signals: protect init from unwanted signals more
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
31
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
37
38 /*
39 * SLAB caches for signal bits.
40 */
41
42 static struct kmem_cache *sigqueue_cachep;
43
44 DEFINE_TRACE(sched_signal_send);
45
46 static void __user *sig_handler(struct task_struct *t, int sig)
47 {
48 return t->sighand->action[sig - 1].sa.sa_handler;
49 }
50
51 static int sig_handler_ignored(void __user *handler, int sig)
52 {
53 /* Is it explicitly or implicitly ignored? */
54 return handler == SIG_IGN ||
55 (handler == SIG_DFL && sig_kernel_ignore(sig));
56 }
57
58 static int sig_task_ignored(struct task_struct *t, int sig)
59 {
60 void __user *handler;
61
62 handler = sig_handler(t, sig);
63
64 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
65 handler == SIG_DFL)
66 return 1;
67
68 return sig_handler_ignored(handler, sig);
69 }
70
71 static int sig_ignored(struct task_struct *t, int sig)
72 {
73 /*
74 * Blocked signals are never ignored, since the
75 * signal handler may change by the time it is
76 * unblocked.
77 */
78 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
79 return 0;
80
81 if (!sig_task_ignored(t, sig))
82 return 0;
83
84 /*
85 * Tracers may want to know about even ignored signals.
86 */
87 return !tracehook_consider_ignored_signal(t, sig);
88 }
89
90 /*
91 * Re-calculate pending state from the set of locally pending
92 * signals, globally pending signals, and blocked signals.
93 */
94 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
95 {
96 unsigned long ready;
97 long i;
98
99 switch (_NSIG_WORDS) {
100 default:
101 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
102 ready |= signal->sig[i] &~ blocked->sig[i];
103 break;
104
105 case 4: ready = signal->sig[3] &~ blocked->sig[3];
106 ready |= signal->sig[2] &~ blocked->sig[2];
107 ready |= signal->sig[1] &~ blocked->sig[1];
108 ready |= signal->sig[0] &~ blocked->sig[0];
109 break;
110
111 case 2: ready = signal->sig[1] &~ blocked->sig[1];
112 ready |= signal->sig[0] &~ blocked->sig[0];
113 break;
114
115 case 1: ready = signal->sig[0] &~ blocked->sig[0];
116 }
117 return ready != 0;
118 }
119
120 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
121
122 static int recalc_sigpending_tsk(struct task_struct *t)
123 {
124 if (t->signal->group_stop_count > 0 ||
125 PENDING(&t->pending, &t->blocked) ||
126 PENDING(&t->signal->shared_pending, &t->blocked)) {
127 set_tsk_thread_flag(t, TIF_SIGPENDING);
128 return 1;
129 }
130 /*
131 * We must never clear the flag in another thread, or in current
132 * when it's possible the current syscall is returning -ERESTART*.
133 * So we don't clear it here, and only callers who know they should do.
134 */
135 return 0;
136 }
137
138 /*
139 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
140 * This is superfluous when called on current, the wakeup is a harmless no-op.
141 */
142 void recalc_sigpending_and_wake(struct task_struct *t)
143 {
144 if (recalc_sigpending_tsk(t))
145 signal_wake_up(t, 0);
146 }
147
148 void recalc_sigpending(void)
149 {
150 if (unlikely(tracehook_force_sigpending()))
151 set_thread_flag(TIF_SIGPENDING);
152 else if (!recalc_sigpending_tsk(current) && !freezing(current))
153 clear_thread_flag(TIF_SIGPENDING);
154
155 }
156
157 /* Given the mask, find the first available signal that should be serviced. */
158
159 int next_signal(struct sigpending *pending, sigset_t *mask)
160 {
161 unsigned long i, *s, *m, x;
162 int sig = 0;
163
164 s = pending->signal.sig;
165 m = mask->sig;
166 switch (_NSIG_WORDS) {
167 default:
168 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
169 if ((x = *s &~ *m) != 0) {
170 sig = ffz(~x) + i*_NSIG_BPW + 1;
171 break;
172 }
173 break;
174
175 case 2: if ((x = s[0] &~ m[0]) != 0)
176 sig = 1;
177 else if ((x = s[1] &~ m[1]) != 0)
178 sig = _NSIG_BPW + 1;
179 else
180 break;
181 sig += ffz(~x);
182 break;
183
184 case 1: if ((x = *s &~ *m) != 0)
185 sig = ffz(~x) + 1;
186 break;
187 }
188
189 return sig;
190 }
191
192 /*
193 * allocate a new signal queue record
194 * - this may be called without locks if and only if t == current, otherwise an
195 * appopriate lock must be held to stop the target task from exiting
196 */
197 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
198 int override_rlimit)
199 {
200 struct sigqueue *q = NULL;
201 struct user_struct *user;
202
203 /*
204 * We won't get problems with the target's UID changing under us
205 * because changing it requires RCU be used, and if t != current, the
206 * caller must be holding the RCU readlock (by way of a spinlock) and
207 * we use RCU protection here
208 */
209 user = get_uid(__task_cred(t)->user);
210 atomic_inc(&user->sigpending);
211 if (override_rlimit ||
212 atomic_read(&user->sigpending) <=
213 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
214 q = kmem_cache_alloc(sigqueue_cachep, flags);
215 if (unlikely(q == NULL)) {
216 atomic_dec(&user->sigpending);
217 free_uid(user);
218 } else {
219 INIT_LIST_HEAD(&q->list);
220 q->flags = 0;
221 q->user = user;
222 }
223
224 return q;
225 }
226
227 static void __sigqueue_free(struct sigqueue *q)
228 {
229 if (q->flags & SIGQUEUE_PREALLOC)
230 return;
231 atomic_dec(&q->user->sigpending);
232 free_uid(q->user);
233 kmem_cache_free(sigqueue_cachep, q);
234 }
235
236 void flush_sigqueue(struct sigpending *queue)
237 {
238 struct sigqueue *q;
239
240 sigemptyset(&queue->signal);
241 while (!list_empty(&queue->list)) {
242 q = list_entry(queue->list.next, struct sigqueue , list);
243 list_del_init(&q->list);
244 __sigqueue_free(q);
245 }
246 }
247
248 /*
249 * Flush all pending signals for a task.
250 */
251 void flush_signals(struct task_struct *t)
252 {
253 unsigned long flags;
254
255 spin_lock_irqsave(&t->sighand->siglock, flags);
256 clear_tsk_thread_flag(t, TIF_SIGPENDING);
257 flush_sigqueue(&t->pending);
258 flush_sigqueue(&t->signal->shared_pending);
259 spin_unlock_irqrestore(&t->sighand->siglock, flags);
260 }
261
262 static void __flush_itimer_signals(struct sigpending *pending)
263 {
264 sigset_t signal, retain;
265 struct sigqueue *q, *n;
266
267 signal = pending->signal;
268 sigemptyset(&retain);
269
270 list_for_each_entry_safe(q, n, &pending->list, list) {
271 int sig = q->info.si_signo;
272
273 if (likely(q->info.si_code != SI_TIMER)) {
274 sigaddset(&retain, sig);
275 } else {
276 sigdelset(&signal, sig);
277 list_del_init(&q->list);
278 __sigqueue_free(q);
279 }
280 }
281
282 sigorsets(&pending->signal, &signal, &retain);
283 }
284
285 void flush_itimer_signals(void)
286 {
287 struct task_struct *tsk = current;
288 unsigned long flags;
289
290 spin_lock_irqsave(&tsk->sighand->siglock, flags);
291 __flush_itimer_signals(&tsk->pending);
292 __flush_itimer_signals(&tsk->signal->shared_pending);
293 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
294 }
295
296 void ignore_signals(struct task_struct *t)
297 {
298 int i;
299
300 for (i = 0; i < _NSIG; ++i)
301 t->sighand->action[i].sa.sa_handler = SIG_IGN;
302
303 flush_signals(t);
304 }
305
306 /*
307 * Flush all handlers for a task.
308 */
309
310 void
311 flush_signal_handlers(struct task_struct *t, int force_default)
312 {
313 int i;
314 struct k_sigaction *ka = &t->sighand->action[0];
315 for (i = _NSIG ; i != 0 ; i--) {
316 if (force_default || ka->sa.sa_handler != SIG_IGN)
317 ka->sa.sa_handler = SIG_DFL;
318 ka->sa.sa_flags = 0;
319 sigemptyset(&ka->sa.sa_mask);
320 ka++;
321 }
322 }
323
324 int unhandled_signal(struct task_struct *tsk, int sig)
325 {
326 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
327 if (is_global_init(tsk))
328 return 1;
329 if (handler != SIG_IGN && handler != SIG_DFL)
330 return 0;
331 return !tracehook_consider_fatal_signal(tsk, sig);
332 }
333
334
335 /* Notify the system that a driver wants to block all signals for this
336 * process, and wants to be notified if any signals at all were to be
337 * sent/acted upon. If the notifier routine returns non-zero, then the
338 * signal will be acted upon after all. If the notifier routine returns 0,
339 * then then signal will be blocked. Only one block per process is
340 * allowed. priv is a pointer to private data that the notifier routine
341 * can use to determine if the signal should be blocked or not. */
342
343 void
344 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
345 {
346 unsigned long flags;
347
348 spin_lock_irqsave(&current->sighand->siglock, flags);
349 current->notifier_mask = mask;
350 current->notifier_data = priv;
351 current->notifier = notifier;
352 spin_unlock_irqrestore(&current->sighand->siglock, flags);
353 }
354
355 /* Notify the system that blocking has ended. */
356
357 void
358 unblock_all_signals(void)
359 {
360 unsigned long flags;
361
362 spin_lock_irqsave(&current->sighand->siglock, flags);
363 current->notifier = NULL;
364 current->notifier_data = NULL;
365 recalc_sigpending();
366 spin_unlock_irqrestore(&current->sighand->siglock, flags);
367 }
368
369 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
370 {
371 struct sigqueue *q, *first = NULL;
372
373 /*
374 * Collect the siginfo appropriate to this signal. Check if
375 * there is another siginfo for the same signal.
376 */
377 list_for_each_entry(q, &list->list, list) {
378 if (q->info.si_signo == sig) {
379 if (first)
380 goto still_pending;
381 first = q;
382 }
383 }
384
385 sigdelset(&list->signal, sig);
386
387 if (first) {
388 still_pending:
389 list_del_init(&first->list);
390 copy_siginfo(info, &first->info);
391 __sigqueue_free(first);
392 } else {
393 /* Ok, it wasn't in the queue. This must be
394 a fast-pathed signal or we must have been
395 out of queue space. So zero out the info.
396 */
397 info->si_signo = sig;
398 info->si_errno = 0;
399 info->si_code = 0;
400 info->si_pid = 0;
401 info->si_uid = 0;
402 }
403 }
404
405 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
406 siginfo_t *info)
407 {
408 int sig = next_signal(pending, mask);
409
410 if (sig) {
411 if (current->notifier) {
412 if (sigismember(current->notifier_mask, sig)) {
413 if (!(current->notifier)(current->notifier_data)) {
414 clear_thread_flag(TIF_SIGPENDING);
415 return 0;
416 }
417 }
418 }
419
420 collect_signal(sig, pending, info);
421 }
422
423 return sig;
424 }
425
426 /*
427 * Dequeue a signal and return the element to the caller, which is
428 * expected to free it.
429 *
430 * All callers have to hold the siglock.
431 */
432 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
433 {
434 int signr;
435
436 /* We only dequeue private signals from ourselves, we don't let
437 * signalfd steal them
438 */
439 signr = __dequeue_signal(&tsk->pending, mask, info);
440 if (!signr) {
441 signr = __dequeue_signal(&tsk->signal->shared_pending,
442 mask, info);
443 /*
444 * itimer signal ?
445 *
446 * itimers are process shared and we restart periodic
447 * itimers in the signal delivery path to prevent DoS
448 * attacks in the high resolution timer case. This is
449 * compliant with the old way of self restarting
450 * itimers, as the SIGALRM is a legacy signal and only
451 * queued once. Changing the restart behaviour to
452 * restart the timer in the signal dequeue path is
453 * reducing the timer noise on heavy loaded !highres
454 * systems too.
455 */
456 if (unlikely(signr == SIGALRM)) {
457 struct hrtimer *tmr = &tsk->signal->real_timer;
458
459 if (!hrtimer_is_queued(tmr) &&
460 tsk->signal->it_real_incr.tv64 != 0) {
461 hrtimer_forward(tmr, tmr->base->get_time(),
462 tsk->signal->it_real_incr);
463 hrtimer_restart(tmr);
464 }
465 }
466 }
467
468 recalc_sigpending();
469 if (!signr)
470 return 0;
471
472 if (unlikely(sig_kernel_stop(signr))) {
473 /*
474 * Set a marker that we have dequeued a stop signal. Our
475 * caller might release the siglock and then the pending
476 * stop signal it is about to process is no longer in the
477 * pending bitmasks, but must still be cleared by a SIGCONT
478 * (and overruled by a SIGKILL). So those cases clear this
479 * shared flag after we've set it. Note that this flag may
480 * remain set after the signal we return is ignored or
481 * handled. That doesn't matter because its only purpose
482 * is to alert stop-signal processing code when another
483 * processor has come along and cleared the flag.
484 */
485 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
486 }
487 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
488 /*
489 * Release the siglock to ensure proper locking order
490 * of timer locks outside of siglocks. Note, we leave
491 * irqs disabled here, since the posix-timers code is
492 * about to disable them again anyway.
493 */
494 spin_unlock(&tsk->sighand->siglock);
495 do_schedule_next_timer(info);
496 spin_lock(&tsk->sighand->siglock);
497 }
498 return signr;
499 }
500
501 /*
502 * Tell a process that it has a new active signal..
503 *
504 * NOTE! we rely on the previous spin_lock to
505 * lock interrupts for us! We can only be called with
506 * "siglock" held, and the local interrupt must
507 * have been disabled when that got acquired!
508 *
509 * No need to set need_resched since signal event passing
510 * goes through ->blocked
511 */
512 void signal_wake_up(struct task_struct *t, int resume)
513 {
514 unsigned int mask;
515
516 set_tsk_thread_flag(t, TIF_SIGPENDING);
517
518 /*
519 * For SIGKILL, we want to wake it up in the stopped/traced/killable
520 * case. We don't check t->state here because there is a race with it
521 * executing another processor and just now entering stopped state.
522 * By using wake_up_state, we ensure the process will wake up and
523 * handle its death signal.
524 */
525 mask = TASK_INTERRUPTIBLE;
526 if (resume)
527 mask |= TASK_WAKEKILL;
528 if (!wake_up_state(t, mask))
529 kick_process(t);
530 }
531
532 /*
533 * Remove signals in mask from the pending set and queue.
534 * Returns 1 if any signals were found.
535 *
536 * All callers must be holding the siglock.
537 *
538 * This version takes a sigset mask and looks at all signals,
539 * not just those in the first mask word.
540 */
541 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
542 {
543 struct sigqueue *q, *n;
544 sigset_t m;
545
546 sigandsets(&m, mask, &s->signal);
547 if (sigisemptyset(&m))
548 return 0;
549
550 signandsets(&s->signal, &s->signal, mask);
551 list_for_each_entry_safe(q, n, &s->list, list) {
552 if (sigismember(mask, q->info.si_signo)) {
553 list_del_init(&q->list);
554 __sigqueue_free(q);
555 }
556 }
557 return 1;
558 }
559 /*
560 * Remove signals in mask from the pending set and queue.
561 * Returns 1 if any signals were found.
562 *
563 * All callers must be holding the siglock.
564 */
565 static int rm_from_queue(unsigned long mask, struct sigpending *s)
566 {
567 struct sigqueue *q, *n;
568
569 if (!sigtestsetmask(&s->signal, mask))
570 return 0;
571
572 sigdelsetmask(&s->signal, mask);
573 list_for_each_entry_safe(q, n, &s->list, list) {
574 if (q->info.si_signo < SIGRTMIN &&
575 (mask & sigmask(q->info.si_signo))) {
576 list_del_init(&q->list);
577 __sigqueue_free(q);
578 }
579 }
580 return 1;
581 }
582
583 /*
584 * Bad permissions for sending the signal
585 * - the caller must hold at least the RCU read lock
586 */
587 static int check_kill_permission(int sig, struct siginfo *info,
588 struct task_struct *t)
589 {
590 const struct cred *cred = current_cred(), *tcred;
591 struct pid *sid;
592 int error;
593
594 if (!valid_signal(sig))
595 return -EINVAL;
596
597 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
598 return 0;
599
600 error = audit_signal_info(sig, t); /* Let audit system see the signal */
601 if (error)
602 return error;
603
604 tcred = __task_cred(t);
605 if ((cred->euid ^ tcred->suid) &&
606 (cred->euid ^ tcred->uid) &&
607 (cred->uid ^ tcred->suid) &&
608 (cred->uid ^ tcred->uid) &&
609 !capable(CAP_KILL)) {
610 switch (sig) {
611 case SIGCONT:
612 sid = task_session(t);
613 /*
614 * We don't return the error if sid == NULL. The
615 * task was unhashed, the caller must notice this.
616 */
617 if (!sid || sid == task_session(current))
618 break;
619 default:
620 return -EPERM;
621 }
622 }
623
624 return security_task_kill(t, info, sig, 0);
625 }
626
627 /*
628 * Handle magic process-wide effects of stop/continue signals. Unlike
629 * the signal actions, these happen immediately at signal-generation
630 * time regardless of blocking, ignoring, or handling. This does the
631 * actual continuing for SIGCONT, but not the actual stopping for stop
632 * signals. The process stop is done as a signal action for SIG_DFL.
633 *
634 * Returns true if the signal should be actually delivered, otherwise
635 * it should be dropped.
636 */
637 static int prepare_signal(int sig, struct task_struct *p)
638 {
639 struct signal_struct *signal = p->signal;
640 struct task_struct *t;
641
642 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
643 /*
644 * The process is in the middle of dying, nothing to do.
645 */
646 } else if (sig_kernel_stop(sig)) {
647 /*
648 * This is a stop signal. Remove SIGCONT from all queues.
649 */
650 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
651 t = p;
652 do {
653 rm_from_queue(sigmask(SIGCONT), &t->pending);
654 } while_each_thread(p, t);
655 } else if (sig == SIGCONT) {
656 unsigned int why;
657 /*
658 * Remove all stop signals from all queues,
659 * and wake all threads.
660 */
661 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
662 t = p;
663 do {
664 unsigned int state;
665 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
666 /*
667 * If there is a handler for SIGCONT, we must make
668 * sure that no thread returns to user mode before
669 * we post the signal, in case it was the only
670 * thread eligible to run the signal handler--then
671 * it must not do anything between resuming and
672 * running the handler. With the TIF_SIGPENDING
673 * flag set, the thread will pause and acquire the
674 * siglock that we hold now and until we've queued
675 * the pending signal.
676 *
677 * Wake up the stopped thread _after_ setting
678 * TIF_SIGPENDING
679 */
680 state = __TASK_STOPPED;
681 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
682 set_tsk_thread_flag(t, TIF_SIGPENDING);
683 state |= TASK_INTERRUPTIBLE;
684 }
685 wake_up_state(t, state);
686 } while_each_thread(p, t);
687
688 /*
689 * Notify the parent with CLD_CONTINUED if we were stopped.
690 *
691 * If we were in the middle of a group stop, we pretend it
692 * was already finished, and then continued. Since SIGCHLD
693 * doesn't queue we report only CLD_STOPPED, as if the next
694 * CLD_CONTINUED was dropped.
695 */
696 why = 0;
697 if (signal->flags & SIGNAL_STOP_STOPPED)
698 why |= SIGNAL_CLD_CONTINUED;
699 else if (signal->group_stop_count)
700 why |= SIGNAL_CLD_STOPPED;
701
702 if (why) {
703 /*
704 * The first thread which returns from finish_stop()
705 * will take ->siglock, notice SIGNAL_CLD_MASK, and
706 * notify its parent. See get_signal_to_deliver().
707 */
708 signal->flags = why | SIGNAL_STOP_CONTINUED;
709 signal->group_stop_count = 0;
710 signal->group_exit_code = 0;
711 } else {
712 /*
713 * We are not stopped, but there could be a stop
714 * signal in the middle of being processed after
715 * being removed from the queue. Clear that too.
716 */
717 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
718 }
719 }
720
721 return !sig_ignored(p, sig);
722 }
723
724 /*
725 * Test if P wants to take SIG. After we've checked all threads with this,
726 * it's equivalent to finding no threads not blocking SIG. Any threads not
727 * blocking SIG were ruled out because they are not running and already
728 * have pending signals. Such threads will dequeue from the shared queue
729 * as soon as they're available, so putting the signal on the shared queue
730 * will be equivalent to sending it to one such thread.
731 */
732 static inline int wants_signal(int sig, struct task_struct *p)
733 {
734 if (sigismember(&p->blocked, sig))
735 return 0;
736 if (p->flags & PF_EXITING)
737 return 0;
738 if (sig == SIGKILL)
739 return 1;
740 if (task_is_stopped_or_traced(p))
741 return 0;
742 return task_curr(p) || !signal_pending(p);
743 }
744
745 static void complete_signal(int sig, struct task_struct *p, int group)
746 {
747 struct signal_struct *signal = p->signal;
748 struct task_struct *t;
749
750 /*
751 * Now find a thread we can wake up to take the signal off the queue.
752 *
753 * If the main thread wants the signal, it gets first crack.
754 * Probably the least surprising to the average bear.
755 */
756 if (wants_signal(sig, p))
757 t = p;
758 else if (!group || thread_group_empty(p))
759 /*
760 * There is just one thread and it does not need to be woken.
761 * It will dequeue unblocked signals before it runs again.
762 */
763 return;
764 else {
765 /*
766 * Otherwise try to find a suitable thread.
767 */
768 t = signal->curr_target;
769 while (!wants_signal(sig, t)) {
770 t = next_thread(t);
771 if (t == signal->curr_target)
772 /*
773 * No thread needs to be woken.
774 * Any eligible threads will see
775 * the signal in the queue soon.
776 */
777 return;
778 }
779 signal->curr_target = t;
780 }
781
782 /*
783 * Found a killable thread. If the signal will be fatal,
784 * then start taking the whole group down immediately.
785 */
786 if (sig_fatal(p, sig) &&
787 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
788 !sigismember(&t->real_blocked, sig) &&
789 (sig == SIGKILL ||
790 !tracehook_consider_fatal_signal(t, sig))) {
791 /*
792 * This signal will be fatal to the whole group.
793 */
794 if (!sig_kernel_coredump(sig)) {
795 /*
796 * Start a group exit and wake everybody up.
797 * This way we don't have other threads
798 * running and doing things after a slower
799 * thread has the fatal signal pending.
800 */
801 signal->flags = SIGNAL_GROUP_EXIT;
802 signal->group_exit_code = sig;
803 signal->group_stop_count = 0;
804 t = p;
805 do {
806 sigaddset(&t->pending.signal, SIGKILL);
807 signal_wake_up(t, 1);
808 } while_each_thread(p, t);
809 return;
810 }
811 }
812
813 /*
814 * The signal is already in the shared-pending queue.
815 * Tell the chosen thread to wake up and dequeue it.
816 */
817 signal_wake_up(t, sig == SIGKILL);
818 return;
819 }
820
821 static inline int legacy_queue(struct sigpending *signals, int sig)
822 {
823 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
824 }
825
826 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
827 int group)
828 {
829 struct sigpending *pending;
830 struct sigqueue *q;
831
832 trace_sched_signal_send(sig, t);
833
834 assert_spin_locked(&t->sighand->siglock);
835 if (!prepare_signal(sig, t))
836 return 0;
837
838 pending = group ? &t->signal->shared_pending : &t->pending;
839 /*
840 * Short-circuit ignored signals and support queuing
841 * exactly one non-rt signal, so that we can get more
842 * detailed information about the cause of the signal.
843 */
844 if (legacy_queue(pending, sig))
845 return 0;
846 /*
847 * fast-pathed signals for kernel-internal things like SIGSTOP
848 * or SIGKILL.
849 */
850 if (info == SEND_SIG_FORCED)
851 goto out_set;
852
853 /* Real-time signals must be queued if sent by sigqueue, or
854 some other real-time mechanism. It is implementation
855 defined whether kill() does so. We attempt to do so, on
856 the principle of least surprise, but since kill is not
857 allowed to fail with EAGAIN when low on memory we just
858 make sure at least one signal gets delivered and don't
859 pass on the info struct. */
860
861 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
862 (is_si_special(info) ||
863 info->si_code >= 0)));
864 if (q) {
865 list_add_tail(&q->list, &pending->list);
866 switch ((unsigned long) info) {
867 case (unsigned long) SEND_SIG_NOINFO:
868 q->info.si_signo = sig;
869 q->info.si_errno = 0;
870 q->info.si_code = SI_USER;
871 q->info.si_pid = task_tgid_nr_ns(current,
872 task_active_pid_ns(t));
873 q->info.si_uid = current_uid();
874 break;
875 case (unsigned long) SEND_SIG_PRIV:
876 q->info.si_signo = sig;
877 q->info.si_errno = 0;
878 q->info.si_code = SI_KERNEL;
879 q->info.si_pid = 0;
880 q->info.si_uid = 0;
881 break;
882 default:
883 copy_siginfo(&q->info, info);
884 break;
885 }
886 } else if (!is_si_special(info)) {
887 if (sig >= SIGRTMIN && info->si_code != SI_USER)
888 /*
889 * Queue overflow, abort. We may abort if the signal was rt
890 * and sent by user using something other than kill().
891 */
892 return -EAGAIN;
893 }
894
895 out_set:
896 signalfd_notify(t, sig);
897 sigaddset(&pending->signal, sig);
898 complete_signal(sig, t, group);
899 return 0;
900 }
901
902 int print_fatal_signals;
903
904 static void print_fatal_signal(struct pt_regs *regs, int signr)
905 {
906 printk("%s/%d: potentially unexpected fatal signal %d.\n",
907 current->comm, task_pid_nr(current), signr);
908
909 #if defined(__i386__) && !defined(__arch_um__)
910 printk("code at %08lx: ", regs->ip);
911 {
912 int i;
913 for (i = 0; i < 16; i++) {
914 unsigned char insn;
915
916 __get_user(insn, (unsigned char *)(regs->ip + i));
917 printk("%02x ", insn);
918 }
919 }
920 #endif
921 printk("\n");
922 preempt_disable();
923 show_regs(regs);
924 preempt_enable();
925 }
926
927 static int __init setup_print_fatal_signals(char *str)
928 {
929 get_option (&str, &print_fatal_signals);
930
931 return 1;
932 }
933
934 __setup("print-fatal-signals=", setup_print_fatal_signals);
935
936 int
937 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
938 {
939 return send_signal(sig, info, p, 1);
940 }
941
942 static int
943 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
944 {
945 return send_signal(sig, info, t, 0);
946 }
947
948 /*
949 * Force a signal that the process can't ignore: if necessary
950 * we unblock the signal and change any SIG_IGN to SIG_DFL.
951 *
952 * Note: If we unblock the signal, we always reset it to SIG_DFL,
953 * since we do not want to have a signal handler that was blocked
954 * be invoked when user space had explicitly blocked it.
955 *
956 * We don't want to have recursive SIGSEGV's etc, for example,
957 * that is why we also clear SIGNAL_UNKILLABLE.
958 */
959 int
960 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
961 {
962 unsigned long int flags;
963 int ret, blocked, ignored;
964 struct k_sigaction *action;
965
966 spin_lock_irqsave(&t->sighand->siglock, flags);
967 action = &t->sighand->action[sig-1];
968 ignored = action->sa.sa_handler == SIG_IGN;
969 blocked = sigismember(&t->blocked, sig);
970 if (blocked || ignored) {
971 action->sa.sa_handler = SIG_DFL;
972 if (blocked) {
973 sigdelset(&t->blocked, sig);
974 recalc_sigpending_and_wake(t);
975 }
976 }
977 if (action->sa.sa_handler == SIG_DFL)
978 t->signal->flags &= ~SIGNAL_UNKILLABLE;
979 ret = specific_send_sig_info(sig, info, t);
980 spin_unlock_irqrestore(&t->sighand->siglock, flags);
981
982 return ret;
983 }
984
985 void
986 force_sig_specific(int sig, struct task_struct *t)
987 {
988 force_sig_info(sig, SEND_SIG_FORCED, t);
989 }
990
991 /*
992 * Nuke all other threads in the group.
993 */
994 void zap_other_threads(struct task_struct *p)
995 {
996 struct task_struct *t;
997
998 p->signal->group_stop_count = 0;
999
1000 for (t = next_thread(p); t != p; t = next_thread(t)) {
1001 /*
1002 * Don't bother with already dead threads
1003 */
1004 if (t->exit_state)
1005 continue;
1006
1007 /* SIGKILL will be handled before any pending SIGSTOP */
1008 sigaddset(&t->pending.signal, SIGKILL);
1009 signal_wake_up(t, 1);
1010 }
1011 }
1012
1013 int __fatal_signal_pending(struct task_struct *tsk)
1014 {
1015 return sigismember(&tsk->pending.signal, SIGKILL);
1016 }
1017 EXPORT_SYMBOL(__fatal_signal_pending);
1018
1019 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1020 {
1021 struct sighand_struct *sighand;
1022
1023 rcu_read_lock();
1024 for (;;) {
1025 sighand = rcu_dereference(tsk->sighand);
1026 if (unlikely(sighand == NULL))
1027 break;
1028
1029 spin_lock_irqsave(&sighand->siglock, *flags);
1030 if (likely(sighand == tsk->sighand))
1031 break;
1032 spin_unlock_irqrestore(&sighand->siglock, *flags);
1033 }
1034 rcu_read_unlock();
1035
1036 return sighand;
1037 }
1038
1039 /*
1040 * send signal info to all the members of a group
1041 * - the caller must hold the RCU read lock at least
1042 */
1043 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1044 {
1045 unsigned long flags;
1046 int ret;
1047
1048 ret = check_kill_permission(sig, info, p);
1049
1050 if (!ret && sig) {
1051 ret = -ESRCH;
1052 if (lock_task_sighand(p, &flags)) {
1053 ret = __group_send_sig_info(sig, info, p);
1054 unlock_task_sighand(p, &flags);
1055 }
1056 }
1057
1058 return ret;
1059 }
1060
1061 /*
1062 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1063 * control characters do (^C, ^Z etc)
1064 * - the caller must hold at least a readlock on tasklist_lock
1065 */
1066 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1067 {
1068 struct task_struct *p = NULL;
1069 int retval, success;
1070
1071 success = 0;
1072 retval = -ESRCH;
1073 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1074 int err = group_send_sig_info(sig, info, p);
1075 success |= !err;
1076 retval = err;
1077 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1078 return success ? 0 : retval;
1079 }
1080
1081 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1082 {
1083 int error = -ESRCH;
1084 struct task_struct *p;
1085
1086 rcu_read_lock();
1087 retry:
1088 p = pid_task(pid, PIDTYPE_PID);
1089 if (p) {
1090 error = group_send_sig_info(sig, info, p);
1091 if (unlikely(error == -ESRCH))
1092 /*
1093 * The task was unhashed in between, try again.
1094 * If it is dead, pid_task() will return NULL,
1095 * if we race with de_thread() it will find the
1096 * new leader.
1097 */
1098 goto retry;
1099 }
1100 rcu_read_unlock();
1101
1102 return error;
1103 }
1104
1105 int
1106 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1107 {
1108 int error;
1109 rcu_read_lock();
1110 error = kill_pid_info(sig, info, find_vpid(pid));
1111 rcu_read_unlock();
1112 return error;
1113 }
1114
1115 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1116 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1117 uid_t uid, uid_t euid, u32 secid)
1118 {
1119 int ret = -EINVAL;
1120 struct task_struct *p;
1121 const struct cred *pcred;
1122
1123 if (!valid_signal(sig))
1124 return ret;
1125
1126 read_lock(&tasklist_lock);
1127 p = pid_task(pid, PIDTYPE_PID);
1128 if (!p) {
1129 ret = -ESRCH;
1130 goto out_unlock;
1131 }
1132 pcred = __task_cred(p);
1133 if ((info == SEND_SIG_NOINFO ||
1134 (!is_si_special(info) && SI_FROMUSER(info))) &&
1135 euid != pcred->suid && euid != pcred->uid &&
1136 uid != pcred->suid && uid != pcred->uid) {
1137 ret = -EPERM;
1138 goto out_unlock;
1139 }
1140 ret = security_task_kill(p, info, sig, secid);
1141 if (ret)
1142 goto out_unlock;
1143 if (sig && p->sighand) {
1144 unsigned long flags;
1145 spin_lock_irqsave(&p->sighand->siglock, flags);
1146 ret = __group_send_sig_info(sig, info, p);
1147 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1148 }
1149 out_unlock:
1150 read_unlock(&tasklist_lock);
1151 return ret;
1152 }
1153 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1154
1155 /*
1156 * kill_something_info() interprets pid in interesting ways just like kill(2).
1157 *
1158 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1159 * is probably wrong. Should make it like BSD or SYSV.
1160 */
1161
1162 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1163 {
1164 int ret;
1165
1166 if (pid > 0) {
1167 rcu_read_lock();
1168 ret = kill_pid_info(sig, info, find_vpid(pid));
1169 rcu_read_unlock();
1170 return ret;
1171 }
1172
1173 read_lock(&tasklist_lock);
1174 if (pid != -1) {
1175 ret = __kill_pgrp_info(sig, info,
1176 pid ? find_vpid(-pid) : task_pgrp(current));
1177 } else {
1178 int retval = 0, count = 0;
1179 struct task_struct * p;
1180
1181 for_each_process(p) {
1182 if (task_pid_vnr(p) > 1 &&
1183 !same_thread_group(p, current)) {
1184 int err = group_send_sig_info(sig, info, p);
1185 ++count;
1186 if (err != -EPERM)
1187 retval = err;
1188 }
1189 }
1190 ret = count ? retval : -ESRCH;
1191 }
1192 read_unlock(&tasklist_lock);
1193
1194 return ret;
1195 }
1196
1197 /*
1198 * These are for backward compatibility with the rest of the kernel source.
1199 */
1200
1201 /*
1202 * The caller must ensure the task can't exit.
1203 */
1204 int
1205 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1206 {
1207 int ret;
1208 unsigned long flags;
1209
1210 /*
1211 * Make sure legacy kernel users don't send in bad values
1212 * (normal paths check this in check_kill_permission).
1213 */
1214 if (!valid_signal(sig))
1215 return -EINVAL;
1216
1217 spin_lock_irqsave(&p->sighand->siglock, flags);
1218 ret = specific_send_sig_info(sig, info, p);
1219 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1220 return ret;
1221 }
1222
1223 #define __si_special(priv) \
1224 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1225
1226 int
1227 send_sig(int sig, struct task_struct *p, int priv)
1228 {
1229 return send_sig_info(sig, __si_special(priv), p);
1230 }
1231
1232 void
1233 force_sig(int sig, struct task_struct *p)
1234 {
1235 force_sig_info(sig, SEND_SIG_PRIV, p);
1236 }
1237
1238 /*
1239 * When things go south during signal handling, we
1240 * will force a SIGSEGV. And if the signal that caused
1241 * the problem was already a SIGSEGV, we'll want to
1242 * make sure we don't even try to deliver the signal..
1243 */
1244 int
1245 force_sigsegv(int sig, struct task_struct *p)
1246 {
1247 if (sig == SIGSEGV) {
1248 unsigned long flags;
1249 spin_lock_irqsave(&p->sighand->siglock, flags);
1250 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1251 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1252 }
1253 force_sig(SIGSEGV, p);
1254 return 0;
1255 }
1256
1257 int kill_pgrp(struct pid *pid, int sig, int priv)
1258 {
1259 int ret;
1260
1261 read_lock(&tasklist_lock);
1262 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1263 read_unlock(&tasklist_lock);
1264
1265 return ret;
1266 }
1267 EXPORT_SYMBOL(kill_pgrp);
1268
1269 int kill_pid(struct pid *pid, int sig, int priv)
1270 {
1271 return kill_pid_info(sig, __si_special(priv), pid);
1272 }
1273 EXPORT_SYMBOL(kill_pid);
1274
1275 /*
1276 * These functions support sending signals using preallocated sigqueue
1277 * structures. This is needed "because realtime applications cannot
1278 * afford to lose notifications of asynchronous events, like timer
1279 * expirations or I/O completions". In the case of Posix Timers
1280 * we allocate the sigqueue structure from the timer_create. If this
1281 * allocation fails we are able to report the failure to the application
1282 * with an EAGAIN error.
1283 */
1284
1285 struct sigqueue *sigqueue_alloc(void)
1286 {
1287 struct sigqueue *q;
1288
1289 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1290 q->flags |= SIGQUEUE_PREALLOC;
1291 return(q);
1292 }
1293
1294 void sigqueue_free(struct sigqueue *q)
1295 {
1296 unsigned long flags;
1297 spinlock_t *lock = &current->sighand->siglock;
1298
1299 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1300 /*
1301 * We must hold ->siglock while testing q->list
1302 * to serialize with collect_signal() or with
1303 * __exit_signal()->flush_sigqueue().
1304 */
1305 spin_lock_irqsave(lock, flags);
1306 q->flags &= ~SIGQUEUE_PREALLOC;
1307 /*
1308 * If it is queued it will be freed when dequeued,
1309 * like the "regular" sigqueue.
1310 */
1311 if (!list_empty(&q->list))
1312 q = NULL;
1313 spin_unlock_irqrestore(lock, flags);
1314
1315 if (q)
1316 __sigqueue_free(q);
1317 }
1318
1319 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1320 {
1321 int sig = q->info.si_signo;
1322 struct sigpending *pending;
1323 unsigned long flags;
1324 int ret;
1325
1326 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1327
1328 ret = -1;
1329 if (!likely(lock_task_sighand(t, &flags)))
1330 goto ret;
1331
1332 ret = 1; /* the signal is ignored */
1333 if (!prepare_signal(sig, t))
1334 goto out;
1335
1336 ret = 0;
1337 if (unlikely(!list_empty(&q->list))) {
1338 /*
1339 * If an SI_TIMER entry is already queue just increment
1340 * the overrun count.
1341 */
1342 BUG_ON(q->info.si_code != SI_TIMER);
1343 q->info.si_overrun++;
1344 goto out;
1345 }
1346 q->info.si_overrun = 0;
1347
1348 signalfd_notify(t, sig);
1349 pending = group ? &t->signal->shared_pending : &t->pending;
1350 list_add_tail(&q->list, &pending->list);
1351 sigaddset(&pending->signal, sig);
1352 complete_signal(sig, t, group);
1353 out:
1354 unlock_task_sighand(t, &flags);
1355 ret:
1356 return ret;
1357 }
1358
1359 /*
1360 * Wake up any threads in the parent blocked in wait* syscalls.
1361 */
1362 static inline void __wake_up_parent(struct task_struct *p,
1363 struct task_struct *parent)
1364 {
1365 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1366 }
1367
1368 /*
1369 * Let a parent know about the death of a child.
1370 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1371 *
1372 * Returns -1 if our parent ignored us and so we've switched to
1373 * self-reaping, or else @sig.
1374 */
1375 int do_notify_parent(struct task_struct *tsk, int sig)
1376 {
1377 struct siginfo info;
1378 unsigned long flags;
1379 struct sighand_struct *psig;
1380 int ret = sig;
1381
1382 BUG_ON(sig == -1);
1383
1384 /* do_notify_parent_cldstop should have been called instead. */
1385 BUG_ON(task_is_stopped_or_traced(tsk));
1386
1387 BUG_ON(!tsk->ptrace &&
1388 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1389
1390 info.si_signo = sig;
1391 info.si_errno = 0;
1392 /*
1393 * we are under tasklist_lock here so our parent is tied to
1394 * us and cannot exit and release its namespace.
1395 *
1396 * the only it can is to switch its nsproxy with sys_unshare,
1397 * bu uncharing pid namespaces is not allowed, so we'll always
1398 * see relevant namespace
1399 *
1400 * write_lock() currently calls preempt_disable() which is the
1401 * same as rcu_read_lock(), but according to Oleg, this is not
1402 * correct to rely on this
1403 */
1404 rcu_read_lock();
1405 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1406 info.si_uid = __task_cred(tsk)->uid;
1407 rcu_read_unlock();
1408
1409 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1410 tsk->signal->utime));
1411 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1412 tsk->signal->stime));
1413
1414 info.si_status = tsk->exit_code & 0x7f;
1415 if (tsk->exit_code & 0x80)
1416 info.si_code = CLD_DUMPED;
1417 else if (tsk->exit_code & 0x7f)
1418 info.si_code = CLD_KILLED;
1419 else {
1420 info.si_code = CLD_EXITED;
1421 info.si_status = tsk->exit_code >> 8;
1422 }
1423
1424 psig = tsk->parent->sighand;
1425 spin_lock_irqsave(&psig->siglock, flags);
1426 if (!tsk->ptrace && sig == SIGCHLD &&
1427 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1428 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1429 /*
1430 * We are exiting and our parent doesn't care. POSIX.1
1431 * defines special semantics for setting SIGCHLD to SIG_IGN
1432 * or setting the SA_NOCLDWAIT flag: we should be reaped
1433 * automatically and not left for our parent's wait4 call.
1434 * Rather than having the parent do it as a magic kind of
1435 * signal handler, we just set this to tell do_exit that we
1436 * can be cleaned up without becoming a zombie. Note that
1437 * we still call __wake_up_parent in this case, because a
1438 * blocked sys_wait4 might now return -ECHILD.
1439 *
1440 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1441 * is implementation-defined: we do (if you don't want
1442 * it, just use SIG_IGN instead).
1443 */
1444 ret = tsk->exit_signal = -1;
1445 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1446 sig = -1;
1447 }
1448 if (valid_signal(sig) && sig > 0)
1449 __group_send_sig_info(sig, &info, tsk->parent);
1450 __wake_up_parent(tsk, tsk->parent);
1451 spin_unlock_irqrestore(&psig->siglock, flags);
1452
1453 return ret;
1454 }
1455
1456 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1457 {
1458 struct siginfo info;
1459 unsigned long flags;
1460 struct task_struct *parent;
1461 struct sighand_struct *sighand;
1462
1463 if (tsk->ptrace & PT_PTRACED)
1464 parent = tsk->parent;
1465 else {
1466 tsk = tsk->group_leader;
1467 parent = tsk->real_parent;
1468 }
1469
1470 info.si_signo = SIGCHLD;
1471 info.si_errno = 0;
1472 /*
1473 * see comment in do_notify_parent() abot the following 3 lines
1474 */
1475 rcu_read_lock();
1476 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1477 info.si_uid = __task_cred(tsk)->uid;
1478 rcu_read_unlock();
1479
1480 info.si_utime = cputime_to_clock_t(tsk->utime);
1481 info.si_stime = cputime_to_clock_t(tsk->stime);
1482
1483 info.si_code = why;
1484 switch (why) {
1485 case CLD_CONTINUED:
1486 info.si_status = SIGCONT;
1487 break;
1488 case CLD_STOPPED:
1489 info.si_status = tsk->signal->group_exit_code & 0x7f;
1490 break;
1491 case CLD_TRAPPED:
1492 info.si_status = tsk->exit_code & 0x7f;
1493 break;
1494 default:
1495 BUG();
1496 }
1497
1498 sighand = parent->sighand;
1499 spin_lock_irqsave(&sighand->siglock, flags);
1500 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1501 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1502 __group_send_sig_info(SIGCHLD, &info, parent);
1503 /*
1504 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1505 */
1506 __wake_up_parent(tsk, parent);
1507 spin_unlock_irqrestore(&sighand->siglock, flags);
1508 }
1509
1510 static inline int may_ptrace_stop(void)
1511 {
1512 if (!likely(current->ptrace & PT_PTRACED))
1513 return 0;
1514 /*
1515 * Are we in the middle of do_coredump?
1516 * If so and our tracer is also part of the coredump stopping
1517 * is a deadlock situation, and pointless because our tracer
1518 * is dead so don't allow us to stop.
1519 * If SIGKILL was already sent before the caller unlocked
1520 * ->siglock we must see ->core_state != NULL. Otherwise it
1521 * is safe to enter schedule().
1522 */
1523 if (unlikely(current->mm->core_state) &&
1524 unlikely(current->mm == current->parent->mm))
1525 return 0;
1526
1527 return 1;
1528 }
1529
1530 /*
1531 * Return nonzero if there is a SIGKILL that should be waking us up.
1532 * Called with the siglock held.
1533 */
1534 static int sigkill_pending(struct task_struct *tsk)
1535 {
1536 return sigismember(&tsk->pending.signal, SIGKILL) ||
1537 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1538 }
1539
1540 /*
1541 * This must be called with current->sighand->siglock held.
1542 *
1543 * This should be the path for all ptrace stops.
1544 * We always set current->last_siginfo while stopped here.
1545 * That makes it a way to test a stopped process for
1546 * being ptrace-stopped vs being job-control-stopped.
1547 *
1548 * If we actually decide not to stop at all because the tracer
1549 * is gone, we keep current->exit_code unless clear_code.
1550 */
1551 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1552 {
1553 if (arch_ptrace_stop_needed(exit_code, info)) {
1554 /*
1555 * The arch code has something special to do before a
1556 * ptrace stop. This is allowed to block, e.g. for faults
1557 * on user stack pages. We can't keep the siglock while
1558 * calling arch_ptrace_stop, so we must release it now.
1559 * To preserve proper semantics, we must do this before
1560 * any signal bookkeeping like checking group_stop_count.
1561 * Meanwhile, a SIGKILL could come in before we retake the
1562 * siglock. That must prevent us from sleeping in TASK_TRACED.
1563 * So after regaining the lock, we must check for SIGKILL.
1564 */
1565 spin_unlock_irq(&current->sighand->siglock);
1566 arch_ptrace_stop(exit_code, info);
1567 spin_lock_irq(&current->sighand->siglock);
1568 if (sigkill_pending(current))
1569 return;
1570 }
1571
1572 /*
1573 * If there is a group stop in progress,
1574 * we must participate in the bookkeeping.
1575 */
1576 if (current->signal->group_stop_count > 0)
1577 --current->signal->group_stop_count;
1578
1579 current->last_siginfo = info;
1580 current->exit_code = exit_code;
1581
1582 /* Let the debugger run. */
1583 __set_current_state(TASK_TRACED);
1584 spin_unlock_irq(&current->sighand->siglock);
1585 read_lock(&tasklist_lock);
1586 if (may_ptrace_stop()) {
1587 do_notify_parent_cldstop(current, CLD_TRAPPED);
1588 /*
1589 * Don't want to allow preemption here, because
1590 * sys_ptrace() needs this task to be inactive.
1591 *
1592 * XXX: implement read_unlock_no_resched().
1593 */
1594 preempt_disable();
1595 read_unlock(&tasklist_lock);
1596 preempt_enable_no_resched();
1597 schedule();
1598 } else {
1599 /*
1600 * By the time we got the lock, our tracer went away.
1601 * Don't drop the lock yet, another tracer may come.
1602 */
1603 __set_current_state(TASK_RUNNING);
1604 if (clear_code)
1605 current->exit_code = 0;
1606 read_unlock(&tasklist_lock);
1607 }
1608
1609 /*
1610 * While in TASK_TRACED, we were considered "frozen enough".
1611 * Now that we woke up, it's crucial if we're supposed to be
1612 * frozen that we freeze now before running anything substantial.
1613 */
1614 try_to_freeze();
1615
1616 /*
1617 * We are back. Now reacquire the siglock before touching
1618 * last_siginfo, so that we are sure to have synchronized with
1619 * any signal-sending on another CPU that wants to examine it.
1620 */
1621 spin_lock_irq(&current->sighand->siglock);
1622 current->last_siginfo = NULL;
1623
1624 /*
1625 * Queued signals ignored us while we were stopped for tracing.
1626 * So check for any that we should take before resuming user mode.
1627 * This sets TIF_SIGPENDING, but never clears it.
1628 */
1629 recalc_sigpending_tsk(current);
1630 }
1631
1632 void ptrace_notify(int exit_code)
1633 {
1634 siginfo_t info;
1635
1636 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1637
1638 memset(&info, 0, sizeof info);
1639 info.si_signo = SIGTRAP;
1640 info.si_code = exit_code;
1641 info.si_pid = task_pid_vnr(current);
1642 info.si_uid = current_uid();
1643
1644 /* Let the debugger run. */
1645 spin_lock_irq(&current->sighand->siglock);
1646 ptrace_stop(exit_code, 1, &info);
1647 spin_unlock_irq(&current->sighand->siglock);
1648 }
1649
1650 static void
1651 finish_stop(int stop_count)
1652 {
1653 /*
1654 * If there are no other threads in the group, or if there is
1655 * a group stop in progress and we are the last to stop,
1656 * report to the parent. When ptraced, every thread reports itself.
1657 */
1658 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1659 read_lock(&tasklist_lock);
1660 do_notify_parent_cldstop(current, CLD_STOPPED);
1661 read_unlock(&tasklist_lock);
1662 }
1663
1664 do {
1665 schedule();
1666 } while (try_to_freeze());
1667 /*
1668 * Now we don't run again until continued.
1669 */
1670 current->exit_code = 0;
1671 }
1672
1673 /*
1674 * This performs the stopping for SIGSTOP and other stop signals.
1675 * We have to stop all threads in the thread group.
1676 * Returns nonzero if we've actually stopped and released the siglock.
1677 * Returns zero if we didn't stop and still hold the siglock.
1678 */
1679 static int do_signal_stop(int signr)
1680 {
1681 struct signal_struct *sig = current->signal;
1682 int stop_count;
1683
1684 if (sig->group_stop_count > 0) {
1685 /*
1686 * There is a group stop in progress. We don't need to
1687 * start another one.
1688 */
1689 stop_count = --sig->group_stop_count;
1690 } else {
1691 struct task_struct *t;
1692
1693 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1694 unlikely(signal_group_exit(sig)))
1695 return 0;
1696 /*
1697 * There is no group stop already in progress.
1698 * We must initiate one now.
1699 */
1700 sig->group_exit_code = signr;
1701
1702 stop_count = 0;
1703 for (t = next_thread(current); t != current; t = next_thread(t))
1704 /*
1705 * Setting state to TASK_STOPPED for a group
1706 * stop is always done with the siglock held,
1707 * so this check has no races.
1708 */
1709 if (!(t->flags & PF_EXITING) &&
1710 !task_is_stopped_or_traced(t)) {
1711 stop_count++;
1712 signal_wake_up(t, 0);
1713 }
1714 sig->group_stop_count = stop_count;
1715 }
1716
1717 if (stop_count == 0)
1718 sig->flags = SIGNAL_STOP_STOPPED;
1719 current->exit_code = sig->group_exit_code;
1720 __set_current_state(TASK_STOPPED);
1721
1722 spin_unlock_irq(&current->sighand->siglock);
1723 finish_stop(stop_count);
1724 return 1;
1725 }
1726
1727 static int ptrace_signal(int signr, siginfo_t *info,
1728 struct pt_regs *regs, void *cookie)
1729 {
1730 if (!(current->ptrace & PT_PTRACED))
1731 return signr;
1732
1733 ptrace_signal_deliver(regs, cookie);
1734
1735 /* Let the debugger run. */
1736 ptrace_stop(signr, 0, info);
1737
1738 /* We're back. Did the debugger cancel the sig? */
1739 signr = current->exit_code;
1740 if (signr == 0)
1741 return signr;
1742
1743 current->exit_code = 0;
1744
1745 /* Update the siginfo structure if the signal has
1746 changed. If the debugger wanted something
1747 specific in the siginfo structure then it should
1748 have updated *info via PTRACE_SETSIGINFO. */
1749 if (signr != info->si_signo) {
1750 info->si_signo = signr;
1751 info->si_errno = 0;
1752 info->si_code = SI_USER;
1753 info->si_pid = task_pid_vnr(current->parent);
1754 info->si_uid = task_uid(current->parent);
1755 }
1756
1757 /* If the (new) signal is now blocked, requeue it. */
1758 if (sigismember(&current->blocked, signr)) {
1759 specific_send_sig_info(signr, info, current);
1760 signr = 0;
1761 }
1762
1763 return signr;
1764 }
1765
1766 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1767 struct pt_regs *regs, void *cookie)
1768 {
1769 struct sighand_struct *sighand = current->sighand;
1770 struct signal_struct *signal = current->signal;
1771 int signr;
1772
1773 relock:
1774 /*
1775 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1776 * While in TASK_STOPPED, we were considered "frozen enough".
1777 * Now that we woke up, it's crucial if we're supposed to be
1778 * frozen that we freeze now before running anything substantial.
1779 */
1780 try_to_freeze();
1781
1782 spin_lock_irq(&sighand->siglock);
1783 /*
1784 * Every stopped thread goes here after wakeup. Check to see if
1785 * we should notify the parent, prepare_signal(SIGCONT) encodes
1786 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1787 */
1788 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1789 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1790 ? CLD_CONTINUED : CLD_STOPPED;
1791 signal->flags &= ~SIGNAL_CLD_MASK;
1792 spin_unlock_irq(&sighand->siglock);
1793
1794 if (unlikely(!tracehook_notify_jctl(1, why)))
1795 goto relock;
1796
1797 read_lock(&tasklist_lock);
1798 do_notify_parent_cldstop(current->group_leader, why);
1799 read_unlock(&tasklist_lock);
1800 goto relock;
1801 }
1802
1803 for (;;) {
1804 struct k_sigaction *ka;
1805
1806 if (unlikely(signal->group_stop_count > 0) &&
1807 do_signal_stop(0))
1808 goto relock;
1809
1810 /*
1811 * Tracing can induce an artifical signal and choose sigaction.
1812 * The return value in @signr determines the default action,
1813 * but @info->si_signo is the signal number we will report.
1814 */
1815 signr = tracehook_get_signal(current, regs, info, return_ka);
1816 if (unlikely(signr < 0))
1817 goto relock;
1818 if (unlikely(signr != 0))
1819 ka = return_ka;
1820 else {
1821 signr = dequeue_signal(current, &current->blocked,
1822 info);
1823
1824 if (!signr)
1825 break; /* will return 0 */
1826
1827 if (signr != SIGKILL) {
1828 signr = ptrace_signal(signr, info,
1829 regs, cookie);
1830 if (!signr)
1831 continue;
1832 }
1833
1834 ka = &sighand->action[signr-1];
1835 }
1836
1837 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1838 continue;
1839 if (ka->sa.sa_handler != SIG_DFL) {
1840 /* Run the handler. */
1841 *return_ka = *ka;
1842
1843 if (ka->sa.sa_flags & SA_ONESHOT)
1844 ka->sa.sa_handler = SIG_DFL;
1845
1846 break; /* will return non-zero "signr" value */
1847 }
1848
1849 /*
1850 * Now we are doing the default action for this signal.
1851 */
1852 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1853 continue;
1854
1855 /*
1856 * Global init gets no signals it doesn't want.
1857 */
1858 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1859 !signal_group_exit(signal))
1860 continue;
1861
1862 if (sig_kernel_stop(signr)) {
1863 /*
1864 * The default action is to stop all threads in
1865 * the thread group. The job control signals
1866 * do nothing in an orphaned pgrp, but SIGSTOP
1867 * always works. Note that siglock needs to be
1868 * dropped during the call to is_orphaned_pgrp()
1869 * because of lock ordering with tasklist_lock.
1870 * This allows an intervening SIGCONT to be posted.
1871 * We need to check for that and bail out if necessary.
1872 */
1873 if (signr != SIGSTOP) {
1874 spin_unlock_irq(&sighand->siglock);
1875
1876 /* signals can be posted during this window */
1877
1878 if (is_current_pgrp_orphaned())
1879 goto relock;
1880
1881 spin_lock_irq(&sighand->siglock);
1882 }
1883
1884 if (likely(do_signal_stop(info->si_signo))) {
1885 /* It released the siglock. */
1886 goto relock;
1887 }
1888
1889 /*
1890 * We didn't actually stop, due to a race
1891 * with SIGCONT or something like that.
1892 */
1893 continue;
1894 }
1895
1896 spin_unlock_irq(&sighand->siglock);
1897
1898 /*
1899 * Anything else is fatal, maybe with a core dump.
1900 */
1901 current->flags |= PF_SIGNALED;
1902
1903 if (sig_kernel_coredump(signr)) {
1904 if (print_fatal_signals)
1905 print_fatal_signal(regs, info->si_signo);
1906 /*
1907 * If it was able to dump core, this kills all
1908 * other threads in the group and synchronizes with
1909 * their demise. If we lost the race with another
1910 * thread getting here, it set group_exit_code
1911 * first and our do_group_exit call below will use
1912 * that value and ignore the one we pass it.
1913 */
1914 do_coredump(info->si_signo, info->si_signo, regs);
1915 }
1916
1917 /*
1918 * Death signals, no core dump.
1919 */
1920 do_group_exit(info->si_signo);
1921 /* NOTREACHED */
1922 }
1923 spin_unlock_irq(&sighand->siglock);
1924 return signr;
1925 }
1926
1927 void exit_signals(struct task_struct *tsk)
1928 {
1929 int group_stop = 0;
1930 struct task_struct *t;
1931
1932 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1933 tsk->flags |= PF_EXITING;
1934 return;
1935 }
1936
1937 spin_lock_irq(&tsk->sighand->siglock);
1938 /*
1939 * From now this task is not visible for group-wide signals,
1940 * see wants_signal(), do_signal_stop().
1941 */
1942 tsk->flags |= PF_EXITING;
1943 if (!signal_pending(tsk))
1944 goto out;
1945
1946 /* It could be that __group_complete_signal() choose us to
1947 * notify about group-wide signal. Another thread should be
1948 * woken now to take the signal since we will not.
1949 */
1950 for (t = tsk; (t = next_thread(t)) != tsk; )
1951 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1952 recalc_sigpending_and_wake(t);
1953
1954 if (unlikely(tsk->signal->group_stop_count) &&
1955 !--tsk->signal->group_stop_count) {
1956 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1957 group_stop = 1;
1958 }
1959 out:
1960 spin_unlock_irq(&tsk->sighand->siglock);
1961
1962 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1963 read_lock(&tasklist_lock);
1964 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1965 read_unlock(&tasklist_lock);
1966 }
1967 }
1968
1969 EXPORT_SYMBOL(recalc_sigpending);
1970 EXPORT_SYMBOL_GPL(dequeue_signal);
1971 EXPORT_SYMBOL(flush_signals);
1972 EXPORT_SYMBOL(force_sig);
1973 EXPORT_SYMBOL(send_sig);
1974 EXPORT_SYMBOL(send_sig_info);
1975 EXPORT_SYMBOL(sigprocmask);
1976 EXPORT_SYMBOL(block_all_signals);
1977 EXPORT_SYMBOL(unblock_all_signals);
1978
1979
1980 /*
1981 * System call entry points.
1982 */
1983
1984 SYSCALL_DEFINE0(restart_syscall)
1985 {
1986 struct restart_block *restart = &current_thread_info()->restart_block;
1987 return restart->fn(restart);
1988 }
1989
1990 long do_no_restart_syscall(struct restart_block *param)
1991 {
1992 return -EINTR;
1993 }
1994
1995 /*
1996 * We don't need to get the kernel lock - this is all local to this
1997 * particular thread.. (and that's good, because this is _heavily_
1998 * used by various programs)
1999 */
2000
2001 /*
2002 * This is also useful for kernel threads that want to temporarily
2003 * (or permanently) block certain signals.
2004 *
2005 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2006 * interface happily blocks "unblockable" signals like SIGKILL
2007 * and friends.
2008 */
2009 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2010 {
2011 int error;
2012
2013 spin_lock_irq(&current->sighand->siglock);
2014 if (oldset)
2015 *oldset = current->blocked;
2016
2017 error = 0;
2018 switch (how) {
2019 case SIG_BLOCK:
2020 sigorsets(&current->blocked, &current->blocked, set);
2021 break;
2022 case SIG_UNBLOCK:
2023 signandsets(&current->blocked, &current->blocked, set);
2024 break;
2025 case SIG_SETMASK:
2026 current->blocked = *set;
2027 break;
2028 default:
2029 error = -EINVAL;
2030 }
2031 recalc_sigpending();
2032 spin_unlock_irq(&current->sighand->siglock);
2033
2034 return error;
2035 }
2036
2037 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2038 sigset_t __user *, oset, size_t, sigsetsize)
2039 {
2040 int error = -EINVAL;
2041 sigset_t old_set, new_set;
2042
2043 /* XXX: Don't preclude handling different sized sigset_t's. */
2044 if (sigsetsize != sizeof(sigset_t))
2045 goto out;
2046
2047 if (set) {
2048 error = -EFAULT;
2049 if (copy_from_user(&new_set, set, sizeof(*set)))
2050 goto out;
2051 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2052
2053 error = sigprocmask(how, &new_set, &old_set);
2054 if (error)
2055 goto out;
2056 if (oset)
2057 goto set_old;
2058 } else if (oset) {
2059 spin_lock_irq(&current->sighand->siglock);
2060 old_set = current->blocked;
2061 spin_unlock_irq(&current->sighand->siglock);
2062
2063 set_old:
2064 error = -EFAULT;
2065 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2066 goto out;
2067 }
2068 error = 0;
2069 out:
2070 return error;
2071 }
2072
2073 long do_sigpending(void __user *set, unsigned long sigsetsize)
2074 {
2075 long error = -EINVAL;
2076 sigset_t pending;
2077
2078 if (sigsetsize > sizeof(sigset_t))
2079 goto out;
2080
2081 spin_lock_irq(&current->sighand->siglock);
2082 sigorsets(&pending, &current->pending.signal,
2083 &current->signal->shared_pending.signal);
2084 spin_unlock_irq(&current->sighand->siglock);
2085
2086 /* Outside the lock because only this thread touches it. */
2087 sigandsets(&pending, &current->blocked, &pending);
2088
2089 error = -EFAULT;
2090 if (!copy_to_user(set, &pending, sigsetsize))
2091 error = 0;
2092
2093 out:
2094 return error;
2095 }
2096
2097 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2098 {
2099 return do_sigpending(set, sigsetsize);
2100 }
2101
2102 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2103
2104 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2105 {
2106 int err;
2107
2108 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2109 return -EFAULT;
2110 if (from->si_code < 0)
2111 return __copy_to_user(to, from, sizeof(siginfo_t))
2112 ? -EFAULT : 0;
2113 /*
2114 * If you change siginfo_t structure, please be sure
2115 * this code is fixed accordingly.
2116 * Please remember to update the signalfd_copyinfo() function
2117 * inside fs/signalfd.c too, in case siginfo_t changes.
2118 * It should never copy any pad contained in the structure
2119 * to avoid security leaks, but must copy the generic
2120 * 3 ints plus the relevant union member.
2121 */
2122 err = __put_user(from->si_signo, &to->si_signo);
2123 err |= __put_user(from->si_errno, &to->si_errno);
2124 err |= __put_user((short)from->si_code, &to->si_code);
2125 switch (from->si_code & __SI_MASK) {
2126 case __SI_KILL:
2127 err |= __put_user(from->si_pid, &to->si_pid);
2128 err |= __put_user(from->si_uid, &to->si_uid);
2129 break;
2130 case __SI_TIMER:
2131 err |= __put_user(from->si_tid, &to->si_tid);
2132 err |= __put_user(from->si_overrun, &to->si_overrun);
2133 err |= __put_user(from->si_ptr, &to->si_ptr);
2134 break;
2135 case __SI_POLL:
2136 err |= __put_user(from->si_band, &to->si_band);
2137 err |= __put_user(from->si_fd, &to->si_fd);
2138 break;
2139 case __SI_FAULT:
2140 err |= __put_user(from->si_addr, &to->si_addr);
2141 #ifdef __ARCH_SI_TRAPNO
2142 err |= __put_user(from->si_trapno, &to->si_trapno);
2143 #endif
2144 break;
2145 case __SI_CHLD:
2146 err |= __put_user(from->si_pid, &to->si_pid);
2147 err |= __put_user(from->si_uid, &to->si_uid);
2148 err |= __put_user(from->si_status, &to->si_status);
2149 err |= __put_user(from->si_utime, &to->si_utime);
2150 err |= __put_user(from->si_stime, &to->si_stime);
2151 break;
2152 case __SI_RT: /* This is not generated by the kernel as of now. */
2153 case __SI_MESGQ: /* But this is */
2154 err |= __put_user(from->si_pid, &to->si_pid);
2155 err |= __put_user(from->si_uid, &to->si_uid);
2156 err |= __put_user(from->si_ptr, &to->si_ptr);
2157 break;
2158 default: /* this is just in case for now ... */
2159 err |= __put_user(from->si_pid, &to->si_pid);
2160 err |= __put_user(from->si_uid, &to->si_uid);
2161 break;
2162 }
2163 return err;
2164 }
2165
2166 #endif
2167
2168 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2169 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2170 size_t, sigsetsize)
2171 {
2172 int ret, sig;
2173 sigset_t these;
2174 struct timespec ts;
2175 siginfo_t info;
2176 long timeout = 0;
2177
2178 /* XXX: Don't preclude handling different sized sigset_t's. */
2179 if (sigsetsize != sizeof(sigset_t))
2180 return -EINVAL;
2181
2182 if (copy_from_user(&these, uthese, sizeof(these)))
2183 return -EFAULT;
2184
2185 /*
2186 * Invert the set of allowed signals to get those we
2187 * want to block.
2188 */
2189 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2190 signotset(&these);
2191
2192 if (uts) {
2193 if (copy_from_user(&ts, uts, sizeof(ts)))
2194 return -EFAULT;
2195 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2196 || ts.tv_sec < 0)
2197 return -EINVAL;
2198 }
2199
2200 spin_lock_irq(&current->sighand->siglock);
2201 sig = dequeue_signal(current, &these, &info);
2202 if (!sig) {
2203 timeout = MAX_SCHEDULE_TIMEOUT;
2204 if (uts)
2205 timeout = (timespec_to_jiffies(&ts)
2206 + (ts.tv_sec || ts.tv_nsec));
2207
2208 if (timeout) {
2209 /* None ready -- temporarily unblock those we're
2210 * interested while we are sleeping in so that we'll
2211 * be awakened when they arrive. */
2212 current->real_blocked = current->blocked;
2213 sigandsets(&current->blocked, &current->blocked, &these);
2214 recalc_sigpending();
2215 spin_unlock_irq(&current->sighand->siglock);
2216
2217 timeout = schedule_timeout_interruptible(timeout);
2218
2219 spin_lock_irq(&current->sighand->siglock);
2220 sig = dequeue_signal(current, &these, &info);
2221 current->blocked = current->real_blocked;
2222 siginitset(&current->real_blocked, 0);
2223 recalc_sigpending();
2224 }
2225 }
2226 spin_unlock_irq(&current->sighand->siglock);
2227
2228 if (sig) {
2229 ret = sig;
2230 if (uinfo) {
2231 if (copy_siginfo_to_user(uinfo, &info))
2232 ret = -EFAULT;
2233 }
2234 } else {
2235 ret = -EAGAIN;
2236 if (timeout)
2237 ret = -EINTR;
2238 }
2239
2240 return ret;
2241 }
2242
2243 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2244 {
2245 struct siginfo info;
2246
2247 info.si_signo = sig;
2248 info.si_errno = 0;
2249 info.si_code = SI_USER;
2250 info.si_pid = task_tgid_vnr(current);
2251 info.si_uid = current_uid();
2252
2253 return kill_something_info(sig, &info, pid);
2254 }
2255
2256 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2257 {
2258 int error;
2259 struct siginfo info;
2260 struct task_struct *p;
2261 unsigned long flags;
2262
2263 error = -ESRCH;
2264 info.si_signo = sig;
2265 info.si_errno = 0;
2266 info.si_code = SI_TKILL;
2267 info.si_pid = task_tgid_vnr(current);
2268 info.si_uid = current_uid();
2269
2270 rcu_read_lock();
2271 p = find_task_by_vpid(pid);
2272 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2273 error = check_kill_permission(sig, &info, p);
2274 /*
2275 * The null signal is a permissions and process existence
2276 * probe. No signal is actually delivered.
2277 *
2278 * If lock_task_sighand() fails we pretend the task dies
2279 * after receiving the signal. The window is tiny, and the
2280 * signal is private anyway.
2281 */
2282 if (!error && sig && lock_task_sighand(p, &flags)) {
2283 error = specific_send_sig_info(sig, &info, p);
2284 unlock_task_sighand(p, &flags);
2285 }
2286 }
2287 rcu_read_unlock();
2288
2289 return error;
2290 }
2291
2292 /**
2293 * sys_tgkill - send signal to one specific thread
2294 * @tgid: the thread group ID of the thread
2295 * @pid: the PID of the thread
2296 * @sig: signal to be sent
2297 *
2298 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2299 * exists but it's not belonging to the target process anymore. This
2300 * method solves the problem of threads exiting and PIDs getting reused.
2301 */
2302 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2303 {
2304 /* This is only valid for single tasks */
2305 if (pid <= 0 || tgid <= 0)
2306 return -EINVAL;
2307
2308 return do_tkill(tgid, pid, sig);
2309 }
2310
2311 /*
2312 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2313 */
2314 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2315 {
2316 /* This is only valid for single tasks */
2317 if (pid <= 0)
2318 return -EINVAL;
2319
2320 return do_tkill(0, pid, sig);
2321 }
2322
2323 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2324 siginfo_t __user *, uinfo)
2325 {
2326 siginfo_t info;
2327
2328 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2329 return -EFAULT;
2330
2331 /* Not even root can pretend to send signals from the kernel.
2332 Nor can they impersonate a kill(), which adds source info. */
2333 if (info.si_code >= 0)
2334 return -EPERM;
2335 info.si_signo = sig;
2336
2337 /* POSIX.1b doesn't mention process groups. */
2338 return kill_proc_info(sig, &info, pid);
2339 }
2340
2341 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2342 {
2343 struct task_struct *t = current;
2344 struct k_sigaction *k;
2345 sigset_t mask;
2346
2347 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2348 return -EINVAL;
2349
2350 k = &t->sighand->action[sig-1];
2351
2352 spin_lock_irq(&current->sighand->siglock);
2353 if (oact)
2354 *oact = *k;
2355
2356 if (act) {
2357 sigdelsetmask(&act->sa.sa_mask,
2358 sigmask(SIGKILL) | sigmask(SIGSTOP));
2359 *k = *act;
2360 /*
2361 * POSIX 3.3.1.3:
2362 * "Setting a signal action to SIG_IGN for a signal that is
2363 * pending shall cause the pending signal to be discarded,
2364 * whether or not it is blocked."
2365 *
2366 * "Setting a signal action to SIG_DFL for a signal that is
2367 * pending and whose default action is to ignore the signal
2368 * (for example, SIGCHLD), shall cause the pending signal to
2369 * be discarded, whether or not it is blocked"
2370 */
2371 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2372 sigemptyset(&mask);
2373 sigaddset(&mask, sig);
2374 rm_from_queue_full(&mask, &t->signal->shared_pending);
2375 do {
2376 rm_from_queue_full(&mask, &t->pending);
2377 t = next_thread(t);
2378 } while (t != current);
2379 }
2380 }
2381
2382 spin_unlock_irq(&current->sighand->siglock);
2383 return 0;
2384 }
2385
2386 int
2387 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2388 {
2389 stack_t oss;
2390 int error;
2391
2392 if (uoss) {
2393 oss.ss_sp = (void __user *) current->sas_ss_sp;
2394 oss.ss_size = current->sas_ss_size;
2395 oss.ss_flags = sas_ss_flags(sp);
2396 }
2397
2398 if (uss) {
2399 void __user *ss_sp;
2400 size_t ss_size;
2401 int ss_flags;
2402
2403 error = -EFAULT;
2404 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2405 || __get_user(ss_sp, &uss->ss_sp)
2406 || __get_user(ss_flags, &uss->ss_flags)
2407 || __get_user(ss_size, &uss->ss_size))
2408 goto out;
2409
2410 error = -EPERM;
2411 if (on_sig_stack(sp))
2412 goto out;
2413
2414 error = -EINVAL;
2415 /*
2416 *
2417 * Note - this code used to test ss_flags incorrectly
2418 * old code may have been written using ss_flags==0
2419 * to mean ss_flags==SS_ONSTACK (as this was the only
2420 * way that worked) - this fix preserves that older
2421 * mechanism
2422 */
2423 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2424 goto out;
2425
2426 if (ss_flags == SS_DISABLE) {
2427 ss_size = 0;
2428 ss_sp = NULL;
2429 } else {
2430 error = -ENOMEM;
2431 if (ss_size < MINSIGSTKSZ)
2432 goto out;
2433 }
2434
2435 current->sas_ss_sp = (unsigned long) ss_sp;
2436 current->sas_ss_size = ss_size;
2437 }
2438
2439 if (uoss) {
2440 error = -EFAULT;
2441 if (copy_to_user(uoss, &oss, sizeof(oss)))
2442 goto out;
2443 }
2444
2445 error = 0;
2446 out:
2447 return error;
2448 }
2449
2450 #ifdef __ARCH_WANT_SYS_SIGPENDING
2451
2452 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2453 {
2454 return do_sigpending(set, sizeof(*set));
2455 }
2456
2457 #endif
2458
2459 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2460 /* Some platforms have their own version with special arguments others
2461 support only sys_rt_sigprocmask. */
2462
2463 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2464 old_sigset_t __user *, oset)
2465 {
2466 int error;
2467 old_sigset_t old_set, new_set;
2468
2469 if (set) {
2470 error = -EFAULT;
2471 if (copy_from_user(&new_set, set, sizeof(*set)))
2472 goto out;
2473 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2474
2475 spin_lock_irq(&current->sighand->siglock);
2476 old_set = current->blocked.sig[0];
2477
2478 error = 0;
2479 switch (how) {
2480 default:
2481 error = -EINVAL;
2482 break;
2483 case SIG_BLOCK:
2484 sigaddsetmask(&current->blocked, new_set);
2485 break;
2486 case SIG_UNBLOCK:
2487 sigdelsetmask(&current->blocked, new_set);
2488 break;
2489 case SIG_SETMASK:
2490 current->blocked.sig[0] = new_set;
2491 break;
2492 }
2493
2494 recalc_sigpending();
2495 spin_unlock_irq(&current->sighand->siglock);
2496 if (error)
2497 goto out;
2498 if (oset)
2499 goto set_old;
2500 } else if (oset) {
2501 old_set = current->blocked.sig[0];
2502 set_old:
2503 error = -EFAULT;
2504 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2505 goto out;
2506 }
2507 error = 0;
2508 out:
2509 return error;
2510 }
2511 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2512
2513 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2514 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2515 const struct sigaction __user *, act,
2516 struct sigaction __user *, oact,
2517 size_t, sigsetsize)
2518 {
2519 struct k_sigaction new_sa, old_sa;
2520 int ret = -EINVAL;
2521
2522 /* XXX: Don't preclude handling different sized sigset_t's. */
2523 if (sigsetsize != sizeof(sigset_t))
2524 goto out;
2525
2526 if (act) {
2527 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2528 return -EFAULT;
2529 }
2530
2531 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2532
2533 if (!ret && oact) {
2534 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2535 return -EFAULT;
2536 }
2537 out:
2538 return ret;
2539 }
2540 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2541
2542 #ifdef __ARCH_WANT_SYS_SGETMASK
2543
2544 /*
2545 * For backwards compatibility. Functionality superseded by sigprocmask.
2546 */
2547 SYSCALL_DEFINE0(sgetmask)
2548 {
2549 /* SMP safe */
2550 return current->blocked.sig[0];
2551 }
2552
2553 SYSCALL_DEFINE1(ssetmask, int, newmask)
2554 {
2555 int old;
2556
2557 spin_lock_irq(&current->sighand->siglock);
2558 old = current->blocked.sig[0];
2559
2560 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2561 sigmask(SIGSTOP)));
2562 recalc_sigpending();
2563 spin_unlock_irq(&current->sighand->siglock);
2564
2565 return old;
2566 }
2567 #endif /* __ARCH_WANT_SGETMASK */
2568
2569 #ifdef __ARCH_WANT_SYS_SIGNAL
2570 /*
2571 * For backwards compatibility. Functionality superseded by sigaction.
2572 */
2573 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2574 {
2575 struct k_sigaction new_sa, old_sa;
2576 int ret;
2577
2578 new_sa.sa.sa_handler = handler;
2579 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2580 sigemptyset(&new_sa.sa.sa_mask);
2581
2582 ret = do_sigaction(sig, &new_sa, &old_sa);
2583
2584 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2585 }
2586 #endif /* __ARCH_WANT_SYS_SIGNAL */
2587
2588 #ifdef __ARCH_WANT_SYS_PAUSE
2589
2590 SYSCALL_DEFINE0(pause)
2591 {
2592 current->state = TASK_INTERRUPTIBLE;
2593 schedule();
2594 return -ERESTARTNOHAND;
2595 }
2596
2597 #endif
2598
2599 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2600 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2601 {
2602 sigset_t newset;
2603
2604 /* XXX: Don't preclude handling different sized sigset_t's. */
2605 if (sigsetsize != sizeof(sigset_t))
2606 return -EINVAL;
2607
2608 if (copy_from_user(&newset, unewset, sizeof(newset)))
2609 return -EFAULT;
2610 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2611
2612 spin_lock_irq(&current->sighand->siglock);
2613 current->saved_sigmask = current->blocked;
2614 current->blocked = newset;
2615 recalc_sigpending();
2616 spin_unlock_irq(&current->sighand->siglock);
2617
2618 current->state = TASK_INTERRUPTIBLE;
2619 schedule();
2620 set_restore_sigmask();
2621 return -ERESTARTNOHAND;
2622 }
2623 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2624
2625 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2626 {
2627 return NULL;
2628 }
2629
2630 void __init signals_init(void)
2631 {
2632 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2633 }
This page took 0.082608 seconds and 6 git commands to generate.