Merge tag 'for-v3.6' of git://git.infradead.org/battery-2.6
[deliverable/linux.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
52
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55 EXPORT_SYMBOL(jiffies_64);
56
57 /*
58 * per-CPU timer vector definitions:
59 */
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
69 };
70
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
73 };
74
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 unsigned long active_timers;
81 struct tvec_root tv1;
82 struct tvec tv2;
83 struct tvec tv3;
84 struct tvec tv4;
85 struct tvec tv5;
86 } ____cacheline_aligned;
87
88 struct tvec_base boot_tvec_bases;
89 EXPORT_SYMBOL(boot_tvec_bases);
90 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
91
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 {
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
96 }
97
98 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 {
100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
101 }
102
103 static inline void timer_set_deferrable(struct timer_list *timer)
104 {
105 timer->base = TBASE_MAKE_DEFERRED(timer->base);
106 }
107
108 static inline void
109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110 {
111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 tbase_get_deferrable(timer->base));
113 }
114
115 static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
117 {
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
139 */
140 if (rem < HZ/4 && !force_up) /* round down */
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
151 }
152
153 /**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173 unsigned long __round_jiffies(unsigned long j, int cpu)
174 {
175 return round_jiffies_common(j, cpu, false);
176 }
177 EXPORT_SYMBOL_GPL(__round_jiffies);
178
179 /**
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
183 *
184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
188 *
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
192 *
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
196 *
197 * The return value is the rounded version of the @j parameter.
198 */
199 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200 {
201 unsigned long j0 = jiffies;
202
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
205 }
206 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207
208 /**
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
211 *
212 * round_jiffies() rounds an absolute time in the future (in jiffies)
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
216 *
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
220 *
221 * The return value is the rounded version of the @j parameter.
222 */
223 unsigned long round_jiffies(unsigned long j)
224 {
225 return round_jiffies_common(j, raw_smp_processor_id(), false);
226 }
227 EXPORT_SYMBOL_GPL(round_jiffies);
228
229 /**
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
232 *
233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
237 *
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
241 *
242 * The return value is the rounded version of the @j parameter.
243 */
244 unsigned long round_jiffies_relative(unsigned long j)
245 {
246 return __round_jiffies_relative(j, raw_smp_processor_id());
247 }
248 EXPORT_SYMBOL_GPL(round_jiffies_relative);
249
250 /**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260 unsigned long __round_jiffies_up(unsigned long j, int cpu)
261 {
262 return round_jiffies_common(j, cpu, true);
263 }
264 EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266 /**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277 {
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282 }
283 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285 /**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294 unsigned long round_jiffies_up(unsigned long j)
295 {
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297 }
298 EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300 /**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309 unsigned long round_jiffies_up_relative(unsigned long j)
310 {
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312 }
313 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
315 /**
316 * set_timer_slack - set the allowed slack for a timer
317 * @timer: the timer to be modified
318 * @slack_hz: the amount of time (in jiffies) allowed for rounding
319 *
320 * Set the amount of time, in jiffies, that a certain timer has
321 * in terms of slack. By setting this value, the timer subsystem
322 * will schedule the actual timer somewhere between
323 * the time mod_timer() asks for, and that time plus the slack.
324 *
325 * By setting the slack to -1, a percentage of the delay is used
326 * instead.
327 */
328 void set_timer_slack(struct timer_list *timer, int slack_hz)
329 {
330 timer->slack = slack_hz;
331 }
332 EXPORT_SYMBOL_GPL(set_timer_slack);
333
334 static void
335 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
336 {
337 unsigned long expires = timer->expires;
338 unsigned long idx = expires - base->timer_jiffies;
339 struct list_head *vec;
340
341 if (idx < TVR_SIZE) {
342 int i = expires & TVR_MASK;
343 vec = base->tv1.vec + i;
344 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
345 int i = (expires >> TVR_BITS) & TVN_MASK;
346 vec = base->tv2.vec + i;
347 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
348 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
349 vec = base->tv3.vec + i;
350 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
351 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
352 vec = base->tv4.vec + i;
353 } else if ((signed long) idx < 0) {
354 /*
355 * Can happen if you add a timer with expires == jiffies,
356 * or you set a timer to go off in the past
357 */
358 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
359 } else {
360 int i;
361 /* If the timeout is larger than 0xffffffff on 64-bit
362 * architectures then we use the maximum timeout:
363 */
364 if (idx > 0xffffffffUL) {
365 idx = 0xffffffffUL;
366 expires = idx + base->timer_jiffies;
367 }
368 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
369 vec = base->tv5.vec + i;
370 }
371 /*
372 * Timers are FIFO:
373 */
374 list_add_tail(&timer->entry, vec);
375 }
376
377 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
378 {
379 __internal_add_timer(base, timer);
380 /*
381 * Update base->active_timers and base->next_timer
382 */
383 if (!tbase_get_deferrable(timer->base)) {
384 if (time_before(timer->expires, base->next_timer))
385 base->next_timer = timer->expires;
386 base->active_timers++;
387 }
388 }
389
390 #ifdef CONFIG_TIMER_STATS
391 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
392 {
393 if (timer->start_site)
394 return;
395
396 timer->start_site = addr;
397 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
398 timer->start_pid = current->pid;
399 }
400
401 static void timer_stats_account_timer(struct timer_list *timer)
402 {
403 unsigned int flag = 0;
404
405 if (likely(!timer->start_site))
406 return;
407 if (unlikely(tbase_get_deferrable(timer->base)))
408 flag |= TIMER_STATS_FLAG_DEFERRABLE;
409
410 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
411 timer->function, timer->start_comm, flag);
412 }
413
414 #else
415 static void timer_stats_account_timer(struct timer_list *timer) {}
416 #endif
417
418 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
419
420 static struct debug_obj_descr timer_debug_descr;
421
422 static void *timer_debug_hint(void *addr)
423 {
424 return ((struct timer_list *) addr)->function;
425 }
426
427 /*
428 * fixup_init is called when:
429 * - an active object is initialized
430 */
431 static int timer_fixup_init(void *addr, enum debug_obj_state state)
432 {
433 struct timer_list *timer = addr;
434
435 switch (state) {
436 case ODEBUG_STATE_ACTIVE:
437 del_timer_sync(timer);
438 debug_object_init(timer, &timer_debug_descr);
439 return 1;
440 default:
441 return 0;
442 }
443 }
444
445 /* Stub timer callback for improperly used timers. */
446 static void stub_timer(unsigned long data)
447 {
448 WARN_ON(1);
449 }
450
451 /*
452 * fixup_activate is called when:
453 * - an active object is activated
454 * - an unknown object is activated (might be a statically initialized object)
455 */
456 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
457 {
458 struct timer_list *timer = addr;
459
460 switch (state) {
461
462 case ODEBUG_STATE_NOTAVAILABLE:
463 /*
464 * This is not really a fixup. The timer was
465 * statically initialized. We just make sure that it
466 * is tracked in the object tracker.
467 */
468 if (timer->entry.next == NULL &&
469 timer->entry.prev == TIMER_ENTRY_STATIC) {
470 debug_object_init(timer, &timer_debug_descr);
471 debug_object_activate(timer, &timer_debug_descr);
472 return 0;
473 } else {
474 setup_timer(timer, stub_timer, 0);
475 return 1;
476 }
477 return 0;
478
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
481
482 default:
483 return 0;
484 }
485 }
486
487 /*
488 * fixup_free is called when:
489 * - an active object is freed
490 */
491 static int timer_fixup_free(void *addr, enum debug_obj_state state)
492 {
493 struct timer_list *timer = addr;
494
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 del_timer_sync(timer);
498 debug_object_free(timer, &timer_debug_descr);
499 return 1;
500 default:
501 return 0;
502 }
503 }
504
505 /*
506 * fixup_assert_init is called when:
507 * - an untracked/uninit-ed object is found
508 */
509 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
510 {
511 struct timer_list *timer = addr;
512
513 switch (state) {
514 case ODEBUG_STATE_NOTAVAILABLE:
515 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
516 /*
517 * This is not really a fixup. The timer was
518 * statically initialized. We just make sure that it
519 * is tracked in the object tracker.
520 */
521 debug_object_init(timer, &timer_debug_descr);
522 return 0;
523 } else {
524 setup_timer(timer, stub_timer, 0);
525 return 1;
526 }
527 default:
528 return 0;
529 }
530 }
531
532 static struct debug_obj_descr timer_debug_descr = {
533 .name = "timer_list",
534 .debug_hint = timer_debug_hint,
535 .fixup_init = timer_fixup_init,
536 .fixup_activate = timer_fixup_activate,
537 .fixup_free = timer_fixup_free,
538 .fixup_assert_init = timer_fixup_assert_init,
539 };
540
541 static inline void debug_timer_init(struct timer_list *timer)
542 {
543 debug_object_init(timer, &timer_debug_descr);
544 }
545
546 static inline void debug_timer_activate(struct timer_list *timer)
547 {
548 debug_object_activate(timer, &timer_debug_descr);
549 }
550
551 static inline void debug_timer_deactivate(struct timer_list *timer)
552 {
553 debug_object_deactivate(timer, &timer_debug_descr);
554 }
555
556 static inline void debug_timer_free(struct timer_list *timer)
557 {
558 debug_object_free(timer, &timer_debug_descr);
559 }
560
561 static inline void debug_timer_assert_init(struct timer_list *timer)
562 {
563 debug_object_assert_init(timer, &timer_debug_descr);
564 }
565
566 static void __init_timer(struct timer_list *timer,
567 const char *name,
568 struct lock_class_key *key);
569
570 void init_timer_on_stack_key(struct timer_list *timer,
571 const char *name,
572 struct lock_class_key *key)
573 {
574 debug_object_init_on_stack(timer, &timer_debug_descr);
575 __init_timer(timer, name, key);
576 }
577 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
578
579 void destroy_timer_on_stack(struct timer_list *timer)
580 {
581 debug_object_free(timer, &timer_debug_descr);
582 }
583 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
584
585 #else
586 static inline void debug_timer_init(struct timer_list *timer) { }
587 static inline void debug_timer_activate(struct timer_list *timer) { }
588 static inline void debug_timer_deactivate(struct timer_list *timer) { }
589 static inline void debug_timer_assert_init(struct timer_list *timer) { }
590 #endif
591
592 static inline void debug_init(struct timer_list *timer)
593 {
594 debug_timer_init(timer);
595 trace_timer_init(timer);
596 }
597
598 static inline void
599 debug_activate(struct timer_list *timer, unsigned long expires)
600 {
601 debug_timer_activate(timer);
602 trace_timer_start(timer, expires);
603 }
604
605 static inline void debug_deactivate(struct timer_list *timer)
606 {
607 debug_timer_deactivate(timer);
608 trace_timer_cancel(timer);
609 }
610
611 static inline void debug_assert_init(struct timer_list *timer)
612 {
613 debug_timer_assert_init(timer);
614 }
615
616 static void __init_timer(struct timer_list *timer,
617 const char *name,
618 struct lock_class_key *key)
619 {
620 timer->entry.next = NULL;
621 timer->base = __raw_get_cpu_var(tvec_bases);
622 timer->slack = -1;
623 #ifdef CONFIG_TIMER_STATS
624 timer->start_site = NULL;
625 timer->start_pid = -1;
626 memset(timer->start_comm, 0, TASK_COMM_LEN);
627 #endif
628 lockdep_init_map(&timer->lockdep_map, name, key, 0);
629 }
630
631 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
632 const char *name,
633 struct lock_class_key *key,
634 void (*function)(unsigned long),
635 unsigned long data)
636 {
637 timer->function = function;
638 timer->data = data;
639 init_timer_on_stack_key(timer, name, key);
640 timer_set_deferrable(timer);
641 }
642 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
643
644 /**
645 * init_timer_key - initialize a timer
646 * @timer: the timer to be initialized
647 * @name: name of the timer
648 * @key: lockdep class key of the fake lock used for tracking timer
649 * sync lock dependencies
650 *
651 * init_timer_key() must be done to a timer prior calling *any* of the
652 * other timer functions.
653 */
654 void init_timer_key(struct timer_list *timer,
655 const char *name,
656 struct lock_class_key *key)
657 {
658 debug_init(timer);
659 __init_timer(timer, name, key);
660 }
661 EXPORT_SYMBOL(init_timer_key);
662
663 void init_timer_deferrable_key(struct timer_list *timer,
664 const char *name,
665 struct lock_class_key *key)
666 {
667 init_timer_key(timer, name, key);
668 timer_set_deferrable(timer);
669 }
670 EXPORT_SYMBOL(init_timer_deferrable_key);
671
672 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
673 {
674 struct list_head *entry = &timer->entry;
675
676 debug_deactivate(timer);
677
678 __list_del(entry->prev, entry->next);
679 if (clear_pending)
680 entry->next = NULL;
681 entry->prev = LIST_POISON2;
682 }
683
684 static inline void
685 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
686 {
687 detach_timer(timer, true);
688 if (!tbase_get_deferrable(timer->base))
689 timer->base->active_timers--;
690 }
691
692 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
693 bool clear_pending)
694 {
695 if (!timer_pending(timer))
696 return 0;
697
698 detach_timer(timer, clear_pending);
699 if (!tbase_get_deferrable(timer->base)) {
700 timer->base->active_timers--;
701 if (timer->expires == base->next_timer)
702 base->next_timer = base->timer_jiffies;
703 }
704 return 1;
705 }
706
707 /*
708 * We are using hashed locking: holding per_cpu(tvec_bases).lock
709 * means that all timers which are tied to this base via timer->base are
710 * locked, and the base itself is locked too.
711 *
712 * So __run_timers/migrate_timers can safely modify all timers which could
713 * be found on ->tvX lists.
714 *
715 * When the timer's base is locked, and the timer removed from list, it is
716 * possible to set timer->base = NULL and drop the lock: the timer remains
717 * locked.
718 */
719 static struct tvec_base *lock_timer_base(struct timer_list *timer,
720 unsigned long *flags)
721 __acquires(timer->base->lock)
722 {
723 struct tvec_base *base;
724
725 for (;;) {
726 struct tvec_base *prelock_base = timer->base;
727 base = tbase_get_base(prelock_base);
728 if (likely(base != NULL)) {
729 spin_lock_irqsave(&base->lock, *flags);
730 if (likely(prelock_base == timer->base))
731 return base;
732 /* The timer has migrated to another CPU */
733 spin_unlock_irqrestore(&base->lock, *flags);
734 }
735 cpu_relax();
736 }
737 }
738
739 static inline int
740 __mod_timer(struct timer_list *timer, unsigned long expires,
741 bool pending_only, int pinned)
742 {
743 struct tvec_base *base, *new_base;
744 unsigned long flags;
745 int ret = 0 , cpu;
746
747 timer_stats_timer_set_start_info(timer);
748 BUG_ON(!timer->function);
749
750 base = lock_timer_base(timer, &flags);
751
752 ret = detach_if_pending(timer, base, false);
753 if (!ret && pending_only)
754 goto out_unlock;
755
756 debug_activate(timer, expires);
757
758 cpu = smp_processor_id();
759
760 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
761 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
762 cpu = get_nohz_timer_target();
763 #endif
764 new_base = per_cpu(tvec_bases, cpu);
765
766 if (base != new_base) {
767 /*
768 * We are trying to schedule the timer on the local CPU.
769 * However we can't change timer's base while it is running,
770 * otherwise del_timer_sync() can't detect that the timer's
771 * handler yet has not finished. This also guarantees that
772 * the timer is serialized wrt itself.
773 */
774 if (likely(base->running_timer != timer)) {
775 /* See the comment in lock_timer_base() */
776 timer_set_base(timer, NULL);
777 spin_unlock(&base->lock);
778 base = new_base;
779 spin_lock(&base->lock);
780 timer_set_base(timer, base);
781 }
782 }
783
784 timer->expires = expires;
785 internal_add_timer(base, timer);
786
787 out_unlock:
788 spin_unlock_irqrestore(&base->lock, flags);
789
790 return ret;
791 }
792
793 /**
794 * mod_timer_pending - modify a pending timer's timeout
795 * @timer: the pending timer to be modified
796 * @expires: new timeout in jiffies
797 *
798 * mod_timer_pending() is the same for pending timers as mod_timer(),
799 * but will not re-activate and modify already deleted timers.
800 *
801 * It is useful for unserialized use of timers.
802 */
803 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
804 {
805 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
806 }
807 EXPORT_SYMBOL(mod_timer_pending);
808
809 /*
810 * Decide where to put the timer while taking the slack into account
811 *
812 * Algorithm:
813 * 1) calculate the maximum (absolute) time
814 * 2) calculate the highest bit where the expires and new max are different
815 * 3) use this bit to make a mask
816 * 4) use the bitmask to round down the maximum time, so that all last
817 * bits are zeros
818 */
819 static inline
820 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
821 {
822 unsigned long expires_limit, mask;
823 int bit;
824
825 if (timer->slack >= 0) {
826 expires_limit = expires + timer->slack;
827 } else {
828 long delta = expires - jiffies;
829
830 if (delta < 256)
831 return expires;
832
833 expires_limit = expires + delta / 256;
834 }
835 mask = expires ^ expires_limit;
836 if (mask == 0)
837 return expires;
838
839 bit = find_last_bit(&mask, BITS_PER_LONG);
840
841 mask = (1 << bit) - 1;
842
843 expires_limit = expires_limit & ~(mask);
844
845 return expires_limit;
846 }
847
848 /**
849 * mod_timer - modify a timer's timeout
850 * @timer: the timer to be modified
851 * @expires: new timeout in jiffies
852 *
853 * mod_timer() is a more efficient way to update the expire field of an
854 * active timer (if the timer is inactive it will be activated)
855 *
856 * mod_timer(timer, expires) is equivalent to:
857 *
858 * del_timer(timer); timer->expires = expires; add_timer(timer);
859 *
860 * Note that if there are multiple unserialized concurrent users of the
861 * same timer, then mod_timer() is the only safe way to modify the timeout,
862 * since add_timer() cannot modify an already running timer.
863 *
864 * The function returns whether it has modified a pending timer or not.
865 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
866 * active timer returns 1.)
867 */
868 int mod_timer(struct timer_list *timer, unsigned long expires)
869 {
870 expires = apply_slack(timer, expires);
871
872 /*
873 * This is a common optimization triggered by the
874 * networking code - if the timer is re-modified
875 * to be the same thing then just return:
876 */
877 if (timer_pending(timer) && timer->expires == expires)
878 return 1;
879
880 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
881 }
882 EXPORT_SYMBOL(mod_timer);
883
884 /**
885 * mod_timer_pinned - modify a timer's timeout
886 * @timer: the timer to be modified
887 * @expires: new timeout in jiffies
888 *
889 * mod_timer_pinned() is a way to update the expire field of an
890 * active timer (if the timer is inactive it will be activated)
891 * and to ensure that the timer is scheduled on the current CPU.
892 *
893 * Note that this does not prevent the timer from being migrated
894 * when the current CPU goes offline. If this is a problem for
895 * you, use CPU-hotplug notifiers to handle it correctly, for
896 * example, cancelling the timer when the corresponding CPU goes
897 * offline.
898 *
899 * mod_timer_pinned(timer, expires) is equivalent to:
900 *
901 * del_timer(timer); timer->expires = expires; add_timer(timer);
902 */
903 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
904 {
905 if (timer->expires == expires && timer_pending(timer))
906 return 1;
907
908 return __mod_timer(timer, expires, false, TIMER_PINNED);
909 }
910 EXPORT_SYMBOL(mod_timer_pinned);
911
912 /**
913 * add_timer - start a timer
914 * @timer: the timer to be added
915 *
916 * The kernel will do a ->function(->data) callback from the
917 * timer interrupt at the ->expires point in the future. The
918 * current time is 'jiffies'.
919 *
920 * The timer's ->expires, ->function (and if the handler uses it, ->data)
921 * fields must be set prior calling this function.
922 *
923 * Timers with an ->expires field in the past will be executed in the next
924 * timer tick.
925 */
926 void add_timer(struct timer_list *timer)
927 {
928 BUG_ON(timer_pending(timer));
929 mod_timer(timer, timer->expires);
930 }
931 EXPORT_SYMBOL(add_timer);
932
933 /**
934 * add_timer_on - start a timer on a particular CPU
935 * @timer: the timer to be added
936 * @cpu: the CPU to start it on
937 *
938 * This is not very scalable on SMP. Double adds are not possible.
939 */
940 void add_timer_on(struct timer_list *timer, int cpu)
941 {
942 struct tvec_base *base = per_cpu(tvec_bases, cpu);
943 unsigned long flags;
944
945 timer_stats_timer_set_start_info(timer);
946 BUG_ON(timer_pending(timer) || !timer->function);
947 spin_lock_irqsave(&base->lock, flags);
948 timer_set_base(timer, base);
949 debug_activate(timer, timer->expires);
950 internal_add_timer(base, timer);
951 /*
952 * Check whether the other CPU is idle and needs to be
953 * triggered to reevaluate the timer wheel when nohz is
954 * active. We are protected against the other CPU fiddling
955 * with the timer by holding the timer base lock. This also
956 * makes sure that a CPU on the way to idle can not evaluate
957 * the timer wheel.
958 */
959 wake_up_idle_cpu(cpu);
960 spin_unlock_irqrestore(&base->lock, flags);
961 }
962 EXPORT_SYMBOL_GPL(add_timer_on);
963
964 /**
965 * del_timer - deactive a timer.
966 * @timer: the timer to be deactivated
967 *
968 * del_timer() deactivates a timer - this works on both active and inactive
969 * timers.
970 *
971 * The function returns whether it has deactivated a pending timer or not.
972 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
973 * active timer returns 1.)
974 */
975 int del_timer(struct timer_list *timer)
976 {
977 struct tvec_base *base;
978 unsigned long flags;
979 int ret = 0;
980
981 debug_assert_init(timer);
982
983 timer_stats_timer_clear_start_info(timer);
984 if (timer_pending(timer)) {
985 base = lock_timer_base(timer, &flags);
986 ret = detach_if_pending(timer, base, true);
987 spin_unlock_irqrestore(&base->lock, flags);
988 }
989
990 return ret;
991 }
992 EXPORT_SYMBOL(del_timer);
993
994 /**
995 * try_to_del_timer_sync - Try to deactivate a timer
996 * @timer: timer do del
997 *
998 * This function tries to deactivate a timer. Upon successful (ret >= 0)
999 * exit the timer is not queued and the handler is not running on any CPU.
1000 */
1001 int try_to_del_timer_sync(struct timer_list *timer)
1002 {
1003 struct tvec_base *base;
1004 unsigned long flags;
1005 int ret = -1;
1006
1007 debug_assert_init(timer);
1008
1009 base = lock_timer_base(timer, &flags);
1010
1011 if (base->running_timer != timer) {
1012 timer_stats_timer_clear_start_info(timer);
1013 ret = detach_if_pending(timer, base, true);
1014 }
1015 spin_unlock_irqrestore(&base->lock, flags);
1016
1017 return ret;
1018 }
1019 EXPORT_SYMBOL(try_to_del_timer_sync);
1020
1021 #ifdef CONFIG_SMP
1022 /**
1023 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1024 * @timer: the timer to be deactivated
1025 *
1026 * This function only differs from del_timer() on SMP: besides deactivating
1027 * the timer it also makes sure the handler has finished executing on other
1028 * CPUs.
1029 *
1030 * Synchronization rules: Callers must prevent restarting of the timer,
1031 * otherwise this function is meaningless. It must not be called from
1032 * interrupt contexts. The caller must not hold locks which would prevent
1033 * completion of the timer's handler. The timer's handler must not call
1034 * add_timer_on(). Upon exit the timer is not queued and the handler is
1035 * not running on any CPU.
1036 *
1037 * Note: You must not hold locks that are held in interrupt context
1038 * while calling this function. Even if the lock has nothing to do
1039 * with the timer in question. Here's why:
1040 *
1041 * CPU0 CPU1
1042 * ---- ----
1043 * <SOFTIRQ>
1044 * call_timer_fn();
1045 * base->running_timer = mytimer;
1046 * spin_lock_irq(somelock);
1047 * <IRQ>
1048 * spin_lock(somelock);
1049 * del_timer_sync(mytimer);
1050 * while (base->running_timer == mytimer);
1051 *
1052 * Now del_timer_sync() will never return and never release somelock.
1053 * The interrupt on the other CPU is waiting to grab somelock but
1054 * it has interrupted the softirq that CPU0 is waiting to finish.
1055 *
1056 * The function returns whether it has deactivated a pending timer or not.
1057 */
1058 int del_timer_sync(struct timer_list *timer)
1059 {
1060 #ifdef CONFIG_LOCKDEP
1061 unsigned long flags;
1062
1063 /*
1064 * If lockdep gives a backtrace here, please reference
1065 * the synchronization rules above.
1066 */
1067 local_irq_save(flags);
1068 lock_map_acquire(&timer->lockdep_map);
1069 lock_map_release(&timer->lockdep_map);
1070 local_irq_restore(flags);
1071 #endif
1072 /*
1073 * don't use it in hardirq context, because it
1074 * could lead to deadlock.
1075 */
1076 WARN_ON(in_irq());
1077 for (;;) {
1078 int ret = try_to_del_timer_sync(timer);
1079 if (ret >= 0)
1080 return ret;
1081 cpu_relax();
1082 }
1083 }
1084 EXPORT_SYMBOL(del_timer_sync);
1085 #endif
1086
1087 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1088 {
1089 /* cascade all the timers from tv up one level */
1090 struct timer_list *timer, *tmp;
1091 struct list_head tv_list;
1092
1093 list_replace_init(tv->vec + index, &tv_list);
1094
1095 /*
1096 * We are removing _all_ timers from the list, so we
1097 * don't have to detach them individually.
1098 */
1099 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1100 BUG_ON(tbase_get_base(timer->base) != base);
1101 /* No accounting, while moving them */
1102 __internal_add_timer(base, timer);
1103 }
1104
1105 return index;
1106 }
1107
1108 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1109 unsigned long data)
1110 {
1111 int preempt_count = preempt_count();
1112
1113 #ifdef CONFIG_LOCKDEP
1114 /*
1115 * It is permissible to free the timer from inside the
1116 * function that is called from it, this we need to take into
1117 * account for lockdep too. To avoid bogus "held lock freed"
1118 * warnings as well as problems when looking into
1119 * timer->lockdep_map, make a copy and use that here.
1120 */
1121 struct lockdep_map lockdep_map;
1122
1123 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1124 #endif
1125 /*
1126 * Couple the lock chain with the lock chain at
1127 * del_timer_sync() by acquiring the lock_map around the fn()
1128 * call here and in del_timer_sync().
1129 */
1130 lock_map_acquire(&lockdep_map);
1131
1132 trace_timer_expire_entry(timer);
1133 fn(data);
1134 trace_timer_expire_exit(timer);
1135
1136 lock_map_release(&lockdep_map);
1137
1138 if (preempt_count != preempt_count()) {
1139 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1140 fn, preempt_count, preempt_count());
1141 /*
1142 * Restore the preempt count. That gives us a decent
1143 * chance to survive and extract information. If the
1144 * callback kept a lock held, bad luck, but not worse
1145 * than the BUG() we had.
1146 */
1147 preempt_count() = preempt_count;
1148 }
1149 }
1150
1151 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1152
1153 /**
1154 * __run_timers - run all expired timers (if any) on this CPU.
1155 * @base: the timer vector to be processed.
1156 *
1157 * This function cascades all vectors and executes all expired timer
1158 * vectors.
1159 */
1160 static inline void __run_timers(struct tvec_base *base)
1161 {
1162 struct timer_list *timer;
1163
1164 spin_lock_irq(&base->lock);
1165 while (time_after_eq(jiffies, base->timer_jiffies)) {
1166 struct list_head work_list;
1167 struct list_head *head = &work_list;
1168 int index = base->timer_jiffies & TVR_MASK;
1169
1170 /*
1171 * Cascade timers:
1172 */
1173 if (!index &&
1174 (!cascade(base, &base->tv2, INDEX(0))) &&
1175 (!cascade(base, &base->tv3, INDEX(1))) &&
1176 !cascade(base, &base->tv4, INDEX(2)))
1177 cascade(base, &base->tv5, INDEX(3));
1178 ++base->timer_jiffies;
1179 list_replace_init(base->tv1.vec + index, &work_list);
1180 while (!list_empty(head)) {
1181 void (*fn)(unsigned long);
1182 unsigned long data;
1183
1184 timer = list_first_entry(head, struct timer_list,entry);
1185 fn = timer->function;
1186 data = timer->data;
1187
1188 timer_stats_account_timer(timer);
1189
1190 base->running_timer = timer;
1191 detach_expired_timer(timer, base);
1192
1193 spin_unlock_irq(&base->lock);
1194 call_timer_fn(timer, fn, data);
1195 spin_lock_irq(&base->lock);
1196 }
1197 }
1198 base->running_timer = NULL;
1199 spin_unlock_irq(&base->lock);
1200 }
1201
1202 #ifdef CONFIG_NO_HZ
1203 /*
1204 * Find out when the next timer event is due to happen. This
1205 * is used on S/390 to stop all activity when a CPU is idle.
1206 * This function needs to be called with interrupts disabled.
1207 */
1208 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1209 {
1210 unsigned long timer_jiffies = base->timer_jiffies;
1211 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1212 int index, slot, array, found = 0;
1213 struct timer_list *nte;
1214 struct tvec *varray[4];
1215
1216 /* Look for timer events in tv1. */
1217 index = slot = timer_jiffies & TVR_MASK;
1218 do {
1219 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1220 if (tbase_get_deferrable(nte->base))
1221 continue;
1222
1223 found = 1;
1224 expires = nte->expires;
1225 /* Look at the cascade bucket(s)? */
1226 if (!index || slot < index)
1227 goto cascade;
1228 return expires;
1229 }
1230 slot = (slot + 1) & TVR_MASK;
1231 } while (slot != index);
1232
1233 cascade:
1234 /* Calculate the next cascade event */
1235 if (index)
1236 timer_jiffies += TVR_SIZE - index;
1237 timer_jiffies >>= TVR_BITS;
1238
1239 /* Check tv2-tv5. */
1240 varray[0] = &base->tv2;
1241 varray[1] = &base->tv3;
1242 varray[2] = &base->tv4;
1243 varray[3] = &base->tv5;
1244
1245 for (array = 0; array < 4; array++) {
1246 struct tvec *varp = varray[array];
1247
1248 index = slot = timer_jiffies & TVN_MASK;
1249 do {
1250 list_for_each_entry(nte, varp->vec + slot, entry) {
1251 if (tbase_get_deferrable(nte->base))
1252 continue;
1253
1254 found = 1;
1255 if (time_before(nte->expires, expires))
1256 expires = nte->expires;
1257 }
1258 /*
1259 * Do we still search for the first timer or are
1260 * we looking up the cascade buckets ?
1261 */
1262 if (found) {
1263 /* Look at the cascade bucket(s)? */
1264 if (!index || slot < index)
1265 break;
1266 return expires;
1267 }
1268 slot = (slot + 1) & TVN_MASK;
1269 } while (slot != index);
1270
1271 if (index)
1272 timer_jiffies += TVN_SIZE - index;
1273 timer_jiffies >>= TVN_BITS;
1274 }
1275 return expires;
1276 }
1277
1278 /*
1279 * Check, if the next hrtimer event is before the next timer wheel
1280 * event:
1281 */
1282 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1283 unsigned long expires)
1284 {
1285 ktime_t hr_delta = hrtimer_get_next_event();
1286 struct timespec tsdelta;
1287 unsigned long delta;
1288
1289 if (hr_delta.tv64 == KTIME_MAX)
1290 return expires;
1291
1292 /*
1293 * Expired timer available, let it expire in the next tick
1294 */
1295 if (hr_delta.tv64 <= 0)
1296 return now + 1;
1297
1298 tsdelta = ktime_to_timespec(hr_delta);
1299 delta = timespec_to_jiffies(&tsdelta);
1300
1301 /*
1302 * Limit the delta to the max value, which is checked in
1303 * tick_nohz_stop_sched_tick():
1304 */
1305 if (delta > NEXT_TIMER_MAX_DELTA)
1306 delta = NEXT_TIMER_MAX_DELTA;
1307
1308 /*
1309 * Take rounding errors in to account and make sure, that it
1310 * expires in the next tick. Otherwise we go into an endless
1311 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1312 * the timer softirq
1313 */
1314 if (delta < 1)
1315 delta = 1;
1316 now += delta;
1317 if (time_before(now, expires))
1318 return now;
1319 return expires;
1320 }
1321
1322 /**
1323 * get_next_timer_interrupt - return the jiffy of the next pending timer
1324 * @now: current time (in jiffies)
1325 */
1326 unsigned long get_next_timer_interrupt(unsigned long now)
1327 {
1328 struct tvec_base *base = __this_cpu_read(tvec_bases);
1329 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1330
1331 /*
1332 * Pretend that there is no timer pending if the cpu is offline.
1333 * Possible pending timers will be migrated later to an active cpu.
1334 */
1335 if (cpu_is_offline(smp_processor_id()))
1336 return expires;
1337
1338 spin_lock(&base->lock);
1339 if (base->active_timers) {
1340 if (time_before_eq(base->next_timer, base->timer_jiffies))
1341 base->next_timer = __next_timer_interrupt(base);
1342 expires = base->next_timer;
1343 }
1344 spin_unlock(&base->lock);
1345
1346 if (time_before_eq(expires, now))
1347 return now;
1348
1349 return cmp_next_hrtimer_event(now, expires);
1350 }
1351 #endif
1352
1353 /*
1354 * Called from the timer interrupt handler to charge one tick to the current
1355 * process. user_tick is 1 if the tick is user time, 0 for system.
1356 */
1357 void update_process_times(int user_tick)
1358 {
1359 struct task_struct *p = current;
1360 int cpu = smp_processor_id();
1361
1362 /* Note: this timer irq context must be accounted for as well. */
1363 account_process_tick(p, user_tick);
1364 run_local_timers();
1365 rcu_check_callbacks(cpu, user_tick);
1366 printk_tick();
1367 #ifdef CONFIG_IRQ_WORK
1368 if (in_irq())
1369 irq_work_run();
1370 #endif
1371 scheduler_tick();
1372 run_posix_cpu_timers(p);
1373 }
1374
1375 /*
1376 * This function runs timers and the timer-tq in bottom half context.
1377 */
1378 static void run_timer_softirq(struct softirq_action *h)
1379 {
1380 struct tvec_base *base = __this_cpu_read(tvec_bases);
1381
1382 hrtimer_run_pending();
1383
1384 if (time_after_eq(jiffies, base->timer_jiffies))
1385 __run_timers(base);
1386 }
1387
1388 /*
1389 * Called by the local, per-CPU timer interrupt on SMP.
1390 */
1391 void run_local_timers(void)
1392 {
1393 hrtimer_run_queues();
1394 raise_softirq(TIMER_SOFTIRQ);
1395 }
1396
1397 #ifdef __ARCH_WANT_SYS_ALARM
1398
1399 /*
1400 * For backwards compatibility? This can be done in libc so Alpha
1401 * and all newer ports shouldn't need it.
1402 */
1403 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1404 {
1405 return alarm_setitimer(seconds);
1406 }
1407
1408 #endif
1409
1410 #ifndef __alpha__
1411
1412 /*
1413 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1414 * should be moved into arch/i386 instead?
1415 */
1416
1417 /**
1418 * sys_getpid - return the thread group id of the current process
1419 *
1420 * Note, despite the name, this returns the tgid not the pid. The tgid and
1421 * the pid are identical unless CLONE_THREAD was specified on clone() in
1422 * which case the tgid is the same in all threads of the same group.
1423 *
1424 * This is SMP safe as current->tgid does not change.
1425 */
1426 SYSCALL_DEFINE0(getpid)
1427 {
1428 return task_tgid_vnr(current);
1429 }
1430
1431 /*
1432 * Accessing ->real_parent is not SMP-safe, it could
1433 * change from under us. However, we can use a stale
1434 * value of ->real_parent under rcu_read_lock(), see
1435 * release_task()->call_rcu(delayed_put_task_struct).
1436 */
1437 SYSCALL_DEFINE0(getppid)
1438 {
1439 int pid;
1440
1441 rcu_read_lock();
1442 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1443 rcu_read_unlock();
1444
1445 return pid;
1446 }
1447
1448 SYSCALL_DEFINE0(getuid)
1449 {
1450 /* Only we change this so SMP safe */
1451 return from_kuid_munged(current_user_ns(), current_uid());
1452 }
1453
1454 SYSCALL_DEFINE0(geteuid)
1455 {
1456 /* Only we change this so SMP safe */
1457 return from_kuid_munged(current_user_ns(), current_euid());
1458 }
1459
1460 SYSCALL_DEFINE0(getgid)
1461 {
1462 /* Only we change this so SMP safe */
1463 return from_kgid_munged(current_user_ns(), current_gid());
1464 }
1465
1466 SYSCALL_DEFINE0(getegid)
1467 {
1468 /* Only we change this so SMP safe */
1469 return from_kgid_munged(current_user_ns(), current_egid());
1470 }
1471
1472 #endif
1473
1474 static void process_timeout(unsigned long __data)
1475 {
1476 wake_up_process((struct task_struct *)__data);
1477 }
1478
1479 /**
1480 * schedule_timeout - sleep until timeout
1481 * @timeout: timeout value in jiffies
1482 *
1483 * Make the current task sleep until @timeout jiffies have
1484 * elapsed. The routine will return immediately unless
1485 * the current task state has been set (see set_current_state()).
1486 *
1487 * You can set the task state as follows -
1488 *
1489 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1490 * pass before the routine returns. The routine will return 0
1491 *
1492 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1493 * delivered to the current task. In this case the remaining time
1494 * in jiffies will be returned, or 0 if the timer expired in time
1495 *
1496 * The current task state is guaranteed to be TASK_RUNNING when this
1497 * routine returns.
1498 *
1499 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1500 * the CPU away without a bound on the timeout. In this case the return
1501 * value will be %MAX_SCHEDULE_TIMEOUT.
1502 *
1503 * In all cases the return value is guaranteed to be non-negative.
1504 */
1505 signed long __sched schedule_timeout(signed long timeout)
1506 {
1507 struct timer_list timer;
1508 unsigned long expire;
1509
1510 switch (timeout)
1511 {
1512 case MAX_SCHEDULE_TIMEOUT:
1513 /*
1514 * These two special cases are useful to be comfortable
1515 * in the caller. Nothing more. We could take
1516 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1517 * but I' d like to return a valid offset (>=0) to allow
1518 * the caller to do everything it want with the retval.
1519 */
1520 schedule();
1521 goto out;
1522 default:
1523 /*
1524 * Another bit of PARANOID. Note that the retval will be
1525 * 0 since no piece of kernel is supposed to do a check
1526 * for a negative retval of schedule_timeout() (since it
1527 * should never happens anyway). You just have the printk()
1528 * that will tell you if something is gone wrong and where.
1529 */
1530 if (timeout < 0) {
1531 printk(KERN_ERR "schedule_timeout: wrong timeout "
1532 "value %lx\n", timeout);
1533 dump_stack();
1534 current->state = TASK_RUNNING;
1535 goto out;
1536 }
1537 }
1538
1539 expire = timeout + jiffies;
1540
1541 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1542 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1543 schedule();
1544 del_singleshot_timer_sync(&timer);
1545
1546 /* Remove the timer from the object tracker */
1547 destroy_timer_on_stack(&timer);
1548
1549 timeout = expire - jiffies;
1550
1551 out:
1552 return timeout < 0 ? 0 : timeout;
1553 }
1554 EXPORT_SYMBOL(schedule_timeout);
1555
1556 /*
1557 * We can use __set_current_state() here because schedule_timeout() calls
1558 * schedule() unconditionally.
1559 */
1560 signed long __sched schedule_timeout_interruptible(signed long timeout)
1561 {
1562 __set_current_state(TASK_INTERRUPTIBLE);
1563 return schedule_timeout(timeout);
1564 }
1565 EXPORT_SYMBOL(schedule_timeout_interruptible);
1566
1567 signed long __sched schedule_timeout_killable(signed long timeout)
1568 {
1569 __set_current_state(TASK_KILLABLE);
1570 return schedule_timeout(timeout);
1571 }
1572 EXPORT_SYMBOL(schedule_timeout_killable);
1573
1574 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1575 {
1576 __set_current_state(TASK_UNINTERRUPTIBLE);
1577 return schedule_timeout(timeout);
1578 }
1579 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1580
1581 /* Thread ID - the internal kernel "pid" */
1582 SYSCALL_DEFINE0(gettid)
1583 {
1584 return task_pid_vnr(current);
1585 }
1586
1587 /**
1588 * do_sysinfo - fill in sysinfo struct
1589 * @info: pointer to buffer to fill
1590 */
1591 int do_sysinfo(struct sysinfo *info)
1592 {
1593 unsigned long mem_total, sav_total;
1594 unsigned int mem_unit, bitcount;
1595 struct timespec tp;
1596
1597 memset(info, 0, sizeof(struct sysinfo));
1598
1599 ktime_get_ts(&tp);
1600 monotonic_to_bootbased(&tp);
1601 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1602
1603 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1604
1605 info->procs = nr_threads;
1606
1607 si_meminfo(info);
1608 si_swapinfo(info);
1609
1610 /*
1611 * If the sum of all the available memory (i.e. ram + swap)
1612 * is less than can be stored in a 32 bit unsigned long then
1613 * we can be binary compatible with 2.2.x kernels. If not,
1614 * well, in that case 2.2.x was broken anyways...
1615 *
1616 * -Erik Andersen <andersee@debian.org>
1617 */
1618
1619 mem_total = info->totalram + info->totalswap;
1620 if (mem_total < info->totalram || mem_total < info->totalswap)
1621 goto out;
1622 bitcount = 0;
1623 mem_unit = info->mem_unit;
1624 while (mem_unit > 1) {
1625 bitcount++;
1626 mem_unit >>= 1;
1627 sav_total = mem_total;
1628 mem_total <<= 1;
1629 if (mem_total < sav_total)
1630 goto out;
1631 }
1632
1633 /*
1634 * If mem_total did not overflow, multiply all memory values by
1635 * info->mem_unit and set it to 1. This leaves things compatible
1636 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1637 * kernels...
1638 */
1639
1640 info->mem_unit = 1;
1641 info->totalram <<= bitcount;
1642 info->freeram <<= bitcount;
1643 info->sharedram <<= bitcount;
1644 info->bufferram <<= bitcount;
1645 info->totalswap <<= bitcount;
1646 info->freeswap <<= bitcount;
1647 info->totalhigh <<= bitcount;
1648 info->freehigh <<= bitcount;
1649
1650 out:
1651 return 0;
1652 }
1653
1654 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1655 {
1656 struct sysinfo val;
1657
1658 do_sysinfo(&val);
1659
1660 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1661 return -EFAULT;
1662
1663 return 0;
1664 }
1665
1666 static int __cpuinit init_timers_cpu(int cpu)
1667 {
1668 int j;
1669 struct tvec_base *base;
1670 static char __cpuinitdata tvec_base_done[NR_CPUS];
1671
1672 if (!tvec_base_done[cpu]) {
1673 static char boot_done;
1674
1675 if (boot_done) {
1676 /*
1677 * The APs use this path later in boot
1678 */
1679 base = kmalloc_node(sizeof(*base),
1680 GFP_KERNEL | __GFP_ZERO,
1681 cpu_to_node(cpu));
1682 if (!base)
1683 return -ENOMEM;
1684
1685 /* Make sure that tvec_base is 2 byte aligned */
1686 if (tbase_get_deferrable(base)) {
1687 WARN_ON(1);
1688 kfree(base);
1689 return -ENOMEM;
1690 }
1691 per_cpu(tvec_bases, cpu) = base;
1692 } else {
1693 /*
1694 * This is for the boot CPU - we use compile-time
1695 * static initialisation because per-cpu memory isn't
1696 * ready yet and because the memory allocators are not
1697 * initialised either.
1698 */
1699 boot_done = 1;
1700 base = &boot_tvec_bases;
1701 }
1702 tvec_base_done[cpu] = 1;
1703 } else {
1704 base = per_cpu(tvec_bases, cpu);
1705 }
1706
1707 spin_lock_init(&base->lock);
1708
1709 for (j = 0; j < TVN_SIZE; j++) {
1710 INIT_LIST_HEAD(base->tv5.vec + j);
1711 INIT_LIST_HEAD(base->tv4.vec + j);
1712 INIT_LIST_HEAD(base->tv3.vec + j);
1713 INIT_LIST_HEAD(base->tv2.vec + j);
1714 }
1715 for (j = 0; j < TVR_SIZE; j++)
1716 INIT_LIST_HEAD(base->tv1.vec + j);
1717
1718 base->timer_jiffies = jiffies;
1719 base->next_timer = base->timer_jiffies;
1720 base->active_timers = 0;
1721 return 0;
1722 }
1723
1724 #ifdef CONFIG_HOTPLUG_CPU
1725 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1726 {
1727 struct timer_list *timer;
1728
1729 while (!list_empty(head)) {
1730 timer = list_first_entry(head, struct timer_list, entry);
1731 /* We ignore the accounting on the dying cpu */
1732 detach_timer(timer, false);
1733 timer_set_base(timer, new_base);
1734 internal_add_timer(new_base, timer);
1735 }
1736 }
1737
1738 static void __cpuinit migrate_timers(int cpu)
1739 {
1740 struct tvec_base *old_base;
1741 struct tvec_base *new_base;
1742 int i;
1743
1744 BUG_ON(cpu_online(cpu));
1745 old_base = per_cpu(tvec_bases, cpu);
1746 new_base = get_cpu_var(tvec_bases);
1747 /*
1748 * The caller is globally serialized and nobody else
1749 * takes two locks at once, deadlock is not possible.
1750 */
1751 spin_lock_irq(&new_base->lock);
1752 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1753
1754 BUG_ON(old_base->running_timer);
1755
1756 for (i = 0; i < TVR_SIZE; i++)
1757 migrate_timer_list(new_base, old_base->tv1.vec + i);
1758 for (i = 0; i < TVN_SIZE; i++) {
1759 migrate_timer_list(new_base, old_base->tv2.vec + i);
1760 migrate_timer_list(new_base, old_base->tv3.vec + i);
1761 migrate_timer_list(new_base, old_base->tv4.vec + i);
1762 migrate_timer_list(new_base, old_base->tv5.vec + i);
1763 }
1764
1765 spin_unlock(&old_base->lock);
1766 spin_unlock_irq(&new_base->lock);
1767 put_cpu_var(tvec_bases);
1768 }
1769 #endif /* CONFIG_HOTPLUG_CPU */
1770
1771 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1772 unsigned long action, void *hcpu)
1773 {
1774 long cpu = (long)hcpu;
1775 int err;
1776
1777 switch(action) {
1778 case CPU_UP_PREPARE:
1779 case CPU_UP_PREPARE_FROZEN:
1780 err = init_timers_cpu(cpu);
1781 if (err < 0)
1782 return notifier_from_errno(err);
1783 break;
1784 #ifdef CONFIG_HOTPLUG_CPU
1785 case CPU_DEAD:
1786 case CPU_DEAD_FROZEN:
1787 migrate_timers(cpu);
1788 break;
1789 #endif
1790 default:
1791 break;
1792 }
1793 return NOTIFY_OK;
1794 }
1795
1796 static struct notifier_block __cpuinitdata timers_nb = {
1797 .notifier_call = timer_cpu_notify,
1798 };
1799
1800
1801 void __init init_timers(void)
1802 {
1803 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1804 (void *)(long)smp_processor_id());
1805
1806 init_timer_stats();
1807
1808 BUG_ON(err != NOTIFY_OK);
1809 register_cpu_notifier(&timers_nb);
1810 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1811 }
1812
1813 /**
1814 * msleep - sleep safely even with waitqueue interruptions
1815 * @msecs: Time in milliseconds to sleep for
1816 */
1817 void msleep(unsigned int msecs)
1818 {
1819 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1820
1821 while (timeout)
1822 timeout = schedule_timeout_uninterruptible(timeout);
1823 }
1824
1825 EXPORT_SYMBOL(msleep);
1826
1827 /**
1828 * msleep_interruptible - sleep waiting for signals
1829 * @msecs: Time in milliseconds to sleep for
1830 */
1831 unsigned long msleep_interruptible(unsigned int msecs)
1832 {
1833 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1834
1835 while (timeout && !signal_pending(current))
1836 timeout = schedule_timeout_interruptible(timeout);
1837 return jiffies_to_msecs(timeout);
1838 }
1839
1840 EXPORT_SYMBOL(msleep_interruptible);
1841
1842 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1843 {
1844 ktime_t kmin;
1845 unsigned long delta;
1846
1847 kmin = ktime_set(0, min * NSEC_PER_USEC);
1848 delta = (max - min) * NSEC_PER_USEC;
1849 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1850 }
1851
1852 /**
1853 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1854 * @min: Minimum time in usecs to sleep
1855 * @max: Maximum time in usecs to sleep
1856 */
1857 void usleep_range(unsigned long min, unsigned long max)
1858 {
1859 __set_current_state(TASK_UNINTERRUPTIBLE);
1860 do_usleep_range(min, max);
1861 }
1862 EXPORT_SYMBOL(usleep_range);
This page took 0.076412 seconds and 5 git commands to generate.