ring-buffer: Give NMIs a chance to lock the reader_lock
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136 /*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147 enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
168 * permanently.
169 */
170 void tracing_off_permanent(void)
171 {
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT 4U
177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
179
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT 0
182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT 1
185 # define RB_ARCH_ALIGNMENT 8U
186 #endif
187
188 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
189
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193 enum {
194 RB_LEN_TIME_EXTEND = 8,
195 RB_LEN_TIME_STAMP = 16,
196 };
197
198 #define skip_time_extend(event) \
199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205
206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208 /* padding has a NULL time_delta */
209 event->type_len = RINGBUF_TYPE_PADDING;
210 event->time_delta = 0;
211 }
212
213 static unsigned
214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216 unsigned length;
217
218 if (event->type_len)
219 length = event->type_len * RB_ALIGNMENT;
220 else
221 length = event->array[0];
222 return length + RB_EVNT_HDR_SIZE;
223 }
224
225 /*
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
228 * time extend.
229 */
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event *event)
232 {
233 switch (event->type_len) {
234 case RINGBUF_TYPE_PADDING:
235 if (rb_null_event(event))
236 /* undefined */
237 return -1;
238 return event->array[0] + RB_EVNT_HDR_SIZE;
239
240 case RINGBUF_TYPE_TIME_EXTEND:
241 return RB_LEN_TIME_EXTEND;
242
243 case RINGBUF_TYPE_TIME_STAMP:
244 return RB_LEN_TIME_STAMP;
245
246 case RINGBUF_TYPE_DATA:
247 return rb_event_data_length(event);
248 default:
249 BUG();
250 }
251 /* not hit */
252 return 0;
253 }
254
255 /*
256 * Return total length of time extend and data,
257 * or just the event length for all other events.
258 */
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262 unsigned len = 0;
263
264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 /* time extends include the data event after it */
266 len = RB_LEN_TIME_EXTEND;
267 event = skip_time_extend(event);
268 }
269 return len + rb_event_length(event);
270 }
271
272 /**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
275 *
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
281 */
282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284 unsigned length;
285
286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 event = skip_time_extend(event);
288
289 length = rb_event_length(event);
290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291 return length;
292 length -= RB_EVNT_HDR_SIZE;
293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294 length -= sizeof(event->array[0]);
295 return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299 /* inline for ring buffer fast paths */
300 static void *
301 rb_event_data(struct ring_buffer_event *event)
302 {
303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 event = skip_time_extend(event);
305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306 /* If length is in len field, then array[0] has the data */
307 if (event->type_len)
308 return (void *)&event->array[0];
309 /* Otherwise length is in array[0] and array[1] has the data */
310 return (void *)&event->array[1];
311 }
312
313 /**
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
316 */
317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319 return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323 #define for_each_buffer_cpu(buffer, cpu) \
324 for_each_cpu(cpu, buffer->cpumask)
325
326 #define TS_SHIFT 27
327 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST (~TS_MASK)
329
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED (1 << 30)
334
335 struct buffer_data_page {
336 u64 time_stamp; /* page time stamp */
337 local_t commit; /* write committed index */
338 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
339 };
340
341 /*
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
347 * lockless.
348 */
349 struct buffer_page {
350 struct list_head list; /* list of buffer pages */
351 local_t write; /* index for next write */
352 unsigned read; /* index for next read */
353 local_t entries; /* entries on this page */
354 unsigned long real_end; /* real end of data */
355 struct buffer_data_page *page; /* Actual data page */
356 };
357
358 /*
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
363 *
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
367 *
368 * The counter is 20 bits, and the state data is 12.
369 */
370 #define RB_WRITE_MASK 0xfffff
371 #define RB_WRITE_INTCNT (1 << 20)
372
373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375 local_set(&bpage->commit, 0);
376 }
377
378 /**
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
381 *
382 * Returns the amount of data on the page, including buffer page header.
383 */
384 size_t ring_buffer_page_len(void *page)
385 {
386 return local_read(&((struct buffer_data_page *)page)->commit)
387 + BUF_PAGE_HDR_SIZE;
388 }
389
390 /*
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 * this issue out.
393 */
394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396 free_page((unsigned long)bpage->page);
397 kfree(bpage);
398 }
399
400 /*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
403 static inline int test_time_stamp(u64 delta)
404 {
405 if (delta & TS_DELTA_TEST)
406 return 1;
407 return 0;
408 }
409
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417 struct buffer_data_page field;
418
419 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420 "offset:0;\tsize:%u;\tsigned:%u;\n",
421 (unsigned int)sizeof(field.time_stamp),
422 (unsigned int)is_signed_type(u64));
423
424 trace_seq_printf(s, "\tfield: local_t commit;\t"
425 "offset:%u;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)offsetof(typeof(field), commit),
427 (unsigned int)sizeof(field.commit),
428 (unsigned int)is_signed_type(long));
429
430 trace_seq_printf(s, "\tfield: int overwrite;\t"
431 "offset:%u;\tsize:%u;\tsigned:%u;\n",
432 (unsigned int)offsetof(typeof(field), commit),
433 1,
434 (unsigned int)is_signed_type(long));
435
436 trace_seq_printf(s, "\tfield: char data;\t"
437 "offset:%u;\tsize:%u;\tsigned:%u;\n",
438 (unsigned int)offsetof(typeof(field), data),
439 (unsigned int)BUF_PAGE_SIZE,
440 (unsigned int)is_signed_type(char));
441
442 return !trace_seq_has_overflowed(s);
443 }
444
445 struct rb_irq_work {
446 struct irq_work work;
447 wait_queue_head_t waiters;
448 wait_queue_head_t full_waiters;
449 bool waiters_pending;
450 bool full_waiters_pending;
451 bool wakeup_full;
452 };
453
454 /*
455 * head_page == tail_page && head == tail then buffer is empty.
456 */
457 struct ring_buffer_per_cpu {
458 int cpu;
459 atomic_t record_disabled;
460 struct ring_buffer *buffer;
461 raw_spinlock_t reader_lock; /* serialize readers */
462 arch_spinlock_t lock;
463 struct lock_class_key lock_key;
464 unsigned int nr_pages;
465 unsigned int current_context;
466 struct list_head *pages;
467 struct buffer_page *head_page; /* read from head */
468 struct buffer_page *tail_page; /* write to tail */
469 struct buffer_page *commit_page; /* committed pages */
470 struct buffer_page *reader_page;
471 unsigned long lost_events;
472 unsigned long last_overrun;
473 local_t entries_bytes;
474 local_t entries;
475 local_t overrun;
476 local_t commit_overrun;
477 local_t dropped_events;
478 local_t committing;
479 local_t commits;
480 unsigned long read;
481 unsigned long read_bytes;
482 u64 write_stamp;
483 u64 read_stamp;
484 /* ring buffer pages to update, > 0 to add, < 0 to remove */
485 int nr_pages_to_update;
486 struct list_head new_pages; /* new pages to add */
487 struct work_struct update_pages_work;
488 struct completion update_done;
489
490 struct rb_irq_work irq_work;
491 };
492
493 struct ring_buffer {
494 unsigned flags;
495 int cpus;
496 atomic_t record_disabled;
497 atomic_t resize_disabled;
498 cpumask_var_t cpumask;
499
500 struct lock_class_key *reader_lock_key;
501
502 struct mutex mutex;
503
504 struct ring_buffer_per_cpu **buffers;
505
506 #ifdef CONFIG_HOTPLUG_CPU
507 struct notifier_block cpu_notify;
508 #endif
509 u64 (*clock)(void);
510
511 struct rb_irq_work irq_work;
512 };
513
514 struct ring_buffer_iter {
515 struct ring_buffer_per_cpu *cpu_buffer;
516 unsigned long head;
517 struct buffer_page *head_page;
518 struct buffer_page *cache_reader_page;
519 unsigned long cache_read;
520 u64 read_stamp;
521 };
522
523 /*
524 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
525 *
526 * Schedules a delayed work to wake up any task that is blocked on the
527 * ring buffer waiters queue.
528 */
529 static void rb_wake_up_waiters(struct irq_work *work)
530 {
531 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
532
533 wake_up_all(&rbwork->waiters);
534 if (rbwork->wakeup_full) {
535 rbwork->wakeup_full = false;
536 wake_up_all(&rbwork->full_waiters);
537 }
538 }
539
540 /**
541 * ring_buffer_wait - wait for input to the ring buffer
542 * @buffer: buffer to wait on
543 * @cpu: the cpu buffer to wait on
544 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
545 *
546 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
547 * as data is added to any of the @buffer's cpu buffers. Otherwise
548 * it will wait for data to be added to a specific cpu buffer.
549 */
550 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
551 {
552 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
553 DEFINE_WAIT(wait);
554 struct rb_irq_work *work;
555 int ret = 0;
556
557 /*
558 * Depending on what the caller is waiting for, either any
559 * data in any cpu buffer, or a specific buffer, put the
560 * caller on the appropriate wait queue.
561 */
562 if (cpu == RING_BUFFER_ALL_CPUS) {
563 work = &buffer->irq_work;
564 /* Full only makes sense on per cpu reads */
565 full = false;
566 } else {
567 if (!cpumask_test_cpu(cpu, buffer->cpumask))
568 return -ENODEV;
569 cpu_buffer = buffer->buffers[cpu];
570 work = &cpu_buffer->irq_work;
571 }
572
573
574 while (true) {
575 if (full)
576 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
577 else
578 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
579
580 /*
581 * The events can happen in critical sections where
582 * checking a work queue can cause deadlocks.
583 * After adding a task to the queue, this flag is set
584 * only to notify events to try to wake up the queue
585 * using irq_work.
586 *
587 * We don't clear it even if the buffer is no longer
588 * empty. The flag only causes the next event to run
589 * irq_work to do the work queue wake up. The worse
590 * that can happen if we race with !trace_empty() is that
591 * an event will cause an irq_work to try to wake up
592 * an empty queue.
593 *
594 * There's no reason to protect this flag either, as
595 * the work queue and irq_work logic will do the necessary
596 * synchronization for the wake ups. The only thing
597 * that is necessary is that the wake up happens after
598 * a task has been queued. It's OK for spurious wake ups.
599 */
600 if (full)
601 work->full_waiters_pending = true;
602 else
603 work->waiters_pending = true;
604
605 if (signal_pending(current)) {
606 ret = -EINTR;
607 break;
608 }
609
610 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
611 break;
612
613 if (cpu != RING_BUFFER_ALL_CPUS &&
614 !ring_buffer_empty_cpu(buffer, cpu)) {
615 unsigned long flags;
616 bool pagebusy;
617
618 if (!full)
619 break;
620
621 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
622 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
623 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
624
625 if (!pagebusy)
626 break;
627 }
628
629 schedule();
630 }
631
632 if (full)
633 finish_wait(&work->full_waiters, &wait);
634 else
635 finish_wait(&work->waiters, &wait);
636
637 return ret;
638 }
639
640 /**
641 * ring_buffer_poll_wait - poll on buffer input
642 * @buffer: buffer to wait on
643 * @cpu: the cpu buffer to wait on
644 * @filp: the file descriptor
645 * @poll_table: The poll descriptor
646 *
647 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
648 * as data is added to any of the @buffer's cpu buffers. Otherwise
649 * it will wait for data to be added to a specific cpu buffer.
650 *
651 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
652 * zero otherwise.
653 */
654 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
655 struct file *filp, poll_table *poll_table)
656 {
657 struct ring_buffer_per_cpu *cpu_buffer;
658 struct rb_irq_work *work;
659
660 if (cpu == RING_BUFFER_ALL_CPUS)
661 work = &buffer->irq_work;
662 else {
663 if (!cpumask_test_cpu(cpu, buffer->cpumask))
664 return -EINVAL;
665
666 cpu_buffer = buffer->buffers[cpu];
667 work = &cpu_buffer->irq_work;
668 }
669
670 poll_wait(filp, &work->waiters, poll_table);
671 work->waiters_pending = true;
672 /*
673 * There's a tight race between setting the waiters_pending and
674 * checking if the ring buffer is empty. Once the waiters_pending bit
675 * is set, the next event will wake the task up, but we can get stuck
676 * if there's only a single event in.
677 *
678 * FIXME: Ideally, we need a memory barrier on the writer side as well,
679 * but adding a memory barrier to all events will cause too much of a
680 * performance hit in the fast path. We only need a memory barrier when
681 * the buffer goes from empty to having content. But as this race is
682 * extremely small, and it's not a problem if another event comes in, we
683 * will fix it later.
684 */
685 smp_mb();
686
687 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
688 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
689 return POLLIN | POLLRDNORM;
690 return 0;
691 }
692
693 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
694 #define RB_WARN_ON(b, cond) \
695 ({ \
696 int _____ret = unlikely(cond); \
697 if (_____ret) { \
698 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
699 struct ring_buffer_per_cpu *__b = \
700 (void *)b; \
701 atomic_inc(&__b->buffer->record_disabled); \
702 } else \
703 atomic_inc(&b->record_disabled); \
704 WARN_ON(1); \
705 } \
706 _____ret; \
707 })
708
709 /* Up this if you want to test the TIME_EXTENTS and normalization */
710 #define DEBUG_SHIFT 0
711
712 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
713 {
714 /* shift to debug/test normalization and TIME_EXTENTS */
715 return buffer->clock() << DEBUG_SHIFT;
716 }
717
718 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
719 {
720 u64 time;
721
722 preempt_disable_notrace();
723 time = rb_time_stamp(buffer);
724 preempt_enable_no_resched_notrace();
725
726 return time;
727 }
728 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
729
730 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
731 int cpu, u64 *ts)
732 {
733 /* Just stupid testing the normalize function and deltas */
734 *ts >>= DEBUG_SHIFT;
735 }
736 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
737
738 /*
739 * Making the ring buffer lockless makes things tricky.
740 * Although writes only happen on the CPU that they are on,
741 * and they only need to worry about interrupts. Reads can
742 * happen on any CPU.
743 *
744 * The reader page is always off the ring buffer, but when the
745 * reader finishes with a page, it needs to swap its page with
746 * a new one from the buffer. The reader needs to take from
747 * the head (writes go to the tail). But if a writer is in overwrite
748 * mode and wraps, it must push the head page forward.
749 *
750 * Here lies the problem.
751 *
752 * The reader must be careful to replace only the head page, and
753 * not another one. As described at the top of the file in the
754 * ASCII art, the reader sets its old page to point to the next
755 * page after head. It then sets the page after head to point to
756 * the old reader page. But if the writer moves the head page
757 * during this operation, the reader could end up with the tail.
758 *
759 * We use cmpxchg to help prevent this race. We also do something
760 * special with the page before head. We set the LSB to 1.
761 *
762 * When the writer must push the page forward, it will clear the
763 * bit that points to the head page, move the head, and then set
764 * the bit that points to the new head page.
765 *
766 * We also don't want an interrupt coming in and moving the head
767 * page on another writer. Thus we use the second LSB to catch
768 * that too. Thus:
769 *
770 * head->list->prev->next bit 1 bit 0
771 * ------- -------
772 * Normal page 0 0
773 * Points to head page 0 1
774 * New head page 1 0
775 *
776 * Note we can not trust the prev pointer of the head page, because:
777 *
778 * +----+ +-----+ +-----+
779 * | |------>| T |---X--->| N |
780 * | |<------| | | |
781 * +----+ +-----+ +-----+
782 * ^ ^ |
783 * | +-----+ | |
784 * +----------| R |----------+ |
785 * | |<-----------+
786 * +-----+
787 *
788 * Key: ---X--> HEAD flag set in pointer
789 * T Tail page
790 * R Reader page
791 * N Next page
792 *
793 * (see __rb_reserve_next() to see where this happens)
794 *
795 * What the above shows is that the reader just swapped out
796 * the reader page with a page in the buffer, but before it
797 * could make the new header point back to the new page added
798 * it was preempted by a writer. The writer moved forward onto
799 * the new page added by the reader and is about to move forward
800 * again.
801 *
802 * You can see, it is legitimate for the previous pointer of
803 * the head (or any page) not to point back to itself. But only
804 * temporarially.
805 */
806
807 #define RB_PAGE_NORMAL 0UL
808 #define RB_PAGE_HEAD 1UL
809 #define RB_PAGE_UPDATE 2UL
810
811
812 #define RB_FLAG_MASK 3UL
813
814 /* PAGE_MOVED is not part of the mask */
815 #define RB_PAGE_MOVED 4UL
816
817 /*
818 * rb_list_head - remove any bit
819 */
820 static struct list_head *rb_list_head(struct list_head *list)
821 {
822 unsigned long val = (unsigned long)list;
823
824 return (struct list_head *)(val & ~RB_FLAG_MASK);
825 }
826
827 /*
828 * rb_is_head_page - test if the given page is the head page
829 *
830 * Because the reader may move the head_page pointer, we can
831 * not trust what the head page is (it may be pointing to
832 * the reader page). But if the next page is a header page,
833 * its flags will be non zero.
834 */
835 static inline int
836 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
837 struct buffer_page *page, struct list_head *list)
838 {
839 unsigned long val;
840
841 val = (unsigned long)list->next;
842
843 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
844 return RB_PAGE_MOVED;
845
846 return val & RB_FLAG_MASK;
847 }
848
849 /*
850 * rb_is_reader_page
851 *
852 * The unique thing about the reader page, is that, if the
853 * writer is ever on it, the previous pointer never points
854 * back to the reader page.
855 */
856 static int rb_is_reader_page(struct buffer_page *page)
857 {
858 struct list_head *list = page->list.prev;
859
860 return rb_list_head(list->next) != &page->list;
861 }
862
863 /*
864 * rb_set_list_to_head - set a list_head to be pointing to head.
865 */
866 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
867 struct list_head *list)
868 {
869 unsigned long *ptr;
870
871 ptr = (unsigned long *)&list->next;
872 *ptr |= RB_PAGE_HEAD;
873 *ptr &= ~RB_PAGE_UPDATE;
874 }
875
876 /*
877 * rb_head_page_activate - sets up head page
878 */
879 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
880 {
881 struct buffer_page *head;
882
883 head = cpu_buffer->head_page;
884 if (!head)
885 return;
886
887 /*
888 * Set the previous list pointer to have the HEAD flag.
889 */
890 rb_set_list_to_head(cpu_buffer, head->list.prev);
891 }
892
893 static void rb_list_head_clear(struct list_head *list)
894 {
895 unsigned long *ptr = (unsigned long *)&list->next;
896
897 *ptr &= ~RB_FLAG_MASK;
898 }
899
900 /*
901 * rb_head_page_dactivate - clears head page ptr (for free list)
902 */
903 static void
904 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
905 {
906 struct list_head *hd;
907
908 /* Go through the whole list and clear any pointers found. */
909 rb_list_head_clear(cpu_buffer->pages);
910
911 list_for_each(hd, cpu_buffer->pages)
912 rb_list_head_clear(hd);
913 }
914
915 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
916 struct buffer_page *head,
917 struct buffer_page *prev,
918 int old_flag, int new_flag)
919 {
920 struct list_head *list;
921 unsigned long val = (unsigned long)&head->list;
922 unsigned long ret;
923
924 list = &prev->list;
925
926 val &= ~RB_FLAG_MASK;
927
928 ret = cmpxchg((unsigned long *)&list->next,
929 val | old_flag, val | new_flag);
930
931 /* check if the reader took the page */
932 if ((ret & ~RB_FLAG_MASK) != val)
933 return RB_PAGE_MOVED;
934
935 return ret & RB_FLAG_MASK;
936 }
937
938 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
939 struct buffer_page *head,
940 struct buffer_page *prev,
941 int old_flag)
942 {
943 return rb_head_page_set(cpu_buffer, head, prev,
944 old_flag, RB_PAGE_UPDATE);
945 }
946
947 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
948 struct buffer_page *head,
949 struct buffer_page *prev,
950 int old_flag)
951 {
952 return rb_head_page_set(cpu_buffer, head, prev,
953 old_flag, RB_PAGE_HEAD);
954 }
955
956 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
957 struct buffer_page *head,
958 struct buffer_page *prev,
959 int old_flag)
960 {
961 return rb_head_page_set(cpu_buffer, head, prev,
962 old_flag, RB_PAGE_NORMAL);
963 }
964
965 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
966 struct buffer_page **bpage)
967 {
968 struct list_head *p = rb_list_head((*bpage)->list.next);
969
970 *bpage = list_entry(p, struct buffer_page, list);
971 }
972
973 static struct buffer_page *
974 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
975 {
976 struct buffer_page *head;
977 struct buffer_page *page;
978 struct list_head *list;
979 int i;
980
981 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
982 return NULL;
983
984 /* sanity check */
985 list = cpu_buffer->pages;
986 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
987 return NULL;
988
989 page = head = cpu_buffer->head_page;
990 /*
991 * It is possible that the writer moves the header behind
992 * where we started, and we miss in one loop.
993 * A second loop should grab the header, but we'll do
994 * three loops just because I'm paranoid.
995 */
996 for (i = 0; i < 3; i++) {
997 do {
998 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
999 cpu_buffer->head_page = page;
1000 return page;
1001 }
1002 rb_inc_page(cpu_buffer, &page);
1003 } while (page != head);
1004 }
1005
1006 RB_WARN_ON(cpu_buffer, 1);
1007
1008 return NULL;
1009 }
1010
1011 static int rb_head_page_replace(struct buffer_page *old,
1012 struct buffer_page *new)
1013 {
1014 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1015 unsigned long val;
1016 unsigned long ret;
1017
1018 val = *ptr & ~RB_FLAG_MASK;
1019 val |= RB_PAGE_HEAD;
1020
1021 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1022
1023 return ret == val;
1024 }
1025
1026 /*
1027 * rb_tail_page_update - move the tail page forward
1028 *
1029 * Returns 1 if moved tail page, 0 if someone else did.
1030 */
1031 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1032 struct buffer_page *tail_page,
1033 struct buffer_page *next_page)
1034 {
1035 struct buffer_page *old_tail;
1036 unsigned long old_entries;
1037 unsigned long old_write;
1038 int ret = 0;
1039
1040 /*
1041 * The tail page now needs to be moved forward.
1042 *
1043 * We need to reset the tail page, but without messing
1044 * with possible erasing of data brought in by interrupts
1045 * that have moved the tail page and are currently on it.
1046 *
1047 * We add a counter to the write field to denote this.
1048 */
1049 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1050 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1051
1052 /*
1053 * Just make sure we have seen our old_write and synchronize
1054 * with any interrupts that come in.
1055 */
1056 barrier();
1057
1058 /*
1059 * If the tail page is still the same as what we think
1060 * it is, then it is up to us to update the tail
1061 * pointer.
1062 */
1063 if (tail_page == cpu_buffer->tail_page) {
1064 /* Zero the write counter */
1065 unsigned long val = old_write & ~RB_WRITE_MASK;
1066 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1067
1068 /*
1069 * This will only succeed if an interrupt did
1070 * not come in and change it. In which case, we
1071 * do not want to modify it.
1072 *
1073 * We add (void) to let the compiler know that we do not care
1074 * about the return value of these functions. We use the
1075 * cmpxchg to only update if an interrupt did not already
1076 * do it for us. If the cmpxchg fails, we don't care.
1077 */
1078 (void)local_cmpxchg(&next_page->write, old_write, val);
1079 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1080
1081 /*
1082 * No need to worry about races with clearing out the commit.
1083 * it only can increment when a commit takes place. But that
1084 * only happens in the outer most nested commit.
1085 */
1086 local_set(&next_page->page->commit, 0);
1087
1088 old_tail = cmpxchg(&cpu_buffer->tail_page,
1089 tail_page, next_page);
1090
1091 if (old_tail == tail_page)
1092 ret = 1;
1093 }
1094
1095 return ret;
1096 }
1097
1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099 struct buffer_page *bpage)
1100 {
1101 unsigned long val = (unsigned long)bpage;
1102
1103 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104 return 1;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * rb_check_list - make sure a pointer to a list has the last bits zero
1111 */
1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113 struct list_head *list)
1114 {
1115 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116 return 1;
1117 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118 return 1;
1119 return 0;
1120 }
1121
1122 /**
1123 * rb_check_pages - integrity check of buffer pages
1124 * @cpu_buffer: CPU buffer with pages to test
1125 *
1126 * As a safety measure we check to make sure the data pages have not
1127 * been corrupted.
1128 */
1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131 struct list_head *head = cpu_buffer->pages;
1132 struct buffer_page *bpage, *tmp;
1133
1134 /* Reset the head page if it exists */
1135 if (cpu_buffer->head_page)
1136 rb_set_head_page(cpu_buffer);
1137
1138 rb_head_page_deactivate(cpu_buffer);
1139
1140 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141 return -1;
1142 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143 return -1;
1144
1145 if (rb_check_list(cpu_buffer, head))
1146 return -1;
1147
1148 list_for_each_entry_safe(bpage, tmp, head, list) {
1149 if (RB_WARN_ON(cpu_buffer,
1150 bpage->list.next->prev != &bpage->list))
1151 return -1;
1152 if (RB_WARN_ON(cpu_buffer,
1153 bpage->list.prev->next != &bpage->list))
1154 return -1;
1155 if (rb_check_list(cpu_buffer, &bpage->list))
1156 return -1;
1157 }
1158
1159 rb_head_page_activate(cpu_buffer);
1160
1161 return 0;
1162 }
1163
1164 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1165 {
1166 int i;
1167 struct buffer_page *bpage, *tmp;
1168
1169 for (i = 0; i < nr_pages; i++) {
1170 struct page *page;
1171 /*
1172 * __GFP_NORETRY flag makes sure that the allocation fails
1173 * gracefully without invoking oom-killer and the system is
1174 * not destabilized.
1175 */
1176 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1177 GFP_KERNEL | __GFP_NORETRY,
1178 cpu_to_node(cpu));
1179 if (!bpage)
1180 goto free_pages;
1181
1182 list_add(&bpage->list, pages);
1183
1184 page = alloc_pages_node(cpu_to_node(cpu),
1185 GFP_KERNEL | __GFP_NORETRY, 0);
1186 if (!page)
1187 goto free_pages;
1188 bpage->page = page_address(page);
1189 rb_init_page(bpage->page);
1190 }
1191
1192 return 0;
1193
1194 free_pages:
1195 list_for_each_entry_safe(bpage, tmp, pages, list) {
1196 list_del_init(&bpage->list);
1197 free_buffer_page(bpage);
1198 }
1199
1200 return -ENOMEM;
1201 }
1202
1203 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1204 unsigned nr_pages)
1205 {
1206 LIST_HEAD(pages);
1207
1208 WARN_ON(!nr_pages);
1209
1210 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1211 return -ENOMEM;
1212
1213 /*
1214 * The ring buffer page list is a circular list that does not
1215 * start and end with a list head. All page list items point to
1216 * other pages.
1217 */
1218 cpu_buffer->pages = pages.next;
1219 list_del(&pages);
1220
1221 cpu_buffer->nr_pages = nr_pages;
1222
1223 rb_check_pages(cpu_buffer);
1224
1225 return 0;
1226 }
1227
1228 static struct ring_buffer_per_cpu *
1229 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1230 {
1231 struct ring_buffer_per_cpu *cpu_buffer;
1232 struct buffer_page *bpage;
1233 struct page *page;
1234 int ret;
1235
1236 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1237 GFP_KERNEL, cpu_to_node(cpu));
1238 if (!cpu_buffer)
1239 return NULL;
1240
1241 cpu_buffer->cpu = cpu;
1242 cpu_buffer->buffer = buffer;
1243 raw_spin_lock_init(&cpu_buffer->reader_lock);
1244 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1245 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1246 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1247 init_completion(&cpu_buffer->update_done);
1248 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1249 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1250 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1251
1252 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1253 GFP_KERNEL, cpu_to_node(cpu));
1254 if (!bpage)
1255 goto fail_free_buffer;
1256
1257 rb_check_bpage(cpu_buffer, bpage);
1258
1259 cpu_buffer->reader_page = bpage;
1260 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1261 if (!page)
1262 goto fail_free_reader;
1263 bpage->page = page_address(page);
1264 rb_init_page(bpage->page);
1265
1266 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1267 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1268
1269 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1270 if (ret < 0)
1271 goto fail_free_reader;
1272
1273 cpu_buffer->head_page
1274 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1275 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1276
1277 rb_head_page_activate(cpu_buffer);
1278
1279 return cpu_buffer;
1280
1281 fail_free_reader:
1282 free_buffer_page(cpu_buffer->reader_page);
1283
1284 fail_free_buffer:
1285 kfree(cpu_buffer);
1286 return NULL;
1287 }
1288
1289 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1290 {
1291 struct list_head *head = cpu_buffer->pages;
1292 struct buffer_page *bpage, *tmp;
1293
1294 free_buffer_page(cpu_buffer->reader_page);
1295
1296 rb_head_page_deactivate(cpu_buffer);
1297
1298 if (head) {
1299 list_for_each_entry_safe(bpage, tmp, head, list) {
1300 list_del_init(&bpage->list);
1301 free_buffer_page(bpage);
1302 }
1303 bpage = list_entry(head, struct buffer_page, list);
1304 free_buffer_page(bpage);
1305 }
1306
1307 kfree(cpu_buffer);
1308 }
1309
1310 #ifdef CONFIG_HOTPLUG_CPU
1311 static int rb_cpu_notify(struct notifier_block *self,
1312 unsigned long action, void *hcpu);
1313 #endif
1314
1315 /**
1316 * __ring_buffer_alloc - allocate a new ring_buffer
1317 * @size: the size in bytes per cpu that is needed.
1318 * @flags: attributes to set for the ring buffer.
1319 *
1320 * Currently the only flag that is available is the RB_FL_OVERWRITE
1321 * flag. This flag means that the buffer will overwrite old data
1322 * when the buffer wraps. If this flag is not set, the buffer will
1323 * drop data when the tail hits the head.
1324 */
1325 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1326 struct lock_class_key *key)
1327 {
1328 struct ring_buffer *buffer;
1329 int bsize;
1330 int cpu, nr_pages;
1331
1332 /* keep it in its own cache line */
1333 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1334 GFP_KERNEL);
1335 if (!buffer)
1336 return NULL;
1337
1338 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1339 goto fail_free_buffer;
1340
1341 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1342 buffer->flags = flags;
1343 buffer->clock = trace_clock_local;
1344 buffer->reader_lock_key = key;
1345
1346 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1347 init_waitqueue_head(&buffer->irq_work.waiters);
1348
1349 /* need at least two pages */
1350 if (nr_pages < 2)
1351 nr_pages = 2;
1352
1353 /*
1354 * In case of non-hotplug cpu, if the ring-buffer is allocated
1355 * in early initcall, it will not be notified of secondary cpus.
1356 * In that off case, we need to allocate for all possible cpus.
1357 */
1358 #ifdef CONFIG_HOTPLUG_CPU
1359 cpu_notifier_register_begin();
1360 cpumask_copy(buffer->cpumask, cpu_online_mask);
1361 #else
1362 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1363 #endif
1364 buffer->cpus = nr_cpu_ids;
1365
1366 bsize = sizeof(void *) * nr_cpu_ids;
1367 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1368 GFP_KERNEL);
1369 if (!buffer->buffers)
1370 goto fail_free_cpumask;
1371
1372 for_each_buffer_cpu(buffer, cpu) {
1373 buffer->buffers[cpu] =
1374 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1375 if (!buffer->buffers[cpu])
1376 goto fail_free_buffers;
1377 }
1378
1379 #ifdef CONFIG_HOTPLUG_CPU
1380 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1381 buffer->cpu_notify.priority = 0;
1382 __register_cpu_notifier(&buffer->cpu_notify);
1383 cpu_notifier_register_done();
1384 #endif
1385
1386 mutex_init(&buffer->mutex);
1387
1388 return buffer;
1389
1390 fail_free_buffers:
1391 for_each_buffer_cpu(buffer, cpu) {
1392 if (buffer->buffers[cpu])
1393 rb_free_cpu_buffer(buffer->buffers[cpu]);
1394 }
1395 kfree(buffer->buffers);
1396
1397 fail_free_cpumask:
1398 free_cpumask_var(buffer->cpumask);
1399 #ifdef CONFIG_HOTPLUG_CPU
1400 cpu_notifier_register_done();
1401 #endif
1402
1403 fail_free_buffer:
1404 kfree(buffer);
1405 return NULL;
1406 }
1407 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1408
1409 /**
1410 * ring_buffer_free - free a ring buffer.
1411 * @buffer: the buffer to free.
1412 */
1413 void
1414 ring_buffer_free(struct ring_buffer *buffer)
1415 {
1416 int cpu;
1417
1418 #ifdef CONFIG_HOTPLUG_CPU
1419 cpu_notifier_register_begin();
1420 __unregister_cpu_notifier(&buffer->cpu_notify);
1421 #endif
1422
1423 for_each_buffer_cpu(buffer, cpu)
1424 rb_free_cpu_buffer(buffer->buffers[cpu]);
1425
1426 #ifdef CONFIG_HOTPLUG_CPU
1427 cpu_notifier_register_done();
1428 #endif
1429
1430 kfree(buffer->buffers);
1431 free_cpumask_var(buffer->cpumask);
1432
1433 kfree(buffer);
1434 }
1435 EXPORT_SYMBOL_GPL(ring_buffer_free);
1436
1437 void ring_buffer_set_clock(struct ring_buffer *buffer,
1438 u64 (*clock)(void))
1439 {
1440 buffer->clock = clock;
1441 }
1442
1443 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1444
1445 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1446 {
1447 return local_read(&bpage->entries) & RB_WRITE_MASK;
1448 }
1449
1450 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1451 {
1452 return local_read(&bpage->write) & RB_WRITE_MASK;
1453 }
1454
1455 static int
1456 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1457 {
1458 struct list_head *tail_page, *to_remove, *next_page;
1459 struct buffer_page *to_remove_page, *tmp_iter_page;
1460 struct buffer_page *last_page, *first_page;
1461 unsigned int nr_removed;
1462 unsigned long head_bit;
1463 int page_entries;
1464
1465 head_bit = 0;
1466
1467 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1468 atomic_inc(&cpu_buffer->record_disabled);
1469 /*
1470 * We don't race with the readers since we have acquired the reader
1471 * lock. We also don't race with writers after disabling recording.
1472 * This makes it easy to figure out the first and the last page to be
1473 * removed from the list. We unlink all the pages in between including
1474 * the first and last pages. This is done in a busy loop so that we
1475 * lose the least number of traces.
1476 * The pages are freed after we restart recording and unlock readers.
1477 */
1478 tail_page = &cpu_buffer->tail_page->list;
1479
1480 /*
1481 * tail page might be on reader page, we remove the next page
1482 * from the ring buffer
1483 */
1484 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1485 tail_page = rb_list_head(tail_page->next);
1486 to_remove = tail_page;
1487
1488 /* start of pages to remove */
1489 first_page = list_entry(rb_list_head(to_remove->next),
1490 struct buffer_page, list);
1491
1492 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1493 to_remove = rb_list_head(to_remove)->next;
1494 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1495 }
1496
1497 next_page = rb_list_head(to_remove)->next;
1498
1499 /*
1500 * Now we remove all pages between tail_page and next_page.
1501 * Make sure that we have head_bit value preserved for the
1502 * next page
1503 */
1504 tail_page->next = (struct list_head *)((unsigned long)next_page |
1505 head_bit);
1506 next_page = rb_list_head(next_page);
1507 next_page->prev = tail_page;
1508
1509 /* make sure pages points to a valid page in the ring buffer */
1510 cpu_buffer->pages = next_page;
1511
1512 /* update head page */
1513 if (head_bit)
1514 cpu_buffer->head_page = list_entry(next_page,
1515 struct buffer_page, list);
1516
1517 /*
1518 * change read pointer to make sure any read iterators reset
1519 * themselves
1520 */
1521 cpu_buffer->read = 0;
1522
1523 /* pages are removed, resume tracing and then free the pages */
1524 atomic_dec(&cpu_buffer->record_disabled);
1525 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1526
1527 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1528
1529 /* last buffer page to remove */
1530 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1531 list);
1532 tmp_iter_page = first_page;
1533
1534 do {
1535 to_remove_page = tmp_iter_page;
1536 rb_inc_page(cpu_buffer, &tmp_iter_page);
1537
1538 /* update the counters */
1539 page_entries = rb_page_entries(to_remove_page);
1540 if (page_entries) {
1541 /*
1542 * If something was added to this page, it was full
1543 * since it is not the tail page. So we deduct the
1544 * bytes consumed in ring buffer from here.
1545 * Increment overrun to account for the lost events.
1546 */
1547 local_add(page_entries, &cpu_buffer->overrun);
1548 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1549 }
1550
1551 /*
1552 * We have already removed references to this list item, just
1553 * free up the buffer_page and its page
1554 */
1555 free_buffer_page(to_remove_page);
1556 nr_removed--;
1557
1558 } while (to_remove_page != last_page);
1559
1560 RB_WARN_ON(cpu_buffer, nr_removed);
1561
1562 return nr_removed == 0;
1563 }
1564
1565 static int
1566 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1567 {
1568 struct list_head *pages = &cpu_buffer->new_pages;
1569 int retries, success;
1570
1571 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1572 /*
1573 * We are holding the reader lock, so the reader page won't be swapped
1574 * in the ring buffer. Now we are racing with the writer trying to
1575 * move head page and the tail page.
1576 * We are going to adapt the reader page update process where:
1577 * 1. We first splice the start and end of list of new pages between
1578 * the head page and its previous page.
1579 * 2. We cmpxchg the prev_page->next to point from head page to the
1580 * start of new pages list.
1581 * 3. Finally, we update the head->prev to the end of new list.
1582 *
1583 * We will try this process 10 times, to make sure that we don't keep
1584 * spinning.
1585 */
1586 retries = 10;
1587 success = 0;
1588 while (retries--) {
1589 struct list_head *head_page, *prev_page, *r;
1590 struct list_head *last_page, *first_page;
1591 struct list_head *head_page_with_bit;
1592
1593 head_page = &rb_set_head_page(cpu_buffer)->list;
1594 if (!head_page)
1595 break;
1596 prev_page = head_page->prev;
1597
1598 first_page = pages->next;
1599 last_page = pages->prev;
1600
1601 head_page_with_bit = (struct list_head *)
1602 ((unsigned long)head_page | RB_PAGE_HEAD);
1603
1604 last_page->next = head_page_with_bit;
1605 first_page->prev = prev_page;
1606
1607 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1608
1609 if (r == head_page_with_bit) {
1610 /*
1611 * yay, we replaced the page pointer to our new list,
1612 * now, we just have to update to head page's prev
1613 * pointer to point to end of list
1614 */
1615 head_page->prev = last_page;
1616 success = 1;
1617 break;
1618 }
1619 }
1620
1621 if (success)
1622 INIT_LIST_HEAD(pages);
1623 /*
1624 * If we weren't successful in adding in new pages, warn and stop
1625 * tracing
1626 */
1627 RB_WARN_ON(cpu_buffer, !success);
1628 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1629
1630 /* free pages if they weren't inserted */
1631 if (!success) {
1632 struct buffer_page *bpage, *tmp;
1633 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1634 list) {
1635 list_del_init(&bpage->list);
1636 free_buffer_page(bpage);
1637 }
1638 }
1639 return success;
1640 }
1641
1642 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1643 {
1644 int success;
1645
1646 if (cpu_buffer->nr_pages_to_update > 0)
1647 success = rb_insert_pages(cpu_buffer);
1648 else
1649 success = rb_remove_pages(cpu_buffer,
1650 -cpu_buffer->nr_pages_to_update);
1651
1652 if (success)
1653 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1654 }
1655
1656 static void update_pages_handler(struct work_struct *work)
1657 {
1658 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1659 struct ring_buffer_per_cpu, update_pages_work);
1660 rb_update_pages(cpu_buffer);
1661 complete(&cpu_buffer->update_done);
1662 }
1663
1664 /**
1665 * ring_buffer_resize - resize the ring buffer
1666 * @buffer: the buffer to resize.
1667 * @size: the new size.
1668 * @cpu_id: the cpu buffer to resize
1669 *
1670 * Minimum size is 2 * BUF_PAGE_SIZE.
1671 *
1672 * Returns 0 on success and < 0 on failure.
1673 */
1674 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1675 int cpu_id)
1676 {
1677 struct ring_buffer_per_cpu *cpu_buffer;
1678 unsigned nr_pages;
1679 int cpu, err = 0;
1680
1681 /*
1682 * Always succeed at resizing a non-existent buffer:
1683 */
1684 if (!buffer)
1685 return size;
1686
1687 /* Make sure the requested buffer exists */
1688 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1689 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1690 return size;
1691
1692 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1693 size *= BUF_PAGE_SIZE;
1694
1695 /* we need a minimum of two pages */
1696 if (size < BUF_PAGE_SIZE * 2)
1697 size = BUF_PAGE_SIZE * 2;
1698
1699 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1700
1701 /*
1702 * Don't succeed if resizing is disabled, as a reader might be
1703 * manipulating the ring buffer and is expecting a sane state while
1704 * this is true.
1705 */
1706 if (atomic_read(&buffer->resize_disabled))
1707 return -EBUSY;
1708
1709 /* prevent another thread from changing buffer sizes */
1710 mutex_lock(&buffer->mutex);
1711
1712 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1713 /* calculate the pages to update */
1714 for_each_buffer_cpu(buffer, cpu) {
1715 cpu_buffer = buffer->buffers[cpu];
1716
1717 cpu_buffer->nr_pages_to_update = nr_pages -
1718 cpu_buffer->nr_pages;
1719 /*
1720 * nothing more to do for removing pages or no update
1721 */
1722 if (cpu_buffer->nr_pages_to_update <= 0)
1723 continue;
1724 /*
1725 * to add pages, make sure all new pages can be
1726 * allocated without receiving ENOMEM
1727 */
1728 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1729 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1730 &cpu_buffer->new_pages, cpu)) {
1731 /* not enough memory for new pages */
1732 err = -ENOMEM;
1733 goto out_err;
1734 }
1735 }
1736
1737 get_online_cpus();
1738 /*
1739 * Fire off all the required work handlers
1740 * We can't schedule on offline CPUs, but it's not necessary
1741 * since we can change their buffer sizes without any race.
1742 */
1743 for_each_buffer_cpu(buffer, cpu) {
1744 cpu_buffer = buffer->buffers[cpu];
1745 if (!cpu_buffer->nr_pages_to_update)
1746 continue;
1747
1748 /* Can't run something on an offline CPU. */
1749 if (!cpu_online(cpu)) {
1750 rb_update_pages(cpu_buffer);
1751 cpu_buffer->nr_pages_to_update = 0;
1752 } else {
1753 schedule_work_on(cpu,
1754 &cpu_buffer->update_pages_work);
1755 }
1756 }
1757
1758 /* wait for all the updates to complete */
1759 for_each_buffer_cpu(buffer, cpu) {
1760 cpu_buffer = buffer->buffers[cpu];
1761 if (!cpu_buffer->nr_pages_to_update)
1762 continue;
1763
1764 if (cpu_online(cpu))
1765 wait_for_completion(&cpu_buffer->update_done);
1766 cpu_buffer->nr_pages_to_update = 0;
1767 }
1768
1769 put_online_cpus();
1770 } else {
1771 /* Make sure this CPU has been intitialized */
1772 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1773 goto out;
1774
1775 cpu_buffer = buffer->buffers[cpu_id];
1776
1777 if (nr_pages == cpu_buffer->nr_pages)
1778 goto out;
1779
1780 cpu_buffer->nr_pages_to_update = nr_pages -
1781 cpu_buffer->nr_pages;
1782
1783 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1784 if (cpu_buffer->nr_pages_to_update > 0 &&
1785 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1786 &cpu_buffer->new_pages, cpu_id)) {
1787 err = -ENOMEM;
1788 goto out_err;
1789 }
1790
1791 get_online_cpus();
1792
1793 /* Can't run something on an offline CPU. */
1794 if (!cpu_online(cpu_id))
1795 rb_update_pages(cpu_buffer);
1796 else {
1797 schedule_work_on(cpu_id,
1798 &cpu_buffer->update_pages_work);
1799 wait_for_completion(&cpu_buffer->update_done);
1800 }
1801
1802 cpu_buffer->nr_pages_to_update = 0;
1803 put_online_cpus();
1804 }
1805
1806 out:
1807 /*
1808 * The ring buffer resize can happen with the ring buffer
1809 * enabled, so that the update disturbs the tracing as little
1810 * as possible. But if the buffer is disabled, we do not need
1811 * to worry about that, and we can take the time to verify
1812 * that the buffer is not corrupt.
1813 */
1814 if (atomic_read(&buffer->record_disabled)) {
1815 atomic_inc(&buffer->record_disabled);
1816 /*
1817 * Even though the buffer was disabled, we must make sure
1818 * that it is truly disabled before calling rb_check_pages.
1819 * There could have been a race between checking
1820 * record_disable and incrementing it.
1821 */
1822 synchronize_sched();
1823 for_each_buffer_cpu(buffer, cpu) {
1824 cpu_buffer = buffer->buffers[cpu];
1825 rb_check_pages(cpu_buffer);
1826 }
1827 atomic_dec(&buffer->record_disabled);
1828 }
1829
1830 mutex_unlock(&buffer->mutex);
1831 return size;
1832
1833 out_err:
1834 for_each_buffer_cpu(buffer, cpu) {
1835 struct buffer_page *bpage, *tmp;
1836
1837 cpu_buffer = buffer->buffers[cpu];
1838 cpu_buffer->nr_pages_to_update = 0;
1839
1840 if (list_empty(&cpu_buffer->new_pages))
1841 continue;
1842
1843 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1844 list) {
1845 list_del_init(&bpage->list);
1846 free_buffer_page(bpage);
1847 }
1848 }
1849 mutex_unlock(&buffer->mutex);
1850 return err;
1851 }
1852 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1853
1854 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1855 {
1856 mutex_lock(&buffer->mutex);
1857 if (val)
1858 buffer->flags |= RB_FL_OVERWRITE;
1859 else
1860 buffer->flags &= ~RB_FL_OVERWRITE;
1861 mutex_unlock(&buffer->mutex);
1862 }
1863 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1864
1865 static inline void *
1866 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1867 {
1868 return bpage->data + index;
1869 }
1870
1871 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1872 {
1873 return bpage->page->data + index;
1874 }
1875
1876 static inline struct ring_buffer_event *
1877 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879 return __rb_page_index(cpu_buffer->reader_page,
1880 cpu_buffer->reader_page->read);
1881 }
1882
1883 static inline struct ring_buffer_event *
1884 rb_iter_head_event(struct ring_buffer_iter *iter)
1885 {
1886 return __rb_page_index(iter->head_page, iter->head);
1887 }
1888
1889 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1890 {
1891 return local_read(&bpage->page->commit);
1892 }
1893
1894 /* Size is determined by what has been committed */
1895 static inline unsigned rb_page_size(struct buffer_page *bpage)
1896 {
1897 return rb_page_commit(bpage);
1898 }
1899
1900 static inline unsigned
1901 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1902 {
1903 return rb_page_commit(cpu_buffer->commit_page);
1904 }
1905
1906 static inline unsigned
1907 rb_event_index(struct ring_buffer_event *event)
1908 {
1909 unsigned long addr = (unsigned long)event;
1910
1911 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1912 }
1913
1914 static inline int
1915 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1916 struct ring_buffer_event *event)
1917 {
1918 unsigned long addr = (unsigned long)event;
1919 unsigned long index;
1920
1921 index = rb_event_index(event);
1922 addr &= PAGE_MASK;
1923
1924 return cpu_buffer->commit_page->page == (void *)addr &&
1925 rb_commit_index(cpu_buffer) == index;
1926 }
1927
1928 static void
1929 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1930 {
1931 unsigned long max_count;
1932
1933 /*
1934 * We only race with interrupts and NMIs on this CPU.
1935 * If we own the commit event, then we can commit
1936 * all others that interrupted us, since the interruptions
1937 * are in stack format (they finish before they come
1938 * back to us). This allows us to do a simple loop to
1939 * assign the commit to the tail.
1940 */
1941 again:
1942 max_count = cpu_buffer->nr_pages * 100;
1943
1944 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1945 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1946 return;
1947 if (RB_WARN_ON(cpu_buffer,
1948 rb_is_reader_page(cpu_buffer->tail_page)))
1949 return;
1950 local_set(&cpu_buffer->commit_page->page->commit,
1951 rb_page_write(cpu_buffer->commit_page));
1952 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1953 cpu_buffer->write_stamp =
1954 cpu_buffer->commit_page->page->time_stamp;
1955 /* add barrier to keep gcc from optimizing too much */
1956 barrier();
1957 }
1958 while (rb_commit_index(cpu_buffer) !=
1959 rb_page_write(cpu_buffer->commit_page)) {
1960
1961 local_set(&cpu_buffer->commit_page->page->commit,
1962 rb_page_write(cpu_buffer->commit_page));
1963 RB_WARN_ON(cpu_buffer,
1964 local_read(&cpu_buffer->commit_page->page->commit) &
1965 ~RB_WRITE_MASK);
1966 barrier();
1967 }
1968
1969 /* again, keep gcc from optimizing */
1970 barrier();
1971
1972 /*
1973 * If an interrupt came in just after the first while loop
1974 * and pushed the tail page forward, we will be left with
1975 * a dangling commit that will never go forward.
1976 */
1977 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1978 goto again;
1979 }
1980
1981 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1982 {
1983 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1984 cpu_buffer->reader_page->read = 0;
1985 }
1986
1987 static void rb_inc_iter(struct ring_buffer_iter *iter)
1988 {
1989 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1990
1991 /*
1992 * The iterator could be on the reader page (it starts there).
1993 * But the head could have moved, since the reader was
1994 * found. Check for this case and assign the iterator
1995 * to the head page instead of next.
1996 */
1997 if (iter->head_page == cpu_buffer->reader_page)
1998 iter->head_page = rb_set_head_page(cpu_buffer);
1999 else
2000 rb_inc_page(cpu_buffer, &iter->head_page);
2001
2002 iter->read_stamp = iter->head_page->page->time_stamp;
2003 iter->head = 0;
2004 }
2005
2006 /* Slow path, do not inline */
2007 static noinline struct ring_buffer_event *
2008 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2009 {
2010 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2011
2012 /* Not the first event on the page? */
2013 if (rb_event_index(event)) {
2014 event->time_delta = delta & TS_MASK;
2015 event->array[0] = delta >> TS_SHIFT;
2016 } else {
2017 /* nope, just zero it */
2018 event->time_delta = 0;
2019 event->array[0] = 0;
2020 }
2021
2022 return skip_time_extend(event);
2023 }
2024
2025 /**
2026 * rb_update_event - update event type and data
2027 * @event: the event to update
2028 * @type: the type of event
2029 * @length: the size of the event field in the ring buffer
2030 *
2031 * Update the type and data fields of the event. The length
2032 * is the actual size that is written to the ring buffer,
2033 * and with this, we can determine what to place into the
2034 * data field.
2035 */
2036 static void
2037 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2038 struct ring_buffer_event *event, unsigned length,
2039 int add_timestamp, u64 delta)
2040 {
2041 /* Only a commit updates the timestamp */
2042 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2043 delta = 0;
2044
2045 /*
2046 * If we need to add a timestamp, then we
2047 * add it to the start of the resevered space.
2048 */
2049 if (unlikely(add_timestamp)) {
2050 event = rb_add_time_stamp(event, delta);
2051 length -= RB_LEN_TIME_EXTEND;
2052 delta = 0;
2053 }
2054
2055 event->time_delta = delta;
2056 length -= RB_EVNT_HDR_SIZE;
2057 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2058 event->type_len = 0;
2059 event->array[0] = length;
2060 } else
2061 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2062 }
2063
2064 /*
2065 * rb_handle_head_page - writer hit the head page
2066 *
2067 * Returns: +1 to retry page
2068 * 0 to continue
2069 * -1 on error
2070 */
2071 static int
2072 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2073 struct buffer_page *tail_page,
2074 struct buffer_page *next_page)
2075 {
2076 struct buffer_page *new_head;
2077 int entries;
2078 int type;
2079 int ret;
2080
2081 entries = rb_page_entries(next_page);
2082
2083 /*
2084 * The hard part is here. We need to move the head
2085 * forward, and protect against both readers on
2086 * other CPUs and writers coming in via interrupts.
2087 */
2088 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2089 RB_PAGE_HEAD);
2090
2091 /*
2092 * type can be one of four:
2093 * NORMAL - an interrupt already moved it for us
2094 * HEAD - we are the first to get here.
2095 * UPDATE - we are the interrupt interrupting
2096 * a current move.
2097 * MOVED - a reader on another CPU moved the next
2098 * pointer to its reader page. Give up
2099 * and try again.
2100 */
2101
2102 switch (type) {
2103 case RB_PAGE_HEAD:
2104 /*
2105 * We changed the head to UPDATE, thus
2106 * it is our responsibility to update
2107 * the counters.
2108 */
2109 local_add(entries, &cpu_buffer->overrun);
2110 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2111
2112 /*
2113 * The entries will be zeroed out when we move the
2114 * tail page.
2115 */
2116
2117 /* still more to do */
2118 break;
2119
2120 case RB_PAGE_UPDATE:
2121 /*
2122 * This is an interrupt that interrupt the
2123 * previous update. Still more to do.
2124 */
2125 break;
2126 case RB_PAGE_NORMAL:
2127 /*
2128 * An interrupt came in before the update
2129 * and processed this for us.
2130 * Nothing left to do.
2131 */
2132 return 1;
2133 case RB_PAGE_MOVED:
2134 /*
2135 * The reader is on another CPU and just did
2136 * a swap with our next_page.
2137 * Try again.
2138 */
2139 return 1;
2140 default:
2141 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2142 return -1;
2143 }
2144
2145 /*
2146 * Now that we are here, the old head pointer is
2147 * set to UPDATE. This will keep the reader from
2148 * swapping the head page with the reader page.
2149 * The reader (on another CPU) will spin till
2150 * we are finished.
2151 *
2152 * We just need to protect against interrupts
2153 * doing the job. We will set the next pointer
2154 * to HEAD. After that, we set the old pointer
2155 * to NORMAL, but only if it was HEAD before.
2156 * otherwise we are an interrupt, and only
2157 * want the outer most commit to reset it.
2158 */
2159 new_head = next_page;
2160 rb_inc_page(cpu_buffer, &new_head);
2161
2162 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2163 RB_PAGE_NORMAL);
2164
2165 /*
2166 * Valid returns are:
2167 * HEAD - an interrupt came in and already set it.
2168 * NORMAL - One of two things:
2169 * 1) We really set it.
2170 * 2) A bunch of interrupts came in and moved
2171 * the page forward again.
2172 */
2173 switch (ret) {
2174 case RB_PAGE_HEAD:
2175 case RB_PAGE_NORMAL:
2176 /* OK */
2177 break;
2178 default:
2179 RB_WARN_ON(cpu_buffer, 1);
2180 return -1;
2181 }
2182
2183 /*
2184 * It is possible that an interrupt came in,
2185 * set the head up, then more interrupts came in
2186 * and moved it again. When we get back here,
2187 * the page would have been set to NORMAL but we
2188 * just set it back to HEAD.
2189 *
2190 * How do you detect this? Well, if that happened
2191 * the tail page would have moved.
2192 */
2193 if (ret == RB_PAGE_NORMAL) {
2194 /*
2195 * If the tail had moved passed next, then we need
2196 * to reset the pointer.
2197 */
2198 if (cpu_buffer->tail_page != tail_page &&
2199 cpu_buffer->tail_page != next_page)
2200 rb_head_page_set_normal(cpu_buffer, new_head,
2201 next_page,
2202 RB_PAGE_HEAD);
2203 }
2204
2205 /*
2206 * If this was the outer most commit (the one that
2207 * changed the original pointer from HEAD to UPDATE),
2208 * then it is up to us to reset it to NORMAL.
2209 */
2210 if (type == RB_PAGE_HEAD) {
2211 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2212 tail_page,
2213 RB_PAGE_UPDATE);
2214 if (RB_WARN_ON(cpu_buffer,
2215 ret != RB_PAGE_UPDATE))
2216 return -1;
2217 }
2218
2219 return 0;
2220 }
2221
2222 static unsigned rb_calculate_event_length(unsigned length)
2223 {
2224 struct ring_buffer_event event; /* Used only for sizeof array */
2225
2226 /* zero length can cause confusions */
2227 if (!length)
2228 length = 1;
2229
2230 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2231 length += sizeof(event.array[0]);
2232
2233 length += RB_EVNT_HDR_SIZE;
2234 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2235
2236 return length;
2237 }
2238
2239 static inline void
2240 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2241 struct buffer_page *tail_page,
2242 unsigned long tail, unsigned long length)
2243 {
2244 struct ring_buffer_event *event;
2245
2246 /*
2247 * Only the event that crossed the page boundary
2248 * must fill the old tail_page with padding.
2249 */
2250 if (tail >= BUF_PAGE_SIZE) {
2251 /*
2252 * If the page was filled, then we still need
2253 * to update the real_end. Reset it to zero
2254 * and the reader will ignore it.
2255 */
2256 if (tail == BUF_PAGE_SIZE)
2257 tail_page->real_end = 0;
2258
2259 local_sub(length, &tail_page->write);
2260 return;
2261 }
2262
2263 event = __rb_page_index(tail_page, tail);
2264 kmemcheck_annotate_bitfield(event, bitfield);
2265
2266 /* account for padding bytes */
2267 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2268
2269 /*
2270 * Save the original length to the meta data.
2271 * This will be used by the reader to add lost event
2272 * counter.
2273 */
2274 tail_page->real_end = tail;
2275
2276 /*
2277 * If this event is bigger than the minimum size, then
2278 * we need to be careful that we don't subtract the
2279 * write counter enough to allow another writer to slip
2280 * in on this page.
2281 * We put in a discarded commit instead, to make sure
2282 * that this space is not used again.
2283 *
2284 * If we are less than the minimum size, we don't need to
2285 * worry about it.
2286 */
2287 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2288 /* No room for any events */
2289
2290 /* Mark the rest of the page with padding */
2291 rb_event_set_padding(event);
2292
2293 /* Set the write back to the previous setting */
2294 local_sub(length, &tail_page->write);
2295 return;
2296 }
2297
2298 /* Put in a discarded event */
2299 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2300 event->type_len = RINGBUF_TYPE_PADDING;
2301 /* time delta must be non zero */
2302 event->time_delta = 1;
2303
2304 /* Set write to end of buffer */
2305 length = (tail + length) - BUF_PAGE_SIZE;
2306 local_sub(length, &tail_page->write);
2307 }
2308
2309 /*
2310 * This is the slow path, force gcc not to inline it.
2311 */
2312 static noinline struct ring_buffer_event *
2313 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2314 unsigned long length, unsigned long tail,
2315 struct buffer_page *tail_page, u64 ts)
2316 {
2317 struct buffer_page *commit_page = cpu_buffer->commit_page;
2318 struct ring_buffer *buffer = cpu_buffer->buffer;
2319 struct buffer_page *next_page;
2320 int ret;
2321
2322 next_page = tail_page;
2323
2324 rb_inc_page(cpu_buffer, &next_page);
2325
2326 /*
2327 * If for some reason, we had an interrupt storm that made
2328 * it all the way around the buffer, bail, and warn
2329 * about it.
2330 */
2331 if (unlikely(next_page == commit_page)) {
2332 local_inc(&cpu_buffer->commit_overrun);
2333 goto out_reset;
2334 }
2335
2336 /*
2337 * This is where the fun begins!
2338 *
2339 * We are fighting against races between a reader that
2340 * could be on another CPU trying to swap its reader
2341 * page with the buffer head.
2342 *
2343 * We are also fighting against interrupts coming in and
2344 * moving the head or tail on us as well.
2345 *
2346 * If the next page is the head page then we have filled
2347 * the buffer, unless the commit page is still on the
2348 * reader page.
2349 */
2350 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2351
2352 /*
2353 * If the commit is not on the reader page, then
2354 * move the header page.
2355 */
2356 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2357 /*
2358 * If we are not in overwrite mode,
2359 * this is easy, just stop here.
2360 */
2361 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2362 local_inc(&cpu_buffer->dropped_events);
2363 goto out_reset;
2364 }
2365
2366 ret = rb_handle_head_page(cpu_buffer,
2367 tail_page,
2368 next_page);
2369 if (ret < 0)
2370 goto out_reset;
2371 if (ret)
2372 goto out_again;
2373 } else {
2374 /*
2375 * We need to be careful here too. The
2376 * commit page could still be on the reader
2377 * page. We could have a small buffer, and
2378 * have filled up the buffer with events
2379 * from interrupts and such, and wrapped.
2380 *
2381 * Note, if the tail page is also the on the
2382 * reader_page, we let it move out.
2383 */
2384 if (unlikely((cpu_buffer->commit_page !=
2385 cpu_buffer->tail_page) &&
2386 (cpu_buffer->commit_page ==
2387 cpu_buffer->reader_page))) {
2388 local_inc(&cpu_buffer->commit_overrun);
2389 goto out_reset;
2390 }
2391 }
2392 }
2393
2394 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2395 if (ret) {
2396 /*
2397 * Nested commits always have zero deltas, so
2398 * just reread the time stamp
2399 */
2400 ts = rb_time_stamp(buffer);
2401 next_page->page->time_stamp = ts;
2402 }
2403
2404 out_again:
2405
2406 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2407
2408 /* fail and let the caller try again */
2409 return ERR_PTR(-EAGAIN);
2410
2411 out_reset:
2412 /* reset write */
2413 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2414
2415 return NULL;
2416 }
2417
2418 static struct ring_buffer_event *
2419 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2420 unsigned long length, u64 ts,
2421 u64 delta, int add_timestamp)
2422 {
2423 struct buffer_page *tail_page;
2424 struct ring_buffer_event *event;
2425 unsigned long tail, write;
2426
2427 /*
2428 * If the time delta since the last event is too big to
2429 * hold in the time field of the event, then we append a
2430 * TIME EXTEND event ahead of the data event.
2431 */
2432 if (unlikely(add_timestamp))
2433 length += RB_LEN_TIME_EXTEND;
2434
2435 tail_page = cpu_buffer->tail_page;
2436 write = local_add_return(length, &tail_page->write);
2437
2438 /* set write to only the index of the write */
2439 write &= RB_WRITE_MASK;
2440 tail = write - length;
2441
2442 /*
2443 * If this is the first commit on the page, then it has the same
2444 * timestamp as the page itself.
2445 */
2446 if (!tail)
2447 delta = 0;
2448
2449 /* See if we shot pass the end of this buffer page */
2450 if (unlikely(write > BUF_PAGE_SIZE))
2451 return rb_move_tail(cpu_buffer, length, tail,
2452 tail_page, ts);
2453
2454 /* We reserved something on the buffer */
2455
2456 event = __rb_page_index(tail_page, tail);
2457 kmemcheck_annotate_bitfield(event, bitfield);
2458 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2459
2460 local_inc(&tail_page->entries);
2461
2462 /*
2463 * If this is the first commit on the page, then update
2464 * its timestamp.
2465 */
2466 if (!tail)
2467 tail_page->page->time_stamp = ts;
2468
2469 /* account for these added bytes */
2470 local_add(length, &cpu_buffer->entries_bytes);
2471
2472 return event;
2473 }
2474
2475 static inline int
2476 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2477 struct ring_buffer_event *event)
2478 {
2479 unsigned long new_index, old_index;
2480 struct buffer_page *bpage;
2481 unsigned long index;
2482 unsigned long addr;
2483
2484 new_index = rb_event_index(event);
2485 old_index = new_index + rb_event_ts_length(event);
2486 addr = (unsigned long)event;
2487 addr &= PAGE_MASK;
2488
2489 bpage = cpu_buffer->tail_page;
2490
2491 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2492 unsigned long write_mask =
2493 local_read(&bpage->write) & ~RB_WRITE_MASK;
2494 unsigned long event_length = rb_event_length(event);
2495 /*
2496 * This is on the tail page. It is possible that
2497 * a write could come in and move the tail page
2498 * and write to the next page. That is fine
2499 * because we just shorten what is on this page.
2500 */
2501 old_index += write_mask;
2502 new_index += write_mask;
2503 index = local_cmpxchg(&bpage->write, old_index, new_index);
2504 if (index == old_index) {
2505 /* update counters */
2506 local_sub(event_length, &cpu_buffer->entries_bytes);
2507 return 1;
2508 }
2509 }
2510
2511 /* could not discard */
2512 return 0;
2513 }
2514
2515 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2516 {
2517 local_inc(&cpu_buffer->committing);
2518 local_inc(&cpu_buffer->commits);
2519 }
2520
2521 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2522 {
2523 unsigned long commits;
2524
2525 if (RB_WARN_ON(cpu_buffer,
2526 !local_read(&cpu_buffer->committing)))
2527 return;
2528
2529 again:
2530 commits = local_read(&cpu_buffer->commits);
2531 /* synchronize with interrupts */
2532 barrier();
2533 if (local_read(&cpu_buffer->committing) == 1)
2534 rb_set_commit_to_write(cpu_buffer);
2535
2536 local_dec(&cpu_buffer->committing);
2537
2538 /* synchronize with interrupts */
2539 barrier();
2540
2541 /*
2542 * Need to account for interrupts coming in between the
2543 * updating of the commit page and the clearing of the
2544 * committing counter.
2545 */
2546 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2547 !local_read(&cpu_buffer->committing)) {
2548 local_inc(&cpu_buffer->committing);
2549 goto again;
2550 }
2551 }
2552
2553 static struct ring_buffer_event *
2554 rb_reserve_next_event(struct ring_buffer *buffer,
2555 struct ring_buffer_per_cpu *cpu_buffer,
2556 unsigned long length)
2557 {
2558 struct ring_buffer_event *event;
2559 u64 ts, delta;
2560 int nr_loops = 0;
2561 int add_timestamp;
2562 u64 diff;
2563
2564 rb_start_commit(cpu_buffer);
2565
2566 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2567 /*
2568 * Due to the ability to swap a cpu buffer from a buffer
2569 * it is possible it was swapped before we committed.
2570 * (committing stops a swap). We check for it here and
2571 * if it happened, we have to fail the write.
2572 */
2573 barrier();
2574 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2575 local_dec(&cpu_buffer->committing);
2576 local_dec(&cpu_buffer->commits);
2577 return NULL;
2578 }
2579 #endif
2580
2581 length = rb_calculate_event_length(length);
2582 again:
2583 add_timestamp = 0;
2584 delta = 0;
2585
2586 /*
2587 * We allow for interrupts to reenter here and do a trace.
2588 * If one does, it will cause this original code to loop
2589 * back here. Even with heavy interrupts happening, this
2590 * should only happen a few times in a row. If this happens
2591 * 1000 times in a row, there must be either an interrupt
2592 * storm or we have something buggy.
2593 * Bail!
2594 */
2595 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2596 goto out_fail;
2597
2598 ts = rb_time_stamp(cpu_buffer->buffer);
2599 diff = ts - cpu_buffer->write_stamp;
2600
2601 /* make sure this diff is calculated here */
2602 barrier();
2603
2604 /* Did the write stamp get updated already? */
2605 if (likely(ts >= cpu_buffer->write_stamp)) {
2606 delta = diff;
2607 if (unlikely(test_time_stamp(delta))) {
2608 int local_clock_stable = 1;
2609 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2610 local_clock_stable = sched_clock_stable();
2611 #endif
2612 WARN_ONCE(delta > (1ULL << 59),
2613 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2614 (unsigned long long)delta,
2615 (unsigned long long)ts,
2616 (unsigned long long)cpu_buffer->write_stamp,
2617 local_clock_stable ? "" :
2618 "If you just came from a suspend/resume,\n"
2619 "please switch to the trace global clock:\n"
2620 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2621 add_timestamp = 1;
2622 }
2623 }
2624
2625 event = __rb_reserve_next(cpu_buffer, length, ts,
2626 delta, add_timestamp);
2627 if (unlikely(PTR_ERR(event) == -EAGAIN))
2628 goto again;
2629
2630 if (!event)
2631 goto out_fail;
2632
2633 return event;
2634
2635 out_fail:
2636 rb_end_commit(cpu_buffer);
2637 return NULL;
2638 }
2639
2640 /*
2641 * The lock and unlock are done within a preempt disable section.
2642 * The current_context per_cpu variable can only be modified
2643 * by the current task between lock and unlock. But it can
2644 * be modified more than once via an interrupt. To pass this
2645 * information from the lock to the unlock without having to
2646 * access the 'in_interrupt()' functions again (which do show
2647 * a bit of overhead in something as critical as function tracing,
2648 * we use a bitmask trick.
2649 *
2650 * bit 0 = NMI context
2651 * bit 1 = IRQ context
2652 * bit 2 = SoftIRQ context
2653 * bit 3 = normal context.
2654 *
2655 * This works because this is the order of contexts that can
2656 * preempt other contexts. A SoftIRQ never preempts an IRQ
2657 * context.
2658 *
2659 * When the context is determined, the corresponding bit is
2660 * checked and set (if it was set, then a recursion of that context
2661 * happened).
2662 *
2663 * On unlock, we need to clear this bit. To do so, just subtract
2664 * 1 from the current_context and AND it to itself.
2665 *
2666 * (binary)
2667 * 101 - 1 = 100
2668 * 101 & 100 = 100 (clearing bit zero)
2669 *
2670 * 1010 - 1 = 1001
2671 * 1010 & 1001 = 1000 (clearing bit 1)
2672 *
2673 * The least significant bit can be cleared this way, and it
2674 * just so happens that it is the same bit corresponding to
2675 * the current context.
2676 */
2677
2678 static __always_inline int
2679 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2680 {
2681 unsigned int val = cpu_buffer->current_context;
2682 int bit;
2683
2684 if (in_interrupt()) {
2685 if (in_nmi())
2686 bit = 0;
2687 else if (in_irq())
2688 bit = 1;
2689 else
2690 bit = 2;
2691 } else
2692 bit = 3;
2693
2694 if (unlikely(val & (1 << bit)))
2695 return 1;
2696
2697 val |= (1 << bit);
2698 cpu_buffer->current_context = val;
2699
2700 return 0;
2701 }
2702
2703 static __always_inline void
2704 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2705 {
2706 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2707 }
2708
2709 /**
2710 * ring_buffer_lock_reserve - reserve a part of the buffer
2711 * @buffer: the ring buffer to reserve from
2712 * @length: the length of the data to reserve (excluding event header)
2713 *
2714 * Returns a reseverd event on the ring buffer to copy directly to.
2715 * The user of this interface will need to get the body to write into
2716 * and can use the ring_buffer_event_data() interface.
2717 *
2718 * The length is the length of the data needed, not the event length
2719 * which also includes the event header.
2720 *
2721 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2722 * If NULL is returned, then nothing has been allocated or locked.
2723 */
2724 struct ring_buffer_event *
2725 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2726 {
2727 struct ring_buffer_per_cpu *cpu_buffer;
2728 struct ring_buffer_event *event;
2729 int cpu;
2730
2731 if (ring_buffer_flags != RB_BUFFERS_ON)
2732 return NULL;
2733
2734 /* If we are tracing schedule, we don't want to recurse */
2735 preempt_disable_notrace();
2736
2737 if (unlikely(atomic_read(&buffer->record_disabled)))
2738 goto out;
2739
2740 cpu = raw_smp_processor_id();
2741
2742 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2743 goto out;
2744
2745 cpu_buffer = buffer->buffers[cpu];
2746
2747 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2748 goto out;
2749
2750 if (unlikely(length > BUF_MAX_DATA_SIZE))
2751 goto out;
2752
2753 if (unlikely(trace_recursive_lock(cpu_buffer)))
2754 goto out;
2755
2756 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2757 if (!event)
2758 goto out_unlock;
2759
2760 return event;
2761
2762 out_unlock:
2763 trace_recursive_unlock(cpu_buffer);
2764 out:
2765 preempt_enable_notrace();
2766 return NULL;
2767 }
2768 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2769
2770 static void
2771 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2772 struct ring_buffer_event *event)
2773 {
2774 u64 delta;
2775
2776 /*
2777 * The event first in the commit queue updates the
2778 * time stamp.
2779 */
2780 if (rb_event_is_commit(cpu_buffer, event)) {
2781 /*
2782 * A commit event that is first on a page
2783 * updates the write timestamp with the page stamp
2784 */
2785 if (!rb_event_index(event))
2786 cpu_buffer->write_stamp =
2787 cpu_buffer->commit_page->page->time_stamp;
2788 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2789 delta = event->array[0];
2790 delta <<= TS_SHIFT;
2791 delta += event->time_delta;
2792 cpu_buffer->write_stamp += delta;
2793 } else
2794 cpu_buffer->write_stamp += event->time_delta;
2795 }
2796 }
2797
2798 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2799 struct ring_buffer_event *event)
2800 {
2801 local_inc(&cpu_buffer->entries);
2802 rb_update_write_stamp(cpu_buffer, event);
2803 rb_end_commit(cpu_buffer);
2804 }
2805
2806 static __always_inline void
2807 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2808 {
2809 bool pagebusy;
2810
2811 if (buffer->irq_work.waiters_pending) {
2812 buffer->irq_work.waiters_pending = false;
2813 /* irq_work_queue() supplies it's own memory barriers */
2814 irq_work_queue(&buffer->irq_work.work);
2815 }
2816
2817 if (cpu_buffer->irq_work.waiters_pending) {
2818 cpu_buffer->irq_work.waiters_pending = false;
2819 /* irq_work_queue() supplies it's own memory barriers */
2820 irq_work_queue(&cpu_buffer->irq_work.work);
2821 }
2822
2823 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2824
2825 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2826 cpu_buffer->irq_work.wakeup_full = true;
2827 cpu_buffer->irq_work.full_waiters_pending = false;
2828 /* irq_work_queue() supplies it's own memory barriers */
2829 irq_work_queue(&cpu_buffer->irq_work.work);
2830 }
2831 }
2832
2833 /**
2834 * ring_buffer_unlock_commit - commit a reserved
2835 * @buffer: The buffer to commit to
2836 * @event: The event pointer to commit.
2837 *
2838 * This commits the data to the ring buffer, and releases any locks held.
2839 *
2840 * Must be paired with ring_buffer_lock_reserve.
2841 */
2842 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2843 struct ring_buffer_event *event)
2844 {
2845 struct ring_buffer_per_cpu *cpu_buffer;
2846 int cpu = raw_smp_processor_id();
2847
2848 cpu_buffer = buffer->buffers[cpu];
2849
2850 rb_commit(cpu_buffer, event);
2851
2852 rb_wakeups(buffer, cpu_buffer);
2853
2854 trace_recursive_unlock(cpu_buffer);
2855
2856 preempt_enable_notrace();
2857
2858 return 0;
2859 }
2860 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2861
2862 static inline void rb_event_discard(struct ring_buffer_event *event)
2863 {
2864 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2865 event = skip_time_extend(event);
2866
2867 /* array[0] holds the actual length for the discarded event */
2868 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2869 event->type_len = RINGBUF_TYPE_PADDING;
2870 /* time delta must be non zero */
2871 if (!event->time_delta)
2872 event->time_delta = 1;
2873 }
2874
2875 /*
2876 * Decrement the entries to the page that an event is on.
2877 * The event does not even need to exist, only the pointer
2878 * to the page it is on. This may only be called before the commit
2879 * takes place.
2880 */
2881 static inline void
2882 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2883 struct ring_buffer_event *event)
2884 {
2885 unsigned long addr = (unsigned long)event;
2886 struct buffer_page *bpage = cpu_buffer->commit_page;
2887 struct buffer_page *start;
2888
2889 addr &= PAGE_MASK;
2890
2891 /* Do the likely case first */
2892 if (likely(bpage->page == (void *)addr)) {
2893 local_dec(&bpage->entries);
2894 return;
2895 }
2896
2897 /*
2898 * Because the commit page may be on the reader page we
2899 * start with the next page and check the end loop there.
2900 */
2901 rb_inc_page(cpu_buffer, &bpage);
2902 start = bpage;
2903 do {
2904 if (bpage->page == (void *)addr) {
2905 local_dec(&bpage->entries);
2906 return;
2907 }
2908 rb_inc_page(cpu_buffer, &bpage);
2909 } while (bpage != start);
2910
2911 /* commit not part of this buffer?? */
2912 RB_WARN_ON(cpu_buffer, 1);
2913 }
2914
2915 /**
2916 * ring_buffer_commit_discard - discard an event that has not been committed
2917 * @buffer: the ring buffer
2918 * @event: non committed event to discard
2919 *
2920 * Sometimes an event that is in the ring buffer needs to be ignored.
2921 * This function lets the user discard an event in the ring buffer
2922 * and then that event will not be read later.
2923 *
2924 * This function only works if it is called before the the item has been
2925 * committed. It will try to free the event from the ring buffer
2926 * if another event has not been added behind it.
2927 *
2928 * If another event has been added behind it, it will set the event
2929 * up as discarded, and perform the commit.
2930 *
2931 * If this function is called, do not call ring_buffer_unlock_commit on
2932 * the event.
2933 */
2934 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2935 struct ring_buffer_event *event)
2936 {
2937 struct ring_buffer_per_cpu *cpu_buffer;
2938 int cpu;
2939
2940 /* The event is discarded regardless */
2941 rb_event_discard(event);
2942
2943 cpu = smp_processor_id();
2944 cpu_buffer = buffer->buffers[cpu];
2945
2946 /*
2947 * This must only be called if the event has not been
2948 * committed yet. Thus we can assume that preemption
2949 * is still disabled.
2950 */
2951 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2952
2953 rb_decrement_entry(cpu_buffer, event);
2954 if (rb_try_to_discard(cpu_buffer, event))
2955 goto out;
2956
2957 /*
2958 * The commit is still visible by the reader, so we
2959 * must still update the timestamp.
2960 */
2961 rb_update_write_stamp(cpu_buffer, event);
2962 out:
2963 rb_end_commit(cpu_buffer);
2964
2965 trace_recursive_unlock(cpu_buffer);
2966
2967 preempt_enable_notrace();
2968
2969 }
2970 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2971
2972 /**
2973 * ring_buffer_write - write data to the buffer without reserving
2974 * @buffer: The ring buffer to write to.
2975 * @length: The length of the data being written (excluding the event header)
2976 * @data: The data to write to the buffer.
2977 *
2978 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2979 * one function. If you already have the data to write to the buffer, it
2980 * may be easier to simply call this function.
2981 *
2982 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2983 * and not the length of the event which would hold the header.
2984 */
2985 int ring_buffer_write(struct ring_buffer *buffer,
2986 unsigned long length,
2987 void *data)
2988 {
2989 struct ring_buffer_per_cpu *cpu_buffer;
2990 struct ring_buffer_event *event;
2991 void *body;
2992 int ret = -EBUSY;
2993 int cpu;
2994
2995 if (ring_buffer_flags != RB_BUFFERS_ON)
2996 return -EBUSY;
2997
2998 preempt_disable_notrace();
2999
3000 if (atomic_read(&buffer->record_disabled))
3001 goto out;
3002
3003 cpu = raw_smp_processor_id();
3004
3005 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3006 goto out;
3007
3008 cpu_buffer = buffer->buffers[cpu];
3009
3010 if (atomic_read(&cpu_buffer->record_disabled))
3011 goto out;
3012
3013 if (length > BUF_MAX_DATA_SIZE)
3014 goto out;
3015
3016 if (unlikely(trace_recursive_lock(cpu_buffer)))
3017 goto out;
3018
3019 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3020 if (!event)
3021 goto out_unlock;
3022
3023 body = rb_event_data(event);
3024
3025 memcpy(body, data, length);
3026
3027 rb_commit(cpu_buffer, event);
3028
3029 rb_wakeups(buffer, cpu_buffer);
3030
3031 ret = 0;
3032
3033 out_unlock:
3034 trace_recursive_unlock(cpu_buffer);
3035
3036 out:
3037 preempt_enable_notrace();
3038
3039 return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(ring_buffer_write);
3042
3043 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3044 {
3045 struct buffer_page *reader = cpu_buffer->reader_page;
3046 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3047 struct buffer_page *commit = cpu_buffer->commit_page;
3048
3049 /* In case of error, head will be NULL */
3050 if (unlikely(!head))
3051 return 1;
3052
3053 return reader->read == rb_page_commit(reader) &&
3054 (commit == reader ||
3055 (commit == head &&
3056 head->read == rb_page_commit(commit)));
3057 }
3058
3059 /**
3060 * ring_buffer_record_disable - stop all writes into the buffer
3061 * @buffer: The ring buffer to stop writes to.
3062 *
3063 * This prevents all writes to the buffer. Any attempt to write
3064 * to the buffer after this will fail and return NULL.
3065 *
3066 * The caller should call synchronize_sched() after this.
3067 */
3068 void ring_buffer_record_disable(struct ring_buffer *buffer)
3069 {
3070 atomic_inc(&buffer->record_disabled);
3071 }
3072 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3073
3074 /**
3075 * ring_buffer_record_enable - enable writes to the buffer
3076 * @buffer: The ring buffer to enable writes
3077 *
3078 * Note, multiple disables will need the same number of enables
3079 * to truly enable the writing (much like preempt_disable).
3080 */
3081 void ring_buffer_record_enable(struct ring_buffer *buffer)
3082 {
3083 atomic_dec(&buffer->record_disabled);
3084 }
3085 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3086
3087 /**
3088 * ring_buffer_record_off - stop all writes into the buffer
3089 * @buffer: The ring buffer to stop writes to.
3090 *
3091 * This prevents all writes to the buffer. Any attempt to write
3092 * to the buffer after this will fail and return NULL.
3093 *
3094 * This is different than ring_buffer_record_disable() as
3095 * it works like an on/off switch, where as the disable() version
3096 * must be paired with a enable().
3097 */
3098 void ring_buffer_record_off(struct ring_buffer *buffer)
3099 {
3100 unsigned int rd;
3101 unsigned int new_rd;
3102
3103 do {
3104 rd = atomic_read(&buffer->record_disabled);
3105 new_rd = rd | RB_BUFFER_OFF;
3106 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3107 }
3108 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3109
3110 /**
3111 * ring_buffer_record_on - restart writes into the buffer
3112 * @buffer: The ring buffer to start writes to.
3113 *
3114 * This enables all writes to the buffer that was disabled by
3115 * ring_buffer_record_off().
3116 *
3117 * This is different than ring_buffer_record_enable() as
3118 * it works like an on/off switch, where as the enable() version
3119 * must be paired with a disable().
3120 */
3121 void ring_buffer_record_on(struct ring_buffer *buffer)
3122 {
3123 unsigned int rd;
3124 unsigned int new_rd;
3125
3126 do {
3127 rd = atomic_read(&buffer->record_disabled);
3128 new_rd = rd & ~RB_BUFFER_OFF;
3129 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3130 }
3131 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3132
3133 /**
3134 * ring_buffer_record_is_on - return true if the ring buffer can write
3135 * @buffer: The ring buffer to see if write is enabled
3136 *
3137 * Returns true if the ring buffer is in a state that it accepts writes.
3138 */
3139 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3140 {
3141 return !atomic_read(&buffer->record_disabled);
3142 }
3143
3144 /**
3145 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3146 * @buffer: The ring buffer to stop writes to.
3147 * @cpu: The CPU buffer to stop
3148 *
3149 * This prevents all writes to the buffer. Any attempt to write
3150 * to the buffer after this will fail and return NULL.
3151 *
3152 * The caller should call synchronize_sched() after this.
3153 */
3154 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3155 {
3156 struct ring_buffer_per_cpu *cpu_buffer;
3157
3158 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3159 return;
3160
3161 cpu_buffer = buffer->buffers[cpu];
3162 atomic_inc(&cpu_buffer->record_disabled);
3163 }
3164 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3165
3166 /**
3167 * ring_buffer_record_enable_cpu - enable writes to the buffer
3168 * @buffer: The ring buffer to enable writes
3169 * @cpu: The CPU to enable.
3170 *
3171 * Note, multiple disables will need the same number of enables
3172 * to truly enable the writing (much like preempt_disable).
3173 */
3174 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3175 {
3176 struct ring_buffer_per_cpu *cpu_buffer;
3177
3178 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3179 return;
3180
3181 cpu_buffer = buffer->buffers[cpu];
3182 atomic_dec(&cpu_buffer->record_disabled);
3183 }
3184 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3185
3186 /*
3187 * The total entries in the ring buffer is the running counter
3188 * of entries entered into the ring buffer, minus the sum of
3189 * the entries read from the ring buffer and the number of
3190 * entries that were overwritten.
3191 */
3192 static inline unsigned long
3193 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3194 {
3195 return local_read(&cpu_buffer->entries) -
3196 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3197 }
3198
3199 /**
3200 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3201 * @buffer: The ring buffer
3202 * @cpu: The per CPU buffer to read from.
3203 */
3204 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3205 {
3206 unsigned long flags;
3207 struct ring_buffer_per_cpu *cpu_buffer;
3208 struct buffer_page *bpage;
3209 u64 ret = 0;
3210
3211 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3212 return 0;
3213
3214 cpu_buffer = buffer->buffers[cpu];
3215 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3216 /*
3217 * if the tail is on reader_page, oldest time stamp is on the reader
3218 * page
3219 */
3220 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3221 bpage = cpu_buffer->reader_page;
3222 else
3223 bpage = rb_set_head_page(cpu_buffer);
3224 if (bpage)
3225 ret = bpage->page->time_stamp;
3226 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3227
3228 return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3231
3232 /**
3233 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3234 * @buffer: The ring buffer
3235 * @cpu: The per CPU buffer to read from.
3236 */
3237 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3238 {
3239 struct ring_buffer_per_cpu *cpu_buffer;
3240 unsigned long ret;
3241
3242 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243 return 0;
3244
3245 cpu_buffer = buffer->buffers[cpu];
3246 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3247
3248 return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3251
3252 /**
3253 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3254 * @buffer: The ring buffer
3255 * @cpu: The per CPU buffer to get the entries from.
3256 */
3257 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3258 {
3259 struct ring_buffer_per_cpu *cpu_buffer;
3260
3261 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262 return 0;
3263
3264 cpu_buffer = buffer->buffers[cpu];
3265
3266 return rb_num_of_entries(cpu_buffer);
3267 }
3268 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3269
3270 /**
3271 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3272 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3273 * @buffer: The ring buffer
3274 * @cpu: The per CPU buffer to get the number of overruns from
3275 */
3276 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 unsigned long ret;
3280
3281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282 return 0;
3283
3284 cpu_buffer = buffer->buffers[cpu];
3285 ret = local_read(&cpu_buffer->overrun);
3286
3287 return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3290
3291 /**
3292 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3293 * commits failing due to the buffer wrapping around while there are uncommitted
3294 * events, such as during an interrupt storm.
3295 * @buffer: The ring buffer
3296 * @cpu: The per CPU buffer to get the number of overruns from
3297 */
3298 unsigned long
3299 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3300 {
3301 struct ring_buffer_per_cpu *cpu_buffer;
3302 unsigned long ret;
3303
3304 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3305 return 0;
3306
3307 cpu_buffer = buffer->buffers[cpu];
3308 ret = local_read(&cpu_buffer->commit_overrun);
3309
3310 return ret;
3311 }
3312 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3313
3314 /**
3315 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3316 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3317 * @buffer: The ring buffer
3318 * @cpu: The per CPU buffer to get the number of overruns from
3319 */
3320 unsigned long
3321 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3322 {
3323 struct ring_buffer_per_cpu *cpu_buffer;
3324 unsigned long ret;
3325
3326 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3327 return 0;
3328
3329 cpu_buffer = buffer->buffers[cpu];
3330 ret = local_read(&cpu_buffer->dropped_events);
3331
3332 return ret;
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3335
3336 /**
3337 * ring_buffer_read_events_cpu - get the number of events successfully read
3338 * @buffer: The ring buffer
3339 * @cpu: The per CPU buffer to get the number of events read
3340 */
3341 unsigned long
3342 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3343 {
3344 struct ring_buffer_per_cpu *cpu_buffer;
3345
3346 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347 return 0;
3348
3349 cpu_buffer = buffer->buffers[cpu];
3350 return cpu_buffer->read;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3353
3354 /**
3355 * ring_buffer_entries - get the number of entries in a buffer
3356 * @buffer: The ring buffer
3357 *
3358 * Returns the total number of entries in the ring buffer
3359 * (all CPU entries)
3360 */
3361 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3362 {
3363 struct ring_buffer_per_cpu *cpu_buffer;
3364 unsigned long entries = 0;
3365 int cpu;
3366
3367 /* if you care about this being correct, lock the buffer */
3368 for_each_buffer_cpu(buffer, cpu) {
3369 cpu_buffer = buffer->buffers[cpu];
3370 entries += rb_num_of_entries(cpu_buffer);
3371 }
3372
3373 return entries;
3374 }
3375 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3376
3377 /**
3378 * ring_buffer_overruns - get the number of overruns in buffer
3379 * @buffer: The ring buffer
3380 *
3381 * Returns the total number of overruns in the ring buffer
3382 * (all CPU entries)
3383 */
3384 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3385 {
3386 struct ring_buffer_per_cpu *cpu_buffer;
3387 unsigned long overruns = 0;
3388 int cpu;
3389
3390 /* if you care about this being correct, lock the buffer */
3391 for_each_buffer_cpu(buffer, cpu) {
3392 cpu_buffer = buffer->buffers[cpu];
3393 overruns += local_read(&cpu_buffer->overrun);
3394 }
3395
3396 return overruns;
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3399
3400 static void rb_iter_reset(struct ring_buffer_iter *iter)
3401 {
3402 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3403
3404 /* Iterator usage is expected to have record disabled */
3405 iter->head_page = cpu_buffer->reader_page;
3406 iter->head = cpu_buffer->reader_page->read;
3407
3408 iter->cache_reader_page = iter->head_page;
3409 iter->cache_read = cpu_buffer->read;
3410
3411 if (iter->head)
3412 iter->read_stamp = cpu_buffer->read_stamp;
3413 else
3414 iter->read_stamp = iter->head_page->page->time_stamp;
3415 }
3416
3417 /**
3418 * ring_buffer_iter_reset - reset an iterator
3419 * @iter: The iterator to reset
3420 *
3421 * Resets the iterator, so that it will start from the beginning
3422 * again.
3423 */
3424 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3425 {
3426 struct ring_buffer_per_cpu *cpu_buffer;
3427 unsigned long flags;
3428
3429 if (!iter)
3430 return;
3431
3432 cpu_buffer = iter->cpu_buffer;
3433
3434 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3435 rb_iter_reset(iter);
3436 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3437 }
3438 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3439
3440 /**
3441 * ring_buffer_iter_empty - check if an iterator has no more to read
3442 * @iter: The iterator to check
3443 */
3444 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3445 {
3446 struct ring_buffer_per_cpu *cpu_buffer;
3447
3448 cpu_buffer = iter->cpu_buffer;
3449
3450 return iter->head_page == cpu_buffer->commit_page &&
3451 iter->head == rb_commit_index(cpu_buffer);
3452 }
3453 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3454
3455 static void
3456 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3457 struct ring_buffer_event *event)
3458 {
3459 u64 delta;
3460
3461 switch (event->type_len) {
3462 case RINGBUF_TYPE_PADDING:
3463 return;
3464
3465 case RINGBUF_TYPE_TIME_EXTEND:
3466 delta = event->array[0];
3467 delta <<= TS_SHIFT;
3468 delta += event->time_delta;
3469 cpu_buffer->read_stamp += delta;
3470 return;
3471
3472 case RINGBUF_TYPE_TIME_STAMP:
3473 /* FIXME: not implemented */
3474 return;
3475
3476 case RINGBUF_TYPE_DATA:
3477 cpu_buffer->read_stamp += event->time_delta;
3478 return;
3479
3480 default:
3481 BUG();
3482 }
3483 return;
3484 }
3485
3486 static void
3487 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3488 struct ring_buffer_event *event)
3489 {
3490 u64 delta;
3491
3492 switch (event->type_len) {
3493 case RINGBUF_TYPE_PADDING:
3494 return;
3495
3496 case RINGBUF_TYPE_TIME_EXTEND:
3497 delta = event->array[0];
3498 delta <<= TS_SHIFT;
3499 delta += event->time_delta;
3500 iter->read_stamp += delta;
3501 return;
3502
3503 case RINGBUF_TYPE_TIME_STAMP:
3504 /* FIXME: not implemented */
3505 return;
3506
3507 case RINGBUF_TYPE_DATA:
3508 iter->read_stamp += event->time_delta;
3509 return;
3510
3511 default:
3512 BUG();
3513 }
3514 return;
3515 }
3516
3517 static struct buffer_page *
3518 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3519 {
3520 struct buffer_page *reader = NULL;
3521 unsigned long overwrite;
3522 unsigned long flags;
3523 int nr_loops = 0;
3524 int ret;
3525
3526 local_irq_save(flags);
3527 arch_spin_lock(&cpu_buffer->lock);
3528
3529 again:
3530 /*
3531 * This should normally only loop twice. But because the
3532 * start of the reader inserts an empty page, it causes
3533 * a case where we will loop three times. There should be no
3534 * reason to loop four times (that I know of).
3535 */
3536 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3537 reader = NULL;
3538 goto out;
3539 }
3540
3541 reader = cpu_buffer->reader_page;
3542
3543 /* If there's more to read, return this page */
3544 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3545 goto out;
3546
3547 /* Never should we have an index greater than the size */
3548 if (RB_WARN_ON(cpu_buffer,
3549 cpu_buffer->reader_page->read > rb_page_size(reader)))
3550 goto out;
3551
3552 /* check if we caught up to the tail */
3553 reader = NULL;
3554 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3555 goto out;
3556
3557 /* Don't bother swapping if the ring buffer is empty */
3558 if (rb_num_of_entries(cpu_buffer) == 0)
3559 goto out;
3560
3561 /*
3562 * Reset the reader page to size zero.
3563 */
3564 local_set(&cpu_buffer->reader_page->write, 0);
3565 local_set(&cpu_buffer->reader_page->entries, 0);
3566 local_set(&cpu_buffer->reader_page->page->commit, 0);
3567 cpu_buffer->reader_page->real_end = 0;
3568
3569 spin:
3570 /*
3571 * Splice the empty reader page into the list around the head.
3572 */
3573 reader = rb_set_head_page(cpu_buffer);
3574 if (!reader)
3575 goto out;
3576 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3577 cpu_buffer->reader_page->list.prev = reader->list.prev;
3578
3579 /*
3580 * cpu_buffer->pages just needs to point to the buffer, it
3581 * has no specific buffer page to point to. Lets move it out
3582 * of our way so we don't accidentally swap it.
3583 */
3584 cpu_buffer->pages = reader->list.prev;
3585
3586 /* The reader page will be pointing to the new head */
3587 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3588
3589 /*
3590 * We want to make sure we read the overruns after we set up our
3591 * pointers to the next object. The writer side does a
3592 * cmpxchg to cross pages which acts as the mb on the writer
3593 * side. Note, the reader will constantly fail the swap
3594 * while the writer is updating the pointers, so this
3595 * guarantees that the overwrite recorded here is the one we
3596 * want to compare with the last_overrun.
3597 */
3598 smp_mb();
3599 overwrite = local_read(&(cpu_buffer->overrun));
3600
3601 /*
3602 * Here's the tricky part.
3603 *
3604 * We need to move the pointer past the header page.
3605 * But we can only do that if a writer is not currently
3606 * moving it. The page before the header page has the
3607 * flag bit '1' set if it is pointing to the page we want.
3608 * but if the writer is in the process of moving it
3609 * than it will be '2' or already moved '0'.
3610 */
3611
3612 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3613
3614 /*
3615 * If we did not convert it, then we must try again.
3616 */
3617 if (!ret)
3618 goto spin;
3619
3620 /*
3621 * Yeah! We succeeded in replacing the page.
3622 *
3623 * Now make the new head point back to the reader page.
3624 */
3625 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3626 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3627
3628 /* Finally update the reader page to the new head */
3629 cpu_buffer->reader_page = reader;
3630 rb_reset_reader_page(cpu_buffer);
3631
3632 if (overwrite != cpu_buffer->last_overrun) {
3633 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3634 cpu_buffer->last_overrun = overwrite;
3635 }
3636
3637 goto again;
3638
3639 out:
3640 arch_spin_unlock(&cpu_buffer->lock);
3641 local_irq_restore(flags);
3642
3643 return reader;
3644 }
3645
3646 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3647 {
3648 struct ring_buffer_event *event;
3649 struct buffer_page *reader;
3650 unsigned length;
3651
3652 reader = rb_get_reader_page(cpu_buffer);
3653
3654 /* This function should not be called when buffer is empty */
3655 if (RB_WARN_ON(cpu_buffer, !reader))
3656 return;
3657
3658 event = rb_reader_event(cpu_buffer);
3659
3660 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3661 cpu_buffer->read++;
3662
3663 rb_update_read_stamp(cpu_buffer, event);
3664
3665 length = rb_event_length(event);
3666 cpu_buffer->reader_page->read += length;
3667 }
3668
3669 static void rb_advance_iter(struct ring_buffer_iter *iter)
3670 {
3671 struct ring_buffer_per_cpu *cpu_buffer;
3672 struct ring_buffer_event *event;
3673 unsigned length;
3674
3675 cpu_buffer = iter->cpu_buffer;
3676
3677 /*
3678 * Check if we are at the end of the buffer.
3679 */
3680 if (iter->head >= rb_page_size(iter->head_page)) {
3681 /* discarded commits can make the page empty */
3682 if (iter->head_page == cpu_buffer->commit_page)
3683 return;
3684 rb_inc_iter(iter);
3685 return;
3686 }
3687
3688 event = rb_iter_head_event(iter);
3689
3690 length = rb_event_length(event);
3691
3692 /*
3693 * This should not be called to advance the header if we are
3694 * at the tail of the buffer.
3695 */
3696 if (RB_WARN_ON(cpu_buffer,
3697 (iter->head_page == cpu_buffer->commit_page) &&
3698 (iter->head + length > rb_commit_index(cpu_buffer))))
3699 return;
3700
3701 rb_update_iter_read_stamp(iter, event);
3702
3703 iter->head += length;
3704
3705 /* check for end of page padding */
3706 if ((iter->head >= rb_page_size(iter->head_page)) &&
3707 (iter->head_page != cpu_buffer->commit_page))
3708 rb_inc_iter(iter);
3709 }
3710
3711 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3712 {
3713 return cpu_buffer->lost_events;
3714 }
3715
3716 static struct ring_buffer_event *
3717 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3718 unsigned long *lost_events)
3719 {
3720 struct ring_buffer_event *event;
3721 struct buffer_page *reader;
3722 int nr_loops = 0;
3723
3724 again:
3725 /*
3726 * We repeat when a time extend is encountered.
3727 * Since the time extend is always attached to a data event,
3728 * we should never loop more than once.
3729 * (We never hit the following condition more than twice).
3730 */
3731 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3732 return NULL;
3733
3734 reader = rb_get_reader_page(cpu_buffer);
3735 if (!reader)
3736 return NULL;
3737
3738 event = rb_reader_event(cpu_buffer);
3739
3740 switch (event->type_len) {
3741 case RINGBUF_TYPE_PADDING:
3742 if (rb_null_event(event))
3743 RB_WARN_ON(cpu_buffer, 1);
3744 /*
3745 * Because the writer could be discarding every
3746 * event it creates (which would probably be bad)
3747 * if we were to go back to "again" then we may never
3748 * catch up, and will trigger the warn on, or lock
3749 * the box. Return the padding, and we will release
3750 * the current locks, and try again.
3751 */
3752 return event;
3753
3754 case RINGBUF_TYPE_TIME_EXTEND:
3755 /* Internal data, OK to advance */
3756 rb_advance_reader(cpu_buffer);
3757 goto again;
3758
3759 case RINGBUF_TYPE_TIME_STAMP:
3760 /* FIXME: not implemented */
3761 rb_advance_reader(cpu_buffer);
3762 goto again;
3763
3764 case RINGBUF_TYPE_DATA:
3765 if (ts) {
3766 *ts = cpu_buffer->read_stamp + event->time_delta;
3767 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3768 cpu_buffer->cpu, ts);
3769 }
3770 if (lost_events)
3771 *lost_events = rb_lost_events(cpu_buffer);
3772 return event;
3773
3774 default:
3775 BUG();
3776 }
3777
3778 return NULL;
3779 }
3780 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3781
3782 static struct ring_buffer_event *
3783 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3784 {
3785 struct ring_buffer *buffer;
3786 struct ring_buffer_per_cpu *cpu_buffer;
3787 struct ring_buffer_event *event;
3788 int nr_loops = 0;
3789
3790 cpu_buffer = iter->cpu_buffer;
3791 buffer = cpu_buffer->buffer;
3792
3793 /*
3794 * Check if someone performed a consuming read to
3795 * the buffer. A consuming read invalidates the iterator
3796 * and we need to reset the iterator in this case.
3797 */
3798 if (unlikely(iter->cache_read != cpu_buffer->read ||
3799 iter->cache_reader_page != cpu_buffer->reader_page))
3800 rb_iter_reset(iter);
3801
3802 again:
3803 if (ring_buffer_iter_empty(iter))
3804 return NULL;
3805
3806 /*
3807 * We repeat when a time extend is encountered or we hit
3808 * the end of the page. Since the time extend is always attached
3809 * to a data event, we should never loop more than three times.
3810 * Once for going to next page, once on time extend, and
3811 * finally once to get the event.
3812 * (We never hit the following condition more than thrice).
3813 */
3814 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3815 return NULL;
3816
3817 if (rb_per_cpu_empty(cpu_buffer))
3818 return NULL;
3819
3820 if (iter->head >= rb_page_size(iter->head_page)) {
3821 rb_inc_iter(iter);
3822 goto again;
3823 }
3824
3825 event = rb_iter_head_event(iter);
3826
3827 switch (event->type_len) {
3828 case RINGBUF_TYPE_PADDING:
3829 if (rb_null_event(event)) {
3830 rb_inc_iter(iter);
3831 goto again;
3832 }
3833 rb_advance_iter(iter);
3834 return event;
3835
3836 case RINGBUF_TYPE_TIME_EXTEND:
3837 /* Internal data, OK to advance */
3838 rb_advance_iter(iter);
3839 goto again;
3840
3841 case RINGBUF_TYPE_TIME_STAMP:
3842 /* FIXME: not implemented */
3843 rb_advance_iter(iter);
3844 goto again;
3845
3846 case RINGBUF_TYPE_DATA:
3847 if (ts) {
3848 *ts = iter->read_stamp + event->time_delta;
3849 ring_buffer_normalize_time_stamp(buffer,
3850 cpu_buffer->cpu, ts);
3851 }
3852 return event;
3853
3854 default:
3855 BUG();
3856 }
3857
3858 return NULL;
3859 }
3860 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3861
3862 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3863 {
3864 if (likely(!in_nmi())) {
3865 raw_spin_lock(&cpu_buffer->reader_lock);
3866 return true;
3867 }
3868
3869 /*
3870 * If an NMI die dumps out the content of the ring buffer
3871 * trylock must be used to prevent a deadlock if the NMI
3872 * preempted a task that holds the ring buffer locks. If
3873 * we get the lock then all is fine, if not, then continue
3874 * to do the read, but this can corrupt the ring buffer,
3875 * so it must be permanently disabled from future writes.
3876 * Reading from NMI is a oneshot deal.
3877 */
3878 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3879 return true;
3880
3881 /* Continue without locking, but disable the ring buffer */
3882 atomic_inc(&cpu_buffer->record_disabled);
3883 return false;
3884 }
3885
3886 static inline void
3887 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3888 {
3889 if (likely(locked))
3890 raw_spin_unlock(&cpu_buffer->reader_lock);
3891 return;
3892 }
3893
3894 /**
3895 * ring_buffer_peek - peek at the next event to be read
3896 * @buffer: The ring buffer to read
3897 * @cpu: The cpu to peak at
3898 * @ts: The timestamp counter of this event.
3899 * @lost_events: a variable to store if events were lost (may be NULL)
3900 *
3901 * This will return the event that will be read next, but does
3902 * not consume the data.
3903 */
3904 struct ring_buffer_event *
3905 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3906 unsigned long *lost_events)
3907 {
3908 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3909 struct ring_buffer_event *event;
3910 unsigned long flags;
3911 bool dolock;
3912
3913 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3914 return NULL;
3915
3916 again:
3917 local_irq_save(flags);
3918 dolock = rb_reader_lock(cpu_buffer);
3919 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3920 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921 rb_advance_reader(cpu_buffer);
3922 rb_reader_unlock(cpu_buffer, dolock);
3923 local_irq_restore(flags);
3924
3925 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3926 goto again;
3927
3928 return event;
3929 }
3930
3931 /**
3932 * ring_buffer_iter_peek - peek at the next event to be read
3933 * @iter: The ring buffer iterator
3934 * @ts: The timestamp counter of this event.
3935 *
3936 * This will return the event that will be read next, but does
3937 * not increment the iterator.
3938 */
3939 struct ring_buffer_event *
3940 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3941 {
3942 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3943 struct ring_buffer_event *event;
3944 unsigned long flags;
3945
3946 again:
3947 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3948 event = rb_iter_peek(iter, ts);
3949 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3950
3951 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3952 goto again;
3953
3954 return event;
3955 }
3956
3957 /**
3958 * ring_buffer_consume - return an event and consume it
3959 * @buffer: The ring buffer to get the next event from
3960 * @cpu: the cpu to read the buffer from
3961 * @ts: a variable to store the timestamp (may be NULL)
3962 * @lost_events: a variable to store if events were lost (may be NULL)
3963 *
3964 * Returns the next event in the ring buffer, and that event is consumed.
3965 * Meaning, that sequential reads will keep returning a different event,
3966 * and eventually empty the ring buffer if the producer is slower.
3967 */
3968 struct ring_buffer_event *
3969 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3970 unsigned long *lost_events)
3971 {
3972 struct ring_buffer_per_cpu *cpu_buffer;
3973 struct ring_buffer_event *event = NULL;
3974 unsigned long flags;
3975 bool dolock;
3976
3977 again:
3978 /* might be called in atomic */
3979 preempt_disable();
3980
3981 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982 goto out;
3983
3984 cpu_buffer = buffer->buffers[cpu];
3985 local_irq_save(flags);
3986 dolock = rb_reader_lock(cpu_buffer);
3987
3988 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3989 if (event) {
3990 cpu_buffer->lost_events = 0;
3991 rb_advance_reader(cpu_buffer);
3992 }
3993
3994 rb_reader_unlock(cpu_buffer, dolock);
3995 local_irq_restore(flags);
3996
3997 out:
3998 preempt_enable();
3999
4000 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4001 goto again;
4002
4003 return event;
4004 }
4005 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4006
4007 /**
4008 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4009 * @buffer: The ring buffer to read from
4010 * @cpu: The cpu buffer to iterate over
4011 *
4012 * This performs the initial preparations necessary to iterate
4013 * through the buffer. Memory is allocated, buffer recording
4014 * is disabled, and the iterator pointer is returned to the caller.
4015 *
4016 * Disabling buffer recordng prevents the reading from being
4017 * corrupted. This is not a consuming read, so a producer is not
4018 * expected.
4019 *
4020 * After a sequence of ring_buffer_read_prepare calls, the user is
4021 * expected to make at least one call to ring_buffer_read_prepare_sync.
4022 * Afterwards, ring_buffer_read_start is invoked to get things going
4023 * for real.
4024 *
4025 * This overall must be paired with ring_buffer_read_finish.
4026 */
4027 struct ring_buffer_iter *
4028 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4029 {
4030 struct ring_buffer_per_cpu *cpu_buffer;
4031 struct ring_buffer_iter *iter;
4032
4033 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4034 return NULL;
4035
4036 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4037 if (!iter)
4038 return NULL;
4039
4040 cpu_buffer = buffer->buffers[cpu];
4041
4042 iter->cpu_buffer = cpu_buffer;
4043
4044 atomic_inc(&buffer->resize_disabled);
4045 atomic_inc(&cpu_buffer->record_disabled);
4046
4047 return iter;
4048 }
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4050
4051 /**
4052 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4053 *
4054 * All previously invoked ring_buffer_read_prepare calls to prepare
4055 * iterators will be synchronized. Afterwards, read_buffer_read_start
4056 * calls on those iterators are allowed.
4057 */
4058 void
4059 ring_buffer_read_prepare_sync(void)
4060 {
4061 synchronize_sched();
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4064
4065 /**
4066 * ring_buffer_read_start - start a non consuming read of the buffer
4067 * @iter: The iterator returned by ring_buffer_read_prepare
4068 *
4069 * This finalizes the startup of an iteration through the buffer.
4070 * The iterator comes from a call to ring_buffer_read_prepare and
4071 * an intervening ring_buffer_read_prepare_sync must have been
4072 * performed.
4073 *
4074 * Must be paired with ring_buffer_read_finish.
4075 */
4076 void
4077 ring_buffer_read_start(struct ring_buffer_iter *iter)
4078 {
4079 struct ring_buffer_per_cpu *cpu_buffer;
4080 unsigned long flags;
4081
4082 if (!iter)
4083 return;
4084
4085 cpu_buffer = iter->cpu_buffer;
4086
4087 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4088 arch_spin_lock(&cpu_buffer->lock);
4089 rb_iter_reset(iter);
4090 arch_spin_unlock(&cpu_buffer->lock);
4091 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4094
4095 /**
4096 * ring_buffer_read_finish - finish reading the iterator of the buffer
4097 * @iter: The iterator retrieved by ring_buffer_start
4098 *
4099 * This re-enables the recording to the buffer, and frees the
4100 * iterator.
4101 */
4102 void
4103 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4104 {
4105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106 unsigned long flags;
4107
4108 /*
4109 * Ring buffer is disabled from recording, here's a good place
4110 * to check the integrity of the ring buffer.
4111 * Must prevent readers from trying to read, as the check
4112 * clears the HEAD page and readers require it.
4113 */
4114 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4115 rb_check_pages(cpu_buffer);
4116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117
4118 atomic_dec(&cpu_buffer->record_disabled);
4119 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4120 kfree(iter);
4121 }
4122 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4123
4124 /**
4125 * ring_buffer_read - read the next item in the ring buffer by the iterator
4126 * @iter: The ring buffer iterator
4127 * @ts: The time stamp of the event read.
4128 *
4129 * This reads the next event in the ring buffer and increments the iterator.
4130 */
4131 struct ring_buffer_event *
4132 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4133 {
4134 struct ring_buffer_event *event;
4135 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4136 unsigned long flags;
4137
4138 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4139 again:
4140 event = rb_iter_peek(iter, ts);
4141 if (!event)
4142 goto out;
4143
4144 if (event->type_len == RINGBUF_TYPE_PADDING)
4145 goto again;
4146
4147 rb_advance_iter(iter);
4148 out:
4149 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4150
4151 return event;
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_read);
4154
4155 /**
4156 * ring_buffer_size - return the size of the ring buffer (in bytes)
4157 * @buffer: The ring buffer.
4158 */
4159 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4160 {
4161 /*
4162 * Earlier, this method returned
4163 * BUF_PAGE_SIZE * buffer->nr_pages
4164 * Since the nr_pages field is now removed, we have converted this to
4165 * return the per cpu buffer value.
4166 */
4167 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168 return 0;
4169
4170 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4171 }
4172 EXPORT_SYMBOL_GPL(ring_buffer_size);
4173
4174 static void
4175 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4176 {
4177 rb_head_page_deactivate(cpu_buffer);
4178
4179 cpu_buffer->head_page
4180 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4181 local_set(&cpu_buffer->head_page->write, 0);
4182 local_set(&cpu_buffer->head_page->entries, 0);
4183 local_set(&cpu_buffer->head_page->page->commit, 0);
4184
4185 cpu_buffer->head_page->read = 0;
4186
4187 cpu_buffer->tail_page = cpu_buffer->head_page;
4188 cpu_buffer->commit_page = cpu_buffer->head_page;
4189
4190 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4191 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4192 local_set(&cpu_buffer->reader_page->write, 0);
4193 local_set(&cpu_buffer->reader_page->entries, 0);
4194 local_set(&cpu_buffer->reader_page->page->commit, 0);
4195 cpu_buffer->reader_page->read = 0;
4196
4197 local_set(&cpu_buffer->entries_bytes, 0);
4198 local_set(&cpu_buffer->overrun, 0);
4199 local_set(&cpu_buffer->commit_overrun, 0);
4200 local_set(&cpu_buffer->dropped_events, 0);
4201 local_set(&cpu_buffer->entries, 0);
4202 local_set(&cpu_buffer->committing, 0);
4203 local_set(&cpu_buffer->commits, 0);
4204 cpu_buffer->read = 0;
4205 cpu_buffer->read_bytes = 0;
4206
4207 cpu_buffer->write_stamp = 0;
4208 cpu_buffer->read_stamp = 0;
4209
4210 cpu_buffer->lost_events = 0;
4211 cpu_buffer->last_overrun = 0;
4212
4213 rb_head_page_activate(cpu_buffer);
4214 }
4215
4216 /**
4217 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4218 * @buffer: The ring buffer to reset a per cpu buffer of
4219 * @cpu: The CPU buffer to be reset
4220 */
4221 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4222 {
4223 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4224 unsigned long flags;
4225
4226 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4227 return;
4228
4229 atomic_inc(&buffer->resize_disabled);
4230 atomic_inc(&cpu_buffer->record_disabled);
4231
4232 /* Make sure all commits have finished */
4233 synchronize_sched();
4234
4235 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4236
4237 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4238 goto out;
4239
4240 arch_spin_lock(&cpu_buffer->lock);
4241
4242 rb_reset_cpu(cpu_buffer);
4243
4244 arch_spin_unlock(&cpu_buffer->lock);
4245
4246 out:
4247 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4248
4249 atomic_dec(&cpu_buffer->record_disabled);
4250 atomic_dec(&buffer->resize_disabled);
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4253
4254 /**
4255 * ring_buffer_reset - reset a ring buffer
4256 * @buffer: The ring buffer to reset all cpu buffers
4257 */
4258 void ring_buffer_reset(struct ring_buffer *buffer)
4259 {
4260 int cpu;
4261
4262 for_each_buffer_cpu(buffer, cpu)
4263 ring_buffer_reset_cpu(buffer, cpu);
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4266
4267 /**
4268 * rind_buffer_empty - is the ring buffer empty?
4269 * @buffer: The ring buffer to test
4270 */
4271 int ring_buffer_empty(struct ring_buffer *buffer)
4272 {
4273 struct ring_buffer_per_cpu *cpu_buffer;
4274 unsigned long flags;
4275 bool dolock;
4276 int cpu;
4277 int ret;
4278
4279 /* yes this is racy, but if you don't like the race, lock the buffer */
4280 for_each_buffer_cpu(buffer, cpu) {
4281 cpu_buffer = buffer->buffers[cpu];
4282 local_irq_save(flags);
4283 dolock = rb_reader_lock(cpu_buffer);
4284 ret = rb_per_cpu_empty(cpu_buffer);
4285 rb_reader_unlock(cpu_buffer, dolock);
4286 local_irq_restore(flags);
4287
4288 if (!ret)
4289 return 0;
4290 }
4291
4292 return 1;
4293 }
4294 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4295
4296 /**
4297 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4298 * @buffer: The ring buffer
4299 * @cpu: The CPU buffer to test
4300 */
4301 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4302 {
4303 struct ring_buffer_per_cpu *cpu_buffer;
4304 unsigned long flags;
4305 bool dolock;
4306 int ret;
4307
4308 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4309 return 1;
4310
4311 cpu_buffer = buffer->buffers[cpu];
4312 local_irq_save(flags);
4313 dolock = rb_reader_lock(cpu_buffer);
4314 ret = rb_per_cpu_empty(cpu_buffer);
4315 rb_reader_unlock(cpu_buffer, dolock);
4316 local_irq_restore(flags);
4317
4318 return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4321
4322 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4323 /**
4324 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325 * @buffer_a: One buffer to swap with
4326 * @buffer_b: The other buffer to swap with
4327 *
4328 * This function is useful for tracers that want to take a "snapshot"
4329 * of a CPU buffer and has another back up buffer lying around.
4330 * it is expected that the tracer handles the cpu buffer not being
4331 * used at the moment.
4332 */
4333 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4334 struct ring_buffer *buffer_b, int cpu)
4335 {
4336 struct ring_buffer_per_cpu *cpu_buffer_a;
4337 struct ring_buffer_per_cpu *cpu_buffer_b;
4338 int ret = -EINVAL;
4339
4340 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4341 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4342 goto out;
4343
4344 cpu_buffer_a = buffer_a->buffers[cpu];
4345 cpu_buffer_b = buffer_b->buffers[cpu];
4346
4347 /* At least make sure the two buffers are somewhat the same */
4348 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4349 goto out;
4350
4351 ret = -EAGAIN;
4352
4353 if (ring_buffer_flags != RB_BUFFERS_ON)
4354 goto out;
4355
4356 if (atomic_read(&buffer_a->record_disabled))
4357 goto out;
4358
4359 if (atomic_read(&buffer_b->record_disabled))
4360 goto out;
4361
4362 if (atomic_read(&cpu_buffer_a->record_disabled))
4363 goto out;
4364
4365 if (atomic_read(&cpu_buffer_b->record_disabled))
4366 goto out;
4367
4368 /*
4369 * We can't do a synchronize_sched here because this
4370 * function can be called in atomic context.
4371 * Normally this will be called from the same CPU as cpu.
4372 * If not it's up to the caller to protect this.
4373 */
4374 atomic_inc(&cpu_buffer_a->record_disabled);
4375 atomic_inc(&cpu_buffer_b->record_disabled);
4376
4377 ret = -EBUSY;
4378 if (local_read(&cpu_buffer_a->committing))
4379 goto out_dec;
4380 if (local_read(&cpu_buffer_b->committing))
4381 goto out_dec;
4382
4383 buffer_a->buffers[cpu] = cpu_buffer_b;
4384 buffer_b->buffers[cpu] = cpu_buffer_a;
4385
4386 cpu_buffer_b->buffer = buffer_a;
4387 cpu_buffer_a->buffer = buffer_b;
4388
4389 ret = 0;
4390
4391 out_dec:
4392 atomic_dec(&cpu_buffer_a->record_disabled);
4393 atomic_dec(&cpu_buffer_b->record_disabled);
4394 out:
4395 return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4398 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4399
4400 /**
4401 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4402 * @buffer: the buffer to allocate for.
4403 * @cpu: the cpu buffer to allocate.
4404 *
4405 * This function is used in conjunction with ring_buffer_read_page.
4406 * When reading a full page from the ring buffer, these functions
4407 * can be used to speed up the process. The calling function should
4408 * allocate a few pages first with this function. Then when it
4409 * needs to get pages from the ring buffer, it passes the result
4410 * of this function into ring_buffer_read_page, which will swap
4411 * the page that was allocated, with the read page of the buffer.
4412 *
4413 * Returns:
4414 * The page allocated, or NULL on error.
4415 */
4416 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4417 {
4418 struct buffer_data_page *bpage;
4419 struct page *page;
4420
4421 page = alloc_pages_node(cpu_to_node(cpu),
4422 GFP_KERNEL | __GFP_NORETRY, 0);
4423 if (!page)
4424 return NULL;
4425
4426 bpage = page_address(page);
4427
4428 rb_init_page(bpage);
4429
4430 return bpage;
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4433
4434 /**
4435 * ring_buffer_free_read_page - free an allocated read page
4436 * @buffer: the buffer the page was allocate for
4437 * @data: the page to free
4438 *
4439 * Free a page allocated from ring_buffer_alloc_read_page.
4440 */
4441 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4442 {
4443 free_page((unsigned long)data);
4444 }
4445 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4446
4447 /**
4448 * ring_buffer_read_page - extract a page from the ring buffer
4449 * @buffer: buffer to extract from
4450 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4451 * @len: amount to extract
4452 * @cpu: the cpu of the buffer to extract
4453 * @full: should the extraction only happen when the page is full.
4454 *
4455 * This function will pull out a page from the ring buffer and consume it.
4456 * @data_page must be the address of the variable that was returned
4457 * from ring_buffer_alloc_read_page. This is because the page might be used
4458 * to swap with a page in the ring buffer.
4459 *
4460 * for example:
4461 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4462 * if (!rpage)
4463 * return error;
4464 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4465 * if (ret >= 0)
4466 * process_page(rpage, ret);
4467 *
4468 * When @full is set, the function will not return true unless
4469 * the writer is off the reader page.
4470 *
4471 * Note: it is up to the calling functions to handle sleeps and wakeups.
4472 * The ring buffer can be used anywhere in the kernel and can not
4473 * blindly call wake_up. The layer that uses the ring buffer must be
4474 * responsible for that.
4475 *
4476 * Returns:
4477 * >=0 if data has been transferred, returns the offset of consumed data.
4478 * <0 if no data has been transferred.
4479 */
4480 int ring_buffer_read_page(struct ring_buffer *buffer,
4481 void **data_page, size_t len, int cpu, int full)
4482 {
4483 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4484 struct ring_buffer_event *event;
4485 struct buffer_data_page *bpage;
4486 struct buffer_page *reader;
4487 unsigned long missed_events;
4488 unsigned long flags;
4489 unsigned int commit;
4490 unsigned int read;
4491 u64 save_timestamp;
4492 int ret = -1;
4493
4494 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4495 goto out;
4496
4497 /*
4498 * If len is not big enough to hold the page header, then
4499 * we can not copy anything.
4500 */
4501 if (len <= BUF_PAGE_HDR_SIZE)
4502 goto out;
4503
4504 len -= BUF_PAGE_HDR_SIZE;
4505
4506 if (!data_page)
4507 goto out;
4508
4509 bpage = *data_page;
4510 if (!bpage)
4511 goto out;
4512
4513 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4514
4515 reader = rb_get_reader_page(cpu_buffer);
4516 if (!reader)
4517 goto out_unlock;
4518
4519 event = rb_reader_event(cpu_buffer);
4520
4521 read = reader->read;
4522 commit = rb_page_commit(reader);
4523
4524 /* Check if any events were dropped */
4525 missed_events = cpu_buffer->lost_events;
4526
4527 /*
4528 * If this page has been partially read or
4529 * if len is not big enough to read the rest of the page or
4530 * a writer is still on the page, then
4531 * we must copy the data from the page to the buffer.
4532 * Otherwise, we can simply swap the page with the one passed in.
4533 */
4534 if (read || (len < (commit - read)) ||
4535 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4536 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4537 unsigned int rpos = read;
4538 unsigned int pos = 0;
4539 unsigned int size;
4540
4541 if (full)
4542 goto out_unlock;
4543
4544 if (len > (commit - read))
4545 len = (commit - read);
4546
4547 /* Always keep the time extend and data together */
4548 size = rb_event_ts_length(event);
4549
4550 if (len < size)
4551 goto out_unlock;
4552
4553 /* save the current timestamp, since the user will need it */
4554 save_timestamp = cpu_buffer->read_stamp;
4555
4556 /* Need to copy one event at a time */
4557 do {
4558 /* We need the size of one event, because
4559 * rb_advance_reader only advances by one event,
4560 * whereas rb_event_ts_length may include the size of
4561 * one or two events.
4562 * We have already ensured there's enough space if this
4563 * is a time extend. */
4564 size = rb_event_length(event);
4565 memcpy(bpage->data + pos, rpage->data + rpos, size);
4566
4567 len -= size;
4568
4569 rb_advance_reader(cpu_buffer);
4570 rpos = reader->read;
4571 pos += size;
4572
4573 if (rpos >= commit)
4574 break;
4575
4576 event = rb_reader_event(cpu_buffer);
4577 /* Always keep the time extend and data together */
4578 size = rb_event_ts_length(event);
4579 } while (len >= size);
4580
4581 /* update bpage */
4582 local_set(&bpage->commit, pos);
4583 bpage->time_stamp = save_timestamp;
4584
4585 /* we copied everything to the beginning */
4586 read = 0;
4587 } else {
4588 /* update the entry counter */
4589 cpu_buffer->read += rb_page_entries(reader);
4590 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4591
4592 /* swap the pages */
4593 rb_init_page(bpage);
4594 bpage = reader->page;
4595 reader->page = *data_page;
4596 local_set(&reader->write, 0);
4597 local_set(&reader->entries, 0);
4598 reader->read = 0;
4599 *data_page = bpage;
4600
4601 /*
4602 * Use the real_end for the data size,
4603 * This gives us a chance to store the lost events
4604 * on the page.
4605 */
4606 if (reader->real_end)
4607 local_set(&bpage->commit, reader->real_end);
4608 }
4609 ret = read;
4610
4611 cpu_buffer->lost_events = 0;
4612
4613 commit = local_read(&bpage->commit);
4614 /*
4615 * Set a flag in the commit field if we lost events
4616 */
4617 if (missed_events) {
4618 /* If there is room at the end of the page to save the
4619 * missed events, then record it there.
4620 */
4621 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4622 memcpy(&bpage->data[commit], &missed_events,
4623 sizeof(missed_events));
4624 local_add(RB_MISSED_STORED, &bpage->commit);
4625 commit += sizeof(missed_events);
4626 }
4627 local_add(RB_MISSED_EVENTS, &bpage->commit);
4628 }
4629
4630 /*
4631 * This page may be off to user land. Zero it out here.
4632 */
4633 if (commit < BUF_PAGE_SIZE)
4634 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4635
4636 out_unlock:
4637 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4638
4639 out:
4640 return ret;
4641 }
4642 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4643
4644 #ifdef CONFIG_HOTPLUG_CPU
4645 static int rb_cpu_notify(struct notifier_block *self,
4646 unsigned long action, void *hcpu)
4647 {
4648 struct ring_buffer *buffer =
4649 container_of(self, struct ring_buffer, cpu_notify);
4650 long cpu = (long)hcpu;
4651 int cpu_i, nr_pages_same;
4652 unsigned int nr_pages;
4653
4654 switch (action) {
4655 case CPU_UP_PREPARE:
4656 case CPU_UP_PREPARE_FROZEN:
4657 if (cpumask_test_cpu(cpu, buffer->cpumask))
4658 return NOTIFY_OK;
4659
4660 nr_pages = 0;
4661 nr_pages_same = 1;
4662 /* check if all cpu sizes are same */
4663 for_each_buffer_cpu(buffer, cpu_i) {
4664 /* fill in the size from first enabled cpu */
4665 if (nr_pages == 0)
4666 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4667 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4668 nr_pages_same = 0;
4669 break;
4670 }
4671 }
4672 /* allocate minimum pages, user can later expand it */
4673 if (!nr_pages_same)
4674 nr_pages = 2;
4675 buffer->buffers[cpu] =
4676 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4677 if (!buffer->buffers[cpu]) {
4678 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4679 cpu);
4680 return NOTIFY_OK;
4681 }
4682 smp_wmb();
4683 cpumask_set_cpu(cpu, buffer->cpumask);
4684 break;
4685 case CPU_DOWN_PREPARE:
4686 case CPU_DOWN_PREPARE_FROZEN:
4687 /*
4688 * Do nothing.
4689 * If we were to free the buffer, then the user would
4690 * lose any trace that was in the buffer.
4691 */
4692 break;
4693 default:
4694 break;
4695 }
4696 return NOTIFY_OK;
4697 }
4698 #endif
4699
4700 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4701 /*
4702 * This is a basic integrity check of the ring buffer.
4703 * Late in the boot cycle this test will run when configured in.
4704 * It will kick off a thread per CPU that will go into a loop
4705 * writing to the per cpu ring buffer various sizes of data.
4706 * Some of the data will be large items, some small.
4707 *
4708 * Another thread is created that goes into a spin, sending out
4709 * IPIs to the other CPUs to also write into the ring buffer.
4710 * this is to test the nesting ability of the buffer.
4711 *
4712 * Basic stats are recorded and reported. If something in the
4713 * ring buffer should happen that's not expected, a big warning
4714 * is displayed and all ring buffers are disabled.
4715 */
4716 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4717
4718 struct rb_test_data {
4719 struct ring_buffer *buffer;
4720 unsigned long events;
4721 unsigned long bytes_written;
4722 unsigned long bytes_alloc;
4723 unsigned long bytes_dropped;
4724 unsigned long events_nested;
4725 unsigned long bytes_written_nested;
4726 unsigned long bytes_alloc_nested;
4727 unsigned long bytes_dropped_nested;
4728 int min_size_nested;
4729 int max_size_nested;
4730 int max_size;
4731 int min_size;
4732 int cpu;
4733 int cnt;
4734 };
4735
4736 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4737
4738 /* 1 meg per cpu */
4739 #define RB_TEST_BUFFER_SIZE 1048576
4740
4741 static char rb_string[] __initdata =
4742 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4743 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4744 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4745
4746 static bool rb_test_started __initdata;
4747
4748 struct rb_item {
4749 int size;
4750 char str[];
4751 };
4752
4753 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4754 {
4755 struct ring_buffer_event *event;
4756 struct rb_item *item;
4757 bool started;
4758 int event_len;
4759 int size;
4760 int len;
4761 int cnt;
4762
4763 /* Have nested writes different that what is written */
4764 cnt = data->cnt + (nested ? 27 : 0);
4765
4766 /* Multiply cnt by ~e, to make some unique increment */
4767 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4768
4769 len = size + sizeof(struct rb_item);
4770
4771 started = rb_test_started;
4772 /* read rb_test_started before checking buffer enabled */
4773 smp_rmb();
4774
4775 event = ring_buffer_lock_reserve(data->buffer, len);
4776 if (!event) {
4777 /* Ignore dropped events before test starts. */
4778 if (started) {
4779 if (nested)
4780 data->bytes_dropped += len;
4781 else
4782 data->bytes_dropped_nested += len;
4783 }
4784 return len;
4785 }
4786
4787 event_len = ring_buffer_event_length(event);
4788
4789 if (RB_WARN_ON(data->buffer, event_len < len))
4790 goto out;
4791
4792 item = ring_buffer_event_data(event);
4793 item->size = size;
4794 memcpy(item->str, rb_string, size);
4795
4796 if (nested) {
4797 data->bytes_alloc_nested += event_len;
4798 data->bytes_written_nested += len;
4799 data->events_nested++;
4800 if (!data->min_size_nested || len < data->min_size_nested)
4801 data->min_size_nested = len;
4802 if (len > data->max_size_nested)
4803 data->max_size_nested = len;
4804 } else {
4805 data->bytes_alloc += event_len;
4806 data->bytes_written += len;
4807 data->events++;
4808 if (!data->min_size || len < data->min_size)
4809 data->max_size = len;
4810 if (len > data->max_size)
4811 data->max_size = len;
4812 }
4813
4814 out:
4815 ring_buffer_unlock_commit(data->buffer, event);
4816
4817 return 0;
4818 }
4819
4820 static __init int rb_test(void *arg)
4821 {
4822 struct rb_test_data *data = arg;
4823
4824 while (!kthread_should_stop()) {
4825 rb_write_something(data, false);
4826 data->cnt++;
4827
4828 set_current_state(TASK_INTERRUPTIBLE);
4829 /* Now sleep between a min of 100-300us and a max of 1ms */
4830 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4831 }
4832
4833 return 0;
4834 }
4835
4836 static __init void rb_ipi(void *ignore)
4837 {
4838 struct rb_test_data *data;
4839 int cpu = smp_processor_id();
4840
4841 data = &rb_data[cpu];
4842 rb_write_something(data, true);
4843 }
4844
4845 static __init int rb_hammer_test(void *arg)
4846 {
4847 while (!kthread_should_stop()) {
4848
4849 /* Send an IPI to all cpus to write data! */
4850 smp_call_function(rb_ipi, NULL, 1);
4851 /* No sleep, but for non preempt, let others run */
4852 schedule();
4853 }
4854
4855 return 0;
4856 }
4857
4858 static __init int test_ringbuffer(void)
4859 {
4860 struct task_struct *rb_hammer;
4861 struct ring_buffer *buffer;
4862 int cpu;
4863 int ret = 0;
4864
4865 pr_info("Running ring buffer tests...\n");
4866
4867 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4868 if (WARN_ON(!buffer))
4869 return 0;
4870
4871 /* Disable buffer so that threads can't write to it yet */
4872 ring_buffer_record_off(buffer);
4873
4874 for_each_online_cpu(cpu) {
4875 rb_data[cpu].buffer = buffer;
4876 rb_data[cpu].cpu = cpu;
4877 rb_data[cpu].cnt = cpu;
4878 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4879 "rbtester/%d", cpu);
4880 if (WARN_ON(!rb_threads[cpu])) {
4881 pr_cont("FAILED\n");
4882 ret = -1;
4883 goto out_free;
4884 }
4885
4886 kthread_bind(rb_threads[cpu], cpu);
4887 wake_up_process(rb_threads[cpu]);
4888 }
4889
4890 /* Now create the rb hammer! */
4891 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4892 if (WARN_ON(!rb_hammer)) {
4893 pr_cont("FAILED\n");
4894 ret = -1;
4895 goto out_free;
4896 }
4897
4898 ring_buffer_record_on(buffer);
4899 /*
4900 * Show buffer is enabled before setting rb_test_started.
4901 * Yes there's a small race window where events could be
4902 * dropped and the thread wont catch it. But when a ring
4903 * buffer gets enabled, there will always be some kind of
4904 * delay before other CPUs see it. Thus, we don't care about
4905 * those dropped events. We care about events dropped after
4906 * the threads see that the buffer is active.
4907 */
4908 smp_wmb();
4909 rb_test_started = true;
4910
4911 set_current_state(TASK_INTERRUPTIBLE);
4912 /* Just run for 10 seconds */;
4913 schedule_timeout(10 * HZ);
4914
4915 kthread_stop(rb_hammer);
4916
4917 out_free:
4918 for_each_online_cpu(cpu) {
4919 if (!rb_threads[cpu])
4920 break;
4921 kthread_stop(rb_threads[cpu]);
4922 }
4923 if (ret) {
4924 ring_buffer_free(buffer);
4925 return ret;
4926 }
4927
4928 /* Report! */
4929 pr_info("finished\n");
4930 for_each_online_cpu(cpu) {
4931 struct ring_buffer_event *event;
4932 struct rb_test_data *data = &rb_data[cpu];
4933 struct rb_item *item;
4934 unsigned long total_events;
4935 unsigned long total_dropped;
4936 unsigned long total_written;
4937 unsigned long total_alloc;
4938 unsigned long total_read = 0;
4939 unsigned long total_size = 0;
4940 unsigned long total_len = 0;
4941 unsigned long total_lost = 0;
4942 unsigned long lost;
4943 int big_event_size;
4944 int small_event_size;
4945
4946 ret = -1;
4947
4948 total_events = data->events + data->events_nested;
4949 total_written = data->bytes_written + data->bytes_written_nested;
4950 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4951 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4952
4953 big_event_size = data->max_size + data->max_size_nested;
4954 small_event_size = data->min_size + data->min_size_nested;
4955
4956 pr_info("CPU %d:\n", cpu);
4957 pr_info(" events: %ld\n", total_events);
4958 pr_info(" dropped bytes: %ld\n", total_dropped);
4959 pr_info(" alloced bytes: %ld\n", total_alloc);
4960 pr_info(" written bytes: %ld\n", total_written);
4961 pr_info(" biggest event: %d\n", big_event_size);
4962 pr_info(" smallest event: %d\n", small_event_size);
4963
4964 if (RB_WARN_ON(buffer, total_dropped))
4965 break;
4966
4967 ret = 0;
4968
4969 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4970 total_lost += lost;
4971 item = ring_buffer_event_data(event);
4972 total_len += ring_buffer_event_length(event);
4973 total_size += item->size + sizeof(struct rb_item);
4974 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4975 pr_info("FAILED!\n");
4976 pr_info("buffer had: %.*s\n", item->size, item->str);
4977 pr_info("expected: %.*s\n", item->size, rb_string);
4978 RB_WARN_ON(buffer, 1);
4979 ret = -1;
4980 break;
4981 }
4982 total_read++;
4983 }
4984 if (ret)
4985 break;
4986
4987 ret = -1;
4988
4989 pr_info(" read events: %ld\n", total_read);
4990 pr_info(" lost events: %ld\n", total_lost);
4991 pr_info(" total events: %ld\n", total_lost + total_read);
4992 pr_info(" recorded len bytes: %ld\n", total_len);
4993 pr_info(" recorded size bytes: %ld\n", total_size);
4994 if (total_lost)
4995 pr_info(" With dropped events, record len and size may not match\n"
4996 " alloced and written from above\n");
4997 if (!total_lost) {
4998 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4999 total_size != total_written))
5000 break;
5001 }
5002 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5003 break;
5004
5005 ret = 0;
5006 }
5007 if (!ret)
5008 pr_info("Ring buffer PASSED!\n");
5009
5010 ring_buffer_free(buffer);
5011 return 0;
5012 }
5013
5014 late_initcall(test_ringbuffer);
5015 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 0.383349 seconds and 5 git commands to generate.