signals: add from_ancestor_ns parameter to send_signal()
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
31
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
37
38 /*
39 * SLAB caches for signal bits.
40 */
41
42 static struct kmem_cache *sigqueue_cachep;
43
44 DEFINE_TRACE(sched_signal_send);
45
46 static void __user *sig_handler(struct task_struct *t, int sig)
47 {
48 return t->sighand->action[sig - 1].sa.sa_handler;
49 }
50
51 static int sig_handler_ignored(void __user *handler, int sig)
52 {
53 /* Is it explicitly or implicitly ignored? */
54 return handler == SIG_IGN ||
55 (handler == SIG_DFL && sig_kernel_ignore(sig));
56 }
57
58 static int sig_task_ignored(struct task_struct *t, int sig)
59 {
60 void __user *handler;
61
62 handler = sig_handler(t, sig);
63
64 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
65 handler == SIG_DFL)
66 return 1;
67
68 return sig_handler_ignored(handler, sig);
69 }
70
71 static int sig_ignored(struct task_struct *t, int sig)
72 {
73 /*
74 * Blocked signals are never ignored, since the
75 * signal handler may change by the time it is
76 * unblocked.
77 */
78 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
79 return 0;
80
81 if (!sig_task_ignored(t, sig))
82 return 0;
83
84 /*
85 * Tracers may want to know about even ignored signals.
86 */
87 return !tracehook_consider_ignored_signal(t, sig);
88 }
89
90 /*
91 * Re-calculate pending state from the set of locally pending
92 * signals, globally pending signals, and blocked signals.
93 */
94 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
95 {
96 unsigned long ready;
97 long i;
98
99 switch (_NSIG_WORDS) {
100 default:
101 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
102 ready |= signal->sig[i] &~ blocked->sig[i];
103 break;
104
105 case 4: ready = signal->sig[3] &~ blocked->sig[3];
106 ready |= signal->sig[2] &~ blocked->sig[2];
107 ready |= signal->sig[1] &~ blocked->sig[1];
108 ready |= signal->sig[0] &~ blocked->sig[0];
109 break;
110
111 case 2: ready = signal->sig[1] &~ blocked->sig[1];
112 ready |= signal->sig[0] &~ blocked->sig[0];
113 break;
114
115 case 1: ready = signal->sig[0] &~ blocked->sig[0];
116 }
117 return ready != 0;
118 }
119
120 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
121
122 static int recalc_sigpending_tsk(struct task_struct *t)
123 {
124 if (t->signal->group_stop_count > 0 ||
125 PENDING(&t->pending, &t->blocked) ||
126 PENDING(&t->signal->shared_pending, &t->blocked)) {
127 set_tsk_thread_flag(t, TIF_SIGPENDING);
128 return 1;
129 }
130 /*
131 * We must never clear the flag in another thread, or in current
132 * when it's possible the current syscall is returning -ERESTART*.
133 * So we don't clear it here, and only callers who know they should do.
134 */
135 return 0;
136 }
137
138 /*
139 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
140 * This is superfluous when called on current, the wakeup is a harmless no-op.
141 */
142 void recalc_sigpending_and_wake(struct task_struct *t)
143 {
144 if (recalc_sigpending_tsk(t))
145 signal_wake_up(t, 0);
146 }
147
148 void recalc_sigpending(void)
149 {
150 if (unlikely(tracehook_force_sigpending()))
151 set_thread_flag(TIF_SIGPENDING);
152 else if (!recalc_sigpending_tsk(current) && !freezing(current))
153 clear_thread_flag(TIF_SIGPENDING);
154
155 }
156
157 /* Given the mask, find the first available signal that should be serviced. */
158
159 int next_signal(struct sigpending *pending, sigset_t *mask)
160 {
161 unsigned long i, *s, *m, x;
162 int sig = 0;
163
164 s = pending->signal.sig;
165 m = mask->sig;
166 switch (_NSIG_WORDS) {
167 default:
168 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
169 if ((x = *s &~ *m) != 0) {
170 sig = ffz(~x) + i*_NSIG_BPW + 1;
171 break;
172 }
173 break;
174
175 case 2: if ((x = s[0] &~ m[0]) != 0)
176 sig = 1;
177 else if ((x = s[1] &~ m[1]) != 0)
178 sig = _NSIG_BPW + 1;
179 else
180 break;
181 sig += ffz(~x);
182 break;
183
184 case 1: if ((x = *s &~ *m) != 0)
185 sig = ffz(~x) + 1;
186 break;
187 }
188
189 return sig;
190 }
191
192 /*
193 * allocate a new signal queue record
194 * - this may be called without locks if and only if t == current, otherwise an
195 * appopriate lock must be held to stop the target task from exiting
196 */
197 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
198 int override_rlimit)
199 {
200 struct sigqueue *q = NULL;
201 struct user_struct *user;
202
203 /*
204 * We won't get problems with the target's UID changing under us
205 * because changing it requires RCU be used, and if t != current, the
206 * caller must be holding the RCU readlock (by way of a spinlock) and
207 * we use RCU protection here
208 */
209 user = get_uid(__task_cred(t)->user);
210 atomic_inc(&user->sigpending);
211 if (override_rlimit ||
212 atomic_read(&user->sigpending) <=
213 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
214 q = kmem_cache_alloc(sigqueue_cachep, flags);
215 if (unlikely(q == NULL)) {
216 atomic_dec(&user->sigpending);
217 free_uid(user);
218 } else {
219 INIT_LIST_HEAD(&q->list);
220 q->flags = 0;
221 q->user = user;
222 }
223
224 return q;
225 }
226
227 static void __sigqueue_free(struct sigqueue *q)
228 {
229 if (q->flags & SIGQUEUE_PREALLOC)
230 return;
231 atomic_dec(&q->user->sigpending);
232 free_uid(q->user);
233 kmem_cache_free(sigqueue_cachep, q);
234 }
235
236 void flush_sigqueue(struct sigpending *queue)
237 {
238 struct sigqueue *q;
239
240 sigemptyset(&queue->signal);
241 while (!list_empty(&queue->list)) {
242 q = list_entry(queue->list.next, struct sigqueue , list);
243 list_del_init(&q->list);
244 __sigqueue_free(q);
245 }
246 }
247
248 /*
249 * Flush all pending signals for a task.
250 */
251 void flush_signals(struct task_struct *t)
252 {
253 unsigned long flags;
254
255 spin_lock_irqsave(&t->sighand->siglock, flags);
256 clear_tsk_thread_flag(t, TIF_SIGPENDING);
257 flush_sigqueue(&t->pending);
258 flush_sigqueue(&t->signal->shared_pending);
259 spin_unlock_irqrestore(&t->sighand->siglock, flags);
260 }
261
262 static void __flush_itimer_signals(struct sigpending *pending)
263 {
264 sigset_t signal, retain;
265 struct sigqueue *q, *n;
266
267 signal = pending->signal;
268 sigemptyset(&retain);
269
270 list_for_each_entry_safe(q, n, &pending->list, list) {
271 int sig = q->info.si_signo;
272
273 if (likely(q->info.si_code != SI_TIMER)) {
274 sigaddset(&retain, sig);
275 } else {
276 sigdelset(&signal, sig);
277 list_del_init(&q->list);
278 __sigqueue_free(q);
279 }
280 }
281
282 sigorsets(&pending->signal, &signal, &retain);
283 }
284
285 void flush_itimer_signals(void)
286 {
287 struct task_struct *tsk = current;
288 unsigned long flags;
289
290 spin_lock_irqsave(&tsk->sighand->siglock, flags);
291 __flush_itimer_signals(&tsk->pending);
292 __flush_itimer_signals(&tsk->signal->shared_pending);
293 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
294 }
295
296 void ignore_signals(struct task_struct *t)
297 {
298 int i;
299
300 for (i = 0; i < _NSIG; ++i)
301 t->sighand->action[i].sa.sa_handler = SIG_IGN;
302
303 flush_signals(t);
304 }
305
306 /*
307 * Flush all handlers for a task.
308 */
309
310 void
311 flush_signal_handlers(struct task_struct *t, int force_default)
312 {
313 int i;
314 struct k_sigaction *ka = &t->sighand->action[0];
315 for (i = _NSIG ; i != 0 ; i--) {
316 if (force_default || ka->sa.sa_handler != SIG_IGN)
317 ka->sa.sa_handler = SIG_DFL;
318 ka->sa.sa_flags = 0;
319 sigemptyset(&ka->sa.sa_mask);
320 ka++;
321 }
322 }
323
324 int unhandled_signal(struct task_struct *tsk, int sig)
325 {
326 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
327 if (is_global_init(tsk))
328 return 1;
329 if (handler != SIG_IGN && handler != SIG_DFL)
330 return 0;
331 return !tracehook_consider_fatal_signal(tsk, sig);
332 }
333
334
335 /* Notify the system that a driver wants to block all signals for this
336 * process, and wants to be notified if any signals at all were to be
337 * sent/acted upon. If the notifier routine returns non-zero, then the
338 * signal will be acted upon after all. If the notifier routine returns 0,
339 * then then signal will be blocked. Only one block per process is
340 * allowed. priv is a pointer to private data that the notifier routine
341 * can use to determine if the signal should be blocked or not. */
342
343 void
344 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
345 {
346 unsigned long flags;
347
348 spin_lock_irqsave(&current->sighand->siglock, flags);
349 current->notifier_mask = mask;
350 current->notifier_data = priv;
351 current->notifier = notifier;
352 spin_unlock_irqrestore(&current->sighand->siglock, flags);
353 }
354
355 /* Notify the system that blocking has ended. */
356
357 void
358 unblock_all_signals(void)
359 {
360 unsigned long flags;
361
362 spin_lock_irqsave(&current->sighand->siglock, flags);
363 current->notifier = NULL;
364 current->notifier_data = NULL;
365 recalc_sigpending();
366 spin_unlock_irqrestore(&current->sighand->siglock, flags);
367 }
368
369 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
370 {
371 struct sigqueue *q, *first = NULL;
372
373 /*
374 * Collect the siginfo appropriate to this signal. Check if
375 * there is another siginfo for the same signal.
376 */
377 list_for_each_entry(q, &list->list, list) {
378 if (q->info.si_signo == sig) {
379 if (first)
380 goto still_pending;
381 first = q;
382 }
383 }
384
385 sigdelset(&list->signal, sig);
386
387 if (first) {
388 still_pending:
389 list_del_init(&first->list);
390 copy_siginfo(info, &first->info);
391 __sigqueue_free(first);
392 } else {
393 /* Ok, it wasn't in the queue. This must be
394 a fast-pathed signal or we must have been
395 out of queue space. So zero out the info.
396 */
397 info->si_signo = sig;
398 info->si_errno = 0;
399 info->si_code = 0;
400 info->si_pid = 0;
401 info->si_uid = 0;
402 }
403 }
404
405 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
406 siginfo_t *info)
407 {
408 int sig = next_signal(pending, mask);
409
410 if (sig) {
411 if (current->notifier) {
412 if (sigismember(current->notifier_mask, sig)) {
413 if (!(current->notifier)(current->notifier_data)) {
414 clear_thread_flag(TIF_SIGPENDING);
415 return 0;
416 }
417 }
418 }
419
420 collect_signal(sig, pending, info);
421 }
422
423 return sig;
424 }
425
426 /*
427 * Dequeue a signal and return the element to the caller, which is
428 * expected to free it.
429 *
430 * All callers have to hold the siglock.
431 */
432 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
433 {
434 int signr;
435
436 /* We only dequeue private signals from ourselves, we don't let
437 * signalfd steal them
438 */
439 signr = __dequeue_signal(&tsk->pending, mask, info);
440 if (!signr) {
441 signr = __dequeue_signal(&tsk->signal->shared_pending,
442 mask, info);
443 /*
444 * itimer signal ?
445 *
446 * itimers are process shared and we restart periodic
447 * itimers in the signal delivery path to prevent DoS
448 * attacks in the high resolution timer case. This is
449 * compliant with the old way of self restarting
450 * itimers, as the SIGALRM is a legacy signal and only
451 * queued once. Changing the restart behaviour to
452 * restart the timer in the signal dequeue path is
453 * reducing the timer noise on heavy loaded !highres
454 * systems too.
455 */
456 if (unlikely(signr == SIGALRM)) {
457 struct hrtimer *tmr = &tsk->signal->real_timer;
458
459 if (!hrtimer_is_queued(tmr) &&
460 tsk->signal->it_real_incr.tv64 != 0) {
461 hrtimer_forward(tmr, tmr->base->get_time(),
462 tsk->signal->it_real_incr);
463 hrtimer_restart(tmr);
464 }
465 }
466 }
467
468 recalc_sigpending();
469 if (!signr)
470 return 0;
471
472 if (unlikely(sig_kernel_stop(signr))) {
473 /*
474 * Set a marker that we have dequeued a stop signal. Our
475 * caller might release the siglock and then the pending
476 * stop signal it is about to process is no longer in the
477 * pending bitmasks, but must still be cleared by a SIGCONT
478 * (and overruled by a SIGKILL). So those cases clear this
479 * shared flag after we've set it. Note that this flag may
480 * remain set after the signal we return is ignored or
481 * handled. That doesn't matter because its only purpose
482 * is to alert stop-signal processing code when another
483 * processor has come along and cleared the flag.
484 */
485 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
486 }
487 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
488 /*
489 * Release the siglock to ensure proper locking order
490 * of timer locks outside of siglocks. Note, we leave
491 * irqs disabled here, since the posix-timers code is
492 * about to disable them again anyway.
493 */
494 spin_unlock(&tsk->sighand->siglock);
495 do_schedule_next_timer(info);
496 spin_lock(&tsk->sighand->siglock);
497 }
498 return signr;
499 }
500
501 /*
502 * Tell a process that it has a new active signal..
503 *
504 * NOTE! we rely on the previous spin_lock to
505 * lock interrupts for us! We can only be called with
506 * "siglock" held, and the local interrupt must
507 * have been disabled when that got acquired!
508 *
509 * No need to set need_resched since signal event passing
510 * goes through ->blocked
511 */
512 void signal_wake_up(struct task_struct *t, int resume)
513 {
514 unsigned int mask;
515
516 set_tsk_thread_flag(t, TIF_SIGPENDING);
517
518 /*
519 * For SIGKILL, we want to wake it up in the stopped/traced/killable
520 * case. We don't check t->state here because there is a race with it
521 * executing another processor and just now entering stopped state.
522 * By using wake_up_state, we ensure the process will wake up and
523 * handle its death signal.
524 */
525 mask = TASK_INTERRUPTIBLE;
526 if (resume)
527 mask |= TASK_WAKEKILL;
528 if (!wake_up_state(t, mask))
529 kick_process(t);
530 }
531
532 /*
533 * Remove signals in mask from the pending set and queue.
534 * Returns 1 if any signals were found.
535 *
536 * All callers must be holding the siglock.
537 *
538 * This version takes a sigset mask and looks at all signals,
539 * not just those in the first mask word.
540 */
541 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
542 {
543 struct sigqueue *q, *n;
544 sigset_t m;
545
546 sigandsets(&m, mask, &s->signal);
547 if (sigisemptyset(&m))
548 return 0;
549
550 signandsets(&s->signal, &s->signal, mask);
551 list_for_each_entry_safe(q, n, &s->list, list) {
552 if (sigismember(mask, q->info.si_signo)) {
553 list_del_init(&q->list);
554 __sigqueue_free(q);
555 }
556 }
557 return 1;
558 }
559 /*
560 * Remove signals in mask from the pending set and queue.
561 * Returns 1 if any signals were found.
562 *
563 * All callers must be holding the siglock.
564 */
565 static int rm_from_queue(unsigned long mask, struct sigpending *s)
566 {
567 struct sigqueue *q, *n;
568
569 if (!sigtestsetmask(&s->signal, mask))
570 return 0;
571
572 sigdelsetmask(&s->signal, mask);
573 list_for_each_entry_safe(q, n, &s->list, list) {
574 if (q->info.si_signo < SIGRTMIN &&
575 (mask & sigmask(q->info.si_signo))) {
576 list_del_init(&q->list);
577 __sigqueue_free(q);
578 }
579 }
580 return 1;
581 }
582
583 /*
584 * Bad permissions for sending the signal
585 * - the caller must hold at least the RCU read lock
586 */
587 static int check_kill_permission(int sig, struct siginfo *info,
588 struct task_struct *t)
589 {
590 const struct cred *cred = current_cred(), *tcred;
591 struct pid *sid;
592 int error;
593
594 if (!valid_signal(sig))
595 return -EINVAL;
596
597 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
598 return 0;
599
600 error = audit_signal_info(sig, t); /* Let audit system see the signal */
601 if (error)
602 return error;
603
604 tcred = __task_cred(t);
605 if ((cred->euid ^ tcred->suid) &&
606 (cred->euid ^ tcred->uid) &&
607 (cred->uid ^ tcred->suid) &&
608 (cred->uid ^ tcred->uid) &&
609 !capable(CAP_KILL)) {
610 switch (sig) {
611 case SIGCONT:
612 sid = task_session(t);
613 /*
614 * We don't return the error if sid == NULL. The
615 * task was unhashed, the caller must notice this.
616 */
617 if (!sid || sid == task_session(current))
618 break;
619 default:
620 return -EPERM;
621 }
622 }
623
624 return security_task_kill(t, info, sig, 0);
625 }
626
627 /*
628 * Handle magic process-wide effects of stop/continue signals. Unlike
629 * the signal actions, these happen immediately at signal-generation
630 * time regardless of blocking, ignoring, or handling. This does the
631 * actual continuing for SIGCONT, but not the actual stopping for stop
632 * signals. The process stop is done as a signal action for SIG_DFL.
633 *
634 * Returns true if the signal should be actually delivered, otherwise
635 * it should be dropped.
636 */
637 static int prepare_signal(int sig, struct task_struct *p)
638 {
639 struct signal_struct *signal = p->signal;
640 struct task_struct *t;
641
642 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
643 /*
644 * The process is in the middle of dying, nothing to do.
645 */
646 } else if (sig_kernel_stop(sig)) {
647 /*
648 * This is a stop signal. Remove SIGCONT from all queues.
649 */
650 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
651 t = p;
652 do {
653 rm_from_queue(sigmask(SIGCONT), &t->pending);
654 } while_each_thread(p, t);
655 } else if (sig == SIGCONT) {
656 unsigned int why;
657 /*
658 * Remove all stop signals from all queues,
659 * and wake all threads.
660 */
661 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
662 t = p;
663 do {
664 unsigned int state;
665 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
666 /*
667 * If there is a handler for SIGCONT, we must make
668 * sure that no thread returns to user mode before
669 * we post the signal, in case it was the only
670 * thread eligible to run the signal handler--then
671 * it must not do anything between resuming and
672 * running the handler. With the TIF_SIGPENDING
673 * flag set, the thread will pause and acquire the
674 * siglock that we hold now and until we've queued
675 * the pending signal.
676 *
677 * Wake up the stopped thread _after_ setting
678 * TIF_SIGPENDING
679 */
680 state = __TASK_STOPPED;
681 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
682 set_tsk_thread_flag(t, TIF_SIGPENDING);
683 state |= TASK_INTERRUPTIBLE;
684 }
685 wake_up_state(t, state);
686 } while_each_thread(p, t);
687
688 /*
689 * Notify the parent with CLD_CONTINUED if we were stopped.
690 *
691 * If we were in the middle of a group stop, we pretend it
692 * was already finished, and then continued. Since SIGCHLD
693 * doesn't queue we report only CLD_STOPPED, as if the next
694 * CLD_CONTINUED was dropped.
695 */
696 why = 0;
697 if (signal->flags & SIGNAL_STOP_STOPPED)
698 why |= SIGNAL_CLD_CONTINUED;
699 else if (signal->group_stop_count)
700 why |= SIGNAL_CLD_STOPPED;
701
702 if (why) {
703 /*
704 * The first thread which returns from finish_stop()
705 * will take ->siglock, notice SIGNAL_CLD_MASK, and
706 * notify its parent. See get_signal_to_deliver().
707 */
708 signal->flags = why | SIGNAL_STOP_CONTINUED;
709 signal->group_stop_count = 0;
710 signal->group_exit_code = 0;
711 } else {
712 /*
713 * We are not stopped, but there could be a stop
714 * signal in the middle of being processed after
715 * being removed from the queue. Clear that too.
716 */
717 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
718 }
719 }
720
721 return !sig_ignored(p, sig);
722 }
723
724 /*
725 * Test if P wants to take SIG. After we've checked all threads with this,
726 * it's equivalent to finding no threads not blocking SIG. Any threads not
727 * blocking SIG were ruled out because they are not running and already
728 * have pending signals. Such threads will dequeue from the shared queue
729 * as soon as they're available, so putting the signal on the shared queue
730 * will be equivalent to sending it to one such thread.
731 */
732 static inline int wants_signal(int sig, struct task_struct *p)
733 {
734 if (sigismember(&p->blocked, sig))
735 return 0;
736 if (p->flags & PF_EXITING)
737 return 0;
738 if (sig == SIGKILL)
739 return 1;
740 if (task_is_stopped_or_traced(p))
741 return 0;
742 return task_curr(p) || !signal_pending(p);
743 }
744
745 static void complete_signal(int sig, struct task_struct *p, int group)
746 {
747 struct signal_struct *signal = p->signal;
748 struct task_struct *t;
749
750 /*
751 * Now find a thread we can wake up to take the signal off the queue.
752 *
753 * If the main thread wants the signal, it gets first crack.
754 * Probably the least surprising to the average bear.
755 */
756 if (wants_signal(sig, p))
757 t = p;
758 else if (!group || thread_group_empty(p))
759 /*
760 * There is just one thread and it does not need to be woken.
761 * It will dequeue unblocked signals before it runs again.
762 */
763 return;
764 else {
765 /*
766 * Otherwise try to find a suitable thread.
767 */
768 t = signal->curr_target;
769 while (!wants_signal(sig, t)) {
770 t = next_thread(t);
771 if (t == signal->curr_target)
772 /*
773 * No thread needs to be woken.
774 * Any eligible threads will see
775 * the signal in the queue soon.
776 */
777 return;
778 }
779 signal->curr_target = t;
780 }
781
782 /*
783 * Found a killable thread. If the signal will be fatal,
784 * then start taking the whole group down immediately.
785 */
786 if (sig_fatal(p, sig) &&
787 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
788 !sigismember(&t->real_blocked, sig) &&
789 (sig == SIGKILL ||
790 !tracehook_consider_fatal_signal(t, sig))) {
791 /*
792 * This signal will be fatal to the whole group.
793 */
794 if (!sig_kernel_coredump(sig)) {
795 /*
796 * Start a group exit and wake everybody up.
797 * This way we don't have other threads
798 * running and doing things after a slower
799 * thread has the fatal signal pending.
800 */
801 signal->flags = SIGNAL_GROUP_EXIT;
802 signal->group_exit_code = sig;
803 signal->group_stop_count = 0;
804 t = p;
805 do {
806 sigaddset(&t->pending.signal, SIGKILL);
807 signal_wake_up(t, 1);
808 } while_each_thread(p, t);
809 return;
810 }
811 }
812
813 /*
814 * The signal is already in the shared-pending queue.
815 * Tell the chosen thread to wake up and dequeue it.
816 */
817 signal_wake_up(t, sig == SIGKILL);
818 return;
819 }
820
821 static inline int legacy_queue(struct sigpending *signals, int sig)
822 {
823 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
824 }
825
826 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
827 int group, int from_ancestor_ns)
828 {
829 struct sigpending *pending;
830 struct sigqueue *q;
831
832 trace_sched_signal_send(sig, t);
833
834 assert_spin_locked(&t->sighand->siglock);
835 if (!prepare_signal(sig, t))
836 return 0;
837
838 pending = group ? &t->signal->shared_pending : &t->pending;
839 /*
840 * Short-circuit ignored signals and support queuing
841 * exactly one non-rt signal, so that we can get more
842 * detailed information about the cause of the signal.
843 */
844 if (legacy_queue(pending, sig))
845 return 0;
846 /*
847 * fast-pathed signals for kernel-internal things like SIGSTOP
848 * or SIGKILL.
849 */
850 if (info == SEND_SIG_FORCED)
851 goto out_set;
852
853 /* Real-time signals must be queued if sent by sigqueue, or
854 some other real-time mechanism. It is implementation
855 defined whether kill() does so. We attempt to do so, on
856 the principle of least surprise, but since kill is not
857 allowed to fail with EAGAIN when low on memory we just
858 make sure at least one signal gets delivered and don't
859 pass on the info struct. */
860
861 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
862 (is_si_special(info) ||
863 info->si_code >= 0)));
864 if (q) {
865 list_add_tail(&q->list, &pending->list);
866 switch ((unsigned long) info) {
867 case (unsigned long) SEND_SIG_NOINFO:
868 q->info.si_signo = sig;
869 q->info.si_errno = 0;
870 q->info.si_code = SI_USER;
871 q->info.si_pid = task_tgid_nr_ns(current,
872 task_active_pid_ns(t));
873 q->info.si_uid = current_uid();
874 break;
875 case (unsigned long) SEND_SIG_PRIV:
876 q->info.si_signo = sig;
877 q->info.si_errno = 0;
878 q->info.si_code = SI_KERNEL;
879 q->info.si_pid = 0;
880 q->info.si_uid = 0;
881 break;
882 default:
883 copy_siginfo(&q->info, info);
884 break;
885 }
886 } else if (!is_si_special(info)) {
887 if (sig >= SIGRTMIN && info->si_code != SI_USER)
888 /*
889 * Queue overflow, abort. We may abort if the signal was rt
890 * and sent by user using something other than kill().
891 */
892 return -EAGAIN;
893 }
894
895 out_set:
896 signalfd_notify(t, sig);
897 sigaddset(&pending->signal, sig);
898 complete_signal(sig, t, group);
899 return 0;
900 }
901
902 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
903 int group)
904 {
905 return __send_signal(sig, info, t, group, 0);
906 }
907
908 int print_fatal_signals;
909
910 static void print_fatal_signal(struct pt_regs *regs, int signr)
911 {
912 printk("%s/%d: potentially unexpected fatal signal %d.\n",
913 current->comm, task_pid_nr(current), signr);
914
915 #if defined(__i386__) && !defined(__arch_um__)
916 printk("code at %08lx: ", regs->ip);
917 {
918 int i;
919 for (i = 0; i < 16; i++) {
920 unsigned char insn;
921
922 __get_user(insn, (unsigned char *)(regs->ip + i));
923 printk("%02x ", insn);
924 }
925 }
926 #endif
927 printk("\n");
928 preempt_disable();
929 show_regs(regs);
930 preempt_enable();
931 }
932
933 static int __init setup_print_fatal_signals(char *str)
934 {
935 get_option (&str, &print_fatal_signals);
936
937 return 1;
938 }
939
940 __setup("print-fatal-signals=", setup_print_fatal_signals);
941
942 int
943 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
944 {
945 return send_signal(sig, info, p, 1);
946 }
947
948 static int
949 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
950 {
951 return send_signal(sig, info, t, 0);
952 }
953
954 /*
955 * Force a signal that the process can't ignore: if necessary
956 * we unblock the signal and change any SIG_IGN to SIG_DFL.
957 *
958 * Note: If we unblock the signal, we always reset it to SIG_DFL,
959 * since we do not want to have a signal handler that was blocked
960 * be invoked when user space had explicitly blocked it.
961 *
962 * We don't want to have recursive SIGSEGV's etc, for example,
963 * that is why we also clear SIGNAL_UNKILLABLE.
964 */
965 int
966 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
967 {
968 unsigned long int flags;
969 int ret, blocked, ignored;
970 struct k_sigaction *action;
971
972 spin_lock_irqsave(&t->sighand->siglock, flags);
973 action = &t->sighand->action[sig-1];
974 ignored = action->sa.sa_handler == SIG_IGN;
975 blocked = sigismember(&t->blocked, sig);
976 if (blocked || ignored) {
977 action->sa.sa_handler = SIG_DFL;
978 if (blocked) {
979 sigdelset(&t->blocked, sig);
980 recalc_sigpending_and_wake(t);
981 }
982 }
983 if (action->sa.sa_handler == SIG_DFL)
984 t->signal->flags &= ~SIGNAL_UNKILLABLE;
985 ret = specific_send_sig_info(sig, info, t);
986 spin_unlock_irqrestore(&t->sighand->siglock, flags);
987
988 return ret;
989 }
990
991 void
992 force_sig_specific(int sig, struct task_struct *t)
993 {
994 force_sig_info(sig, SEND_SIG_FORCED, t);
995 }
996
997 /*
998 * Nuke all other threads in the group.
999 */
1000 void zap_other_threads(struct task_struct *p)
1001 {
1002 struct task_struct *t;
1003
1004 p->signal->group_stop_count = 0;
1005
1006 for (t = next_thread(p); t != p; t = next_thread(t)) {
1007 /*
1008 * Don't bother with already dead threads
1009 */
1010 if (t->exit_state)
1011 continue;
1012
1013 /* SIGKILL will be handled before any pending SIGSTOP */
1014 sigaddset(&t->pending.signal, SIGKILL);
1015 signal_wake_up(t, 1);
1016 }
1017 }
1018
1019 int __fatal_signal_pending(struct task_struct *tsk)
1020 {
1021 return sigismember(&tsk->pending.signal, SIGKILL);
1022 }
1023 EXPORT_SYMBOL(__fatal_signal_pending);
1024
1025 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1026 {
1027 struct sighand_struct *sighand;
1028
1029 rcu_read_lock();
1030 for (;;) {
1031 sighand = rcu_dereference(tsk->sighand);
1032 if (unlikely(sighand == NULL))
1033 break;
1034
1035 spin_lock_irqsave(&sighand->siglock, *flags);
1036 if (likely(sighand == tsk->sighand))
1037 break;
1038 spin_unlock_irqrestore(&sighand->siglock, *flags);
1039 }
1040 rcu_read_unlock();
1041
1042 return sighand;
1043 }
1044
1045 /*
1046 * send signal info to all the members of a group
1047 * - the caller must hold the RCU read lock at least
1048 */
1049 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1050 {
1051 unsigned long flags;
1052 int ret;
1053
1054 ret = check_kill_permission(sig, info, p);
1055
1056 if (!ret && sig) {
1057 ret = -ESRCH;
1058 if (lock_task_sighand(p, &flags)) {
1059 ret = __group_send_sig_info(sig, info, p);
1060 unlock_task_sighand(p, &flags);
1061 }
1062 }
1063
1064 return ret;
1065 }
1066
1067 /*
1068 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1069 * control characters do (^C, ^Z etc)
1070 * - the caller must hold at least a readlock on tasklist_lock
1071 */
1072 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1073 {
1074 struct task_struct *p = NULL;
1075 int retval, success;
1076
1077 success = 0;
1078 retval = -ESRCH;
1079 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1080 int err = group_send_sig_info(sig, info, p);
1081 success |= !err;
1082 retval = err;
1083 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1084 return success ? 0 : retval;
1085 }
1086
1087 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1088 {
1089 int error = -ESRCH;
1090 struct task_struct *p;
1091
1092 rcu_read_lock();
1093 retry:
1094 p = pid_task(pid, PIDTYPE_PID);
1095 if (p) {
1096 error = group_send_sig_info(sig, info, p);
1097 if (unlikely(error == -ESRCH))
1098 /*
1099 * The task was unhashed in between, try again.
1100 * If it is dead, pid_task() will return NULL,
1101 * if we race with de_thread() it will find the
1102 * new leader.
1103 */
1104 goto retry;
1105 }
1106 rcu_read_unlock();
1107
1108 return error;
1109 }
1110
1111 int
1112 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1113 {
1114 int error;
1115 rcu_read_lock();
1116 error = kill_pid_info(sig, info, find_vpid(pid));
1117 rcu_read_unlock();
1118 return error;
1119 }
1120
1121 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1122 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1123 uid_t uid, uid_t euid, u32 secid)
1124 {
1125 int ret = -EINVAL;
1126 struct task_struct *p;
1127 const struct cred *pcred;
1128
1129 if (!valid_signal(sig))
1130 return ret;
1131
1132 read_lock(&tasklist_lock);
1133 p = pid_task(pid, PIDTYPE_PID);
1134 if (!p) {
1135 ret = -ESRCH;
1136 goto out_unlock;
1137 }
1138 pcred = __task_cred(p);
1139 if ((info == SEND_SIG_NOINFO ||
1140 (!is_si_special(info) && SI_FROMUSER(info))) &&
1141 euid != pcred->suid && euid != pcred->uid &&
1142 uid != pcred->suid && uid != pcred->uid) {
1143 ret = -EPERM;
1144 goto out_unlock;
1145 }
1146 ret = security_task_kill(p, info, sig, secid);
1147 if (ret)
1148 goto out_unlock;
1149 if (sig && p->sighand) {
1150 unsigned long flags;
1151 spin_lock_irqsave(&p->sighand->siglock, flags);
1152 ret = __send_signal(sig, info, p, 1, 0);
1153 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1154 }
1155 out_unlock:
1156 read_unlock(&tasklist_lock);
1157 return ret;
1158 }
1159 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1160
1161 /*
1162 * kill_something_info() interprets pid in interesting ways just like kill(2).
1163 *
1164 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1165 * is probably wrong. Should make it like BSD or SYSV.
1166 */
1167
1168 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1169 {
1170 int ret;
1171
1172 if (pid > 0) {
1173 rcu_read_lock();
1174 ret = kill_pid_info(sig, info, find_vpid(pid));
1175 rcu_read_unlock();
1176 return ret;
1177 }
1178
1179 read_lock(&tasklist_lock);
1180 if (pid != -1) {
1181 ret = __kill_pgrp_info(sig, info,
1182 pid ? find_vpid(-pid) : task_pgrp(current));
1183 } else {
1184 int retval = 0, count = 0;
1185 struct task_struct * p;
1186
1187 for_each_process(p) {
1188 if (task_pid_vnr(p) > 1 &&
1189 !same_thread_group(p, current)) {
1190 int err = group_send_sig_info(sig, info, p);
1191 ++count;
1192 if (err != -EPERM)
1193 retval = err;
1194 }
1195 }
1196 ret = count ? retval : -ESRCH;
1197 }
1198 read_unlock(&tasklist_lock);
1199
1200 return ret;
1201 }
1202
1203 /*
1204 * These are for backward compatibility with the rest of the kernel source.
1205 */
1206
1207 /*
1208 * The caller must ensure the task can't exit.
1209 */
1210 int
1211 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1212 {
1213 int ret;
1214 unsigned long flags;
1215
1216 /*
1217 * Make sure legacy kernel users don't send in bad values
1218 * (normal paths check this in check_kill_permission).
1219 */
1220 if (!valid_signal(sig))
1221 return -EINVAL;
1222
1223 spin_lock_irqsave(&p->sighand->siglock, flags);
1224 ret = specific_send_sig_info(sig, info, p);
1225 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1226 return ret;
1227 }
1228
1229 #define __si_special(priv) \
1230 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1231
1232 int
1233 send_sig(int sig, struct task_struct *p, int priv)
1234 {
1235 return send_sig_info(sig, __si_special(priv), p);
1236 }
1237
1238 void
1239 force_sig(int sig, struct task_struct *p)
1240 {
1241 force_sig_info(sig, SEND_SIG_PRIV, p);
1242 }
1243
1244 /*
1245 * When things go south during signal handling, we
1246 * will force a SIGSEGV. And if the signal that caused
1247 * the problem was already a SIGSEGV, we'll want to
1248 * make sure we don't even try to deliver the signal..
1249 */
1250 int
1251 force_sigsegv(int sig, struct task_struct *p)
1252 {
1253 if (sig == SIGSEGV) {
1254 unsigned long flags;
1255 spin_lock_irqsave(&p->sighand->siglock, flags);
1256 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1257 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1258 }
1259 force_sig(SIGSEGV, p);
1260 return 0;
1261 }
1262
1263 int kill_pgrp(struct pid *pid, int sig, int priv)
1264 {
1265 int ret;
1266
1267 read_lock(&tasklist_lock);
1268 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1269 read_unlock(&tasklist_lock);
1270
1271 return ret;
1272 }
1273 EXPORT_SYMBOL(kill_pgrp);
1274
1275 int kill_pid(struct pid *pid, int sig, int priv)
1276 {
1277 return kill_pid_info(sig, __si_special(priv), pid);
1278 }
1279 EXPORT_SYMBOL(kill_pid);
1280
1281 /*
1282 * These functions support sending signals using preallocated sigqueue
1283 * structures. This is needed "because realtime applications cannot
1284 * afford to lose notifications of asynchronous events, like timer
1285 * expirations or I/O completions". In the case of Posix Timers
1286 * we allocate the sigqueue structure from the timer_create. If this
1287 * allocation fails we are able to report the failure to the application
1288 * with an EAGAIN error.
1289 */
1290
1291 struct sigqueue *sigqueue_alloc(void)
1292 {
1293 struct sigqueue *q;
1294
1295 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1296 q->flags |= SIGQUEUE_PREALLOC;
1297 return(q);
1298 }
1299
1300 void sigqueue_free(struct sigqueue *q)
1301 {
1302 unsigned long flags;
1303 spinlock_t *lock = &current->sighand->siglock;
1304
1305 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1306 /*
1307 * We must hold ->siglock while testing q->list
1308 * to serialize with collect_signal() or with
1309 * __exit_signal()->flush_sigqueue().
1310 */
1311 spin_lock_irqsave(lock, flags);
1312 q->flags &= ~SIGQUEUE_PREALLOC;
1313 /*
1314 * If it is queued it will be freed when dequeued,
1315 * like the "regular" sigqueue.
1316 */
1317 if (!list_empty(&q->list))
1318 q = NULL;
1319 spin_unlock_irqrestore(lock, flags);
1320
1321 if (q)
1322 __sigqueue_free(q);
1323 }
1324
1325 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1326 {
1327 int sig = q->info.si_signo;
1328 struct sigpending *pending;
1329 unsigned long flags;
1330 int ret;
1331
1332 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1333
1334 ret = -1;
1335 if (!likely(lock_task_sighand(t, &flags)))
1336 goto ret;
1337
1338 ret = 1; /* the signal is ignored */
1339 if (!prepare_signal(sig, t))
1340 goto out;
1341
1342 ret = 0;
1343 if (unlikely(!list_empty(&q->list))) {
1344 /*
1345 * If an SI_TIMER entry is already queue just increment
1346 * the overrun count.
1347 */
1348 BUG_ON(q->info.si_code != SI_TIMER);
1349 q->info.si_overrun++;
1350 goto out;
1351 }
1352 q->info.si_overrun = 0;
1353
1354 signalfd_notify(t, sig);
1355 pending = group ? &t->signal->shared_pending : &t->pending;
1356 list_add_tail(&q->list, &pending->list);
1357 sigaddset(&pending->signal, sig);
1358 complete_signal(sig, t, group);
1359 out:
1360 unlock_task_sighand(t, &flags);
1361 ret:
1362 return ret;
1363 }
1364
1365 /*
1366 * Wake up any threads in the parent blocked in wait* syscalls.
1367 */
1368 static inline void __wake_up_parent(struct task_struct *p,
1369 struct task_struct *parent)
1370 {
1371 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1372 }
1373
1374 /*
1375 * Let a parent know about the death of a child.
1376 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1377 *
1378 * Returns -1 if our parent ignored us and so we've switched to
1379 * self-reaping, or else @sig.
1380 */
1381 int do_notify_parent(struct task_struct *tsk, int sig)
1382 {
1383 struct siginfo info;
1384 unsigned long flags;
1385 struct sighand_struct *psig;
1386 int ret = sig;
1387
1388 BUG_ON(sig == -1);
1389
1390 /* do_notify_parent_cldstop should have been called instead. */
1391 BUG_ON(task_is_stopped_or_traced(tsk));
1392
1393 BUG_ON(!tsk->ptrace &&
1394 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1395
1396 info.si_signo = sig;
1397 info.si_errno = 0;
1398 /*
1399 * we are under tasklist_lock here so our parent is tied to
1400 * us and cannot exit and release its namespace.
1401 *
1402 * the only it can is to switch its nsproxy with sys_unshare,
1403 * bu uncharing pid namespaces is not allowed, so we'll always
1404 * see relevant namespace
1405 *
1406 * write_lock() currently calls preempt_disable() which is the
1407 * same as rcu_read_lock(), but according to Oleg, this is not
1408 * correct to rely on this
1409 */
1410 rcu_read_lock();
1411 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1412 info.si_uid = __task_cred(tsk)->uid;
1413 rcu_read_unlock();
1414
1415 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1416 tsk->signal->utime));
1417 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1418 tsk->signal->stime));
1419
1420 info.si_status = tsk->exit_code & 0x7f;
1421 if (tsk->exit_code & 0x80)
1422 info.si_code = CLD_DUMPED;
1423 else if (tsk->exit_code & 0x7f)
1424 info.si_code = CLD_KILLED;
1425 else {
1426 info.si_code = CLD_EXITED;
1427 info.si_status = tsk->exit_code >> 8;
1428 }
1429
1430 psig = tsk->parent->sighand;
1431 spin_lock_irqsave(&psig->siglock, flags);
1432 if (!tsk->ptrace && sig == SIGCHLD &&
1433 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1434 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1435 /*
1436 * We are exiting and our parent doesn't care. POSIX.1
1437 * defines special semantics for setting SIGCHLD to SIG_IGN
1438 * or setting the SA_NOCLDWAIT flag: we should be reaped
1439 * automatically and not left for our parent's wait4 call.
1440 * Rather than having the parent do it as a magic kind of
1441 * signal handler, we just set this to tell do_exit that we
1442 * can be cleaned up without becoming a zombie. Note that
1443 * we still call __wake_up_parent in this case, because a
1444 * blocked sys_wait4 might now return -ECHILD.
1445 *
1446 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1447 * is implementation-defined: we do (if you don't want
1448 * it, just use SIG_IGN instead).
1449 */
1450 ret = tsk->exit_signal = -1;
1451 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1452 sig = -1;
1453 }
1454 if (valid_signal(sig) && sig > 0)
1455 __group_send_sig_info(sig, &info, tsk->parent);
1456 __wake_up_parent(tsk, tsk->parent);
1457 spin_unlock_irqrestore(&psig->siglock, flags);
1458
1459 return ret;
1460 }
1461
1462 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1463 {
1464 struct siginfo info;
1465 unsigned long flags;
1466 struct task_struct *parent;
1467 struct sighand_struct *sighand;
1468
1469 if (tsk->ptrace & PT_PTRACED)
1470 parent = tsk->parent;
1471 else {
1472 tsk = tsk->group_leader;
1473 parent = tsk->real_parent;
1474 }
1475
1476 info.si_signo = SIGCHLD;
1477 info.si_errno = 0;
1478 /*
1479 * see comment in do_notify_parent() abot the following 3 lines
1480 */
1481 rcu_read_lock();
1482 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1483 info.si_uid = __task_cred(tsk)->uid;
1484 rcu_read_unlock();
1485
1486 info.si_utime = cputime_to_clock_t(tsk->utime);
1487 info.si_stime = cputime_to_clock_t(tsk->stime);
1488
1489 info.si_code = why;
1490 switch (why) {
1491 case CLD_CONTINUED:
1492 info.si_status = SIGCONT;
1493 break;
1494 case CLD_STOPPED:
1495 info.si_status = tsk->signal->group_exit_code & 0x7f;
1496 break;
1497 case CLD_TRAPPED:
1498 info.si_status = tsk->exit_code & 0x7f;
1499 break;
1500 default:
1501 BUG();
1502 }
1503
1504 sighand = parent->sighand;
1505 spin_lock_irqsave(&sighand->siglock, flags);
1506 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1507 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1508 __group_send_sig_info(SIGCHLD, &info, parent);
1509 /*
1510 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1511 */
1512 __wake_up_parent(tsk, parent);
1513 spin_unlock_irqrestore(&sighand->siglock, flags);
1514 }
1515
1516 static inline int may_ptrace_stop(void)
1517 {
1518 if (!likely(current->ptrace & PT_PTRACED))
1519 return 0;
1520 /*
1521 * Are we in the middle of do_coredump?
1522 * If so and our tracer is also part of the coredump stopping
1523 * is a deadlock situation, and pointless because our tracer
1524 * is dead so don't allow us to stop.
1525 * If SIGKILL was already sent before the caller unlocked
1526 * ->siglock we must see ->core_state != NULL. Otherwise it
1527 * is safe to enter schedule().
1528 */
1529 if (unlikely(current->mm->core_state) &&
1530 unlikely(current->mm == current->parent->mm))
1531 return 0;
1532
1533 return 1;
1534 }
1535
1536 /*
1537 * Return nonzero if there is a SIGKILL that should be waking us up.
1538 * Called with the siglock held.
1539 */
1540 static int sigkill_pending(struct task_struct *tsk)
1541 {
1542 return sigismember(&tsk->pending.signal, SIGKILL) ||
1543 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1544 }
1545
1546 /*
1547 * This must be called with current->sighand->siglock held.
1548 *
1549 * This should be the path for all ptrace stops.
1550 * We always set current->last_siginfo while stopped here.
1551 * That makes it a way to test a stopped process for
1552 * being ptrace-stopped vs being job-control-stopped.
1553 *
1554 * If we actually decide not to stop at all because the tracer
1555 * is gone, we keep current->exit_code unless clear_code.
1556 */
1557 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1558 {
1559 if (arch_ptrace_stop_needed(exit_code, info)) {
1560 /*
1561 * The arch code has something special to do before a
1562 * ptrace stop. This is allowed to block, e.g. for faults
1563 * on user stack pages. We can't keep the siglock while
1564 * calling arch_ptrace_stop, so we must release it now.
1565 * To preserve proper semantics, we must do this before
1566 * any signal bookkeeping like checking group_stop_count.
1567 * Meanwhile, a SIGKILL could come in before we retake the
1568 * siglock. That must prevent us from sleeping in TASK_TRACED.
1569 * So after regaining the lock, we must check for SIGKILL.
1570 */
1571 spin_unlock_irq(&current->sighand->siglock);
1572 arch_ptrace_stop(exit_code, info);
1573 spin_lock_irq(&current->sighand->siglock);
1574 if (sigkill_pending(current))
1575 return;
1576 }
1577
1578 /*
1579 * If there is a group stop in progress,
1580 * we must participate in the bookkeeping.
1581 */
1582 if (current->signal->group_stop_count > 0)
1583 --current->signal->group_stop_count;
1584
1585 current->last_siginfo = info;
1586 current->exit_code = exit_code;
1587
1588 /* Let the debugger run. */
1589 __set_current_state(TASK_TRACED);
1590 spin_unlock_irq(&current->sighand->siglock);
1591 read_lock(&tasklist_lock);
1592 if (may_ptrace_stop()) {
1593 do_notify_parent_cldstop(current, CLD_TRAPPED);
1594 /*
1595 * Don't want to allow preemption here, because
1596 * sys_ptrace() needs this task to be inactive.
1597 *
1598 * XXX: implement read_unlock_no_resched().
1599 */
1600 preempt_disable();
1601 read_unlock(&tasklist_lock);
1602 preempt_enable_no_resched();
1603 schedule();
1604 } else {
1605 /*
1606 * By the time we got the lock, our tracer went away.
1607 * Don't drop the lock yet, another tracer may come.
1608 */
1609 __set_current_state(TASK_RUNNING);
1610 if (clear_code)
1611 current->exit_code = 0;
1612 read_unlock(&tasklist_lock);
1613 }
1614
1615 /*
1616 * While in TASK_TRACED, we were considered "frozen enough".
1617 * Now that we woke up, it's crucial if we're supposed to be
1618 * frozen that we freeze now before running anything substantial.
1619 */
1620 try_to_freeze();
1621
1622 /*
1623 * We are back. Now reacquire the siglock before touching
1624 * last_siginfo, so that we are sure to have synchronized with
1625 * any signal-sending on another CPU that wants to examine it.
1626 */
1627 spin_lock_irq(&current->sighand->siglock);
1628 current->last_siginfo = NULL;
1629
1630 /*
1631 * Queued signals ignored us while we were stopped for tracing.
1632 * So check for any that we should take before resuming user mode.
1633 * This sets TIF_SIGPENDING, but never clears it.
1634 */
1635 recalc_sigpending_tsk(current);
1636 }
1637
1638 void ptrace_notify(int exit_code)
1639 {
1640 siginfo_t info;
1641
1642 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1643
1644 memset(&info, 0, sizeof info);
1645 info.si_signo = SIGTRAP;
1646 info.si_code = exit_code;
1647 info.si_pid = task_pid_vnr(current);
1648 info.si_uid = current_uid();
1649
1650 /* Let the debugger run. */
1651 spin_lock_irq(&current->sighand->siglock);
1652 ptrace_stop(exit_code, 1, &info);
1653 spin_unlock_irq(&current->sighand->siglock);
1654 }
1655
1656 static void
1657 finish_stop(int stop_count)
1658 {
1659 /*
1660 * If there are no other threads in the group, or if there is
1661 * a group stop in progress and we are the last to stop,
1662 * report to the parent. When ptraced, every thread reports itself.
1663 */
1664 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1665 read_lock(&tasklist_lock);
1666 do_notify_parent_cldstop(current, CLD_STOPPED);
1667 read_unlock(&tasklist_lock);
1668 }
1669
1670 do {
1671 schedule();
1672 } while (try_to_freeze());
1673 /*
1674 * Now we don't run again until continued.
1675 */
1676 current->exit_code = 0;
1677 }
1678
1679 /*
1680 * This performs the stopping for SIGSTOP and other stop signals.
1681 * We have to stop all threads in the thread group.
1682 * Returns nonzero if we've actually stopped and released the siglock.
1683 * Returns zero if we didn't stop and still hold the siglock.
1684 */
1685 static int do_signal_stop(int signr)
1686 {
1687 struct signal_struct *sig = current->signal;
1688 int stop_count;
1689
1690 if (sig->group_stop_count > 0) {
1691 /*
1692 * There is a group stop in progress. We don't need to
1693 * start another one.
1694 */
1695 stop_count = --sig->group_stop_count;
1696 } else {
1697 struct task_struct *t;
1698
1699 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1700 unlikely(signal_group_exit(sig)))
1701 return 0;
1702 /*
1703 * There is no group stop already in progress.
1704 * We must initiate one now.
1705 */
1706 sig->group_exit_code = signr;
1707
1708 stop_count = 0;
1709 for (t = next_thread(current); t != current; t = next_thread(t))
1710 /*
1711 * Setting state to TASK_STOPPED for a group
1712 * stop is always done with the siglock held,
1713 * so this check has no races.
1714 */
1715 if (!(t->flags & PF_EXITING) &&
1716 !task_is_stopped_or_traced(t)) {
1717 stop_count++;
1718 signal_wake_up(t, 0);
1719 }
1720 sig->group_stop_count = stop_count;
1721 }
1722
1723 if (stop_count == 0)
1724 sig->flags = SIGNAL_STOP_STOPPED;
1725 current->exit_code = sig->group_exit_code;
1726 __set_current_state(TASK_STOPPED);
1727
1728 spin_unlock_irq(&current->sighand->siglock);
1729 finish_stop(stop_count);
1730 return 1;
1731 }
1732
1733 static int ptrace_signal(int signr, siginfo_t *info,
1734 struct pt_regs *regs, void *cookie)
1735 {
1736 if (!(current->ptrace & PT_PTRACED))
1737 return signr;
1738
1739 ptrace_signal_deliver(regs, cookie);
1740
1741 /* Let the debugger run. */
1742 ptrace_stop(signr, 0, info);
1743
1744 /* We're back. Did the debugger cancel the sig? */
1745 signr = current->exit_code;
1746 if (signr == 0)
1747 return signr;
1748
1749 current->exit_code = 0;
1750
1751 /* Update the siginfo structure if the signal has
1752 changed. If the debugger wanted something
1753 specific in the siginfo structure then it should
1754 have updated *info via PTRACE_SETSIGINFO. */
1755 if (signr != info->si_signo) {
1756 info->si_signo = signr;
1757 info->si_errno = 0;
1758 info->si_code = SI_USER;
1759 info->si_pid = task_pid_vnr(current->parent);
1760 info->si_uid = task_uid(current->parent);
1761 }
1762
1763 /* If the (new) signal is now blocked, requeue it. */
1764 if (sigismember(&current->blocked, signr)) {
1765 specific_send_sig_info(signr, info, current);
1766 signr = 0;
1767 }
1768
1769 return signr;
1770 }
1771
1772 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1773 struct pt_regs *regs, void *cookie)
1774 {
1775 struct sighand_struct *sighand = current->sighand;
1776 struct signal_struct *signal = current->signal;
1777 int signr;
1778
1779 relock:
1780 /*
1781 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1782 * While in TASK_STOPPED, we were considered "frozen enough".
1783 * Now that we woke up, it's crucial if we're supposed to be
1784 * frozen that we freeze now before running anything substantial.
1785 */
1786 try_to_freeze();
1787
1788 spin_lock_irq(&sighand->siglock);
1789 /*
1790 * Every stopped thread goes here after wakeup. Check to see if
1791 * we should notify the parent, prepare_signal(SIGCONT) encodes
1792 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1793 */
1794 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1795 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1796 ? CLD_CONTINUED : CLD_STOPPED;
1797 signal->flags &= ~SIGNAL_CLD_MASK;
1798 spin_unlock_irq(&sighand->siglock);
1799
1800 if (unlikely(!tracehook_notify_jctl(1, why)))
1801 goto relock;
1802
1803 read_lock(&tasklist_lock);
1804 do_notify_parent_cldstop(current->group_leader, why);
1805 read_unlock(&tasklist_lock);
1806 goto relock;
1807 }
1808
1809 for (;;) {
1810 struct k_sigaction *ka;
1811
1812 if (unlikely(signal->group_stop_count > 0) &&
1813 do_signal_stop(0))
1814 goto relock;
1815
1816 /*
1817 * Tracing can induce an artifical signal and choose sigaction.
1818 * The return value in @signr determines the default action,
1819 * but @info->si_signo is the signal number we will report.
1820 */
1821 signr = tracehook_get_signal(current, regs, info, return_ka);
1822 if (unlikely(signr < 0))
1823 goto relock;
1824 if (unlikely(signr != 0))
1825 ka = return_ka;
1826 else {
1827 signr = dequeue_signal(current, &current->blocked,
1828 info);
1829
1830 if (!signr)
1831 break; /* will return 0 */
1832
1833 if (signr != SIGKILL) {
1834 signr = ptrace_signal(signr, info,
1835 regs, cookie);
1836 if (!signr)
1837 continue;
1838 }
1839
1840 ka = &sighand->action[signr-1];
1841 }
1842
1843 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1844 continue;
1845 if (ka->sa.sa_handler != SIG_DFL) {
1846 /* Run the handler. */
1847 *return_ka = *ka;
1848
1849 if (ka->sa.sa_flags & SA_ONESHOT)
1850 ka->sa.sa_handler = SIG_DFL;
1851
1852 break; /* will return non-zero "signr" value */
1853 }
1854
1855 /*
1856 * Now we are doing the default action for this signal.
1857 */
1858 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1859 continue;
1860
1861 /*
1862 * Global init gets no signals it doesn't want.
1863 */
1864 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1865 !signal_group_exit(signal))
1866 continue;
1867
1868 if (sig_kernel_stop(signr)) {
1869 /*
1870 * The default action is to stop all threads in
1871 * the thread group. The job control signals
1872 * do nothing in an orphaned pgrp, but SIGSTOP
1873 * always works. Note that siglock needs to be
1874 * dropped during the call to is_orphaned_pgrp()
1875 * because of lock ordering with tasklist_lock.
1876 * This allows an intervening SIGCONT to be posted.
1877 * We need to check for that and bail out if necessary.
1878 */
1879 if (signr != SIGSTOP) {
1880 spin_unlock_irq(&sighand->siglock);
1881
1882 /* signals can be posted during this window */
1883
1884 if (is_current_pgrp_orphaned())
1885 goto relock;
1886
1887 spin_lock_irq(&sighand->siglock);
1888 }
1889
1890 if (likely(do_signal_stop(info->si_signo))) {
1891 /* It released the siglock. */
1892 goto relock;
1893 }
1894
1895 /*
1896 * We didn't actually stop, due to a race
1897 * with SIGCONT or something like that.
1898 */
1899 continue;
1900 }
1901
1902 spin_unlock_irq(&sighand->siglock);
1903
1904 /*
1905 * Anything else is fatal, maybe with a core dump.
1906 */
1907 current->flags |= PF_SIGNALED;
1908
1909 if (sig_kernel_coredump(signr)) {
1910 if (print_fatal_signals)
1911 print_fatal_signal(regs, info->si_signo);
1912 /*
1913 * If it was able to dump core, this kills all
1914 * other threads in the group and synchronizes with
1915 * their demise. If we lost the race with another
1916 * thread getting here, it set group_exit_code
1917 * first and our do_group_exit call below will use
1918 * that value and ignore the one we pass it.
1919 */
1920 do_coredump(info->si_signo, info->si_signo, regs);
1921 }
1922
1923 /*
1924 * Death signals, no core dump.
1925 */
1926 do_group_exit(info->si_signo);
1927 /* NOTREACHED */
1928 }
1929 spin_unlock_irq(&sighand->siglock);
1930 return signr;
1931 }
1932
1933 void exit_signals(struct task_struct *tsk)
1934 {
1935 int group_stop = 0;
1936 struct task_struct *t;
1937
1938 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1939 tsk->flags |= PF_EXITING;
1940 return;
1941 }
1942
1943 spin_lock_irq(&tsk->sighand->siglock);
1944 /*
1945 * From now this task is not visible for group-wide signals,
1946 * see wants_signal(), do_signal_stop().
1947 */
1948 tsk->flags |= PF_EXITING;
1949 if (!signal_pending(tsk))
1950 goto out;
1951
1952 /* It could be that __group_complete_signal() choose us to
1953 * notify about group-wide signal. Another thread should be
1954 * woken now to take the signal since we will not.
1955 */
1956 for (t = tsk; (t = next_thread(t)) != tsk; )
1957 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1958 recalc_sigpending_and_wake(t);
1959
1960 if (unlikely(tsk->signal->group_stop_count) &&
1961 !--tsk->signal->group_stop_count) {
1962 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1963 group_stop = 1;
1964 }
1965 out:
1966 spin_unlock_irq(&tsk->sighand->siglock);
1967
1968 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1969 read_lock(&tasklist_lock);
1970 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1971 read_unlock(&tasklist_lock);
1972 }
1973 }
1974
1975 EXPORT_SYMBOL(recalc_sigpending);
1976 EXPORT_SYMBOL_GPL(dequeue_signal);
1977 EXPORT_SYMBOL(flush_signals);
1978 EXPORT_SYMBOL(force_sig);
1979 EXPORT_SYMBOL(send_sig);
1980 EXPORT_SYMBOL(send_sig_info);
1981 EXPORT_SYMBOL(sigprocmask);
1982 EXPORT_SYMBOL(block_all_signals);
1983 EXPORT_SYMBOL(unblock_all_signals);
1984
1985
1986 /*
1987 * System call entry points.
1988 */
1989
1990 SYSCALL_DEFINE0(restart_syscall)
1991 {
1992 struct restart_block *restart = &current_thread_info()->restart_block;
1993 return restart->fn(restart);
1994 }
1995
1996 long do_no_restart_syscall(struct restart_block *param)
1997 {
1998 return -EINTR;
1999 }
2000
2001 /*
2002 * We don't need to get the kernel lock - this is all local to this
2003 * particular thread.. (and that's good, because this is _heavily_
2004 * used by various programs)
2005 */
2006
2007 /*
2008 * This is also useful for kernel threads that want to temporarily
2009 * (or permanently) block certain signals.
2010 *
2011 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2012 * interface happily blocks "unblockable" signals like SIGKILL
2013 * and friends.
2014 */
2015 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2016 {
2017 int error;
2018
2019 spin_lock_irq(&current->sighand->siglock);
2020 if (oldset)
2021 *oldset = current->blocked;
2022
2023 error = 0;
2024 switch (how) {
2025 case SIG_BLOCK:
2026 sigorsets(&current->blocked, &current->blocked, set);
2027 break;
2028 case SIG_UNBLOCK:
2029 signandsets(&current->blocked, &current->blocked, set);
2030 break;
2031 case SIG_SETMASK:
2032 current->blocked = *set;
2033 break;
2034 default:
2035 error = -EINVAL;
2036 }
2037 recalc_sigpending();
2038 spin_unlock_irq(&current->sighand->siglock);
2039
2040 return error;
2041 }
2042
2043 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2044 sigset_t __user *, oset, size_t, sigsetsize)
2045 {
2046 int error = -EINVAL;
2047 sigset_t old_set, new_set;
2048
2049 /* XXX: Don't preclude handling different sized sigset_t's. */
2050 if (sigsetsize != sizeof(sigset_t))
2051 goto out;
2052
2053 if (set) {
2054 error = -EFAULT;
2055 if (copy_from_user(&new_set, set, sizeof(*set)))
2056 goto out;
2057 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2058
2059 error = sigprocmask(how, &new_set, &old_set);
2060 if (error)
2061 goto out;
2062 if (oset)
2063 goto set_old;
2064 } else if (oset) {
2065 spin_lock_irq(&current->sighand->siglock);
2066 old_set = current->blocked;
2067 spin_unlock_irq(&current->sighand->siglock);
2068
2069 set_old:
2070 error = -EFAULT;
2071 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2072 goto out;
2073 }
2074 error = 0;
2075 out:
2076 return error;
2077 }
2078
2079 long do_sigpending(void __user *set, unsigned long sigsetsize)
2080 {
2081 long error = -EINVAL;
2082 sigset_t pending;
2083
2084 if (sigsetsize > sizeof(sigset_t))
2085 goto out;
2086
2087 spin_lock_irq(&current->sighand->siglock);
2088 sigorsets(&pending, &current->pending.signal,
2089 &current->signal->shared_pending.signal);
2090 spin_unlock_irq(&current->sighand->siglock);
2091
2092 /* Outside the lock because only this thread touches it. */
2093 sigandsets(&pending, &current->blocked, &pending);
2094
2095 error = -EFAULT;
2096 if (!copy_to_user(set, &pending, sigsetsize))
2097 error = 0;
2098
2099 out:
2100 return error;
2101 }
2102
2103 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2104 {
2105 return do_sigpending(set, sigsetsize);
2106 }
2107
2108 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2109
2110 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2111 {
2112 int err;
2113
2114 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2115 return -EFAULT;
2116 if (from->si_code < 0)
2117 return __copy_to_user(to, from, sizeof(siginfo_t))
2118 ? -EFAULT : 0;
2119 /*
2120 * If you change siginfo_t structure, please be sure
2121 * this code is fixed accordingly.
2122 * Please remember to update the signalfd_copyinfo() function
2123 * inside fs/signalfd.c too, in case siginfo_t changes.
2124 * It should never copy any pad contained in the structure
2125 * to avoid security leaks, but must copy the generic
2126 * 3 ints plus the relevant union member.
2127 */
2128 err = __put_user(from->si_signo, &to->si_signo);
2129 err |= __put_user(from->si_errno, &to->si_errno);
2130 err |= __put_user((short)from->si_code, &to->si_code);
2131 switch (from->si_code & __SI_MASK) {
2132 case __SI_KILL:
2133 err |= __put_user(from->si_pid, &to->si_pid);
2134 err |= __put_user(from->si_uid, &to->si_uid);
2135 break;
2136 case __SI_TIMER:
2137 err |= __put_user(from->si_tid, &to->si_tid);
2138 err |= __put_user(from->si_overrun, &to->si_overrun);
2139 err |= __put_user(from->si_ptr, &to->si_ptr);
2140 break;
2141 case __SI_POLL:
2142 err |= __put_user(from->si_band, &to->si_band);
2143 err |= __put_user(from->si_fd, &to->si_fd);
2144 break;
2145 case __SI_FAULT:
2146 err |= __put_user(from->si_addr, &to->si_addr);
2147 #ifdef __ARCH_SI_TRAPNO
2148 err |= __put_user(from->si_trapno, &to->si_trapno);
2149 #endif
2150 break;
2151 case __SI_CHLD:
2152 err |= __put_user(from->si_pid, &to->si_pid);
2153 err |= __put_user(from->si_uid, &to->si_uid);
2154 err |= __put_user(from->si_status, &to->si_status);
2155 err |= __put_user(from->si_utime, &to->si_utime);
2156 err |= __put_user(from->si_stime, &to->si_stime);
2157 break;
2158 case __SI_RT: /* This is not generated by the kernel as of now. */
2159 case __SI_MESGQ: /* But this is */
2160 err |= __put_user(from->si_pid, &to->si_pid);
2161 err |= __put_user(from->si_uid, &to->si_uid);
2162 err |= __put_user(from->si_ptr, &to->si_ptr);
2163 break;
2164 default: /* this is just in case for now ... */
2165 err |= __put_user(from->si_pid, &to->si_pid);
2166 err |= __put_user(from->si_uid, &to->si_uid);
2167 break;
2168 }
2169 return err;
2170 }
2171
2172 #endif
2173
2174 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2175 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2176 size_t, sigsetsize)
2177 {
2178 int ret, sig;
2179 sigset_t these;
2180 struct timespec ts;
2181 siginfo_t info;
2182 long timeout = 0;
2183
2184 /* XXX: Don't preclude handling different sized sigset_t's. */
2185 if (sigsetsize != sizeof(sigset_t))
2186 return -EINVAL;
2187
2188 if (copy_from_user(&these, uthese, sizeof(these)))
2189 return -EFAULT;
2190
2191 /*
2192 * Invert the set of allowed signals to get those we
2193 * want to block.
2194 */
2195 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2196 signotset(&these);
2197
2198 if (uts) {
2199 if (copy_from_user(&ts, uts, sizeof(ts)))
2200 return -EFAULT;
2201 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2202 || ts.tv_sec < 0)
2203 return -EINVAL;
2204 }
2205
2206 spin_lock_irq(&current->sighand->siglock);
2207 sig = dequeue_signal(current, &these, &info);
2208 if (!sig) {
2209 timeout = MAX_SCHEDULE_TIMEOUT;
2210 if (uts)
2211 timeout = (timespec_to_jiffies(&ts)
2212 + (ts.tv_sec || ts.tv_nsec));
2213
2214 if (timeout) {
2215 /* None ready -- temporarily unblock those we're
2216 * interested while we are sleeping in so that we'll
2217 * be awakened when they arrive. */
2218 current->real_blocked = current->blocked;
2219 sigandsets(&current->blocked, &current->blocked, &these);
2220 recalc_sigpending();
2221 spin_unlock_irq(&current->sighand->siglock);
2222
2223 timeout = schedule_timeout_interruptible(timeout);
2224
2225 spin_lock_irq(&current->sighand->siglock);
2226 sig = dequeue_signal(current, &these, &info);
2227 current->blocked = current->real_blocked;
2228 siginitset(&current->real_blocked, 0);
2229 recalc_sigpending();
2230 }
2231 }
2232 spin_unlock_irq(&current->sighand->siglock);
2233
2234 if (sig) {
2235 ret = sig;
2236 if (uinfo) {
2237 if (copy_siginfo_to_user(uinfo, &info))
2238 ret = -EFAULT;
2239 }
2240 } else {
2241 ret = -EAGAIN;
2242 if (timeout)
2243 ret = -EINTR;
2244 }
2245
2246 return ret;
2247 }
2248
2249 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2250 {
2251 struct siginfo info;
2252
2253 info.si_signo = sig;
2254 info.si_errno = 0;
2255 info.si_code = SI_USER;
2256 info.si_pid = task_tgid_vnr(current);
2257 info.si_uid = current_uid();
2258
2259 return kill_something_info(sig, &info, pid);
2260 }
2261
2262 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2263 {
2264 int error;
2265 struct siginfo info;
2266 struct task_struct *p;
2267 unsigned long flags;
2268
2269 error = -ESRCH;
2270 info.si_signo = sig;
2271 info.si_errno = 0;
2272 info.si_code = SI_TKILL;
2273 info.si_pid = task_tgid_vnr(current);
2274 info.si_uid = current_uid();
2275
2276 rcu_read_lock();
2277 p = find_task_by_vpid(pid);
2278 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2279 error = check_kill_permission(sig, &info, p);
2280 /*
2281 * The null signal is a permissions and process existence
2282 * probe. No signal is actually delivered.
2283 *
2284 * If lock_task_sighand() fails we pretend the task dies
2285 * after receiving the signal. The window is tiny, and the
2286 * signal is private anyway.
2287 */
2288 if (!error && sig && lock_task_sighand(p, &flags)) {
2289 error = specific_send_sig_info(sig, &info, p);
2290 unlock_task_sighand(p, &flags);
2291 }
2292 }
2293 rcu_read_unlock();
2294
2295 return error;
2296 }
2297
2298 /**
2299 * sys_tgkill - send signal to one specific thread
2300 * @tgid: the thread group ID of the thread
2301 * @pid: the PID of the thread
2302 * @sig: signal to be sent
2303 *
2304 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2305 * exists but it's not belonging to the target process anymore. This
2306 * method solves the problem of threads exiting and PIDs getting reused.
2307 */
2308 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2309 {
2310 /* This is only valid for single tasks */
2311 if (pid <= 0 || tgid <= 0)
2312 return -EINVAL;
2313
2314 return do_tkill(tgid, pid, sig);
2315 }
2316
2317 /*
2318 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2319 */
2320 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2321 {
2322 /* This is only valid for single tasks */
2323 if (pid <= 0)
2324 return -EINVAL;
2325
2326 return do_tkill(0, pid, sig);
2327 }
2328
2329 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2330 siginfo_t __user *, uinfo)
2331 {
2332 siginfo_t info;
2333
2334 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2335 return -EFAULT;
2336
2337 /* Not even root can pretend to send signals from the kernel.
2338 Nor can they impersonate a kill(), which adds source info. */
2339 if (info.si_code >= 0)
2340 return -EPERM;
2341 info.si_signo = sig;
2342
2343 /* POSIX.1b doesn't mention process groups. */
2344 return kill_proc_info(sig, &info, pid);
2345 }
2346
2347 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2348 {
2349 struct task_struct *t = current;
2350 struct k_sigaction *k;
2351 sigset_t mask;
2352
2353 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2354 return -EINVAL;
2355
2356 k = &t->sighand->action[sig-1];
2357
2358 spin_lock_irq(&current->sighand->siglock);
2359 if (oact)
2360 *oact = *k;
2361
2362 if (act) {
2363 sigdelsetmask(&act->sa.sa_mask,
2364 sigmask(SIGKILL) | sigmask(SIGSTOP));
2365 *k = *act;
2366 /*
2367 * POSIX 3.3.1.3:
2368 * "Setting a signal action to SIG_IGN for a signal that is
2369 * pending shall cause the pending signal to be discarded,
2370 * whether or not it is blocked."
2371 *
2372 * "Setting a signal action to SIG_DFL for a signal that is
2373 * pending and whose default action is to ignore the signal
2374 * (for example, SIGCHLD), shall cause the pending signal to
2375 * be discarded, whether or not it is blocked"
2376 */
2377 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2378 sigemptyset(&mask);
2379 sigaddset(&mask, sig);
2380 rm_from_queue_full(&mask, &t->signal->shared_pending);
2381 do {
2382 rm_from_queue_full(&mask, &t->pending);
2383 t = next_thread(t);
2384 } while (t != current);
2385 }
2386 }
2387
2388 spin_unlock_irq(&current->sighand->siglock);
2389 return 0;
2390 }
2391
2392 int
2393 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2394 {
2395 stack_t oss;
2396 int error;
2397
2398 if (uoss) {
2399 oss.ss_sp = (void __user *) current->sas_ss_sp;
2400 oss.ss_size = current->sas_ss_size;
2401 oss.ss_flags = sas_ss_flags(sp);
2402 }
2403
2404 if (uss) {
2405 void __user *ss_sp;
2406 size_t ss_size;
2407 int ss_flags;
2408
2409 error = -EFAULT;
2410 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2411 || __get_user(ss_sp, &uss->ss_sp)
2412 || __get_user(ss_flags, &uss->ss_flags)
2413 || __get_user(ss_size, &uss->ss_size))
2414 goto out;
2415
2416 error = -EPERM;
2417 if (on_sig_stack(sp))
2418 goto out;
2419
2420 error = -EINVAL;
2421 /*
2422 *
2423 * Note - this code used to test ss_flags incorrectly
2424 * old code may have been written using ss_flags==0
2425 * to mean ss_flags==SS_ONSTACK (as this was the only
2426 * way that worked) - this fix preserves that older
2427 * mechanism
2428 */
2429 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2430 goto out;
2431
2432 if (ss_flags == SS_DISABLE) {
2433 ss_size = 0;
2434 ss_sp = NULL;
2435 } else {
2436 error = -ENOMEM;
2437 if (ss_size < MINSIGSTKSZ)
2438 goto out;
2439 }
2440
2441 current->sas_ss_sp = (unsigned long) ss_sp;
2442 current->sas_ss_size = ss_size;
2443 }
2444
2445 if (uoss) {
2446 error = -EFAULT;
2447 if (copy_to_user(uoss, &oss, sizeof(oss)))
2448 goto out;
2449 }
2450
2451 error = 0;
2452 out:
2453 return error;
2454 }
2455
2456 #ifdef __ARCH_WANT_SYS_SIGPENDING
2457
2458 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2459 {
2460 return do_sigpending(set, sizeof(*set));
2461 }
2462
2463 #endif
2464
2465 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2466 /* Some platforms have their own version with special arguments others
2467 support only sys_rt_sigprocmask. */
2468
2469 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2470 old_sigset_t __user *, oset)
2471 {
2472 int error;
2473 old_sigset_t old_set, new_set;
2474
2475 if (set) {
2476 error = -EFAULT;
2477 if (copy_from_user(&new_set, set, sizeof(*set)))
2478 goto out;
2479 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2480
2481 spin_lock_irq(&current->sighand->siglock);
2482 old_set = current->blocked.sig[0];
2483
2484 error = 0;
2485 switch (how) {
2486 default:
2487 error = -EINVAL;
2488 break;
2489 case SIG_BLOCK:
2490 sigaddsetmask(&current->blocked, new_set);
2491 break;
2492 case SIG_UNBLOCK:
2493 sigdelsetmask(&current->blocked, new_set);
2494 break;
2495 case SIG_SETMASK:
2496 current->blocked.sig[0] = new_set;
2497 break;
2498 }
2499
2500 recalc_sigpending();
2501 spin_unlock_irq(&current->sighand->siglock);
2502 if (error)
2503 goto out;
2504 if (oset)
2505 goto set_old;
2506 } else if (oset) {
2507 old_set = current->blocked.sig[0];
2508 set_old:
2509 error = -EFAULT;
2510 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2511 goto out;
2512 }
2513 error = 0;
2514 out:
2515 return error;
2516 }
2517 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2518
2519 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2520 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2521 const struct sigaction __user *, act,
2522 struct sigaction __user *, oact,
2523 size_t, sigsetsize)
2524 {
2525 struct k_sigaction new_sa, old_sa;
2526 int ret = -EINVAL;
2527
2528 /* XXX: Don't preclude handling different sized sigset_t's. */
2529 if (sigsetsize != sizeof(sigset_t))
2530 goto out;
2531
2532 if (act) {
2533 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2534 return -EFAULT;
2535 }
2536
2537 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2538
2539 if (!ret && oact) {
2540 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2541 return -EFAULT;
2542 }
2543 out:
2544 return ret;
2545 }
2546 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2547
2548 #ifdef __ARCH_WANT_SYS_SGETMASK
2549
2550 /*
2551 * For backwards compatibility. Functionality superseded by sigprocmask.
2552 */
2553 SYSCALL_DEFINE0(sgetmask)
2554 {
2555 /* SMP safe */
2556 return current->blocked.sig[0];
2557 }
2558
2559 SYSCALL_DEFINE1(ssetmask, int, newmask)
2560 {
2561 int old;
2562
2563 spin_lock_irq(&current->sighand->siglock);
2564 old = current->blocked.sig[0];
2565
2566 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2567 sigmask(SIGSTOP)));
2568 recalc_sigpending();
2569 spin_unlock_irq(&current->sighand->siglock);
2570
2571 return old;
2572 }
2573 #endif /* __ARCH_WANT_SGETMASK */
2574
2575 #ifdef __ARCH_WANT_SYS_SIGNAL
2576 /*
2577 * For backwards compatibility. Functionality superseded by sigaction.
2578 */
2579 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2580 {
2581 struct k_sigaction new_sa, old_sa;
2582 int ret;
2583
2584 new_sa.sa.sa_handler = handler;
2585 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2586 sigemptyset(&new_sa.sa.sa_mask);
2587
2588 ret = do_sigaction(sig, &new_sa, &old_sa);
2589
2590 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2591 }
2592 #endif /* __ARCH_WANT_SYS_SIGNAL */
2593
2594 #ifdef __ARCH_WANT_SYS_PAUSE
2595
2596 SYSCALL_DEFINE0(pause)
2597 {
2598 current->state = TASK_INTERRUPTIBLE;
2599 schedule();
2600 return -ERESTARTNOHAND;
2601 }
2602
2603 #endif
2604
2605 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2606 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2607 {
2608 sigset_t newset;
2609
2610 /* XXX: Don't preclude handling different sized sigset_t's. */
2611 if (sigsetsize != sizeof(sigset_t))
2612 return -EINVAL;
2613
2614 if (copy_from_user(&newset, unewset, sizeof(newset)))
2615 return -EFAULT;
2616 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2617
2618 spin_lock_irq(&current->sighand->siglock);
2619 current->saved_sigmask = current->blocked;
2620 current->blocked = newset;
2621 recalc_sigpending();
2622 spin_unlock_irq(&current->sighand->siglock);
2623
2624 current->state = TASK_INTERRUPTIBLE;
2625 schedule();
2626 set_restore_sigmask();
2627 return -ERESTARTNOHAND;
2628 }
2629 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2630
2631 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2632 {
2633 return NULL;
2634 }
2635
2636 void __init signals_init(void)
2637 {
2638 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2639 }
This page took 0.141573 seconds and 6 git commands to generate.