4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
51 #include <linux/sched.h>
52 #include <linux/rcupdate.h>
53 #include <linux/uidgid.h>
54 #include <linux/cred.h>
56 #include <linux/kmsg_dump.h>
57 /* Move somewhere else to avoid recompiling? */
58 #include <generated/utsrelease.h>
60 #include <asm/uaccess.h>
62 #include <asm/unistd.h>
64 #ifndef SET_UNALIGN_CTL
65 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
67 #ifndef GET_UNALIGN_CTL
68 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
71 # define SET_FPEMU_CTL(a, b) (-EINVAL)
74 # define GET_FPEMU_CTL(a, b) (-EINVAL)
77 # define SET_FPEXC_CTL(a, b) (-EINVAL)
80 # define GET_FPEXC_CTL(a, b) (-EINVAL)
83 # define GET_ENDIAN(a, b) (-EINVAL)
86 # define SET_ENDIAN(a, b) (-EINVAL)
89 # define GET_TSC_CTL(a) (-EINVAL)
92 # define SET_TSC_CTL(a) (-EINVAL)
96 * this is where the system-wide overflow UID and GID are defined, for
97 * architectures that now have 32-bit UID/GID but didn't in the past
100 int overflowuid
= DEFAULT_OVERFLOWUID
;
101 int overflowgid
= DEFAULT_OVERFLOWGID
;
103 EXPORT_SYMBOL(overflowuid
);
104 EXPORT_SYMBOL(overflowgid
);
107 * the same as above, but for filesystems which can only store a 16-bit
108 * UID and GID. as such, this is needed on all architectures
111 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
112 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
114 EXPORT_SYMBOL(fs_overflowuid
);
115 EXPORT_SYMBOL(fs_overflowgid
);
118 * Returns true if current's euid is same as p's uid or euid,
119 * or has CAP_SYS_NICE to p's user_ns.
121 * Called with rcu_read_lock, creds are safe
123 static bool set_one_prio_perm(struct task_struct
*p
)
125 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
127 if (uid_eq(pcred
->uid
, cred
->euid
) ||
128 uid_eq(pcred
->euid
, cred
->euid
))
130 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
136 * set the priority of a task
137 * - the caller must hold the RCU read lock
139 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
143 if (!set_one_prio_perm(p
)) {
147 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
151 no_nice
= security_task_setnice(p
, niceval
);
158 set_user_nice(p
, niceval
);
163 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
165 struct task_struct
*g
, *p
;
166 struct user_struct
*user
;
167 const struct cred
*cred
= current_cred();
172 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
175 /* normalize: avoid signed division (rounding problems) */
177 if (niceval
< MIN_NICE
)
179 if (niceval
> MAX_NICE
)
183 read_lock(&tasklist_lock
);
187 p
= find_task_by_vpid(who
);
191 error
= set_one_prio(p
, niceval
, error
);
195 pgrp
= find_vpid(who
);
197 pgrp
= task_pgrp(current
);
198 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
199 error
= set_one_prio(p
, niceval
, error
);
200 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
203 uid
= make_kuid(cred
->user_ns
, who
);
207 else if (!uid_eq(uid
, cred
->uid
)) {
208 user
= find_user(uid
);
210 goto out_unlock
; /* No processes for this user */
212 do_each_thread(g
, p
) {
213 if (uid_eq(task_uid(p
), uid
))
214 error
= set_one_prio(p
, niceval
, error
);
215 } while_each_thread(g
, p
);
216 if (!uid_eq(uid
, cred
->uid
))
217 free_uid(user
); /* For find_user() */
221 read_unlock(&tasklist_lock
);
228 * Ugh. To avoid negative return values, "getpriority()" will
229 * not return the normal nice-value, but a negated value that
230 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
231 * to stay compatible.
233 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
235 struct task_struct
*g
, *p
;
236 struct user_struct
*user
;
237 const struct cred
*cred
= current_cred();
238 long niceval
, retval
= -ESRCH
;
242 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
246 read_lock(&tasklist_lock
);
250 p
= find_task_by_vpid(who
);
254 niceval
= nice_to_rlimit(task_nice(p
));
255 if (niceval
> retval
)
261 pgrp
= find_vpid(who
);
263 pgrp
= task_pgrp(current
);
264 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
265 niceval
= nice_to_rlimit(task_nice(p
));
266 if (niceval
> retval
)
268 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
271 uid
= make_kuid(cred
->user_ns
, who
);
275 else if (!uid_eq(uid
, cred
->uid
)) {
276 user
= find_user(uid
);
278 goto out_unlock
; /* No processes for this user */
280 do_each_thread(g
, p
) {
281 if (uid_eq(task_uid(p
), uid
)) {
282 niceval
= nice_to_rlimit(task_nice(p
));
283 if (niceval
> retval
)
286 } while_each_thread(g
, p
);
287 if (!uid_eq(uid
, cred
->uid
))
288 free_uid(user
); /* for find_user() */
292 read_unlock(&tasklist_lock
);
299 * Unprivileged users may change the real gid to the effective gid
300 * or vice versa. (BSD-style)
302 * If you set the real gid at all, or set the effective gid to a value not
303 * equal to the real gid, then the saved gid is set to the new effective gid.
305 * This makes it possible for a setgid program to completely drop its
306 * privileges, which is often a useful assertion to make when you are doing
307 * a security audit over a program.
309 * The general idea is that a program which uses just setregid() will be
310 * 100% compatible with BSD. A program which uses just setgid() will be
311 * 100% compatible with POSIX with saved IDs.
313 * SMP: There are not races, the GIDs are checked only by filesystem
314 * operations (as far as semantic preservation is concerned).
316 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
318 struct user_namespace
*ns
= current_user_ns();
319 const struct cred
*old
;
324 krgid
= make_kgid(ns
, rgid
);
325 kegid
= make_kgid(ns
, egid
);
327 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
329 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
332 new = prepare_creds();
335 old
= current_cred();
338 if (rgid
!= (gid_t
) -1) {
339 if (gid_eq(old
->gid
, krgid
) ||
340 gid_eq(old
->egid
, krgid
) ||
341 ns_capable(old
->user_ns
, CAP_SETGID
))
346 if (egid
!= (gid_t
) -1) {
347 if (gid_eq(old
->gid
, kegid
) ||
348 gid_eq(old
->egid
, kegid
) ||
349 gid_eq(old
->sgid
, kegid
) ||
350 ns_capable(old
->user_ns
, CAP_SETGID
))
356 if (rgid
!= (gid_t
) -1 ||
357 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
358 new->sgid
= new->egid
;
359 new->fsgid
= new->egid
;
361 return commit_creds(new);
369 * setgid() is implemented like SysV w/ SAVED_IDS
371 * SMP: Same implicit races as above.
373 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
375 struct user_namespace
*ns
= current_user_ns();
376 const struct cred
*old
;
381 kgid
= make_kgid(ns
, gid
);
382 if (!gid_valid(kgid
))
385 new = prepare_creds();
388 old
= current_cred();
391 if (ns_capable(old
->user_ns
, CAP_SETGID
))
392 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
393 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
394 new->egid
= new->fsgid
= kgid
;
398 return commit_creds(new);
406 * change the user struct in a credentials set to match the new UID
408 static int set_user(struct cred
*new)
410 struct user_struct
*new_user
;
412 new_user
= alloc_uid(new->uid
);
417 * We don't fail in case of NPROC limit excess here because too many
418 * poorly written programs don't check set*uid() return code, assuming
419 * it never fails if called by root. We may still enforce NPROC limit
420 * for programs doing set*uid()+execve() by harmlessly deferring the
421 * failure to the execve() stage.
423 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
424 new_user
!= INIT_USER
)
425 current
->flags
|= PF_NPROC_EXCEEDED
;
427 current
->flags
&= ~PF_NPROC_EXCEEDED
;
430 new->user
= new_user
;
435 * Unprivileged users may change the real uid to the effective uid
436 * or vice versa. (BSD-style)
438 * If you set the real uid at all, or set the effective uid to a value not
439 * equal to the real uid, then the saved uid is set to the new effective uid.
441 * This makes it possible for a setuid program to completely drop its
442 * privileges, which is often a useful assertion to make when you are doing
443 * a security audit over a program.
445 * The general idea is that a program which uses just setreuid() will be
446 * 100% compatible with BSD. A program which uses just setuid() will be
447 * 100% compatible with POSIX with saved IDs.
449 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
451 struct user_namespace
*ns
= current_user_ns();
452 const struct cred
*old
;
457 kruid
= make_kuid(ns
, ruid
);
458 keuid
= make_kuid(ns
, euid
);
460 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
462 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
465 new = prepare_creds();
468 old
= current_cred();
471 if (ruid
!= (uid_t
) -1) {
473 if (!uid_eq(old
->uid
, kruid
) &&
474 !uid_eq(old
->euid
, kruid
) &&
475 !ns_capable(old
->user_ns
, CAP_SETUID
))
479 if (euid
!= (uid_t
) -1) {
481 if (!uid_eq(old
->uid
, keuid
) &&
482 !uid_eq(old
->euid
, keuid
) &&
483 !uid_eq(old
->suid
, keuid
) &&
484 !ns_capable(old
->user_ns
, CAP_SETUID
))
488 if (!uid_eq(new->uid
, old
->uid
)) {
489 retval
= set_user(new);
493 if (ruid
!= (uid_t
) -1 ||
494 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
495 new->suid
= new->euid
;
496 new->fsuid
= new->euid
;
498 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
502 return commit_creds(new);
510 * setuid() is implemented like SysV with SAVED_IDS
512 * Note that SAVED_ID's is deficient in that a setuid root program
513 * like sendmail, for example, cannot set its uid to be a normal
514 * user and then switch back, because if you're root, setuid() sets
515 * the saved uid too. If you don't like this, blame the bright people
516 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
517 * will allow a root program to temporarily drop privileges and be able to
518 * regain them by swapping the real and effective uid.
520 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
522 struct user_namespace
*ns
= current_user_ns();
523 const struct cred
*old
;
528 kuid
= make_kuid(ns
, uid
);
529 if (!uid_valid(kuid
))
532 new = prepare_creds();
535 old
= current_cred();
538 if (ns_capable(old
->user_ns
, CAP_SETUID
)) {
539 new->suid
= new->uid
= kuid
;
540 if (!uid_eq(kuid
, old
->uid
)) {
541 retval
= set_user(new);
545 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
549 new->fsuid
= new->euid
= kuid
;
551 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
555 return commit_creds(new);
564 * This function implements a generic ability to update ruid, euid,
565 * and suid. This allows you to implement the 4.4 compatible seteuid().
567 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
569 struct user_namespace
*ns
= current_user_ns();
570 const struct cred
*old
;
573 kuid_t kruid
, keuid
, ksuid
;
575 kruid
= make_kuid(ns
, ruid
);
576 keuid
= make_kuid(ns
, euid
);
577 ksuid
= make_kuid(ns
, suid
);
579 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
582 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
585 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
588 new = prepare_creds();
592 old
= current_cred();
595 if (!ns_capable(old
->user_ns
, CAP_SETUID
)) {
596 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
597 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
599 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
600 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
602 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
603 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
607 if (ruid
!= (uid_t
) -1) {
609 if (!uid_eq(kruid
, old
->uid
)) {
610 retval
= set_user(new);
615 if (euid
!= (uid_t
) -1)
617 if (suid
!= (uid_t
) -1)
619 new->fsuid
= new->euid
;
621 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
625 return commit_creds(new);
632 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
634 const struct cred
*cred
= current_cred();
636 uid_t ruid
, euid
, suid
;
638 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
639 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
640 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
642 retval
= put_user(ruid
, ruidp
);
644 retval
= put_user(euid
, euidp
);
646 return put_user(suid
, suidp
);
652 * Same as above, but for rgid, egid, sgid.
654 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
656 struct user_namespace
*ns
= current_user_ns();
657 const struct cred
*old
;
660 kgid_t krgid
, kegid
, ksgid
;
662 krgid
= make_kgid(ns
, rgid
);
663 kegid
= make_kgid(ns
, egid
);
664 ksgid
= make_kgid(ns
, sgid
);
666 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
668 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
670 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
673 new = prepare_creds();
676 old
= current_cred();
679 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
680 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
681 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
683 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
684 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
686 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
687 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
691 if (rgid
!= (gid_t
) -1)
693 if (egid
!= (gid_t
) -1)
695 if (sgid
!= (gid_t
) -1)
697 new->fsgid
= new->egid
;
699 return commit_creds(new);
706 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
708 const struct cred
*cred
= current_cred();
710 gid_t rgid
, egid
, sgid
;
712 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
713 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
714 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
716 retval
= put_user(rgid
, rgidp
);
718 retval
= put_user(egid
, egidp
);
720 retval
= put_user(sgid
, sgidp
);
728 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
729 * is used for "access()" and for the NFS daemon (letting nfsd stay at
730 * whatever uid it wants to). It normally shadows "euid", except when
731 * explicitly set by setfsuid() or for access..
733 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
735 const struct cred
*old
;
740 old
= current_cred();
741 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
743 kuid
= make_kuid(old
->user_ns
, uid
);
744 if (!uid_valid(kuid
))
747 new = prepare_creds();
751 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
752 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
753 ns_capable(old
->user_ns
, CAP_SETUID
)) {
754 if (!uid_eq(kuid
, old
->fsuid
)) {
756 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
770 * Samma på svenska..
772 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
774 const struct cred
*old
;
779 old
= current_cred();
780 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
782 kgid
= make_kgid(old
->user_ns
, gid
);
783 if (!gid_valid(kgid
))
786 new = prepare_creds();
790 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
791 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
792 ns_capable(old
->user_ns
, CAP_SETGID
)) {
793 if (!gid_eq(kgid
, old
->fsgid
)) {
808 * sys_getpid - return the thread group id of the current process
810 * Note, despite the name, this returns the tgid not the pid. The tgid and
811 * the pid are identical unless CLONE_THREAD was specified on clone() in
812 * which case the tgid is the same in all threads of the same group.
814 * This is SMP safe as current->tgid does not change.
816 SYSCALL_DEFINE0(getpid
)
818 return task_tgid_vnr(current
);
821 /* Thread ID - the internal kernel "pid" */
822 SYSCALL_DEFINE0(gettid
)
824 return task_pid_vnr(current
);
828 * Accessing ->real_parent is not SMP-safe, it could
829 * change from under us. However, we can use a stale
830 * value of ->real_parent under rcu_read_lock(), see
831 * release_task()->call_rcu(delayed_put_task_struct).
833 SYSCALL_DEFINE0(getppid
)
838 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
844 SYSCALL_DEFINE0(getuid
)
846 /* Only we change this so SMP safe */
847 return from_kuid_munged(current_user_ns(), current_uid());
850 SYSCALL_DEFINE0(geteuid
)
852 /* Only we change this so SMP safe */
853 return from_kuid_munged(current_user_ns(), current_euid());
856 SYSCALL_DEFINE0(getgid
)
858 /* Only we change this so SMP safe */
859 return from_kgid_munged(current_user_ns(), current_gid());
862 SYSCALL_DEFINE0(getegid
)
864 /* Only we change this so SMP safe */
865 return from_kgid_munged(current_user_ns(), current_egid());
868 void do_sys_times(struct tms
*tms
)
870 cputime_t tgutime
, tgstime
, cutime
, cstime
;
872 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
873 cutime
= current
->signal
->cutime
;
874 cstime
= current
->signal
->cstime
;
875 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
876 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
877 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
878 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
881 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
887 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
890 force_successful_syscall_return();
891 return (long) jiffies_64_to_clock_t(get_jiffies_64());
895 * This needs some heavy checking ...
896 * I just haven't the stomach for it. I also don't fully
897 * understand sessions/pgrp etc. Let somebody who does explain it.
899 * OK, I think I have the protection semantics right.... this is really
900 * only important on a multi-user system anyway, to make sure one user
901 * can't send a signal to a process owned by another. -TYT, 12/12/91
903 * !PF_FORKNOEXEC check to conform completely to POSIX.
905 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
907 struct task_struct
*p
;
908 struct task_struct
*group_leader
= current
->group_leader
;
913 pid
= task_pid_vnr(group_leader
);
920 /* From this point forward we keep holding onto the tasklist lock
921 * so that our parent does not change from under us. -DaveM
923 write_lock_irq(&tasklist_lock
);
926 p
= find_task_by_vpid(pid
);
931 if (!thread_group_leader(p
))
934 if (same_thread_group(p
->real_parent
, group_leader
)) {
936 if (task_session(p
) != task_session(group_leader
))
939 if (!(p
->flags
& PF_FORKNOEXEC
))
943 if (p
!= group_leader
)
948 if (p
->signal
->leader
)
953 struct task_struct
*g
;
955 pgrp
= find_vpid(pgid
);
956 g
= pid_task(pgrp
, PIDTYPE_PGID
);
957 if (!g
|| task_session(g
) != task_session(group_leader
))
961 err
= security_task_setpgid(p
, pgid
);
965 if (task_pgrp(p
) != pgrp
)
966 change_pid(p
, PIDTYPE_PGID
, pgrp
);
970 /* All paths lead to here, thus we are safe. -DaveM */
971 write_unlock_irq(&tasklist_lock
);
976 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
978 struct task_struct
*p
;
984 grp
= task_pgrp(current
);
987 p
= find_task_by_vpid(pid
);
994 retval
= security_task_getpgid(p
);
998 retval
= pid_vnr(grp
);
1004 #ifdef __ARCH_WANT_SYS_GETPGRP
1006 SYSCALL_DEFINE0(getpgrp
)
1008 return sys_getpgid(0);
1013 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1015 struct task_struct
*p
;
1021 sid
= task_session(current
);
1024 p
= find_task_by_vpid(pid
);
1027 sid
= task_session(p
);
1031 retval
= security_task_getsid(p
);
1035 retval
= pid_vnr(sid
);
1041 static void set_special_pids(struct pid
*pid
)
1043 struct task_struct
*curr
= current
->group_leader
;
1045 if (task_session(curr
) != pid
)
1046 change_pid(curr
, PIDTYPE_SID
, pid
);
1048 if (task_pgrp(curr
) != pid
)
1049 change_pid(curr
, PIDTYPE_PGID
, pid
);
1052 SYSCALL_DEFINE0(setsid
)
1054 struct task_struct
*group_leader
= current
->group_leader
;
1055 struct pid
*sid
= task_pid(group_leader
);
1056 pid_t session
= pid_vnr(sid
);
1059 write_lock_irq(&tasklist_lock
);
1060 /* Fail if I am already a session leader */
1061 if (group_leader
->signal
->leader
)
1064 /* Fail if a process group id already exists that equals the
1065 * proposed session id.
1067 if (pid_task(sid
, PIDTYPE_PGID
))
1070 group_leader
->signal
->leader
= 1;
1071 set_special_pids(sid
);
1073 proc_clear_tty(group_leader
);
1077 write_unlock_irq(&tasklist_lock
);
1079 proc_sid_connector(group_leader
);
1080 sched_autogroup_create_attach(group_leader
);
1085 DECLARE_RWSEM(uts_sem
);
1087 #ifdef COMPAT_UTS_MACHINE
1088 #define override_architecture(name) \
1089 (personality(current->personality) == PER_LINUX32 && \
1090 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1091 sizeof(COMPAT_UTS_MACHINE)))
1093 #define override_architecture(name) 0
1097 * Work around broken programs that cannot handle "Linux 3.0".
1098 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1100 static int override_release(char __user
*release
, size_t len
)
1104 if (current
->personality
& UNAME26
) {
1105 const char *rest
= UTS_RELEASE
;
1106 char buf
[65] = { 0 };
1112 if (*rest
== '.' && ++ndots
>= 3)
1114 if (!isdigit(*rest
) && *rest
!= '.')
1118 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1119 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1120 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1121 ret
= copy_to_user(release
, buf
, copy
+ 1);
1126 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1130 down_read(&uts_sem
);
1131 if (copy_to_user(name
, utsname(), sizeof *name
))
1135 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1137 if (!errno
&& override_architecture(name
))
1142 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1146 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1153 down_read(&uts_sem
);
1154 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1158 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1160 if (!error
&& override_architecture(name
))
1165 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1171 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1174 down_read(&uts_sem
);
1175 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1177 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1178 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1180 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1181 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1183 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1184 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1186 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1187 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1189 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1192 if (!error
&& override_architecture(name
))
1194 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1196 return error
? -EFAULT
: 0;
1200 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1203 char tmp
[__NEW_UTS_LEN
];
1205 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1208 if (len
< 0 || len
> __NEW_UTS_LEN
)
1210 down_write(&uts_sem
);
1212 if (!copy_from_user(tmp
, name
, len
)) {
1213 struct new_utsname
*u
= utsname();
1215 memcpy(u
->nodename
, tmp
, len
);
1216 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1218 uts_proc_notify(UTS_PROC_HOSTNAME
);
1224 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1226 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1229 struct new_utsname
*u
;
1233 down_read(&uts_sem
);
1235 i
= 1 + strlen(u
->nodename
);
1239 if (copy_to_user(name
, u
->nodename
, i
))
1248 * Only setdomainname; getdomainname can be implemented by calling
1251 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1254 char tmp
[__NEW_UTS_LEN
];
1256 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1258 if (len
< 0 || len
> __NEW_UTS_LEN
)
1261 down_write(&uts_sem
);
1263 if (!copy_from_user(tmp
, name
, len
)) {
1264 struct new_utsname
*u
= utsname();
1266 memcpy(u
->domainname
, tmp
, len
);
1267 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1269 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1275 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1277 struct rlimit value
;
1280 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1282 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1287 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1290 * Back compatibility for getrlimit. Needed for some apps.
1292 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1293 struct rlimit __user
*, rlim
)
1296 if (resource
>= RLIM_NLIMITS
)
1299 task_lock(current
->group_leader
);
1300 x
= current
->signal
->rlim
[resource
];
1301 task_unlock(current
->group_leader
);
1302 if (x
.rlim_cur
> 0x7FFFFFFF)
1303 x
.rlim_cur
= 0x7FFFFFFF;
1304 if (x
.rlim_max
> 0x7FFFFFFF)
1305 x
.rlim_max
= 0x7FFFFFFF;
1306 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1311 static inline bool rlim64_is_infinity(__u64 rlim64
)
1313 #if BITS_PER_LONG < 64
1314 return rlim64
>= ULONG_MAX
;
1316 return rlim64
== RLIM64_INFINITY
;
1320 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1322 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1323 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1325 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1326 if (rlim
->rlim_max
== RLIM_INFINITY
)
1327 rlim64
->rlim_max
= RLIM64_INFINITY
;
1329 rlim64
->rlim_max
= rlim
->rlim_max
;
1332 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1334 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1335 rlim
->rlim_cur
= RLIM_INFINITY
;
1337 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1338 if (rlim64_is_infinity(rlim64
->rlim_max
))
1339 rlim
->rlim_max
= RLIM_INFINITY
;
1341 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1344 /* make sure you are allowed to change @tsk limits before calling this */
1345 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1346 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1348 struct rlimit
*rlim
;
1351 if (resource
>= RLIM_NLIMITS
)
1354 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1356 if (resource
== RLIMIT_NOFILE
&&
1357 new_rlim
->rlim_max
> sysctl_nr_open
)
1361 /* protect tsk->signal and tsk->sighand from disappearing */
1362 read_lock(&tasklist_lock
);
1363 if (!tsk
->sighand
) {
1368 rlim
= tsk
->signal
->rlim
+ resource
;
1369 task_lock(tsk
->group_leader
);
1371 /* Keep the capable check against init_user_ns until
1372 cgroups can contain all limits */
1373 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1374 !capable(CAP_SYS_RESOURCE
))
1377 retval
= security_task_setrlimit(tsk
->group_leader
,
1378 resource
, new_rlim
);
1379 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1381 * The caller is asking for an immediate RLIMIT_CPU
1382 * expiry. But we use the zero value to mean "it was
1383 * never set". So let's cheat and make it one second
1386 new_rlim
->rlim_cur
= 1;
1395 task_unlock(tsk
->group_leader
);
1398 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1399 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1400 * very long-standing error, and fixing it now risks breakage of
1401 * applications, so we live with it
1403 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1404 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1405 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1407 read_unlock(&tasklist_lock
);
1411 /* rcu lock must be held */
1412 static int check_prlimit_permission(struct task_struct
*task
)
1414 const struct cred
*cred
= current_cred(), *tcred
;
1416 if (current
== task
)
1419 tcred
= __task_cred(task
);
1420 if (uid_eq(cred
->uid
, tcred
->euid
) &&
1421 uid_eq(cred
->uid
, tcred
->suid
) &&
1422 uid_eq(cred
->uid
, tcred
->uid
) &&
1423 gid_eq(cred
->gid
, tcred
->egid
) &&
1424 gid_eq(cred
->gid
, tcred
->sgid
) &&
1425 gid_eq(cred
->gid
, tcred
->gid
))
1427 if (ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1433 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1434 const struct rlimit64 __user
*, new_rlim
,
1435 struct rlimit64 __user
*, old_rlim
)
1437 struct rlimit64 old64
, new64
;
1438 struct rlimit old
, new;
1439 struct task_struct
*tsk
;
1443 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1445 rlim64_to_rlim(&new64
, &new);
1449 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1454 ret
= check_prlimit_permission(tsk
);
1459 get_task_struct(tsk
);
1462 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1463 old_rlim
? &old
: NULL
);
1465 if (!ret
&& old_rlim
) {
1466 rlim_to_rlim64(&old
, &old64
);
1467 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1471 put_task_struct(tsk
);
1475 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1477 struct rlimit new_rlim
;
1479 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1481 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1485 * It would make sense to put struct rusage in the task_struct,
1486 * except that would make the task_struct be *really big*. After
1487 * task_struct gets moved into malloc'ed memory, it would
1488 * make sense to do this. It will make moving the rest of the information
1489 * a lot simpler! (Which we're not doing right now because we're not
1490 * measuring them yet).
1492 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1493 * races with threads incrementing their own counters. But since word
1494 * reads are atomic, we either get new values or old values and we don't
1495 * care which for the sums. We always take the siglock to protect reading
1496 * the c* fields from p->signal from races with exit.c updating those
1497 * fields when reaping, so a sample either gets all the additions of a
1498 * given child after it's reaped, or none so this sample is before reaping.
1501 * We need to take the siglock for CHILDEREN, SELF and BOTH
1502 * for the cases current multithreaded, non-current single threaded
1503 * non-current multithreaded. Thread traversal is now safe with
1505 * Strictly speaking, we donot need to take the siglock if we are current and
1506 * single threaded, as no one else can take our signal_struct away, no one
1507 * else can reap the children to update signal->c* counters, and no one else
1508 * can race with the signal-> fields. If we do not take any lock, the
1509 * signal-> fields could be read out of order while another thread was just
1510 * exiting. So we should place a read memory barrier when we avoid the lock.
1511 * On the writer side, write memory barrier is implied in __exit_signal
1512 * as __exit_signal releases the siglock spinlock after updating the signal->
1513 * fields. But we don't do this yet to keep things simple.
1517 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1519 r
->ru_nvcsw
+= t
->nvcsw
;
1520 r
->ru_nivcsw
+= t
->nivcsw
;
1521 r
->ru_minflt
+= t
->min_flt
;
1522 r
->ru_majflt
+= t
->maj_flt
;
1523 r
->ru_inblock
+= task_io_get_inblock(t
);
1524 r
->ru_oublock
+= task_io_get_oublock(t
);
1527 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1529 struct task_struct
*t
;
1530 unsigned long flags
;
1531 cputime_t tgutime
, tgstime
, utime
, stime
;
1532 unsigned long maxrss
= 0;
1534 memset((char *)r
, 0, sizeof (*r
));
1537 if (who
== RUSAGE_THREAD
) {
1538 task_cputime_adjusted(current
, &utime
, &stime
);
1539 accumulate_thread_rusage(p
, r
);
1540 maxrss
= p
->signal
->maxrss
;
1544 if (!lock_task_sighand(p
, &flags
))
1549 case RUSAGE_CHILDREN
:
1550 utime
= p
->signal
->cutime
;
1551 stime
= p
->signal
->cstime
;
1552 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1553 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1554 r
->ru_minflt
= p
->signal
->cmin_flt
;
1555 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1556 r
->ru_inblock
= p
->signal
->cinblock
;
1557 r
->ru_oublock
= p
->signal
->coublock
;
1558 maxrss
= p
->signal
->cmaxrss
;
1560 if (who
== RUSAGE_CHILDREN
)
1564 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1567 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1568 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1569 r
->ru_minflt
+= p
->signal
->min_flt
;
1570 r
->ru_majflt
+= p
->signal
->maj_flt
;
1571 r
->ru_inblock
+= p
->signal
->inblock
;
1572 r
->ru_oublock
+= p
->signal
->oublock
;
1573 if (maxrss
< p
->signal
->maxrss
)
1574 maxrss
= p
->signal
->maxrss
;
1577 accumulate_thread_rusage(t
, r
);
1578 } while_each_thread(p
, t
);
1584 unlock_task_sighand(p
, &flags
);
1587 cputime_to_timeval(utime
, &r
->ru_utime
);
1588 cputime_to_timeval(stime
, &r
->ru_stime
);
1590 if (who
!= RUSAGE_CHILDREN
) {
1591 struct mm_struct
*mm
= get_task_mm(p
);
1594 setmax_mm_hiwater_rss(&maxrss
, mm
);
1598 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1601 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1605 k_getrusage(p
, who
, &r
);
1606 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1609 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1611 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1612 who
!= RUSAGE_THREAD
)
1614 return getrusage(current
, who
, ru
);
1617 #ifdef CONFIG_COMPAT
1618 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1622 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1623 who
!= RUSAGE_THREAD
)
1626 k_getrusage(current
, who
, &r
);
1627 return put_compat_rusage(&r
, ru
);
1631 SYSCALL_DEFINE1(umask
, int, mask
)
1633 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1637 static int prctl_set_mm_exe_file_locked(struct mm_struct
*mm
, unsigned int fd
)
1640 struct inode
*inode
;
1643 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
1649 inode
= file_inode(exe
.file
);
1652 * Because the original mm->exe_file points to executable file, make
1653 * sure that this one is executable as well, to avoid breaking an
1657 if (!S_ISREG(inode
->i_mode
) ||
1658 exe
.file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
1661 err
= inode_permission(inode
, MAY_EXEC
);
1666 * Forbid mm->exe_file change if old file still mapped.
1670 struct vm_area_struct
*vma
;
1672 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
1674 path_equal(&vma
->vm_file
->f_path
,
1675 &mm
->exe_file
->f_path
))
1680 * The symlink can be changed only once, just to disallow arbitrary
1681 * transitions malicious software might bring in. This means one
1682 * could make a snapshot over all processes running and monitor
1683 * /proc/pid/exe changes to notice unusual activity if needed.
1686 if (test_and_set_bit(MMF_EXE_FILE_CHANGED
, &mm
->flags
))
1690 set_mm_exe_file(mm
, exe
.file
); /* this grabs a reference to exe.file */
1696 #ifdef CONFIG_CHECKPOINT_RESTORE
1698 * WARNING: we don't require any capability here so be very careful
1699 * in what is allowed for modification from userspace.
1701 static int validate_prctl_map(struct prctl_mm_map
*prctl_map
)
1703 unsigned long mmap_max_addr
= TASK_SIZE
;
1704 struct mm_struct
*mm
= current
->mm
;
1705 int error
= -EINVAL
, i
;
1707 static const unsigned char offsets
[] = {
1708 offsetof(struct prctl_mm_map
, start_code
),
1709 offsetof(struct prctl_mm_map
, end_code
),
1710 offsetof(struct prctl_mm_map
, start_data
),
1711 offsetof(struct prctl_mm_map
, end_data
),
1712 offsetof(struct prctl_mm_map
, start_brk
),
1713 offsetof(struct prctl_mm_map
, brk
),
1714 offsetof(struct prctl_mm_map
, start_stack
),
1715 offsetof(struct prctl_mm_map
, arg_start
),
1716 offsetof(struct prctl_mm_map
, arg_end
),
1717 offsetof(struct prctl_mm_map
, env_start
),
1718 offsetof(struct prctl_mm_map
, env_end
),
1722 * Make sure the members are not somewhere outside
1723 * of allowed address space.
1725 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1726 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1728 if ((unsigned long)val
>= mmap_max_addr
||
1729 (unsigned long)val
< mmap_min_addr
)
1734 * Make sure the pairs are ordered.
1736 #define __prctl_check_order(__m1, __op, __m2) \
1737 ((unsigned long)prctl_map->__m1 __op \
1738 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1739 error
= __prctl_check_order(start_code
, <, end_code
);
1740 error
|= __prctl_check_order(start_data
, <, end_data
);
1741 error
|= __prctl_check_order(start_brk
, <=, brk
);
1742 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1743 error
|= __prctl_check_order(env_start
, <=, env_end
);
1746 #undef __prctl_check_order
1751 * @brk should be after @end_data in traditional maps.
1753 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1754 prctl_map
->brk
<= prctl_map
->end_data
)
1758 * Neither we should allow to override limits if they set.
1760 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1761 prctl_map
->start_brk
, prctl_map
->end_data
,
1762 prctl_map
->start_data
))
1766 * Someone is trying to cheat the auxv vector.
1768 if (prctl_map
->auxv_size
) {
1769 if (!prctl_map
->auxv
|| prctl_map
->auxv_size
> sizeof(mm
->saved_auxv
))
1774 * Finally, make sure the caller has the rights to
1775 * change /proc/pid/exe link: only local root should
1778 if (prctl_map
->exe_fd
!= (u32
)-1) {
1779 struct user_namespace
*ns
= current_user_ns();
1780 const struct cred
*cred
= current_cred();
1782 if (!uid_eq(cred
->uid
, make_kuid(ns
, 0)) ||
1783 !gid_eq(cred
->gid
, make_kgid(ns
, 0)))
1792 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1794 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1795 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1796 struct mm_struct
*mm
= current
->mm
;
1799 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1800 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1802 if (opt
== PR_SET_MM_MAP_SIZE
)
1803 return put_user((unsigned int)sizeof(prctl_map
),
1804 (unsigned int __user
*)addr
);
1806 if (data_size
!= sizeof(prctl_map
))
1809 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1812 error
= validate_prctl_map(&prctl_map
);
1816 if (prctl_map
.auxv_size
) {
1817 memset(user_auxv
, 0, sizeof(user_auxv
));
1818 if (copy_from_user(user_auxv
,
1819 (const void __user
*)prctl_map
.auxv
,
1820 prctl_map
.auxv_size
))
1823 /* Last entry must be AT_NULL as specification requires */
1824 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
1825 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
1828 down_write(&mm
->mmap_sem
);
1829 if (prctl_map
.exe_fd
!= (u32
)-1)
1830 error
= prctl_set_mm_exe_file_locked(mm
, prctl_map
.exe_fd
);
1831 downgrade_write(&mm
->mmap_sem
);
1836 * We don't validate if these members are pointing to
1837 * real present VMAs because application may have correspond
1838 * VMAs already unmapped and kernel uses these members for statistics
1839 * output in procfs mostly, except
1841 * - @start_brk/@brk which are used in do_brk but kernel lookups
1842 * for VMAs when updating these memvers so anything wrong written
1843 * here cause kernel to swear at userspace program but won't lead
1844 * to any problem in kernel itself
1847 mm
->start_code
= prctl_map
.start_code
;
1848 mm
->end_code
= prctl_map
.end_code
;
1849 mm
->start_data
= prctl_map
.start_data
;
1850 mm
->end_data
= prctl_map
.end_data
;
1851 mm
->start_brk
= prctl_map
.start_brk
;
1852 mm
->brk
= prctl_map
.brk
;
1853 mm
->start_stack
= prctl_map
.start_stack
;
1854 mm
->arg_start
= prctl_map
.arg_start
;
1855 mm
->arg_end
= prctl_map
.arg_end
;
1856 mm
->env_start
= prctl_map
.env_start
;
1857 mm
->env_end
= prctl_map
.env_end
;
1860 * Note this update of @saved_auxv is lockless thus
1861 * if someone reads this member in procfs while we're
1862 * updating -- it may get partly updated results. It's
1863 * known and acceptable trade off: we leave it as is to
1864 * not introduce additional locks here making the kernel
1867 if (prctl_map
.auxv_size
)
1868 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
1872 up_read(&mm
->mmap_sem
);
1875 #endif /* CONFIG_CHECKPOINT_RESTORE */
1877 static int prctl_set_mm(int opt
, unsigned long addr
,
1878 unsigned long arg4
, unsigned long arg5
)
1880 struct mm_struct
*mm
= current
->mm
;
1881 struct vm_area_struct
*vma
;
1884 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
1885 opt
!= PR_SET_MM_MAP
&&
1886 opt
!= PR_SET_MM_MAP_SIZE
)))
1889 #ifdef CONFIG_CHECKPOINT_RESTORE
1890 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
1891 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
1894 if (!capable(CAP_SYS_RESOURCE
))
1897 if (opt
== PR_SET_MM_EXE_FILE
) {
1898 down_write(&mm
->mmap_sem
);
1899 error
= prctl_set_mm_exe_file_locked(mm
, (unsigned int)addr
);
1900 up_write(&mm
->mmap_sem
);
1904 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
1909 down_read(&mm
->mmap_sem
);
1910 vma
= find_vma(mm
, addr
);
1913 case PR_SET_MM_START_CODE
:
1914 mm
->start_code
= addr
;
1916 case PR_SET_MM_END_CODE
:
1917 mm
->end_code
= addr
;
1919 case PR_SET_MM_START_DATA
:
1920 mm
->start_data
= addr
;
1922 case PR_SET_MM_END_DATA
:
1923 mm
->end_data
= addr
;
1926 case PR_SET_MM_START_BRK
:
1927 if (addr
<= mm
->end_data
)
1930 if (check_data_rlimit(rlimit(RLIMIT_DATA
), mm
->brk
, addr
,
1931 mm
->end_data
, mm
->start_data
))
1934 mm
->start_brk
= addr
;
1938 if (addr
<= mm
->end_data
)
1941 if (check_data_rlimit(rlimit(RLIMIT_DATA
), addr
, mm
->start_brk
,
1942 mm
->end_data
, mm
->start_data
))
1949 * If command line arguments and environment
1950 * are placed somewhere else on stack, we can
1951 * set them up here, ARG_START/END to setup
1952 * command line argumets and ENV_START/END
1955 case PR_SET_MM_START_STACK
:
1956 case PR_SET_MM_ARG_START
:
1957 case PR_SET_MM_ARG_END
:
1958 case PR_SET_MM_ENV_START
:
1959 case PR_SET_MM_ENV_END
:
1964 if (opt
== PR_SET_MM_START_STACK
)
1965 mm
->start_stack
= addr
;
1966 else if (opt
== PR_SET_MM_ARG_START
)
1967 mm
->arg_start
= addr
;
1968 else if (opt
== PR_SET_MM_ARG_END
)
1970 else if (opt
== PR_SET_MM_ENV_START
)
1971 mm
->env_start
= addr
;
1972 else if (opt
== PR_SET_MM_ENV_END
)
1977 * This doesn't move auxiliary vector itself
1978 * since it's pinned to mm_struct, but allow
1979 * to fill vector with new values. It's up
1980 * to a caller to provide sane values here
1981 * otherwise user space tools which use this
1982 * vector might be unhappy.
1984 case PR_SET_MM_AUXV
: {
1985 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1987 if (arg4
> sizeof(user_auxv
))
1989 up_read(&mm
->mmap_sem
);
1991 if (copy_from_user(user_auxv
, (const void __user
*)addr
, arg4
))
1994 /* Make sure the last entry is always AT_NULL */
1995 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
1996 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
1998 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2001 memcpy(mm
->saved_auxv
, user_auxv
, arg4
);
2002 task_unlock(current
);
2012 up_read(&mm
->mmap_sem
);
2016 #ifdef CONFIG_CHECKPOINT_RESTORE
2017 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2019 return put_user(me
->clear_child_tid
, tid_addr
);
2022 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2028 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2029 unsigned long, arg4
, unsigned long, arg5
)
2031 struct task_struct
*me
= current
;
2032 unsigned char comm
[sizeof(me
->comm
)];
2035 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2036 if (error
!= -ENOSYS
)
2041 case PR_SET_PDEATHSIG
:
2042 if (!valid_signal(arg2
)) {
2046 me
->pdeath_signal
= arg2
;
2048 case PR_GET_PDEATHSIG
:
2049 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2051 case PR_GET_DUMPABLE
:
2052 error
= get_dumpable(me
->mm
);
2054 case PR_SET_DUMPABLE
:
2055 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2059 set_dumpable(me
->mm
, arg2
);
2062 case PR_SET_UNALIGN
:
2063 error
= SET_UNALIGN_CTL(me
, arg2
);
2065 case PR_GET_UNALIGN
:
2066 error
= GET_UNALIGN_CTL(me
, arg2
);
2069 error
= SET_FPEMU_CTL(me
, arg2
);
2072 error
= GET_FPEMU_CTL(me
, arg2
);
2075 error
= SET_FPEXC_CTL(me
, arg2
);
2078 error
= GET_FPEXC_CTL(me
, arg2
);
2081 error
= PR_TIMING_STATISTICAL
;
2084 if (arg2
!= PR_TIMING_STATISTICAL
)
2088 comm
[sizeof(me
->comm
) - 1] = 0;
2089 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2090 sizeof(me
->comm
) - 1) < 0)
2092 set_task_comm(me
, comm
);
2093 proc_comm_connector(me
);
2096 get_task_comm(comm
, me
);
2097 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2101 error
= GET_ENDIAN(me
, arg2
);
2104 error
= SET_ENDIAN(me
, arg2
);
2106 case PR_GET_SECCOMP
:
2107 error
= prctl_get_seccomp();
2109 case PR_SET_SECCOMP
:
2110 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2113 error
= GET_TSC_CTL(arg2
);
2116 error
= SET_TSC_CTL(arg2
);
2118 case PR_TASK_PERF_EVENTS_DISABLE
:
2119 error
= perf_event_task_disable();
2121 case PR_TASK_PERF_EVENTS_ENABLE
:
2122 error
= perf_event_task_enable();
2124 case PR_GET_TIMERSLACK
:
2125 error
= current
->timer_slack_ns
;
2127 case PR_SET_TIMERSLACK
:
2129 current
->timer_slack_ns
=
2130 current
->default_timer_slack_ns
;
2132 current
->timer_slack_ns
= arg2
;
2138 case PR_MCE_KILL_CLEAR
:
2141 current
->flags
&= ~PF_MCE_PROCESS
;
2143 case PR_MCE_KILL_SET
:
2144 current
->flags
|= PF_MCE_PROCESS
;
2145 if (arg3
== PR_MCE_KILL_EARLY
)
2146 current
->flags
|= PF_MCE_EARLY
;
2147 else if (arg3
== PR_MCE_KILL_LATE
)
2148 current
->flags
&= ~PF_MCE_EARLY
;
2149 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2151 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2159 case PR_MCE_KILL_GET
:
2160 if (arg2
| arg3
| arg4
| arg5
)
2162 if (current
->flags
& PF_MCE_PROCESS
)
2163 error
= (current
->flags
& PF_MCE_EARLY
) ?
2164 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2166 error
= PR_MCE_KILL_DEFAULT
;
2169 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2171 case PR_GET_TID_ADDRESS
:
2172 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2174 case PR_SET_CHILD_SUBREAPER
:
2175 me
->signal
->is_child_subreaper
= !!arg2
;
2177 case PR_GET_CHILD_SUBREAPER
:
2178 error
= put_user(me
->signal
->is_child_subreaper
,
2179 (int __user
*)arg2
);
2181 case PR_SET_NO_NEW_PRIVS
:
2182 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2185 task_set_no_new_privs(current
);
2187 case PR_GET_NO_NEW_PRIVS
:
2188 if (arg2
|| arg3
|| arg4
|| arg5
)
2190 return task_no_new_privs(current
) ? 1 : 0;
2191 case PR_GET_THP_DISABLE
:
2192 if (arg2
|| arg3
|| arg4
|| arg5
)
2194 error
= !!(me
->mm
->def_flags
& VM_NOHUGEPAGE
);
2196 case PR_SET_THP_DISABLE
:
2197 if (arg3
|| arg4
|| arg5
)
2199 down_write(&me
->mm
->mmap_sem
);
2201 me
->mm
->def_flags
|= VM_NOHUGEPAGE
;
2203 me
->mm
->def_flags
&= ~VM_NOHUGEPAGE
;
2204 up_write(&me
->mm
->mmap_sem
);
2213 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2214 struct getcpu_cache __user
*, unused
)
2217 int cpu
= raw_smp_processor_id();
2220 err
|= put_user(cpu
, cpup
);
2222 err
|= put_user(cpu_to_node(cpu
), nodep
);
2223 return err
? -EFAULT
: 0;
2227 * do_sysinfo - fill in sysinfo struct
2228 * @info: pointer to buffer to fill
2230 static int do_sysinfo(struct sysinfo
*info
)
2232 unsigned long mem_total
, sav_total
;
2233 unsigned int mem_unit
, bitcount
;
2236 memset(info
, 0, sizeof(struct sysinfo
));
2238 get_monotonic_boottime(&tp
);
2239 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2241 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2243 info
->procs
= nr_threads
;
2249 * If the sum of all the available memory (i.e. ram + swap)
2250 * is less than can be stored in a 32 bit unsigned long then
2251 * we can be binary compatible with 2.2.x kernels. If not,
2252 * well, in that case 2.2.x was broken anyways...
2254 * -Erik Andersen <andersee@debian.org>
2257 mem_total
= info
->totalram
+ info
->totalswap
;
2258 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2261 mem_unit
= info
->mem_unit
;
2262 while (mem_unit
> 1) {
2265 sav_total
= mem_total
;
2267 if (mem_total
< sav_total
)
2272 * If mem_total did not overflow, multiply all memory values by
2273 * info->mem_unit and set it to 1. This leaves things compatible
2274 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2279 info
->totalram
<<= bitcount
;
2280 info
->freeram
<<= bitcount
;
2281 info
->sharedram
<<= bitcount
;
2282 info
->bufferram
<<= bitcount
;
2283 info
->totalswap
<<= bitcount
;
2284 info
->freeswap
<<= bitcount
;
2285 info
->totalhigh
<<= bitcount
;
2286 info
->freehigh
<<= bitcount
;
2292 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2298 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2304 #ifdef CONFIG_COMPAT
2305 struct compat_sysinfo
{
2319 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2322 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2328 /* Check to see if any memory value is too large for 32-bit and scale
2331 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2334 while (s
.mem_unit
< PAGE_SIZE
) {
2339 s
.totalram
>>= bitcount
;
2340 s
.freeram
>>= bitcount
;
2341 s
.sharedram
>>= bitcount
;
2342 s
.bufferram
>>= bitcount
;
2343 s
.totalswap
>>= bitcount
;
2344 s
.freeswap
>>= bitcount
;
2345 s
.totalhigh
>>= bitcount
;
2346 s
.freehigh
>>= bitcount
;
2349 if (!access_ok(VERIFY_WRITE
, info
, sizeof(struct compat_sysinfo
)) ||
2350 __put_user(s
.uptime
, &info
->uptime
) ||
2351 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2352 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2353 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2354 __put_user(s
.totalram
, &info
->totalram
) ||
2355 __put_user(s
.freeram
, &info
->freeram
) ||
2356 __put_user(s
.sharedram
, &info
->sharedram
) ||
2357 __put_user(s
.bufferram
, &info
->bufferram
) ||
2358 __put_user(s
.totalswap
, &info
->totalswap
) ||
2359 __put_user(s
.freeswap
, &info
->freeswap
) ||
2360 __put_user(s
.procs
, &info
->procs
) ||
2361 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2362 __put_user(s
.freehigh
, &info
->freehigh
) ||
2363 __put_user(s
.mem_unit
, &info
->mem_unit
))
2368 #endif /* CONFIG_COMPAT */