = -EFAULT;
3088 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3089 goto out;
3090 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3091 __put_user(oss.ss_size, &uoss->ss_size) |
3092 __put_user(oss.ss_flags, &uoss->ss_flags);
3093 }
3094
3095 out:
3096 return error;
3097 }
3098 #ifdef CONFIG_GENERIC_SIGALTSTACK
3099 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3100 {
3101 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3102 }
3103 #endif
3104
3105 int restore_altstack(const stack_t __user *uss)
3106 {
3107 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3108 /* squash all but EFAULT for now */
3109 return err == -EFAULT ? err : 0;
3110 }
3111
3112 int __save_altstack(stack_t __user *uss, unsigned long sp)
3113 {
3114 struct task_struct *t = current;
3115 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3116 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3117 __put_user(t->sas_ss_size, &uss->ss_size);
3118 }
3119
3120 #ifdef CONFIG_COMPAT
3121 #ifdef CONFIG_GENERIC_SIGALTSTACK
3122 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3123 const compat_stack_t __user *, uss_ptr,
3124 compat_stack_t __user *, uoss_ptr)
3125 {
3126 stack_t uss, uoss;
3127 int ret;
3128 mm_segment_t seg;
3129
3130 if (uss_ptr) {
3131 compat_stack_t uss32;
3132
3133 memset(&uss, 0, sizeof(stack_t));
3134 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3135 return -EFAULT;
3136 uss.ss_sp = compat_ptr(uss32.ss_sp);
3137 uss.ss_flags = uss32.ss_flags;
3138 uss.ss_size = uss32.ss_size;
3139 }
3140 seg = get_fs();
3141 set_fs(KERNEL_DS);
3142 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3143 (stack_t __force __user *) &uoss,
3144 compat_user_stack_pointer());
3145 set_fs(seg);
3146 if (ret >= 0 && uoss_ptr) {
3147 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3148 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3149 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3150 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3151 ret = -EFAULT;
3152 }
3153 return ret;
3154 }
3155
3156 int compat_restore_altstack(const compat_stack_t __user *uss)
3157 {
3158 int err = compat_sys_sigaltstack(uss, NULL);
3159 /* squash all but -EFAULT for now */
3160 return err == -EFAULT ? err : 0;
3161 }
3162
3163 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3164 {
3165 struct task_struct *t = current;
3166 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3167 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3168 __put_user(t->sas_ss_size, &uss->ss_size);
3169 }
3170 #endif
3171 #endif
3172
3173 #ifdef __ARCH_WANT_SYS_SIGPENDING
3174
3175 /**
3176 * sys_sigpending - examine pending signals
3177 * @set: where mask of pending signal is returned
3178 */
3179 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3180 {
3181 return do_sigpending(set, sizeof(*set));
3182 }
3183
3184 #endif
3185
3186 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3187 /**
3188 * sys_sigprocmask - examine and change blocked signals
3189 * @how: whether to add, remove, or set signals
3190 * @nset: signals to add or remove (if non-null)
3191 * @oset: previous value of signal mask if non-null
3192 *
3193 * Some platforms have their own version with special arguments;
3194 * others support only sys_rt_sigprocmask.
3195 */
3196
3197 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3198 old_sigset_t __user *, oset)
3199 {
3200 old_sigset_t old_set, new_set;
3201 sigset_t new_blocked;
3202
3203 old_set = current->blocked.sig[0];
3204
3205 if (nset) {
3206 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3207 return -EFAULT;
3208
3209 new_blocked = current->blocked;
3210
3211 switch (how) {
3212 case SIG_BLOCK:
3213 sigaddsetmask(&new_blocked, new_set);
3214 break;
3215 case SIG_UNBLOCK:
3216 sigdelsetmask(&new_blocked, new_set);
3217 break;
3218 case SIG_SETMASK:
3219 new_blocked.sig[0] = new_set;
3220 break;
3221 default:
3222 return -EINVAL;
3223 }
3224
3225 set_current_blocked(&new_blocked);
3226 }
3227
3228 if (oset) {
3229 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3230 return -EFAULT;
3231 }
3232
3233 return 0;
3234 }
3235 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3236
3237 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3238 /**
3239 * sys_rt_sigaction - alter an action taken by a process
3240 * @sig: signal to be sent
3241 * @act: new sigaction
3242 * @oact: used to save the previous sigaction
3243 * @sigsetsize: size of sigset_t type
3244 */
3245 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3246 const struct sigaction __user *, act,
3247 struct sigaction __user *, oact,
3248 size_t, sigsetsize)
3249 {
3250 struct k_sigaction new_sa, old_sa;
3251 int ret = -EINVAL;
3252
3253 /* XXX: Don't preclude handling different sized sigset_t's. */
3254 if (sigsetsize != sizeof(sigset_t))
3255 goto out;
3256
3257 if (act) {
3258 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3259 return -EFAULT;
3260 }
3261
3262 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3263
3264 if (!ret && oact) {
3265 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3266 return -EFAULT;
3267 }
3268 out:
3269 return ret;
3270 }
3271 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3272
3273 #ifdef __ARCH_WANT_SYS_SGETMASK
3274
3275 /*
3276 * For backwards compatibility. Functionality superseded by sigprocmask.
3277 */
3278 SYSCALL_DEFINE0(sgetmask)
3279 {
3280 /* SMP safe */
3281 return current->blocked.sig[0];
3282 }
3283
3284 SYSCALL_DEFINE1(ssetmask, int, newmask)
3285 {
3286 int old = current->blocked.sig[0];
3287 sigset_t newset;
3288
3289 siginitset(&newset, newmask);
3290 set_current_blocked(&newset);
3291
3292 return old;
3293 }
3294 #endif /* __ARCH_WANT_SGETMASK */
3295
3296 #ifdef __ARCH_WANT_SYS_SIGNAL
3297 /*
3298 * For backwards compatibility. Functionality superseded by sigaction.
3299 */
3300 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3301 {
3302 struct k_sigaction new_sa, old_sa;
3303 int ret;
3304
3305 new_sa.sa.sa_handler = handler;
3306 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3307 sigemptyset(&new_sa.sa.sa_mask);
3308
3309 ret = do_sigaction(sig, &new_sa, &old_sa);
3310
3311 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3312 }
3313 #endif /* __ARCH_WANT_SYS_SIGNAL */
3314
3315 #ifdef __ARCH_WANT_SYS_PAUSE
3316
3317 SYSCALL_DEFINE0(pause)
3318 {
3319 while (!signal_pending(current)) {
3320 current->state = TASK_INTERRUPTIBLE;
3321 schedule();
3322 }
3323 return -ERESTARTNOHAND;
3324 }
3325
3326 #endif
3327
3328 int sigsuspend(sigset_t *set)
3329 {
3330 current->saved_sigmask = current->blocked;
3331 set_current_blocked(set);
3332
3333 current->state = TASK_INTERRUPTIBLE;
3334 schedule();
3335 set_restore_sigmask();
3336 return -ERESTARTNOHAND;
3337 }
3338
3339 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3340 /**
3341 * sys_rt_sigsuspend - replace the signal mask for a value with the
3342 * @unewset value until a signal is received
3343 * @unewset: new signal mask value
3344 * @sigsetsize: size of sigset_t type
3345 */
3346 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3347 {
3348 sigset_t newset;
3349
3350 /* XXX: Don't preclude handling different sized sigset_t's. */
3351 if (sigsetsize != sizeof(sigset_t))
3352 return -EINVAL;
3353
3354 if (copy_from_user(&newset, unewset, sizeof(newset)))
3355 return -EFAULT;
3356 return sigsuspend(&newset);
3357 }
3358 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3359
3360 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3361 {
3362 return NULL;
3363 }
3364
3365 void __init signals_init(void)
3366 {
3367 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3368 }
3369
3370 #ifdef CONFIG_KGDB_KDB
3371 #include <linux/kdb.h>
3372 /*
3373 * kdb_send_sig_info - Allows kdb to send signals without exposing
3374 * signal internals. This function checks if the required locks are
3375 * available before calling the main signal code, to avoid kdb
3376 * deadlocks.
3377 */
3378 void
3379 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3380 {
3381 static struct task_struct *kdb_prev_t;
3382 int sig, new_t;
3383 if (!spin_trylock(&t->sighand->siglock)) {
3384 kdb_printf("Can't do kill command now.\n"
3385 "The sigmask lock is held somewhere else in "
3386 "kernel, try again later\n");
3387 return;
3388 }
3389 spin_unlock(&t->sighand->siglock);
3390 new_t = kdb_prev_t != t;
3391 kdb_prev_t = t;
3392 if (t->state != TASK_RUNNING && new_t) {
3393 kdb_printf("Process is not RUNNING, sending a signal from "
3394 "kdb risks deadlock\n"
3395 "on the run queue locks. "
3396 "The signal has _not_ been sent.\n"
3397 "Reissue the kill command if you want to risk "
3398 "the deadlock.\n");
3399 return;
3400 }
3401 sig = info->si_signo;
3402 if (send_sig_info(sig, info, t))
3403 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3404 sig, t->pid);
3405 else
3406 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3407 }
3408 #endif /* CONFIG_KGDB_KDB */
This page took 0.289084 seconds and 6 git commands to generate.