Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[deliverable/linux.git] / kernel / time / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
21 */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 cputime_t cputime = secs_to_cputime(rlim_new);
25
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
43 rcu_read_lock();
44 p = find_task_by_vpid(pid);
45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 same_thread_group(p, current) : has_group_leader_pid(p))) {
47 error = -EINVAL;
48 }
49 rcu_read_unlock();
50
51 return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 unsigned long long ret;
58
59 ret = 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 } else {
63 ret = cputime_to_expires(timespec_to_cputime(tp));
64 }
65 return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69 unsigned long long expires,
70 struct timespec *tp)
71 {
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 *tp = ns_to_timespec(expires);
74 else
75 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
81 */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 unsigned long long now)
84 {
85 int i;
86 unsigned long long delta, incr;
87
88 if (timer->it.cpu.incr == 0)
89 return;
90
91 if (now < timer->it.cpu.expires)
92 return;
93
94 incr = timer->it.cpu.incr;
95 delta = now + incr - timer->it.cpu.expires;
96
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i = 0; incr < delta - incr; i++)
99 incr = incr << 1;
100
101 for (; i >= 0; incr >>= 1, i--) {
102 if (delta < incr)
103 continue;
104
105 timer->it.cpu.expires += incr;
106 timer->it_overrun += 1 << i;
107 delta -= incr;
108 }
109 }
110
111 /**
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
113 *
114 * @cputime: The struct to compare.
115 *
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
118 */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 return 1;
123 return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 cputime_t utime, stime;
129
130 task_cputime(p, &utime, &stime);
131
132 return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 cputime_t utime;
137
138 task_cputime(p, &utime, NULL);
139
140 return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 int error = check_clock(which_clock);
147 if (!error) {
148 tp->tv_sec = 0;
149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 /*
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
155 */
156 tp->tv_nsec = 1;
157 }
158 }
159 return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 /*
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
168 */
169 int error = check_clock(which_clock);
170 if (error == 0) {
171 error = -EPERM;
172 }
173 return error;
174 }
175
176
177 /*
178 * Sample a per-thread clock for the given task.
179 */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 unsigned long long *sample)
182 {
183 switch (CPUCLOCK_WHICH(which_clock)) {
184 default:
185 return -EINVAL;
186 case CPUCLOCK_PROF:
187 *sample = prof_ticks(p);
188 break;
189 case CPUCLOCK_VIRT:
190 *sample = virt_ticks(p);
191 break;
192 case CPUCLOCK_SCHED:
193 *sample = task_sched_runtime(p);
194 break;
195 }
196 return 0;
197 }
198
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201 if (b->utime > a->utime)
202 a->utime = b->utime;
203
204 if (b->stime > a->stime)
205 a->stime = b->stime;
206
207 if (b->sum_exec_runtime > a->sum_exec_runtime)
208 a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 struct task_cputime sum;
215 unsigned long flags;
216
217 if (!cputimer->running) {
218 /*
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start
222 * it.
223 */
224 thread_group_cputime(tsk, &sum);
225 raw_spin_lock_irqsave(&cputimer->lock, flags);
226 cputimer->running = 1;
227 update_gt_cputime(&cputimer->cputime, &sum);
228 } else
229 raw_spin_lock_irqsave(&cputimer->lock, flags);
230 *times = cputimer->cputime;
231 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233
234 /*
235 * Sample a process (thread group) clock for the given group_leader task.
236 * Must be called with task sighand lock held for safe while_each_thread()
237 * traversal.
238 */
239 static int cpu_clock_sample_group(const clockid_t which_clock,
240 struct task_struct *p,
241 unsigned long long *sample)
242 {
243 struct task_cputime cputime;
244
245 switch (CPUCLOCK_WHICH(which_clock)) {
246 default:
247 return -EINVAL;
248 case CPUCLOCK_PROF:
249 thread_group_cputime(p, &cputime);
250 *sample = cputime_to_expires(cputime.utime + cputime.stime);
251 break;
252 case CPUCLOCK_VIRT:
253 thread_group_cputime(p, &cputime);
254 *sample = cputime_to_expires(cputime.utime);
255 break;
256 case CPUCLOCK_SCHED:
257 thread_group_cputime(p, &cputime);
258 *sample = cputime.sum_exec_runtime;
259 break;
260 }
261 return 0;
262 }
263
264 static int posix_cpu_clock_get_task(struct task_struct *tsk,
265 const clockid_t which_clock,
266 struct timespec *tp)
267 {
268 int err = -EINVAL;
269 unsigned long long rtn;
270
271 if (CPUCLOCK_PERTHREAD(which_clock)) {
272 if (same_thread_group(tsk, current))
273 err = cpu_clock_sample(which_clock, tsk, &rtn);
274 } else {
275 if (tsk == current || thread_group_leader(tsk))
276 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
277 }
278
279 if (!err)
280 sample_to_timespec(which_clock, rtn, tp);
281
282 return err;
283 }
284
285
286 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
287 {
288 const pid_t pid = CPUCLOCK_PID(which_clock);
289 int err = -EINVAL;
290
291 if (pid == 0) {
292 /*
293 * Special case constant value for our own clocks.
294 * We don't have to do any lookup to find ourselves.
295 */
296 err = posix_cpu_clock_get_task(current, which_clock, tp);
297 } else {
298 /*
299 * Find the given PID, and validate that the caller
300 * should be able to see it.
301 */
302 struct task_struct *p;
303 rcu_read_lock();
304 p = find_task_by_vpid(pid);
305 if (p)
306 err = posix_cpu_clock_get_task(p, which_clock, tp);
307 rcu_read_unlock();
308 }
309
310 return err;
311 }
312
313
314 /*
315 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
316 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
317 * new timer already all-zeros initialized.
318 */
319 static int posix_cpu_timer_create(struct k_itimer *new_timer)
320 {
321 int ret = 0;
322 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
323 struct task_struct *p;
324
325 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
326 return -EINVAL;
327
328 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
329
330 rcu_read_lock();
331 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
332 if (pid == 0) {
333 p = current;
334 } else {
335 p = find_task_by_vpid(pid);
336 if (p && !same_thread_group(p, current))
337 p = NULL;
338 }
339 } else {
340 if (pid == 0) {
341 p = current->group_leader;
342 } else {
343 p = find_task_by_vpid(pid);
344 if (p && !has_group_leader_pid(p))
345 p = NULL;
346 }
347 }
348 new_timer->it.cpu.task = p;
349 if (p) {
350 get_task_struct(p);
351 } else {
352 ret = -EINVAL;
353 }
354 rcu_read_unlock();
355
356 return ret;
357 }
358
359 /*
360 * Clean up a CPU-clock timer that is about to be destroyed.
361 * This is called from timer deletion with the timer already locked.
362 * If we return TIMER_RETRY, it's necessary to release the timer's lock
363 * and try again. (This happens when the timer is in the middle of firing.)
364 */
365 static int posix_cpu_timer_del(struct k_itimer *timer)
366 {
367 int ret = 0;
368 unsigned long flags;
369 struct sighand_struct *sighand;
370 struct task_struct *p = timer->it.cpu.task;
371
372 WARN_ON_ONCE(p == NULL);
373
374 /*
375 * Protect against sighand release/switch in exit/exec and process/
376 * thread timer list entry concurrent read/writes.
377 */
378 sighand = lock_task_sighand(p, &flags);
379 if (unlikely(sighand == NULL)) {
380 /*
381 * We raced with the reaping of the task.
382 * The deletion should have cleared us off the list.
383 */
384 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
385 } else {
386 if (timer->it.cpu.firing)
387 ret = TIMER_RETRY;
388 else
389 list_del(&timer->it.cpu.entry);
390
391 unlock_task_sighand(p, &flags);
392 }
393
394 if (!ret)
395 put_task_struct(p);
396
397 return ret;
398 }
399
400 static void cleanup_timers_list(struct list_head *head)
401 {
402 struct cpu_timer_list *timer, *next;
403
404 list_for_each_entry_safe(timer, next, head, entry)
405 list_del_init(&timer->entry);
406 }
407
408 /*
409 * Clean out CPU timers still ticking when a thread exited. The task
410 * pointer is cleared, and the expiry time is replaced with the residual
411 * time for later timer_gettime calls to return.
412 * This must be called with the siglock held.
413 */
414 static void cleanup_timers(struct list_head *head)
415 {
416 cleanup_timers_list(head);
417 cleanup_timers_list(++head);
418 cleanup_timers_list(++head);
419 }
420
421 /*
422 * These are both called with the siglock held, when the current thread
423 * is being reaped. When the final (leader) thread in the group is reaped,
424 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
425 */
426 void posix_cpu_timers_exit(struct task_struct *tsk)
427 {
428 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
429 sizeof(unsigned long long));
430 cleanup_timers(tsk->cpu_timers);
431
432 }
433 void posix_cpu_timers_exit_group(struct task_struct *tsk)
434 {
435 cleanup_timers(tsk->signal->cpu_timers);
436 }
437
438 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
439 {
440 return expires == 0 || expires > new_exp;
441 }
442
443 /*
444 * Insert the timer on the appropriate list before any timers that
445 * expire later. This must be called with the sighand lock held.
446 */
447 static void arm_timer(struct k_itimer *timer)
448 {
449 struct task_struct *p = timer->it.cpu.task;
450 struct list_head *head, *listpos;
451 struct task_cputime *cputime_expires;
452 struct cpu_timer_list *const nt = &timer->it.cpu;
453 struct cpu_timer_list *next;
454
455 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
456 head = p->cpu_timers;
457 cputime_expires = &p->cputime_expires;
458 } else {
459 head = p->signal->cpu_timers;
460 cputime_expires = &p->signal->cputime_expires;
461 }
462 head += CPUCLOCK_WHICH(timer->it_clock);
463
464 listpos = head;
465 list_for_each_entry(next, head, entry) {
466 if (nt->expires < next->expires)
467 break;
468 listpos = &next->entry;
469 }
470 list_add(&nt->entry, listpos);
471
472 if (listpos == head) {
473 unsigned long long exp = nt->expires;
474
475 /*
476 * We are the new earliest-expiring POSIX 1.b timer, hence
477 * need to update expiration cache. Take into account that
478 * for process timers we share expiration cache with itimers
479 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
480 */
481
482 switch (CPUCLOCK_WHICH(timer->it_clock)) {
483 case CPUCLOCK_PROF:
484 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
485 cputime_expires->prof_exp = expires_to_cputime(exp);
486 break;
487 case CPUCLOCK_VIRT:
488 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
489 cputime_expires->virt_exp = expires_to_cputime(exp);
490 break;
491 case CPUCLOCK_SCHED:
492 if (cputime_expires->sched_exp == 0 ||
493 cputime_expires->sched_exp > exp)
494 cputime_expires->sched_exp = exp;
495 break;
496 }
497 }
498 }
499
500 /*
501 * The timer is locked, fire it and arrange for its reload.
502 */
503 static void cpu_timer_fire(struct k_itimer *timer)
504 {
505 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
506 /*
507 * User don't want any signal.
508 */
509 timer->it.cpu.expires = 0;
510 } else if (unlikely(timer->sigq == NULL)) {
511 /*
512 * This a special case for clock_nanosleep,
513 * not a normal timer from sys_timer_create.
514 */
515 wake_up_process(timer->it_process);
516 timer->it.cpu.expires = 0;
517 } else if (timer->it.cpu.incr == 0) {
518 /*
519 * One-shot timer. Clear it as soon as it's fired.
520 */
521 posix_timer_event(timer, 0);
522 timer->it.cpu.expires = 0;
523 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
524 /*
525 * The signal did not get queued because the signal
526 * was ignored, so we won't get any callback to
527 * reload the timer. But we need to keep it
528 * ticking in case the signal is deliverable next time.
529 */
530 posix_cpu_timer_schedule(timer);
531 }
532 }
533
534 /*
535 * Sample a process (thread group) timer for the given group_leader task.
536 * Must be called with task sighand lock held for safe while_each_thread()
537 * traversal.
538 */
539 static int cpu_timer_sample_group(const clockid_t which_clock,
540 struct task_struct *p,
541 unsigned long long *sample)
542 {
543 struct task_cputime cputime;
544
545 thread_group_cputimer(p, &cputime);
546 switch (CPUCLOCK_WHICH(which_clock)) {
547 default:
548 return -EINVAL;
549 case CPUCLOCK_PROF:
550 *sample = cputime_to_expires(cputime.utime + cputime.stime);
551 break;
552 case CPUCLOCK_VIRT:
553 *sample = cputime_to_expires(cputime.utime);
554 break;
555 case CPUCLOCK_SCHED:
556 *sample = cputime.sum_exec_runtime;
557 break;
558 }
559 return 0;
560 }
561
562 #ifdef CONFIG_NO_HZ_FULL
563 static void nohz_kick_work_fn(struct work_struct *work)
564 {
565 tick_nohz_full_kick_all();
566 }
567
568 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
569
570 /*
571 * We need the IPIs to be sent from sane process context.
572 * The posix cpu timers are always set with irqs disabled.
573 */
574 static void posix_cpu_timer_kick_nohz(void)
575 {
576 if (context_tracking_is_enabled())
577 schedule_work(&nohz_kick_work);
578 }
579
580 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
581 {
582 if (!task_cputime_zero(&tsk->cputime_expires))
583 return false;
584
585 if (tsk->signal->cputimer.running)
586 return false;
587
588 return true;
589 }
590 #else
591 static inline void posix_cpu_timer_kick_nohz(void) { }
592 #endif
593
594 /*
595 * Guts of sys_timer_settime for CPU timers.
596 * This is called with the timer locked and interrupts disabled.
597 * If we return TIMER_RETRY, it's necessary to release the timer's lock
598 * and try again. (This happens when the timer is in the middle of firing.)
599 */
600 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
601 struct itimerspec *new, struct itimerspec *old)
602 {
603 unsigned long flags;
604 struct sighand_struct *sighand;
605 struct task_struct *p = timer->it.cpu.task;
606 unsigned long long old_expires, new_expires, old_incr, val;
607 int ret;
608
609 WARN_ON_ONCE(p == NULL);
610
611 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
612
613 /*
614 * Protect against sighand release/switch in exit/exec and p->cpu_timers
615 * and p->signal->cpu_timers read/write in arm_timer()
616 */
617 sighand = lock_task_sighand(p, &flags);
618 /*
619 * If p has just been reaped, we can no
620 * longer get any information about it at all.
621 */
622 if (unlikely(sighand == NULL)) {
623 return -ESRCH;
624 }
625
626 /*
627 * Disarm any old timer after extracting its expiry time.
628 */
629 WARN_ON_ONCE(!irqs_disabled());
630
631 ret = 0;
632 old_incr = timer->it.cpu.incr;
633 old_expires = timer->it.cpu.expires;
634 if (unlikely(timer->it.cpu.firing)) {
635 timer->it.cpu.firing = -1;
636 ret = TIMER_RETRY;
637 } else
638 list_del_init(&timer->it.cpu.entry);
639
640 /*
641 * We need to sample the current value to convert the new
642 * value from to relative and absolute, and to convert the
643 * old value from absolute to relative. To set a process
644 * timer, we need a sample to balance the thread expiry
645 * times (in arm_timer). With an absolute time, we must
646 * check if it's already passed. In short, we need a sample.
647 */
648 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
649 cpu_clock_sample(timer->it_clock, p, &val);
650 } else {
651 cpu_timer_sample_group(timer->it_clock, p, &val);
652 }
653
654 if (old) {
655 if (old_expires == 0) {
656 old->it_value.tv_sec = 0;
657 old->it_value.tv_nsec = 0;
658 } else {
659 /*
660 * Update the timer in case it has
661 * overrun already. If it has,
662 * we'll report it as having overrun
663 * and with the next reloaded timer
664 * already ticking, though we are
665 * swallowing that pending
666 * notification here to install the
667 * new setting.
668 */
669 bump_cpu_timer(timer, val);
670 if (val < timer->it.cpu.expires) {
671 old_expires = timer->it.cpu.expires - val;
672 sample_to_timespec(timer->it_clock,
673 old_expires,
674 &old->it_value);
675 } else {
676 old->it_value.tv_nsec = 1;
677 old->it_value.tv_sec = 0;
678 }
679 }
680 }
681
682 if (unlikely(ret)) {
683 /*
684 * We are colliding with the timer actually firing.
685 * Punt after filling in the timer's old value, and
686 * disable this firing since we are already reporting
687 * it as an overrun (thanks to bump_cpu_timer above).
688 */
689 unlock_task_sighand(p, &flags);
690 goto out;
691 }
692
693 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
694 new_expires += val;
695 }
696
697 /*
698 * Install the new expiry time (or zero).
699 * For a timer with no notification action, we don't actually
700 * arm the timer (we'll just fake it for timer_gettime).
701 */
702 timer->it.cpu.expires = new_expires;
703 if (new_expires != 0 && val < new_expires) {
704 arm_timer(timer);
705 }
706
707 unlock_task_sighand(p, &flags);
708 /*
709 * Install the new reload setting, and
710 * set up the signal and overrun bookkeeping.
711 */
712 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
713 &new->it_interval);
714
715 /*
716 * This acts as a modification timestamp for the timer,
717 * so any automatic reload attempt will punt on seeing
718 * that we have reset the timer manually.
719 */
720 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
721 ~REQUEUE_PENDING;
722 timer->it_overrun_last = 0;
723 timer->it_overrun = -1;
724
725 if (new_expires != 0 && !(val < new_expires)) {
726 /*
727 * The designated time already passed, so we notify
728 * immediately, even if the thread never runs to
729 * accumulate more time on this clock.
730 */
731 cpu_timer_fire(timer);
732 }
733
734 ret = 0;
735 out:
736 if (old) {
737 sample_to_timespec(timer->it_clock,
738 old_incr, &old->it_interval);
739 }
740 if (!ret)
741 posix_cpu_timer_kick_nohz();
742 return ret;
743 }
744
745 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
746 {
747 unsigned long long now;
748 struct task_struct *p = timer->it.cpu.task;
749
750 WARN_ON_ONCE(p == NULL);
751
752 /*
753 * Easy part: convert the reload time.
754 */
755 sample_to_timespec(timer->it_clock,
756 timer->it.cpu.incr, &itp->it_interval);
757
758 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
759 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
760 return;
761 }
762
763 /*
764 * Sample the clock to take the difference with the expiry time.
765 */
766 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
767 cpu_clock_sample(timer->it_clock, p, &now);
768 } else {
769 struct sighand_struct *sighand;
770 unsigned long flags;
771
772 /*
773 * Protect against sighand release/switch in exit/exec and
774 * also make timer sampling safe if it ends up calling
775 * thread_group_cputime().
776 */
777 sighand = lock_task_sighand(p, &flags);
778 if (unlikely(sighand == NULL)) {
779 /*
780 * The process has been reaped.
781 * We can't even collect a sample any more.
782 * Call the timer disarmed, nothing else to do.
783 */
784 timer->it.cpu.expires = 0;
785 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
786 &itp->it_value);
787 } else {
788 cpu_timer_sample_group(timer->it_clock, p, &now);
789 unlock_task_sighand(p, &flags);
790 }
791 }
792
793 if (now < timer->it.cpu.expires) {
794 sample_to_timespec(timer->it_clock,
795 timer->it.cpu.expires - now,
796 &itp->it_value);
797 } else {
798 /*
799 * The timer should have expired already, but the firing
800 * hasn't taken place yet. Say it's just about to expire.
801 */
802 itp->it_value.tv_nsec = 1;
803 itp->it_value.tv_sec = 0;
804 }
805 }
806
807 static unsigned long long
808 check_timers_list(struct list_head *timers,
809 struct list_head *firing,
810 unsigned long long curr)
811 {
812 int maxfire = 20;
813
814 while (!list_empty(timers)) {
815 struct cpu_timer_list *t;
816
817 t = list_first_entry(timers, struct cpu_timer_list, entry);
818
819 if (!--maxfire || curr < t->expires)
820 return t->expires;
821
822 t->firing = 1;
823 list_move_tail(&t->entry, firing);
824 }
825
826 return 0;
827 }
828
829 /*
830 * Check for any per-thread CPU timers that have fired and move them off
831 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
832 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
833 */
834 static void check_thread_timers(struct task_struct *tsk,
835 struct list_head *firing)
836 {
837 struct list_head *timers = tsk->cpu_timers;
838 struct signal_struct *const sig = tsk->signal;
839 struct task_cputime *tsk_expires = &tsk->cputime_expires;
840 unsigned long long expires;
841 unsigned long soft;
842
843 expires = check_timers_list(timers, firing, prof_ticks(tsk));
844 tsk_expires->prof_exp = expires_to_cputime(expires);
845
846 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
847 tsk_expires->virt_exp = expires_to_cputime(expires);
848
849 tsk_expires->sched_exp = check_timers_list(++timers, firing,
850 tsk->se.sum_exec_runtime);
851
852 /*
853 * Check for the special case thread timers.
854 */
855 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
856 if (soft != RLIM_INFINITY) {
857 unsigned long hard =
858 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
859
860 if (hard != RLIM_INFINITY &&
861 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
862 /*
863 * At the hard limit, we just die.
864 * No need to calculate anything else now.
865 */
866 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
867 return;
868 }
869 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
870 /*
871 * At the soft limit, send a SIGXCPU every second.
872 */
873 if (soft < hard) {
874 soft += USEC_PER_SEC;
875 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
876 }
877 printk(KERN_INFO
878 "RT Watchdog Timeout: %s[%d]\n",
879 tsk->comm, task_pid_nr(tsk));
880 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
881 }
882 }
883 }
884
885 static void stop_process_timers(struct signal_struct *sig)
886 {
887 struct thread_group_cputimer *cputimer = &sig->cputimer;
888 unsigned long flags;
889
890 raw_spin_lock_irqsave(&cputimer->lock, flags);
891 cputimer->running = 0;
892 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
893 }
894
895 static u32 onecputick;
896
897 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
898 unsigned long long *expires,
899 unsigned long long cur_time, int signo)
900 {
901 if (!it->expires)
902 return;
903
904 if (cur_time >= it->expires) {
905 if (it->incr) {
906 it->expires += it->incr;
907 it->error += it->incr_error;
908 if (it->error >= onecputick) {
909 it->expires -= cputime_one_jiffy;
910 it->error -= onecputick;
911 }
912 } else {
913 it->expires = 0;
914 }
915
916 trace_itimer_expire(signo == SIGPROF ?
917 ITIMER_PROF : ITIMER_VIRTUAL,
918 tsk->signal->leader_pid, cur_time);
919 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
920 }
921
922 if (it->expires && (!*expires || it->expires < *expires)) {
923 *expires = it->expires;
924 }
925 }
926
927 /*
928 * Check for any per-thread CPU timers that have fired and move them
929 * off the tsk->*_timers list onto the firing list. Per-thread timers
930 * have already been taken off.
931 */
932 static void check_process_timers(struct task_struct *tsk,
933 struct list_head *firing)
934 {
935 struct signal_struct *const sig = tsk->signal;
936 unsigned long long utime, ptime, virt_expires, prof_expires;
937 unsigned long long sum_sched_runtime, sched_expires;
938 struct list_head *timers = sig->cpu_timers;
939 struct task_cputime cputime;
940 unsigned long soft;
941
942 /*
943 * Collect the current process totals.
944 */
945 thread_group_cputimer(tsk, &cputime);
946 utime = cputime_to_expires(cputime.utime);
947 ptime = utime + cputime_to_expires(cputime.stime);
948 sum_sched_runtime = cputime.sum_exec_runtime;
949
950 prof_expires = check_timers_list(timers, firing, ptime);
951 virt_expires = check_timers_list(++timers, firing, utime);
952 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
953
954 /*
955 * Check for the special case process timers.
956 */
957 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
958 SIGPROF);
959 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
960 SIGVTALRM);
961 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
962 if (soft != RLIM_INFINITY) {
963 unsigned long psecs = cputime_to_secs(ptime);
964 unsigned long hard =
965 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
966 cputime_t x;
967 if (psecs >= hard) {
968 /*
969 * At the hard limit, we just die.
970 * No need to calculate anything else now.
971 */
972 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
973 return;
974 }
975 if (psecs >= soft) {
976 /*
977 * At the soft limit, send a SIGXCPU every second.
978 */
979 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
980 if (soft < hard) {
981 soft++;
982 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
983 }
984 }
985 x = secs_to_cputime(soft);
986 if (!prof_expires || x < prof_expires) {
987 prof_expires = x;
988 }
989 }
990
991 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
992 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
993 sig->cputime_expires.sched_exp = sched_expires;
994 if (task_cputime_zero(&sig->cputime_expires))
995 stop_process_timers(sig);
996 }
997
998 /*
999 * This is called from the signal code (via do_schedule_next_timer)
1000 * when the last timer signal was delivered and we have to reload the timer.
1001 */
1002 void posix_cpu_timer_schedule(struct k_itimer *timer)
1003 {
1004 struct sighand_struct *sighand;
1005 unsigned long flags;
1006 struct task_struct *p = timer->it.cpu.task;
1007 unsigned long long now;
1008
1009 WARN_ON_ONCE(p == NULL);
1010
1011 /*
1012 * Fetch the current sample and update the timer's expiry time.
1013 */
1014 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1015 cpu_clock_sample(timer->it_clock, p, &now);
1016 bump_cpu_timer(timer, now);
1017 if (unlikely(p->exit_state))
1018 goto out;
1019
1020 /* Protect timer list r/w in arm_timer() */
1021 sighand = lock_task_sighand(p, &flags);
1022 if (!sighand)
1023 goto out;
1024 } else {
1025 /*
1026 * Protect arm_timer() and timer sampling in case of call to
1027 * thread_group_cputime().
1028 */
1029 sighand = lock_task_sighand(p, &flags);
1030 if (unlikely(sighand == NULL)) {
1031 /*
1032 * The process has been reaped.
1033 * We can't even collect a sample any more.
1034 */
1035 timer->it.cpu.expires = 0;
1036 goto out;
1037 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1038 unlock_task_sighand(p, &flags);
1039 /* Optimizations: if the process is dying, no need to rearm */
1040 goto out;
1041 }
1042 cpu_timer_sample_group(timer->it_clock, p, &now);
1043 bump_cpu_timer(timer, now);
1044 /* Leave the sighand locked for the call below. */
1045 }
1046
1047 /*
1048 * Now re-arm for the new expiry time.
1049 */
1050 WARN_ON_ONCE(!irqs_disabled());
1051 arm_timer(timer);
1052 unlock_task_sighand(p, &flags);
1053
1054 /* Kick full dynticks CPUs in case they need to tick on the new timer */
1055 posix_cpu_timer_kick_nohz();
1056 out:
1057 timer->it_overrun_last = timer->it_overrun;
1058 timer->it_overrun = -1;
1059 ++timer->it_requeue_pending;
1060 }
1061
1062 /**
1063 * task_cputime_expired - Compare two task_cputime entities.
1064 *
1065 * @sample: The task_cputime structure to be checked for expiration.
1066 * @expires: Expiration times, against which @sample will be checked.
1067 *
1068 * Checks @sample against @expires to see if any field of @sample has expired.
1069 * Returns true if any field of the former is greater than the corresponding
1070 * field of the latter if the latter field is set. Otherwise returns false.
1071 */
1072 static inline int task_cputime_expired(const struct task_cputime *sample,
1073 const struct task_cputime *expires)
1074 {
1075 if (expires->utime && sample->utime >= expires->utime)
1076 return 1;
1077 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1078 return 1;
1079 if (expires->sum_exec_runtime != 0 &&
1080 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1081 return 1;
1082 return 0;
1083 }
1084
1085 /**
1086 * fastpath_timer_check - POSIX CPU timers fast path.
1087 *
1088 * @tsk: The task (thread) being checked.
1089 *
1090 * Check the task and thread group timers. If both are zero (there are no
1091 * timers set) return false. Otherwise snapshot the task and thread group
1092 * timers and compare them with the corresponding expiration times. Return
1093 * true if a timer has expired, else return false.
1094 */
1095 static inline int fastpath_timer_check(struct task_struct *tsk)
1096 {
1097 struct signal_struct *sig;
1098 cputime_t utime, stime;
1099
1100 task_cputime(tsk, &utime, &stime);
1101
1102 if (!task_cputime_zero(&tsk->cputime_expires)) {
1103 struct task_cputime task_sample = {
1104 .utime = utime,
1105 .stime = stime,
1106 .sum_exec_runtime = tsk->se.sum_exec_runtime
1107 };
1108
1109 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1110 return 1;
1111 }
1112
1113 sig = tsk->signal;
1114 if (sig->cputimer.running) {
1115 struct task_cputime group_sample;
1116
1117 raw_spin_lock(&sig->cputimer.lock);
1118 group_sample = sig->cputimer.cputime;
1119 raw_spin_unlock(&sig->cputimer.lock);
1120
1121 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1122 return 1;
1123 }
1124
1125 return 0;
1126 }
1127
1128 /*
1129 * This is called from the timer interrupt handler. The irq handler has
1130 * already updated our counts. We need to check if any timers fire now.
1131 * Interrupts are disabled.
1132 */
1133 void run_posix_cpu_timers(struct task_struct *tsk)
1134 {
1135 LIST_HEAD(firing);
1136 struct k_itimer *timer, *next;
1137 unsigned long flags;
1138
1139 WARN_ON_ONCE(!irqs_disabled());
1140
1141 /*
1142 * The fast path checks that there are no expired thread or thread
1143 * group timers. If that's so, just return.
1144 */
1145 if (!fastpath_timer_check(tsk))
1146 return;
1147
1148 if (!lock_task_sighand(tsk, &flags))
1149 return;
1150 /*
1151 * Here we take off tsk->signal->cpu_timers[N] and
1152 * tsk->cpu_timers[N] all the timers that are firing, and
1153 * put them on the firing list.
1154 */
1155 check_thread_timers(tsk, &firing);
1156 /*
1157 * If there are any active process wide timers (POSIX 1.b, itimers,
1158 * RLIMIT_CPU) cputimer must be running.
1159 */
1160 if (tsk->signal->cputimer.running)
1161 check_process_timers(tsk, &firing);
1162
1163 /*
1164 * We must release these locks before taking any timer's lock.
1165 * There is a potential race with timer deletion here, as the
1166 * siglock now protects our private firing list. We have set
1167 * the firing flag in each timer, so that a deletion attempt
1168 * that gets the timer lock before we do will give it up and
1169 * spin until we've taken care of that timer below.
1170 */
1171 unlock_task_sighand(tsk, &flags);
1172
1173 /*
1174 * Now that all the timers on our list have the firing flag,
1175 * no one will touch their list entries but us. We'll take
1176 * each timer's lock before clearing its firing flag, so no
1177 * timer call will interfere.
1178 */
1179 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1180 int cpu_firing;
1181
1182 spin_lock(&timer->it_lock);
1183 list_del_init(&timer->it.cpu.entry);
1184 cpu_firing = timer->it.cpu.firing;
1185 timer->it.cpu.firing = 0;
1186 /*
1187 * The firing flag is -1 if we collided with a reset
1188 * of the timer, which already reported this
1189 * almost-firing as an overrun. So don't generate an event.
1190 */
1191 if (likely(cpu_firing >= 0))
1192 cpu_timer_fire(timer);
1193 spin_unlock(&timer->it_lock);
1194 }
1195 }
1196
1197 /*
1198 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1199 * The tsk->sighand->siglock must be held by the caller.
1200 */
1201 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1202 cputime_t *newval, cputime_t *oldval)
1203 {
1204 unsigned long long now;
1205
1206 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1207 cpu_timer_sample_group(clock_idx, tsk, &now);
1208
1209 if (oldval) {
1210 /*
1211 * We are setting itimer. The *oldval is absolute and we update
1212 * it to be relative, *newval argument is relative and we update
1213 * it to be absolute.
1214 */
1215 if (*oldval) {
1216 if (*oldval <= now) {
1217 /* Just about to fire. */
1218 *oldval = cputime_one_jiffy;
1219 } else {
1220 *oldval -= now;
1221 }
1222 }
1223
1224 if (!*newval)
1225 goto out;
1226 *newval += now;
1227 }
1228
1229 /*
1230 * Update expiration cache if we are the earliest timer, or eventually
1231 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1232 */
1233 switch (clock_idx) {
1234 case CPUCLOCK_PROF:
1235 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1236 tsk->signal->cputime_expires.prof_exp = *newval;
1237 break;
1238 case CPUCLOCK_VIRT:
1239 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1240 tsk->signal->cputime_expires.virt_exp = *newval;
1241 break;
1242 }
1243 out:
1244 posix_cpu_timer_kick_nohz();
1245 }
1246
1247 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1248 struct timespec *rqtp, struct itimerspec *it)
1249 {
1250 struct k_itimer timer;
1251 int error;
1252
1253 /*
1254 * Set up a temporary timer and then wait for it to go off.
1255 */
1256 memset(&timer, 0, sizeof timer);
1257 spin_lock_init(&timer.it_lock);
1258 timer.it_clock = which_clock;
1259 timer.it_overrun = -1;
1260 error = posix_cpu_timer_create(&timer);
1261 timer.it_process = current;
1262 if (!error) {
1263 static struct itimerspec zero_it;
1264
1265 memset(it, 0, sizeof *it);
1266 it->it_value = *rqtp;
1267
1268 spin_lock_irq(&timer.it_lock);
1269 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1270 if (error) {
1271 spin_unlock_irq(&timer.it_lock);
1272 return error;
1273 }
1274
1275 while (!signal_pending(current)) {
1276 if (timer.it.cpu.expires == 0) {
1277 /*
1278 * Our timer fired and was reset, below
1279 * deletion can not fail.
1280 */
1281 posix_cpu_timer_del(&timer);
1282 spin_unlock_irq(&timer.it_lock);
1283 return 0;
1284 }
1285
1286 /*
1287 * Block until cpu_timer_fire (or a signal) wakes us.
1288 */
1289 __set_current_state(TASK_INTERRUPTIBLE);
1290 spin_unlock_irq(&timer.it_lock);
1291 schedule();
1292 spin_lock_irq(&timer.it_lock);
1293 }
1294
1295 /*
1296 * We were interrupted by a signal.
1297 */
1298 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1299 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1300 if (!error) {
1301 /*
1302 * Timer is now unarmed, deletion can not fail.
1303 */
1304 posix_cpu_timer_del(&timer);
1305 }
1306 spin_unlock_irq(&timer.it_lock);
1307
1308 while (error == TIMER_RETRY) {
1309 /*
1310 * We need to handle case when timer was or is in the
1311 * middle of firing. In other cases we already freed
1312 * resources.
1313 */
1314 spin_lock_irq(&timer.it_lock);
1315 error = posix_cpu_timer_del(&timer);
1316 spin_unlock_irq(&timer.it_lock);
1317 }
1318
1319 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1320 /*
1321 * It actually did fire already.
1322 */
1323 return 0;
1324 }
1325
1326 error = -ERESTART_RESTARTBLOCK;
1327 }
1328
1329 return error;
1330 }
1331
1332 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1333
1334 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1335 struct timespec *rqtp, struct timespec __user *rmtp)
1336 {
1337 struct restart_block *restart_block = &current->restart_block;
1338 struct itimerspec it;
1339 int error;
1340
1341 /*
1342 * Diagnose required errors first.
1343 */
1344 if (CPUCLOCK_PERTHREAD(which_clock) &&
1345 (CPUCLOCK_PID(which_clock) == 0 ||
1346 CPUCLOCK_PID(which_clock) == current->pid))
1347 return -EINVAL;
1348
1349 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1350
1351 if (error == -ERESTART_RESTARTBLOCK) {
1352
1353 if (flags & TIMER_ABSTIME)
1354 return -ERESTARTNOHAND;
1355 /*
1356 * Report back to the user the time still remaining.
1357 */
1358 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1359 return -EFAULT;
1360
1361 restart_block->fn = posix_cpu_nsleep_restart;
1362 restart_block->nanosleep.clockid = which_clock;
1363 restart_block->nanosleep.rmtp = rmtp;
1364 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1365 }
1366 return error;
1367 }
1368
1369 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1370 {
1371 clockid_t which_clock = restart_block->nanosleep.clockid;
1372 struct timespec t;
1373 struct itimerspec it;
1374 int error;
1375
1376 t = ns_to_timespec(restart_block->nanosleep.expires);
1377
1378 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1379
1380 if (error == -ERESTART_RESTARTBLOCK) {
1381 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1382 /*
1383 * Report back to the user the time still remaining.
1384 */
1385 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1386 return -EFAULT;
1387
1388 restart_block->nanosleep.expires = timespec_to_ns(&t);
1389 }
1390 return error;
1391
1392 }
1393
1394 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1395 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1396
1397 static int process_cpu_clock_getres(const clockid_t which_clock,
1398 struct timespec *tp)
1399 {
1400 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1401 }
1402 static int process_cpu_clock_get(const clockid_t which_clock,
1403 struct timespec *tp)
1404 {
1405 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1406 }
1407 static int process_cpu_timer_create(struct k_itimer *timer)
1408 {
1409 timer->it_clock = PROCESS_CLOCK;
1410 return posix_cpu_timer_create(timer);
1411 }
1412 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1413 struct timespec *rqtp,
1414 struct timespec __user *rmtp)
1415 {
1416 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1417 }
1418 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1419 {
1420 return -EINVAL;
1421 }
1422 static int thread_cpu_clock_getres(const clockid_t which_clock,
1423 struct timespec *tp)
1424 {
1425 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1426 }
1427 static int thread_cpu_clock_get(const clockid_t which_clock,
1428 struct timespec *tp)
1429 {
1430 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1431 }
1432 static int thread_cpu_timer_create(struct k_itimer *timer)
1433 {
1434 timer->it_clock = THREAD_CLOCK;
1435 return posix_cpu_timer_create(timer);
1436 }
1437
1438 struct k_clock clock_posix_cpu = {
1439 .clock_getres = posix_cpu_clock_getres,
1440 .clock_set = posix_cpu_clock_set,
1441 .clock_get = posix_cpu_clock_get,
1442 .timer_create = posix_cpu_timer_create,
1443 .nsleep = posix_cpu_nsleep,
1444 .nsleep_restart = posix_cpu_nsleep_restart,
1445 .timer_set = posix_cpu_timer_set,
1446 .timer_del = posix_cpu_timer_del,
1447 .timer_get = posix_cpu_timer_get,
1448 };
1449
1450 static __init int init_posix_cpu_timers(void)
1451 {
1452 struct k_clock process = {
1453 .clock_getres = process_cpu_clock_getres,
1454 .clock_get = process_cpu_clock_get,
1455 .timer_create = process_cpu_timer_create,
1456 .nsleep = process_cpu_nsleep,
1457 .nsleep_restart = process_cpu_nsleep_restart,
1458 };
1459 struct k_clock thread = {
1460 .clock_getres = thread_cpu_clock_getres,
1461 .clock_get = thread_cpu_clock_get,
1462 .timer_create = thread_cpu_timer_create,
1463 };
1464 struct timespec ts;
1465
1466 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1467 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1468
1469 cputime_to_timespec(cputime_one_jiffy, &ts);
1470 onecputick = ts.tv_nsec;
1471 WARN_ON(ts.tv_sec != 0);
1472
1473 return 0;
1474 }
1475 __initcall(init_posix_cpu_timers);
This page took 0.190282 seconds and 5 git commands to generate.