Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux...
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* NTP adjusted clock multiplier */
29 u32 mult;
30 /* The shift value of the current clocksource. */
31 u32 shift;
32 /* Number of clock cycles in one NTP interval. */
33 cycle_t cycle_interval;
34 /* Number of clock shifted nano seconds in one NTP interval. */
35 u64 xtime_interval;
36 /* shifted nano seconds left over when rounding cycle_interval */
37 s64 xtime_remainder;
38 /* Raw nano seconds accumulated per NTP interval. */
39 u32 raw_interval;
40
41 /* Current CLOCK_REALTIME time in seconds */
42 u64 xtime_sec;
43 /* Clock shifted nano seconds */
44 u64 xtime_nsec;
45
46 /* Difference between accumulated time and NTP time in ntp
47 * shifted nano seconds. */
48 s64 ntp_error;
49 /* Shift conversion between clock shifted nano seconds and
50 * ntp shifted nano seconds. */
51 u32 ntp_error_shift;
52
53 /*
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
59 *
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
63 *
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
66 */
67 struct timespec wall_to_monotonic;
68 /* time spent in suspend */
69 struct timespec total_sleep_time;
70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 struct timespec raw_time;
72 /* Offset clock monotonic -> clock realtime */
73 ktime_t offs_real;
74 /* Offset clock monotonic -> clock boottime */
75 ktime_t offs_boot;
76 /* Seqlock for all timekeeper values */
77 seqlock_t lock;
78 };
79
80 static struct timekeeper timekeeper;
81
82 /*
83 * This read-write spinlock protects us from races in SMP while
84 * playing with xtime.
85 */
86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
87
88 /* flag for if timekeeping is suspended */
89 int __read_mostly timekeeping_suspended;
90
91 static inline void tk_normalize_xtime(struct timekeeper *tk)
92 {
93 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
94 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
95 tk->xtime_sec++;
96 }
97 }
98
99 static struct timespec tk_xtime(struct timekeeper *tk)
100 {
101 struct timespec ts;
102
103 ts.tv_sec = tk->xtime_sec;
104 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
105 return ts;
106 }
107
108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
109 {
110 tk->xtime_sec = ts->tv_sec;
111 tk->xtime_nsec = ts->tv_nsec << tk->shift;
112 }
113
114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
115 {
116 tk->xtime_sec += ts->tv_sec;
117 tk->xtime_nsec += ts->tv_nsec << tk->shift;
118 }
119
120 /**
121 * timekeeper_setup_internals - Set up internals to use clocksource clock.
122 *
123 * @clock: Pointer to clocksource.
124 *
125 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
126 * pair and interval request.
127 *
128 * Unless you're the timekeeping code, you should not be using this!
129 */
130 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
131 {
132 cycle_t interval;
133 u64 tmp, ntpinterval;
134 struct clocksource *old_clock;
135
136 old_clock = tk->clock;
137 tk->clock = clock;
138 clock->cycle_last = clock->read(clock);
139
140 /* Do the ns -> cycle conversion first, using original mult */
141 tmp = NTP_INTERVAL_LENGTH;
142 tmp <<= clock->shift;
143 ntpinterval = tmp;
144 tmp += clock->mult/2;
145 do_div(tmp, clock->mult);
146 if (tmp == 0)
147 tmp = 1;
148
149 interval = (cycle_t) tmp;
150 tk->cycle_interval = interval;
151
152 /* Go back from cycles -> shifted ns */
153 tk->xtime_interval = (u64) interval * clock->mult;
154 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
155 tk->raw_interval =
156 ((u64) interval * clock->mult) >> clock->shift;
157
158 /* if changing clocks, convert xtime_nsec shift units */
159 if (old_clock) {
160 int shift_change = clock->shift - old_clock->shift;
161 if (shift_change < 0)
162 tk->xtime_nsec >>= -shift_change;
163 else
164 tk->xtime_nsec <<= shift_change;
165 }
166 tk->shift = clock->shift;
167
168 tk->ntp_error = 0;
169 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
170
171 /*
172 * The timekeeper keeps its own mult values for the currently
173 * active clocksource. These value will be adjusted via NTP
174 * to counteract clock drifting.
175 */
176 tk->mult = clock->mult;
177 }
178
179 /* Timekeeper helper functions. */
180 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
181 {
182 cycle_t cycle_now, cycle_delta;
183 struct clocksource *clock;
184 s64 nsec;
185
186 /* read clocksource: */
187 clock = tk->clock;
188 cycle_now = clock->read(clock);
189
190 /* calculate the delta since the last update_wall_time: */
191 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
192
193 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
194 nsec >>= tk->shift;
195
196 /* If arch requires, add in gettimeoffset() */
197 return nsec + arch_gettimeoffset();
198 }
199
200 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
201 {
202 cycle_t cycle_now, cycle_delta;
203 struct clocksource *clock;
204 s64 nsec;
205
206 /* read clocksource: */
207 clock = tk->clock;
208 cycle_now = clock->read(clock);
209
210 /* calculate the delta since the last update_wall_time: */
211 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
212
213 /* convert delta to nanoseconds. */
214 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
215
216 /* If arch requires, add in gettimeoffset() */
217 return nsec + arch_gettimeoffset();
218 }
219
220 static void update_rt_offset(struct timekeeper *tk)
221 {
222 struct timespec tmp, *wtm = &tk->wall_to_monotonic;
223
224 set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
225 tk->offs_real = timespec_to_ktime(tmp);
226 }
227
228 /* must hold write on timekeeper.lock */
229 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
230 {
231 struct timespec xt;
232
233 if (clearntp) {
234 tk->ntp_error = 0;
235 ntp_clear();
236 }
237 update_rt_offset(tk);
238 xt = tk_xtime(tk);
239 update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
240 }
241
242
243 /**
244 * timekeeping_forward_now - update clock to the current time
245 *
246 * Forward the current clock to update its state since the last call to
247 * update_wall_time(). This is useful before significant clock changes,
248 * as it avoids having to deal with this time offset explicitly.
249 */
250 static void timekeeping_forward_now(struct timekeeper *tk)
251 {
252 cycle_t cycle_now, cycle_delta;
253 struct clocksource *clock;
254 s64 nsec;
255
256 clock = tk->clock;
257 cycle_now = clock->read(clock);
258 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
259 clock->cycle_last = cycle_now;
260
261 tk->xtime_nsec += cycle_delta * tk->mult;
262
263 /* If arch requires, add in gettimeoffset() */
264 tk->xtime_nsec += arch_gettimeoffset() << tk->shift;
265
266 tk_normalize_xtime(tk);
267
268 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
269 timespec_add_ns(&tk->raw_time, nsec);
270 }
271
272 /**
273 * getnstimeofday - Returns the time of day in a timespec
274 * @ts: pointer to the timespec to be set
275 *
276 * Returns the time of day in a timespec.
277 */
278 void getnstimeofday(struct timespec *ts)
279 {
280 unsigned long seq;
281 s64 nsecs = 0;
282
283 WARN_ON(timekeeping_suspended);
284
285 do {
286 seq = read_seqbegin(&timekeeper.lock);
287
288 ts->tv_sec = timekeeper.xtime_sec;
289 ts->tv_nsec = timekeeping_get_ns(&timekeeper);
290
291 } while (read_seqretry(&timekeeper.lock, seq));
292
293 timespec_add_ns(ts, nsecs);
294 }
295 EXPORT_SYMBOL(getnstimeofday);
296
297 ktime_t ktime_get(void)
298 {
299 unsigned int seq;
300 s64 secs, nsecs;
301
302 WARN_ON(timekeeping_suspended);
303
304 do {
305 seq = read_seqbegin(&timekeeper.lock);
306 secs = timekeeper.xtime_sec +
307 timekeeper.wall_to_monotonic.tv_sec;
308 nsecs = timekeeping_get_ns(&timekeeper) +
309 timekeeper.wall_to_monotonic.tv_nsec;
310
311 } while (read_seqretry(&timekeeper.lock, seq));
312 /*
313 * Use ktime_set/ktime_add_ns to create a proper ktime on
314 * 32-bit architectures without CONFIG_KTIME_SCALAR.
315 */
316 return ktime_add_ns(ktime_set(secs, 0), nsecs);
317 }
318 EXPORT_SYMBOL_GPL(ktime_get);
319
320 /**
321 * ktime_get_ts - get the monotonic clock in timespec format
322 * @ts: pointer to timespec variable
323 *
324 * The function calculates the monotonic clock from the realtime
325 * clock and the wall_to_monotonic offset and stores the result
326 * in normalized timespec format in the variable pointed to by @ts.
327 */
328 void ktime_get_ts(struct timespec *ts)
329 {
330 struct timespec tomono;
331 unsigned int seq;
332
333 WARN_ON(timekeeping_suspended);
334
335 do {
336 seq = read_seqbegin(&timekeeper.lock);
337 ts->tv_sec = timekeeper.xtime_sec;
338 ts->tv_nsec = timekeeping_get_ns(&timekeeper);
339 tomono = timekeeper.wall_to_monotonic;
340
341 } while (read_seqretry(&timekeeper.lock, seq));
342
343 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
344 ts->tv_nsec + tomono.tv_nsec);
345 }
346 EXPORT_SYMBOL_GPL(ktime_get_ts);
347
348 #ifdef CONFIG_NTP_PPS
349
350 /**
351 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
352 * @ts_raw: pointer to the timespec to be set to raw monotonic time
353 * @ts_real: pointer to the timespec to be set to the time of day
354 *
355 * This function reads both the time of day and raw monotonic time at the
356 * same time atomically and stores the resulting timestamps in timespec
357 * format.
358 */
359 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
360 {
361 unsigned long seq;
362 s64 nsecs_raw, nsecs_real;
363
364 WARN_ON_ONCE(timekeeping_suspended);
365
366 do {
367 seq = read_seqbegin(&timekeeper.lock);
368
369 *ts_raw = timekeeper.raw_time;
370 ts_real->tv_sec = timekeeper.xtime_sec;
371 ts_real->tv_nsec = 0;
372
373 nsecs_raw = timekeeping_get_ns_raw(&timekeeper);
374 nsecs_real = timekeeping_get_ns(&timekeeper);
375
376 } while (read_seqretry(&timekeeper.lock, seq));
377
378 timespec_add_ns(ts_raw, nsecs_raw);
379 timespec_add_ns(ts_real, nsecs_real);
380 }
381 EXPORT_SYMBOL(getnstime_raw_and_real);
382
383 #endif /* CONFIG_NTP_PPS */
384
385 /**
386 * do_gettimeofday - Returns the time of day in a timeval
387 * @tv: pointer to the timeval to be set
388 *
389 * NOTE: Users should be converted to using getnstimeofday()
390 */
391 void do_gettimeofday(struct timeval *tv)
392 {
393 struct timespec now;
394
395 getnstimeofday(&now);
396 tv->tv_sec = now.tv_sec;
397 tv->tv_usec = now.tv_nsec/1000;
398 }
399 EXPORT_SYMBOL(do_gettimeofday);
400
401 /**
402 * do_settimeofday - Sets the time of day
403 * @tv: pointer to the timespec variable containing the new time
404 *
405 * Sets the time of day to the new time and update NTP and notify hrtimers
406 */
407 int do_settimeofday(const struct timespec *tv)
408 {
409 struct timespec ts_delta, xt;
410 unsigned long flags;
411
412 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
413 return -EINVAL;
414
415 write_seqlock_irqsave(&timekeeper.lock, flags);
416
417 timekeeping_forward_now(&timekeeper);
418
419 xt = tk_xtime(&timekeeper);
420 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
421 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
422
423 timekeeper.wall_to_monotonic =
424 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
425
426 tk_set_xtime(&timekeeper, tv);
427
428 timekeeping_update(&timekeeper, true);
429
430 write_sequnlock_irqrestore(&timekeeper.lock, flags);
431
432 /* signal hrtimers about time change */
433 clock_was_set();
434
435 return 0;
436 }
437 EXPORT_SYMBOL(do_settimeofday);
438
439
440 /**
441 * timekeeping_inject_offset - Adds or subtracts from the current time.
442 * @tv: pointer to the timespec variable containing the offset
443 *
444 * Adds or subtracts an offset value from the current time.
445 */
446 int timekeeping_inject_offset(struct timespec *ts)
447 {
448 unsigned long flags;
449
450 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
451 return -EINVAL;
452
453 write_seqlock_irqsave(&timekeeper.lock, flags);
454
455 timekeeping_forward_now(&timekeeper);
456
457
458 tk_xtime_add(&timekeeper, ts);
459 timekeeper.wall_to_monotonic =
460 timespec_sub(timekeeper.wall_to_monotonic, *ts);
461
462 timekeeping_update(&timekeeper, true);
463
464 write_sequnlock_irqrestore(&timekeeper.lock, flags);
465
466 /* signal hrtimers about time change */
467 clock_was_set();
468
469 return 0;
470 }
471 EXPORT_SYMBOL(timekeeping_inject_offset);
472
473 /**
474 * change_clocksource - Swaps clocksources if a new one is available
475 *
476 * Accumulates current time interval and initializes new clocksource
477 */
478 static int change_clocksource(void *data)
479 {
480 struct clocksource *new, *old;
481 unsigned long flags;
482
483 new = (struct clocksource *) data;
484
485 write_seqlock_irqsave(&timekeeper.lock, flags);
486
487 timekeeping_forward_now(&timekeeper);
488 if (!new->enable || new->enable(new) == 0) {
489 old = timekeeper.clock;
490 tk_setup_internals(&timekeeper, new);
491 if (old->disable)
492 old->disable(old);
493 }
494 timekeeping_update(&timekeeper, true);
495
496 write_sequnlock_irqrestore(&timekeeper.lock, flags);
497
498 return 0;
499 }
500
501 /**
502 * timekeeping_notify - Install a new clock source
503 * @clock: pointer to the clock source
504 *
505 * This function is called from clocksource.c after a new, better clock
506 * source has been registered. The caller holds the clocksource_mutex.
507 */
508 void timekeeping_notify(struct clocksource *clock)
509 {
510 if (timekeeper.clock == clock)
511 return;
512 stop_machine(change_clocksource, clock, NULL);
513 tick_clock_notify();
514 }
515
516 /**
517 * ktime_get_real - get the real (wall-) time in ktime_t format
518 *
519 * returns the time in ktime_t format
520 */
521 ktime_t ktime_get_real(void)
522 {
523 struct timespec now;
524
525 getnstimeofday(&now);
526
527 return timespec_to_ktime(now);
528 }
529 EXPORT_SYMBOL_GPL(ktime_get_real);
530
531 /**
532 * getrawmonotonic - Returns the raw monotonic time in a timespec
533 * @ts: pointer to the timespec to be set
534 *
535 * Returns the raw monotonic time (completely un-modified by ntp)
536 */
537 void getrawmonotonic(struct timespec *ts)
538 {
539 unsigned long seq;
540 s64 nsecs;
541
542 do {
543 seq = read_seqbegin(&timekeeper.lock);
544 nsecs = timekeeping_get_ns_raw(&timekeeper);
545 *ts = timekeeper.raw_time;
546
547 } while (read_seqretry(&timekeeper.lock, seq));
548
549 timespec_add_ns(ts, nsecs);
550 }
551 EXPORT_SYMBOL(getrawmonotonic);
552
553
554 /**
555 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
556 */
557 int timekeeping_valid_for_hres(void)
558 {
559 unsigned long seq;
560 int ret;
561
562 do {
563 seq = read_seqbegin(&timekeeper.lock);
564
565 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
566
567 } while (read_seqretry(&timekeeper.lock, seq));
568
569 return ret;
570 }
571
572 /**
573 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
574 */
575 u64 timekeeping_max_deferment(void)
576 {
577 unsigned long seq;
578 u64 ret;
579
580 do {
581 seq = read_seqbegin(&timekeeper.lock);
582
583 ret = timekeeper.clock->max_idle_ns;
584
585 } while (read_seqretry(&timekeeper.lock, seq));
586
587 return ret;
588 }
589
590 /**
591 * read_persistent_clock - Return time from the persistent clock.
592 *
593 * Weak dummy function for arches that do not yet support it.
594 * Reads the time from the battery backed persistent clock.
595 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
596 *
597 * XXX - Do be sure to remove it once all arches implement it.
598 */
599 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
600 {
601 ts->tv_sec = 0;
602 ts->tv_nsec = 0;
603 }
604
605 /**
606 * read_boot_clock - Return time of the system start.
607 *
608 * Weak dummy function for arches that do not yet support it.
609 * Function to read the exact time the system has been started.
610 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
611 *
612 * XXX - Do be sure to remove it once all arches implement it.
613 */
614 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
615 {
616 ts->tv_sec = 0;
617 ts->tv_nsec = 0;
618 }
619
620 /*
621 * timekeeping_init - Initializes the clocksource and common timekeeping values
622 */
623 void __init timekeeping_init(void)
624 {
625 struct clocksource *clock;
626 unsigned long flags;
627 struct timespec now, boot;
628
629 read_persistent_clock(&now);
630 read_boot_clock(&boot);
631
632 seqlock_init(&timekeeper.lock);
633
634 ntp_init();
635
636 write_seqlock_irqsave(&timekeeper.lock, flags);
637 clock = clocksource_default_clock();
638 if (clock->enable)
639 clock->enable(clock);
640 tk_setup_internals(&timekeeper, clock);
641
642 tk_set_xtime(&timekeeper, &now);
643 timekeeper.raw_time.tv_sec = 0;
644 timekeeper.raw_time.tv_nsec = 0;
645 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
646 boot = tk_xtime(&timekeeper);
647
648 set_normalized_timespec(&timekeeper.wall_to_monotonic,
649 -boot.tv_sec, -boot.tv_nsec);
650 update_rt_offset(&timekeeper);
651 timekeeper.total_sleep_time.tv_sec = 0;
652 timekeeper.total_sleep_time.tv_nsec = 0;
653 write_sequnlock_irqrestore(&timekeeper.lock, flags);
654 }
655
656 /* time in seconds when suspend began */
657 static struct timespec timekeeping_suspend_time;
658
659 static void update_sleep_time(struct timespec t)
660 {
661 timekeeper.total_sleep_time = t;
662 timekeeper.offs_boot = timespec_to_ktime(t);
663 }
664
665 /**
666 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
667 * @delta: pointer to a timespec delta value
668 *
669 * Takes a timespec offset measuring a suspend interval and properly
670 * adds the sleep offset to the timekeeping variables.
671 */
672 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
673 struct timespec *delta)
674 {
675 if (!timespec_valid(delta)) {
676 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
677 "sleep delta value!\n");
678 return;
679 }
680
681 tk_xtime_add(tk, delta);
682 tk->wall_to_monotonic = timespec_sub(tk->wall_to_monotonic, *delta);
683 update_sleep_time(timespec_add(tk->total_sleep_time, *delta));
684 }
685
686
687 /**
688 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
689 * @delta: pointer to a timespec delta value
690 *
691 * This hook is for architectures that cannot support read_persistent_clock
692 * because their RTC/persistent clock is only accessible when irqs are enabled.
693 *
694 * This function should only be called by rtc_resume(), and allows
695 * a suspend offset to be injected into the timekeeping values.
696 */
697 void timekeeping_inject_sleeptime(struct timespec *delta)
698 {
699 unsigned long flags;
700 struct timespec ts;
701
702 /* Make sure we don't set the clock twice */
703 read_persistent_clock(&ts);
704 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
705 return;
706
707 write_seqlock_irqsave(&timekeeper.lock, flags);
708
709 timekeeping_forward_now(&timekeeper);
710
711 __timekeeping_inject_sleeptime(&timekeeper, delta);
712
713 timekeeping_update(&timekeeper, true);
714
715 write_sequnlock_irqrestore(&timekeeper.lock, flags);
716
717 /* signal hrtimers about time change */
718 clock_was_set();
719 }
720
721
722 /**
723 * timekeeping_resume - Resumes the generic timekeeping subsystem.
724 *
725 * This is for the generic clocksource timekeeping.
726 * xtime/wall_to_monotonic/jiffies/etc are
727 * still managed by arch specific suspend/resume code.
728 */
729 static void timekeeping_resume(void)
730 {
731 unsigned long flags;
732 struct timespec ts;
733
734 read_persistent_clock(&ts);
735
736 clocksource_resume();
737
738 write_seqlock_irqsave(&timekeeper.lock, flags);
739
740 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
741 ts = timespec_sub(ts, timekeeping_suspend_time);
742 __timekeeping_inject_sleeptime(&timekeeper, &ts);
743 }
744 /* re-base the last cycle value */
745 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
746 timekeeper.ntp_error = 0;
747 timekeeping_suspended = 0;
748 timekeeping_update(&timekeeper, false);
749 write_sequnlock_irqrestore(&timekeeper.lock, flags);
750
751 touch_softlockup_watchdog();
752
753 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
754
755 /* Resume hrtimers */
756 hrtimers_resume();
757 }
758
759 static int timekeeping_suspend(void)
760 {
761 unsigned long flags;
762 struct timespec delta, delta_delta;
763 static struct timespec old_delta;
764
765 read_persistent_clock(&timekeeping_suspend_time);
766
767 write_seqlock_irqsave(&timekeeper.lock, flags);
768 timekeeping_forward_now(&timekeeper);
769 timekeeping_suspended = 1;
770
771 /*
772 * To avoid drift caused by repeated suspend/resumes,
773 * which each can add ~1 second drift error,
774 * try to compensate so the difference in system time
775 * and persistent_clock time stays close to constant.
776 */
777 delta = timespec_sub(tk_xtime(&timekeeper), timekeeping_suspend_time);
778 delta_delta = timespec_sub(delta, old_delta);
779 if (abs(delta_delta.tv_sec) >= 2) {
780 /*
781 * if delta_delta is too large, assume time correction
782 * has occured and set old_delta to the current delta.
783 */
784 old_delta = delta;
785 } else {
786 /* Otherwise try to adjust old_system to compensate */
787 timekeeping_suspend_time =
788 timespec_add(timekeeping_suspend_time, delta_delta);
789 }
790 write_sequnlock_irqrestore(&timekeeper.lock, flags);
791
792 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
793 clocksource_suspend();
794
795 return 0;
796 }
797
798 /* sysfs resume/suspend bits for timekeeping */
799 static struct syscore_ops timekeeping_syscore_ops = {
800 .resume = timekeeping_resume,
801 .suspend = timekeeping_suspend,
802 };
803
804 static int __init timekeeping_init_ops(void)
805 {
806 register_syscore_ops(&timekeeping_syscore_ops);
807 return 0;
808 }
809
810 device_initcall(timekeeping_init_ops);
811
812 /*
813 * If the error is already larger, we look ahead even further
814 * to compensate for late or lost adjustments.
815 */
816 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
817 s64 error, s64 *interval,
818 s64 *offset)
819 {
820 s64 tick_error, i;
821 u32 look_ahead, adj;
822 s32 error2, mult;
823
824 /*
825 * Use the current error value to determine how much to look ahead.
826 * The larger the error the slower we adjust for it to avoid problems
827 * with losing too many ticks, otherwise we would overadjust and
828 * produce an even larger error. The smaller the adjustment the
829 * faster we try to adjust for it, as lost ticks can do less harm
830 * here. This is tuned so that an error of about 1 msec is adjusted
831 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
832 */
833 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
834 error2 = abs(error2);
835 for (look_ahead = 0; error2 > 0; look_ahead++)
836 error2 >>= 2;
837
838 /*
839 * Now calculate the error in (1 << look_ahead) ticks, but first
840 * remove the single look ahead already included in the error.
841 */
842 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
843 tick_error -= tk->xtime_interval >> 1;
844 error = ((error - tick_error) >> look_ahead) + tick_error;
845
846 /* Finally calculate the adjustment shift value. */
847 i = *interval;
848 mult = 1;
849 if (error < 0) {
850 error = -error;
851 *interval = -*interval;
852 *offset = -*offset;
853 mult = -1;
854 }
855 for (adj = 0; error > i; adj++)
856 error >>= 1;
857
858 *interval <<= adj;
859 *offset <<= adj;
860 return mult << adj;
861 }
862
863 /*
864 * Adjust the multiplier to reduce the error value,
865 * this is optimized for the most common adjustments of -1,0,1,
866 * for other values we can do a bit more work.
867 */
868 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
869 {
870 s64 error, interval = tk->cycle_interval;
871 int adj;
872
873 /*
874 * The point of this is to check if the error is greater than half
875 * an interval.
876 *
877 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
878 *
879 * Note we subtract one in the shift, so that error is really error*2.
880 * This "saves" dividing(shifting) interval twice, but keeps the
881 * (error > interval) comparison as still measuring if error is
882 * larger than half an interval.
883 *
884 * Note: It does not "save" on aggravation when reading the code.
885 */
886 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
887 if (error > interval) {
888 /*
889 * We now divide error by 4(via shift), which checks if
890 * the error is greater than twice the interval.
891 * If it is greater, we need a bigadjust, if its smaller,
892 * we can adjust by 1.
893 */
894 error >>= 2;
895 /*
896 * XXX - In update_wall_time, we round up to the next
897 * nanosecond, and store the amount rounded up into
898 * the error. This causes the likely below to be unlikely.
899 *
900 * The proper fix is to avoid rounding up by using
901 * the high precision timekeeper.xtime_nsec instead of
902 * xtime.tv_nsec everywhere. Fixing this will take some
903 * time.
904 */
905 if (likely(error <= interval))
906 adj = 1;
907 else
908 adj = timekeeping_bigadjust(tk, error, &interval,
909 &offset);
910 } else if (error < -interval) {
911 /* See comment above, this is just switched for the negative */
912 error >>= 2;
913 if (likely(error >= -interval)) {
914 adj = -1;
915 interval = -interval;
916 offset = -offset;
917 } else
918 adj = timekeeping_bigadjust(tk, error, &interval,
919 &offset);
920 } else
921 return;
922
923 if (unlikely(tk->clock->maxadj &&
924 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
925 printk_once(KERN_WARNING
926 "Adjusting %s more than 11%% (%ld vs %ld)\n",
927 tk->clock->name, (long)tk->mult + adj,
928 (long)tk->clock->mult + tk->clock->maxadj);
929 }
930 /*
931 * So the following can be confusing.
932 *
933 * To keep things simple, lets assume adj == 1 for now.
934 *
935 * When adj != 1, remember that the interval and offset values
936 * have been appropriately scaled so the math is the same.
937 *
938 * The basic idea here is that we're increasing the multiplier
939 * by one, this causes the xtime_interval to be incremented by
940 * one cycle_interval. This is because:
941 * xtime_interval = cycle_interval * mult
942 * So if mult is being incremented by one:
943 * xtime_interval = cycle_interval * (mult + 1)
944 * Its the same as:
945 * xtime_interval = (cycle_interval * mult) + cycle_interval
946 * Which can be shortened to:
947 * xtime_interval += cycle_interval
948 *
949 * So offset stores the non-accumulated cycles. Thus the current
950 * time (in shifted nanoseconds) is:
951 * now = (offset * adj) + xtime_nsec
952 * Now, even though we're adjusting the clock frequency, we have
953 * to keep time consistent. In other words, we can't jump back
954 * in time, and we also want to avoid jumping forward in time.
955 *
956 * So given the same offset value, we need the time to be the same
957 * both before and after the freq adjustment.
958 * now = (offset * adj_1) + xtime_nsec_1
959 * now = (offset * adj_2) + xtime_nsec_2
960 * So:
961 * (offset * adj_1) + xtime_nsec_1 =
962 * (offset * adj_2) + xtime_nsec_2
963 * And we know:
964 * adj_2 = adj_1 + 1
965 * So:
966 * (offset * adj_1) + xtime_nsec_1 =
967 * (offset * (adj_1+1)) + xtime_nsec_2
968 * (offset * adj_1) + xtime_nsec_1 =
969 * (offset * adj_1) + offset + xtime_nsec_2
970 * Canceling the sides:
971 * xtime_nsec_1 = offset + xtime_nsec_2
972 * Which gives us:
973 * xtime_nsec_2 = xtime_nsec_1 - offset
974 * Which simplfies to:
975 * xtime_nsec -= offset
976 *
977 * XXX - TODO: Doc ntp_error calculation.
978 */
979 tk->mult += adj;
980 tk->xtime_interval += interval;
981 tk->xtime_nsec -= offset;
982 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
983
984 /*
985 * It may be possible that when we entered this function, xtime_nsec
986 * was very small. Further, if we're slightly speeding the clocksource
987 * in the code above, its possible the required corrective factor to
988 * xtime_nsec could cause it to underflow.
989 *
990 * Now, since we already accumulated the second, cannot simply roll
991 * the accumulated second back, since the NTP subsystem has been
992 * notified via second_overflow. So instead we push xtime_nsec forward
993 * by the amount we underflowed, and add that amount into the error.
994 *
995 * We'll correct this error next time through this function, when
996 * xtime_nsec is not as small.
997 */
998 if (unlikely((s64)tk->xtime_nsec < 0)) {
999 s64 neg = -(s64)tk->xtime_nsec;
1000 tk->xtime_nsec = 0;
1001 tk->ntp_error += neg << tk->ntp_error_shift;
1002 }
1003
1004 }
1005
1006
1007 /**
1008 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1009 *
1010 * Helper function that accumulates a the nsecs greater then a second
1011 * from the xtime_nsec field to the xtime_secs field.
1012 * It also calls into the NTP code to handle leapsecond processing.
1013 *
1014 */
1015 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1016 {
1017 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1018
1019 while (tk->xtime_nsec >= nsecps) {
1020 int leap;
1021
1022 tk->xtime_nsec -= nsecps;
1023 tk->xtime_sec++;
1024
1025 /* Figure out if its a leap sec and apply if needed */
1026 leap = second_overflow(tk->xtime_sec);
1027 tk->xtime_sec += leap;
1028 tk->wall_to_monotonic.tv_sec -= leap;
1029 if (leap)
1030 clock_was_set_delayed();
1031
1032 }
1033 }
1034
1035
1036 /**
1037 * logarithmic_accumulation - shifted accumulation of cycles
1038 *
1039 * This functions accumulates a shifted interval of cycles into
1040 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1041 * loop.
1042 *
1043 * Returns the unconsumed cycles.
1044 */
1045 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1046 u32 shift)
1047 {
1048 u64 raw_nsecs;
1049
1050 /* If the offset is smaller then a shifted interval, do nothing */
1051 if (offset < tk->cycle_interval<<shift)
1052 return offset;
1053
1054 /* Accumulate one shifted interval */
1055 offset -= tk->cycle_interval << shift;
1056 tk->clock->cycle_last += tk->cycle_interval << shift;
1057
1058 tk->xtime_nsec += tk->xtime_interval << shift;
1059 accumulate_nsecs_to_secs(tk);
1060
1061 /* Accumulate raw time */
1062 raw_nsecs = tk->raw_interval << shift;
1063 raw_nsecs += tk->raw_time.tv_nsec;
1064 if (raw_nsecs >= NSEC_PER_SEC) {
1065 u64 raw_secs = raw_nsecs;
1066 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1067 tk->raw_time.tv_sec += raw_secs;
1068 }
1069 tk->raw_time.tv_nsec = raw_nsecs;
1070
1071 /* Accumulate error between NTP and clock interval */
1072 tk->ntp_error += ntp_tick_length() << shift;
1073 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1074 (tk->ntp_error_shift + shift);
1075
1076 return offset;
1077 }
1078
1079
1080 /**
1081 * update_wall_time - Uses the current clocksource to increment the wall time
1082 *
1083 */
1084 static void update_wall_time(void)
1085 {
1086 struct clocksource *clock;
1087 cycle_t offset;
1088 int shift = 0, maxshift;
1089 unsigned long flags;
1090 s64 remainder;
1091
1092 write_seqlock_irqsave(&timekeeper.lock, flags);
1093
1094 /* Make sure we're fully resumed: */
1095 if (unlikely(timekeeping_suspended))
1096 goto out;
1097
1098 clock = timekeeper.clock;
1099
1100 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1101 offset = timekeeper.cycle_interval;
1102 #else
1103 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1104 #endif
1105
1106 /*
1107 * With NO_HZ we may have to accumulate many cycle_intervals
1108 * (think "ticks") worth of time at once. To do this efficiently,
1109 * we calculate the largest doubling multiple of cycle_intervals
1110 * that is smaller than the offset. We then accumulate that
1111 * chunk in one go, and then try to consume the next smaller
1112 * doubled multiple.
1113 */
1114 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1115 shift = max(0, shift);
1116 /* Bound shift to one less than what overflows tick_length */
1117 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1118 shift = min(shift, maxshift);
1119 while (offset >= timekeeper.cycle_interval) {
1120 offset = logarithmic_accumulation(&timekeeper, offset, shift);
1121 if(offset < timekeeper.cycle_interval<<shift)
1122 shift--;
1123 }
1124
1125 /* correct the clock when NTP error is too big */
1126 timekeeping_adjust(&timekeeper, offset);
1127
1128
1129 /*
1130 * Store only full nanoseconds into xtime_nsec after rounding
1131 * it up and add the remainder to the error difference.
1132 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
1133 * by truncating the remainder in vsyscalls. However, it causes
1134 * additional work to be done in timekeeping_adjust(). Once
1135 * the vsyscall implementations are converted to use xtime_nsec
1136 * (shifted nanoseconds), this can be killed.
1137 */
1138 remainder = timekeeper.xtime_nsec & ((1 << timekeeper.shift) - 1);
1139 timekeeper.xtime_nsec -= remainder;
1140 timekeeper.xtime_nsec += 1 << timekeeper.shift;
1141 timekeeper.ntp_error += remainder << timekeeper.ntp_error_shift;
1142
1143 /*
1144 * Finally, make sure that after the rounding
1145 * xtime_nsec isn't larger than NSEC_PER_SEC
1146 */
1147 accumulate_nsecs_to_secs(&timekeeper);
1148
1149 timekeeping_update(&timekeeper, false);
1150
1151 out:
1152 write_sequnlock_irqrestore(&timekeeper.lock, flags);
1153
1154 }
1155
1156 /**
1157 * getboottime - Return the real time of system boot.
1158 * @ts: pointer to the timespec to be set
1159 *
1160 * Returns the wall-time of boot in a timespec.
1161 *
1162 * This is based on the wall_to_monotonic offset and the total suspend
1163 * time. Calls to settimeofday will affect the value returned (which
1164 * basically means that however wrong your real time clock is at boot time,
1165 * you get the right time here).
1166 */
1167 void getboottime(struct timespec *ts)
1168 {
1169 struct timespec boottime = {
1170 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1171 timekeeper.total_sleep_time.tv_sec,
1172 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1173 timekeeper.total_sleep_time.tv_nsec
1174 };
1175
1176 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1177 }
1178 EXPORT_SYMBOL_GPL(getboottime);
1179
1180
1181 /**
1182 * get_monotonic_boottime - Returns monotonic time since boot
1183 * @ts: pointer to the timespec to be set
1184 *
1185 * Returns the monotonic time since boot in a timespec.
1186 *
1187 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1188 * includes the time spent in suspend.
1189 */
1190 void get_monotonic_boottime(struct timespec *ts)
1191 {
1192 struct timespec tomono, sleep;
1193 unsigned int seq;
1194
1195 WARN_ON(timekeeping_suspended);
1196
1197 do {
1198 seq = read_seqbegin(&timekeeper.lock);
1199 ts->tv_sec = timekeeper.xtime_sec;
1200 ts->tv_nsec = timekeeping_get_ns(&timekeeper);
1201 tomono = timekeeper.wall_to_monotonic;
1202 sleep = timekeeper.total_sleep_time;
1203
1204 } while (read_seqretry(&timekeeper.lock, seq));
1205
1206 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1207 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
1208 }
1209 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1210
1211 /**
1212 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1213 *
1214 * Returns the monotonic time since boot in a ktime
1215 *
1216 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1217 * includes the time spent in suspend.
1218 */
1219 ktime_t ktime_get_boottime(void)
1220 {
1221 struct timespec ts;
1222
1223 get_monotonic_boottime(&ts);
1224 return timespec_to_ktime(ts);
1225 }
1226 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1227
1228 /**
1229 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1230 * @ts: pointer to the timespec to be converted
1231 */
1232 void monotonic_to_bootbased(struct timespec *ts)
1233 {
1234 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
1235 }
1236 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1237
1238 unsigned long get_seconds(void)
1239 {
1240 return timekeeper.xtime_sec;
1241 }
1242 EXPORT_SYMBOL(get_seconds);
1243
1244 struct timespec __current_kernel_time(void)
1245 {
1246 return tk_xtime(&timekeeper);
1247 }
1248
1249 struct timespec current_kernel_time(void)
1250 {
1251 struct timespec now;
1252 unsigned long seq;
1253
1254 do {
1255 seq = read_seqbegin(&timekeeper.lock);
1256
1257 now = tk_xtime(&timekeeper);
1258 } while (read_seqretry(&timekeeper.lock, seq));
1259
1260 return now;
1261 }
1262 EXPORT_SYMBOL(current_kernel_time);
1263
1264 struct timespec get_monotonic_coarse(void)
1265 {
1266 struct timespec now, mono;
1267 unsigned long seq;
1268
1269 do {
1270 seq = read_seqbegin(&timekeeper.lock);
1271
1272 now = tk_xtime(&timekeeper);
1273 mono = timekeeper.wall_to_monotonic;
1274 } while (read_seqretry(&timekeeper.lock, seq));
1275
1276 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1277 now.tv_nsec + mono.tv_nsec);
1278 return now;
1279 }
1280
1281 /*
1282 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1283 * without sampling the sequence number in xtime_lock.
1284 * jiffies is defined in the linker script...
1285 */
1286 void do_timer(unsigned long ticks)
1287 {
1288 jiffies_64 += ticks;
1289 update_wall_time();
1290 calc_global_load(ticks);
1291 }
1292
1293 /**
1294 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1295 * and sleep offsets.
1296 * @xtim: pointer to timespec to be set with xtime
1297 * @wtom: pointer to timespec to be set with wall_to_monotonic
1298 * @sleep: pointer to timespec to be set with time in suspend
1299 */
1300 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1301 struct timespec *wtom, struct timespec *sleep)
1302 {
1303 unsigned long seq;
1304
1305 do {
1306 seq = read_seqbegin(&timekeeper.lock);
1307 *xtim = tk_xtime(&timekeeper);
1308 *wtom = timekeeper.wall_to_monotonic;
1309 *sleep = timekeeper.total_sleep_time;
1310 } while (read_seqretry(&timekeeper.lock, seq));
1311 }
1312
1313 #ifdef CONFIG_HIGH_RES_TIMERS
1314 /**
1315 * ktime_get_update_offsets - hrtimer helper
1316 * @offs_real: pointer to storage for monotonic -> realtime offset
1317 * @offs_boot: pointer to storage for monotonic -> boottime offset
1318 *
1319 * Returns current monotonic time and updates the offsets
1320 * Called from hrtimer_interupt() or retrigger_next_event()
1321 */
1322 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1323 {
1324 ktime_t now;
1325 unsigned int seq;
1326 u64 secs, nsecs;
1327
1328 do {
1329 seq = read_seqbegin(&timekeeper.lock);
1330
1331 secs = timekeeper.xtime_sec;
1332 nsecs = timekeeping_get_ns(&timekeeper);
1333
1334 *offs_real = timekeeper.offs_real;
1335 *offs_boot = timekeeper.offs_boot;
1336 } while (read_seqretry(&timekeeper.lock, seq));
1337
1338 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1339 now = ktime_sub(now, *offs_real);
1340 return now;
1341 }
1342 #endif
1343
1344 /**
1345 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1346 */
1347 ktime_t ktime_get_monotonic_offset(void)
1348 {
1349 unsigned long seq;
1350 struct timespec wtom;
1351
1352 do {
1353 seq = read_seqbegin(&timekeeper.lock);
1354 wtom = timekeeper.wall_to_monotonic;
1355 } while (read_seqretry(&timekeeper.lock, seq));
1356
1357 return timespec_to_ktime(wtom);
1358 }
1359 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1360
1361
1362 /**
1363 * xtime_update() - advances the timekeeping infrastructure
1364 * @ticks: number of ticks, that have elapsed since the last call.
1365 *
1366 * Must be called with interrupts disabled.
1367 */
1368 void xtime_update(unsigned long ticks)
1369 {
1370 write_seqlock(&xtime_lock);
1371 do_timer(ticks);
1372 write_sequnlock(&xtime_lock);
1373 }
This page took 0.085893 seconds and 6 git commands to generate.