Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / kernel / sys.c
1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
50
51 #include <linux/sched.h>
52 #include <linux/rcupdate.h>
53 #include <linux/uidgid.h>
54 #include <linux/cred.h>
55
56 #include <linux/kmsg_dump.h>
57 /* Move somewhere else to avoid recompiling? */
58 #include <generated/utsrelease.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/io.h>
62 #include <asm/unistd.h>
63
64 #ifndef SET_UNALIGN_CTL
65 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
66 #endif
67 #ifndef GET_UNALIGN_CTL
68 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
69 #endif
70 #ifndef SET_FPEMU_CTL
71 # define SET_FPEMU_CTL(a, b) (-EINVAL)
72 #endif
73 #ifndef GET_FPEMU_CTL
74 # define GET_FPEMU_CTL(a, b) (-EINVAL)
75 #endif
76 #ifndef SET_FPEXC_CTL
77 # define SET_FPEXC_CTL(a, b) (-EINVAL)
78 #endif
79 #ifndef GET_FPEXC_CTL
80 # define GET_FPEXC_CTL(a, b) (-EINVAL)
81 #endif
82 #ifndef GET_ENDIAN
83 # define GET_ENDIAN(a, b) (-EINVAL)
84 #endif
85 #ifndef SET_ENDIAN
86 # define SET_ENDIAN(a, b) (-EINVAL)
87 #endif
88 #ifndef GET_TSC_CTL
89 # define GET_TSC_CTL(a) (-EINVAL)
90 #endif
91 #ifndef SET_TSC_CTL
92 # define SET_TSC_CTL(a) (-EINVAL)
93 #endif
94
95 /*
96 * this is where the system-wide overflow UID and GID are defined, for
97 * architectures that now have 32-bit UID/GID but didn't in the past
98 */
99
100 int overflowuid = DEFAULT_OVERFLOWUID;
101 int overflowgid = DEFAULT_OVERFLOWGID;
102
103 EXPORT_SYMBOL(overflowuid);
104 EXPORT_SYMBOL(overflowgid);
105
106 /*
107 * the same as above, but for filesystems which can only store a 16-bit
108 * UID and GID. as such, this is needed on all architectures
109 */
110
111 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
112 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
113
114 EXPORT_SYMBOL(fs_overflowuid);
115 EXPORT_SYMBOL(fs_overflowgid);
116
117 /*
118 * Returns true if current's euid is same as p's uid or euid,
119 * or has CAP_SYS_NICE to p's user_ns.
120 *
121 * Called with rcu_read_lock, creds are safe
122 */
123 static bool set_one_prio_perm(struct task_struct *p)
124 {
125 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
126
127 if (uid_eq(pcred->uid, cred->euid) ||
128 uid_eq(pcred->euid, cred->euid))
129 return true;
130 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
131 return true;
132 return false;
133 }
134
135 /*
136 * set the priority of a task
137 * - the caller must hold the RCU read lock
138 */
139 static int set_one_prio(struct task_struct *p, int niceval, int error)
140 {
141 int no_nice;
142
143 if (!set_one_prio_perm(p)) {
144 error = -EPERM;
145 goto out;
146 }
147 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
148 error = -EACCES;
149 goto out;
150 }
151 no_nice = security_task_setnice(p, niceval);
152 if (no_nice) {
153 error = no_nice;
154 goto out;
155 }
156 if (error == -ESRCH)
157 error = 0;
158 set_user_nice(p, niceval);
159 out:
160 return error;
161 }
162
163 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
164 {
165 struct task_struct *g, *p;
166 struct user_struct *user;
167 const struct cred *cred = current_cred();
168 int error = -EINVAL;
169 struct pid *pgrp;
170 kuid_t uid;
171
172 if (which > PRIO_USER || which < PRIO_PROCESS)
173 goto out;
174
175 /* normalize: avoid signed division (rounding problems) */
176 error = -ESRCH;
177 if (niceval < MIN_NICE)
178 niceval = MIN_NICE;
179 if (niceval > MAX_NICE)
180 niceval = MAX_NICE;
181
182 rcu_read_lock();
183 read_lock(&tasklist_lock);
184 switch (which) {
185 case PRIO_PROCESS:
186 if (who)
187 p = find_task_by_vpid(who);
188 else
189 p = current;
190 if (p)
191 error = set_one_prio(p, niceval, error);
192 break;
193 case PRIO_PGRP:
194 if (who)
195 pgrp = find_vpid(who);
196 else
197 pgrp = task_pgrp(current);
198 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
199 error = set_one_prio(p, niceval, error);
200 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
201 break;
202 case PRIO_USER:
203 uid = make_kuid(cred->user_ns, who);
204 user = cred->user;
205 if (!who)
206 uid = cred->uid;
207 else if (!uid_eq(uid, cred->uid)) {
208 user = find_user(uid);
209 if (!user)
210 goto out_unlock; /* No processes for this user */
211 }
212 do_each_thread(g, p) {
213 if (uid_eq(task_uid(p), uid))
214 error = set_one_prio(p, niceval, error);
215 } while_each_thread(g, p);
216 if (!uid_eq(uid, cred->uid))
217 free_uid(user); /* For find_user() */
218 break;
219 }
220 out_unlock:
221 read_unlock(&tasklist_lock);
222 rcu_read_unlock();
223 out:
224 return error;
225 }
226
227 /*
228 * Ugh. To avoid negative return values, "getpriority()" will
229 * not return the normal nice-value, but a negated value that
230 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
231 * to stay compatible.
232 */
233 SYSCALL_DEFINE2(getpriority, int, which, int, who)
234 {
235 struct task_struct *g, *p;
236 struct user_struct *user;
237 const struct cred *cred = current_cred();
238 long niceval, retval = -ESRCH;
239 struct pid *pgrp;
240 kuid_t uid;
241
242 if (which > PRIO_USER || which < PRIO_PROCESS)
243 return -EINVAL;
244
245 rcu_read_lock();
246 read_lock(&tasklist_lock);
247 switch (which) {
248 case PRIO_PROCESS:
249 if (who)
250 p = find_task_by_vpid(who);
251 else
252 p = current;
253 if (p) {
254 niceval = nice_to_rlimit(task_nice(p));
255 if (niceval > retval)
256 retval = niceval;
257 }
258 break;
259 case PRIO_PGRP:
260 if (who)
261 pgrp = find_vpid(who);
262 else
263 pgrp = task_pgrp(current);
264 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
265 niceval = nice_to_rlimit(task_nice(p));
266 if (niceval > retval)
267 retval = niceval;
268 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
269 break;
270 case PRIO_USER:
271 uid = make_kuid(cred->user_ns, who);
272 user = cred->user;
273 if (!who)
274 uid = cred->uid;
275 else if (!uid_eq(uid, cred->uid)) {
276 user = find_user(uid);
277 if (!user)
278 goto out_unlock; /* No processes for this user */
279 }
280 do_each_thread(g, p) {
281 if (uid_eq(task_uid(p), uid)) {
282 niceval = nice_to_rlimit(task_nice(p));
283 if (niceval > retval)
284 retval = niceval;
285 }
286 } while_each_thread(g, p);
287 if (!uid_eq(uid, cred->uid))
288 free_uid(user); /* for find_user() */
289 break;
290 }
291 out_unlock:
292 read_unlock(&tasklist_lock);
293 rcu_read_unlock();
294
295 return retval;
296 }
297
298 /*
299 * Unprivileged users may change the real gid to the effective gid
300 * or vice versa. (BSD-style)
301 *
302 * If you set the real gid at all, or set the effective gid to a value not
303 * equal to the real gid, then the saved gid is set to the new effective gid.
304 *
305 * This makes it possible for a setgid program to completely drop its
306 * privileges, which is often a useful assertion to make when you are doing
307 * a security audit over a program.
308 *
309 * The general idea is that a program which uses just setregid() will be
310 * 100% compatible with BSD. A program which uses just setgid() will be
311 * 100% compatible with POSIX with saved IDs.
312 *
313 * SMP: There are not races, the GIDs are checked only by filesystem
314 * operations (as far as semantic preservation is concerned).
315 */
316 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
317 {
318 struct user_namespace *ns = current_user_ns();
319 const struct cred *old;
320 struct cred *new;
321 int retval;
322 kgid_t krgid, kegid;
323
324 krgid = make_kgid(ns, rgid);
325 kegid = make_kgid(ns, egid);
326
327 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
328 return -EINVAL;
329 if ((egid != (gid_t) -1) && !gid_valid(kegid))
330 return -EINVAL;
331
332 new = prepare_creds();
333 if (!new)
334 return -ENOMEM;
335 old = current_cred();
336
337 retval = -EPERM;
338 if (rgid != (gid_t) -1) {
339 if (gid_eq(old->gid, krgid) ||
340 gid_eq(old->egid, krgid) ||
341 ns_capable(old->user_ns, CAP_SETGID))
342 new->gid = krgid;
343 else
344 goto error;
345 }
346 if (egid != (gid_t) -1) {
347 if (gid_eq(old->gid, kegid) ||
348 gid_eq(old->egid, kegid) ||
349 gid_eq(old->sgid, kegid) ||
350 ns_capable(old->user_ns, CAP_SETGID))
351 new->egid = kegid;
352 else
353 goto error;
354 }
355
356 if (rgid != (gid_t) -1 ||
357 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
358 new->sgid = new->egid;
359 new->fsgid = new->egid;
360
361 return commit_creds(new);
362
363 error:
364 abort_creds(new);
365 return retval;
366 }
367
368 /*
369 * setgid() is implemented like SysV w/ SAVED_IDS
370 *
371 * SMP: Same implicit races as above.
372 */
373 SYSCALL_DEFINE1(setgid, gid_t, gid)
374 {
375 struct user_namespace *ns = current_user_ns();
376 const struct cred *old;
377 struct cred *new;
378 int retval;
379 kgid_t kgid;
380
381 kgid = make_kgid(ns, gid);
382 if (!gid_valid(kgid))
383 return -EINVAL;
384
385 new = prepare_creds();
386 if (!new)
387 return -ENOMEM;
388 old = current_cred();
389
390 retval = -EPERM;
391 if (ns_capable(old->user_ns, CAP_SETGID))
392 new->gid = new->egid = new->sgid = new->fsgid = kgid;
393 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
394 new->egid = new->fsgid = kgid;
395 else
396 goto error;
397
398 return commit_creds(new);
399
400 error:
401 abort_creds(new);
402 return retval;
403 }
404
405 /*
406 * change the user struct in a credentials set to match the new UID
407 */
408 static int set_user(struct cred *new)
409 {
410 struct user_struct *new_user;
411
412 new_user = alloc_uid(new->uid);
413 if (!new_user)
414 return -EAGAIN;
415
416 /*
417 * We don't fail in case of NPROC limit excess here because too many
418 * poorly written programs don't check set*uid() return code, assuming
419 * it never fails if called by root. We may still enforce NPROC limit
420 * for programs doing set*uid()+execve() by harmlessly deferring the
421 * failure to the execve() stage.
422 */
423 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
424 new_user != INIT_USER)
425 current->flags |= PF_NPROC_EXCEEDED;
426 else
427 current->flags &= ~PF_NPROC_EXCEEDED;
428
429 free_uid(new->user);
430 new->user = new_user;
431 return 0;
432 }
433
434 /*
435 * Unprivileged users may change the real uid to the effective uid
436 * or vice versa. (BSD-style)
437 *
438 * If you set the real uid at all, or set the effective uid to a value not
439 * equal to the real uid, then the saved uid is set to the new effective uid.
440 *
441 * This makes it possible for a setuid program to completely drop its
442 * privileges, which is often a useful assertion to make when you are doing
443 * a security audit over a program.
444 *
445 * The general idea is that a program which uses just setreuid() will be
446 * 100% compatible with BSD. A program which uses just setuid() will be
447 * 100% compatible with POSIX with saved IDs.
448 */
449 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
450 {
451 struct user_namespace *ns = current_user_ns();
452 const struct cred *old;
453 struct cred *new;
454 int retval;
455 kuid_t kruid, keuid;
456
457 kruid = make_kuid(ns, ruid);
458 keuid = make_kuid(ns, euid);
459
460 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
461 return -EINVAL;
462 if ((euid != (uid_t) -1) && !uid_valid(keuid))
463 return -EINVAL;
464
465 new = prepare_creds();
466 if (!new)
467 return -ENOMEM;
468 old = current_cred();
469
470 retval = -EPERM;
471 if (ruid != (uid_t) -1) {
472 new->uid = kruid;
473 if (!uid_eq(old->uid, kruid) &&
474 !uid_eq(old->euid, kruid) &&
475 !ns_capable(old->user_ns, CAP_SETUID))
476 goto error;
477 }
478
479 if (euid != (uid_t) -1) {
480 new->euid = keuid;
481 if (!uid_eq(old->uid, keuid) &&
482 !uid_eq(old->euid, keuid) &&
483 !uid_eq(old->suid, keuid) &&
484 !ns_capable(old->user_ns, CAP_SETUID))
485 goto error;
486 }
487
488 if (!uid_eq(new->uid, old->uid)) {
489 retval = set_user(new);
490 if (retval < 0)
491 goto error;
492 }
493 if (ruid != (uid_t) -1 ||
494 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
495 new->suid = new->euid;
496 new->fsuid = new->euid;
497
498 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
499 if (retval < 0)
500 goto error;
501
502 return commit_creds(new);
503
504 error:
505 abort_creds(new);
506 return retval;
507 }
508
509 /*
510 * setuid() is implemented like SysV with SAVED_IDS
511 *
512 * Note that SAVED_ID's is deficient in that a setuid root program
513 * like sendmail, for example, cannot set its uid to be a normal
514 * user and then switch back, because if you're root, setuid() sets
515 * the saved uid too. If you don't like this, blame the bright people
516 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
517 * will allow a root program to temporarily drop privileges and be able to
518 * regain them by swapping the real and effective uid.
519 */
520 SYSCALL_DEFINE1(setuid, uid_t, uid)
521 {
522 struct user_namespace *ns = current_user_ns();
523 const struct cred *old;
524 struct cred *new;
525 int retval;
526 kuid_t kuid;
527
528 kuid = make_kuid(ns, uid);
529 if (!uid_valid(kuid))
530 return -EINVAL;
531
532 new = prepare_creds();
533 if (!new)
534 return -ENOMEM;
535 old = current_cred();
536
537 retval = -EPERM;
538 if (ns_capable(old->user_ns, CAP_SETUID)) {
539 new->suid = new->uid = kuid;
540 if (!uid_eq(kuid, old->uid)) {
541 retval = set_user(new);
542 if (retval < 0)
543 goto error;
544 }
545 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
546 goto error;
547 }
548
549 new->fsuid = new->euid = kuid;
550
551 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
552 if (retval < 0)
553 goto error;
554
555 return commit_creds(new);
556
557 error:
558 abort_creds(new);
559 return retval;
560 }
561
562
563 /*
564 * This function implements a generic ability to update ruid, euid,
565 * and suid. This allows you to implement the 4.4 compatible seteuid().
566 */
567 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
568 {
569 struct user_namespace *ns = current_user_ns();
570 const struct cred *old;
571 struct cred *new;
572 int retval;
573 kuid_t kruid, keuid, ksuid;
574
575 kruid = make_kuid(ns, ruid);
576 keuid = make_kuid(ns, euid);
577 ksuid = make_kuid(ns, suid);
578
579 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
580 return -EINVAL;
581
582 if ((euid != (uid_t) -1) && !uid_valid(keuid))
583 return -EINVAL;
584
585 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
586 return -EINVAL;
587
588 new = prepare_creds();
589 if (!new)
590 return -ENOMEM;
591
592 old = current_cred();
593
594 retval = -EPERM;
595 if (!ns_capable(old->user_ns, CAP_SETUID)) {
596 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
597 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
598 goto error;
599 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
600 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
601 goto error;
602 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
603 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
604 goto error;
605 }
606
607 if (ruid != (uid_t) -1) {
608 new->uid = kruid;
609 if (!uid_eq(kruid, old->uid)) {
610 retval = set_user(new);
611 if (retval < 0)
612 goto error;
613 }
614 }
615 if (euid != (uid_t) -1)
616 new->euid = keuid;
617 if (suid != (uid_t) -1)
618 new->suid = ksuid;
619 new->fsuid = new->euid;
620
621 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
622 if (retval < 0)
623 goto error;
624
625 return commit_creds(new);
626
627 error:
628 abort_creds(new);
629 return retval;
630 }
631
632 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
633 {
634 const struct cred *cred = current_cred();
635 int retval;
636 uid_t ruid, euid, suid;
637
638 ruid = from_kuid_munged(cred->user_ns, cred->uid);
639 euid = from_kuid_munged(cred->user_ns, cred->euid);
640 suid = from_kuid_munged(cred->user_ns, cred->suid);
641
642 retval = put_user(ruid, ruidp);
643 if (!retval) {
644 retval = put_user(euid, euidp);
645 if (!retval)
646 return put_user(suid, suidp);
647 }
648 return retval;
649 }
650
651 /*
652 * Same as above, but for rgid, egid, sgid.
653 */
654 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
655 {
656 struct user_namespace *ns = current_user_ns();
657 const struct cred *old;
658 struct cred *new;
659 int retval;
660 kgid_t krgid, kegid, ksgid;
661
662 krgid = make_kgid(ns, rgid);
663 kegid = make_kgid(ns, egid);
664 ksgid = make_kgid(ns, sgid);
665
666 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
667 return -EINVAL;
668 if ((egid != (gid_t) -1) && !gid_valid(kegid))
669 return -EINVAL;
670 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
671 return -EINVAL;
672
673 new = prepare_creds();
674 if (!new)
675 return -ENOMEM;
676 old = current_cred();
677
678 retval = -EPERM;
679 if (!ns_capable(old->user_ns, CAP_SETGID)) {
680 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
681 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
682 goto error;
683 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
684 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
685 goto error;
686 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
687 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
688 goto error;
689 }
690
691 if (rgid != (gid_t) -1)
692 new->gid = krgid;
693 if (egid != (gid_t) -1)
694 new->egid = kegid;
695 if (sgid != (gid_t) -1)
696 new->sgid = ksgid;
697 new->fsgid = new->egid;
698
699 return commit_creds(new);
700
701 error:
702 abort_creds(new);
703 return retval;
704 }
705
706 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
707 {
708 const struct cred *cred = current_cred();
709 int retval;
710 gid_t rgid, egid, sgid;
711
712 rgid = from_kgid_munged(cred->user_ns, cred->gid);
713 egid = from_kgid_munged(cred->user_ns, cred->egid);
714 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
715
716 retval = put_user(rgid, rgidp);
717 if (!retval) {
718 retval = put_user(egid, egidp);
719 if (!retval)
720 retval = put_user(sgid, sgidp);
721 }
722
723 return retval;
724 }
725
726
727 /*
728 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
729 * is used for "access()" and for the NFS daemon (letting nfsd stay at
730 * whatever uid it wants to). It normally shadows "euid", except when
731 * explicitly set by setfsuid() or for access..
732 */
733 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
734 {
735 const struct cred *old;
736 struct cred *new;
737 uid_t old_fsuid;
738 kuid_t kuid;
739
740 old = current_cred();
741 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
742
743 kuid = make_kuid(old->user_ns, uid);
744 if (!uid_valid(kuid))
745 return old_fsuid;
746
747 new = prepare_creds();
748 if (!new)
749 return old_fsuid;
750
751 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
752 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
753 ns_capable(old->user_ns, CAP_SETUID)) {
754 if (!uid_eq(kuid, old->fsuid)) {
755 new->fsuid = kuid;
756 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
757 goto change_okay;
758 }
759 }
760
761 abort_creds(new);
762 return old_fsuid;
763
764 change_okay:
765 commit_creds(new);
766 return old_fsuid;
767 }
768
769 /*
770 * Samma på svenska..
771 */
772 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
773 {
774 const struct cred *old;
775 struct cred *new;
776 gid_t old_fsgid;
777 kgid_t kgid;
778
779 old = current_cred();
780 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
781
782 kgid = make_kgid(old->user_ns, gid);
783 if (!gid_valid(kgid))
784 return old_fsgid;
785
786 new = prepare_creds();
787 if (!new)
788 return old_fsgid;
789
790 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
791 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
792 ns_capable(old->user_ns, CAP_SETGID)) {
793 if (!gid_eq(kgid, old->fsgid)) {
794 new->fsgid = kgid;
795 goto change_okay;
796 }
797 }
798
799 abort_creds(new);
800 return old_fsgid;
801
802 change_okay:
803 commit_creds(new);
804 return old_fsgid;
805 }
806
807 /**
808 * sys_getpid - return the thread group id of the current process
809 *
810 * Note, despite the name, this returns the tgid not the pid. The tgid and
811 * the pid are identical unless CLONE_THREAD was specified on clone() in
812 * which case the tgid is the same in all threads of the same group.
813 *
814 * This is SMP safe as current->tgid does not change.
815 */
816 SYSCALL_DEFINE0(getpid)
817 {
818 return task_tgid_vnr(current);
819 }
820
821 /* Thread ID - the internal kernel "pid" */
822 SYSCALL_DEFINE0(gettid)
823 {
824 return task_pid_vnr(current);
825 }
826
827 /*
828 * Accessing ->real_parent is not SMP-safe, it could
829 * change from under us. However, we can use a stale
830 * value of ->real_parent under rcu_read_lock(), see
831 * release_task()->call_rcu(delayed_put_task_struct).
832 */
833 SYSCALL_DEFINE0(getppid)
834 {
835 int pid;
836
837 rcu_read_lock();
838 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
839 rcu_read_unlock();
840
841 return pid;
842 }
843
844 SYSCALL_DEFINE0(getuid)
845 {
846 /* Only we change this so SMP safe */
847 return from_kuid_munged(current_user_ns(), current_uid());
848 }
849
850 SYSCALL_DEFINE0(geteuid)
851 {
852 /* Only we change this so SMP safe */
853 return from_kuid_munged(current_user_ns(), current_euid());
854 }
855
856 SYSCALL_DEFINE0(getgid)
857 {
858 /* Only we change this so SMP safe */
859 return from_kgid_munged(current_user_ns(), current_gid());
860 }
861
862 SYSCALL_DEFINE0(getegid)
863 {
864 /* Only we change this so SMP safe */
865 return from_kgid_munged(current_user_ns(), current_egid());
866 }
867
868 void do_sys_times(struct tms *tms)
869 {
870 cputime_t tgutime, tgstime, cutime, cstime;
871
872 spin_lock_irq(&current->sighand->siglock);
873 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
874 cutime = current->signal->cutime;
875 cstime = current->signal->cstime;
876 spin_unlock_irq(&current->sighand->siglock);
877 tms->tms_utime = cputime_to_clock_t(tgutime);
878 tms->tms_stime = cputime_to_clock_t(tgstime);
879 tms->tms_cutime = cputime_to_clock_t(cutime);
880 tms->tms_cstime = cputime_to_clock_t(cstime);
881 }
882
883 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
884 {
885 if (tbuf) {
886 struct tms tmp;
887
888 do_sys_times(&tmp);
889 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
890 return -EFAULT;
891 }
892 force_successful_syscall_return();
893 return (long) jiffies_64_to_clock_t(get_jiffies_64());
894 }
895
896 /*
897 * This needs some heavy checking ...
898 * I just haven't the stomach for it. I also don't fully
899 * understand sessions/pgrp etc. Let somebody who does explain it.
900 *
901 * OK, I think I have the protection semantics right.... this is really
902 * only important on a multi-user system anyway, to make sure one user
903 * can't send a signal to a process owned by another. -TYT, 12/12/91
904 *
905 * !PF_FORKNOEXEC check to conform completely to POSIX.
906 */
907 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
908 {
909 struct task_struct *p;
910 struct task_struct *group_leader = current->group_leader;
911 struct pid *pgrp;
912 int err;
913
914 if (!pid)
915 pid = task_pid_vnr(group_leader);
916 if (!pgid)
917 pgid = pid;
918 if (pgid < 0)
919 return -EINVAL;
920 rcu_read_lock();
921
922 /* From this point forward we keep holding onto the tasklist lock
923 * so that our parent does not change from under us. -DaveM
924 */
925 write_lock_irq(&tasklist_lock);
926
927 err = -ESRCH;
928 p = find_task_by_vpid(pid);
929 if (!p)
930 goto out;
931
932 err = -EINVAL;
933 if (!thread_group_leader(p))
934 goto out;
935
936 if (same_thread_group(p->real_parent, group_leader)) {
937 err = -EPERM;
938 if (task_session(p) != task_session(group_leader))
939 goto out;
940 err = -EACCES;
941 if (!(p->flags & PF_FORKNOEXEC))
942 goto out;
943 } else {
944 err = -ESRCH;
945 if (p != group_leader)
946 goto out;
947 }
948
949 err = -EPERM;
950 if (p->signal->leader)
951 goto out;
952
953 pgrp = task_pid(p);
954 if (pgid != pid) {
955 struct task_struct *g;
956
957 pgrp = find_vpid(pgid);
958 g = pid_task(pgrp, PIDTYPE_PGID);
959 if (!g || task_session(g) != task_session(group_leader))
960 goto out;
961 }
962
963 err = security_task_setpgid(p, pgid);
964 if (err)
965 goto out;
966
967 if (task_pgrp(p) != pgrp)
968 change_pid(p, PIDTYPE_PGID, pgrp);
969
970 err = 0;
971 out:
972 /* All paths lead to here, thus we are safe. -DaveM */
973 write_unlock_irq(&tasklist_lock);
974 rcu_read_unlock();
975 return err;
976 }
977
978 SYSCALL_DEFINE1(getpgid, pid_t, pid)
979 {
980 struct task_struct *p;
981 struct pid *grp;
982 int retval;
983
984 rcu_read_lock();
985 if (!pid)
986 grp = task_pgrp(current);
987 else {
988 retval = -ESRCH;
989 p = find_task_by_vpid(pid);
990 if (!p)
991 goto out;
992 grp = task_pgrp(p);
993 if (!grp)
994 goto out;
995
996 retval = security_task_getpgid(p);
997 if (retval)
998 goto out;
999 }
1000 retval = pid_vnr(grp);
1001 out:
1002 rcu_read_unlock();
1003 return retval;
1004 }
1005
1006 #ifdef __ARCH_WANT_SYS_GETPGRP
1007
1008 SYSCALL_DEFINE0(getpgrp)
1009 {
1010 return sys_getpgid(0);
1011 }
1012
1013 #endif
1014
1015 SYSCALL_DEFINE1(getsid, pid_t, pid)
1016 {
1017 struct task_struct *p;
1018 struct pid *sid;
1019 int retval;
1020
1021 rcu_read_lock();
1022 if (!pid)
1023 sid = task_session(current);
1024 else {
1025 retval = -ESRCH;
1026 p = find_task_by_vpid(pid);
1027 if (!p)
1028 goto out;
1029 sid = task_session(p);
1030 if (!sid)
1031 goto out;
1032
1033 retval = security_task_getsid(p);
1034 if (retval)
1035 goto out;
1036 }
1037 retval = pid_vnr(sid);
1038 out:
1039 rcu_read_unlock();
1040 return retval;
1041 }
1042
1043 static void set_special_pids(struct pid *pid)
1044 {
1045 struct task_struct *curr = current->group_leader;
1046
1047 if (task_session(curr) != pid)
1048 change_pid(curr, PIDTYPE_SID, pid);
1049
1050 if (task_pgrp(curr) != pid)
1051 change_pid(curr, PIDTYPE_PGID, pid);
1052 }
1053
1054 SYSCALL_DEFINE0(setsid)
1055 {
1056 struct task_struct *group_leader = current->group_leader;
1057 struct pid *sid = task_pid(group_leader);
1058 pid_t session = pid_vnr(sid);
1059 int err = -EPERM;
1060
1061 write_lock_irq(&tasklist_lock);
1062 /* Fail if I am already a session leader */
1063 if (group_leader->signal->leader)
1064 goto out;
1065
1066 /* Fail if a process group id already exists that equals the
1067 * proposed session id.
1068 */
1069 if (pid_task(sid, PIDTYPE_PGID))
1070 goto out;
1071
1072 group_leader->signal->leader = 1;
1073 set_special_pids(sid);
1074
1075 proc_clear_tty(group_leader);
1076
1077 err = session;
1078 out:
1079 write_unlock_irq(&tasklist_lock);
1080 if (err > 0) {
1081 proc_sid_connector(group_leader);
1082 sched_autogroup_create_attach(group_leader);
1083 }
1084 return err;
1085 }
1086
1087 DECLARE_RWSEM(uts_sem);
1088
1089 #ifdef COMPAT_UTS_MACHINE
1090 #define override_architecture(name) \
1091 (personality(current->personality) == PER_LINUX32 && \
1092 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1093 sizeof(COMPAT_UTS_MACHINE)))
1094 #else
1095 #define override_architecture(name) 0
1096 #endif
1097
1098 /*
1099 * Work around broken programs that cannot handle "Linux 3.0".
1100 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1101 */
1102 static int override_release(char __user *release, size_t len)
1103 {
1104 int ret = 0;
1105
1106 if (current->personality & UNAME26) {
1107 const char *rest = UTS_RELEASE;
1108 char buf[65] = { 0 };
1109 int ndots = 0;
1110 unsigned v;
1111 size_t copy;
1112
1113 while (*rest) {
1114 if (*rest == '.' && ++ndots >= 3)
1115 break;
1116 if (!isdigit(*rest) && *rest != '.')
1117 break;
1118 rest++;
1119 }
1120 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1121 copy = clamp_t(size_t, len, 1, sizeof(buf));
1122 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1123 ret = copy_to_user(release, buf, copy + 1);
1124 }
1125 return ret;
1126 }
1127
1128 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1129 {
1130 int errno = 0;
1131
1132 down_read(&uts_sem);
1133 if (copy_to_user(name, utsname(), sizeof *name))
1134 errno = -EFAULT;
1135 up_read(&uts_sem);
1136
1137 if (!errno && override_release(name->release, sizeof(name->release)))
1138 errno = -EFAULT;
1139 if (!errno && override_architecture(name))
1140 errno = -EFAULT;
1141 return errno;
1142 }
1143
1144 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1145 /*
1146 * Old cruft
1147 */
1148 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1149 {
1150 int error = 0;
1151
1152 if (!name)
1153 return -EFAULT;
1154
1155 down_read(&uts_sem);
1156 if (copy_to_user(name, utsname(), sizeof(*name)))
1157 error = -EFAULT;
1158 up_read(&uts_sem);
1159
1160 if (!error && override_release(name->release, sizeof(name->release)))
1161 error = -EFAULT;
1162 if (!error && override_architecture(name))
1163 error = -EFAULT;
1164 return error;
1165 }
1166
1167 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1168 {
1169 int error;
1170
1171 if (!name)
1172 return -EFAULT;
1173 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1174 return -EFAULT;
1175
1176 down_read(&uts_sem);
1177 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1178 __OLD_UTS_LEN);
1179 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1180 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1181 __OLD_UTS_LEN);
1182 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1183 error |= __copy_to_user(&name->release, &utsname()->release,
1184 __OLD_UTS_LEN);
1185 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1186 error |= __copy_to_user(&name->version, &utsname()->version,
1187 __OLD_UTS_LEN);
1188 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1189 error |= __copy_to_user(&name->machine, &utsname()->machine,
1190 __OLD_UTS_LEN);
1191 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1192 up_read(&uts_sem);
1193
1194 if (!error && override_architecture(name))
1195 error = -EFAULT;
1196 if (!error && override_release(name->release, sizeof(name->release)))
1197 error = -EFAULT;
1198 return error ? -EFAULT : 0;
1199 }
1200 #endif
1201
1202 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1203 {
1204 int errno;
1205 char tmp[__NEW_UTS_LEN];
1206
1207 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1208 return -EPERM;
1209
1210 if (len < 0 || len > __NEW_UTS_LEN)
1211 return -EINVAL;
1212 down_write(&uts_sem);
1213 errno = -EFAULT;
1214 if (!copy_from_user(tmp, name, len)) {
1215 struct new_utsname *u = utsname();
1216
1217 memcpy(u->nodename, tmp, len);
1218 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1219 errno = 0;
1220 uts_proc_notify(UTS_PROC_HOSTNAME);
1221 }
1222 up_write(&uts_sem);
1223 return errno;
1224 }
1225
1226 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1227
1228 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1229 {
1230 int i, errno;
1231 struct new_utsname *u;
1232
1233 if (len < 0)
1234 return -EINVAL;
1235 down_read(&uts_sem);
1236 u = utsname();
1237 i = 1 + strlen(u->nodename);
1238 if (i > len)
1239 i = len;
1240 errno = 0;
1241 if (copy_to_user(name, u->nodename, i))
1242 errno = -EFAULT;
1243 up_read(&uts_sem);
1244 return errno;
1245 }
1246
1247 #endif
1248
1249 /*
1250 * Only setdomainname; getdomainname can be implemented by calling
1251 * uname()
1252 */
1253 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1254 {
1255 int errno;
1256 char tmp[__NEW_UTS_LEN];
1257
1258 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1259 return -EPERM;
1260 if (len < 0 || len > __NEW_UTS_LEN)
1261 return -EINVAL;
1262
1263 down_write(&uts_sem);
1264 errno = -EFAULT;
1265 if (!copy_from_user(tmp, name, len)) {
1266 struct new_utsname *u = utsname();
1267
1268 memcpy(u->domainname, tmp, len);
1269 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1270 errno = 0;
1271 uts_proc_notify(UTS_PROC_DOMAINNAME);
1272 }
1273 up_write(&uts_sem);
1274 return errno;
1275 }
1276
1277 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1278 {
1279 struct rlimit value;
1280 int ret;
1281
1282 ret = do_prlimit(current, resource, NULL, &value);
1283 if (!ret)
1284 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1285
1286 return ret;
1287 }
1288
1289 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1290
1291 /*
1292 * Back compatibility for getrlimit. Needed for some apps.
1293 */
1294 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1295 struct rlimit __user *, rlim)
1296 {
1297 struct rlimit x;
1298 if (resource >= RLIM_NLIMITS)
1299 return -EINVAL;
1300
1301 task_lock(current->group_leader);
1302 x = current->signal->rlim[resource];
1303 task_unlock(current->group_leader);
1304 if (x.rlim_cur > 0x7FFFFFFF)
1305 x.rlim_cur = 0x7FFFFFFF;
1306 if (x.rlim_max > 0x7FFFFFFF)
1307 x.rlim_max = 0x7FFFFFFF;
1308 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1309 }
1310
1311 #endif
1312
1313 static inline bool rlim64_is_infinity(__u64 rlim64)
1314 {
1315 #if BITS_PER_LONG < 64
1316 return rlim64 >= ULONG_MAX;
1317 #else
1318 return rlim64 == RLIM64_INFINITY;
1319 #endif
1320 }
1321
1322 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1323 {
1324 if (rlim->rlim_cur == RLIM_INFINITY)
1325 rlim64->rlim_cur = RLIM64_INFINITY;
1326 else
1327 rlim64->rlim_cur = rlim->rlim_cur;
1328 if (rlim->rlim_max == RLIM_INFINITY)
1329 rlim64->rlim_max = RLIM64_INFINITY;
1330 else
1331 rlim64->rlim_max = rlim->rlim_max;
1332 }
1333
1334 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1335 {
1336 if (rlim64_is_infinity(rlim64->rlim_cur))
1337 rlim->rlim_cur = RLIM_INFINITY;
1338 else
1339 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1340 if (rlim64_is_infinity(rlim64->rlim_max))
1341 rlim->rlim_max = RLIM_INFINITY;
1342 else
1343 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1344 }
1345
1346 /* make sure you are allowed to change @tsk limits before calling this */
1347 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1348 struct rlimit *new_rlim, struct rlimit *old_rlim)
1349 {
1350 struct rlimit *rlim;
1351 int retval = 0;
1352
1353 if (resource >= RLIM_NLIMITS)
1354 return -EINVAL;
1355 if (new_rlim) {
1356 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1357 return -EINVAL;
1358 if (resource == RLIMIT_NOFILE &&
1359 new_rlim->rlim_max > sysctl_nr_open)
1360 return -EPERM;
1361 }
1362
1363 /* protect tsk->signal and tsk->sighand from disappearing */
1364 read_lock(&tasklist_lock);
1365 if (!tsk->sighand) {
1366 retval = -ESRCH;
1367 goto out;
1368 }
1369
1370 rlim = tsk->signal->rlim + resource;
1371 task_lock(tsk->group_leader);
1372 if (new_rlim) {
1373 /* Keep the capable check against init_user_ns until
1374 cgroups can contain all limits */
1375 if (new_rlim->rlim_max > rlim->rlim_max &&
1376 !capable(CAP_SYS_RESOURCE))
1377 retval = -EPERM;
1378 if (!retval)
1379 retval = security_task_setrlimit(tsk->group_leader,
1380 resource, new_rlim);
1381 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1382 /*
1383 * The caller is asking for an immediate RLIMIT_CPU
1384 * expiry. But we use the zero value to mean "it was
1385 * never set". So let's cheat and make it one second
1386 * instead
1387 */
1388 new_rlim->rlim_cur = 1;
1389 }
1390 }
1391 if (!retval) {
1392 if (old_rlim)
1393 *old_rlim = *rlim;
1394 if (new_rlim)
1395 *rlim = *new_rlim;
1396 }
1397 task_unlock(tsk->group_leader);
1398
1399 /*
1400 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1401 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1402 * very long-standing error, and fixing it now risks breakage of
1403 * applications, so we live with it
1404 */
1405 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1406 new_rlim->rlim_cur != RLIM_INFINITY)
1407 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1408 out:
1409 read_unlock(&tasklist_lock);
1410 return retval;
1411 }
1412
1413 /* rcu lock must be held */
1414 static int check_prlimit_permission(struct task_struct *task)
1415 {
1416 const struct cred *cred = current_cred(), *tcred;
1417
1418 if (current == task)
1419 return 0;
1420
1421 tcred = __task_cred(task);
1422 if (uid_eq(cred->uid, tcred->euid) &&
1423 uid_eq(cred->uid, tcred->suid) &&
1424 uid_eq(cred->uid, tcred->uid) &&
1425 gid_eq(cred->gid, tcred->egid) &&
1426 gid_eq(cred->gid, tcred->sgid) &&
1427 gid_eq(cred->gid, tcred->gid))
1428 return 0;
1429 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1430 return 0;
1431
1432 return -EPERM;
1433 }
1434
1435 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1436 const struct rlimit64 __user *, new_rlim,
1437 struct rlimit64 __user *, old_rlim)
1438 {
1439 struct rlimit64 old64, new64;
1440 struct rlimit old, new;
1441 struct task_struct *tsk;
1442 int ret;
1443
1444 if (new_rlim) {
1445 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1446 return -EFAULT;
1447 rlim64_to_rlim(&new64, &new);
1448 }
1449
1450 rcu_read_lock();
1451 tsk = pid ? find_task_by_vpid(pid) : current;
1452 if (!tsk) {
1453 rcu_read_unlock();
1454 return -ESRCH;
1455 }
1456 ret = check_prlimit_permission(tsk);
1457 if (ret) {
1458 rcu_read_unlock();
1459 return ret;
1460 }
1461 get_task_struct(tsk);
1462 rcu_read_unlock();
1463
1464 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1465 old_rlim ? &old : NULL);
1466
1467 if (!ret && old_rlim) {
1468 rlim_to_rlim64(&old, &old64);
1469 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1470 ret = -EFAULT;
1471 }
1472
1473 put_task_struct(tsk);
1474 return ret;
1475 }
1476
1477 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1478 {
1479 struct rlimit new_rlim;
1480
1481 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1482 return -EFAULT;
1483 return do_prlimit(current, resource, &new_rlim, NULL);
1484 }
1485
1486 /*
1487 * It would make sense to put struct rusage in the task_struct,
1488 * except that would make the task_struct be *really big*. After
1489 * task_struct gets moved into malloc'ed memory, it would
1490 * make sense to do this. It will make moving the rest of the information
1491 * a lot simpler! (Which we're not doing right now because we're not
1492 * measuring them yet).
1493 *
1494 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1495 * races with threads incrementing their own counters. But since word
1496 * reads are atomic, we either get new values or old values and we don't
1497 * care which for the sums. We always take the siglock to protect reading
1498 * the c* fields from p->signal from races with exit.c updating those
1499 * fields when reaping, so a sample either gets all the additions of a
1500 * given child after it's reaped, or none so this sample is before reaping.
1501 *
1502 * Locking:
1503 * We need to take the siglock for CHILDEREN, SELF and BOTH
1504 * for the cases current multithreaded, non-current single threaded
1505 * non-current multithreaded. Thread traversal is now safe with
1506 * the siglock held.
1507 * Strictly speaking, we donot need to take the siglock if we are current and
1508 * single threaded, as no one else can take our signal_struct away, no one
1509 * else can reap the children to update signal->c* counters, and no one else
1510 * can race with the signal-> fields. If we do not take any lock, the
1511 * signal-> fields could be read out of order while another thread was just
1512 * exiting. So we should place a read memory barrier when we avoid the lock.
1513 * On the writer side, write memory barrier is implied in __exit_signal
1514 * as __exit_signal releases the siglock spinlock after updating the signal->
1515 * fields. But we don't do this yet to keep things simple.
1516 *
1517 */
1518
1519 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1520 {
1521 r->ru_nvcsw += t->nvcsw;
1522 r->ru_nivcsw += t->nivcsw;
1523 r->ru_minflt += t->min_flt;
1524 r->ru_majflt += t->maj_flt;
1525 r->ru_inblock += task_io_get_inblock(t);
1526 r->ru_oublock += task_io_get_oublock(t);
1527 }
1528
1529 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1530 {
1531 struct task_struct *t;
1532 unsigned long flags;
1533 cputime_t tgutime, tgstime, utime, stime;
1534 unsigned long maxrss = 0;
1535
1536 memset((char *)r, 0, sizeof (*r));
1537 utime = stime = 0;
1538
1539 if (who == RUSAGE_THREAD) {
1540 task_cputime_adjusted(current, &utime, &stime);
1541 accumulate_thread_rusage(p, r);
1542 maxrss = p->signal->maxrss;
1543 goto out;
1544 }
1545
1546 if (!lock_task_sighand(p, &flags))
1547 return;
1548
1549 switch (who) {
1550 case RUSAGE_BOTH:
1551 case RUSAGE_CHILDREN:
1552 utime = p->signal->cutime;
1553 stime = p->signal->cstime;
1554 r->ru_nvcsw = p->signal->cnvcsw;
1555 r->ru_nivcsw = p->signal->cnivcsw;
1556 r->ru_minflt = p->signal->cmin_flt;
1557 r->ru_majflt = p->signal->cmaj_flt;
1558 r->ru_inblock = p->signal->cinblock;
1559 r->ru_oublock = p->signal->coublock;
1560 maxrss = p->signal->cmaxrss;
1561
1562 if (who == RUSAGE_CHILDREN)
1563 break;
1564
1565 case RUSAGE_SELF:
1566 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1567 utime += tgutime;
1568 stime += tgstime;
1569 r->ru_nvcsw += p->signal->nvcsw;
1570 r->ru_nivcsw += p->signal->nivcsw;
1571 r->ru_minflt += p->signal->min_flt;
1572 r->ru_majflt += p->signal->maj_flt;
1573 r->ru_inblock += p->signal->inblock;
1574 r->ru_oublock += p->signal->oublock;
1575 if (maxrss < p->signal->maxrss)
1576 maxrss = p->signal->maxrss;
1577 t = p;
1578 do {
1579 accumulate_thread_rusage(t, r);
1580 } while_each_thread(p, t);
1581 break;
1582
1583 default:
1584 BUG();
1585 }
1586 unlock_task_sighand(p, &flags);
1587
1588 out:
1589 cputime_to_timeval(utime, &r->ru_utime);
1590 cputime_to_timeval(stime, &r->ru_stime);
1591
1592 if (who != RUSAGE_CHILDREN) {
1593 struct mm_struct *mm = get_task_mm(p);
1594
1595 if (mm) {
1596 setmax_mm_hiwater_rss(&maxrss, mm);
1597 mmput(mm);
1598 }
1599 }
1600 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1601 }
1602
1603 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1604 {
1605 struct rusage r;
1606
1607 k_getrusage(p, who, &r);
1608 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1609 }
1610
1611 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1612 {
1613 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1614 who != RUSAGE_THREAD)
1615 return -EINVAL;
1616 return getrusage(current, who, ru);
1617 }
1618
1619 #ifdef CONFIG_COMPAT
1620 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1621 {
1622 struct rusage r;
1623
1624 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1625 who != RUSAGE_THREAD)
1626 return -EINVAL;
1627
1628 k_getrusage(current, who, &r);
1629 return put_compat_rusage(&r, ru);
1630 }
1631 #endif
1632
1633 SYSCALL_DEFINE1(umask, int, mask)
1634 {
1635 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1636 return mask;
1637 }
1638
1639 static int prctl_set_mm_exe_file_locked(struct mm_struct *mm, unsigned int fd)
1640 {
1641 struct fd exe;
1642 struct inode *inode;
1643 int err;
1644
1645 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1646
1647 exe = fdget(fd);
1648 if (!exe.file)
1649 return -EBADF;
1650
1651 inode = file_inode(exe.file);
1652
1653 /*
1654 * Because the original mm->exe_file points to executable file, make
1655 * sure that this one is executable as well, to avoid breaking an
1656 * overall picture.
1657 */
1658 err = -EACCES;
1659 if (!S_ISREG(inode->i_mode) ||
1660 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1661 goto exit;
1662
1663 err = inode_permission(inode, MAY_EXEC);
1664 if (err)
1665 goto exit;
1666
1667 /*
1668 * Forbid mm->exe_file change if old file still mapped.
1669 */
1670 err = -EBUSY;
1671 if (mm->exe_file) {
1672 struct vm_area_struct *vma;
1673
1674 for (vma = mm->mmap; vma; vma = vma->vm_next)
1675 if (vma->vm_file &&
1676 path_equal(&vma->vm_file->f_path,
1677 &mm->exe_file->f_path))
1678 goto exit;
1679 }
1680
1681 /*
1682 * The symlink can be changed only once, just to disallow arbitrary
1683 * transitions malicious software might bring in. This means one
1684 * could make a snapshot over all processes running and monitor
1685 * /proc/pid/exe changes to notice unusual activity if needed.
1686 */
1687 err = -EPERM;
1688 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1689 goto exit;
1690
1691 err = 0;
1692 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
1693 exit:
1694 fdput(exe);
1695 return err;
1696 }
1697
1698 #ifdef CONFIG_CHECKPOINT_RESTORE
1699 /*
1700 * WARNING: we don't require any capability here so be very careful
1701 * in what is allowed for modification from userspace.
1702 */
1703 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1704 {
1705 unsigned long mmap_max_addr = TASK_SIZE;
1706 struct mm_struct *mm = current->mm;
1707 int error = -EINVAL, i;
1708
1709 static const unsigned char offsets[] = {
1710 offsetof(struct prctl_mm_map, start_code),
1711 offsetof(struct prctl_mm_map, end_code),
1712 offsetof(struct prctl_mm_map, start_data),
1713 offsetof(struct prctl_mm_map, end_data),
1714 offsetof(struct prctl_mm_map, start_brk),
1715 offsetof(struct prctl_mm_map, brk),
1716 offsetof(struct prctl_mm_map, start_stack),
1717 offsetof(struct prctl_mm_map, arg_start),
1718 offsetof(struct prctl_mm_map, arg_end),
1719 offsetof(struct prctl_mm_map, env_start),
1720 offsetof(struct prctl_mm_map, env_end),
1721 };
1722
1723 /*
1724 * Make sure the members are not somewhere outside
1725 * of allowed address space.
1726 */
1727 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1728 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1729
1730 if ((unsigned long)val >= mmap_max_addr ||
1731 (unsigned long)val < mmap_min_addr)
1732 goto out;
1733 }
1734
1735 /*
1736 * Make sure the pairs are ordered.
1737 */
1738 #define __prctl_check_order(__m1, __op, __m2) \
1739 ((unsigned long)prctl_map->__m1 __op \
1740 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1741 error = __prctl_check_order(start_code, <, end_code);
1742 error |= __prctl_check_order(start_data, <, end_data);
1743 error |= __prctl_check_order(start_brk, <=, brk);
1744 error |= __prctl_check_order(arg_start, <=, arg_end);
1745 error |= __prctl_check_order(env_start, <=, env_end);
1746 if (error)
1747 goto out;
1748 #undef __prctl_check_order
1749
1750 error = -EINVAL;
1751
1752 /*
1753 * @brk should be after @end_data in traditional maps.
1754 */
1755 if (prctl_map->start_brk <= prctl_map->end_data ||
1756 prctl_map->brk <= prctl_map->end_data)
1757 goto out;
1758
1759 /*
1760 * Neither we should allow to override limits if they set.
1761 */
1762 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1763 prctl_map->start_brk, prctl_map->end_data,
1764 prctl_map->start_data))
1765 goto out;
1766
1767 /*
1768 * Someone is trying to cheat the auxv vector.
1769 */
1770 if (prctl_map->auxv_size) {
1771 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1772 goto out;
1773 }
1774
1775 /*
1776 * Finally, make sure the caller has the rights to
1777 * change /proc/pid/exe link: only local root should
1778 * be allowed to.
1779 */
1780 if (prctl_map->exe_fd != (u32)-1) {
1781 struct user_namespace *ns = current_user_ns();
1782 const struct cred *cred = current_cred();
1783
1784 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1785 !gid_eq(cred->gid, make_kgid(ns, 0)))
1786 goto out;
1787 }
1788
1789 error = 0;
1790 out:
1791 return error;
1792 }
1793
1794 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1795 {
1796 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1797 unsigned long user_auxv[AT_VECTOR_SIZE];
1798 struct mm_struct *mm = current->mm;
1799 int error;
1800
1801 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1802 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1803
1804 if (opt == PR_SET_MM_MAP_SIZE)
1805 return put_user((unsigned int)sizeof(prctl_map),
1806 (unsigned int __user *)addr);
1807
1808 if (data_size != sizeof(prctl_map))
1809 return -EINVAL;
1810
1811 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1812 return -EFAULT;
1813
1814 error = validate_prctl_map(&prctl_map);
1815 if (error)
1816 return error;
1817
1818 if (prctl_map.auxv_size) {
1819 memset(user_auxv, 0, sizeof(user_auxv));
1820 if (copy_from_user(user_auxv,
1821 (const void __user *)prctl_map.auxv,
1822 prctl_map.auxv_size))
1823 return -EFAULT;
1824
1825 /* Last entry must be AT_NULL as specification requires */
1826 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1827 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1828 }
1829
1830 down_write(&mm->mmap_sem);
1831 if (prctl_map.exe_fd != (u32)-1)
1832 error = prctl_set_mm_exe_file_locked(mm, prctl_map.exe_fd);
1833 downgrade_write(&mm->mmap_sem);
1834 if (error)
1835 goto out;
1836
1837 /*
1838 * We don't validate if these members are pointing to
1839 * real present VMAs because application may have correspond
1840 * VMAs already unmapped and kernel uses these members for statistics
1841 * output in procfs mostly, except
1842 *
1843 * - @start_brk/@brk which are used in do_brk but kernel lookups
1844 * for VMAs when updating these memvers so anything wrong written
1845 * here cause kernel to swear at userspace program but won't lead
1846 * to any problem in kernel itself
1847 */
1848
1849 mm->start_code = prctl_map.start_code;
1850 mm->end_code = prctl_map.end_code;
1851 mm->start_data = prctl_map.start_data;
1852 mm->end_data = prctl_map.end_data;
1853 mm->start_brk = prctl_map.start_brk;
1854 mm->brk = prctl_map.brk;
1855 mm->start_stack = prctl_map.start_stack;
1856 mm->arg_start = prctl_map.arg_start;
1857 mm->arg_end = prctl_map.arg_end;
1858 mm->env_start = prctl_map.env_start;
1859 mm->env_end = prctl_map.env_end;
1860
1861 /*
1862 * Note this update of @saved_auxv is lockless thus
1863 * if someone reads this member in procfs while we're
1864 * updating -- it may get partly updated results. It's
1865 * known and acceptable trade off: we leave it as is to
1866 * not introduce additional locks here making the kernel
1867 * more complex.
1868 */
1869 if (prctl_map.auxv_size)
1870 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1871
1872 error = 0;
1873 out:
1874 up_read(&mm->mmap_sem);
1875 return error;
1876 }
1877 #endif /* CONFIG_CHECKPOINT_RESTORE */
1878
1879 static int prctl_set_mm(int opt, unsigned long addr,
1880 unsigned long arg4, unsigned long arg5)
1881 {
1882 struct mm_struct *mm = current->mm;
1883 struct vm_area_struct *vma;
1884 int error;
1885
1886 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1887 opt != PR_SET_MM_MAP &&
1888 opt != PR_SET_MM_MAP_SIZE)))
1889 return -EINVAL;
1890
1891 #ifdef CONFIG_CHECKPOINT_RESTORE
1892 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1893 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1894 #endif
1895
1896 if (!capable(CAP_SYS_RESOURCE))
1897 return -EPERM;
1898
1899 if (opt == PR_SET_MM_EXE_FILE) {
1900 down_write(&mm->mmap_sem);
1901 error = prctl_set_mm_exe_file_locked(mm, (unsigned int)addr);
1902 up_write(&mm->mmap_sem);
1903 return error;
1904 }
1905
1906 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1907 return -EINVAL;
1908
1909 error = -EINVAL;
1910
1911 down_read(&mm->mmap_sem);
1912 vma = find_vma(mm, addr);
1913
1914 switch (opt) {
1915 case PR_SET_MM_START_CODE:
1916 mm->start_code = addr;
1917 break;
1918 case PR_SET_MM_END_CODE:
1919 mm->end_code = addr;
1920 break;
1921 case PR_SET_MM_START_DATA:
1922 mm->start_data = addr;
1923 break;
1924 case PR_SET_MM_END_DATA:
1925 mm->end_data = addr;
1926 break;
1927
1928 case PR_SET_MM_START_BRK:
1929 if (addr <= mm->end_data)
1930 goto out;
1931
1932 if (check_data_rlimit(rlimit(RLIMIT_DATA), mm->brk, addr,
1933 mm->end_data, mm->start_data))
1934 goto out;
1935
1936 mm->start_brk = addr;
1937 break;
1938
1939 case PR_SET_MM_BRK:
1940 if (addr <= mm->end_data)
1941 goto out;
1942
1943 if (check_data_rlimit(rlimit(RLIMIT_DATA), addr, mm->start_brk,
1944 mm->end_data, mm->start_data))
1945 goto out;
1946
1947 mm->brk = addr;
1948 break;
1949
1950 /*
1951 * If command line arguments and environment
1952 * are placed somewhere else on stack, we can
1953 * set them up here, ARG_START/END to setup
1954 * command line argumets and ENV_START/END
1955 * for environment.
1956 */
1957 case PR_SET_MM_START_STACK:
1958 case PR_SET_MM_ARG_START:
1959 case PR_SET_MM_ARG_END:
1960 case PR_SET_MM_ENV_START:
1961 case PR_SET_MM_ENV_END:
1962 if (!vma) {
1963 error = -EFAULT;
1964 goto out;
1965 }
1966 if (opt == PR_SET_MM_START_STACK)
1967 mm->start_stack = addr;
1968 else if (opt == PR_SET_MM_ARG_START)
1969 mm->arg_start = addr;
1970 else if (opt == PR_SET_MM_ARG_END)
1971 mm->arg_end = addr;
1972 else if (opt == PR_SET_MM_ENV_START)
1973 mm->env_start = addr;
1974 else if (opt == PR_SET_MM_ENV_END)
1975 mm->env_end = addr;
1976 break;
1977
1978 /*
1979 * This doesn't move auxiliary vector itself
1980 * since it's pinned to mm_struct, but allow
1981 * to fill vector with new values. It's up
1982 * to a caller to provide sane values here
1983 * otherwise user space tools which use this
1984 * vector might be unhappy.
1985 */
1986 case PR_SET_MM_AUXV: {
1987 unsigned long user_auxv[AT_VECTOR_SIZE];
1988
1989 if (arg4 > sizeof(user_auxv))
1990 goto out;
1991 up_read(&mm->mmap_sem);
1992
1993 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1994 return -EFAULT;
1995
1996 /* Make sure the last entry is always AT_NULL */
1997 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1998 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1999
2000 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2001
2002 task_lock(current);
2003 memcpy(mm->saved_auxv, user_auxv, arg4);
2004 task_unlock(current);
2005
2006 return 0;
2007 }
2008 default:
2009 goto out;
2010 }
2011
2012 error = 0;
2013 out:
2014 up_read(&mm->mmap_sem);
2015 return error;
2016 }
2017
2018 #ifdef CONFIG_CHECKPOINT_RESTORE
2019 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2020 {
2021 return put_user(me->clear_child_tid, tid_addr);
2022 }
2023 #else
2024 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2025 {
2026 return -EINVAL;
2027 }
2028 #endif
2029
2030 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2031 unsigned long, arg4, unsigned long, arg5)
2032 {
2033 struct task_struct *me = current;
2034 unsigned char comm[sizeof(me->comm)];
2035 long error;
2036
2037 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2038 if (error != -ENOSYS)
2039 return error;
2040
2041 error = 0;
2042 switch (option) {
2043 case PR_SET_PDEATHSIG:
2044 if (!valid_signal(arg2)) {
2045 error = -EINVAL;
2046 break;
2047 }
2048 me->pdeath_signal = arg2;
2049 break;
2050 case PR_GET_PDEATHSIG:
2051 error = put_user(me->pdeath_signal, (int __user *)arg2);
2052 break;
2053 case PR_GET_DUMPABLE:
2054 error = get_dumpable(me->mm);
2055 break;
2056 case PR_SET_DUMPABLE:
2057 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2058 error = -EINVAL;
2059 break;
2060 }
2061 set_dumpable(me->mm, arg2);
2062 break;
2063
2064 case PR_SET_UNALIGN:
2065 error = SET_UNALIGN_CTL(me, arg2);
2066 break;
2067 case PR_GET_UNALIGN:
2068 error = GET_UNALIGN_CTL(me, arg2);
2069 break;
2070 case PR_SET_FPEMU:
2071 error = SET_FPEMU_CTL(me, arg2);
2072 break;
2073 case PR_GET_FPEMU:
2074 error = GET_FPEMU_CTL(me, arg2);
2075 break;
2076 case PR_SET_FPEXC:
2077 error = SET_FPEXC_CTL(me, arg2);
2078 break;
2079 case PR_GET_FPEXC:
2080 error = GET_FPEXC_CTL(me, arg2);
2081 break;
2082 case PR_GET_TIMING:
2083 error = PR_TIMING_STATISTICAL;
2084 break;
2085 case PR_SET_TIMING:
2086 if (arg2 != PR_TIMING_STATISTICAL)
2087 error = -EINVAL;
2088 break;
2089 case PR_SET_NAME:
2090 comm[sizeof(me->comm) - 1] = 0;
2091 if (strncpy_from_user(comm, (char __user *)arg2,
2092 sizeof(me->comm) - 1) < 0)
2093 return -EFAULT;
2094 set_task_comm(me, comm);
2095 proc_comm_connector(me);
2096 break;
2097 case PR_GET_NAME:
2098 get_task_comm(comm, me);
2099 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2100 return -EFAULT;
2101 break;
2102 case PR_GET_ENDIAN:
2103 error = GET_ENDIAN(me, arg2);
2104 break;
2105 case PR_SET_ENDIAN:
2106 error = SET_ENDIAN(me, arg2);
2107 break;
2108 case PR_GET_SECCOMP:
2109 error = prctl_get_seccomp();
2110 break;
2111 case PR_SET_SECCOMP:
2112 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2113 break;
2114 case PR_GET_TSC:
2115 error = GET_TSC_CTL(arg2);
2116 break;
2117 case PR_SET_TSC:
2118 error = SET_TSC_CTL(arg2);
2119 break;
2120 case PR_TASK_PERF_EVENTS_DISABLE:
2121 error = perf_event_task_disable();
2122 break;
2123 case PR_TASK_PERF_EVENTS_ENABLE:
2124 error = perf_event_task_enable();
2125 break;
2126 case PR_GET_TIMERSLACK:
2127 error = current->timer_slack_ns;
2128 break;
2129 case PR_SET_TIMERSLACK:
2130 if (arg2 <= 0)
2131 current->timer_slack_ns =
2132 current->default_timer_slack_ns;
2133 else
2134 current->timer_slack_ns = arg2;
2135 break;
2136 case PR_MCE_KILL:
2137 if (arg4 | arg5)
2138 return -EINVAL;
2139 switch (arg2) {
2140 case PR_MCE_KILL_CLEAR:
2141 if (arg3 != 0)
2142 return -EINVAL;
2143 current->flags &= ~PF_MCE_PROCESS;
2144 break;
2145 case PR_MCE_KILL_SET:
2146 current->flags |= PF_MCE_PROCESS;
2147 if (arg3 == PR_MCE_KILL_EARLY)
2148 current->flags |= PF_MCE_EARLY;
2149 else if (arg3 == PR_MCE_KILL_LATE)
2150 current->flags &= ~PF_MCE_EARLY;
2151 else if (arg3 == PR_MCE_KILL_DEFAULT)
2152 current->flags &=
2153 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2154 else
2155 return -EINVAL;
2156 break;
2157 default:
2158 return -EINVAL;
2159 }
2160 break;
2161 case PR_MCE_KILL_GET:
2162 if (arg2 | arg3 | arg4 | arg5)
2163 return -EINVAL;
2164 if (current->flags & PF_MCE_PROCESS)
2165 error = (current->flags & PF_MCE_EARLY) ?
2166 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2167 else
2168 error = PR_MCE_KILL_DEFAULT;
2169 break;
2170 case PR_SET_MM:
2171 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2172 break;
2173 case PR_GET_TID_ADDRESS:
2174 error = prctl_get_tid_address(me, (int __user **)arg2);
2175 break;
2176 case PR_SET_CHILD_SUBREAPER:
2177 me->signal->is_child_subreaper = !!arg2;
2178 break;
2179 case PR_GET_CHILD_SUBREAPER:
2180 error = put_user(me->signal->is_child_subreaper,
2181 (int __user *)arg2);
2182 break;
2183 case PR_SET_NO_NEW_PRIVS:
2184 if (arg2 != 1 || arg3 || arg4 || arg5)
2185 return -EINVAL;
2186
2187 task_set_no_new_privs(current);
2188 break;
2189 case PR_GET_NO_NEW_PRIVS:
2190 if (arg2 || arg3 || arg4 || arg5)
2191 return -EINVAL;
2192 return task_no_new_privs(current) ? 1 : 0;
2193 case PR_GET_THP_DISABLE:
2194 if (arg2 || arg3 || arg4 || arg5)
2195 return -EINVAL;
2196 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2197 break;
2198 case PR_SET_THP_DISABLE:
2199 if (arg3 || arg4 || arg5)
2200 return -EINVAL;
2201 down_write(&me->mm->mmap_sem);
2202 if (arg2)
2203 me->mm->def_flags |= VM_NOHUGEPAGE;
2204 else
2205 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2206 up_write(&me->mm->mmap_sem);
2207 break;
2208 default:
2209 error = -EINVAL;
2210 break;
2211 }
2212 return error;
2213 }
2214
2215 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2216 struct getcpu_cache __user *, unused)
2217 {
2218 int err = 0;
2219 int cpu = raw_smp_processor_id();
2220
2221 if (cpup)
2222 err |= put_user(cpu, cpup);
2223 if (nodep)
2224 err |= put_user(cpu_to_node(cpu), nodep);
2225 return err ? -EFAULT : 0;
2226 }
2227
2228 /**
2229 * do_sysinfo - fill in sysinfo struct
2230 * @info: pointer to buffer to fill
2231 */
2232 static int do_sysinfo(struct sysinfo *info)
2233 {
2234 unsigned long mem_total, sav_total;
2235 unsigned int mem_unit, bitcount;
2236 struct timespec tp;
2237
2238 memset(info, 0, sizeof(struct sysinfo));
2239
2240 get_monotonic_boottime(&tp);
2241 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2242
2243 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2244
2245 info->procs = nr_threads;
2246
2247 si_meminfo(info);
2248 si_swapinfo(info);
2249
2250 /*
2251 * If the sum of all the available memory (i.e. ram + swap)
2252 * is less than can be stored in a 32 bit unsigned long then
2253 * we can be binary compatible with 2.2.x kernels. If not,
2254 * well, in that case 2.2.x was broken anyways...
2255 *
2256 * -Erik Andersen <andersee@debian.org>
2257 */
2258
2259 mem_total = info->totalram + info->totalswap;
2260 if (mem_total < info->totalram || mem_total < info->totalswap)
2261 goto out;
2262 bitcount = 0;
2263 mem_unit = info->mem_unit;
2264 while (mem_unit > 1) {
2265 bitcount++;
2266 mem_unit >>= 1;
2267 sav_total = mem_total;
2268 mem_total <<= 1;
2269 if (mem_total < sav_total)
2270 goto out;
2271 }
2272
2273 /*
2274 * If mem_total did not overflow, multiply all memory values by
2275 * info->mem_unit and set it to 1. This leaves things compatible
2276 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2277 * kernels...
2278 */
2279
2280 info->mem_unit = 1;
2281 info->totalram <<= bitcount;
2282 info->freeram <<= bitcount;
2283 info->sharedram <<= bitcount;
2284 info->bufferram <<= bitcount;
2285 info->totalswap <<= bitcount;
2286 info->freeswap <<= bitcount;
2287 info->totalhigh <<= bitcount;
2288 info->freehigh <<= bitcount;
2289
2290 out:
2291 return 0;
2292 }
2293
2294 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2295 {
2296 struct sysinfo val;
2297
2298 do_sysinfo(&val);
2299
2300 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2301 return -EFAULT;
2302
2303 return 0;
2304 }
2305
2306 #ifdef CONFIG_COMPAT
2307 struct compat_sysinfo {
2308 s32 uptime;
2309 u32 loads[3];
2310 u32 totalram;
2311 u32 freeram;
2312 u32 sharedram;
2313 u32 bufferram;
2314 u32 totalswap;
2315 u32 freeswap;
2316 u16 procs;
2317 u16 pad;
2318 u32 totalhigh;
2319 u32 freehigh;
2320 u32 mem_unit;
2321 char _f[20-2*sizeof(u32)-sizeof(int)];
2322 };
2323
2324 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2325 {
2326 struct sysinfo s;
2327
2328 do_sysinfo(&s);
2329
2330 /* Check to see if any memory value is too large for 32-bit and scale
2331 * down if needed
2332 */
2333 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2334 int bitcount = 0;
2335
2336 while (s.mem_unit < PAGE_SIZE) {
2337 s.mem_unit <<= 1;
2338 bitcount++;
2339 }
2340
2341 s.totalram >>= bitcount;
2342 s.freeram >>= bitcount;
2343 s.sharedram >>= bitcount;
2344 s.bufferram >>= bitcount;
2345 s.totalswap >>= bitcount;
2346 s.freeswap >>= bitcount;
2347 s.totalhigh >>= bitcount;
2348 s.freehigh >>= bitcount;
2349 }
2350
2351 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2352 __put_user(s.uptime, &info->uptime) ||
2353 __put_user(s.loads[0], &info->loads[0]) ||
2354 __put_user(s.loads[1], &info->loads[1]) ||
2355 __put_user(s.loads[2], &info->loads[2]) ||
2356 __put_user(s.totalram, &info->totalram) ||
2357 __put_user(s.freeram, &info->freeram) ||
2358 __put_user(s.sharedram, &info->sharedram) ||
2359 __put_user(s.bufferram, &info->bufferram) ||
2360 __put_user(s.totalswap, &info->totalswap) ||
2361 __put_user(s.freeswap, &info->freeswap) ||
2362 __put_user(s.procs, &info->procs) ||
2363 __put_user(s.totalhigh, &info->totalhigh) ||
2364 __put_user(s.freehigh, &info->freehigh) ||
2365 __put_user(s.mem_unit, &info->mem_unit))
2366 return -EFAULT;
2367
2368 return 0;
2369 }
2370 #endif /* CONFIG_COMPAT */
This page took 0.078244 seconds and 6 git commands to generate.