937098aab49877b670409f49eb869fec9e20cfd1
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25
26
27 static struct timekeeper timekeeper;
28
29 /* flag for if timekeeping is suspended */
30 int __read_mostly timekeeping_suspended;
31
32 /* Flag for if there is a persistent clock on this platform */
33 bool __read_mostly persistent_clock_exist = false;
34
35 static inline void tk_normalize_xtime(struct timekeeper *tk)
36 {
37 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
38 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
39 tk->xtime_sec++;
40 }
41 }
42
43 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
44 {
45 tk->xtime_sec = ts->tv_sec;
46 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
47 }
48
49 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
50 {
51 tk->xtime_sec += ts->tv_sec;
52 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
53 tk_normalize_xtime(tk);
54 }
55
56 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
57 {
58 struct timespec tmp;
59
60 /*
61 * Verify consistency of: offset_real = -wall_to_monotonic
62 * before modifying anything
63 */
64 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
65 -tk->wall_to_monotonic.tv_nsec);
66 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
67 tk->wall_to_monotonic = wtm;
68 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
69 tk->offs_real = timespec_to_ktime(tmp);
70 }
71
72 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
73 {
74 /* Verify consistency before modifying */
75 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
76
77 tk->total_sleep_time = t;
78 tk->offs_boot = timespec_to_ktime(t);
79 }
80
81 /**
82 * timekeeper_setup_internals - Set up internals to use clocksource clock.
83 *
84 * @clock: Pointer to clocksource.
85 *
86 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
87 * pair and interval request.
88 *
89 * Unless you're the timekeeping code, you should not be using this!
90 */
91 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
92 {
93 cycle_t interval;
94 u64 tmp, ntpinterval;
95 struct clocksource *old_clock;
96
97 old_clock = tk->clock;
98 tk->clock = clock;
99 clock->cycle_last = clock->read(clock);
100
101 /* Do the ns -> cycle conversion first, using original mult */
102 tmp = NTP_INTERVAL_LENGTH;
103 tmp <<= clock->shift;
104 ntpinterval = tmp;
105 tmp += clock->mult/2;
106 do_div(tmp, clock->mult);
107 if (tmp == 0)
108 tmp = 1;
109
110 interval = (cycle_t) tmp;
111 tk->cycle_interval = interval;
112
113 /* Go back from cycles -> shifted ns */
114 tk->xtime_interval = (u64) interval * clock->mult;
115 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
116 tk->raw_interval =
117 ((u64) interval * clock->mult) >> clock->shift;
118
119 /* if changing clocks, convert xtime_nsec shift units */
120 if (old_clock) {
121 int shift_change = clock->shift - old_clock->shift;
122 if (shift_change < 0)
123 tk->xtime_nsec >>= -shift_change;
124 else
125 tk->xtime_nsec <<= shift_change;
126 }
127 tk->shift = clock->shift;
128
129 tk->ntp_error = 0;
130 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
131
132 /*
133 * The timekeeper keeps its own mult values for the currently
134 * active clocksource. These value will be adjusted via NTP
135 * to counteract clock drifting.
136 */
137 tk->mult = clock->mult;
138 }
139
140 /* Timekeeper helper functions. */
141
142 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
143 u32 (*arch_gettimeoffset)(void);
144
145 u32 get_arch_timeoffset(void)
146 {
147 if (likely(arch_gettimeoffset))
148 return arch_gettimeoffset();
149 return 0;
150 }
151 #else
152 static inline u32 get_arch_timeoffset(void) { return 0; }
153 #endif
154
155 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
156 {
157 cycle_t cycle_now, cycle_delta;
158 struct clocksource *clock;
159 s64 nsec;
160
161 /* read clocksource: */
162 clock = tk->clock;
163 cycle_now = clock->read(clock);
164
165 /* calculate the delta since the last update_wall_time: */
166 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
167
168 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
169 nsec >>= tk->shift;
170
171 /* If arch requires, add in get_arch_timeoffset() */
172 return nsec + get_arch_timeoffset();
173 }
174
175 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
176 {
177 cycle_t cycle_now, cycle_delta;
178 struct clocksource *clock;
179 s64 nsec;
180
181 /* read clocksource: */
182 clock = tk->clock;
183 cycle_now = clock->read(clock);
184
185 /* calculate the delta since the last update_wall_time: */
186 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
187
188 /* convert delta to nanoseconds. */
189 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
190
191 /* If arch requires, add in get_arch_timeoffset() */
192 return nsec + get_arch_timeoffset();
193 }
194
195 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
196
197 static void update_pvclock_gtod(struct timekeeper *tk)
198 {
199 raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
200 }
201
202 /**
203 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
204 *
205 * Must hold write on timekeeper.lock
206 */
207 int pvclock_gtod_register_notifier(struct notifier_block *nb)
208 {
209 struct timekeeper *tk = &timekeeper;
210 unsigned long flags;
211 int ret;
212
213 write_seqlock_irqsave(&tk->lock, flags);
214 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
215 /* update timekeeping data */
216 update_pvclock_gtod(tk);
217 write_sequnlock_irqrestore(&tk->lock, flags);
218
219 return ret;
220 }
221 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
222
223 /**
224 * pvclock_gtod_unregister_notifier - unregister a pvclock
225 * timedata update listener
226 *
227 * Must hold write on timekeeper.lock
228 */
229 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
230 {
231 struct timekeeper *tk = &timekeeper;
232 unsigned long flags;
233 int ret;
234
235 write_seqlock_irqsave(&tk->lock, flags);
236 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
237 write_sequnlock_irqrestore(&tk->lock, flags);
238
239 return ret;
240 }
241 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
242
243 /* must hold write on timekeeper.lock */
244 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
245 {
246 if (clearntp) {
247 tk->ntp_error = 0;
248 ntp_clear();
249 }
250 update_vsyscall(tk);
251 update_pvclock_gtod(tk);
252 }
253
254 /**
255 * timekeeping_forward_now - update clock to the current time
256 *
257 * Forward the current clock to update its state since the last call to
258 * update_wall_time(). This is useful before significant clock changes,
259 * as it avoids having to deal with this time offset explicitly.
260 */
261 static void timekeeping_forward_now(struct timekeeper *tk)
262 {
263 cycle_t cycle_now, cycle_delta;
264 struct clocksource *clock;
265 s64 nsec;
266
267 clock = tk->clock;
268 cycle_now = clock->read(clock);
269 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
270 clock->cycle_last = cycle_now;
271
272 tk->xtime_nsec += cycle_delta * tk->mult;
273
274 /* If arch requires, add in get_arch_timeoffset() */
275 tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
276
277 tk_normalize_xtime(tk);
278
279 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
280 timespec_add_ns(&tk->raw_time, nsec);
281 }
282
283 /**
284 * __getnstimeofday - Returns the time of day in a timespec.
285 * @ts: pointer to the timespec to be set
286 *
287 * Updates the time of day in the timespec.
288 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
289 */
290 int __getnstimeofday(struct timespec *ts)
291 {
292 struct timekeeper *tk = &timekeeper;
293 unsigned long seq;
294 s64 nsecs = 0;
295
296 do {
297 seq = read_seqbegin(&tk->lock);
298
299 ts->tv_sec = tk->xtime_sec;
300 nsecs = timekeeping_get_ns(tk);
301
302 } while (read_seqretry(&tk->lock, seq));
303
304 ts->tv_nsec = 0;
305 timespec_add_ns(ts, nsecs);
306
307 /*
308 * Do not bail out early, in case there were callers still using
309 * the value, even in the face of the WARN_ON.
310 */
311 if (unlikely(timekeeping_suspended))
312 return -EAGAIN;
313 return 0;
314 }
315 EXPORT_SYMBOL(__getnstimeofday);
316
317 /**
318 * getnstimeofday - Returns the time of day in a timespec.
319 * @ts: pointer to the timespec to be set
320 *
321 * Returns the time of day in a timespec (WARN if suspended).
322 */
323 void getnstimeofday(struct timespec *ts)
324 {
325 WARN_ON(__getnstimeofday(ts));
326 }
327 EXPORT_SYMBOL(getnstimeofday);
328
329 ktime_t ktime_get(void)
330 {
331 struct timekeeper *tk = &timekeeper;
332 unsigned int seq;
333 s64 secs, nsecs;
334
335 WARN_ON(timekeeping_suspended);
336
337 do {
338 seq = read_seqbegin(&tk->lock);
339 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
340 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
341
342 } while (read_seqretry(&tk->lock, seq));
343 /*
344 * Use ktime_set/ktime_add_ns to create a proper ktime on
345 * 32-bit architectures without CONFIG_KTIME_SCALAR.
346 */
347 return ktime_add_ns(ktime_set(secs, 0), nsecs);
348 }
349 EXPORT_SYMBOL_GPL(ktime_get);
350
351 /**
352 * ktime_get_ts - get the monotonic clock in timespec format
353 * @ts: pointer to timespec variable
354 *
355 * The function calculates the monotonic clock from the realtime
356 * clock and the wall_to_monotonic offset and stores the result
357 * in normalized timespec format in the variable pointed to by @ts.
358 */
359 void ktime_get_ts(struct timespec *ts)
360 {
361 struct timekeeper *tk = &timekeeper;
362 struct timespec tomono;
363 s64 nsec;
364 unsigned int seq;
365
366 WARN_ON(timekeeping_suspended);
367
368 do {
369 seq = read_seqbegin(&tk->lock);
370 ts->tv_sec = tk->xtime_sec;
371 nsec = timekeeping_get_ns(tk);
372 tomono = tk->wall_to_monotonic;
373
374 } while (read_seqretry(&tk->lock, seq));
375
376 ts->tv_sec += tomono.tv_sec;
377 ts->tv_nsec = 0;
378 timespec_add_ns(ts, nsec + tomono.tv_nsec);
379 }
380 EXPORT_SYMBOL_GPL(ktime_get_ts);
381
382 #ifdef CONFIG_NTP_PPS
383
384 /**
385 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
386 * @ts_raw: pointer to the timespec to be set to raw monotonic time
387 * @ts_real: pointer to the timespec to be set to the time of day
388 *
389 * This function reads both the time of day and raw monotonic time at the
390 * same time atomically and stores the resulting timestamps in timespec
391 * format.
392 */
393 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
394 {
395 struct timekeeper *tk = &timekeeper;
396 unsigned long seq;
397 s64 nsecs_raw, nsecs_real;
398
399 WARN_ON_ONCE(timekeeping_suspended);
400
401 do {
402 seq = read_seqbegin(&tk->lock);
403
404 *ts_raw = tk->raw_time;
405 ts_real->tv_sec = tk->xtime_sec;
406 ts_real->tv_nsec = 0;
407
408 nsecs_raw = timekeeping_get_ns_raw(tk);
409 nsecs_real = timekeeping_get_ns(tk);
410
411 } while (read_seqretry(&tk->lock, seq));
412
413 timespec_add_ns(ts_raw, nsecs_raw);
414 timespec_add_ns(ts_real, nsecs_real);
415 }
416 EXPORT_SYMBOL(getnstime_raw_and_real);
417
418 #endif /* CONFIG_NTP_PPS */
419
420 /**
421 * do_gettimeofday - Returns the time of day in a timeval
422 * @tv: pointer to the timeval to be set
423 *
424 * NOTE: Users should be converted to using getnstimeofday()
425 */
426 void do_gettimeofday(struct timeval *tv)
427 {
428 struct timespec now;
429
430 getnstimeofday(&now);
431 tv->tv_sec = now.tv_sec;
432 tv->tv_usec = now.tv_nsec/1000;
433 }
434 EXPORT_SYMBOL(do_gettimeofday);
435
436 /**
437 * do_settimeofday - Sets the time of day
438 * @tv: pointer to the timespec variable containing the new time
439 *
440 * Sets the time of day to the new time and update NTP and notify hrtimers
441 */
442 int do_settimeofday(const struct timespec *tv)
443 {
444 struct timekeeper *tk = &timekeeper;
445 struct timespec ts_delta, xt;
446 unsigned long flags;
447
448 if (!timespec_valid_strict(tv))
449 return -EINVAL;
450
451 write_seqlock_irqsave(&tk->lock, flags);
452
453 timekeeping_forward_now(tk);
454
455 xt = tk_xtime(tk);
456 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
457 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
458
459 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
460
461 tk_set_xtime(tk, tv);
462
463 timekeeping_update(tk, true);
464
465 write_sequnlock_irqrestore(&tk->lock, flags);
466
467 /* signal hrtimers about time change */
468 clock_was_set();
469
470 return 0;
471 }
472 EXPORT_SYMBOL(do_settimeofday);
473
474 /**
475 * timekeeping_inject_offset - Adds or subtracts from the current time.
476 * @tv: pointer to the timespec variable containing the offset
477 *
478 * Adds or subtracts an offset value from the current time.
479 */
480 int timekeeping_inject_offset(struct timespec *ts)
481 {
482 struct timekeeper *tk = &timekeeper;
483 unsigned long flags;
484 struct timespec tmp;
485 int ret = 0;
486
487 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
488 return -EINVAL;
489
490 write_seqlock_irqsave(&tk->lock, flags);
491
492 timekeeping_forward_now(tk);
493
494 /* Make sure the proposed value is valid */
495 tmp = timespec_add(tk_xtime(tk), *ts);
496 if (!timespec_valid_strict(&tmp)) {
497 ret = -EINVAL;
498 goto error;
499 }
500
501 tk_xtime_add(tk, ts);
502 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
503
504 error: /* even if we error out, we forwarded the time, so call update */
505 timekeeping_update(tk, true);
506
507 write_sequnlock_irqrestore(&tk->lock, flags);
508
509 /* signal hrtimers about time change */
510 clock_was_set();
511
512 return ret;
513 }
514 EXPORT_SYMBOL(timekeeping_inject_offset);
515
516
517 /**
518 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
519 *
520 */
521 s32 timekeeping_get_tai_offset(void)
522 {
523 struct timekeeper *tk = &timekeeper;
524 unsigned int seq;
525 s32 ret;
526
527 do {
528 seq = read_seqbegin(&tk->lock);
529 ret = tk->tai_offset;
530 } while (read_seqretry(&tk->lock, seq));
531
532 return ret;
533 }
534
535 /**
536 * __timekeeping_set_tai_offset - Lock free worker function
537 *
538 */
539 void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
540 {
541 tk->tai_offset = tai_offset;
542 }
543
544 /**
545 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
546 *
547 */
548 void timekeeping_set_tai_offset(s32 tai_offset)
549 {
550 struct timekeeper *tk = &timekeeper;
551 unsigned long flags;
552
553 write_seqlock_irqsave(&tk->lock, flags);
554 __timekeeping_set_tai_offset(tk, tai_offset);
555 write_sequnlock_irqrestore(&tk->lock, flags);
556 }
557
558 /**
559 * change_clocksource - Swaps clocksources if a new one is available
560 *
561 * Accumulates current time interval and initializes new clocksource
562 */
563 static int change_clocksource(void *data)
564 {
565 struct timekeeper *tk = &timekeeper;
566 struct clocksource *new, *old;
567 unsigned long flags;
568
569 new = (struct clocksource *) data;
570
571 write_seqlock_irqsave(&tk->lock, flags);
572
573 timekeeping_forward_now(tk);
574 if (!new->enable || new->enable(new) == 0) {
575 old = tk->clock;
576 tk_setup_internals(tk, new);
577 if (old->disable)
578 old->disable(old);
579 }
580 timekeeping_update(tk, true);
581
582 write_sequnlock_irqrestore(&tk->lock, flags);
583
584 return 0;
585 }
586
587 /**
588 * timekeeping_notify - Install a new clock source
589 * @clock: pointer to the clock source
590 *
591 * This function is called from clocksource.c after a new, better clock
592 * source has been registered. The caller holds the clocksource_mutex.
593 */
594 void timekeeping_notify(struct clocksource *clock)
595 {
596 struct timekeeper *tk = &timekeeper;
597
598 if (tk->clock == clock)
599 return;
600 stop_machine(change_clocksource, clock, NULL);
601 tick_clock_notify();
602 }
603
604 /**
605 * ktime_get_real - get the real (wall-) time in ktime_t format
606 *
607 * returns the time in ktime_t format
608 */
609 ktime_t ktime_get_real(void)
610 {
611 struct timespec now;
612
613 getnstimeofday(&now);
614
615 return timespec_to_ktime(now);
616 }
617 EXPORT_SYMBOL_GPL(ktime_get_real);
618
619 /**
620 * getrawmonotonic - Returns the raw monotonic time in a timespec
621 * @ts: pointer to the timespec to be set
622 *
623 * Returns the raw monotonic time (completely un-modified by ntp)
624 */
625 void getrawmonotonic(struct timespec *ts)
626 {
627 struct timekeeper *tk = &timekeeper;
628 unsigned long seq;
629 s64 nsecs;
630
631 do {
632 seq = read_seqbegin(&tk->lock);
633 nsecs = timekeeping_get_ns_raw(tk);
634 *ts = tk->raw_time;
635
636 } while (read_seqretry(&tk->lock, seq));
637
638 timespec_add_ns(ts, nsecs);
639 }
640 EXPORT_SYMBOL(getrawmonotonic);
641
642 /**
643 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
644 */
645 int timekeeping_valid_for_hres(void)
646 {
647 struct timekeeper *tk = &timekeeper;
648 unsigned long seq;
649 int ret;
650
651 do {
652 seq = read_seqbegin(&tk->lock);
653
654 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
655
656 } while (read_seqretry(&tk->lock, seq));
657
658 return ret;
659 }
660
661 /**
662 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
663 */
664 u64 timekeeping_max_deferment(void)
665 {
666 struct timekeeper *tk = &timekeeper;
667 unsigned long seq;
668 u64 ret;
669
670 do {
671 seq = read_seqbegin(&tk->lock);
672
673 ret = tk->clock->max_idle_ns;
674
675 } while (read_seqretry(&tk->lock, seq));
676
677 return ret;
678 }
679
680 /**
681 * read_persistent_clock - Return time from the persistent clock.
682 *
683 * Weak dummy function for arches that do not yet support it.
684 * Reads the time from the battery backed persistent clock.
685 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
686 *
687 * XXX - Do be sure to remove it once all arches implement it.
688 */
689 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
690 {
691 ts->tv_sec = 0;
692 ts->tv_nsec = 0;
693 }
694
695 /**
696 * read_boot_clock - Return time of the system start.
697 *
698 * Weak dummy function for arches that do not yet support it.
699 * Function to read the exact time the system has been started.
700 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
701 *
702 * XXX - Do be sure to remove it once all arches implement it.
703 */
704 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
705 {
706 ts->tv_sec = 0;
707 ts->tv_nsec = 0;
708 }
709
710 /*
711 * timekeeping_init - Initializes the clocksource and common timekeeping values
712 */
713 void __init timekeeping_init(void)
714 {
715 struct timekeeper *tk = &timekeeper;
716 struct clocksource *clock;
717 unsigned long flags;
718 struct timespec now, boot, tmp;
719
720 read_persistent_clock(&now);
721
722 if (!timespec_valid_strict(&now)) {
723 pr_warn("WARNING: Persistent clock returned invalid value!\n"
724 " Check your CMOS/BIOS settings.\n");
725 now.tv_sec = 0;
726 now.tv_nsec = 0;
727 } else if (now.tv_sec || now.tv_nsec)
728 persistent_clock_exist = true;
729
730 read_boot_clock(&boot);
731 if (!timespec_valid_strict(&boot)) {
732 pr_warn("WARNING: Boot clock returned invalid value!\n"
733 " Check your CMOS/BIOS settings.\n");
734 boot.tv_sec = 0;
735 boot.tv_nsec = 0;
736 }
737
738 seqlock_init(&tk->lock);
739
740 ntp_init();
741
742 write_seqlock_irqsave(&tk->lock, flags);
743 clock = clocksource_default_clock();
744 if (clock->enable)
745 clock->enable(clock);
746 tk_setup_internals(tk, clock);
747
748 tk_set_xtime(tk, &now);
749 tk->raw_time.tv_sec = 0;
750 tk->raw_time.tv_nsec = 0;
751 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
752 boot = tk_xtime(tk);
753
754 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
755 tk_set_wall_to_mono(tk, tmp);
756
757 tmp.tv_sec = 0;
758 tmp.tv_nsec = 0;
759 tk_set_sleep_time(tk, tmp);
760
761 write_sequnlock_irqrestore(&tk->lock, flags);
762 }
763
764 /* time in seconds when suspend began */
765 static struct timespec timekeeping_suspend_time;
766
767 /**
768 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
769 * @delta: pointer to a timespec delta value
770 *
771 * Takes a timespec offset measuring a suspend interval and properly
772 * adds the sleep offset to the timekeeping variables.
773 */
774 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
775 struct timespec *delta)
776 {
777 if (!timespec_valid_strict(delta)) {
778 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
779 "sleep delta value!\n");
780 return;
781 }
782 tk_xtime_add(tk, delta);
783 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
784 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
785 }
786
787 /**
788 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
789 * @delta: pointer to a timespec delta value
790 *
791 * This hook is for architectures that cannot support read_persistent_clock
792 * because their RTC/persistent clock is only accessible when irqs are enabled.
793 *
794 * This function should only be called by rtc_resume(), and allows
795 * a suspend offset to be injected into the timekeeping values.
796 */
797 void timekeeping_inject_sleeptime(struct timespec *delta)
798 {
799 struct timekeeper *tk = &timekeeper;
800 unsigned long flags;
801
802 /*
803 * Make sure we don't set the clock twice, as timekeeping_resume()
804 * already did it
805 */
806 if (has_persistent_clock())
807 return;
808
809 write_seqlock_irqsave(&tk->lock, flags);
810
811 timekeeping_forward_now(tk);
812
813 __timekeeping_inject_sleeptime(tk, delta);
814
815 timekeeping_update(tk, true);
816
817 write_sequnlock_irqrestore(&tk->lock, flags);
818
819 /* signal hrtimers about time change */
820 clock_was_set();
821 }
822
823 /**
824 * timekeeping_resume - Resumes the generic timekeeping subsystem.
825 *
826 * This is for the generic clocksource timekeeping.
827 * xtime/wall_to_monotonic/jiffies/etc are
828 * still managed by arch specific suspend/resume code.
829 */
830 static void timekeeping_resume(void)
831 {
832 struct timekeeper *tk = &timekeeper;
833 struct clocksource *clock = tk->clock;
834 unsigned long flags;
835 struct timespec ts_new, ts_delta;
836 cycle_t cycle_now, cycle_delta;
837 bool suspendtime_found = false;
838
839 read_persistent_clock(&ts_new);
840
841 clockevents_resume();
842 clocksource_resume();
843
844 write_seqlock_irqsave(&tk->lock, flags);
845
846 /*
847 * After system resumes, we need to calculate the suspended time and
848 * compensate it for the OS time. There are 3 sources that could be
849 * used: Nonstop clocksource during suspend, persistent clock and rtc
850 * device.
851 *
852 * One specific platform may have 1 or 2 or all of them, and the
853 * preference will be:
854 * suspend-nonstop clocksource -> persistent clock -> rtc
855 * The less preferred source will only be tried if there is no better
856 * usable source. The rtc part is handled separately in rtc core code.
857 */
858 cycle_now = clock->read(clock);
859 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
860 cycle_now > clock->cycle_last) {
861 u64 num, max = ULLONG_MAX;
862 u32 mult = clock->mult;
863 u32 shift = clock->shift;
864 s64 nsec = 0;
865
866 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
867
868 /*
869 * "cycle_delta * mutl" may cause 64 bits overflow, if the
870 * suspended time is too long. In that case we need do the
871 * 64 bits math carefully
872 */
873 do_div(max, mult);
874 if (cycle_delta > max) {
875 num = div64_u64(cycle_delta, max);
876 nsec = (((u64) max * mult) >> shift) * num;
877 cycle_delta -= num * max;
878 }
879 nsec += ((u64) cycle_delta * mult) >> shift;
880
881 ts_delta = ns_to_timespec(nsec);
882 suspendtime_found = true;
883 } else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
884 ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
885 suspendtime_found = true;
886 }
887
888 if (suspendtime_found)
889 __timekeeping_inject_sleeptime(tk, &ts_delta);
890
891 /* Re-base the last cycle value */
892 clock->cycle_last = cycle_now;
893 tk->ntp_error = 0;
894 timekeeping_suspended = 0;
895 timekeeping_update(tk, false);
896 write_sequnlock_irqrestore(&tk->lock, flags);
897
898 touch_softlockup_watchdog();
899
900 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
901
902 /* Resume hrtimers */
903 hrtimers_resume();
904 }
905
906 static int timekeeping_suspend(void)
907 {
908 struct timekeeper *tk = &timekeeper;
909 unsigned long flags;
910 struct timespec delta, delta_delta;
911 static struct timespec old_delta;
912
913 read_persistent_clock(&timekeeping_suspend_time);
914
915 write_seqlock_irqsave(&tk->lock, flags);
916 timekeeping_forward_now(tk);
917 timekeeping_suspended = 1;
918
919 /*
920 * To avoid drift caused by repeated suspend/resumes,
921 * which each can add ~1 second drift error,
922 * try to compensate so the difference in system time
923 * and persistent_clock time stays close to constant.
924 */
925 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
926 delta_delta = timespec_sub(delta, old_delta);
927 if (abs(delta_delta.tv_sec) >= 2) {
928 /*
929 * if delta_delta is too large, assume time correction
930 * has occured and set old_delta to the current delta.
931 */
932 old_delta = delta;
933 } else {
934 /* Otherwise try to adjust old_system to compensate */
935 timekeeping_suspend_time =
936 timespec_add(timekeeping_suspend_time, delta_delta);
937 }
938 write_sequnlock_irqrestore(&tk->lock, flags);
939
940 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
941 clocksource_suspend();
942 clockevents_suspend();
943
944 return 0;
945 }
946
947 /* sysfs resume/suspend bits for timekeeping */
948 static struct syscore_ops timekeeping_syscore_ops = {
949 .resume = timekeeping_resume,
950 .suspend = timekeeping_suspend,
951 };
952
953 static int __init timekeeping_init_ops(void)
954 {
955 register_syscore_ops(&timekeeping_syscore_ops);
956 return 0;
957 }
958
959 device_initcall(timekeeping_init_ops);
960
961 /*
962 * If the error is already larger, we look ahead even further
963 * to compensate for late or lost adjustments.
964 */
965 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
966 s64 error, s64 *interval,
967 s64 *offset)
968 {
969 s64 tick_error, i;
970 u32 look_ahead, adj;
971 s32 error2, mult;
972
973 /*
974 * Use the current error value to determine how much to look ahead.
975 * The larger the error the slower we adjust for it to avoid problems
976 * with losing too many ticks, otherwise we would overadjust and
977 * produce an even larger error. The smaller the adjustment the
978 * faster we try to adjust for it, as lost ticks can do less harm
979 * here. This is tuned so that an error of about 1 msec is adjusted
980 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
981 */
982 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
983 error2 = abs(error2);
984 for (look_ahead = 0; error2 > 0; look_ahead++)
985 error2 >>= 2;
986
987 /*
988 * Now calculate the error in (1 << look_ahead) ticks, but first
989 * remove the single look ahead already included in the error.
990 */
991 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
992 tick_error -= tk->xtime_interval >> 1;
993 error = ((error - tick_error) >> look_ahead) + tick_error;
994
995 /* Finally calculate the adjustment shift value. */
996 i = *interval;
997 mult = 1;
998 if (error < 0) {
999 error = -error;
1000 *interval = -*interval;
1001 *offset = -*offset;
1002 mult = -1;
1003 }
1004 for (adj = 0; error > i; adj++)
1005 error >>= 1;
1006
1007 *interval <<= adj;
1008 *offset <<= adj;
1009 return mult << adj;
1010 }
1011
1012 /*
1013 * Adjust the multiplier to reduce the error value,
1014 * this is optimized for the most common adjustments of -1,0,1,
1015 * for other values we can do a bit more work.
1016 */
1017 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1018 {
1019 s64 error, interval = tk->cycle_interval;
1020 int adj;
1021
1022 /*
1023 * The point of this is to check if the error is greater than half
1024 * an interval.
1025 *
1026 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1027 *
1028 * Note we subtract one in the shift, so that error is really error*2.
1029 * This "saves" dividing(shifting) interval twice, but keeps the
1030 * (error > interval) comparison as still measuring if error is
1031 * larger than half an interval.
1032 *
1033 * Note: It does not "save" on aggravation when reading the code.
1034 */
1035 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1036 if (error > interval) {
1037 /*
1038 * We now divide error by 4(via shift), which checks if
1039 * the error is greater than twice the interval.
1040 * If it is greater, we need a bigadjust, if its smaller,
1041 * we can adjust by 1.
1042 */
1043 error >>= 2;
1044 /*
1045 * XXX - In update_wall_time, we round up to the next
1046 * nanosecond, and store the amount rounded up into
1047 * the error. This causes the likely below to be unlikely.
1048 *
1049 * The proper fix is to avoid rounding up by using
1050 * the high precision tk->xtime_nsec instead of
1051 * xtime.tv_nsec everywhere. Fixing this will take some
1052 * time.
1053 */
1054 if (likely(error <= interval))
1055 adj = 1;
1056 else
1057 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1058 } else {
1059 if (error < -interval) {
1060 /* See comment above, this is just switched for the negative */
1061 error >>= 2;
1062 if (likely(error >= -interval)) {
1063 adj = -1;
1064 interval = -interval;
1065 offset = -offset;
1066 } else {
1067 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1068 }
1069 } else {
1070 goto out_adjust;
1071 }
1072 }
1073
1074 if (unlikely(tk->clock->maxadj &&
1075 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1076 printk_once(KERN_WARNING
1077 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1078 tk->clock->name, (long)tk->mult + adj,
1079 (long)tk->clock->mult + tk->clock->maxadj);
1080 }
1081 /*
1082 * So the following can be confusing.
1083 *
1084 * To keep things simple, lets assume adj == 1 for now.
1085 *
1086 * When adj != 1, remember that the interval and offset values
1087 * have been appropriately scaled so the math is the same.
1088 *
1089 * The basic idea here is that we're increasing the multiplier
1090 * by one, this causes the xtime_interval to be incremented by
1091 * one cycle_interval. This is because:
1092 * xtime_interval = cycle_interval * mult
1093 * So if mult is being incremented by one:
1094 * xtime_interval = cycle_interval * (mult + 1)
1095 * Its the same as:
1096 * xtime_interval = (cycle_interval * mult) + cycle_interval
1097 * Which can be shortened to:
1098 * xtime_interval += cycle_interval
1099 *
1100 * So offset stores the non-accumulated cycles. Thus the current
1101 * time (in shifted nanoseconds) is:
1102 * now = (offset * adj) + xtime_nsec
1103 * Now, even though we're adjusting the clock frequency, we have
1104 * to keep time consistent. In other words, we can't jump back
1105 * in time, and we also want to avoid jumping forward in time.
1106 *
1107 * So given the same offset value, we need the time to be the same
1108 * both before and after the freq adjustment.
1109 * now = (offset * adj_1) + xtime_nsec_1
1110 * now = (offset * adj_2) + xtime_nsec_2
1111 * So:
1112 * (offset * adj_1) + xtime_nsec_1 =
1113 * (offset * adj_2) + xtime_nsec_2
1114 * And we know:
1115 * adj_2 = adj_1 + 1
1116 * So:
1117 * (offset * adj_1) + xtime_nsec_1 =
1118 * (offset * (adj_1+1)) + xtime_nsec_2
1119 * (offset * adj_1) + xtime_nsec_1 =
1120 * (offset * adj_1) + offset + xtime_nsec_2
1121 * Canceling the sides:
1122 * xtime_nsec_1 = offset + xtime_nsec_2
1123 * Which gives us:
1124 * xtime_nsec_2 = xtime_nsec_1 - offset
1125 * Which simplfies to:
1126 * xtime_nsec -= offset
1127 *
1128 * XXX - TODO: Doc ntp_error calculation.
1129 */
1130 tk->mult += adj;
1131 tk->xtime_interval += interval;
1132 tk->xtime_nsec -= offset;
1133 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1134
1135 out_adjust:
1136 /*
1137 * It may be possible that when we entered this function, xtime_nsec
1138 * was very small. Further, if we're slightly speeding the clocksource
1139 * in the code above, its possible the required corrective factor to
1140 * xtime_nsec could cause it to underflow.
1141 *
1142 * Now, since we already accumulated the second, cannot simply roll
1143 * the accumulated second back, since the NTP subsystem has been
1144 * notified via second_overflow. So instead we push xtime_nsec forward
1145 * by the amount we underflowed, and add that amount into the error.
1146 *
1147 * We'll correct this error next time through this function, when
1148 * xtime_nsec is not as small.
1149 */
1150 if (unlikely((s64)tk->xtime_nsec < 0)) {
1151 s64 neg = -(s64)tk->xtime_nsec;
1152 tk->xtime_nsec = 0;
1153 tk->ntp_error += neg << tk->ntp_error_shift;
1154 }
1155
1156 }
1157
1158 /**
1159 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1160 *
1161 * Helper function that accumulates a the nsecs greater then a second
1162 * from the xtime_nsec field to the xtime_secs field.
1163 * It also calls into the NTP code to handle leapsecond processing.
1164 *
1165 */
1166 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1167 {
1168 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1169
1170 while (tk->xtime_nsec >= nsecps) {
1171 int leap;
1172
1173 tk->xtime_nsec -= nsecps;
1174 tk->xtime_sec++;
1175
1176 /* Figure out if its a leap sec and apply if needed */
1177 leap = second_overflow(tk->xtime_sec);
1178 if (unlikely(leap)) {
1179 struct timespec ts;
1180
1181 tk->xtime_sec += leap;
1182
1183 ts.tv_sec = leap;
1184 ts.tv_nsec = 0;
1185 tk_set_wall_to_mono(tk,
1186 timespec_sub(tk->wall_to_monotonic, ts));
1187
1188 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1189
1190 clock_was_set_delayed();
1191 }
1192 }
1193 }
1194
1195 /**
1196 * logarithmic_accumulation - shifted accumulation of cycles
1197 *
1198 * This functions accumulates a shifted interval of cycles into
1199 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1200 * loop.
1201 *
1202 * Returns the unconsumed cycles.
1203 */
1204 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1205 u32 shift)
1206 {
1207 u64 raw_nsecs;
1208
1209 /* If the offset is smaller then a shifted interval, do nothing */
1210 if (offset < tk->cycle_interval<<shift)
1211 return offset;
1212
1213 /* Accumulate one shifted interval */
1214 offset -= tk->cycle_interval << shift;
1215 tk->clock->cycle_last += tk->cycle_interval << shift;
1216
1217 tk->xtime_nsec += tk->xtime_interval << shift;
1218 accumulate_nsecs_to_secs(tk);
1219
1220 /* Accumulate raw time */
1221 raw_nsecs = (u64)tk->raw_interval << shift;
1222 raw_nsecs += tk->raw_time.tv_nsec;
1223 if (raw_nsecs >= NSEC_PER_SEC) {
1224 u64 raw_secs = raw_nsecs;
1225 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1226 tk->raw_time.tv_sec += raw_secs;
1227 }
1228 tk->raw_time.tv_nsec = raw_nsecs;
1229
1230 /* Accumulate error between NTP and clock interval */
1231 tk->ntp_error += ntp_tick_length() << shift;
1232 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1233 (tk->ntp_error_shift + shift);
1234
1235 return offset;
1236 }
1237
1238 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
1239 static inline void old_vsyscall_fixup(struct timekeeper *tk)
1240 {
1241 s64 remainder;
1242
1243 /*
1244 * Store only full nanoseconds into xtime_nsec after rounding
1245 * it up and add the remainder to the error difference.
1246 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
1247 * by truncating the remainder in vsyscalls. However, it causes
1248 * additional work to be done in timekeeping_adjust(). Once
1249 * the vsyscall implementations are converted to use xtime_nsec
1250 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
1251 * users are removed, this can be killed.
1252 */
1253 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1254 tk->xtime_nsec -= remainder;
1255 tk->xtime_nsec += 1ULL << tk->shift;
1256 tk->ntp_error += remainder << tk->ntp_error_shift;
1257
1258 }
1259 #else
1260 #define old_vsyscall_fixup(tk)
1261 #endif
1262
1263
1264
1265 /**
1266 * update_wall_time - Uses the current clocksource to increment the wall time
1267 *
1268 */
1269 static void update_wall_time(void)
1270 {
1271 struct clocksource *clock;
1272 struct timekeeper *tk = &timekeeper;
1273 cycle_t offset;
1274 int shift = 0, maxshift;
1275 unsigned long flags;
1276
1277 write_seqlock_irqsave(&tk->lock, flags);
1278
1279 /* Make sure we're fully resumed: */
1280 if (unlikely(timekeeping_suspended))
1281 goto out;
1282
1283 clock = tk->clock;
1284
1285 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1286 offset = tk->cycle_interval;
1287 #else
1288 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1289 #endif
1290
1291 /* Check if there's really nothing to do */
1292 if (offset < tk->cycle_interval)
1293 goto out;
1294
1295 /*
1296 * With NO_HZ we may have to accumulate many cycle_intervals
1297 * (think "ticks") worth of time at once. To do this efficiently,
1298 * we calculate the largest doubling multiple of cycle_intervals
1299 * that is smaller than the offset. We then accumulate that
1300 * chunk in one go, and then try to consume the next smaller
1301 * doubled multiple.
1302 */
1303 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1304 shift = max(0, shift);
1305 /* Bound shift to one less than what overflows tick_length */
1306 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1307 shift = min(shift, maxshift);
1308 while (offset >= tk->cycle_interval) {
1309 offset = logarithmic_accumulation(tk, offset, shift);
1310 if (offset < tk->cycle_interval<<shift)
1311 shift--;
1312 }
1313
1314 /* correct the clock when NTP error is too big */
1315 timekeeping_adjust(tk, offset);
1316
1317 /*
1318 * XXX This can be killed once everyone converts
1319 * to the new update_vsyscall.
1320 */
1321 old_vsyscall_fixup(tk);
1322
1323 /*
1324 * Finally, make sure that after the rounding
1325 * xtime_nsec isn't larger than NSEC_PER_SEC
1326 */
1327 accumulate_nsecs_to_secs(tk);
1328
1329 timekeeping_update(tk, false);
1330
1331 out:
1332 write_sequnlock_irqrestore(&tk->lock, flags);
1333
1334 }
1335
1336 /**
1337 * getboottime - Return the real time of system boot.
1338 * @ts: pointer to the timespec to be set
1339 *
1340 * Returns the wall-time of boot in a timespec.
1341 *
1342 * This is based on the wall_to_monotonic offset and the total suspend
1343 * time. Calls to settimeofday will affect the value returned (which
1344 * basically means that however wrong your real time clock is at boot time,
1345 * you get the right time here).
1346 */
1347 void getboottime(struct timespec *ts)
1348 {
1349 struct timekeeper *tk = &timekeeper;
1350 struct timespec boottime = {
1351 .tv_sec = tk->wall_to_monotonic.tv_sec +
1352 tk->total_sleep_time.tv_sec,
1353 .tv_nsec = tk->wall_to_monotonic.tv_nsec +
1354 tk->total_sleep_time.tv_nsec
1355 };
1356
1357 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1358 }
1359 EXPORT_SYMBOL_GPL(getboottime);
1360
1361 /**
1362 * get_monotonic_boottime - Returns monotonic time since boot
1363 * @ts: pointer to the timespec to be set
1364 *
1365 * Returns the monotonic time since boot in a timespec.
1366 *
1367 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1368 * includes the time spent in suspend.
1369 */
1370 void get_monotonic_boottime(struct timespec *ts)
1371 {
1372 struct timekeeper *tk = &timekeeper;
1373 struct timespec tomono, sleep;
1374 s64 nsec;
1375 unsigned int seq;
1376
1377 WARN_ON(timekeeping_suspended);
1378
1379 do {
1380 seq = read_seqbegin(&tk->lock);
1381 ts->tv_sec = tk->xtime_sec;
1382 nsec = timekeeping_get_ns(tk);
1383 tomono = tk->wall_to_monotonic;
1384 sleep = tk->total_sleep_time;
1385
1386 } while (read_seqretry(&tk->lock, seq));
1387
1388 ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1389 ts->tv_nsec = 0;
1390 timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1391 }
1392 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1393
1394 /**
1395 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1396 *
1397 * Returns the monotonic time since boot in a ktime
1398 *
1399 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1400 * includes the time spent in suspend.
1401 */
1402 ktime_t ktime_get_boottime(void)
1403 {
1404 struct timespec ts;
1405
1406 get_monotonic_boottime(&ts);
1407 return timespec_to_ktime(ts);
1408 }
1409 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1410
1411 /**
1412 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1413 * @ts: pointer to the timespec to be converted
1414 */
1415 void monotonic_to_bootbased(struct timespec *ts)
1416 {
1417 struct timekeeper *tk = &timekeeper;
1418
1419 *ts = timespec_add(*ts, tk->total_sleep_time);
1420 }
1421 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1422
1423 unsigned long get_seconds(void)
1424 {
1425 struct timekeeper *tk = &timekeeper;
1426
1427 return tk->xtime_sec;
1428 }
1429 EXPORT_SYMBOL(get_seconds);
1430
1431 struct timespec __current_kernel_time(void)
1432 {
1433 struct timekeeper *tk = &timekeeper;
1434
1435 return tk_xtime(tk);
1436 }
1437
1438 struct timespec current_kernel_time(void)
1439 {
1440 struct timekeeper *tk = &timekeeper;
1441 struct timespec now;
1442 unsigned long seq;
1443
1444 do {
1445 seq = read_seqbegin(&tk->lock);
1446
1447 now = tk_xtime(tk);
1448 } while (read_seqretry(&tk->lock, seq));
1449
1450 return now;
1451 }
1452 EXPORT_SYMBOL(current_kernel_time);
1453
1454 struct timespec get_monotonic_coarse(void)
1455 {
1456 struct timekeeper *tk = &timekeeper;
1457 struct timespec now, mono;
1458 unsigned long seq;
1459
1460 do {
1461 seq = read_seqbegin(&tk->lock);
1462
1463 now = tk_xtime(tk);
1464 mono = tk->wall_to_monotonic;
1465 } while (read_seqretry(&tk->lock, seq));
1466
1467 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1468 now.tv_nsec + mono.tv_nsec);
1469 return now;
1470 }
1471
1472 /*
1473 * Must hold jiffies_lock
1474 */
1475 void do_timer(unsigned long ticks)
1476 {
1477 jiffies_64 += ticks;
1478 update_wall_time();
1479 calc_global_load(ticks);
1480 }
1481
1482 /**
1483 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1484 * and sleep offsets.
1485 * @xtim: pointer to timespec to be set with xtime
1486 * @wtom: pointer to timespec to be set with wall_to_monotonic
1487 * @sleep: pointer to timespec to be set with time in suspend
1488 */
1489 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1490 struct timespec *wtom, struct timespec *sleep)
1491 {
1492 struct timekeeper *tk = &timekeeper;
1493 unsigned long seq;
1494
1495 do {
1496 seq = read_seqbegin(&tk->lock);
1497 *xtim = tk_xtime(tk);
1498 *wtom = tk->wall_to_monotonic;
1499 *sleep = tk->total_sleep_time;
1500 } while (read_seqretry(&tk->lock, seq));
1501 }
1502
1503 #ifdef CONFIG_HIGH_RES_TIMERS
1504 /**
1505 * ktime_get_update_offsets - hrtimer helper
1506 * @offs_real: pointer to storage for monotonic -> realtime offset
1507 * @offs_boot: pointer to storage for monotonic -> boottime offset
1508 *
1509 * Returns current monotonic time and updates the offsets
1510 * Called from hrtimer_interupt() or retrigger_next_event()
1511 */
1512 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1513 {
1514 struct timekeeper *tk = &timekeeper;
1515 ktime_t now;
1516 unsigned int seq;
1517 u64 secs, nsecs;
1518
1519 do {
1520 seq = read_seqbegin(&tk->lock);
1521
1522 secs = tk->xtime_sec;
1523 nsecs = timekeeping_get_ns(tk);
1524
1525 *offs_real = tk->offs_real;
1526 *offs_boot = tk->offs_boot;
1527 } while (read_seqretry(&tk->lock, seq));
1528
1529 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1530 now = ktime_sub(now, *offs_real);
1531 return now;
1532 }
1533 #endif
1534
1535 /**
1536 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1537 */
1538 ktime_t ktime_get_monotonic_offset(void)
1539 {
1540 struct timekeeper *tk = &timekeeper;
1541 unsigned long seq;
1542 struct timespec wtom;
1543
1544 do {
1545 seq = read_seqbegin(&tk->lock);
1546 wtom = tk->wall_to_monotonic;
1547 } while (read_seqretry(&tk->lock, seq));
1548
1549 return timespec_to_ktime(wtom);
1550 }
1551 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1552
1553 /**
1554 * xtime_update() - advances the timekeeping infrastructure
1555 * @ticks: number of ticks, that have elapsed since the last call.
1556 *
1557 * Must be called with interrupts disabled.
1558 */
1559 void xtime_update(unsigned long ticks)
1560 {
1561 write_seqlock(&jiffies_lock);
1562 do_timer(ticks);
1563 write_sequnlock(&jiffies_lock);
1564 }
This page took 0.060431 seconds and 4 git commands to generate.