Merge tag 'iio-fixes-for-4.2b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[deliverable/linux.git] / kernel / time / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51
52 #include "tick-internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/timer.h>
56
57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58
59 EXPORT_SYMBOL(jiffies_64);
60
61 /*
62 * per-CPU timer vector definitions:
63 */
64 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66 #define TVN_SIZE (1 << TVN_BITS)
67 #define TVR_SIZE (1 << TVR_BITS)
68 #define TVN_MASK (TVN_SIZE - 1)
69 #define TVR_MASK (TVR_SIZE - 1)
70 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
71
72 struct tvec {
73 struct hlist_head vec[TVN_SIZE];
74 };
75
76 struct tvec_root {
77 struct hlist_head vec[TVR_SIZE];
78 };
79
80 struct tvec_base {
81 spinlock_t lock;
82 struct timer_list *running_timer;
83 unsigned long timer_jiffies;
84 unsigned long next_timer;
85 unsigned long active_timers;
86 unsigned long all_timers;
87 int cpu;
88 bool migration_enabled;
89 bool nohz_active;
90 struct tvec_root tv1;
91 struct tvec tv2;
92 struct tvec tv3;
93 struct tvec tv4;
94 struct tvec tv5;
95 } ____cacheline_aligned;
96
97
98 static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
99
100 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
101 unsigned int sysctl_timer_migration = 1;
102
103 void timers_update_migration(bool update_nohz)
104 {
105 bool on = sysctl_timer_migration && tick_nohz_active;
106 unsigned int cpu;
107
108 /* Avoid the loop, if nothing to update */
109 if (this_cpu_read(tvec_bases.migration_enabled) == on)
110 return;
111
112 for_each_possible_cpu(cpu) {
113 per_cpu(tvec_bases.migration_enabled, cpu) = on;
114 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
115 if (!update_nohz)
116 continue;
117 per_cpu(tvec_bases.nohz_active, cpu) = true;
118 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
119 }
120 }
121
122 int timer_migration_handler(struct ctl_table *table, int write,
123 void __user *buffer, size_t *lenp,
124 loff_t *ppos)
125 {
126 static DEFINE_MUTEX(mutex);
127 int ret;
128
129 mutex_lock(&mutex);
130 ret = proc_dointvec(table, write, buffer, lenp, ppos);
131 if (!ret && write)
132 timers_update_migration(false);
133 mutex_unlock(&mutex);
134 return ret;
135 }
136
137 static inline struct tvec_base *get_target_base(struct tvec_base *base,
138 int pinned)
139 {
140 if (pinned || !base->migration_enabled)
141 return this_cpu_ptr(&tvec_bases);
142 return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
143 }
144 #else
145 static inline struct tvec_base *get_target_base(struct tvec_base *base,
146 int pinned)
147 {
148 return this_cpu_ptr(&tvec_bases);
149 }
150 #endif
151
152 static unsigned long round_jiffies_common(unsigned long j, int cpu,
153 bool force_up)
154 {
155 int rem;
156 unsigned long original = j;
157
158 /*
159 * We don't want all cpus firing their timers at once hitting the
160 * same lock or cachelines, so we skew each extra cpu with an extra
161 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
162 * already did this.
163 * The skew is done by adding 3*cpunr, then round, then subtract this
164 * extra offset again.
165 */
166 j += cpu * 3;
167
168 rem = j % HZ;
169
170 /*
171 * If the target jiffie is just after a whole second (which can happen
172 * due to delays of the timer irq, long irq off times etc etc) then
173 * we should round down to the whole second, not up. Use 1/4th second
174 * as cutoff for this rounding as an extreme upper bound for this.
175 * But never round down if @force_up is set.
176 */
177 if (rem < HZ/4 && !force_up) /* round down */
178 j = j - rem;
179 else /* round up */
180 j = j - rem + HZ;
181
182 /* now that we have rounded, subtract the extra skew again */
183 j -= cpu * 3;
184
185 /*
186 * Make sure j is still in the future. Otherwise return the
187 * unmodified value.
188 */
189 return time_is_after_jiffies(j) ? j : original;
190 }
191
192 /**
193 * __round_jiffies - function to round jiffies to a full second
194 * @j: the time in (absolute) jiffies that should be rounded
195 * @cpu: the processor number on which the timeout will happen
196 *
197 * __round_jiffies() rounds an absolute time in the future (in jiffies)
198 * up or down to (approximately) full seconds. This is useful for timers
199 * for which the exact time they fire does not matter too much, as long as
200 * they fire approximately every X seconds.
201 *
202 * By rounding these timers to whole seconds, all such timers will fire
203 * at the same time, rather than at various times spread out. The goal
204 * of this is to have the CPU wake up less, which saves power.
205 *
206 * The exact rounding is skewed for each processor to avoid all
207 * processors firing at the exact same time, which could lead
208 * to lock contention or spurious cache line bouncing.
209 *
210 * The return value is the rounded version of the @j parameter.
211 */
212 unsigned long __round_jiffies(unsigned long j, int cpu)
213 {
214 return round_jiffies_common(j, cpu, false);
215 }
216 EXPORT_SYMBOL_GPL(__round_jiffies);
217
218 /**
219 * __round_jiffies_relative - function to round jiffies to a full second
220 * @j: the time in (relative) jiffies that should be rounded
221 * @cpu: the processor number on which the timeout will happen
222 *
223 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
224 * up or down to (approximately) full seconds. This is useful for timers
225 * for which the exact time they fire does not matter too much, as long as
226 * they fire approximately every X seconds.
227 *
228 * By rounding these timers to whole seconds, all such timers will fire
229 * at the same time, rather than at various times spread out. The goal
230 * of this is to have the CPU wake up less, which saves power.
231 *
232 * The exact rounding is skewed for each processor to avoid all
233 * processors firing at the exact same time, which could lead
234 * to lock contention or spurious cache line bouncing.
235 *
236 * The return value is the rounded version of the @j parameter.
237 */
238 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
239 {
240 unsigned long j0 = jiffies;
241
242 /* Use j0 because jiffies might change while we run */
243 return round_jiffies_common(j + j0, cpu, false) - j0;
244 }
245 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
246
247 /**
248 * round_jiffies - function to round jiffies to a full second
249 * @j: the time in (absolute) jiffies that should be rounded
250 *
251 * round_jiffies() rounds an absolute time in the future (in jiffies)
252 * up or down to (approximately) full seconds. This is useful for timers
253 * for which the exact time they fire does not matter too much, as long as
254 * they fire approximately every X seconds.
255 *
256 * By rounding these timers to whole seconds, all such timers will fire
257 * at the same time, rather than at various times spread out. The goal
258 * of this is to have the CPU wake up less, which saves power.
259 *
260 * The return value is the rounded version of the @j parameter.
261 */
262 unsigned long round_jiffies(unsigned long j)
263 {
264 return round_jiffies_common(j, raw_smp_processor_id(), false);
265 }
266 EXPORT_SYMBOL_GPL(round_jiffies);
267
268 /**
269 * round_jiffies_relative - function to round jiffies to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 *
272 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
273 * up or down to (approximately) full seconds. This is useful for timers
274 * for which the exact time they fire does not matter too much, as long as
275 * they fire approximately every X seconds.
276 *
277 * By rounding these timers to whole seconds, all such timers will fire
278 * at the same time, rather than at various times spread out. The goal
279 * of this is to have the CPU wake up less, which saves power.
280 *
281 * The return value is the rounded version of the @j parameter.
282 */
283 unsigned long round_jiffies_relative(unsigned long j)
284 {
285 return __round_jiffies_relative(j, raw_smp_processor_id());
286 }
287 EXPORT_SYMBOL_GPL(round_jiffies_relative);
288
289 /**
290 * __round_jiffies_up - function to round jiffies up to a full second
291 * @j: the time in (absolute) jiffies that should be rounded
292 * @cpu: the processor number on which the timeout will happen
293 *
294 * This is the same as __round_jiffies() except that it will never
295 * round down. This is useful for timeouts for which the exact time
296 * of firing does not matter too much, as long as they don't fire too
297 * early.
298 */
299 unsigned long __round_jiffies_up(unsigned long j, int cpu)
300 {
301 return round_jiffies_common(j, cpu, true);
302 }
303 EXPORT_SYMBOL_GPL(__round_jiffies_up);
304
305 /**
306 * __round_jiffies_up_relative - function to round jiffies up to a full second
307 * @j: the time in (relative) jiffies that should be rounded
308 * @cpu: the processor number on which the timeout will happen
309 *
310 * This is the same as __round_jiffies_relative() except that it will never
311 * round down. This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
314 */
315 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
316 {
317 unsigned long j0 = jiffies;
318
319 /* Use j0 because jiffies might change while we run */
320 return round_jiffies_common(j + j0, cpu, true) - j0;
321 }
322 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
323
324 /**
325 * round_jiffies_up - function to round jiffies up to a full second
326 * @j: the time in (absolute) jiffies that should be rounded
327 *
328 * This is the same as round_jiffies() except that it will never
329 * round down. This is useful for timeouts for which the exact time
330 * of firing does not matter too much, as long as they don't fire too
331 * early.
332 */
333 unsigned long round_jiffies_up(unsigned long j)
334 {
335 return round_jiffies_common(j, raw_smp_processor_id(), true);
336 }
337 EXPORT_SYMBOL_GPL(round_jiffies_up);
338
339 /**
340 * round_jiffies_up_relative - function to round jiffies up to a full second
341 * @j: the time in (relative) jiffies that should be rounded
342 *
343 * This is the same as round_jiffies_relative() except that it will never
344 * round down. This is useful for timeouts for which the exact time
345 * of firing does not matter too much, as long as they don't fire too
346 * early.
347 */
348 unsigned long round_jiffies_up_relative(unsigned long j)
349 {
350 return __round_jiffies_up_relative(j, raw_smp_processor_id());
351 }
352 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
353
354 /**
355 * set_timer_slack - set the allowed slack for a timer
356 * @timer: the timer to be modified
357 * @slack_hz: the amount of time (in jiffies) allowed for rounding
358 *
359 * Set the amount of time, in jiffies, that a certain timer has
360 * in terms of slack. By setting this value, the timer subsystem
361 * will schedule the actual timer somewhere between
362 * the time mod_timer() asks for, and that time plus the slack.
363 *
364 * By setting the slack to -1, a percentage of the delay is used
365 * instead.
366 */
367 void set_timer_slack(struct timer_list *timer, int slack_hz)
368 {
369 timer->slack = slack_hz;
370 }
371 EXPORT_SYMBOL_GPL(set_timer_slack);
372
373 static void
374 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
375 {
376 unsigned long expires = timer->expires;
377 unsigned long idx = expires - base->timer_jiffies;
378 struct hlist_head *vec;
379
380 if (idx < TVR_SIZE) {
381 int i = expires & TVR_MASK;
382 vec = base->tv1.vec + i;
383 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
384 int i = (expires >> TVR_BITS) & TVN_MASK;
385 vec = base->tv2.vec + i;
386 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
387 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
388 vec = base->tv3.vec + i;
389 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
390 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
391 vec = base->tv4.vec + i;
392 } else if ((signed long) idx < 0) {
393 /*
394 * Can happen if you add a timer with expires == jiffies,
395 * or you set a timer to go off in the past
396 */
397 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
398 } else {
399 int i;
400 /* If the timeout is larger than MAX_TVAL (on 64-bit
401 * architectures or with CONFIG_BASE_SMALL=1) then we
402 * use the maximum timeout.
403 */
404 if (idx > MAX_TVAL) {
405 idx = MAX_TVAL;
406 expires = idx + base->timer_jiffies;
407 }
408 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
409 vec = base->tv5.vec + i;
410 }
411
412 hlist_add_head(&timer->entry, vec);
413 }
414
415 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
416 {
417 /* Advance base->jiffies, if the base is empty */
418 if (!base->all_timers++)
419 base->timer_jiffies = jiffies;
420
421 __internal_add_timer(base, timer);
422 /*
423 * Update base->active_timers and base->next_timer
424 */
425 if (!(timer->flags & TIMER_DEFERRABLE)) {
426 if (!base->active_timers++ ||
427 time_before(timer->expires, base->next_timer))
428 base->next_timer = timer->expires;
429 }
430
431 /*
432 * Check whether the other CPU is in dynticks mode and needs
433 * to be triggered to reevaluate the timer wheel.
434 * We are protected against the other CPU fiddling
435 * with the timer by holding the timer base lock. This also
436 * makes sure that a CPU on the way to stop its tick can not
437 * evaluate the timer wheel.
438 *
439 * Spare the IPI for deferrable timers on idle targets though.
440 * The next busy ticks will take care of it. Except full dynticks
441 * require special care against races with idle_cpu(), lets deal
442 * with that later.
443 */
444 if (base->nohz_active) {
445 if (!(timer->flags & TIMER_DEFERRABLE) ||
446 tick_nohz_full_cpu(base->cpu))
447 wake_up_nohz_cpu(base->cpu);
448 }
449 }
450
451 #ifdef CONFIG_TIMER_STATS
452 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
453 {
454 if (timer->start_site)
455 return;
456
457 timer->start_site = addr;
458 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
459 timer->start_pid = current->pid;
460 }
461
462 static void timer_stats_account_timer(struct timer_list *timer)
463 {
464 if (likely(!timer->start_site))
465 return;
466
467 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
468 timer->function, timer->start_comm,
469 timer->flags);
470 }
471
472 #else
473 static void timer_stats_account_timer(struct timer_list *timer) {}
474 #endif
475
476 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
477
478 static struct debug_obj_descr timer_debug_descr;
479
480 static void *timer_debug_hint(void *addr)
481 {
482 return ((struct timer_list *) addr)->function;
483 }
484
485 /*
486 * fixup_init is called when:
487 * - an active object is initialized
488 */
489 static int timer_fixup_init(void *addr, enum debug_obj_state state)
490 {
491 struct timer_list *timer = addr;
492
493 switch (state) {
494 case ODEBUG_STATE_ACTIVE:
495 del_timer_sync(timer);
496 debug_object_init(timer, &timer_debug_descr);
497 return 1;
498 default:
499 return 0;
500 }
501 }
502
503 /* Stub timer callback for improperly used timers. */
504 static void stub_timer(unsigned long data)
505 {
506 WARN_ON(1);
507 }
508
509 /*
510 * fixup_activate is called when:
511 * - an active object is activated
512 * - an unknown object is activated (might be a statically initialized object)
513 */
514 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
515 {
516 struct timer_list *timer = addr;
517
518 switch (state) {
519
520 case ODEBUG_STATE_NOTAVAILABLE:
521 /*
522 * This is not really a fixup. The timer was
523 * statically initialized. We just make sure that it
524 * is tracked in the object tracker.
525 */
526 if (timer->entry.pprev == NULL &&
527 timer->entry.next == TIMER_ENTRY_STATIC) {
528 debug_object_init(timer, &timer_debug_descr);
529 debug_object_activate(timer, &timer_debug_descr);
530 return 0;
531 } else {
532 setup_timer(timer, stub_timer, 0);
533 return 1;
534 }
535 return 0;
536
537 case ODEBUG_STATE_ACTIVE:
538 WARN_ON(1);
539
540 default:
541 return 0;
542 }
543 }
544
545 /*
546 * fixup_free is called when:
547 * - an active object is freed
548 */
549 static int timer_fixup_free(void *addr, enum debug_obj_state state)
550 {
551 struct timer_list *timer = addr;
552
553 switch (state) {
554 case ODEBUG_STATE_ACTIVE:
555 del_timer_sync(timer);
556 debug_object_free(timer, &timer_debug_descr);
557 return 1;
558 default:
559 return 0;
560 }
561 }
562
563 /*
564 * fixup_assert_init is called when:
565 * - an untracked/uninit-ed object is found
566 */
567 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
568 {
569 struct timer_list *timer = addr;
570
571 switch (state) {
572 case ODEBUG_STATE_NOTAVAILABLE:
573 if (timer->entry.next == TIMER_ENTRY_STATIC) {
574 /*
575 * This is not really a fixup. The timer was
576 * statically initialized. We just make sure that it
577 * is tracked in the object tracker.
578 */
579 debug_object_init(timer, &timer_debug_descr);
580 return 0;
581 } else {
582 setup_timer(timer, stub_timer, 0);
583 return 1;
584 }
585 default:
586 return 0;
587 }
588 }
589
590 static struct debug_obj_descr timer_debug_descr = {
591 .name = "timer_list",
592 .debug_hint = timer_debug_hint,
593 .fixup_init = timer_fixup_init,
594 .fixup_activate = timer_fixup_activate,
595 .fixup_free = timer_fixup_free,
596 .fixup_assert_init = timer_fixup_assert_init,
597 };
598
599 static inline void debug_timer_init(struct timer_list *timer)
600 {
601 debug_object_init(timer, &timer_debug_descr);
602 }
603
604 static inline void debug_timer_activate(struct timer_list *timer)
605 {
606 debug_object_activate(timer, &timer_debug_descr);
607 }
608
609 static inline void debug_timer_deactivate(struct timer_list *timer)
610 {
611 debug_object_deactivate(timer, &timer_debug_descr);
612 }
613
614 static inline void debug_timer_free(struct timer_list *timer)
615 {
616 debug_object_free(timer, &timer_debug_descr);
617 }
618
619 static inline void debug_timer_assert_init(struct timer_list *timer)
620 {
621 debug_object_assert_init(timer, &timer_debug_descr);
622 }
623
624 static void do_init_timer(struct timer_list *timer, unsigned int flags,
625 const char *name, struct lock_class_key *key);
626
627 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
628 const char *name, struct lock_class_key *key)
629 {
630 debug_object_init_on_stack(timer, &timer_debug_descr);
631 do_init_timer(timer, flags, name, key);
632 }
633 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
634
635 void destroy_timer_on_stack(struct timer_list *timer)
636 {
637 debug_object_free(timer, &timer_debug_descr);
638 }
639 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
640
641 #else
642 static inline void debug_timer_init(struct timer_list *timer) { }
643 static inline void debug_timer_activate(struct timer_list *timer) { }
644 static inline void debug_timer_deactivate(struct timer_list *timer) { }
645 static inline void debug_timer_assert_init(struct timer_list *timer) { }
646 #endif
647
648 static inline void debug_init(struct timer_list *timer)
649 {
650 debug_timer_init(timer);
651 trace_timer_init(timer);
652 }
653
654 static inline void
655 debug_activate(struct timer_list *timer, unsigned long expires)
656 {
657 debug_timer_activate(timer);
658 trace_timer_start(timer, expires, timer->flags);
659 }
660
661 static inline void debug_deactivate(struct timer_list *timer)
662 {
663 debug_timer_deactivate(timer);
664 trace_timer_cancel(timer);
665 }
666
667 static inline void debug_assert_init(struct timer_list *timer)
668 {
669 debug_timer_assert_init(timer);
670 }
671
672 static void do_init_timer(struct timer_list *timer, unsigned int flags,
673 const char *name, struct lock_class_key *key)
674 {
675 timer->entry.pprev = NULL;
676 timer->flags = flags | raw_smp_processor_id();
677 timer->slack = -1;
678 #ifdef CONFIG_TIMER_STATS
679 timer->start_site = NULL;
680 timer->start_pid = -1;
681 memset(timer->start_comm, 0, TASK_COMM_LEN);
682 #endif
683 lockdep_init_map(&timer->lockdep_map, name, key, 0);
684 }
685
686 /**
687 * init_timer_key - initialize a timer
688 * @timer: the timer to be initialized
689 * @flags: timer flags
690 * @name: name of the timer
691 * @key: lockdep class key of the fake lock used for tracking timer
692 * sync lock dependencies
693 *
694 * init_timer_key() must be done to a timer prior calling *any* of the
695 * other timer functions.
696 */
697 void init_timer_key(struct timer_list *timer, unsigned int flags,
698 const char *name, struct lock_class_key *key)
699 {
700 debug_init(timer);
701 do_init_timer(timer, flags, name, key);
702 }
703 EXPORT_SYMBOL(init_timer_key);
704
705 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
706 {
707 struct hlist_node *entry = &timer->entry;
708
709 debug_deactivate(timer);
710
711 __hlist_del(entry);
712 if (clear_pending)
713 entry->pprev = NULL;
714 entry->next = LIST_POISON2;
715 }
716
717 static inline void
718 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
719 {
720 detach_timer(timer, true);
721 if (!(timer->flags & TIMER_DEFERRABLE))
722 base->active_timers--;
723 base->all_timers--;
724 }
725
726 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
727 bool clear_pending)
728 {
729 if (!timer_pending(timer))
730 return 0;
731
732 detach_timer(timer, clear_pending);
733 if (!(timer->flags & TIMER_DEFERRABLE)) {
734 base->active_timers--;
735 if (timer->expires == base->next_timer)
736 base->next_timer = base->timer_jiffies;
737 }
738 /* If this was the last timer, advance base->jiffies */
739 if (!--base->all_timers)
740 base->timer_jiffies = jiffies;
741 return 1;
742 }
743
744 /*
745 * We are using hashed locking: holding per_cpu(tvec_bases).lock
746 * means that all timers which are tied to this base via timer->base are
747 * locked, and the base itself is locked too.
748 *
749 * So __run_timers/migrate_timers can safely modify all timers which could
750 * be found on ->tvX lists.
751 *
752 * When the timer's base is locked and removed from the list, the
753 * TIMER_MIGRATING flag is set, FIXME
754 */
755 static struct tvec_base *lock_timer_base(struct timer_list *timer,
756 unsigned long *flags)
757 __acquires(timer->base->lock)
758 {
759 for (;;) {
760 u32 tf = timer->flags;
761 struct tvec_base *base;
762
763 if (!(tf & TIMER_MIGRATING)) {
764 base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
765 spin_lock_irqsave(&base->lock, *flags);
766 if (timer->flags == tf)
767 return base;
768 spin_unlock_irqrestore(&base->lock, *flags);
769 }
770 cpu_relax();
771 }
772 }
773
774 static inline int
775 __mod_timer(struct timer_list *timer, unsigned long expires,
776 bool pending_only, int pinned)
777 {
778 struct tvec_base *base, *new_base;
779 unsigned long flags;
780 int ret = 0;
781
782 timer_stats_timer_set_start_info(timer);
783 BUG_ON(!timer->function);
784
785 base = lock_timer_base(timer, &flags);
786
787 ret = detach_if_pending(timer, base, false);
788 if (!ret && pending_only)
789 goto out_unlock;
790
791 debug_activate(timer, expires);
792
793 new_base = get_target_base(base, pinned);
794
795 if (base != new_base) {
796 /*
797 * We are trying to schedule the timer on the local CPU.
798 * However we can't change timer's base while it is running,
799 * otherwise del_timer_sync() can't detect that the timer's
800 * handler yet has not finished. This also guarantees that
801 * the timer is serialized wrt itself.
802 */
803 if (likely(base->running_timer != timer)) {
804 /* See the comment in lock_timer_base() */
805 timer->flags |= TIMER_MIGRATING;
806
807 spin_unlock(&base->lock);
808 base = new_base;
809 spin_lock(&base->lock);
810 timer->flags &= ~TIMER_BASEMASK;
811 timer->flags |= base->cpu;
812 }
813 }
814
815 timer->expires = expires;
816 internal_add_timer(base, timer);
817
818 out_unlock:
819 spin_unlock_irqrestore(&base->lock, flags);
820
821 return ret;
822 }
823
824 /**
825 * mod_timer_pending - modify a pending timer's timeout
826 * @timer: the pending timer to be modified
827 * @expires: new timeout in jiffies
828 *
829 * mod_timer_pending() is the same for pending timers as mod_timer(),
830 * but will not re-activate and modify already deleted timers.
831 *
832 * It is useful for unserialized use of timers.
833 */
834 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
835 {
836 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
837 }
838 EXPORT_SYMBOL(mod_timer_pending);
839
840 /*
841 * Decide where to put the timer while taking the slack into account
842 *
843 * Algorithm:
844 * 1) calculate the maximum (absolute) time
845 * 2) calculate the highest bit where the expires and new max are different
846 * 3) use this bit to make a mask
847 * 4) use the bitmask to round down the maximum time, so that all last
848 * bits are zeros
849 */
850 static inline
851 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
852 {
853 unsigned long expires_limit, mask;
854 int bit;
855
856 if (timer->slack >= 0) {
857 expires_limit = expires + timer->slack;
858 } else {
859 long delta = expires - jiffies;
860
861 if (delta < 256)
862 return expires;
863
864 expires_limit = expires + delta / 256;
865 }
866 mask = expires ^ expires_limit;
867 if (mask == 0)
868 return expires;
869
870 bit = find_last_bit(&mask, BITS_PER_LONG);
871
872 mask = (1UL << bit) - 1;
873
874 expires_limit = expires_limit & ~(mask);
875
876 return expires_limit;
877 }
878
879 /**
880 * mod_timer - modify a timer's timeout
881 * @timer: the timer to be modified
882 * @expires: new timeout in jiffies
883 *
884 * mod_timer() is a more efficient way to update the expire field of an
885 * active timer (if the timer is inactive it will be activated)
886 *
887 * mod_timer(timer, expires) is equivalent to:
888 *
889 * del_timer(timer); timer->expires = expires; add_timer(timer);
890 *
891 * Note that if there are multiple unserialized concurrent users of the
892 * same timer, then mod_timer() is the only safe way to modify the timeout,
893 * since add_timer() cannot modify an already running timer.
894 *
895 * The function returns whether it has modified a pending timer or not.
896 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
897 * active timer returns 1.)
898 */
899 int mod_timer(struct timer_list *timer, unsigned long expires)
900 {
901 expires = apply_slack(timer, expires);
902
903 /*
904 * This is a common optimization triggered by the
905 * networking code - if the timer is re-modified
906 * to be the same thing then just return:
907 */
908 if (timer_pending(timer) && timer->expires == expires)
909 return 1;
910
911 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
912 }
913 EXPORT_SYMBOL(mod_timer);
914
915 /**
916 * mod_timer_pinned - modify a timer's timeout
917 * @timer: the timer to be modified
918 * @expires: new timeout in jiffies
919 *
920 * mod_timer_pinned() is a way to update the expire field of an
921 * active timer (if the timer is inactive it will be activated)
922 * and to ensure that the timer is scheduled on the current CPU.
923 *
924 * Note that this does not prevent the timer from being migrated
925 * when the current CPU goes offline. If this is a problem for
926 * you, use CPU-hotplug notifiers to handle it correctly, for
927 * example, cancelling the timer when the corresponding CPU goes
928 * offline.
929 *
930 * mod_timer_pinned(timer, expires) is equivalent to:
931 *
932 * del_timer(timer); timer->expires = expires; add_timer(timer);
933 */
934 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
935 {
936 if (timer->expires == expires && timer_pending(timer))
937 return 1;
938
939 return __mod_timer(timer, expires, false, TIMER_PINNED);
940 }
941 EXPORT_SYMBOL(mod_timer_pinned);
942
943 /**
944 * add_timer - start a timer
945 * @timer: the timer to be added
946 *
947 * The kernel will do a ->function(->data) callback from the
948 * timer interrupt at the ->expires point in the future. The
949 * current time is 'jiffies'.
950 *
951 * The timer's ->expires, ->function (and if the handler uses it, ->data)
952 * fields must be set prior calling this function.
953 *
954 * Timers with an ->expires field in the past will be executed in the next
955 * timer tick.
956 */
957 void add_timer(struct timer_list *timer)
958 {
959 BUG_ON(timer_pending(timer));
960 mod_timer(timer, timer->expires);
961 }
962 EXPORT_SYMBOL(add_timer);
963
964 /**
965 * add_timer_on - start a timer on a particular CPU
966 * @timer: the timer to be added
967 * @cpu: the CPU to start it on
968 *
969 * This is not very scalable on SMP. Double adds are not possible.
970 */
971 void add_timer_on(struct timer_list *timer, int cpu)
972 {
973 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
974 unsigned long flags;
975
976 timer_stats_timer_set_start_info(timer);
977 BUG_ON(timer_pending(timer) || !timer->function);
978 spin_lock_irqsave(&base->lock, flags);
979 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
980 debug_activate(timer, timer->expires);
981 internal_add_timer(base, timer);
982 spin_unlock_irqrestore(&base->lock, flags);
983 }
984 EXPORT_SYMBOL_GPL(add_timer_on);
985
986 /**
987 * del_timer - deactive a timer.
988 * @timer: the timer to be deactivated
989 *
990 * del_timer() deactivates a timer - this works on both active and inactive
991 * timers.
992 *
993 * The function returns whether it has deactivated a pending timer or not.
994 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
995 * active timer returns 1.)
996 */
997 int del_timer(struct timer_list *timer)
998 {
999 struct tvec_base *base;
1000 unsigned long flags;
1001 int ret = 0;
1002
1003 debug_assert_init(timer);
1004
1005 timer_stats_timer_clear_start_info(timer);
1006 if (timer_pending(timer)) {
1007 base = lock_timer_base(timer, &flags);
1008 ret = detach_if_pending(timer, base, true);
1009 spin_unlock_irqrestore(&base->lock, flags);
1010 }
1011
1012 return ret;
1013 }
1014 EXPORT_SYMBOL(del_timer);
1015
1016 /**
1017 * try_to_del_timer_sync - Try to deactivate a timer
1018 * @timer: timer do del
1019 *
1020 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1021 * exit the timer is not queued and the handler is not running on any CPU.
1022 */
1023 int try_to_del_timer_sync(struct timer_list *timer)
1024 {
1025 struct tvec_base *base;
1026 unsigned long flags;
1027 int ret = -1;
1028
1029 debug_assert_init(timer);
1030
1031 base = lock_timer_base(timer, &flags);
1032
1033 if (base->running_timer != timer) {
1034 timer_stats_timer_clear_start_info(timer);
1035 ret = detach_if_pending(timer, base, true);
1036 }
1037 spin_unlock_irqrestore(&base->lock, flags);
1038
1039 return ret;
1040 }
1041 EXPORT_SYMBOL(try_to_del_timer_sync);
1042
1043 #ifdef CONFIG_SMP
1044 /**
1045 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1046 * @timer: the timer to be deactivated
1047 *
1048 * This function only differs from del_timer() on SMP: besides deactivating
1049 * the timer it also makes sure the handler has finished executing on other
1050 * CPUs.
1051 *
1052 * Synchronization rules: Callers must prevent restarting of the timer,
1053 * otherwise this function is meaningless. It must not be called from
1054 * interrupt contexts unless the timer is an irqsafe one. The caller must
1055 * not hold locks which would prevent completion of the timer's
1056 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1057 * timer is not queued and the handler is not running on any CPU.
1058 *
1059 * Note: For !irqsafe timers, you must not hold locks that are held in
1060 * interrupt context while calling this function. Even if the lock has
1061 * nothing to do with the timer in question. Here's why:
1062 *
1063 * CPU0 CPU1
1064 * ---- ----
1065 * <SOFTIRQ>
1066 * call_timer_fn();
1067 * base->running_timer = mytimer;
1068 * spin_lock_irq(somelock);
1069 * <IRQ>
1070 * spin_lock(somelock);
1071 * del_timer_sync(mytimer);
1072 * while (base->running_timer == mytimer);
1073 *
1074 * Now del_timer_sync() will never return and never release somelock.
1075 * The interrupt on the other CPU is waiting to grab somelock but
1076 * it has interrupted the softirq that CPU0 is waiting to finish.
1077 *
1078 * The function returns whether it has deactivated a pending timer or not.
1079 */
1080 int del_timer_sync(struct timer_list *timer)
1081 {
1082 #ifdef CONFIG_LOCKDEP
1083 unsigned long flags;
1084
1085 /*
1086 * If lockdep gives a backtrace here, please reference
1087 * the synchronization rules above.
1088 */
1089 local_irq_save(flags);
1090 lock_map_acquire(&timer->lockdep_map);
1091 lock_map_release(&timer->lockdep_map);
1092 local_irq_restore(flags);
1093 #endif
1094 /*
1095 * don't use it in hardirq context, because it
1096 * could lead to deadlock.
1097 */
1098 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1099 for (;;) {
1100 int ret = try_to_del_timer_sync(timer);
1101 if (ret >= 0)
1102 return ret;
1103 cpu_relax();
1104 }
1105 }
1106 EXPORT_SYMBOL(del_timer_sync);
1107 #endif
1108
1109 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1110 {
1111 /* cascade all the timers from tv up one level */
1112 struct timer_list *timer;
1113 struct hlist_node *tmp;
1114 struct hlist_head tv_list;
1115
1116 hlist_move_list(tv->vec + index, &tv_list);
1117
1118 /*
1119 * We are removing _all_ timers from the list, so we
1120 * don't have to detach them individually.
1121 */
1122 hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1123 /* No accounting, while moving them */
1124 __internal_add_timer(base, timer);
1125 }
1126
1127 return index;
1128 }
1129
1130 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1131 unsigned long data)
1132 {
1133 int count = preempt_count();
1134
1135 #ifdef CONFIG_LOCKDEP
1136 /*
1137 * It is permissible to free the timer from inside the
1138 * function that is called from it, this we need to take into
1139 * account for lockdep too. To avoid bogus "held lock freed"
1140 * warnings as well as problems when looking into
1141 * timer->lockdep_map, make a copy and use that here.
1142 */
1143 struct lockdep_map lockdep_map;
1144
1145 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1146 #endif
1147 /*
1148 * Couple the lock chain with the lock chain at
1149 * del_timer_sync() by acquiring the lock_map around the fn()
1150 * call here and in del_timer_sync().
1151 */
1152 lock_map_acquire(&lockdep_map);
1153
1154 trace_timer_expire_entry(timer);
1155 fn(data);
1156 trace_timer_expire_exit(timer);
1157
1158 lock_map_release(&lockdep_map);
1159
1160 if (count != preempt_count()) {
1161 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1162 fn, count, preempt_count());
1163 /*
1164 * Restore the preempt count. That gives us a decent
1165 * chance to survive and extract information. If the
1166 * callback kept a lock held, bad luck, but not worse
1167 * than the BUG() we had.
1168 */
1169 preempt_count_set(count);
1170 }
1171 }
1172
1173 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1174
1175 /**
1176 * __run_timers - run all expired timers (if any) on this CPU.
1177 * @base: the timer vector to be processed.
1178 *
1179 * This function cascades all vectors and executes all expired timer
1180 * vectors.
1181 */
1182 static inline void __run_timers(struct tvec_base *base)
1183 {
1184 struct timer_list *timer;
1185
1186 spin_lock_irq(&base->lock);
1187
1188 while (time_after_eq(jiffies, base->timer_jiffies)) {
1189 struct hlist_head work_list;
1190 struct hlist_head *head = &work_list;
1191 int index;
1192
1193 if (!base->all_timers) {
1194 base->timer_jiffies = jiffies;
1195 break;
1196 }
1197
1198 index = base->timer_jiffies & TVR_MASK;
1199
1200 /*
1201 * Cascade timers:
1202 */
1203 if (!index &&
1204 (!cascade(base, &base->tv2, INDEX(0))) &&
1205 (!cascade(base, &base->tv3, INDEX(1))) &&
1206 !cascade(base, &base->tv4, INDEX(2)))
1207 cascade(base, &base->tv5, INDEX(3));
1208 ++base->timer_jiffies;
1209 hlist_move_list(base->tv1.vec + index, head);
1210 while (!hlist_empty(head)) {
1211 void (*fn)(unsigned long);
1212 unsigned long data;
1213 bool irqsafe;
1214
1215 timer = hlist_entry(head->first, struct timer_list, entry);
1216 fn = timer->function;
1217 data = timer->data;
1218 irqsafe = timer->flags & TIMER_IRQSAFE;
1219
1220 timer_stats_account_timer(timer);
1221
1222 base->running_timer = timer;
1223 detach_expired_timer(timer, base);
1224
1225 if (irqsafe) {
1226 spin_unlock(&base->lock);
1227 call_timer_fn(timer, fn, data);
1228 spin_lock(&base->lock);
1229 } else {
1230 spin_unlock_irq(&base->lock);
1231 call_timer_fn(timer, fn, data);
1232 spin_lock_irq(&base->lock);
1233 }
1234 }
1235 }
1236 base->running_timer = NULL;
1237 spin_unlock_irq(&base->lock);
1238 }
1239
1240 #ifdef CONFIG_NO_HZ_COMMON
1241 /*
1242 * Find out when the next timer event is due to happen. This
1243 * is used on S/390 to stop all activity when a CPU is idle.
1244 * This function needs to be called with interrupts disabled.
1245 */
1246 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1247 {
1248 unsigned long timer_jiffies = base->timer_jiffies;
1249 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1250 int index, slot, array, found = 0;
1251 struct timer_list *nte;
1252 struct tvec *varray[4];
1253
1254 /* Look for timer events in tv1. */
1255 index = slot = timer_jiffies & TVR_MASK;
1256 do {
1257 hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
1258 if (nte->flags & TIMER_DEFERRABLE)
1259 continue;
1260
1261 found = 1;
1262 expires = nte->expires;
1263 /* Look at the cascade bucket(s)? */
1264 if (!index || slot < index)
1265 goto cascade;
1266 return expires;
1267 }
1268 slot = (slot + 1) & TVR_MASK;
1269 } while (slot != index);
1270
1271 cascade:
1272 /* Calculate the next cascade event */
1273 if (index)
1274 timer_jiffies += TVR_SIZE - index;
1275 timer_jiffies >>= TVR_BITS;
1276
1277 /* Check tv2-tv5. */
1278 varray[0] = &base->tv2;
1279 varray[1] = &base->tv3;
1280 varray[2] = &base->tv4;
1281 varray[3] = &base->tv5;
1282
1283 for (array = 0; array < 4; array++) {
1284 struct tvec *varp = varray[array];
1285
1286 index = slot = timer_jiffies & TVN_MASK;
1287 do {
1288 hlist_for_each_entry(nte, varp->vec + slot, entry) {
1289 if (nte->flags & TIMER_DEFERRABLE)
1290 continue;
1291
1292 found = 1;
1293 if (time_before(nte->expires, expires))
1294 expires = nte->expires;
1295 }
1296 /*
1297 * Do we still search for the first timer or are
1298 * we looking up the cascade buckets ?
1299 */
1300 if (found) {
1301 /* Look at the cascade bucket(s)? */
1302 if (!index || slot < index)
1303 break;
1304 return expires;
1305 }
1306 slot = (slot + 1) & TVN_MASK;
1307 } while (slot != index);
1308
1309 if (index)
1310 timer_jiffies += TVN_SIZE - index;
1311 timer_jiffies >>= TVN_BITS;
1312 }
1313 return expires;
1314 }
1315
1316 /*
1317 * Check, if the next hrtimer event is before the next timer wheel
1318 * event:
1319 */
1320 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1321 {
1322 u64 nextevt = hrtimer_get_next_event();
1323
1324 /*
1325 * If high resolution timers are enabled
1326 * hrtimer_get_next_event() returns KTIME_MAX.
1327 */
1328 if (expires <= nextevt)
1329 return expires;
1330
1331 /*
1332 * If the next timer is already expired, return the tick base
1333 * time so the tick is fired immediately.
1334 */
1335 if (nextevt <= basem)
1336 return basem;
1337
1338 /*
1339 * Round up to the next jiffie. High resolution timers are
1340 * off, so the hrtimers are expired in the tick and we need to
1341 * make sure that this tick really expires the timer to avoid
1342 * a ping pong of the nohz stop code.
1343 *
1344 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1345 */
1346 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1347 }
1348
1349 /**
1350 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1351 * @basej: base time jiffies
1352 * @basem: base time clock monotonic
1353 *
1354 * Returns the tick aligned clock monotonic time of the next pending
1355 * timer or KTIME_MAX if no timer is pending.
1356 */
1357 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1358 {
1359 struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1360 u64 expires = KTIME_MAX;
1361 unsigned long nextevt;
1362
1363 /*
1364 * Pretend that there is no timer pending if the cpu is offline.
1365 * Possible pending timers will be migrated later to an active cpu.
1366 */
1367 if (cpu_is_offline(smp_processor_id()))
1368 return expires;
1369
1370 spin_lock(&base->lock);
1371 if (base->active_timers) {
1372 if (time_before_eq(base->next_timer, base->timer_jiffies))
1373 base->next_timer = __next_timer_interrupt(base);
1374 nextevt = base->next_timer;
1375 if (time_before_eq(nextevt, basej))
1376 expires = basem;
1377 else
1378 expires = basem + (nextevt - basej) * TICK_NSEC;
1379 }
1380 spin_unlock(&base->lock);
1381
1382 return cmp_next_hrtimer_event(basem, expires);
1383 }
1384 #endif
1385
1386 /*
1387 * Called from the timer interrupt handler to charge one tick to the current
1388 * process. user_tick is 1 if the tick is user time, 0 for system.
1389 */
1390 void update_process_times(int user_tick)
1391 {
1392 struct task_struct *p = current;
1393
1394 /* Note: this timer irq context must be accounted for as well. */
1395 account_process_tick(p, user_tick);
1396 run_local_timers();
1397 rcu_check_callbacks(user_tick);
1398 #ifdef CONFIG_IRQ_WORK
1399 if (in_irq())
1400 irq_work_tick();
1401 #endif
1402 scheduler_tick();
1403 run_posix_cpu_timers(p);
1404 }
1405
1406 /*
1407 * This function runs timers and the timer-tq in bottom half context.
1408 */
1409 static void run_timer_softirq(struct softirq_action *h)
1410 {
1411 struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1412
1413 if (time_after_eq(jiffies, base->timer_jiffies))
1414 __run_timers(base);
1415 }
1416
1417 /*
1418 * Called by the local, per-CPU timer interrupt on SMP.
1419 */
1420 void run_local_timers(void)
1421 {
1422 hrtimer_run_queues();
1423 raise_softirq(TIMER_SOFTIRQ);
1424 }
1425
1426 #ifdef __ARCH_WANT_SYS_ALARM
1427
1428 /*
1429 * For backwards compatibility? This can be done in libc so Alpha
1430 * and all newer ports shouldn't need it.
1431 */
1432 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1433 {
1434 return alarm_setitimer(seconds);
1435 }
1436
1437 #endif
1438
1439 static void process_timeout(unsigned long __data)
1440 {
1441 wake_up_process((struct task_struct *)__data);
1442 }
1443
1444 /**
1445 * schedule_timeout - sleep until timeout
1446 * @timeout: timeout value in jiffies
1447 *
1448 * Make the current task sleep until @timeout jiffies have
1449 * elapsed. The routine will return immediately unless
1450 * the current task state has been set (see set_current_state()).
1451 *
1452 * You can set the task state as follows -
1453 *
1454 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1455 * pass before the routine returns. The routine will return 0
1456 *
1457 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1458 * delivered to the current task. In this case the remaining time
1459 * in jiffies will be returned, or 0 if the timer expired in time
1460 *
1461 * The current task state is guaranteed to be TASK_RUNNING when this
1462 * routine returns.
1463 *
1464 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1465 * the CPU away without a bound on the timeout. In this case the return
1466 * value will be %MAX_SCHEDULE_TIMEOUT.
1467 *
1468 * In all cases the return value is guaranteed to be non-negative.
1469 */
1470 signed long __sched schedule_timeout(signed long timeout)
1471 {
1472 struct timer_list timer;
1473 unsigned long expire;
1474
1475 switch (timeout)
1476 {
1477 case MAX_SCHEDULE_TIMEOUT:
1478 /*
1479 * These two special cases are useful to be comfortable
1480 * in the caller. Nothing more. We could take
1481 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1482 * but I' d like to return a valid offset (>=0) to allow
1483 * the caller to do everything it want with the retval.
1484 */
1485 schedule();
1486 goto out;
1487 default:
1488 /*
1489 * Another bit of PARANOID. Note that the retval will be
1490 * 0 since no piece of kernel is supposed to do a check
1491 * for a negative retval of schedule_timeout() (since it
1492 * should never happens anyway). You just have the printk()
1493 * that will tell you if something is gone wrong and where.
1494 */
1495 if (timeout < 0) {
1496 printk(KERN_ERR "schedule_timeout: wrong timeout "
1497 "value %lx\n", timeout);
1498 dump_stack();
1499 current->state = TASK_RUNNING;
1500 goto out;
1501 }
1502 }
1503
1504 expire = timeout + jiffies;
1505
1506 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1507 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1508 schedule();
1509 del_singleshot_timer_sync(&timer);
1510
1511 /* Remove the timer from the object tracker */
1512 destroy_timer_on_stack(&timer);
1513
1514 timeout = expire - jiffies;
1515
1516 out:
1517 return timeout < 0 ? 0 : timeout;
1518 }
1519 EXPORT_SYMBOL(schedule_timeout);
1520
1521 /*
1522 * We can use __set_current_state() here because schedule_timeout() calls
1523 * schedule() unconditionally.
1524 */
1525 signed long __sched schedule_timeout_interruptible(signed long timeout)
1526 {
1527 __set_current_state(TASK_INTERRUPTIBLE);
1528 return schedule_timeout(timeout);
1529 }
1530 EXPORT_SYMBOL(schedule_timeout_interruptible);
1531
1532 signed long __sched schedule_timeout_killable(signed long timeout)
1533 {
1534 __set_current_state(TASK_KILLABLE);
1535 return schedule_timeout(timeout);
1536 }
1537 EXPORT_SYMBOL(schedule_timeout_killable);
1538
1539 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1540 {
1541 __set_current_state(TASK_UNINTERRUPTIBLE);
1542 return schedule_timeout(timeout);
1543 }
1544 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1545
1546 #ifdef CONFIG_HOTPLUG_CPU
1547 static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
1548 {
1549 struct timer_list *timer;
1550 int cpu = new_base->cpu;
1551
1552 while (!hlist_empty(head)) {
1553 timer = hlist_entry(head->first, struct timer_list, entry);
1554 /* We ignore the accounting on the dying cpu */
1555 detach_timer(timer, false);
1556 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1557 internal_add_timer(new_base, timer);
1558 }
1559 }
1560
1561 static void migrate_timers(int cpu)
1562 {
1563 struct tvec_base *old_base;
1564 struct tvec_base *new_base;
1565 int i;
1566
1567 BUG_ON(cpu_online(cpu));
1568 old_base = per_cpu_ptr(&tvec_bases, cpu);
1569 new_base = get_cpu_ptr(&tvec_bases);
1570 /*
1571 * The caller is globally serialized and nobody else
1572 * takes two locks at once, deadlock is not possible.
1573 */
1574 spin_lock_irq(&new_base->lock);
1575 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1576
1577 BUG_ON(old_base->running_timer);
1578
1579 for (i = 0; i < TVR_SIZE; i++)
1580 migrate_timer_list(new_base, old_base->tv1.vec + i);
1581 for (i = 0; i < TVN_SIZE; i++) {
1582 migrate_timer_list(new_base, old_base->tv2.vec + i);
1583 migrate_timer_list(new_base, old_base->tv3.vec + i);
1584 migrate_timer_list(new_base, old_base->tv4.vec + i);
1585 migrate_timer_list(new_base, old_base->tv5.vec + i);
1586 }
1587
1588 old_base->active_timers = 0;
1589 old_base->all_timers = 0;
1590
1591 spin_unlock(&old_base->lock);
1592 spin_unlock_irq(&new_base->lock);
1593 put_cpu_ptr(&tvec_bases);
1594 }
1595
1596 static int timer_cpu_notify(struct notifier_block *self,
1597 unsigned long action, void *hcpu)
1598 {
1599 switch (action) {
1600 case CPU_DEAD:
1601 case CPU_DEAD_FROZEN:
1602 migrate_timers((long)hcpu);
1603 break;
1604 default:
1605 break;
1606 }
1607
1608 return NOTIFY_OK;
1609 }
1610
1611 static inline void timer_register_cpu_notifier(void)
1612 {
1613 cpu_notifier(timer_cpu_notify, 0);
1614 }
1615 #else
1616 static inline void timer_register_cpu_notifier(void) { }
1617 #endif /* CONFIG_HOTPLUG_CPU */
1618
1619 static void __init init_timer_cpu(int cpu)
1620 {
1621 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
1622
1623 base->cpu = cpu;
1624 spin_lock_init(&base->lock);
1625
1626 base->timer_jiffies = jiffies;
1627 base->next_timer = base->timer_jiffies;
1628 }
1629
1630 static void __init init_timer_cpus(void)
1631 {
1632 int cpu;
1633
1634 for_each_possible_cpu(cpu)
1635 init_timer_cpu(cpu);
1636 }
1637
1638 void __init init_timers(void)
1639 {
1640 init_timer_cpus();
1641 init_timer_stats();
1642 timer_register_cpu_notifier();
1643 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1644 }
1645
1646 /**
1647 * msleep - sleep safely even with waitqueue interruptions
1648 * @msecs: Time in milliseconds to sleep for
1649 */
1650 void msleep(unsigned int msecs)
1651 {
1652 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1653
1654 while (timeout)
1655 timeout = schedule_timeout_uninterruptible(timeout);
1656 }
1657
1658 EXPORT_SYMBOL(msleep);
1659
1660 /**
1661 * msleep_interruptible - sleep waiting for signals
1662 * @msecs: Time in milliseconds to sleep for
1663 */
1664 unsigned long msleep_interruptible(unsigned int msecs)
1665 {
1666 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1667
1668 while (timeout && !signal_pending(current))
1669 timeout = schedule_timeout_interruptible(timeout);
1670 return jiffies_to_msecs(timeout);
1671 }
1672
1673 EXPORT_SYMBOL(msleep_interruptible);
1674
1675 static void __sched do_usleep_range(unsigned long min, unsigned long max)
1676 {
1677 ktime_t kmin;
1678 unsigned long delta;
1679
1680 kmin = ktime_set(0, min * NSEC_PER_USEC);
1681 delta = (max - min) * NSEC_PER_USEC;
1682 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1683 }
1684
1685 /**
1686 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1687 * @min: Minimum time in usecs to sleep
1688 * @max: Maximum time in usecs to sleep
1689 */
1690 void __sched usleep_range(unsigned long min, unsigned long max)
1691 {
1692 __set_current_state(TASK_UNINTERRUPTIBLE);
1693 do_usleep_range(min, max);
1694 }
1695 EXPORT_SYMBOL(usleep_range);
This page took 0.172432 seconds and 6 git commands to generate.