ring-buffer: Move the adding of the extended timestamp out of line
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
135
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201 }
202
203 /*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218 }
219
220 /**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259 }
260
261 /**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
282
283 struct buffer_data_page {
284 u64 time_stamp; /* page time stamp */
285 local_t commit; /* write committed index */
286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
287 };
288
289 /*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
297 struct buffer_page {
298 struct list_head list; /* list of buffer pages */
299 local_t write; /* index for next write */
300 unsigned read; /* index for next read */
301 local_t entries; /* entries on this page */
302 unsigned long real_end; /* real end of data */
303 struct buffer_data_page *page; /* Actual data page */
304 };
305
306 /*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318 #define RB_WRITE_MASK 0xfffff
319 #define RB_WRITE_INTCNT (1 << 20)
320
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 local_set(&bpage->commit, 0);
324 }
325
326 /**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
332 size_t ring_buffer_page_len(void *page)
333 {
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
336 }
337
338 /*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 free_page((unsigned long)bpage->page);
345 kfree(bpage);
346 }
347
348 /*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351 static inline int test_time_stamp(u64 delta)
352 {
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356 }
357
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 struct buffer_data_page field;
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
391 }
392
393 struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
396 wait_queue_head_t full_waiters;
397 bool waiters_pending;
398 bool full_waiters_pending;
399 bool wakeup_full;
400 };
401
402 /*
403 * Structure to hold event state and handle nested events.
404 */
405 struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411 };
412
413 /*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422 enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428 };
429
430 /*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433 struct ring_buffer_per_cpu {
434 int cpu;
435 atomic_t record_disabled;
436 struct ring_buffer *buffer;
437 raw_spinlock_t reader_lock; /* serialize readers */
438 arch_spinlock_t lock;
439 struct lock_class_key lock_key;
440 unsigned int nr_pages;
441 unsigned int current_context;
442 struct list_head *pages;
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
445 struct buffer_page *commit_page; /* committed pages */
446 struct buffer_page *reader_page;
447 unsigned long lost_events;
448 unsigned long last_overrun;
449 local_t entries_bytes;
450 local_t entries;
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
454 local_t committing;
455 local_t commits;
456 unsigned long read;
457 unsigned long read_bytes;
458 u64 write_stamp;
459 u64 read_stamp;
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
463 struct work_struct update_pages_work;
464 struct completion update_done;
465
466 struct rb_irq_work irq_work;
467 };
468
469 struct ring_buffer {
470 unsigned flags;
471 int cpus;
472 atomic_t record_disabled;
473 atomic_t resize_disabled;
474 cpumask_var_t cpumask;
475
476 struct lock_class_key *reader_lock_key;
477
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
481
482 #ifdef CONFIG_HOTPLUG_CPU
483 struct notifier_block cpu_notify;
484 #endif
485 u64 (*clock)(void);
486
487 struct rb_irq_work irq_work;
488 };
489
490 struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
496 u64 read_stamp;
497 };
498
499 /*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
514 }
515
516 /**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
531 int ret = 0;
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
538 if (cpu == RING_BUFFER_ALL_CPUS) {
539 work = &buffer->irq_work;
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
550 while (true) {
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
604
605 schedule();
606 }
607
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
612
613 return ret;
614 }
615
616 /**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632 {
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
646 poll_wait(filp, &work->waiters, poll_table);
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667 }
668
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
683 })
684
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692 }
693
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696 u64 time;
697
698 preempt_disable_notrace();
699 time = rb_time_stamp(buffer);
700 preempt_enable_no_resched_notrace();
701
702 return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708 {
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
714 /*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783 #define RB_PAGE_NORMAL 0UL
784 #define RB_PAGE_HEAD 1UL
785 #define RB_PAGE_UPDATE 2UL
786
787
788 #define RB_FLAG_MASK 3UL
789
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED 4UL
792
793 /*
794 * rb_list_head - remove any bit
795 */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802
803 /*
804 * rb_is_head_page - test if the given page is the head page
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814 {
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823 }
824
825 /*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
832 static int rb_is_reader_page(struct buffer_page *page)
833 {
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837 }
838
839 /*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844 {
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850 }
851
852 /*
853 * rb_head_page_activate - sets up head page
854 */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868
869 static void rb_list_head_clear(struct list_head *list)
870 {
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874 }
875
876 /*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889 }
890
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895 {
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912 }
913
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918 {
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921 }
922
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927 {
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930 }
931
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936 {
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939 }
940
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943 {
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947 }
948
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985 }
986
987 static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989 {
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998
999 return ret == val;
1000 }
1001
1002 /*
1003 * rb_tail_page_update - move the tail page forward
1004 *
1005 * Returns 1 if moved tail page, 0 if someone else did.
1006 */
1007 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008 struct buffer_page *tail_page,
1009 struct buffer_page *next_page)
1010 {
1011 struct buffer_page *old_tail;
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014 int ret = 0;
1015
1016 /*
1017 * The tail page now needs to be moved forward.
1018 *
1019 * We need to reset the tail page, but without messing
1020 * with possible erasing of data brought in by interrupts
1021 * that have moved the tail page and are currently on it.
1022 *
1023 * We add a counter to the write field to denote this.
1024 */
1025 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027
1028 /*
1029 * Just make sure we have seen our old_write and synchronize
1030 * with any interrupts that come in.
1031 */
1032 barrier();
1033
1034 /*
1035 * If the tail page is still the same as what we think
1036 * it is, then it is up to us to update the tail
1037 * pointer.
1038 */
1039 if (tail_page == cpu_buffer->tail_page) {
1040 /* Zero the write counter */
1041 unsigned long val = old_write & ~RB_WRITE_MASK;
1042 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043
1044 /*
1045 * This will only succeed if an interrupt did
1046 * not come in and change it. In which case, we
1047 * do not want to modify it.
1048 *
1049 * We add (void) to let the compiler know that we do not care
1050 * about the return value of these functions. We use the
1051 * cmpxchg to only update if an interrupt did not already
1052 * do it for us. If the cmpxchg fails, we don't care.
1053 */
1054 (void)local_cmpxchg(&next_page->write, old_write, val);
1055 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1056
1057 /*
1058 * No need to worry about races with clearing out the commit.
1059 * it only can increment when a commit takes place. But that
1060 * only happens in the outer most nested commit.
1061 */
1062 local_set(&next_page->page->commit, 0);
1063
1064 old_tail = cmpxchg(&cpu_buffer->tail_page,
1065 tail_page, next_page);
1066
1067 if (old_tail == tail_page)
1068 ret = 1;
1069 }
1070
1071 return ret;
1072 }
1073
1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075 struct buffer_page *bpage)
1076 {
1077 unsigned long val = (unsigned long)bpage;
1078
1079 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080 return 1;
1081
1082 return 0;
1083 }
1084
1085 /**
1086 * rb_check_list - make sure a pointer to a list has the last bits zero
1087 */
1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089 struct list_head *list)
1090 {
1091 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092 return 1;
1093 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094 return 1;
1095 return 0;
1096 }
1097
1098 /**
1099 * rb_check_pages - integrity check of buffer pages
1100 * @cpu_buffer: CPU buffer with pages to test
1101 *
1102 * As a safety measure we check to make sure the data pages have not
1103 * been corrupted.
1104 */
1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106 {
1107 struct list_head *head = cpu_buffer->pages;
1108 struct buffer_page *bpage, *tmp;
1109
1110 /* Reset the head page if it exists */
1111 if (cpu_buffer->head_page)
1112 rb_set_head_page(cpu_buffer);
1113
1114 rb_head_page_deactivate(cpu_buffer);
1115
1116 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117 return -1;
1118 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119 return -1;
1120
1121 if (rb_check_list(cpu_buffer, head))
1122 return -1;
1123
1124 list_for_each_entry_safe(bpage, tmp, head, list) {
1125 if (RB_WARN_ON(cpu_buffer,
1126 bpage->list.next->prev != &bpage->list))
1127 return -1;
1128 if (RB_WARN_ON(cpu_buffer,
1129 bpage->list.prev->next != &bpage->list))
1130 return -1;
1131 if (rb_check_list(cpu_buffer, &bpage->list))
1132 return -1;
1133 }
1134
1135 rb_head_page_activate(cpu_buffer);
1136
1137 return 0;
1138 }
1139
1140 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1141 {
1142 int i;
1143 struct buffer_page *bpage, *tmp;
1144
1145 for (i = 0; i < nr_pages; i++) {
1146 struct page *page;
1147 /*
1148 * __GFP_NORETRY flag makes sure that the allocation fails
1149 * gracefully without invoking oom-killer and the system is
1150 * not destabilized.
1151 */
1152 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1153 GFP_KERNEL | __GFP_NORETRY,
1154 cpu_to_node(cpu));
1155 if (!bpage)
1156 goto free_pages;
1157
1158 list_add(&bpage->list, pages);
1159
1160 page = alloc_pages_node(cpu_to_node(cpu),
1161 GFP_KERNEL | __GFP_NORETRY, 0);
1162 if (!page)
1163 goto free_pages;
1164 bpage->page = page_address(page);
1165 rb_init_page(bpage->page);
1166 }
1167
1168 return 0;
1169
1170 free_pages:
1171 list_for_each_entry_safe(bpage, tmp, pages, list) {
1172 list_del_init(&bpage->list);
1173 free_buffer_page(bpage);
1174 }
1175
1176 return -ENOMEM;
1177 }
1178
1179 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180 unsigned nr_pages)
1181 {
1182 LIST_HEAD(pages);
1183
1184 WARN_ON(!nr_pages);
1185
1186 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187 return -ENOMEM;
1188
1189 /*
1190 * The ring buffer page list is a circular list that does not
1191 * start and end with a list head. All page list items point to
1192 * other pages.
1193 */
1194 cpu_buffer->pages = pages.next;
1195 list_del(&pages);
1196
1197 cpu_buffer->nr_pages = nr_pages;
1198
1199 rb_check_pages(cpu_buffer);
1200
1201 return 0;
1202 }
1203
1204 static struct ring_buffer_per_cpu *
1205 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1206 {
1207 struct ring_buffer_per_cpu *cpu_buffer;
1208 struct buffer_page *bpage;
1209 struct page *page;
1210 int ret;
1211
1212 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213 GFP_KERNEL, cpu_to_node(cpu));
1214 if (!cpu_buffer)
1215 return NULL;
1216
1217 cpu_buffer->cpu = cpu;
1218 cpu_buffer->buffer = buffer;
1219 raw_spin_lock_init(&cpu_buffer->reader_lock);
1220 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1221 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1222 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1223 init_completion(&cpu_buffer->update_done);
1224 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1225 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1226 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1227
1228 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1229 GFP_KERNEL, cpu_to_node(cpu));
1230 if (!bpage)
1231 goto fail_free_buffer;
1232
1233 rb_check_bpage(cpu_buffer, bpage);
1234
1235 cpu_buffer->reader_page = bpage;
1236 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237 if (!page)
1238 goto fail_free_reader;
1239 bpage->page = page_address(page);
1240 rb_init_page(bpage->page);
1241
1242 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1243 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1244
1245 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1246 if (ret < 0)
1247 goto fail_free_reader;
1248
1249 cpu_buffer->head_page
1250 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1251 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1252
1253 rb_head_page_activate(cpu_buffer);
1254
1255 return cpu_buffer;
1256
1257 fail_free_reader:
1258 free_buffer_page(cpu_buffer->reader_page);
1259
1260 fail_free_buffer:
1261 kfree(cpu_buffer);
1262 return NULL;
1263 }
1264
1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266 {
1267 struct list_head *head = cpu_buffer->pages;
1268 struct buffer_page *bpage, *tmp;
1269
1270 free_buffer_page(cpu_buffer->reader_page);
1271
1272 rb_head_page_deactivate(cpu_buffer);
1273
1274 if (head) {
1275 list_for_each_entry_safe(bpage, tmp, head, list) {
1276 list_del_init(&bpage->list);
1277 free_buffer_page(bpage);
1278 }
1279 bpage = list_entry(head, struct buffer_page, list);
1280 free_buffer_page(bpage);
1281 }
1282
1283 kfree(cpu_buffer);
1284 }
1285
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 static int rb_cpu_notify(struct notifier_block *self,
1288 unsigned long action, void *hcpu);
1289 #endif
1290
1291 /**
1292 * __ring_buffer_alloc - allocate a new ring_buffer
1293 * @size: the size in bytes per cpu that is needed.
1294 * @flags: attributes to set for the ring buffer.
1295 *
1296 * Currently the only flag that is available is the RB_FL_OVERWRITE
1297 * flag. This flag means that the buffer will overwrite old data
1298 * when the buffer wraps. If this flag is not set, the buffer will
1299 * drop data when the tail hits the head.
1300 */
1301 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302 struct lock_class_key *key)
1303 {
1304 struct ring_buffer *buffer;
1305 int bsize;
1306 int cpu, nr_pages;
1307
1308 /* keep it in its own cache line */
1309 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310 GFP_KERNEL);
1311 if (!buffer)
1312 return NULL;
1313
1314 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315 goto fail_free_buffer;
1316
1317 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1318 buffer->flags = flags;
1319 buffer->clock = trace_clock_local;
1320 buffer->reader_lock_key = key;
1321
1322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1323 init_waitqueue_head(&buffer->irq_work.waiters);
1324
1325 /* need at least two pages */
1326 if (nr_pages < 2)
1327 nr_pages = 2;
1328
1329 /*
1330 * In case of non-hotplug cpu, if the ring-buffer is allocated
1331 * in early initcall, it will not be notified of secondary cpus.
1332 * In that off case, we need to allocate for all possible cpus.
1333 */
1334 #ifdef CONFIG_HOTPLUG_CPU
1335 cpu_notifier_register_begin();
1336 cpumask_copy(buffer->cpumask, cpu_online_mask);
1337 #else
1338 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339 #endif
1340 buffer->cpus = nr_cpu_ids;
1341
1342 bsize = sizeof(void *) * nr_cpu_ids;
1343 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344 GFP_KERNEL);
1345 if (!buffer->buffers)
1346 goto fail_free_cpumask;
1347
1348 for_each_buffer_cpu(buffer, cpu) {
1349 buffer->buffers[cpu] =
1350 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1351 if (!buffer->buffers[cpu])
1352 goto fail_free_buffers;
1353 }
1354
1355 #ifdef CONFIG_HOTPLUG_CPU
1356 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357 buffer->cpu_notify.priority = 0;
1358 __register_cpu_notifier(&buffer->cpu_notify);
1359 cpu_notifier_register_done();
1360 #endif
1361
1362 mutex_init(&buffer->mutex);
1363
1364 return buffer;
1365
1366 fail_free_buffers:
1367 for_each_buffer_cpu(buffer, cpu) {
1368 if (buffer->buffers[cpu])
1369 rb_free_cpu_buffer(buffer->buffers[cpu]);
1370 }
1371 kfree(buffer->buffers);
1372
1373 fail_free_cpumask:
1374 free_cpumask_var(buffer->cpumask);
1375 #ifdef CONFIG_HOTPLUG_CPU
1376 cpu_notifier_register_done();
1377 #endif
1378
1379 fail_free_buffer:
1380 kfree(buffer);
1381 return NULL;
1382 }
1383 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1384
1385 /**
1386 * ring_buffer_free - free a ring buffer.
1387 * @buffer: the buffer to free.
1388 */
1389 void
1390 ring_buffer_free(struct ring_buffer *buffer)
1391 {
1392 int cpu;
1393
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 cpu_notifier_register_begin();
1396 __unregister_cpu_notifier(&buffer->cpu_notify);
1397 #endif
1398
1399 for_each_buffer_cpu(buffer, cpu)
1400 rb_free_cpu_buffer(buffer->buffers[cpu]);
1401
1402 #ifdef CONFIG_HOTPLUG_CPU
1403 cpu_notifier_register_done();
1404 #endif
1405
1406 kfree(buffer->buffers);
1407 free_cpumask_var(buffer->cpumask);
1408
1409 kfree(buffer);
1410 }
1411 EXPORT_SYMBOL_GPL(ring_buffer_free);
1412
1413 void ring_buffer_set_clock(struct ring_buffer *buffer,
1414 u64 (*clock)(void))
1415 {
1416 buffer->clock = clock;
1417 }
1418
1419 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420
1421 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422 {
1423 return local_read(&bpage->entries) & RB_WRITE_MASK;
1424 }
1425
1426 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427 {
1428 return local_read(&bpage->write) & RB_WRITE_MASK;
1429 }
1430
1431 static int
1432 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1433 {
1434 struct list_head *tail_page, *to_remove, *next_page;
1435 struct buffer_page *to_remove_page, *tmp_iter_page;
1436 struct buffer_page *last_page, *first_page;
1437 unsigned int nr_removed;
1438 unsigned long head_bit;
1439 int page_entries;
1440
1441 head_bit = 0;
1442
1443 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1444 atomic_inc(&cpu_buffer->record_disabled);
1445 /*
1446 * We don't race with the readers since we have acquired the reader
1447 * lock. We also don't race with writers after disabling recording.
1448 * This makes it easy to figure out the first and the last page to be
1449 * removed from the list. We unlink all the pages in between including
1450 * the first and last pages. This is done in a busy loop so that we
1451 * lose the least number of traces.
1452 * The pages are freed after we restart recording and unlock readers.
1453 */
1454 tail_page = &cpu_buffer->tail_page->list;
1455
1456 /*
1457 * tail page might be on reader page, we remove the next page
1458 * from the ring buffer
1459 */
1460 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461 tail_page = rb_list_head(tail_page->next);
1462 to_remove = tail_page;
1463
1464 /* start of pages to remove */
1465 first_page = list_entry(rb_list_head(to_remove->next),
1466 struct buffer_page, list);
1467
1468 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469 to_remove = rb_list_head(to_remove)->next;
1470 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1471 }
1472
1473 next_page = rb_list_head(to_remove)->next;
1474
1475 /*
1476 * Now we remove all pages between tail_page and next_page.
1477 * Make sure that we have head_bit value preserved for the
1478 * next page
1479 */
1480 tail_page->next = (struct list_head *)((unsigned long)next_page |
1481 head_bit);
1482 next_page = rb_list_head(next_page);
1483 next_page->prev = tail_page;
1484
1485 /* make sure pages points to a valid page in the ring buffer */
1486 cpu_buffer->pages = next_page;
1487
1488 /* update head page */
1489 if (head_bit)
1490 cpu_buffer->head_page = list_entry(next_page,
1491 struct buffer_page, list);
1492
1493 /*
1494 * change read pointer to make sure any read iterators reset
1495 * themselves
1496 */
1497 cpu_buffer->read = 0;
1498
1499 /* pages are removed, resume tracing and then free the pages */
1500 atomic_dec(&cpu_buffer->record_disabled);
1501 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1502
1503 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504
1505 /* last buffer page to remove */
1506 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507 list);
1508 tmp_iter_page = first_page;
1509
1510 do {
1511 to_remove_page = tmp_iter_page;
1512 rb_inc_page(cpu_buffer, &tmp_iter_page);
1513
1514 /* update the counters */
1515 page_entries = rb_page_entries(to_remove_page);
1516 if (page_entries) {
1517 /*
1518 * If something was added to this page, it was full
1519 * since it is not the tail page. So we deduct the
1520 * bytes consumed in ring buffer from here.
1521 * Increment overrun to account for the lost events.
1522 */
1523 local_add(page_entries, &cpu_buffer->overrun);
1524 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525 }
1526
1527 /*
1528 * We have already removed references to this list item, just
1529 * free up the buffer_page and its page
1530 */
1531 free_buffer_page(to_remove_page);
1532 nr_removed--;
1533
1534 } while (to_remove_page != last_page);
1535
1536 RB_WARN_ON(cpu_buffer, nr_removed);
1537
1538 return nr_removed == 0;
1539 }
1540
1541 static int
1542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1543 {
1544 struct list_head *pages = &cpu_buffer->new_pages;
1545 int retries, success;
1546
1547 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1548 /*
1549 * We are holding the reader lock, so the reader page won't be swapped
1550 * in the ring buffer. Now we are racing with the writer trying to
1551 * move head page and the tail page.
1552 * We are going to adapt the reader page update process where:
1553 * 1. We first splice the start and end of list of new pages between
1554 * the head page and its previous page.
1555 * 2. We cmpxchg the prev_page->next to point from head page to the
1556 * start of new pages list.
1557 * 3. Finally, we update the head->prev to the end of new list.
1558 *
1559 * We will try this process 10 times, to make sure that we don't keep
1560 * spinning.
1561 */
1562 retries = 10;
1563 success = 0;
1564 while (retries--) {
1565 struct list_head *head_page, *prev_page, *r;
1566 struct list_head *last_page, *first_page;
1567 struct list_head *head_page_with_bit;
1568
1569 head_page = &rb_set_head_page(cpu_buffer)->list;
1570 if (!head_page)
1571 break;
1572 prev_page = head_page->prev;
1573
1574 first_page = pages->next;
1575 last_page = pages->prev;
1576
1577 head_page_with_bit = (struct list_head *)
1578 ((unsigned long)head_page | RB_PAGE_HEAD);
1579
1580 last_page->next = head_page_with_bit;
1581 first_page->prev = prev_page;
1582
1583 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584
1585 if (r == head_page_with_bit) {
1586 /*
1587 * yay, we replaced the page pointer to our new list,
1588 * now, we just have to update to head page's prev
1589 * pointer to point to end of list
1590 */
1591 head_page->prev = last_page;
1592 success = 1;
1593 break;
1594 }
1595 }
1596
1597 if (success)
1598 INIT_LIST_HEAD(pages);
1599 /*
1600 * If we weren't successful in adding in new pages, warn and stop
1601 * tracing
1602 */
1603 RB_WARN_ON(cpu_buffer, !success);
1604 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1605
1606 /* free pages if they weren't inserted */
1607 if (!success) {
1608 struct buffer_page *bpage, *tmp;
1609 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610 list) {
1611 list_del_init(&bpage->list);
1612 free_buffer_page(bpage);
1613 }
1614 }
1615 return success;
1616 }
1617
1618 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1619 {
1620 int success;
1621
1622 if (cpu_buffer->nr_pages_to_update > 0)
1623 success = rb_insert_pages(cpu_buffer);
1624 else
1625 success = rb_remove_pages(cpu_buffer,
1626 -cpu_buffer->nr_pages_to_update);
1627
1628 if (success)
1629 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1630 }
1631
1632 static void update_pages_handler(struct work_struct *work)
1633 {
1634 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635 struct ring_buffer_per_cpu, update_pages_work);
1636 rb_update_pages(cpu_buffer);
1637 complete(&cpu_buffer->update_done);
1638 }
1639
1640 /**
1641 * ring_buffer_resize - resize the ring buffer
1642 * @buffer: the buffer to resize.
1643 * @size: the new size.
1644 * @cpu_id: the cpu buffer to resize
1645 *
1646 * Minimum size is 2 * BUF_PAGE_SIZE.
1647 *
1648 * Returns 0 on success and < 0 on failure.
1649 */
1650 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651 int cpu_id)
1652 {
1653 struct ring_buffer_per_cpu *cpu_buffer;
1654 unsigned nr_pages;
1655 int cpu, err = 0;
1656
1657 /*
1658 * Always succeed at resizing a non-existent buffer:
1659 */
1660 if (!buffer)
1661 return size;
1662
1663 /* Make sure the requested buffer exists */
1664 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666 return size;
1667
1668 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669 size *= BUF_PAGE_SIZE;
1670
1671 /* we need a minimum of two pages */
1672 if (size < BUF_PAGE_SIZE * 2)
1673 size = BUF_PAGE_SIZE * 2;
1674
1675 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1676
1677 /*
1678 * Don't succeed if resizing is disabled, as a reader might be
1679 * manipulating the ring buffer and is expecting a sane state while
1680 * this is true.
1681 */
1682 if (atomic_read(&buffer->resize_disabled))
1683 return -EBUSY;
1684
1685 /* prevent another thread from changing buffer sizes */
1686 mutex_lock(&buffer->mutex);
1687
1688 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689 /* calculate the pages to update */
1690 for_each_buffer_cpu(buffer, cpu) {
1691 cpu_buffer = buffer->buffers[cpu];
1692
1693 cpu_buffer->nr_pages_to_update = nr_pages -
1694 cpu_buffer->nr_pages;
1695 /*
1696 * nothing more to do for removing pages or no update
1697 */
1698 if (cpu_buffer->nr_pages_to_update <= 0)
1699 continue;
1700 /*
1701 * to add pages, make sure all new pages can be
1702 * allocated without receiving ENOMEM
1703 */
1704 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1706 &cpu_buffer->new_pages, cpu)) {
1707 /* not enough memory for new pages */
1708 err = -ENOMEM;
1709 goto out_err;
1710 }
1711 }
1712
1713 get_online_cpus();
1714 /*
1715 * Fire off all the required work handlers
1716 * We can't schedule on offline CPUs, but it's not necessary
1717 * since we can change their buffer sizes without any race.
1718 */
1719 for_each_buffer_cpu(buffer, cpu) {
1720 cpu_buffer = buffer->buffers[cpu];
1721 if (!cpu_buffer->nr_pages_to_update)
1722 continue;
1723
1724 /* Can't run something on an offline CPU. */
1725 if (!cpu_online(cpu)) {
1726 rb_update_pages(cpu_buffer);
1727 cpu_buffer->nr_pages_to_update = 0;
1728 } else {
1729 schedule_work_on(cpu,
1730 &cpu_buffer->update_pages_work);
1731 }
1732 }
1733
1734 /* wait for all the updates to complete */
1735 for_each_buffer_cpu(buffer, cpu) {
1736 cpu_buffer = buffer->buffers[cpu];
1737 if (!cpu_buffer->nr_pages_to_update)
1738 continue;
1739
1740 if (cpu_online(cpu))
1741 wait_for_completion(&cpu_buffer->update_done);
1742 cpu_buffer->nr_pages_to_update = 0;
1743 }
1744
1745 put_online_cpus();
1746 } else {
1747 /* Make sure this CPU has been intitialized */
1748 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749 goto out;
1750
1751 cpu_buffer = buffer->buffers[cpu_id];
1752
1753 if (nr_pages == cpu_buffer->nr_pages)
1754 goto out;
1755
1756 cpu_buffer->nr_pages_to_update = nr_pages -
1757 cpu_buffer->nr_pages;
1758
1759 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760 if (cpu_buffer->nr_pages_to_update > 0 &&
1761 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1762 &cpu_buffer->new_pages, cpu_id)) {
1763 err = -ENOMEM;
1764 goto out_err;
1765 }
1766
1767 get_online_cpus();
1768
1769 /* Can't run something on an offline CPU. */
1770 if (!cpu_online(cpu_id))
1771 rb_update_pages(cpu_buffer);
1772 else {
1773 schedule_work_on(cpu_id,
1774 &cpu_buffer->update_pages_work);
1775 wait_for_completion(&cpu_buffer->update_done);
1776 }
1777
1778 cpu_buffer->nr_pages_to_update = 0;
1779 put_online_cpus();
1780 }
1781
1782 out:
1783 /*
1784 * The ring buffer resize can happen with the ring buffer
1785 * enabled, so that the update disturbs the tracing as little
1786 * as possible. But if the buffer is disabled, we do not need
1787 * to worry about that, and we can take the time to verify
1788 * that the buffer is not corrupt.
1789 */
1790 if (atomic_read(&buffer->record_disabled)) {
1791 atomic_inc(&buffer->record_disabled);
1792 /*
1793 * Even though the buffer was disabled, we must make sure
1794 * that it is truly disabled before calling rb_check_pages.
1795 * There could have been a race between checking
1796 * record_disable and incrementing it.
1797 */
1798 synchronize_sched();
1799 for_each_buffer_cpu(buffer, cpu) {
1800 cpu_buffer = buffer->buffers[cpu];
1801 rb_check_pages(cpu_buffer);
1802 }
1803 atomic_dec(&buffer->record_disabled);
1804 }
1805
1806 mutex_unlock(&buffer->mutex);
1807 return size;
1808
1809 out_err:
1810 for_each_buffer_cpu(buffer, cpu) {
1811 struct buffer_page *bpage, *tmp;
1812
1813 cpu_buffer = buffer->buffers[cpu];
1814 cpu_buffer->nr_pages_to_update = 0;
1815
1816 if (list_empty(&cpu_buffer->new_pages))
1817 continue;
1818
1819 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820 list) {
1821 list_del_init(&bpage->list);
1822 free_buffer_page(bpage);
1823 }
1824 }
1825 mutex_unlock(&buffer->mutex);
1826 return err;
1827 }
1828 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1829
1830 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831 {
1832 mutex_lock(&buffer->mutex);
1833 if (val)
1834 buffer->flags |= RB_FL_OVERWRITE;
1835 else
1836 buffer->flags &= ~RB_FL_OVERWRITE;
1837 mutex_unlock(&buffer->mutex);
1838 }
1839 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840
1841 static inline void *
1842 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1843 {
1844 return bpage->data + index;
1845 }
1846
1847 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1848 {
1849 return bpage->page->data + index;
1850 }
1851
1852 static inline struct ring_buffer_event *
1853 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1854 {
1855 return __rb_page_index(cpu_buffer->reader_page,
1856 cpu_buffer->reader_page->read);
1857 }
1858
1859 static inline struct ring_buffer_event *
1860 rb_iter_head_event(struct ring_buffer_iter *iter)
1861 {
1862 return __rb_page_index(iter->head_page, iter->head);
1863 }
1864
1865 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866 {
1867 return local_read(&bpage->page->commit);
1868 }
1869
1870 /* Size is determined by what has been committed */
1871 static inline unsigned rb_page_size(struct buffer_page *bpage)
1872 {
1873 return rb_page_commit(bpage);
1874 }
1875
1876 static inline unsigned
1877 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879 return rb_page_commit(cpu_buffer->commit_page);
1880 }
1881
1882 static inline unsigned
1883 rb_event_index(struct ring_buffer_event *event)
1884 {
1885 unsigned long addr = (unsigned long)event;
1886
1887 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1888 }
1889
1890 static inline int
1891 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1892 struct ring_buffer_event *event)
1893 {
1894 unsigned long addr = (unsigned long)event;
1895 unsigned long index;
1896
1897 index = rb_event_index(event);
1898 addr &= PAGE_MASK;
1899
1900 return cpu_buffer->commit_page->page == (void *)addr &&
1901 rb_commit_index(cpu_buffer) == index;
1902 }
1903
1904 static void
1905 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1906 {
1907 unsigned long max_count;
1908
1909 /*
1910 * We only race with interrupts and NMIs on this CPU.
1911 * If we own the commit event, then we can commit
1912 * all others that interrupted us, since the interruptions
1913 * are in stack format (they finish before they come
1914 * back to us). This allows us to do a simple loop to
1915 * assign the commit to the tail.
1916 */
1917 again:
1918 max_count = cpu_buffer->nr_pages * 100;
1919
1920 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1921 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1922 return;
1923 if (RB_WARN_ON(cpu_buffer,
1924 rb_is_reader_page(cpu_buffer->tail_page)))
1925 return;
1926 local_set(&cpu_buffer->commit_page->page->commit,
1927 rb_page_write(cpu_buffer->commit_page));
1928 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1929 cpu_buffer->write_stamp =
1930 cpu_buffer->commit_page->page->time_stamp;
1931 /* add barrier to keep gcc from optimizing too much */
1932 barrier();
1933 }
1934 while (rb_commit_index(cpu_buffer) !=
1935 rb_page_write(cpu_buffer->commit_page)) {
1936
1937 local_set(&cpu_buffer->commit_page->page->commit,
1938 rb_page_write(cpu_buffer->commit_page));
1939 RB_WARN_ON(cpu_buffer,
1940 local_read(&cpu_buffer->commit_page->page->commit) &
1941 ~RB_WRITE_MASK);
1942 barrier();
1943 }
1944
1945 /* again, keep gcc from optimizing */
1946 barrier();
1947
1948 /*
1949 * If an interrupt came in just after the first while loop
1950 * and pushed the tail page forward, we will be left with
1951 * a dangling commit that will never go forward.
1952 */
1953 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1954 goto again;
1955 }
1956
1957 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1958 {
1959 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1960 cpu_buffer->reader_page->read = 0;
1961 }
1962
1963 static void rb_inc_iter(struct ring_buffer_iter *iter)
1964 {
1965 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1966
1967 /*
1968 * The iterator could be on the reader page (it starts there).
1969 * But the head could have moved, since the reader was
1970 * found. Check for this case and assign the iterator
1971 * to the head page instead of next.
1972 */
1973 if (iter->head_page == cpu_buffer->reader_page)
1974 iter->head_page = rb_set_head_page(cpu_buffer);
1975 else
1976 rb_inc_page(cpu_buffer, &iter->head_page);
1977
1978 iter->read_stamp = iter->head_page->page->time_stamp;
1979 iter->head = 0;
1980 }
1981
1982 /* Slow path, do not inline */
1983 static noinline struct ring_buffer_event *
1984 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1985 {
1986 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1987
1988 /* Not the first event on the page? */
1989 if (rb_event_index(event)) {
1990 event->time_delta = delta & TS_MASK;
1991 event->array[0] = delta >> TS_SHIFT;
1992 } else {
1993 /* nope, just zero it */
1994 event->time_delta = 0;
1995 event->array[0] = 0;
1996 }
1997
1998 return skip_time_extend(event);
1999 }
2000
2001 /**
2002 * rb_update_event - update event type and data
2003 * @event: the event to update
2004 * @type: the type of event
2005 * @length: the size of the event field in the ring buffer
2006 *
2007 * Update the type and data fields of the event. The length
2008 * is the actual size that is written to the ring buffer,
2009 * and with this, we can determine what to place into the
2010 * data field.
2011 */
2012 static void
2013 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2014 struct ring_buffer_event *event,
2015 struct rb_event_info *info)
2016 {
2017 unsigned length = info->length;
2018 u64 delta = info->delta;
2019
2020 /* Only a commit updates the timestamp */
2021 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2022 delta = 0;
2023
2024 /*
2025 * If we need to add a timestamp, then we
2026 * add it to the start of the resevered space.
2027 */
2028 if (unlikely(info->add_timestamp)) {
2029 event = rb_add_time_stamp(event, delta);
2030 length -= RB_LEN_TIME_EXTEND;
2031 delta = 0;
2032 }
2033
2034 event->time_delta = delta;
2035 length -= RB_EVNT_HDR_SIZE;
2036 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2037 event->type_len = 0;
2038 event->array[0] = length;
2039 } else
2040 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2041 }
2042
2043 /*
2044 * rb_handle_head_page - writer hit the head page
2045 *
2046 * Returns: +1 to retry page
2047 * 0 to continue
2048 * -1 on error
2049 */
2050 static int
2051 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2052 struct buffer_page *tail_page,
2053 struct buffer_page *next_page)
2054 {
2055 struct buffer_page *new_head;
2056 int entries;
2057 int type;
2058 int ret;
2059
2060 entries = rb_page_entries(next_page);
2061
2062 /*
2063 * The hard part is here. We need to move the head
2064 * forward, and protect against both readers on
2065 * other CPUs and writers coming in via interrupts.
2066 */
2067 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2068 RB_PAGE_HEAD);
2069
2070 /*
2071 * type can be one of four:
2072 * NORMAL - an interrupt already moved it for us
2073 * HEAD - we are the first to get here.
2074 * UPDATE - we are the interrupt interrupting
2075 * a current move.
2076 * MOVED - a reader on another CPU moved the next
2077 * pointer to its reader page. Give up
2078 * and try again.
2079 */
2080
2081 switch (type) {
2082 case RB_PAGE_HEAD:
2083 /*
2084 * We changed the head to UPDATE, thus
2085 * it is our responsibility to update
2086 * the counters.
2087 */
2088 local_add(entries, &cpu_buffer->overrun);
2089 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2090
2091 /*
2092 * The entries will be zeroed out when we move the
2093 * tail page.
2094 */
2095
2096 /* still more to do */
2097 break;
2098
2099 case RB_PAGE_UPDATE:
2100 /*
2101 * This is an interrupt that interrupt the
2102 * previous update. Still more to do.
2103 */
2104 break;
2105 case RB_PAGE_NORMAL:
2106 /*
2107 * An interrupt came in before the update
2108 * and processed this for us.
2109 * Nothing left to do.
2110 */
2111 return 1;
2112 case RB_PAGE_MOVED:
2113 /*
2114 * The reader is on another CPU and just did
2115 * a swap with our next_page.
2116 * Try again.
2117 */
2118 return 1;
2119 default:
2120 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2121 return -1;
2122 }
2123
2124 /*
2125 * Now that we are here, the old head pointer is
2126 * set to UPDATE. This will keep the reader from
2127 * swapping the head page with the reader page.
2128 * The reader (on another CPU) will spin till
2129 * we are finished.
2130 *
2131 * We just need to protect against interrupts
2132 * doing the job. We will set the next pointer
2133 * to HEAD. After that, we set the old pointer
2134 * to NORMAL, but only if it was HEAD before.
2135 * otherwise we are an interrupt, and only
2136 * want the outer most commit to reset it.
2137 */
2138 new_head = next_page;
2139 rb_inc_page(cpu_buffer, &new_head);
2140
2141 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2142 RB_PAGE_NORMAL);
2143
2144 /*
2145 * Valid returns are:
2146 * HEAD - an interrupt came in and already set it.
2147 * NORMAL - One of two things:
2148 * 1) We really set it.
2149 * 2) A bunch of interrupts came in and moved
2150 * the page forward again.
2151 */
2152 switch (ret) {
2153 case RB_PAGE_HEAD:
2154 case RB_PAGE_NORMAL:
2155 /* OK */
2156 break;
2157 default:
2158 RB_WARN_ON(cpu_buffer, 1);
2159 return -1;
2160 }
2161
2162 /*
2163 * It is possible that an interrupt came in,
2164 * set the head up, then more interrupts came in
2165 * and moved it again. When we get back here,
2166 * the page would have been set to NORMAL but we
2167 * just set it back to HEAD.
2168 *
2169 * How do you detect this? Well, if that happened
2170 * the tail page would have moved.
2171 */
2172 if (ret == RB_PAGE_NORMAL) {
2173 /*
2174 * If the tail had moved passed next, then we need
2175 * to reset the pointer.
2176 */
2177 if (cpu_buffer->tail_page != tail_page &&
2178 cpu_buffer->tail_page != next_page)
2179 rb_head_page_set_normal(cpu_buffer, new_head,
2180 next_page,
2181 RB_PAGE_HEAD);
2182 }
2183
2184 /*
2185 * If this was the outer most commit (the one that
2186 * changed the original pointer from HEAD to UPDATE),
2187 * then it is up to us to reset it to NORMAL.
2188 */
2189 if (type == RB_PAGE_HEAD) {
2190 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2191 tail_page,
2192 RB_PAGE_UPDATE);
2193 if (RB_WARN_ON(cpu_buffer,
2194 ret != RB_PAGE_UPDATE))
2195 return -1;
2196 }
2197
2198 return 0;
2199 }
2200
2201 static unsigned rb_calculate_event_length(unsigned length)
2202 {
2203 struct ring_buffer_event event; /* Used only for sizeof array */
2204
2205 /* zero length can cause confusions */
2206 if (!length)
2207 length++;
2208
2209 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2210 length += sizeof(event.array[0]);
2211
2212 length += RB_EVNT_HDR_SIZE;
2213 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2214
2215 return length;
2216 }
2217
2218 static inline void
2219 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2220 unsigned long tail, struct rb_event_info *info)
2221 {
2222 struct buffer_page *tail_page = info->tail_page;
2223 struct ring_buffer_event *event;
2224 unsigned long length = info->length;
2225
2226 /*
2227 * Only the event that crossed the page boundary
2228 * must fill the old tail_page with padding.
2229 */
2230 if (tail >= BUF_PAGE_SIZE) {
2231 /*
2232 * If the page was filled, then we still need
2233 * to update the real_end. Reset it to zero
2234 * and the reader will ignore it.
2235 */
2236 if (tail == BUF_PAGE_SIZE)
2237 tail_page->real_end = 0;
2238
2239 local_sub(length, &tail_page->write);
2240 return;
2241 }
2242
2243 event = __rb_page_index(tail_page, tail);
2244 kmemcheck_annotate_bitfield(event, bitfield);
2245
2246 /* account for padding bytes */
2247 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2248
2249 /*
2250 * Save the original length to the meta data.
2251 * This will be used by the reader to add lost event
2252 * counter.
2253 */
2254 tail_page->real_end = tail;
2255
2256 /*
2257 * If this event is bigger than the minimum size, then
2258 * we need to be careful that we don't subtract the
2259 * write counter enough to allow another writer to slip
2260 * in on this page.
2261 * We put in a discarded commit instead, to make sure
2262 * that this space is not used again.
2263 *
2264 * If we are less than the minimum size, we don't need to
2265 * worry about it.
2266 */
2267 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2268 /* No room for any events */
2269
2270 /* Mark the rest of the page with padding */
2271 rb_event_set_padding(event);
2272
2273 /* Set the write back to the previous setting */
2274 local_sub(length, &tail_page->write);
2275 return;
2276 }
2277
2278 /* Put in a discarded event */
2279 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2280 event->type_len = RINGBUF_TYPE_PADDING;
2281 /* time delta must be non zero */
2282 event->time_delta = 1;
2283
2284 /* Set write to end of buffer */
2285 length = (tail + length) - BUF_PAGE_SIZE;
2286 local_sub(length, &tail_page->write);
2287 }
2288
2289 /*
2290 * This is the slow path, force gcc not to inline it.
2291 */
2292 static noinline struct ring_buffer_event *
2293 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2294 unsigned long tail, struct rb_event_info *info)
2295 {
2296 struct buffer_page *tail_page = info->tail_page;
2297 struct buffer_page *commit_page = cpu_buffer->commit_page;
2298 struct ring_buffer *buffer = cpu_buffer->buffer;
2299 struct buffer_page *next_page;
2300 int ret;
2301 u64 ts;
2302
2303 next_page = tail_page;
2304
2305 rb_inc_page(cpu_buffer, &next_page);
2306
2307 /*
2308 * If for some reason, we had an interrupt storm that made
2309 * it all the way around the buffer, bail, and warn
2310 * about it.
2311 */
2312 if (unlikely(next_page == commit_page)) {
2313 local_inc(&cpu_buffer->commit_overrun);
2314 goto out_reset;
2315 }
2316
2317 /*
2318 * This is where the fun begins!
2319 *
2320 * We are fighting against races between a reader that
2321 * could be on another CPU trying to swap its reader
2322 * page with the buffer head.
2323 *
2324 * We are also fighting against interrupts coming in and
2325 * moving the head or tail on us as well.
2326 *
2327 * If the next page is the head page then we have filled
2328 * the buffer, unless the commit page is still on the
2329 * reader page.
2330 */
2331 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2332
2333 /*
2334 * If the commit is not on the reader page, then
2335 * move the header page.
2336 */
2337 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2338 /*
2339 * If we are not in overwrite mode,
2340 * this is easy, just stop here.
2341 */
2342 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2343 local_inc(&cpu_buffer->dropped_events);
2344 goto out_reset;
2345 }
2346
2347 ret = rb_handle_head_page(cpu_buffer,
2348 tail_page,
2349 next_page);
2350 if (ret < 0)
2351 goto out_reset;
2352 if (ret)
2353 goto out_again;
2354 } else {
2355 /*
2356 * We need to be careful here too. The
2357 * commit page could still be on the reader
2358 * page. We could have a small buffer, and
2359 * have filled up the buffer with events
2360 * from interrupts and such, and wrapped.
2361 *
2362 * Note, if the tail page is also the on the
2363 * reader_page, we let it move out.
2364 */
2365 if (unlikely((cpu_buffer->commit_page !=
2366 cpu_buffer->tail_page) &&
2367 (cpu_buffer->commit_page ==
2368 cpu_buffer->reader_page))) {
2369 local_inc(&cpu_buffer->commit_overrun);
2370 goto out_reset;
2371 }
2372 }
2373 }
2374
2375 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2376 if (ret) {
2377 /*
2378 * Nested commits always have zero deltas, so
2379 * just reread the time stamp
2380 */
2381 ts = rb_time_stamp(buffer);
2382 next_page->page->time_stamp = ts;
2383 }
2384
2385 out_again:
2386
2387 rb_reset_tail(cpu_buffer, tail, info);
2388
2389 /* fail and let the caller try again */
2390 return ERR_PTR(-EAGAIN);
2391
2392 out_reset:
2393 /* reset write */
2394 rb_reset_tail(cpu_buffer, tail, info);
2395
2396 return NULL;
2397 }
2398
2399 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2400 static inline bool sched_clock_stable(void)
2401 {
2402 return true;
2403 }
2404 #endif
2405
2406 static noinline void
2407 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2408 struct rb_event_info *info)
2409 {
2410 WARN_ONCE(info->delta > (1ULL << 59),
2411 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2412 (unsigned long long)info->delta,
2413 (unsigned long long)info->ts,
2414 (unsigned long long)cpu_buffer->write_stamp,
2415 sched_clock_stable() ? "" :
2416 "If you just came from a suspend/resume,\n"
2417 "please switch to the trace global clock:\n"
2418 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2419 info->add_timestamp = 1;
2420 }
2421
2422 static struct ring_buffer_event *
2423 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2424 struct rb_event_info *info)
2425 {
2426 struct ring_buffer_event *event;
2427 struct buffer_page *tail_page;
2428 unsigned long tail, write;
2429
2430 /*
2431 * If the time delta since the last event is too big to
2432 * hold in the time field of the event, then we append a
2433 * TIME EXTEND event ahead of the data event.
2434 */
2435 if (unlikely(info->add_timestamp))
2436 info->length += RB_LEN_TIME_EXTEND;
2437
2438 tail_page = info->tail_page = cpu_buffer->tail_page;
2439 write = local_add_return(info->length, &tail_page->write);
2440
2441 /* set write to only the index of the write */
2442 write &= RB_WRITE_MASK;
2443 tail = write - info->length;
2444
2445 /*
2446 * If this is the first commit on the page, then it has the same
2447 * timestamp as the page itself.
2448 */
2449 if (!tail)
2450 info->delta = 0;
2451
2452 /* See if we shot pass the end of this buffer page */
2453 if (unlikely(write > BUF_PAGE_SIZE))
2454 return rb_move_tail(cpu_buffer, tail, info);
2455
2456 /* We reserved something on the buffer */
2457
2458 event = __rb_page_index(tail_page, tail);
2459 kmemcheck_annotate_bitfield(event, bitfield);
2460 rb_update_event(cpu_buffer, event, info);
2461
2462 local_inc(&tail_page->entries);
2463
2464 /*
2465 * If this is the first commit on the page, then update
2466 * its timestamp.
2467 */
2468 if (!tail)
2469 tail_page->page->time_stamp = info->ts;
2470
2471 /* account for these added bytes */
2472 local_add(info->length, &cpu_buffer->entries_bytes);
2473
2474 return event;
2475 }
2476
2477 static inline int
2478 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2479 struct ring_buffer_event *event)
2480 {
2481 unsigned long new_index, old_index;
2482 struct buffer_page *bpage;
2483 unsigned long index;
2484 unsigned long addr;
2485
2486 new_index = rb_event_index(event);
2487 old_index = new_index + rb_event_ts_length(event);
2488 addr = (unsigned long)event;
2489 addr &= PAGE_MASK;
2490
2491 bpage = cpu_buffer->tail_page;
2492
2493 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2494 unsigned long write_mask =
2495 local_read(&bpage->write) & ~RB_WRITE_MASK;
2496 unsigned long event_length = rb_event_length(event);
2497 /*
2498 * This is on the tail page. It is possible that
2499 * a write could come in and move the tail page
2500 * and write to the next page. That is fine
2501 * because we just shorten what is on this page.
2502 */
2503 old_index += write_mask;
2504 new_index += write_mask;
2505 index = local_cmpxchg(&bpage->write, old_index, new_index);
2506 if (index == old_index) {
2507 /* update counters */
2508 local_sub(event_length, &cpu_buffer->entries_bytes);
2509 return 1;
2510 }
2511 }
2512
2513 /* could not discard */
2514 return 0;
2515 }
2516
2517 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2518 {
2519 local_inc(&cpu_buffer->committing);
2520 local_inc(&cpu_buffer->commits);
2521 }
2522
2523 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2524 {
2525 unsigned long commits;
2526
2527 if (RB_WARN_ON(cpu_buffer,
2528 !local_read(&cpu_buffer->committing)))
2529 return;
2530
2531 again:
2532 commits = local_read(&cpu_buffer->commits);
2533 /* synchronize with interrupts */
2534 barrier();
2535 if (local_read(&cpu_buffer->committing) == 1)
2536 rb_set_commit_to_write(cpu_buffer);
2537
2538 local_dec(&cpu_buffer->committing);
2539
2540 /* synchronize with interrupts */
2541 barrier();
2542
2543 /*
2544 * Need to account for interrupts coming in between the
2545 * updating of the commit page and the clearing of the
2546 * committing counter.
2547 */
2548 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2549 !local_read(&cpu_buffer->committing)) {
2550 local_inc(&cpu_buffer->committing);
2551 goto again;
2552 }
2553 }
2554
2555 static struct ring_buffer_event *
2556 rb_reserve_next_event(struct ring_buffer *buffer,
2557 struct ring_buffer_per_cpu *cpu_buffer,
2558 unsigned long length)
2559 {
2560 struct ring_buffer_event *event;
2561 struct rb_event_info info;
2562 int nr_loops = 0;
2563 u64 diff;
2564
2565 rb_start_commit(cpu_buffer);
2566
2567 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2568 /*
2569 * Due to the ability to swap a cpu buffer from a buffer
2570 * it is possible it was swapped before we committed.
2571 * (committing stops a swap). We check for it here and
2572 * if it happened, we have to fail the write.
2573 */
2574 barrier();
2575 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2576 local_dec(&cpu_buffer->committing);
2577 local_dec(&cpu_buffer->commits);
2578 return NULL;
2579 }
2580 #endif
2581
2582 info.length = rb_calculate_event_length(length);
2583 again:
2584 info.add_timestamp = 0;
2585 info.delta = 0;
2586
2587 /*
2588 * We allow for interrupts to reenter here and do a trace.
2589 * If one does, it will cause this original code to loop
2590 * back here. Even with heavy interrupts happening, this
2591 * should only happen a few times in a row. If this happens
2592 * 1000 times in a row, there must be either an interrupt
2593 * storm or we have something buggy.
2594 * Bail!
2595 */
2596 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2597 goto out_fail;
2598
2599 info.ts = rb_time_stamp(cpu_buffer->buffer);
2600 diff = info.ts - cpu_buffer->write_stamp;
2601
2602 /* make sure this diff is calculated here */
2603 barrier();
2604
2605 /* Did the write stamp get updated already? */
2606 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2607 info.delta = diff;
2608 if (unlikely(test_time_stamp(info.delta)))
2609 rb_handle_timestamp(cpu_buffer, &info);
2610 }
2611
2612 event = __rb_reserve_next(cpu_buffer, &info);
2613
2614 if (unlikely(PTR_ERR(event) == -EAGAIN))
2615 goto again;
2616
2617 if (!event)
2618 goto out_fail;
2619
2620 return event;
2621
2622 out_fail:
2623 rb_end_commit(cpu_buffer);
2624 return NULL;
2625 }
2626
2627 /*
2628 * The lock and unlock are done within a preempt disable section.
2629 * The current_context per_cpu variable can only be modified
2630 * by the current task between lock and unlock. But it can
2631 * be modified more than once via an interrupt. To pass this
2632 * information from the lock to the unlock without having to
2633 * access the 'in_interrupt()' functions again (which do show
2634 * a bit of overhead in something as critical as function tracing,
2635 * we use a bitmask trick.
2636 *
2637 * bit 0 = NMI context
2638 * bit 1 = IRQ context
2639 * bit 2 = SoftIRQ context
2640 * bit 3 = normal context.
2641 *
2642 * This works because this is the order of contexts that can
2643 * preempt other contexts. A SoftIRQ never preempts an IRQ
2644 * context.
2645 *
2646 * When the context is determined, the corresponding bit is
2647 * checked and set (if it was set, then a recursion of that context
2648 * happened).
2649 *
2650 * On unlock, we need to clear this bit. To do so, just subtract
2651 * 1 from the current_context and AND it to itself.
2652 *
2653 * (binary)
2654 * 101 - 1 = 100
2655 * 101 & 100 = 100 (clearing bit zero)
2656 *
2657 * 1010 - 1 = 1001
2658 * 1010 & 1001 = 1000 (clearing bit 1)
2659 *
2660 * The least significant bit can be cleared this way, and it
2661 * just so happens that it is the same bit corresponding to
2662 * the current context.
2663 */
2664
2665 static __always_inline int
2666 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2667 {
2668 unsigned int val = cpu_buffer->current_context;
2669 int bit;
2670
2671 if (in_interrupt()) {
2672 if (in_nmi())
2673 bit = RB_CTX_NMI;
2674 else if (in_irq())
2675 bit = RB_CTX_IRQ;
2676 else
2677 bit = RB_CTX_SOFTIRQ;
2678 } else
2679 bit = RB_CTX_NORMAL;
2680
2681 if (unlikely(val & (1 << bit)))
2682 return 1;
2683
2684 val |= (1 << bit);
2685 cpu_buffer->current_context = val;
2686
2687 return 0;
2688 }
2689
2690 static __always_inline void
2691 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2692 {
2693 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2694 }
2695
2696 /**
2697 * ring_buffer_lock_reserve - reserve a part of the buffer
2698 * @buffer: the ring buffer to reserve from
2699 * @length: the length of the data to reserve (excluding event header)
2700 *
2701 * Returns a reseverd event on the ring buffer to copy directly to.
2702 * The user of this interface will need to get the body to write into
2703 * and can use the ring_buffer_event_data() interface.
2704 *
2705 * The length is the length of the data needed, not the event length
2706 * which also includes the event header.
2707 *
2708 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2709 * If NULL is returned, then nothing has been allocated or locked.
2710 */
2711 struct ring_buffer_event *
2712 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2713 {
2714 struct ring_buffer_per_cpu *cpu_buffer;
2715 struct ring_buffer_event *event;
2716 int cpu;
2717
2718 /* If we are tracing schedule, we don't want to recurse */
2719 preempt_disable_notrace();
2720
2721 if (unlikely(atomic_read(&buffer->record_disabled)))
2722 goto out;
2723
2724 cpu = raw_smp_processor_id();
2725
2726 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2727 goto out;
2728
2729 cpu_buffer = buffer->buffers[cpu];
2730
2731 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2732 goto out;
2733
2734 if (unlikely(length > BUF_MAX_DATA_SIZE))
2735 goto out;
2736
2737 if (unlikely(trace_recursive_lock(cpu_buffer)))
2738 goto out;
2739
2740 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2741 if (!event)
2742 goto out_unlock;
2743
2744 return event;
2745
2746 out_unlock:
2747 trace_recursive_unlock(cpu_buffer);
2748 out:
2749 preempt_enable_notrace();
2750 return NULL;
2751 }
2752 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2753
2754 static void
2755 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2756 struct ring_buffer_event *event)
2757 {
2758 u64 delta;
2759
2760 /*
2761 * The event first in the commit queue updates the
2762 * time stamp.
2763 */
2764 if (rb_event_is_commit(cpu_buffer, event)) {
2765 /*
2766 * A commit event that is first on a page
2767 * updates the write timestamp with the page stamp
2768 */
2769 if (!rb_event_index(event))
2770 cpu_buffer->write_stamp =
2771 cpu_buffer->commit_page->page->time_stamp;
2772 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2773 delta = event->array[0];
2774 delta <<= TS_SHIFT;
2775 delta += event->time_delta;
2776 cpu_buffer->write_stamp += delta;
2777 } else
2778 cpu_buffer->write_stamp += event->time_delta;
2779 }
2780 }
2781
2782 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2783 struct ring_buffer_event *event)
2784 {
2785 local_inc(&cpu_buffer->entries);
2786 rb_update_write_stamp(cpu_buffer, event);
2787 rb_end_commit(cpu_buffer);
2788 }
2789
2790 static __always_inline void
2791 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2792 {
2793 bool pagebusy;
2794
2795 if (buffer->irq_work.waiters_pending) {
2796 buffer->irq_work.waiters_pending = false;
2797 /* irq_work_queue() supplies it's own memory barriers */
2798 irq_work_queue(&buffer->irq_work.work);
2799 }
2800
2801 if (cpu_buffer->irq_work.waiters_pending) {
2802 cpu_buffer->irq_work.waiters_pending = false;
2803 /* irq_work_queue() supplies it's own memory barriers */
2804 irq_work_queue(&cpu_buffer->irq_work.work);
2805 }
2806
2807 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2808
2809 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2810 cpu_buffer->irq_work.wakeup_full = true;
2811 cpu_buffer->irq_work.full_waiters_pending = false;
2812 /* irq_work_queue() supplies it's own memory barriers */
2813 irq_work_queue(&cpu_buffer->irq_work.work);
2814 }
2815 }
2816
2817 /**
2818 * ring_buffer_unlock_commit - commit a reserved
2819 * @buffer: The buffer to commit to
2820 * @event: The event pointer to commit.
2821 *
2822 * This commits the data to the ring buffer, and releases any locks held.
2823 *
2824 * Must be paired with ring_buffer_lock_reserve.
2825 */
2826 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2827 struct ring_buffer_event *event)
2828 {
2829 struct ring_buffer_per_cpu *cpu_buffer;
2830 int cpu = raw_smp_processor_id();
2831
2832 cpu_buffer = buffer->buffers[cpu];
2833
2834 rb_commit(cpu_buffer, event);
2835
2836 rb_wakeups(buffer, cpu_buffer);
2837
2838 trace_recursive_unlock(cpu_buffer);
2839
2840 preempt_enable_notrace();
2841
2842 return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2845
2846 static inline void rb_event_discard(struct ring_buffer_event *event)
2847 {
2848 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2849 event = skip_time_extend(event);
2850
2851 /* array[0] holds the actual length for the discarded event */
2852 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2853 event->type_len = RINGBUF_TYPE_PADDING;
2854 /* time delta must be non zero */
2855 if (!event->time_delta)
2856 event->time_delta = 1;
2857 }
2858
2859 /*
2860 * Decrement the entries to the page that an event is on.
2861 * The event does not even need to exist, only the pointer
2862 * to the page it is on. This may only be called before the commit
2863 * takes place.
2864 */
2865 static inline void
2866 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2867 struct ring_buffer_event *event)
2868 {
2869 unsigned long addr = (unsigned long)event;
2870 struct buffer_page *bpage = cpu_buffer->commit_page;
2871 struct buffer_page *start;
2872
2873 addr &= PAGE_MASK;
2874
2875 /* Do the likely case first */
2876 if (likely(bpage->page == (void *)addr)) {
2877 local_dec(&bpage->entries);
2878 return;
2879 }
2880
2881 /*
2882 * Because the commit page may be on the reader page we
2883 * start with the next page and check the end loop there.
2884 */
2885 rb_inc_page(cpu_buffer, &bpage);
2886 start = bpage;
2887 do {
2888 if (bpage->page == (void *)addr) {
2889 local_dec(&bpage->entries);
2890 return;
2891 }
2892 rb_inc_page(cpu_buffer, &bpage);
2893 } while (bpage != start);
2894
2895 /* commit not part of this buffer?? */
2896 RB_WARN_ON(cpu_buffer, 1);
2897 }
2898
2899 /**
2900 * ring_buffer_commit_discard - discard an event that has not been committed
2901 * @buffer: the ring buffer
2902 * @event: non committed event to discard
2903 *
2904 * Sometimes an event that is in the ring buffer needs to be ignored.
2905 * This function lets the user discard an event in the ring buffer
2906 * and then that event will not be read later.
2907 *
2908 * This function only works if it is called before the the item has been
2909 * committed. It will try to free the event from the ring buffer
2910 * if another event has not been added behind it.
2911 *
2912 * If another event has been added behind it, it will set the event
2913 * up as discarded, and perform the commit.
2914 *
2915 * If this function is called, do not call ring_buffer_unlock_commit on
2916 * the event.
2917 */
2918 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2919 struct ring_buffer_event *event)
2920 {
2921 struct ring_buffer_per_cpu *cpu_buffer;
2922 int cpu;
2923
2924 /* The event is discarded regardless */
2925 rb_event_discard(event);
2926
2927 cpu = smp_processor_id();
2928 cpu_buffer = buffer->buffers[cpu];
2929
2930 /*
2931 * This must only be called if the event has not been
2932 * committed yet. Thus we can assume that preemption
2933 * is still disabled.
2934 */
2935 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2936
2937 rb_decrement_entry(cpu_buffer, event);
2938 if (rb_try_to_discard(cpu_buffer, event))
2939 goto out;
2940
2941 /*
2942 * The commit is still visible by the reader, so we
2943 * must still update the timestamp.
2944 */
2945 rb_update_write_stamp(cpu_buffer, event);
2946 out:
2947 rb_end_commit(cpu_buffer);
2948
2949 trace_recursive_unlock(cpu_buffer);
2950
2951 preempt_enable_notrace();
2952
2953 }
2954 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2955
2956 /**
2957 * ring_buffer_write - write data to the buffer without reserving
2958 * @buffer: The ring buffer to write to.
2959 * @length: The length of the data being written (excluding the event header)
2960 * @data: The data to write to the buffer.
2961 *
2962 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2963 * one function. If you already have the data to write to the buffer, it
2964 * may be easier to simply call this function.
2965 *
2966 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2967 * and not the length of the event which would hold the header.
2968 */
2969 int ring_buffer_write(struct ring_buffer *buffer,
2970 unsigned long length,
2971 void *data)
2972 {
2973 struct ring_buffer_per_cpu *cpu_buffer;
2974 struct ring_buffer_event *event;
2975 void *body;
2976 int ret = -EBUSY;
2977 int cpu;
2978
2979 preempt_disable_notrace();
2980
2981 if (atomic_read(&buffer->record_disabled))
2982 goto out;
2983
2984 cpu = raw_smp_processor_id();
2985
2986 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2987 goto out;
2988
2989 cpu_buffer = buffer->buffers[cpu];
2990
2991 if (atomic_read(&cpu_buffer->record_disabled))
2992 goto out;
2993
2994 if (length > BUF_MAX_DATA_SIZE)
2995 goto out;
2996
2997 if (unlikely(trace_recursive_lock(cpu_buffer)))
2998 goto out;
2999
3000 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3001 if (!event)
3002 goto out_unlock;
3003
3004 body = rb_event_data(event);
3005
3006 memcpy(body, data, length);
3007
3008 rb_commit(cpu_buffer, event);
3009
3010 rb_wakeups(buffer, cpu_buffer);
3011
3012 ret = 0;
3013
3014 out_unlock:
3015 trace_recursive_unlock(cpu_buffer);
3016
3017 out:
3018 preempt_enable_notrace();
3019
3020 return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(ring_buffer_write);
3023
3024 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3025 {
3026 struct buffer_page *reader = cpu_buffer->reader_page;
3027 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3028 struct buffer_page *commit = cpu_buffer->commit_page;
3029
3030 /* In case of error, head will be NULL */
3031 if (unlikely(!head))
3032 return 1;
3033
3034 return reader->read == rb_page_commit(reader) &&
3035 (commit == reader ||
3036 (commit == head &&
3037 head->read == rb_page_commit(commit)));
3038 }
3039
3040 /**
3041 * ring_buffer_record_disable - stop all writes into the buffer
3042 * @buffer: The ring buffer to stop writes to.
3043 *
3044 * This prevents all writes to the buffer. Any attempt to write
3045 * to the buffer after this will fail and return NULL.
3046 *
3047 * The caller should call synchronize_sched() after this.
3048 */
3049 void ring_buffer_record_disable(struct ring_buffer *buffer)
3050 {
3051 atomic_inc(&buffer->record_disabled);
3052 }
3053 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3054
3055 /**
3056 * ring_buffer_record_enable - enable writes to the buffer
3057 * @buffer: The ring buffer to enable writes
3058 *
3059 * Note, multiple disables will need the same number of enables
3060 * to truly enable the writing (much like preempt_disable).
3061 */
3062 void ring_buffer_record_enable(struct ring_buffer *buffer)
3063 {
3064 atomic_dec(&buffer->record_disabled);
3065 }
3066 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3067
3068 /**
3069 * ring_buffer_record_off - stop all writes into the buffer
3070 * @buffer: The ring buffer to stop writes to.
3071 *
3072 * This prevents all writes to the buffer. Any attempt to write
3073 * to the buffer after this will fail and return NULL.
3074 *
3075 * This is different than ring_buffer_record_disable() as
3076 * it works like an on/off switch, where as the disable() version
3077 * must be paired with a enable().
3078 */
3079 void ring_buffer_record_off(struct ring_buffer *buffer)
3080 {
3081 unsigned int rd;
3082 unsigned int new_rd;
3083
3084 do {
3085 rd = atomic_read(&buffer->record_disabled);
3086 new_rd = rd | RB_BUFFER_OFF;
3087 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3088 }
3089 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3090
3091 /**
3092 * ring_buffer_record_on - restart writes into the buffer
3093 * @buffer: The ring buffer to start writes to.
3094 *
3095 * This enables all writes to the buffer that was disabled by
3096 * ring_buffer_record_off().
3097 *
3098 * This is different than ring_buffer_record_enable() as
3099 * it works like an on/off switch, where as the enable() version
3100 * must be paired with a disable().
3101 */
3102 void ring_buffer_record_on(struct ring_buffer *buffer)
3103 {
3104 unsigned int rd;
3105 unsigned int new_rd;
3106
3107 do {
3108 rd = atomic_read(&buffer->record_disabled);
3109 new_rd = rd & ~RB_BUFFER_OFF;
3110 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3111 }
3112 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3113
3114 /**
3115 * ring_buffer_record_is_on - return true if the ring buffer can write
3116 * @buffer: The ring buffer to see if write is enabled
3117 *
3118 * Returns true if the ring buffer is in a state that it accepts writes.
3119 */
3120 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3121 {
3122 return !atomic_read(&buffer->record_disabled);
3123 }
3124
3125 /**
3126 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3127 * @buffer: The ring buffer to stop writes to.
3128 * @cpu: The CPU buffer to stop
3129 *
3130 * This prevents all writes to the buffer. Any attempt to write
3131 * to the buffer after this will fail and return NULL.
3132 *
3133 * The caller should call synchronize_sched() after this.
3134 */
3135 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3136 {
3137 struct ring_buffer_per_cpu *cpu_buffer;
3138
3139 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3140 return;
3141
3142 cpu_buffer = buffer->buffers[cpu];
3143 atomic_inc(&cpu_buffer->record_disabled);
3144 }
3145 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3146
3147 /**
3148 * ring_buffer_record_enable_cpu - enable writes to the buffer
3149 * @buffer: The ring buffer to enable writes
3150 * @cpu: The CPU to enable.
3151 *
3152 * Note, multiple disables will need the same number of enables
3153 * to truly enable the writing (much like preempt_disable).
3154 */
3155 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3156 {
3157 struct ring_buffer_per_cpu *cpu_buffer;
3158
3159 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3160 return;
3161
3162 cpu_buffer = buffer->buffers[cpu];
3163 atomic_dec(&cpu_buffer->record_disabled);
3164 }
3165 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3166
3167 /*
3168 * The total entries in the ring buffer is the running counter
3169 * of entries entered into the ring buffer, minus the sum of
3170 * the entries read from the ring buffer and the number of
3171 * entries that were overwritten.
3172 */
3173 static inline unsigned long
3174 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3175 {
3176 return local_read(&cpu_buffer->entries) -
3177 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3178 }
3179
3180 /**
3181 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3182 * @buffer: The ring buffer
3183 * @cpu: The per CPU buffer to read from.
3184 */
3185 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3186 {
3187 unsigned long flags;
3188 struct ring_buffer_per_cpu *cpu_buffer;
3189 struct buffer_page *bpage;
3190 u64 ret = 0;
3191
3192 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3193 return 0;
3194
3195 cpu_buffer = buffer->buffers[cpu];
3196 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3197 /*
3198 * if the tail is on reader_page, oldest time stamp is on the reader
3199 * page
3200 */
3201 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3202 bpage = cpu_buffer->reader_page;
3203 else
3204 bpage = rb_set_head_page(cpu_buffer);
3205 if (bpage)
3206 ret = bpage->page->time_stamp;
3207 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3208
3209 return ret;
3210 }
3211 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3212
3213 /**
3214 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3215 * @buffer: The ring buffer
3216 * @cpu: The per CPU buffer to read from.
3217 */
3218 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3219 {
3220 struct ring_buffer_per_cpu *cpu_buffer;
3221 unsigned long ret;
3222
3223 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3224 return 0;
3225
3226 cpu_buffer = buffer->buffers[cpu];
3227 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3228
3229 return ret;
3230 }
3231 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3232
3233 /**
3234 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3235 * @buffer: The ring buffer
3236 * @cpu: The per CPU buffer to get the entries from.
3237 */
3238 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3239 {
3240 struct ring_buffer_per_cpu *cpu_buffer;
3241
3242 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243 return 0;
3244
3245 cpu_buffer = buffer->buffers[cpu];
3246
3247 return rb_num_of_entries(cpu_buffer);
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3250
3251 /**
3252 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3253 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3254 * @buffer: The ring buffer
3255 * @cpu: The per CPU buffer to get the number of overruns from
3256 */
3257 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3258 {
3259 struct ring_buffer_per_cpu *cpu_buffer;
3260 unsigned long ret;
3261
3262 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3263 return 0;
3264
3265 cpu_buffer = buffer->buffers[cpu];
3266 ret = local_read(&cpu_buffer->overrun);
3267
3268 return ret;
3269 }
3270 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3271
3272 /**
3273 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3274 * commits failing due to the buffer wrapping around while there are uncommitted
3275 * events, such as during an interrupt storm.
3276 * @buffer: The ring buffer
3277 * @cpu: The per CPU buffer to get the number of overruns from
3278 */
3279 unsigned long
3280 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3281 {
3282 struct ring_buffer_per_cpu *cpu_buffer;
3283 unsigned long ret;
3284
3285 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3286 return 0;
3287
3288 cpu_buffer = buffer->buffers[cpu];
3289 ret = local_read(&cpu_buffer->commit_overrun);
3290
3291 return ret;
3292 }
3293 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3294
3295 /**
3296 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3297 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3298 * @buffer: The ring buffer
3299 * @cpu: The per CPU buffer to get the number of overruns from
3300 */
3301 unsigned long
3302 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3303 {
3304 struct ring_buffer_per_cpu *cpu_buffer;
3305 unsigned long ret;
3306
3307 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3308 return 0;
3309
3310 cpu_buffer = buffer->buffers[cpu];
3311 ret = local_read(&cpu_buffer->dropped_events);
3312
3313 return ret;
3314 }
3315 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3316
3317 /**
3318 * ring_buffer_read_events_cpu - get the number of events successfully read
3319 * @buffer: The ring buffer
3320 * @cpu: The per CPU buffer to get the number of events read
3321 */
3322 unsigned long
3323 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3324 {
3325 struct ring_buffer_per_cpu *cpu_buffer;
3326
3327 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3328 return 0;
3329
3330 cpu_buffer = buffer->buffers[cpu];
3331 return cpu_buffer->read;
3332 }
3333 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3334
3335 /**
3336 * ring_buffer_entries - get the number of entries in a buffer
3337 * @buffer: The ring buffer
3338 *
3339 * Returns the total number of entries in the ring buffer
3340 * (all CPU entries)
3341 */
3342 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3343 {
3344 struct ring_buffer_per_cpu *cpu_buffer;
3345 unsigned long entries = 0;
3346 int cpu;
3347
3348 /* if you care about this being correct, lock the buffer */
3349 for_each_buffer_cpu(buffer, cpu) {
3350 cpu_buffer = buffer->buffers[cpu];
3351 entries += rb_num_of_entries(cpu_buffer);
3352 }
3353
3354 return entries;
3355 }
3356 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3357
3358 /**
3359 * ring_buffer_overruns - get the number of overruns in buffer
3360 * @buffer: The ring buffer
3361 *
3362 * Returns the total number of overruns in the ring buffer
3363 * (all CPU entries)
3364 */
3365 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3366 {
3367 struct ring_buffer_per_cpu *cpu_buffer;
3368 unsigned long overruns = 0;
3369 int cpu;
3370
3371 /* if you care about this being correct, lock the buffer */
3372 for_each_buffer_cpu(buffer, cpu) {
3373 cpu_buffer = buffer->buffers[cpu];
3374 overruns += local_read(&cpu_buffer->overrun);
3375 }
3376
3377 return overruns;
3378 }
3379 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3380
3381 static void rb_iter_reset(struct ring_buffer_iter *iter)
3382 {
3383 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3384
3385 /* Iterator usage is expected to have record disabled */
3386 iter->head_page = cpu_buffer->reader_page;
3387 iter->head = cpu_buffer->reader_page->read;
3388
3389 iter->cache_reader_page = iter->head_page;
3390 iter->cache_read = cpu_buffer->read;
3391
3392 if (iter->head)
3393 iter->read_stamp = cpu_buffer->read_stamp;
3394 else
3395 iter->read_stamp = iter->head_page->page->time_stamp;
3396 }
3397
3398 /**
3399 * ring_buffer_iter_reset - reset an iterator
3400 * @iter: The iterator to reset
3401 *
3402 * Resets the iterator, so that it will start from the beginning
3403 * again.
3404 */
3405 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3406 {
3407 struct ring_buffer_per_cpu *cpu_buffer;
3408 unsigned long flags;
3409
3410 if (!iter)
3411 return;
3412
3413 cpu_buffer = iter->cpu_buffer;
3414
3415 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3416 rb_iter_reset(iter);
3417 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3418 }
3419 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3420
3421 /**
3422 * ring_buffer_iter_empty - check if an iterator has no more to read
3423 * @iter: The iterator to check
3424 */
3425 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3426 {
3427 struct ring_buffer_per_cpu *cpu_buffer;
3428
3429 cpu_buffer = iter->cpu_buffer;
3430
3431 return iter->head_page == cpu_buffer->commit_page &&
3432 iter->head == rb_commit_index(cpu_buffer);
3433 }
3434 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3435
3436 static void
3437 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3438 struct ring_buffer_event *event)
3439 {
3440 u64 delta;
3441
3442 switch (event->type_len) {
3443 case RINGBUF_TYPE_PADDING:
3444 return;
3445
3446 case RINGBUF_TYPE_TIME_EXTEND:
3447 delta = event->array[0];
3448 delta <<= TS_SHIFT;
3449 delta += event->time_delta;
3450 cpu_buffer->read_stamp += delta;
3451 return;
3452
3453 case RINGBUF_TYPE_TIME_STAMP:
3454 /* FIXME: not implemented */
3455 return;
3456
3457 case RINGBUF_TYPE_DATA:
3458 cpu_buffer->read_stamp += event->time_delta;
3459 return;
3460
3461 default:
3462 BUG();
3463 }
3464 return;
3465 }
3466
3467 static void
3468 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3469 struct ring_buffer_event *event)
3470 {
3471 u64 delta;
3472
3473 switch (event->type_len) {
3474 case RINGBUF_TYPE_PADDING:
3475 return;
3476
3477 case RINGBUF_TYPE_TIME_EXTEND:
3478 delta = event->array[0];
3479 delta <<= TS_SHIFT;
3480 delta += event->time_delta;
3481 iter->read_stamp += delta;
3482 return;
3483
3484 case RINGBUF_TYPE_TIME_STAMP:
3485 /* FIXME: not implemented */
3486 return;
3487
3488 case RINGBUF_TYPE_DATA:
3489 iter->read_stamp += event->time_delta;
3490 return;
3491
3492 default:
3493 BUG();
3494 }
3495 return;
3496 }
3497
3498 static struct buffer_page *
3499 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3500 {
3501 struct buffer_page *reader = NULL;
3502 unsigned long overwrite;
3503 unsigned long flags;
3504 int nr_loops = 0;
3505 int ret;
3506
3507 local_irq_save(flags);
3508 arch_spin_lock(&cpu_buffer->lock);
3509
3510 again:
3511 /*
3512 * This should normally only loop twice. But because the
3513 * start of the reader inserts an empty page, it causes
3514 * a case where we will loop three times. There should be no
3515 * reason to loop four times (that I know of).
3516 */
3517 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3518 reader = NULL;
3519 goto out;
3520 }
3521
3522 reader = cpu_buffer->reader_page;
3523
3524 /* If there's more to read, return this page */
3525 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3526 goto out;
3527
3528 /* Never should we have an index greater than the size */
3529 if (RB_WARN_ON(cpu_buffer,
3530 cpu_buffer->reader_page->read > rb_page_size(reader)))
3531 goto out;
3532
3533 /* check if we caught up to the tail */
3534 reader = NULL;
3535 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3536 goto out;
3537
3538 /* Don't bother swapping if the ring buffer is empty */
3539 if (rb_num_of_entries(cpu_buffer) == 0)
3540 goto out;
3541
3542 /*
3543 * Reset the reader page to size zero.
3544 */
3545 local_set(&cpu_buffer->reader_page->write, 0);
3546 local_set(&cpu_buffer->reader_page->entries, 0);
3547 local_set(&cpu_buffer->reader_page->page->commit, 0);
3548 cpu_buffer->reader_page->real_end = 0;
3549
3550 spin:
3551 /*
3552 * Splice the empty reader page into the list around the head.
3553 */
3554 reader = rb_set_head_page(cpu_buffer);
3555 if (!reader)
3556 goto out;
3557 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3558 cpu_buffer->reader_page->list.prev = reader->list.prev;
3559
3560 /*
3561 * cpu_buffer->pages just needs to point to the buffer, it
3562 * has no specific buffer page to point to. Lets move it out
3563 * of our way so we don't accidentally swap it.
3564 */
3565 cpu_buffer->pages = reader->list.prev;
3566
3567 /* The reader page will be pointing to the new head */
3568 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3569
3570 /*
3571 * We want to make sure we read the overruns after we set up our
3572 * pointers to the next object. The writer side does a
3573 * cmpxchg to cross pages which acts as the mb on the writer
3574 * side. Note, the reader will constantly fail the swap
3575 * while the writer is updating the pointers, so this
3576 * guarantees that the overwrite recorded here is the one we
3577 * want to compare with the last_overrun.
3578 */
3579 smp_mb();
3580 overwrite = local_read(&(cpu_buffer->overrun));
3581
3582 /*
3583 * Here's the tricky part.
3584 *
3585 * We need to move the pointer past the header page.
3586 * But we can only do that if a writer is not currently
3587 * moving it. The page before the header page has the
3588 * flag bit '1' set if it is pointing to the page we want.
3589 * but if the writer is in the process of moving it
3590 * than it will be '2' or already moved '0'.
3591 */
3592
3593 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3594
3595 /*
3596 * If we did not convert it, then we must try again.
3597 */
3598 if (!ret)
3599 goto spin;
3600
3601 /*
3602 * Yeah! We succeeded in replacing the page.
3603 *
3604 * Now make the new head point back to the reader page.
3605 */
3606 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3607 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3608
3609 /* Finally update the reader page to the new head */
3610 cpu_buffer->reader_page = reader;
3611 rb_reset_reader_page(cpu_buffer);
3612
3613 if (overwrite != cpu_buffer->last_overrun) {
3614 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3615 cpu_buffer->last_overrun = overwrite;
3616 }
3617
3618 goto again;
3619
3620 out:
3621 arch_spin_unlock(&cpu_buffer->lock);
3622 local_irq_restore(flags);
3623
3624 return reader;
3625 }
3626
3627 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3628 {
3629 struct ring_buffer_event *event;
3630 struct buffer_page *reader;
3631 unsigned length;
3632
3633 reader = rb_get_reader_page(cpu_buffer);
3634
3635 /* This function should not be called when buffer is empty */
3636 if (RB_WARN_ON(cpu_buffer, !reader))
3637 return;
3638
3639 event = rb_reader_event(cpu_buffer);
3640
3641 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3642 cpu_buffer->read++;
3643
3644 rb_update_read_stamp(cpu_buffer, event);
3645
3646 length = rb_event_length(event);
3647 cpu_buffer->reader_page->read += length;
3648 }
3649
3650 static void rb_advance_iter(struct ring_buffer_iter *iter)
3651 {
3652 struct ring_buffer_per_cpu *cpu_buffer;
3653 struct ring_buffer_event *event;
3654 unsigned length;
3655
3656 cpu_buffer = iter->cpu_buffer;
3657
3658 /*
3659 * Check if we are at the end of the buffer.
3660 */
3661 if (iter->head >= rb_page_size(iter->head_page)) {
3662 /* discarded commits can make the page empty */
3663 if (iter->head_page == cpu_buffer->commit_page)
3664 return;
3665 rb_inc_iter(iter);
3666 return;
3667 }
3668
3669 event = rb_iter_head_event(iter);
3670
3671 length = rb_event_length(event);
3672
3673 /*
3674 * This should not be called to advance the header if we are
3675 * at the tail of the buffer.
3676 */
3677 if (RB_WARN_ON(cpu_buffer,
3678 (iter->head_page == cpu_buffer->commit_page) &&
3679 (iter->head + length > rb_commit_index(cpu_buffer))))
3680 return;
3681
3682 rb_update_iter_read_stamp(iter, event);
3683
3684 iter->head += length;
3685
3686 /* check for end of page padding */
3687 if ((iter->head >= rb_page_size(iter->head_page)) &&
3688 (iter->head_page != cpu_buffer->commit_page))
3689 rb_inc_iter(iter);
3690 }
3691
3692 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3693 {
3694 return cpu_buffer->lost_events;
3695 }
3696
3697 static struct ring_buffer_event *
3698 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3699 unsigned long *lost_events)
3700 {
3701 struct ring_buffer_event *event;
3702 struct buffer_page *reader;
3703 int nr_loops = 0;
3704
3705 again:
3706 /*
3707 * We repeat when a time extend is encountered.
3708 * Since the time extend is always attached to a data event,
3709 * we should never loop more than once.
3710 * (We never hit the following condition more than twice).
3711 */
3712 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3713 return NULL;
3714
3715 reader = rb_get_reader_page(cpu_buffer);
3716 if (!reader)
3717 return NULL;
3718
3719 event = rb_reader_event(cpu_buffer);
3720
3721 switch (event->type_len) {
3722 case RINGBUF_TYPE_PADDING:
3723 if (rb_null_event(event))
3724 RB_WARN_ON(cpu_buffer, 1);
3725 /*
3726 * Because the writer could be discarding every
3727 * event it creates (which would probably be bad)
3728 * if we were to go back to "again" then we may never
3729 * catch up, and will trigger the warn on, or lock
3730 * the box. Return the padding, and we will release
3731 * the current locks, and try again.
3732 */
3733 return event;
3734
3735 case RINGBUF_TYPE_TIME_EXTEND:
3736 /* Internal data, OK to advance */
3737 rb_advance_reader(cpu_buffer);
3738 goto again;
3739
3740 case RINGBUF_TYPE_TIME_STAMP:
3741 /* FIXME: not implemented */
3742 rb_advance_reader(cpu_buffer);
3743 goto again;
3744
3745 case RINGBUF_TYPE_DATA:
3746 if (ts) {
3747 *ts = cpu_buffer->read_stamp + event->time_delta;
3748 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3749 cpu_buffer->cpu, ts);
3750 }
3751 if (lost_events)
3752 *lost_events = rb_lost_events(cpu_buffer);
3753 return event;
3754
3755 default:
3756 BUG();
3757 }
3758
3759 return NULL;
3760 }
3761 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3762
3763 static struct ring_buffer_event *
3764 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3765 {
3766 struct ring_buffer *buffer;
3767 struct ring_buffer_per_cpu *cpu_buffer;
3768 struct ring_buffer_event *event;
3769 int nr_loops = 0;
3770
3771 cpu_buffer = iter->cpu_buffer;
3772 buffer = cpu_buffer->buffer;
3773
3774 /*
3775 * Check if someone performed a consuming read to
3776 * the buffer. A consuming read invalidates the iterator
3777 * and we need to reset the iterator in this case.
3778 */
3779 if (unlikely(iter->cache_read != cpu_buffer->read ||
3780 iter->cache_reader_page != cpu_buffer->reader_page))
3781 rb_iter_reset(iter);
3782
3783 again:
3784 if (ring_buffer_iter_empty(iter))
3785 return NULL;
3786
3787 /*
3788 * We repeat when a time extend is encountered or we hit
3789 * the end of the page. Since the time extend is always attached
3790 * to a data event, we should never loop more than three times.
3791 * Once for going to next page, once on time extend, and
3792 * finally once to get the event.
3793 * (We never hit the following condition more than thrice).
3794 */
3795 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3796 return NULL;
3797
3798 if (rb_per_cpu_empty(cpu_buffer))
3799 return NULL;
3800
3801 if (iter->head >= rb_page_size(iter->head_page)) {
3802 rb_inc_iter(iter);
3803 goto again;
3804 }
3805
3806 event = rb_iter_head_event(iter);
3807
3808 switch (event->type_len) {
3809 case RINGBUF_TYPE_PADDING:
3810 if (rb_null_event(event)) {
3811 rb_inc_iter(iter);
3812 goto again;
3813 }
3814 rb_advance_iter(iter);
3815 return event;
3816
3817 case RINGBUF_TYPE_TIME_EXTEND:
3818 /* Internal data, OK to advance */
3819 rb_advance_iter(iter);
3820 goto again;
3821
3822 case RINGBUF_TYPE_TIME_STAMP:
3823 /* FIXME: not implemented */
3824 rb_advance_iter(iter);
3825 goto again;
3826
3827 case RINGBUF_TYPE_DATA:
3828 if (ts) {
3829 *ts = iter->read_stamp + event->time_delta;
3830 ring_buffer_normalize_time_stamp(buffer,
3831 cpu_buffer->cpu, ts);
3832 }
3833 return event;
3834
3835 default:
3836 BUG();
3837 }
3838
3839 return NULL;
3840 }
3841 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3842
3843 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3844 {
3845 if (likely(!in_nmi())) {
3846 raw_spin_lock(&cpu_buffer->reader_lock);
3847 return true;
3848 }
3849
3850 /*
3851 * If an NMI die dumps out the content of the ring buffer
3852 * trylock must be used to prevent a deadlock if the NMI
3853 * preempted a task that holds the ring buffer locks. If
3854 * we get the lock then all is fine, if not, then continue
3855 * to do the read, but this can corrupt the ring buffer,
3856 * so it must be permanently disabled from future writes.
3857 * Reading from NMI is a oneshot deal.
3858 */
3859 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3860 return true;
3861
3862 /* Continue without locking, but disable the ring buffer */
3863 atomic_inc(&cpu_buffer->record_disabled);
3864 return false;
3865 }
3866
3867 static inline void
3868 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3869 {
3870 if (likely(locked))
3871 raw_spin_unlock(&cpu_buffer->reader_lock);
3872 return;
3873 }
3874
3875 /**
3876 * ring_buffer_peek - peek at the next event to be read
3877 * @buffer: The ring buffer to read
3878 * @cpu: The cpu to peak at
3879 * @ts: The timestamp counter of this event.
3880 * @lost_events: a variable to store if events were lost (may be NULL)
3881 *
3882 * This will return the event that will be read next, but does
3883 * not consume the data.
3884 */
3885 struct ring_buffer_event *
3886 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3887 unsigned long *lost_events)
3888 {
3889 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3890 struct ring_buffer_event *event;
3891 unsigned long flags;
3892 bool dolock;
3893
3894 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3895 return NULL;
3896
3897 again:
3898 local_irq_save(flags);
3899 dolock = rb_reader_lock(cpu_buffer);
3900 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3901 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3902 rb_advance_reader(cpu_buffer);
3903 rb_reader_unlock(cpu_buffer, dolock);
3904 local_irq_restore(flags);
3905
3906 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3907 goto again;
3908
3909 return event;
3910 }
3911
3912 /**
3913 * ring_buffer_iter_peek - peek at the next event to be read
3914 * @iter: The ring buffer iterator
3915 * @ts: The timestamp counter of this event.
3916 *
3917 * This will return the event that will be read next, but does
3918 * not increment the iterator.
3919 */
3920 struct ring_buffer_event *
3921 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3922 {
3923 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3924 struct ring_buffer_event *event;
3925 unsigned long flags;
3926
3927 again:
3928 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3929 event = rb_iter_peek(iter, ts);
3930 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3931
3932 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3933 goto again;
3934
3935 return event;
3936 }
3937
3938 /**
3939 * ring_buffer_consume - return an event and consume it
3940 * @buffer: The ring buffer to get the next event from
3941 * @cpu: the cpu to read the buffer from
3942 * @ts: a variable to store the timestamp (may be NULL)
3943 * @lost_events: a variable to store if events were lost (may be NULL)
3944 *
3945 * Returns the next event in the ring buffer, and that event is consumed.
3946 * Meaning, that sequential reads will keep returning a different event,
3947 * and eventually empty the ring buffer if the producer is slower.
3948 */
3949 struct ring_buffer_event *
3950 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3951 unsigned long *lost_events)
3952 {
3953 struct ring_buffer_per_cpu *cpu_buffer;
3954 struct ring_buffer_event *event = NULL;
3955 unsigned long flags;
3956 bool dolock;
3957
3958 again:
3959 /* might be called in atomic */
3960 preempt_disable();
3961
3962 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3963 goto out;
3964
3965 cpu_buffer = buffer->buffers[cpu];
3966 local_irq_save(flags);
3967 dolock = rb_reader_lock(cpu_buffer);
3968
3969 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3970 if (event) {
3971 cpu_buffer->lost_events = 0;
3972 rb_advance_reader(cpu_buffer);
3973 }
3974
3975 rb_reader_unlock(cpu_buffer, dolock);
3976 local_irq_restore(flags);
3977
3978 out:
3979 preempt_enable();
3980
3981 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3982 goto again;
3983
3984 return event;
3985 }
3986 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3987
3988 /**
3989 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3990 * @buffer: The ring buffer to read from
3991 * @cpu: The cpu buffer to iterate over
3992 *
3993 * This performs the initial preparations necessary to iterate
3994 * through the buffer. Memory is allocated, buffer recording
3995 * is disabled, and the iterator pointer is returned to the caller.
3996 *
3997 * Disabling buffer recordng prevents the reading from being
3998 * corrupted. This is not a consuming read, so a producer is not
3999 * expected.
4000 *
4001 * After a sequence of ring_buffer_read_prepare calls, the user is
4002 * expected to make at least one call to ring_buffer_read_prepare_sync.
4003 * Afterwards, ring_buffer_read_start is invoked to get things going
4004 * for real.
4005 *
4006 * This overall must be paired with ring_buffer_read_finish.
4007 */
4008 struct ring_buffer_iter *
4009 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4010 {
4011 struct ring_buffer_per_cpu *cpu_buffer;
4012 struct ring_buffer_iter *iter;
4013
4014 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4015 return NULL;
4016
4017 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4018 if (!iter)
4019 return NULL;
4020
4021 cpu_buffer = buffer->buffers[cpu];
4022
4023 iter->cpu_buffer = cpu_buffer;
4024
4025 atomic_inc(&buffer->resize_disabled);
4026 atomic_inc(&cpu_buffer->record_disabled);
4027
4028 return iter;
4029 }
4030 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4031
4032 /**
4033 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4034 *
4035 * All previously invoked ring_buffer_read_prepare calls to prepare
4036 * iterators will be synchronized. Afterwards, read_buffer_read_start
4037 * calls on those iterators are allowed.
4038 */
4039 void
4040 ring_buffer_read_prepare_sync(void)
4041 {
4042 synchronize_sched();
4043 }
4044 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4045
4046 /**
4047 * ring_buffer_read_start - start a non consuming read of the buffer
4048 * @iter: The iterator returned by ring_buffer_read_prepare
4049 *
4050 * This finalizes the startup of an iteration through the buffer.
4051 * The iterator comes from a call to ring_buffer_read_prepare and
4052 * an intervening ring_buffer_read_prepare_sync must have been
4053 * performed.
4054 *
4055 * Must be paired with ring_buffer_read_finish.
4056 */
4057 void
4058 ring_buffer_read_start(struct ring_buffer_iter *iter)
4059 {
4060 struct ring_buffer_per_cpu *cpu_buffer;
4061 unsigned long flags;
4062
4063 if (!iter)
4064 return;
4065
4066 cpu_buffer = iter->cpu_buffer;
4067
4068 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4069 arch_spin_lock(&cpu_buffer->lock);
4070 rb_iter_reset(iter);
4071 arch_spin_unlock(&cpu_buffer->lock);
4072 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4073 }
4074 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4075
4076 /**
4077 * ring_buffer_read_finish - finish reading the iterator of the buffer
4078 * @iter: The iterator retrieved by ring_buffer_start
4079 *
4080 * This re-enables the recording to the buffer, and frees the
4081 * iterator.
4082 */
4083 void
4084 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4085 {
4086 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4087 unsigned long flags;
4088
4089 /*
4090 * Ring buffer is disabled from recording, here's a good place
4091 * to check the integrity of the ring buffer.
4092 * Must prevent readers from trying to read, as the check
4093 * clears the HEAD page and readers require it.
4094 */
4095 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4096 rb_check_pages(cpu_buffer);
4097 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4098
4099 atomic_dec(&cpu_buffer->record_disabled);
4100 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4101 kfree(iter);
4102 }
4103 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4104
4105 /**
4106 * ring_buffer_read - read the next item in the ring buffer by the iterator
4107 * @iter: The ring buffer iterator
4108 * @ts: The time stamp of the event read.
4109 *
4110 * This reads the next event in the ring buffer and increments the iterator.
4111 */
4112 struct ring_buffer_event *
4113 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4114 {
4115 struct ring_buffer_event *event;
4116 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4117 unsigned long flags;
4118
4119 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4120 again:
4121 event = rb_iter_peek(iter, ts);
4122 if (!event)
4123 goto out;
4124
4125 if (event->type_len == RINGBUF_TYPE_PADDING)
4126 goto again;
4127
4128 rb_advance_iter(iter);
4129 out:
4130 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4131
4132 return event;
4133 }
4134 EXPORT_SYMBOL_GPL(ring_buffer_read);
4135
4136 /**
4137 * ring_buffer_size - return the size of the ring buffer (in bytes)
4138 * @buffer: The ring buffer.
4139 */
4140 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4141 {
4142 /*
4143 * Earlier, this method returned
4144 * BUF_PAGE_SIZE * buffer->nr_pages
4145 * Since the nr_pages field is now removed, we have converted this to
4146 * return the per cpu buffer value.
4147 */
4148 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4149 return 0;
4150
4151 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_size);
4154
4155 static void
4156 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4157 {
4158 rb_head_page_deactivate(cpu_buffer);
4159
4160 cpu_buffer->head_page
4161 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4162 local_set(&cpu_buffer->head_page->write, 0);
4163 local_set(&cpu_buffer->head_page->entries, 0);
4164 local_set(&cpu_buffer->head_page->page->commit, 0);
4165
4166 cpu_buffer->head_page->read = 0;
4167
4168 cpu_buffer->tail_page = cpu_buffer->head_page;
4169 cpu_buffer->commit_page = cpu_buffer->head_page;
4170
4171 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4172 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4173 local_set(&cpu_buffer->reader_page->write, 0);
4174 local_set(&cpu_buffer->reader_page->entries, 0);
4175 local_set(&cpu_buffer->reader_page->page->commit, 0);
4176 cpu_buffer->reader_page->read = 0;
4177
4178 local_set(&cpu_buffer->entries_bytes, 0);
4179 local_set(&cpu_buffer->overrun, 0);
4180 local_set(&cpu_buffer->commit_overrun, 0);
4181 local_set(&cpu_buffer->dropped_events, 0);
4182 local_set(&cpu_buffer->entries, 0);
4183 local_set(&cpu_buffer->committing, 0);
4184 local_set(&cpu_buffer->commits, 0);
4185 cpu_buffer->read = 0;
4186 cpu_buffer->read_bytes = 0;
4187
4188 cpu_buffer->write_stamp = 0;
4189 cpu_buffer->read_stamp = 0;
4190
4191 cpu_buffer->lost_events = 0;
4192 cpu_buffer->last_overrun = 0;
4193
4194 rb_head_page_activate(cpu_buffer);
4195 }
4196
4197 /**
4198 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4199 * @buffer: The ring buffer to reset a per cpu buffer of
4200 * @cpu: The CPU buffer to be reset
4201 */
4202 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4203 {
4204 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4205 unsigned long flags;
4206
4207 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4208 return;
4209
4210 atomic_inc(&buffer->resize_disabled);
4211 atomic_inc(&cpu_buffer->record_disabled);
4212
4213 /* Make sure all commits have finished */
4214 synchronize_sched();
4215
4216 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4217
4218 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4219 goto out;
4220
4221 arch_spin_lock(&cpu_buffer->lock);
4222
4223 rb_reset_cpu(cpu_buffer);
4224
4225 arch_spin_unlock(&cpu_buffer->lock);
4226
4227 out:
4228 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4229
4230 atomic_dec(&cpu_buffer->record_disabled);
4231 atomic_dec(&buffer->resize_disabled);
4232 }
4233 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4234
4235 /**
4236 * ring_buffer_reset - reset a ring buffer
4237 * @buffer: The ring buffer to reset all cpu buffers
4238 */
4239 void ring_buffer_reset(struct ring_buffer *buffer)
4240 {
4241 int cpu;
4242
4243 for_each_buffer_cpu(buffer, cpu)
4244 ring_buffer_reset_cpu(buffer, cpu);
4245 }
4246 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4247
4248 /**
4249 * rind_buffer_empty - is the ring buffer empty?
4250 * @buffer: The ring buffer to test
4251 */
4252 int ring_buffer_empty(struct ring_buffer *buffer)
4253 {
4254 struct ring_buffer_per_cpu *cpu_buffer;
4255 unsigned long flags;
4256 bool dolock;
4257 int cpu;
4258 int ret;
4259
4260 /* yes this is racy, but if you don't like the race, lock the buffer */
4261 for_each_buffer_cpu(buffer, cpu) {
4262 cpu_buffer = buffer->buffers[cpu];
4263 local_irq_save(flags);
4264 dolock = rb_reader_lock(cpu_buffer);
4265 ret = rb_per_cpu_empty(cpu_buffer);
4266 rb_reader_unlock(cpu_buffer, dolock);
4267 local_irq_restore(flags);
4268
4269 if (!ret)
4270 return 0;
4271 }
4272
4273 return 1;
4274 }
4275 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4276
4277 /**
4278 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4279 * @buffer: The ring buffer
4280 * @cpu: The CPU buffer to test
4281 */
4282 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4283 {
4284 struct ring_buffer_per_cpu *cpu_buffer;
4285 unsigned long flags;
4286 bool dolock;
4287 int ret;
4288
4289 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4290 return 1;
4291
4292 cpu_buffer = buffer->buffers[cpu];
4293 local_irq_save(flags);
4294 dolock = rb_reader_lock(cpu_buffer);
4295 ret = rb_per_cpu_empty(cpu_buffer);
4296 rb_reader_unlock(cpu_buffer, dolock);
4297 local_irq_restore(flags);
4298
4299 return ret;
4300 }
4301 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4302
4303 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4304 /**
4305 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4306 * @buffer_a: One buffer to swap with
4307 * @buffer_b: The other buffer to swap with
4308 *
4309 * This function is useful for tracers that want to take a "snapshot"
4310 * of a CPU buffer and has another back up buffer lying around.
4311 * it is expected that the tracer handles the cpu buffer not being
4312 * used at the moment.
4313 */
4314 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4315 struct ring_buffer *buffer_b, int cpu)
4316 {
4317 struct ring_buffer_per_cpu *cpu_buffer_a;
4318 struct ring_buffer_per_cpu *cpu_buffer_b;
4319 int ret = -EINVAL;
4320
4321 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4322 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4323 goto out;
4324
4325 cpu_buffer_a = buffer_a->buffers[cpu];
4326 cpu_buffer_b = buffer_b->buffers[cpu];
4327
4328 /* At least make sure the two buffers are somewhat the same */
4329 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4330 goto out;
4331
4332 ret = -EAGAIN;
4333
4334 if (atomic_read(&buffer_a->record_disabled))
4335 goto out;
4336
4337 if (atomic_read(&buffer_b->record_disabled))
4338 goto out;
4339
4340 if (atomic_read(&cpu_buffer_a->record_disabled))
4341 goto out;
4342
4343 if (atomic_read(&cpu_buffer_b->record_disabled))
4344 goto out;
4345
4346 /*
4347 * We can't do a synchronize_sched here because this
4348 * function can be called in atomic context.
4349 * Normally this will be called from the same CPU as cpu.
4350 * If not it's up to the caller to protect this.
4351 */
4352 atomic_inc(&cpu_buffer_a->record_disabled);
4353 atomic_inc(&cpu_buffer_b->record_disabled);
4354
4355 ret = -EBUSY;
4356 if (local_read(&cpu_buffer_a->committing))
4357 goto out_dec;
4358 if (local_read(&cpu_buffer_b->committing))
4359 goto out_dec;
4360
4361 buffer_a->buffers[cpu] = cpu_buffer_b;
4362 buffer_b->buffers[cpu] = cpu_buffer_a;
4363
4364 cpu_buffer_b->buffer = buffer_a;
4365 cpu_buffer_a->buffer = buffer_b;
4366
4367 ret = 0;
4368
4369 out_dec:
4370 atomic_dec(&cpu_buffer_a->record_disabled);
4371 atomic_dec(&cpu_buffer_b->record_disabled);
4372 out:
4373 return ret;
4374 }
4375 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4376 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4377
4378 /**
4379 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4380 * @buffer: the buffer to allocate for.
4381 * @cpu: the cpu buffer to allocate.
4382 *
4383 * This function is used in conjunction with ring_buffer_read_page.
4384 * When reading a full page from the ring buffer, these functions
4385 * can be used to speed up the process. The calling function should
4386 * allocate a few pages first with this function. Then when it
4387 * needs to get pages from the ring buffer, it passes the result
4388 * of this function into ring_buffer_read_page, which will swap
4389 * the page that was allocated, with the read page of the buffer.
4390 *
4391 * Returns:
4392 * The page allocated, or NULL on error.
4393 */
4394 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4395 {
4396 struct buffer_data_page *bpage;
4397 struct page *page;
4398
4399 page = alloc_pages_node(cpu_to_node(cpu),
4400 GFP_KERNEL | __GFP_NORETRY, 0);
4401 if (!page)
4402 return NULL;
4403
4404 bpage = page_address(page);
4405
4406 rb_init_page(bpage);
4407
4408 return bpage;
4409 }
4410 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4411
4412 /**
4413 * ring_buffer_free_read_page - free an allocated read page
4414 * @buffer: the buffer the page was allocate for
4415 * @data: the page to free
4416 *
4417 * Free a page allocated from ring_buffer_alloc_read_page.
4418 */
4419 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4420 {
4421 free_page((unsigned long)data);
4422 }
4423 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4424
4425 /**
4426 * ring_buffer_read_page - extract a page from the ring buffer
4427 * @buffer: buffer to extract from
4428 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4429 * @len: amount to extract
4430 * @cpu: the cpu of the buffer to extract
4431 * @full: should the extraction only happen when the page is full.
4432 *
4433 * This function will pull out a page from the ring buffer and consume it.
4434 * @data_page must be the address of the variable that was returned
4435 * from ring_buffer_alloc_read_page. This is because the page might be used
4436 * to swap with a page in the ring buffer.
4437 *
4438 * for example:
4439 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4440 * if (!rpage)
4441 * return error;
4442 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4443 * if (ret >= 0)
4444 * process_page(rpage, ret);
4445 *
4446 * When @full is set, the function will not return true unless
4447 * the writer is off the reader page.
4448 *
4449 * Note: it is up to the calling functions to handle sleeps and wakeups.
4450 * The ring buffer can be used anywhere in the kernel and can not
4451 * blindly call wake_up. The layer that uses the ring buffer must be
4452 * responsible for that.
4453 *
4454 * Returns:
4455 * >=0 if data has been transferred, returns the offset of consumed data.
4456 * <0 if no data has been transferred.
4457 */
4458 int ring_buffer_read_page(struct ring_buffer *buffer,
4459 void **data_page, size_t len, int cpu, int full)
4460 {
4461 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4462 struct ring_buffer_event *event;
4463 struct buffer_data_page *bpage;
4464 struct buffer_page *reader;
4465 unsigned long missed_events;
4466 unsigned long flags;
4467 unsigned int commit;
4468 unsigned int read;
4469 u64 save_timestamp;
4470 int ret = -1;
4471
4472 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4473 goto out;
4474
4475 /*
4476 * If len is not big enough to hold the page header, then
4477 * we can not copy anything.
4478 */
4479 if (len <= BUF_PAGE_HDR_SIZE)
4480 goto out;
4481
4482 len -= BUF_PAGE_HDR_SIZE;
4483
4484 if (!data_page)
4485 goto out;
4486
4487 bpage = *data_page;
4488 if (!bpage)
4489 goto out;
4490
4491 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4492
4493 reader = rb_get_reader_page(cpu_buffer);
4494 if (!reader)
4495 goto out_unlock;
4496
4497 event = rb_reader_event(cpu_buffer);
4498
4499 read = reader->read;
4500 commit = rb_page_commit(reader);
4501
4502 /* Check if any events were dropped */
4503 missed_events = cpu_buffer->lost_events;
4504
4505 /*
4506 * If this page has been partially read or
4507 * if len is not big enough to read the rest of the page or
4508 * a writer is still on the page, then
4509 * we must copy the data from the page to the buffer.
4510 * Otherwise, we can simply swap the page with the one passed in.
4511 */
4512 if (read || (len < (commit - read)) ||
4513 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4514 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4515 unsigned int rpos = read;
4516 unsigned int pos = 0;
4517 unsigned int size;
4518
4519 if (full)
4520 goto out_unlock;
4521
4522 if (len > (commit - read))
4523 len = (commit - read);
4524
4525 /* Always keep the time extend and data together */
4526 size = rb_event_ts_length(event);
4527
4528 if (len < size)
4529 goto out_unlock;
4530
4531 /* save the current timestamp, since the user will need it */
4532 save_timestamp = cpu_buffer->read_stamp;
4533
4534 /* Need to copy one event at a time */
4535 do {
4536 /* We need the size of one event, because
4537 * rb_advance_reader only advances by one event,
4538 * whereas rb_event_ts_length may include the size of
4539 * one or two events.
4540 * We have already ensured there's enough space if this
4541 * is a time extend. */
4542 size = rb_event_length(event);
4543 memcpy(bpage->data + pos, rpage->data + rpos, size);
4544
4545 len -= size;
4546
4547 rb_advance_reader(cpu_buffer);
4548 rpos = reader->read;
4549 pos += size;
4550
4551 if (rpos >= commit)
4552 break;
4553
4554 event = rb_reader_event(cpu_buffer);
4555 /* Always keep the time extend and data together */
4556 size = rb_event_ts_length(event);
4557 } while (len >= size);
4558
4559 /* update bpage */
4560 local_set(&bpage->commit, pos);
4561 bpage->time_stamp = save_timestamp;
4562
4563 /* we copied everything to the beginning */
4564 read = 0;
4565 } else {
4566 /* update the entry counter */
4567 cpu_buffer->read += rb_page_entries(reader);
4568 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4569
4570 /* swap the pages */
4571 rb_init_page(bpage);
4572 bpage = reader->page;
4573 reader->page = *data_page;
4574 local_set(&reader->write, 0);
4575 local_set(&reader->entries, 0);
4576 reader->read = 0;
4577 *data_page = bpage;
4578
4579 /*
4580 * Use the real_end for the data size,
4581 * This gives us a chance to store the lost events
4582 * on the page.
4583 */
4584 if (reader->real_end)
4585 local_set(&bpage->commit, reader->real_end);
4586 }
4587 ret = read;
4588
4589 cpu_buffer->lost_events = 0;
4590
4591 commit = local_read(&bpage->commit);
4592 /*
4593 * Set a flag in the commit field if we lost events
4594 */
4595 if (missed_events) {
4596 /* If there is room at the end of the page to save the
4597 * missed events, then record it there.
4598 */
4599 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4600 memcpy(&bpage->data[commit], &missed_events,
4601 sizeof(missed_events));
4602 local_add(RB_MISSED_STORED, &bpage->commit);
4603 commit += sizeof(missed_events);
4604 }
4605 local_add(RB_MISSED_EVENTS, &bpage->commit);
4606 }
4607
4608 /*
4609 * This page may be off to user land. Zero it out here.
4610 */
4611 if (commit < BUF_PAGE_SIZE)
4612 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4613
4614 out_unlock:
4615 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4616
4617 out:
4618 return ret;
4619 }
4620 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4621
4622 #ifdef CONFIG_HOTPLUG_CPU
4623 static int rb_cpu_notify(struct notifier_block *self,
4624 unsigned long action, void *hcpu)
4625 {
4626 struct ring_buffer *buffer =
4627 container_of(self, struct ring_buffer, cpu_notify);
4628 long cpu = (long)hcpu;
4629 int cpu_i, nr_pages_same;
4630 unsigned int nr_pages;
4631
4632 switch (action) {
4633 case CPU_UP_PREPARE:
4634 case CPU_UP_PREPARE_FROZEN:
4635 if (cpumask_test_cpu(cpu, buffer->cpumask))
4636 return NOTIFY_OK;
4637
4638 nr_pages = 0;
4639 nr_pages_same = 1;
4640 /* check if all cpu sizes are same */
4641 for_each_buffer_cpu(buffer, cpu_i) {
4642 /* fill in the size from first enabled cpu */
4643 if (nr_pages == 0)
4644 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4645 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4646 nr_pages_same = 0;
4647 break;
4648 }
4649 }
4650 /* allocate minimum pages, user can later expand it */
4651 if (!nr_pages_same)
4652 nr_pages = 2;
4653 buffer->buffers[cpu] =
4654 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4655 if (!buffer->buffers[cpu]) {
4656 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4657 cpu);
4658 return NOTIFY_OK;
4659 }
4660 smp_wmb();
4661 cpumask_set_cpu(cpu, buffer->cpumask);
4662 break;
4663 case CPU_DOWN_PREPARE:
4664 case CPU_DOWN_PREPARE_FROZEN:
4665 /*
4666 * Do nothing.
4667 * If we were to free the buffer, then the user would
4668 * lose any trace that was in the buffer.
4669 */
4670 break;
4671 default:
4672 break;
4673 }
4674 return NOTIFY_OK;
4675 }
4676 #endif
4677
4678 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4679 /*
4680 * This is a basic integrity check of the ring buffer.
4681 * Late in the boot cycle this test will run when configured in.
4682 * It will kick off a thread per CPU that will go into a loop
4683 * writing to the per cpu ring buffer various sizes of data.
4684 * Some of the data will be large items, some small.
4685 *
4686 * Another thread is created that goes into a spin, sending out
4687 * IPIs to the other CPUs to also write into the ring buffer.
4688 * this is to test the nesting ability of the buffer.
4689 *
4690 * Basic stats are recorded and reported. If something in the
4691 * ring buffer should happen that's not expected, a big warning
4692 * is displayed and all ring buffers are disabled.
4693 */
4694 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4695
4696 struct rb_test_data {
4697 struct ring_buffer *buffer;
4698 unsigned long events;
4699 unsigned long bytes_written;
4700 unsigned long bytes_alloc;
4701 unsigned long bytes_dropped;
4702 unsigned long events_nested;
4703 unsigned long bytes_written_nested;
4704 unsigned long bytes_alloc_nested;
4705 unsigned long bytes_dropped_nested;
4706 int min_size_nested;
4707 int max_size_nested;
4708 int max_size;
4709 int min_size;
4710 int cpu;
4711 int cnt;
4712 };
4713
4714 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4715
4716 /* 1 meg per cpu */
4717 #define RB_TEST_BUFFER_SIZE 1048576
4718
4719 static char rb_string[] __initdata =
4720 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4721 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4722 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4723
4724 static bool rb_test_started __initdata;
4725
4726 struct rb_item {
4727 int size;
4728 char str[];
4729 };
4730
4731 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4732 {
4733 struct ring_buffer_event *event;
4734 struct rb_item *item;
4735 bool started;
4736 int event_len;
4737 int size;
4738 int len;
4739 int cnt;
4740
4741 /* Have nested writes different that what is written */
4742 cnt = data->cnt + (nested ? 27 : 0);
4743
4744 /* Multiply cnt by ~e, to make some unique increment */
4745 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4746
4747 len = size + sizeof(struct rb_item);
4748
4749 started = rb_test_started;
4750 /* read rb_test_started before checking buffer enabled */
4751 smp_rmb();
4752
4753 event = ring_buffer_lock_reserve(data->buffer, len);
4754 if (!event) {
4755 /* Ignore dropped events before test starts. */
4756 if (started) {
4757 if (nested)
4758 data->bytes_dropped += len;
4759 else
4760 data->bytes_dropped_nested += len;
4761 }
4762 return len;
4763 }
4764
4765 event_len = ring_buffer_event_length(event);
4766
4767 if (RB_WARN_ON(data->buffer, event_len < len))
4768 goto out;
4769
4770 item = ring_buffer_event_data(event);
4771 item->size = size;
4772 memcpy(item->str, rb_string, size);
4773
4774 if (nested) {
4775 data->bytes_alloc_nested += event_len;
4776 data->bytes_written_nested += len;
4777 data->events_nested++;
4778 if (!data->min_size_nested || len < data->min_size_nested)
4779 data->min_size_nested = len;
4780 if (len > data->max_size_nested)
4781 data->max_size_nested = len;
4782 } else {
4783 data->bytes_alloc += event_len;
4784 data->bytes_written += len;
4785 data->events++;
4786 if (!data->min_size || len < data->min_size)
4787 data->max_size = len;
4788 if (len > data->max_size)
4789 data->max_size = len;
4790 }
4791
4792 out:
4793 ring_buffer_unlock_commit(data->buffer, event);
4794
4795 return 0;
4796 }
4797
4798 static __init int rb_test(void *arg)
4799 {
4800 struct rb_test_data *data = arg;
4801
4802 while (!kthread_should_stop()) {
4803 rb_write_something(data, false);
4804 data->cnt++;
4805
4806 set_current_state(TASK_INTERRUPTIBLE);
4807 /* Now sleep between a min of 100-300us and a max of 1ms */
4808 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4809 }
4810
4811 return 0;
4812 }
4813
4814 static __init void rb_ipi(void *ignore)
4815 {
4816 struct rb_test_data *data;
4817 int cpu = smp_processor_id();
4818
4819 data = &rb_data[cpu];
4820 rb_write_something(data, true);
4821 }
4822
4823 static __init int rb_hammer_test(void *arg)
4824 {
4825 while (!kthread_should_stop()) {
4826
4827 /* Send an IPI to all cpus to write data! */
4828 smp_call_function(rb_ipi, NULL, 1);
4829 /* No sleep, but for non preempt, let others run */
4830 schedule();
4831 }
4832
4833 return 0;
4834 }
4835
4836 static __init int test_ringbuffer(void)
4837 {
4838 struct task_struct *rb_hammer;
4839 struct ring_buffer *buffer;
4840 int cpu;
4841 int ret = 0;
4842
4843 pr_info("Running ring buffer tests...\n");
4844
4845 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4846 if (WARN_ON(!buffer))
4847 return 0;
4848
4849 /* Disable buffer so that threads can't write to it yet */
4850 ring_buffer_record_off(buffer);
4851
4852 for_each_online_cpu(cpu) {
4853 rb_data[cpu].buffer = buffer;
4854 rb_data[cpu].cpu = cpu;
4855 rb_data[cpu].cnt = cpu;
4856 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4857 "rbtester/%d", cpu);
4858 if (WARN_ON(!rb_threads[cpu])) {
4859 pr_cont("FAILED\n");
4860 ret = -1;
4861 goto out_free;
4862 }
4863
4864 kthread_bind(rb_threads[cpu], cpu);
4865 wake_up_process(rb_threads[cpu]);
4866 }
4867
4868 /* Now create the rb hammer! */
4869 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4870 if (WARN_ON(!rb_hammer)) {
4871 pr_cont("FAILED\n");
4872 ret = -1;
4873 goto out_free;
4874 }
4875
4876 ring_buffer_record_on(buffer);
4877 /*
4878 * Show buffer is enabled before setting rb_test_started.
4879 * Yes there's a small race window where events could be
4880 * dropped and the thread wont catch it. But when a ring
4881 * buffer gets enabled, there will always be some kind of
4882 * delay before other CPUs see it. Thus, we don't care about
4883 * those dropped events. We care about events dropped after
4884 * the threads see that the buffer is active.
4885 */
4886 smp_wmb();
4887 rb_test_started = true;
4888
4889 set_current_state(TASK_INTERRUPTIBLE);
4890 /* Just run for 10 seconds */;
4891 schedule_timeout(10 * HZ);
4892
4893 kthread_stop(rb_hammer);
4894
4895 out_free:
4896 for_each_online_cpu(cpu) {
4897 if (!rb_threads[cpu])
4898 break;
4899 kthread_stop(rb_threads[cpu]);
4900 }
4901 if (ret) {
4902 ring_buffer_free(buffer);
4903 return ret;
4904 }
4905
4906 /* Report! */
4907 pr_info("finished\n");
4908 for_each_online_cpu(cpu) {
4909 struct ring_buffer_event *event;
4910 struct rb_test_data *data = &rb_data[cpu];
4911 struct rb_item *item;
4912 unsigned long total_events;
4913 unsigned long total_dropped;
4914 unsigned long total_written;
4915 unsigned long total_alloc;
4916 unsigned long total_read = 0;
4917 unsigned long total_size = 0;
4918 unsigned long total_len = 0;
4919 unsigned long total_lost = 0;
4920 unsigned long lost;
4921 int big_event_size;
4922 int small_event_size;
4923
4924 ret = -1;
4925
4926 total_events = data->events + data->events_nested;
4927 total_written = data->bytes_written + data->bytes_written_nested;
4928 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4929 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4930
4931 big_event_size = data->max_size + data->max_size_nested;
4932 small_event_size = data->min_size + data->min_size_nested;
4933
4934 pr_info("CPU %d:\n", cpu);
4935 pr_info(" events: %ld\n", total_events);
4936 pr_info(" dropped bytes: %ld\n", total_dropped);
4937 pr_info(" alloced bytes: %ld\n", total_alloc);
4938 pr_info(" written bytes: %ld\n", total_written);
4939 pr_info(" biggest event: %d\n", big_event_size);
4940 pr_info(" smallest event: %d\n", small_event_size);
4941
4942 if (RB_WARN_ON(buffer, total_dropped))
4943 break;
4944
4945 ret = 0;
4946
4947 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4948 total_lost += lost;
4949 item = ring_buffer_event_data(event);
4950 total_len += ring_buffer_event_length(event);
4951 total_size += item->size + sizeof(struct rb_item);
4952 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4953 pr_info("FAILED!\n");
4954 pr_info("buffer had: %.*s\n", item->size, item->str);
4955 pr_info("expected: %.*s\n", item->size, rb_string);
4956 RB_WARN_ON(buffer, 1);
4957 ret = -1;
4958 break;
4959 }
4960 total_read++;
4961 }
4962 if (ret)
4963 break;
4964
4965 ret = -1;
4966
4967 pr_info(" read events: %ld\n", total_read);
4968 pr_info(" lost events: %ld\n", total_lost);
4969 pr_info(" total events: %ld\n", total_lost + total_read);
4970 pr_info(" recorded len bytes: %ld\n", total_len);
4971 pr_info(" recorded size bytes: %ld\n", total_size);
4972 if (total_lost)
4973 pr_info(" With dropped events, record len and size may not match\n"
4974 " alloced and written from above\n");
4975 if (!total_lost) {
4976 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4977 total_size != total_written))
4978 break;
4979 }
4980 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4981 break;
4982
4983 ret = 0;
4984 }
4985 if (!ret)
4986 pr_info("Ring buffer PASSED!\n");
4987
4988 ring_buffer_free(buffer);
4989 return 0;
4990 }
4991
4992 late_initcall(test_ringbuffer);
4993 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 0.215788 seconds and 5 git commands to generate.