Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136 /*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147 enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
168 * permanently.
169 */
170 void tracing_off_permanent(void)
171 {
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT 4U
177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
179
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT 0
182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT 1
185 # define RB_ARCH_ALIGNMENT 8U
186 #endif
187
188 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
189
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193 enum {
194 RB_LEN_TIME_EXTEND = 8,
195 RB_LEN_TIME_STAMP = 16,
196 };
197
198 #define skip_time_extend(event) \
199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205
206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208 /* padding has a NULL time_delta */
209 event->type_len = RINGBUF_TYPE_PADDING;
210 event->time_delta = 0;
211 }
212
213 static unsigned
214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216 unsigned length;
217
218 if (event->type_len)
219 length = event->type_len * RB_ALIGNMENT;
220 else
221 length = event->array[0];
222 return length + RB_EVNT_HDR_SIZE;
223 }
224
225 /*
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
228 * time extend.
229 */
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event *event)
232 {
233 switch (event->type_len) {
234 case RINGBUF_TYPE_PADDING:
235 if (rb_null_event(event))
236 /* undefined */
237 return -1;
238 return event->array[0] + RB_EVNT_HDR_SIZE;
239
240 case RINGBUF_TYPE_TIME_EXTEND:
241 return RB_LEN_TIME_EXTEND;
242
243 case RINGBUF_TYPE_TIME_STAMP:
244 return RB_LEN_TIME_STAMP;
245
246 case RINGBUF_TYPE_DATA:
247 return rb_event_data_length(event);
248 default:
249 BUG();
250 }
251 /* not hit */
252 return 0;
253 }
254
255 /*
256 * Return total length of time extend and data,
257 * or just the event length for all other events.
258 */
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262 unsigned len = 0;
263
264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 /* time extends include the data event after it */
266 len = RB_LEN_TIME_EXTEND;
267 event = skip_time_extend(event);
268 }
269 return len + rb_event_length(event);
270 }
271
272 /**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
275 *
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
281 */
282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284 unsigned length;
285
286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 event = skip_time_extend(event);
288
289 length = rb_event_length(event);
290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291 return length;
292 length -= RB_EVNT_HDR_SIZE;
293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294 length -= sizeof(event->array[0]);
295 return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299 /* inline for ring buffer fast paths */
300 static void *
301 rb_event_data(struct ring_buffer_event *event)
302 {
303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 event = skip_time_extend(event);
305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306 /* If length is in len field, then array[0] has the data */
307 if (event->type_len)
308 return (void *)&event->array[0];
309 /* Otherwise length is in array[0] and array[1] has the data */
310 return (void *)&event->array[1];
311 }
312
313 /**
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
316 */
317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319 return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323 #define for_each_buffer_cpu(buffer, cpu) \
324 for_each_cpu(cpu, buffer->cpumask)
325
326 #define TS_SHIFT 27
327 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST (~TS_MASK)
329
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED (1 << 30)
334
335 struct buffer_data_page {
336 u64 time_stamp; /* page time stamp */
337 local_t commit; /* write committed index */
338 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
339 };
340
341 /*
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
347 * lockless.
348 */
349 struct buffer_page {
350 struct list_head list; /* list of buffer pages */
351 local_t write; /* index for next write */
352 unsigned read; /* index for next read */
353 local_t entries; /* entries on this page */
354 unsigned long real_end; /* real end of data */
355 struct buffer_data_page *page; /* Actual data page */
356 };
357
358 /*
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
363 *
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
367 *
368 * The counter is 20 bits, and the state data is 12.
369 */
370 #define RB_WRITE_MASK 0xfffff
371 #define RB_WRITE_INTCNT (1 << 20)
372
373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375 local_set(&bpage->commit, 0);
376 }
377
378 /**
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
381 *
382 * Returns the amount of data on the page, including buffer page header.
383 */
384 size_t ring_buffer_page_len(void *page)
385 {
386 return local_read(&((struct buffer_data_page *)page)->commit)
387 + BUF_PAGE_HDR_SIZE;
388 }
389
390 /*
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 * this issue out.
393 */
394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396 free_page((unsigned long)bpage->page);
397 kfree(bpage);
398 }
399
400 /*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
403 static inline int test_time_stamp(u64 delta)
404 {
405 if (delta & TS_DELTA_TEST)
406 return 1;
407 return 0;
408 }
409
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417 struct buffer_data_page field;
418
419 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420 "offset:0;\tsize:%u;\tsigned:%u;\n",
421 (unsigned int)sizeof(field.time_stamp),
422 (unsigned int)is_signed_type(u64));
423
424 trace_seq_printf(s, "\tfield: local_t commit;\t"
425 "offset:%u;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)offsetof(typeof(field), commit),
427 (unsigned int)sizeof(field.commit),
428 (unsigned int)is_signed_type(long));
429
430 trace_seq_printf(s, "\tfield: int overwrite;\t"
431 "offset:%u;\tsize:%u;\tsigned:%u;\n",
432 (unsigned int)offsetof(typeof(field), commit),
433 1,
434 (unsigned int)is_signed_type(long));
435
436 trace_seq_printf(s, "\tfield: char data;\t"
437 "offset:%u;\tsize:%u;\tsigned:%u;\n",
438 (unsigned int)offsetof(typeof(field), data),
439 (unsigned int)BUF_PAGE_SIZE,
440 (unsigned int)is_signed_type(char));
441
442 return !trace_seq_has_overflowed(s);
443 }
444
445 struct rb_irq_work {
446 struct irq_work work;
447 wait_queue_head_t waiters;
448 wait_queue_head_t full_waiters;
449 bool waiters_pending;
450 bool full_waiters_pending;
451 bool wakeup_full;
452 };
453
454 /*
455 * head_page == tail_page && head == tail then buffer is empty.
456 */
457 struct ring_buffer_per_cpu {
458 int cpu;
459 atomic_t record_disabled;
460 struct ring_buffer *buffer;
461 raw_spinlock_t reader_lock; /* serialize readers */
462 arch_spinlock_t lock;
463 struct lock_class_key lock_key;
464 unsigned int nr_pages;
465 struct list_head *pages;
466 struct buffer_page *head_page; /* read from head */
467 struct buffer_page *tail_page; /* write to tail */
468 struct buffer_page *commit_page; /* committed pages */
469 struct buffer_page *reader_page;
470 unsigned long lost_events;
471 unsigned long last_overrun;
472 local_t entries_bytes;
473 local_t entries;
474 local_t overrun;
475 local_t commit_overrun;
476 local_t dropped_events;
477 local_t committing;
478 local_t commits;
479 unsigned long read;
480 unsigned long read_bytes;
481 u64 write_stamp;
482 u64 read_stamp;
483 /* ring buffer pages to update, > 0 to add, < 0 to remove */
484 int nr_pages_to_update;
485 struct list_head new_pages; /* new pages to add */
486 struct work_struct update_pages_work;
487 struct completion update_done;
488
489 struct rb_irq_work irq_work;
490 };
491
492 struct ring_buffer {
493 unsigned flags;
494 int cpus;
495 atomic_t record_disabled;
496 atomic_t resize_disabled;
497 cpumask_var_t cpumask;
498
499 struct lock_class_key *reader_lock_key;
500
501 struct mutex mutex;
502
503 struct ring_buffer_per_cpu **buffers;
504
505 #ifdef CONFIG_HOTPLUG_CPU
506 struct notifier_block cpu_notify;
507 #endif
508 u64 (*clock)(void);
509
510 struct rb_irq_work irq_work;
511 };
512
513 struct ring_buffer_iter {
514 struct ring_buffer_per_cpu *cpu_buffer;
515 unsigned long head;
516 struct buffer_page *head_page;
517 struct buffer_page *cache_reader_page;
518 unsigned long cache_read;
519 u64 read_stamp;
520 };
521
522 /*
523 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
524 *
525 * Schedules a delayed work to wake up any task that is blocked on the
526 * ring buffer waiters queue.
527 */
528 static void rb_wake_up_waiters(struct irq_work *work)
529 {
530 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
531
532 wake_up_all(&rbwork->waiters);
533 if (rbwork->wakeup_full) {
534 rbwork->wakeup_full = false;
535 wake_up_all(&rbwork->full_waiters);
536 }
537 }
538
539 /**
540 * ring_buffer_wait - wait for input to the ring buffer
541 * @buffer: buffer to wait on
542 * @cpu: the cpu buffer to wait on
543 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
544 *
545 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
546 * as data is added to any of the @buffer's cpu buffers. Otherwise
547 * it will wait for data to be added to a specific cpu buffer.
548 */
549 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
550 {
551 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
552 DEFINE_WAIT(wait);
553 struct rb_irq_work *work;
554 int ret = 0;
555
556 /*
557 * Depending on what the caller is waiting for, either any
558 * data in any cpu buffer, or a specific buffer, put the
559 * caller on the appropriate wait queue.
560 */
561 if (cpu == RING_BUFFER_ALL_CPUS) {
562 work = &buffer->irq_work;
563 /* Full only makes sense on per cpu reads */
564 full = false;
565 } else {
566 if (!cpumask_test_cpu(cpu, buffer->cpumask))
567 return -ENODEV;
568 cpu_buffer = buffer->buffers[cpu];
569 work = &cpu_buffer->irq_work;
570 }
571
572
573 while (true) {
574 if (full)
575 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
576 else
577 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
578
579 /*
580 * The events can happen in critical sections where
581 * checking a work queue can cause deadlocks.
582 * After adding a task to the queue, this flag is set
583 * only to notify events to try to wake up the queue
584 * using irq_work.
585 *
586 * We don't clear it even if the buffer is no longer
587 * empty. The flag only causes the next event to run
588 * irq_work to do the work queue wake up. The worse
589 * that can happen if we race with !trace_empty() is that
590 * an event will cause an irq_work to try to wake up
591 * an empty queue.
592 *
593 * There's no reason to protect this flag either, as
594 * the work queue and irq_work logic will do the necessary
595 * synchronization for the wake ups. The only thing
596 * that is necessary is that the wake up happens after
597 * a task has been queued. It's OK for spurious wake ups.
598 */
599 if (full)
600 work->full_waiters_pending = true;
601 else
602 work->waiters_pending = true;
603
604 if (signal_pending(current)) {
605 ret = -EINTR;
606 break;
607 }
608
609 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
610 break;
611
612 if (cpu != RING_BUFFER_ALL_CPUS &&
613 !ring_buffer_empty_cpu(buffer, cpu)) {
614 unsigned long flags;
615 bool pagebusy;
616
617 if (!full)
618 break;
619
620 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
621 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
622 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
623
624 if (!pagebusy)
625 break;
626 }
627
628 schedule();
629 }
630
631 if (full)
632 finish_wait(&work->full_waiters, &wait);
633 else
634 finish_wait(&work->waiters, &wait);
635
636 return ret;
637 }
638
639 /**
640 * ring_buffer_poll_wait - poll on buffer input
641 * @buffer: buffer to wait on
642 * @cpu: the cpu buffer to wait on
643 * @filp: the file descriptor
644 * @poll_table: The poll descriptor
645 *
646 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
647 * as data is added to any of the @buffer's cpu buffers. Otherwise
648 * it will wait for data to be added to a specific cpu buffer.
649 *
650 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
651 * zero otherwise.
652 */
653 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
654 struct file *filp, poll_table *poll_table)
655 {
656 struct ring_buffer_per_cpu *cpu_buffer;
657 struct rb_irq_work *work;
658
659 if (cpu == RING_BUFFER_ALL_CPUS)
660 work = &buffer->irq_work;
661 else {
662 if (!cpumask_test_cpu(cpu, buffer->cpumask))
663 return -EINVAL;
664
665 cpu_buffer = buffer->buffers[cpu];
666 work = &cpu_buffer->irq_work;
667 }
668
669 poll_wait(filp, &work->waiters, poll_table);
670 work->waiters_pending = true;
671 /*
672 * There's a tight race between setting the waiters_pending and
673 * checking if the ring buffer is empty. Once the waiters_pending bit
674 * is set, the next event will wake the task up, but we can get stuck
675 * if there's only a single event in.
676 *
677 * FIXME: Ideally, we need a memory barrier on the writer side as well,
678 * but adding a memory barrier to all events will cause too much of a
679 * performance hit in the fast path. We only need a memory barrier when
680 * the buffer goes from empty to having content. But as this race is
681 * extremely small, and it's not a problem if another event comes in, we
682 * will fix it later.
683 */
684 smp_mb();
685
686 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
687 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
688 return POLLIN | POLLRDNORM;
689 return 0;
690 }
691
692 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
693 #define RB_WARN_ON(b, cond) \
694 ({ \
695 int _____ret = unlikely(cond); \
696 if (_____ret) { \
697 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
698 struct ring_buffer_per_cpu *__b = \
699 (void *)b; \
700 atomic_inc(&__b->buffer->record_disabled); \
701 } else \
702 atomic_inc(&b->record_disabled); \
703 WARN_ON(1); \
704 } \
705 _____ret; \
706 })
707
708 /* Up this if you want to test the TIME_EXTENTS and normalization */
709 #define DEBUG_SHIFT 0
710
711 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
712 {
713 /* shift to debug/test normalization and TIME_EXTENTS */
714 return buffer->clock() << DEBUG_SHIFT;
715 }
716
717 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
718 {
719 u64 time;
720
721 preempt_disable_notrace();
722 time = rb_time_stamp(buffer);
723 preempt_enable_no_resched_notrace();
724
725 return time;
726 }
727 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
728
729 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
730 int cpu, u64 *ts)
731 {
732 /* Just stupid testing the normalize function and deltas */
733 *ts >>= DEBUG_SHIFT;
734 }
735 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
736
737 /*
738 * Making the ring buffer lockless makes things tricky.
739 * Although writes only happen on the CPU that they are on,
740 * and they only need to worry about interrupts. Reads can
741 * happen on any CPU.
742 *
743 * The reader page is always off the ring buffer, but when the
744 * reader finishes with a page, it needs to swap its page with
745 * a new one from the buffer. The reader needs to take from
746 * the head (writes go to the tail). But if a writer is in overwrite
747 * mode and wraps, it must push the head page forward.
748 *
749 * Here lies the problem.
750 *
751 * The reader must be careful to replace only the head page, and
752 * not another one. As described at the top of the file in the
753 * ASCII art, the reader sets its old page to point to the next
754 * page after head. It then sets the page after head to point to
755 * the old reader page. But if the writer moves the head page
756 * during this operation, the reader could end up with the tail.
757 *
758 * We use cmpxchg to help prevent this race. We also do something
759 * special with the page before head. We set the LSB to 1.
760 *
761 * When the writer must push the page forward, it will clear the
762 * bit that points to the head page, move the head, and then set
763 * the bit that points to the new head page.
764 *
765 * We also don't want an interrupt coming in and moving the head
766 * page on another writer. Thus we use the second LSB to catch
767 * that too. Thus:
768 *
769 * head->list->prev->next bit 1 bit 0
770 * ------- -------
771 * Normal page 0 0
772 * Points to head page 0 1
773 * New head page 1 0
774 *
775 * Note we can not trust the prev pointer of the head page, because:
776 *
777 * +----+ +-----+ +-----+
778 * | |------>| T |---X--->| N |
779 * | |<------| | | |
780 * +----+ +-----+ +-----+
781 * ^ ^ |
782 * | +-----+ | |
783 * +----------| R |----------+ |
784 * | |<-----------+
785 * +-----+
786 *
787 * Key: ---X--> HEAD flag set in pointer
788 * T Tail page
789 * R Reader page
790 * N Next page
791 *
792 * (see __rb_reserve_next() to see where this happens)
793 *
794 * What the above shows is that the reader just swapped out
795 * the reader page with a page in the buffer, but before it
796 * could make the new header point back to the new page added
797 * it was preempted by a writer. The writer moved forward onto
798 * the new page added by the reader and is about to move forward
799 * again.
800 *
801 * You can see, it is legitimate for the previous pointer of
802 * the head (or any page) not to point back to itself. But only
803 * temporarially.
804 */
805
806 #define RB_PAGE_NORMAL 0UL
807 #define RB_PAGE_HEAD 1UL
808 #define RB_PAGE_UPDATE 2UL
809
810
811 #define RB_FLAG_MASK 3UL
812
813 /* PAGE_MOVED is not part of the mask */
814 #define RB_PAGE_MOVED 4UL
815
816 /*
817 * rb_list_head - remove any bit
818 */
819 static struct list_head *rb_list_head(struct list_head *list)
820 {
821 unsigned long val = (unsigned long)list;
822
823 return (struct list_head *)(val & ~RB_FLAG_MASK);
824 }
825
826 /*
827 * rb_is_head_page - test if the given page is the head page
828 *
829 * Because the reader may move the head_page pointer, we can
830 * not trust what the head page is (it may be pointing to
831 * the reader page). But if the next page is a header page,
832 * its flags will be non zero.
833 */
834 static inline int
835 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
836 struct buffer_page *page, struct list_head *list)
837 {
838 unsigned long val;
839
840 val = (unsigned long)list->next;
841
842 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
843 return RB_PAGE_MOVED;
844
845 return val & RB_FLAG_MASK;
846 }
847
848 /*
849 * rb_is_reader_page
850 *
851 * The unique thing about the reader page, is that, if the
852 * writer is ever on it, the previous pointer never points
853 * back to the reader page.
854 */
855 static int rb_is_reader_page(struct buffer_page *page)
856 {
857 struct list_head *list = page->list.prev;
858
859 return rb_list_head(list->next) != &page->list;
860 }
861
862 /*
863 * rb_set_list_to_head - set a list_head to be pointing to head.
864 */
865 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
866 struct list_head *list)
867 {
868 unsigned long *ptr;
869
870 ptr = (unsigned long *)&list->next;
871 *ptr |= RB_PAGE_HEAD;
872 *ptr &= ~RB_PAGE_UPDATE;
873 }
874
875 /*
876 * rb_head_page_activate - sets up head page
877 */
878 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
879 {
880 struct buffer_page *head;
881
882 head = cpu_buffer->head_page;
883 if (!head)
884 return;
885
886 /*
887 * Set the previous list pointer to have the HEAD flag.
888 */
889 rb_set_list_to_head(cpu_buffer, head->list.prev);
890 }
891
892 static void rb_list_head_clear(struct list_head *list)
893 {
894 unsigned long *ptr = (unsigned long *)&list->next;
895
896 *ptr &= ~RB_FLAG_MASK;
897 }
898
899 /*
900 * rb_head_page_dactivate - clears head page ptr (for free list)
901 */
902 static void
903 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
904 {
905 struct list_head *hd;
906
907 /* Go through the whole list and clear any pointers found. */
908 rb_list_head_clear(cpu_buffer->pages);
909
910 list_for_each(hd, cpu_buffer->pages)
911 rb_list_head_clear(hd);
912 }
913
914 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag, int new_flag)
918 {
919 struct list_head *list;
920 unsigned long val = (unsigned long)&head->list;
921 unsigned long ret;
922
923 list = &prev->list;
924
925 val &= ~RB_FLAG_MASK;
926
927 ret = cmpxchg((unsigned long *)&list->next,
928 val | old_flag, val | new_flag);
929
930 /* check if the reader took the page */
931 if ((ret & ~RB_FLAG_MASK) != val)
932 return RB_PAGE_MOVED;
933
934 return ret & RB_FLAG_MASK;
935 }
936
937 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
938 struct buffer_page *head,
939 struct buffer_page *prev,
940 int old_flag)
941 {
942 return rb_head_page_set(cpu_buffer, head, prev,
943 old_flag, RB_PAGE_UPDATE);
944 }
945
946 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
947 struct buffer_page *head,
948 struct buffer_page *prev,
949 int old_flag)
950 {
951 return rb_head_page_set(cpu_buffer, head, prev,
952 old_flag, RB_PAGE_HEAD);
953 }
954
955 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
956 struct buffer_page *head,
957 struct buffer_page *prev,
958 int old_flag)
959 {
960 return rb_head_page_set(cpu_buffer, head, prev,
961 old_flag, RB_PAGE_NORMAL);
962 }
963
964 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
965 struct buffer_page **bpage)
966 {
967 struct list_head *p = rb_list_head((*bpage)->list.next);
968
969 *bpage = list_entry(p, struct buffer_page, list);
970 }
971
972 static struct buffer_page *
973 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
974 {
975 struct buffer_page *head;
976 struct buffer_page *page;
977 struct list_head *list;
978 int i;
979
980 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
981 return NULL;
982
983 /* sanity check */
984 list = cpu_buffer->pages;
985 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
986 return NULL;
987
988 page = head = cpu_buffer->head_page;
989 /*
990 * It is possible that the writer moves the header behind
991 * where we started, and we miss in one loop.
992 * A second loop should grab the header, but we'll do
993 * three loops just because I'm paranoid.
994 */
995 for (i = 0; i < 3; i++) {
996 do {
997 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
998 cpu_buffer->head_page = page;
999 return page;
1000 }
1001 rb_inc_page(cpu_buffer, &page);
1002 } while (page != head);
1003 }
1004
1005 RB_WARN_ON(cpu_buffer, 1);
1006
1007 return NULL;
1008 }
1009
1010 static int rb_head_page_replace(struct buffer_page *old,
1011 struct buffer_page *new)
1012 {
1013 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1014 unsigned long val;
1015 unsigned long ret;
1016
1017 val = *ptr & ~RB_FLAG_MASK;
1018 val |= RB_PAGE_HEAD;
1019
1020 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1021
1022 return ret == val;
1023 }
1024
1025 /*
1026 * rb_tail_page_update - move the tail page forward
1027 *
1028 * Returns 1 if moved tail page, 0 if someone else did.
1029 */
1030 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1031 struct buffer_page *tail_page,
1032 struct buffer_page *next_page)
1033 {
1034 struct buffer_page *old_tail;
1035 unsigned long old_entries;
1036 unsigned long old_write;
1037 int ret = 0;
1038
1039 /*
1040 * The tail page now needs to be moved forward.
1041 *
1042 * We need to reset the tail page, but without messing
1043 * with possible erasing of data brought in by interrupts
1044 * that have moved the tail page and are currently on it.
1045 *
1046 * We add a counter to the write field to denote this.
1047 */
1048 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1049 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1050
1051 /*
1052 * Just make sure we have seen our old_write and synchronize
1053 * with any interrupts that come in.
1054 */
1055 barrier();
1056
1057 /*
1058 * If the tail page is still the same as what we think
1059 * it is, then it is up to us to update the tail
1060 * pointer.
1061 */
1062 if (tail_page == cpu_buffer->tail_page) {
1063 /* Zero the write counter */
1064 unsigned long val = old_write & ~RB_WRITE_MASK;
1065 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1066
1067 /*
1068 * This will only succeed if an interrupt did
1069 * not come in and change it. In which case, we
1070 * do not want to modify it.
1071 *
1072 * We add (void) to let the compiler know that we do not care
1073 * about the return value of these functions. We use the
1074 * cmpxchg to only update if an interrupt did not already
1075 * do it for us. If the cmpxchg fails, we don't care.
1076 */
1077 (void)local_cmpxchg(&next_page->write, old_write, val);
1078 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1079
1080 /*
1081 * No need to worry about races with clearing out the commit.
1082 * it only can increment when a commit takes place. But that
1083 * only happens in the outer most nested commit.
1084 */
1085 local_set(&next_page->page->commit, 0);
1086
1087 old_tail = cmpxchg(&cpu_buffer->tail_page,
1088 tail_page, next_page);
1089
1090 if (old_tail == tail_page)
1091 ret = 1;
1092 }
1093
1094 return ret;
1095 }
1096
1097 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1098 struct buffer_page *bpage)
1099 {
1100 unsigned long val = (unsigned long)bpage;
1101
1102 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1103 return 1;
1104
1105 return 0;
1106 }
1107
1108 /**
1109 * rb_check_list - make sure a pointer to a list has the last bits zero
1110 */
1111 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1112 struct list_head *list)
1113 {
1114 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1115 return 1;
1116 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1117 return 1;
1118 return 0;
1119 }
1120
1121 /**
1122 * rb_check_pages - integrity check of buffer pages
1123 * @cpu_buffer: CPU buffer with pages to test
1124 *
1125 * As a safety measure we check to make sure the data pages have not
1126 * been corrupted.
1127 */
1128 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1129 {
1130 struct list_head *head = cpu_buffer->pages;
1131 struct buffer_page *bpage, *tmp;
1132
1133 /* Reset the head page if it exists */
1134 if (cpu_buffer->head_page)
1135 rb_set_head_page(cpu_buffer);
1136
1137 rb_head_page_deactivate(cpu_buffer);
1138
1139 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1140 return -1;
1141 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1142 return -1;
1143
1144 if (rb_check_list(cpu_buffer, head))
1145 return -1;
1146
1147 list_for_each_entry_safe(bpage, tmp, head, list) {
1148 if (RB_WARN_ON(cpu_buffer,
1149 bpage->list.next->prev != &bpage->list))
1150 return -1;
1151 if (RB_WARN_ON(cpu_buffer,
1152 bpage->list.prev->next != &bpage->list))
1153 return -1;
1154 if (rb_check_list(cpu_buffer, &bpage->list))
1155 return -1;
1156 }
1157
1158 rb_head_page_activate(cpu_buffer);
1159
1160 return 0;
1161 }
1162
1163 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1164 {
1165 int i;
1166 struct buffer_page *bpage, *tmp;
1167
1168 for (i = 0; i < nr_pages; i++) {
1169 struct page *page;
1170 /*
1171 * __GFP_NORETRY flag makes sure that the allocation fails
1172 * gracefully without invoking oom-killer and the system is
1173 * not destabilized.
1174 */
1175 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1176 GFP_KERNEL | __GFP_NORETRY,
1177 cpu_to_node(cpu));
1178 if (!bpage)
1179 goto free_pages;
1180
1181 list_add(&bpage->list, pages);
1182
1183 page = alloc_pages_node(cpu_to_node(cpu),
1184 GFP_KERNEL | __GFP_NORETRY, 0);
1185 if (!page)
1186 goto free_pages;
1187 bpage->page = page_address(page);
1188 rb_init_page(bpage->page);
1189 }
1190
1191 return 0;
1192
1193 free_pages:
1194 list_for_each_entry_safe(bpage, tmp, pages, list) {
1195 list_del_init(&bpage->list);
1196 free_buffer_page(bpage);
1197 }
1198
1199 return -ENOMEM;
1200 }
1201
1202 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1203 unsigned nr_pages)
1204 {
1205 LIST_HEAD(pages);
1206
1207 WARN_ON(!nr_pages);
1208
1209 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1210 return -ENOMEM;
1211
1212 /*
1213 * The ring buffer page list is a circular list that does not
1214 * start and end with a list head. All page list items point to
1215 * other pages.
1216 */
1217 cpu_buffer->pages = pages.next;
1218 list_del(&pages);
1219
1220 cpu_buffer->nr_pages = nr_pages;
1221
1222 rb_check_pages(cpu_buffer);
1223
1224 return 0;
1225 }
1226
1227 static struct ring_buffer_per_cpu *
1228 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1229 {
1230 struct ring_buffer_per_cpu *cpu_buffer;
1231 struct buffer_page *bpage;
1232 struct page *page;
1233 int ret;
1234
1235 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1236 GFP_KERNEL, cpu_to_node(cpu));
1237 if (!cpu_buffer)
1238 return NULL;
1239
1240 cpu_buffer->cpu = cpu;
1241 cpu_buffer->buffer = buffer;
1242 raw_spin_lock_init(&cpu_buffer->reader_lock);
1243 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1244 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1245 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1246 init_completion(&cpu_buffer->update_done);
1247 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1248 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1249 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1250
1251 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1252 GFP_KERNEL, cpu_to_node(cpu));
1253 if (!bpage)
1254 goto fail_free_buffer;
1255
1256 rb_check_bpage(cpu_buffer, bpage);
1257
1258 cpu_buffer->reader_page = bpage;
1259 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1260 if (!page)
1261 goto fail_free_reader;
1262 bpage->page = page_address(page);
1263 rb_init_page(bpage->page);
1264
1265 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1266 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1267
1268 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1269 if (ret < 0)
1270 goto fail_free_reader;
1271
1272 cpu_buffer->head_page
1273 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1274 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1275
1276 rb_head_page_activate(cpu_buffer);
1277
1278 return cpu_buffer;
1279
1280 fail_free_reader:
1281 free_buffer_page(cpu_buffer->reader_page);
1282
1283 fail_free_buffer:
1284 kfree(cpu_buffer);
1285 return NULL;
1286 }
1287
1288 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1289 {
1290 struct list_head *head = cpu_buffer->pages;
1291 struct buffer_page *bpage, *tmp;
1292
1293 free_buffer_page(cpu_buffer->reader_page);
1294
1295 rb_head_page_deactivate(cpu_buffer);
1296
1297 if (head) {
1298 list_for_each_entry_safe(bpage, tmp, head, list) {
1299 list_del_init(&bpage->list);
1300 free_buffer_page(bpage);
1301 }
1302 bpage = list_entry(head, struct buffer_page, list);
1303 free_buffer_page(bpage);
1304 }
1305
1306 kfree(cpu_buffer);
1307 }
1308
1309 #ifdef CONFIG_HOTPLUG_CPU
1310 static int rb_cpu_notify(struct notifier_block *self,
1311 unsigned long action, void *hcpu);
1312 #endif
1313
1314 /**
1315 * __ring_buffer_alloc - allocate a new ring_buffer
1316 * @size: the size in bytes per cpu that is needed.
1317 * @flags: attributes to set for the ring buffer.
1318 *
1319 * Currently the only flag that is available is the RB_FL_OVERWRITE
1320 * flag. This flag means that the buffer will overwrite old data
1321 * when the buffer wraps. If this flag is not set, the buffer will
1322 * drop data when the tail hits the head.
1323 */
1324 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1325 struct lock_class_key *key)
1326 {
1327 struct ring_buffer *buffer;
1328 int bsize;
1329 int cpu, nr_pages;
1330
1331 /* keep it in its own cache line */
1332 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1333 GFP_KERNEL);
1334 if (!buffer)
1335 return NULL;
1336
1337 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1338 goto fail_free_buffer;
1339
1340 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1341 buffer->flags = flags;
1342 buffer->clock = trace_clock_local;
1343 buffer->reader_lock_key = key;
1344
1345 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1346 init_waitqueue_head(&buffer->irq_work.waiters);
1347
1348 /* need at least two pages */
1349 if (nr_pages < 2)
1350 nr_pages = 2;
1351
1352 /*
1353 * In case of non-hotplug cpu, if the ring-buffer is allocated
1354 * in early initcall, it will not be notified of secondary cpus.
1355 * In that off case, we need to allocate for all possible cpus.
1356 */
1357 #ifdef CONFIG_HOTPLUG_CPU
1358 cpu_notifier_register_begin();
1359 cpumask_copy(buffer->cpumask, cpu_online_mask);
1360 #else
1361 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1362 #endif
1363 buffer->cpus = nr_cpu_ids;
1364
1365 bsize = sizeof(void *) * nr_cpu_ids;
1366 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1367 GFP_KERNEL);
1368 if (!buffer->buffers)
1369 goto fail_free_cpumask;
1370
1371 for_each_buffer_cpu(buffer, cpu) {
1372 buffer->buffers[cpu] =
1373 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1374 if (!buffer->buffers[cpu])
1375 goto fail_free_buffers;
1376 }
1377
1378 #ifdef CONFIG_HOTPLUG_CPU
1379 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1380 buffer->cpu_notify.priority = 0;
1381 __register_cpu_notifier(&buffer->cpu_notify);
1382 cpu_notifier_register_done();
1383 #endif
1384
1385 mutex_init(&buffer->mutex);
1386
1387 return buffer;
1388
1389 fail_free_buffers:
1390 for_each_buffer_cpu(buffer, cpu) {
1391 if (buffer->buffers[cpu])
1392 rb_free_cpu_buffer(buffer->buffers[cpu]);
1393 }
1394 kfree(buffer->buffers);
1395
1396 fail_free_cpumask:
1397 free_cpumask_var(buffer->cpumask);
1398 #ifdef CONFIG_HOTPLUG_CPU
1399 cpu_notifier_register_done();
1400 #endif
1401
1402 fail_free_buffer:
1403 kfree(buffer);
1404 return NULL;
1405 }
1406 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1407
1408 /**
1409 * ring_buffer_free - free a ring buffer.
1410 * @buffer: the buffer to free.
1411 */
1412 void
1413 ring_buffer_free(struct ring_buffer *buffer)
1414 {
1415 int cpu;
1416
1417 #ifdef CONFIG_HOTPLUG_CPU
1418 cpu_notifier_register_begin();
1419 __unregister_cpu_notifier(&buffer->cpu_notify);
1420 #endif
1421
1422 for_each_buffer_cpu(buffer, cpu)
1423 rb_free_cpu_buffer(buffer->buffers[cpu]);
1424
1425 #ifdef CONFIG_HOTPLUG_CPU
1426 cpu_notifier_register_done();
1427 #endif
1428
1429 kfree(buffer->buffers);
1430 free_cpumask_var(buffer->cpumask);
1431
1432 kfree(buffer);
1433 }
1434 EXPORT_SYMBOL_GPL(ring_buffer_free);
1435
1436 void ring_buffer_set_clock(struct ring_buffer *buffer,
1437 u64 (*clock)(void))
1438 {
1439 buffer->clock = clock;
1440 }
1441
1442 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1443
1444 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1445 {
1446 return local_read(&bpage->entries) & RB_WRITE_MASK;
1447 }
1448
1449 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1450 {
1451 return local_read(&bpage->write) & RB_WRITE_MASK;
1452 }
1453
1454 static int
1455 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1456 {
1457 struct list_head *tail_page, *to_remove, *next_page;
1458 struct buffer_page *to_remove_page, *tmp_iter_page;
1459 struct buffer_page *last_page, *first_page;
1460 unsigned int nr_removed;
1461 unsigned long head_bit;
1462 int page_entries;
1463
1464 head_bit = 0;
1465
1466 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1467 atomic_inc(&cpu_buffer->record_disabled);
1468 /*
1469 * We don't race with the readers since we have acquired the reader
1470 * lock. We also don't race with writers after disabling recording.
1471 * This makes it easy to figure out the first and the last page to be
1472 * removed from the list. We unlink all the pages in between including
1473 * the first and last pages. This is done in a busy loop so that we
1474 * lose the least number of traces.
1475 * The pages are freed after we restart recording and unlock readers.
1476 */
1477 tail_page = &cpu_buffer->tail_page->list;
1478
1479 /*
1480 * tail page might be on reader page, we remove the next page
1481 * from the ring buffer
1482 */
1483 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1484 tail_page = rb_list_head(tail_page->next);
1485 to_remove = tail_page;
1486
1487 /* start of pages to remove */
1488 first_page = list_entry(rb_list_head(to_remove->next),
1489 struct buffer_page, list);
1490
1491 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1492 to_remove = rb_list_head(to_remove)->next;
1493 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1494 }
1495
1496 next_page = rb_list_head(to_remove)->next;
1497
1498 /*
1499 * Now we remove all pages between tail_page and next_page.
1500 * Make sure that we have head_bit value preserved for the
1501 * next page
1502 */
1503 tail_page->next = (struct list_head *)((unsigned long)next_page |
1504 head_bit);
1505 next_page = rb_list_head(next_page);
1506 next_page->prev = tail_page;
1507
1508 /* make sure pages points to a valid page in the ring buffer */
1509 cpu_buffer->pages = next_page;
1510
1511 /* update head page */
1512 if (head_bit)
1513 cpu_buffer->head_page = list_entry(next_page,
1514 struct buffer_page, list);
1515
1516 /*
1517 * change read pointer to make sure any read iterators reset
1518 * themselves
1519 */
1520 cpu_buffer->read = 0;
1521
1522 /* pages are removed, resume tracing and then free the pages */
1523 atomic_dec(&cpu_buffer->record_disabled);
1524 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1525
1526 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1527
1528 /* last buffer page to remove */
1529 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1530 list);
1531 tmp_iter_page = first_page;
1532
1533 do {
1534 to_remove_page = tmp_iter_page;
1535 rb_inc_page(cpu_buffer, &tmp_iter_page);
1536
1537 /* update the counters */
1538 page_entries = rb_page_entries(to_remove_page);
1539 if (page_entries) {
1540 /*
1541 * If something was added to this page, it was full
1542 * since it is not the tail page. So we deduct the
1543 * bytes consumed in ring buffer from here.
1544 * Increment overrun to account for the lost events.
1545 */
1546 local_add(page_entries, &cpu_buffer->overrun);
1547 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1548 }
1549
1550 /*
1551 * We have already removed references to this list item, just
1552 * free up the buffer_page and its page
1553 */
1554 free_buffer_page(to_remove_page);
1555 nr_removed--;
1556
1557 } while (to_remove_page != last_page);
1558
1559 RB_WARN_ON(cpu_buffer, nr_removed);
1560
1561 return nr_removed == 0;
1562 }
1563
1564 static int
1565 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1566 {
1567 struct list_head *pages = &cpu_buffer->new_pages;
1568 int retries, success;
1569
1570 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1571 /*
1572 * We are holding the reader lock, so the reader page won't be swapped
1573 * in the ring buffer. Now we are racing with the writer trying to
1574 * move head page and the tail page.
1575 * We are going to adapt the reader page update process where:
1576 * 1. We first splice the start and end of list of new pages between
1577 * the head page and its previous page.
1578 * 2. We cmpxchg the prev_page->next to point from head page to the
1579 * start of new pages list.
1580 * 3. Finally, we update the head->prev to the end of new list.
1581 *
1582 * We will try this process 10 times, to make sure that we don't keep
1583 * spinning.
1584 */
1585 retries = 10;
1586 success = 0;
1587 while (retries--) {
1588 struct list_head *head_page, *prev_page, *r;
1589 struct list_head *last_page, *first_page;
1590 struct list_head *head_page_with_bit;
1591
1592 head_page = &rb_set_head_page(cpu_buffer)->list;
1593 if (!head_page)
1594 break;
1595 prev_page = head_page->prev;
1596
1597 first_page = pages->next;
1598 last_page = pages->prev;
1599
1600 head_page_with_bit = (struct list_head *)
1601 ((unsigned long)head_page | RB_PAGE_HEAD);
1602
1603 last_page->next = head_page_with_bit;
1604 first_page->prev = prev_page;
1605
1606 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1607
1608 if (r == head_page_with_bit) {
1609 /*
1610 * yay, we replaced the page pointer to our new list,
1611 * now, we just have to update to head page's prev
1612 * pointer to point to end of list
1613 */
1614 head_page->prev = last_page;
1615 success = 1;
1616 break;
1617 }
1618 }
1619
1620 if (success)
1621 INIT_LIST_HEAD(pages);
1622 /*
1623 * If we weren't successful in adding in new pages, warn and stop
1624 * tracing
1625 */
1626 RB_WARN_ON(cpu_buffer, !success);
1627 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1628
1629 /* free pages if they weren't inserted */
1630 if (!success) {
1631 struct buffer_page *bpage, *tmp;
1632 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1633 list) {
1634 list_del_init(&bpage->list);
1635 free_buffer_page(bpage);
1636 }
1637 }
1638 return success;
1639 }
1640
1641 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1642 {
1643 int success;
1644
1645 if (cpu_buffer->nr_pages_to_update > 0)
1646 success = rb_insert_pages(cpu_buffer);
1647 else
1648 success = rb_remove_pages(cpu_buffer,
1649 -cpu_buffer->nr_pages_to_update);
1650
1651 if (success)
1652 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1653 }
1654
1655 static void update_pages_handler(struct work_struct *work)
1656 {
1657 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1658 struct ring_buffer_per_cpu, update_pages_work);
1659 rb_update_pages(cpu_buffer);
1660 complete(&cpu_buffer->update_done);
1661 }
1662
1663 /**
1664 * ring_buffer_resize - resize the ring buffer
1665 * @buffer: the buffer to resize.
1666 * @size: the new size.
1667 * @cpu_id: the cpu buffer to resize
1668 *
1669 * Minimum size is 2 * BUF_PAGE_SIZE.
1670 *
1671 * Returns 0 on success and < 0 on failure.
1672 */
1673 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1674 int cpu_id)
1675 {
1676 struct ring_buffer_per_cpu *cpu_buffer;
1677 unsigned nr_pages;
1678 int cpu, err = 0;
1679
1680 /*
1681 * Always succeed at resizing a non-existent buffer:
1682 */
1683 if (!buffer)
1684 return size;
1685
1686 /* Make sure the requested buffer exists */
1687 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1688 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1689 return size;
1690
1691 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1692 size *= BUF_PAGE_SIZE;
1693
1694 /* we need a minimum of two pages */
1695 if (size < BUF_PAGE_SIZE * 2)
1696 size = BUF_PAGE_SIZE * 2;
1697
1698 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1699
1700 /*
1701 * Don't succeed if resizing is disabled, as a reader might be
1702 * manipulating the ring buffer and is expecting a sane state while
1703 * this is true.
1704 */
1705 if (atomic_read(&buffer->resize_disabled))
1706 return -EBUSY;
1707
1708 /* prevent another thread from changing buffer sizes */
1709 mutex_lock(&buffer->mutex);
1710
1711 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1712 /* calculate the pages to update */
1713 for_each_buffer_cpu(buffer, cpu) {
1714 cpu_buffer = buffer->buffers[cpu];
1715
1716 cpu_buffer->nr_pages_to_update = nr_pages -
1717 cpu_buffer->nr_pages;
1718 /*
1719 * nothing more to do for removing pages or no update
1720 */
1721 if (cpu_buffer->nr_pages_to_update <= 0)
1722 continue;
1723 /*
1724 * to add pages, make sure all new pages can be
1725 * allocated without receiving ENOMEM
1726 */
1727 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1729 &cpu_buffer->new_pages, cpu)) {
1730 /* not enough memory for new pages */
1731 err = -ENOMEM;
1732 goto out_err;
1733 }
1734 }
1735
1736 get_online_cpus();
1737 /*
1738 * Fire off all the required work handlers
1739 * We can't schedule on offline CPUs, but it's not necessary
1740 * since we can change their buffer sizes without any race.
1741 */
1742 for_each_buffer_cpu(buffer, cpu) {
1743 cpu_buffer = buffer->buffers[cpu];
1744 if (!cpu_buffer->nr_pages_to_update)
1745 continue;
1746
1747 /* Can't run something on an offline CPU. */
1748 if (!cpu_online(cpu)) {
1749 rb_update_pages(cpu_buffer);
1750 cpu_buffer->nr_pages_to_update = 0;
1751 } else {
1752 schedule_work_on(cpu,
1753 &cpu_buffer->update_pages_work);
1754 }
1755 }
1756
1757 /* wait for all the updates to complete */
1758 for_each_buffer_cpu(buffer, cpu) {
1759 cpu_buffer = buffer->buffers[cpu];
1760 if (!cpu_buffer->nr_pages_to_update)
1761 continue;
1762
1763 if (cpu_online(cpu))
1764 wait_for_completion(&cpu_buffer->update_done);
1765 cpu_buffer->nr_pages_to_update = 0;
1766 }
1767
1768 put_online_cpus();
1769 } else {
1770 /* Make sure this CPU has been intitialized */
1771 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1772 goto out;
1773
1774 cpu_buffer = buffer->buffers[cpu_id];
1775
1776 if (nr_pages == cpu_buffer->nr_pages)
1777 goto out;
1778
1779 cpu_buffer->nr_pages_to_update = nr_pages -
1780 cpu_buffer->nr_pages;
1781
1782 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1783 if (cpu_buffer->nr_pages_to_update > 0 &&
1784 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1785 &cpu_buffer->new_pages, cpu_id)) {
1786 err = -ENOMEM;
1787 goto out_err;
1788 }
1789
1790 get_online_cpus();
1791
1792 /* Can't run something on an offline CPU. */
1793 if (!cpu_online(cpu_id))
1794 rb_update_pages(cpu_buffer);
1795 else {
1796 schedule_work_on(cpu_id,
1797 &cpu_buffer->update_pages_work);
1798 wait_for_completion(&cpu_buffer->update_done);
1799 }
1800
1801 cpu_buffer->nr_pages_to_update = 0;
1802 put_online_cpus();
1803 }
1804
1805 out:
1806 /*
1807 * The ring buffer resize can happen with the ring buffer
1808 * enabled, so that the update disturbs the tracing as little
1809 * as possible. But if the buffer is disabled, we do not need
1810 * to worry about that, and we can take the time to verify
1811 * that the buffer is not corrupt.
1812 */
1813 if (atomic_read(&buffer->record_disabled)) {
1814 atomic_inc(&buffer->record_disabled);
1815 /*
1816 * Even though the buffer was disabled, we must make sure
1817 * that it is truly disabled before calling rb_check_pages.
1818 * There could have been a race between checking
1819 * record_disable and incrementing it.
1820 */
1821 synchronize_sched();
1822 for_each_buffer_cpu(buffer, cpu) {
1823 cpu_buffer = buffer->buffers[cpu];
1824 rb_check_pages(cpu_buffer);
1825 }
1826 atomic_dec(&buffer->record_disabled);
1827 }
1828
1829 mutex_unlock(&buffer->mutex);
1830 return size;
1831
1832 out_err:
1833 for_each_buffer_cpu(buffer, cpu) {
1834 struct buffer_page *bpage, *tmp;
1835
1836 cpu_buffer = buffer->buffers[cpu];
1837 cpu_buffer->nr_pages_to_update = 0;
1838
1839 if (list_empty(&cpu_buffer->new_pages))
1840 continue;
1841
1842 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1843 list) {
1844 list_del_init(&bpage->list);
1845 free_buffer_page(bpage);
1846 }
1847 }
1848 mutex_unlock(&buffer->mutex);
1849 return err;
1850 }
1851 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1852
1853 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1854 {
1855 mutex_lock(&buffer->mutex);
1856 if (val)
1857 buffer->flags |= RB_FL_OVERWRITE;
1858 else
1859 buffer->flags &= ~RB_FL_OVERWRITE;
1860 mutex_unlock(&buffer->mutex);
1861 }
1862 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1863
1864 static inline void *
1865 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1866 {
1867 return bpage->data + index;
1868 }
1869
1870 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1871 {
1872 return bpage->page->data + index;
1873 }
1874
1875 static inline struct ring_buffer_event *
1876 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1877 {
1878 return __rb_page_index(cpu_buffer->reader_page,
1879 cpu_buffer->reader_page->read);
1880 }
1881
1882 static inline struct ring_buffer_event *
1883 rb_iter_head_event(struct ring_buffer_iter *iter)
1884 {
1885 return __rb_page_index(iter->head_page, iter->head);
1886 }
1887
1888 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1889 {
1890 return local_read(&bpage->page->commit);
1891 }
1892
1893 /* Size is determined by what has been committed */
1894 static inline unsigned rb_page_size(struct buffer_page *bpage)
1895 {
1896 return rb_page_commit(bpage);
1897 }
1898
1899 static inline unsigned
1900 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1901 {
1902 return rb_page_commit(cpu_buffer->commit_page);
1903 }
1904
1905 static inline unsigned
1906 rb_event_index(struct ring_buffer_event *event)
1907 {
1908 unsigned long addr = (unsigned long)event;
1909
1910 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1911 }
1912
1913 static inline int
1914 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1915 struct ring_buffer_event *event)
1916 {
1917 unsigned long addr = (unsigned long)event;
1918 unsigned long index;
1919
1920 index = rb_event_index(event);
1921 addr &= PAGE_MASK;
1922
1923 return cpu_buffer->commit_page->page == (void *)addr &&
1924 rb_commit_index(cpu_buffer) == index;
1925 }
1926
1927 static void
1928 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1929 {
1930 unsigned long max_count;
1931
1932 /*
1933 * We only race with interrupts and NMIs on this CPU.
1934 * If we own the commit event, then we can commit
1935 * all others that interrupted us, since the interruptions
1936 * are in stack format (they finish before they come
1937 * back to us). This allows us to do a simple loop to
1938 * assign the commit to the tail.
1939 */
1940 again:
1941 max_count = cpu_buffer->nr_pages * 100;
1942
1943 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1944 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1945 return;
1946 if (RB_WARN_ON(cpu_buffer,
1947 rb_is_reader_page(cpu_buffer->tail_page)))
1948 return;
1949 local_set(&cpu_buffer->commit_page->page->commit,
1950 rb_page_write(cpu_buffer->commit_page));
1951 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1952 cpu_buffer->write_stamp =
1953 cpu_buffer->commit_page->page->time_stamp;
1954 /* add barrier to keep gcc from optimizing too much */
1955 barrier();
1956 }
1957 while (rb_commit_index(cpu_buffer) !=
1958 rb_page_write(cpu_buffer->commit_page)) {
1959
1960 local_set(&cpu_buffer->commit_page->page->commit,
1961 rb_page_write(cpu_buffer->commit_page));
1962 RB_WARN_ON(cpu_buffer,
1963 local_read(&cpu_buffer->commit_page->page->commit) &
1964 ~RB_WRITE_MASK);
1965 barrier();
1966 }
1967
1968 /* again, keep gcc from optimizing */
1969 barrier();
1970
1971 /*
1972 * If an interrupt came in just after the first while loop
1973 * and pushed the tail page forward, we will be left with
1974 * a dangling commit that will never go forward.
1975 */
1976 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1977 goto again;
1978 }
1979
1980 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1981 {
1982 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1983 cpu_buffer->reader_page->read = 0;
1984 }
1985
1986 static void rb_inc_iter(struct ring_buffer_iter *iter)
1987 {
1988 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1989
1990 /*
1991 * The iterator could be on the reader page (it starts there).
1992 * But the head could have moved, since the reader was
1993 * found. Check for this case and assign the iterator
1994 * to the head page instead of next.
1995 */
1996 if (iter->head_page == cpu_buffer->reader_page)
1997 iter->head_page = rb_set_head_page(cpu_buffer);
1998 else
1999 rb_inc_page(cpu_buffer, &iter->head_page);
2000
2001 iter->read_stamp = iter->head_page->page->time_stamp;
2002 iter->head = 0;
2003 }
2004
2005 /* Slow path, do not inline */
2006 static noinline struct ring_buffer_event *
2007 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2008 {
2009 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2010
2011 /* Not the first event on the page? */
2012 if (rb_event_index(event)) {
2013 event->time_delta = delta & TS_MASK;
2014 event->array[0] = delta >> TS_SHIFT;
2015 } else {
2016 /* nope, just zero it */
2017 event->time_delta = 0;
2018 event->array[0] = 0;
2019 }
2020
2021 return skip_time_extend(event);
2022 }
2023
2024 /**
2025 * rb_update_event - update event type and data
2026 * @event: the event to update
2027 * @type: the type of event
2028 * @length: the size of the event field in the ring buffer
2029 *
2030 * Update the type and data fields of the event. The length
2031 * is the actual size that is written to the ring buffer,
2032 * and with this, we can determine what to place into the
2033 * data field.
2034 */
2035 static void
2036 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2037 struct ring_buffer_event *event, unsigned length,
2038 int add_timestamp, u64 delta)
2039 {
2040 /* Only a commit updates the timestamp */
2041 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2042 delta = 0;
2043
2044 /*
2045 * If we need to add a timestamp, then we
2046 * add it to the start of the resevered space.
2047 */
2048 if (unlikely(add_timestamp)) {
2049 event = rb_add_time_stamp(event, delta);
2050 length -= RB_LEN_TIME_EXTEND;
2051 delta = 0;
2052 }
2053
2054 event->time_delta = delta;
2055 length -= RB_EVNT_HDR_SIZE;
2056 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2057 event->type_len = 0;
2058 event->array[0] = length;
2059 } else
2060 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2061 }
2062
2063 /*
2064 * rb_handle_head_page - writer hit the head page
2065 *
2066 * Returns: +1 to retry page
2067 * 0 to continue
2068 * -1 on error
2069 */
2070 static int
2071 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2072 struct buffer_page *tail_page,
2073 struct buffer_page *next_page)
2074 {
2075 struct buffer_page *new_head;
2076 int entries;
2077 int type;
2078 int ret;
2079
2080 entries = rb_page_entries(next_page);
2081
2082 /*
2083 * The hard part is here. We need to move the head
2084 * forward, and protect against both readers on
2085 * other CPUs and writers coming in via interrupts.
2086 */
2087 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2088 RB_PAGE_HEAD);
2089
2090 /*
2091 * type can be one of four:
2092 * NORMAL - an interrupt already moved it for us
2093 * HEAD - we are the first to get here.
2094 * UPDATE - we are the interrupt interrupting
2095 * a current move.
2096 * MOVED - a reader on another CPU moved the next
2097 * pointer to its reader page. Give up
2098 * and try again.
2099 */
2100
2101 switch (type) {
2102 case RB_PAGE_HEAD:
2103 /*
2104 * We changed the head to UPDATE, thus
2105 * it is our responsibility to update
2106 * the counters.
2107 */
2108 local_add(entries, &cpu_buffer->overrun);
2109 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2110
2111 /*
2112 * The entries will be zeroed out when we move the
2113 * tail page.
2114 */
2115
2116 /* still more to do */
2117 break;
2118
2119 case RB_PAGE_UPDATE:
2120 /*
2121 * This is an interrupt that interrupt the
2122 * previous update. Still more to do.
2123 */
2124 break;
2125 case RB_PAGE_NORMAL:
2126 /*
2127 * An interrupt came in before the update
2128 * and processed this for us.
2129 * Nothing left to do.
2130 */
2131 return 1;
2132 case RB_PAGE_MOVED:
2133 /*
2134 * The reader is on another CPU and just did
2135 * a swap with our next_page.
2136 * Try again.
2137 */
2138 return 1;
2139 default:
2140 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2141 return -1;
2142 }
2143
2144 /*
2145 * Now that we are here, the old head pointer is
2146 * set to UPDATE. This will keep the reader from
2147 * swapping the head page with the reader page.
2148 * The reader (on another CPU) will spin till
2149 * we are finished.
2150 *
2151 * We just need to protect against interrupts
2152 * doing the job. We will set the next pointer
2153 * to HEAD. After that, we set the old pointer
2154 * to NORMAL, but only if it was HEAD before.
2155 * otherwise we are an interrupt, and only
2156 * want the outer most commit to reset it.
2157 */
2158 new_head = next_page;
2159 rb_inc_page(cpu_buffer, &new_head);
2160
2161 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2162 RB_PAGE_NORMAL);
2163
2164 /*
2165 * Valid returns are:
2166 * HEAD - an interrupt came in and already set it.
2167 * NORMAL - One of two things:
2168 * 1) We really set it.
2169 * 2) A bunch of interrupts came in and moved
2170 * the page forward again.
2171 */
2172 switch (ret) {
2173 case RB_PAGE_HEAD:
2174 case RB_PAGE_NORMAL:
2175 /* OK */
2176 break;
2177 default:
2178 RB_WARN_ON(cpu_buffer, 1);
2179 return -1;
2180 }
2181
2182 /*
2183 * It is possible that an interrupt came in,
2184 * set the head up, then more interrupts came in
2185 * and moved it again. When we get back here,
2186 * the page would have been set to NORMAL but we
2187 * just set it back to HEAD.
2188 *
2189 * How do you detect this? Well, if that happened
2190 * the tail page would have moved.
2191 */
2192 if (ret == RB_PAGE_NORMAL) {
2193 /*
2194 * If the tail had moved passed next, then we need
2195 * to reset the pointer.
2196 */
2197 if (cpu_buffer->tail_page != tail_page &&
2198 cpu_buffer->tail_page != next_page)
2199 rb_head_page_set_normal(cpu_buffer, new_head,
2200 next_page,
2201 RB_PAGE_HEAD);
2202 }
2203
2204 /*
2205 * If this was the outer most commit (the one that
2206 * changed the original pointer from HEAD to UPDATE),
2207 * then it is up to us to reset it to NORMAL.
2208 */
2209 if (type == RB_PAGE_HEAD) {
2210 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2211 tail_page,
2212 RB_PAGE_UPDATE);
2213 if (RB_WARN_ON(cpu_buffer,
2214 ret != RB_PAGE_UPDATE))
2215 return -1;
2216 }
2217
2218 return 0;
2219 }
2220
2221 static unsigned rb_calculate_event_length(unsigned length)
2222 {
2223 struct ring_buffer_event event; /* Used only for sizeof array */
2224
2225 /* zero length can cause confusions */
2226 if (!length)
2227 length = 1;
2228
2229 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2230 length += sizeof(event.array[0]);
2231
2232 length += RB_EVNT_HDR_SIZE;
2233 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2234
2235 return length;
2236 }
2237
2238 static inline void
2239 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2240 struct buffer_page *tail_page,
2241 unsigned long tail, unsigned long length)
2242 {
2243 struct ring_buffer_event *event;
2244
2245 /*
2246 * Only the event that crossed the page boundary
2247 * must fill the old tail_page with padding.
2248 */
2249 if (tail >= BUF_PAGE_SIZE) {
2250 /*
2251 * If the page was filled, then we still need
2252 * to update the real_end. Reset it to zero
2253 * and the reader will ignore it.
2254 */
2255 if (tail == BUF_PAGE_SIZE)
2256 tail_page->real_end = 0;
2257
2258 local_sub(length, &tail_page->write);
2259 return;
2260 }
2261
2262 event = __rb_page_index(tail_page, tail);
2263 kmemcheck_annotate_bitfield(event, bitfield);
2264
2265 /* account for padding bytes */
2266 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2267
2268 /*
2269 * Save the original length to the meta data.
2270 * This will be used by the reader to add lost event
2271 * counter.
2272 */
2273 tail_page->real_end = tail;
2274
2275 /*
2276 * If this event is bigger than the minimum size, then
2277 * we need to be careful that we don't subtract the
2278 * write counter enough to allow another writer to slip
2279 * in on this page.
2280 * We put in a discarded commit instead, to make sure
2281 * that this space is not used again.
2282 *
2283 * If we are less than the minimum size, we don't need to
2284 * worry about it.
2285 */
2286 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2287 /* No room for any events */
2288
2289 /* Mark the rest of the page with padding */
2290 rb_event_set_padding(event);
2291
2292 /* Set the write back to the previous setting */
2293 local_sub(length, &tail_page->write);
2294 return;
2295 }
2296
2297 /* Put in a discarded event */
2298 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2299 event->type_len = RINGBUF_TYPE_PADDING;
2300 /* time delta must be non zero */
2301 event->time_delta = 1;
2302
2303 /* Set write to end of buffer */
2304 length = (tail + length) - BUF_PAGE_SIZE;
2305 local_sub(length, &tail_page->write);
2306 }
2307
2308 /*
2309 * This is the slow path, force gcc not to inline it.
2310 */
2311 static noinline struct ring_buffer_event *
2312 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2313 unsigned long length, unsigned long tail,
2314 struct buffer_page *tail_page, u64 ts)
2315 {
2316 struct buffer_page *commit_page = cpu_buffer->commit_page;
2317 struct ring_buffer *buffer = cpu_buffer->buffer;
2318 struct buffer_page *next_page;
2319 int ret;
2320
2321 next_page = tail_page;
2322
2323 rb_inc_page(cpu_buffer, &next_page);
2324
2325 /*
2326 * If for some reason, we had an interrupt storm that made
2327 * it all the way around the buffer, bail, and warn
2328 * about it.
2329 */
2330 if (unlikely(next_page == commit_page)) {
2331 local_inc(&cpu_buffer->commit_overrun);
2332 goto out_reset;
2333 }
2334
2335 /*
2336 * This is where the fun begins!
2337 *
2338 * We are fighting against races between a reader that
2339 * could be on another CPU trying to swap its reader
2340 * page with the buffer head.
2341 *
2342 * We are also fighting against interrupts coming in and
2343 * moving the head or tail on us as well.
2344 *
2345 * If the next page is the head page then we have filled
2346 * the buffer, unless the commit page is still on the
2347 * reader page.
2348 */
2349 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2350
2351 /*
2352 * If the commit is not on the reader page, then
2353 * move the header page.
2354 */
2355 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2356 /*
2357 * If we are not in overwrite mode,
2358 * this is easy, just stop here.
2359 */
2360 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2361 local_inc(&cpu_buffer->dropped_events);
2362 goto out_reset;
2363 }
2364
2365 ret = rb_handle_head_page(cpu_buffer,
2366 tail_page,
2367 next_page);
2368 if (ret < 0)
2369 goto out_reset;
2370 if (ret)
2371 goto out_again;
2372 } else {
2373 /*
2374 * We need to be careful here too. The
2375 * commit page could still be on the reader
2376 * page. We could have a small buffer, and
2377 * have filled up the buffer with events
2378 * from interrupts and such, and wrapped.
2379 *
2380 * Note, if the tail page is also the on the
2381 * reader_page, we let it move out.
2382 */
2383 if (unlikely((cpu_buffer->commit_page !=
2384 cpu_buffer->tail_page) &&
2385 (cpu_buffer->commit_page ==
2386 cpu_buffer->reader_page))) {
2387 local_inc(&cpu_buffer->commit_overrun);
2388 goto out_reset;
2389 }
2390 }
2391 }
2392
2393 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2394 if (ret) {
2395 /*
2396 * Nested commits always have zero deltas, so
2397 * just reread the time stamp
2398 */
2399 ts = rb_time_stamp(buffer);
2400 next_page->page->time_stamp = ts;
2401 }
2402
2403 out_again:
2404
2405 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2406
2407 /* fail and let the caller try again */
2408 return ERR_PTR(-EAGAIN);
2409
2410 out_reset:
2411 /* reset write */
2412 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2413
2414 return NULL;
2415 }
2416
2417 static struct ring_buffer_event *
2418 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2419 unsigned long length, u64 ts,
2420 u64 delta, int add_timestamp)
2421 {
2422 struct buffer_page *tail_page;
2423 struct ring_buffer_event *event;
2424 unsigned long tail, write;
2425
2426 /*
2427 * If the time delta since the last event is too big to
2428 * hold in the time field of the event, then we append a
2429 * TIME EXTEND event ahead of the data event.
2430 */
2431 if (unlikely(add_timestamp))
2432 length += RB_LEN_TIME_EXTEND;
2433
2434 tail_page = cpu_buffer->tail_page;
2435 write = local_add_return(length, &tail_page->write);
2436
2437 /* set write to only the index of the write */
2438 write &= RB_WRITE_MASK;
2439 tail = write - length;
2440
2441 /*
2442 * If this is the first commit on the page, then it has the same
2443 * timestamp as the page itself.
2444 */
2445 if (!tail)
2446 delta = 0;
2447
2448 /* See if we shot pass the end of this buffer page */
2449 if (unlikely(write > BUF_PAGE_SIZE))
2450 return rb_move_tail(cpu_buffer, length, tail,
2451 tail_page, ts);
2452
2453 /* We reserved something on the buffer */
2454
2455 event = __rb_page_index(tail_page, tail);
2456 kmemcheck_annotate_bitfield(event, bitfield);
2457 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2458
2459 local_inc(&tail_page->entries);
2460
2461 /*
2462 * If this is the first commit on the page, then update
2463 * its timestamp.
2464 */
2465 if (!tail)
2466 tail_page->page->time_stamp = ts;
2467
2468 /* account for these added bytes */
2469 local_add(length, &cpu_buffer->entries_bytes);
2470
2471 return event;
2472 }
2473
2474 static inline int
2475 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2476 struct ring_buffer_event *event)
2477 {
2478 unsigned long new_index, old_index;
2479 struct buffer_page *bpage;
2480 unsigned long index;
2481 unsigned long addr;
2482
2483 new_index = rb_event_index(event);
2484 old_index = new_index + rb_event_ts_length(event);
2485 addr = (unsigned long)event;
2486 addr &= PAGE_MASK;
2487
2488 bpage = cpu_buffer->tail_page;
2489
2490 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2491 unsigned long write_mask =
2492 local_read(&bpage->write) & ~RB_WRITE_MASK;
2493 unsigned long event_length = rb_event_length(event);
2494 /*
2495 * This is on the tail page. It is possible that
2496 * a write could come in and move the tail page
2497 * and write to the next page. That is fine
2498 * because we just shorten what is on this page.
2499 */
2500 old_index += write_mask;
2501 new_index += write_mask;
2502 index = local_cmpxchg(&bpage->write, old_index, new_index);
2503 if (index == old_index) {
2504 /* update counters */
2505 local_sub(event_length, &cpu_buffer->entries_bytes);
2506 return 1;
2507 }
2508 }
2509
2510 /* could not discard */
2511 return 0;
2512 }
2513
2514 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515 {
2516 local_inc(&cpu_buffer->committing);
2517 local_inc(&cpu_buffer->commits);
2518 }
2519
2520 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2521 {
2522 unsigned long commits;
2523
2524 if (RB_WARN_ON(cpu_buffer,
2525 !local_read(&cpu_buffer->committing)))
2526 return;
2527
2528 again:
2529 commits = local_read(&cpu_buffer->commits);
2530 /* synchronize with interrupts */
2531 barrier();
2532 if (local_read(&cpu_buffer->committing) == 1)
2533 rb_set_commit_to_write(cpu_buffer);
2534
2535 local_dec(&cpu_buffer->committing);
2536
2537 /* synchronize with interrupts */
2538 barrier();
2539
2540 /*
2541 * Need to account for interrupts coming in between the
2542 * updating of the commit page and the clearing of the
2543 * committing counter.
2544 */
2545 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2546 !local_read(&cpu_buffer->committing)) {
2547 local_inc(&cpu_buffer->committing);
2548 goto again;
2549 }
2550 }
2551
2552 static struct ring_buffer_event *
2553 rb_reserve_next_event(struct ring_buffer *buffer,
2554 struct ring_buffer_per_cpu *cpu_buffer,
2555 unsigned long length)
2556 {
2557 struct ring_buffer_event *event;
2558 u64 ts, delta;
2559 int nr_loops = 0;
2560 int add_timestamp;
2561 u64 diff;
2562
2563 rb_start_commit(cpu_buffer);
2564
2565 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2566 /*
2567 * Due to the ability to swap a cpu buffer from a buffer
2568 * it is possible it was swapped before we committed.
2569 * (committing stops a swap). We check for it here and
2570 * if it happened, we have to fail the write.
2571 */
2572 barrier();
2573 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2574 local_dec(&cpu_buffer->committing);
2575 local_dec(&cpu_buffer->commits);
2576 return NULL;
2577 }
2578 #endif
2579
2580 length = rb_calculate_event_length(length);
2581 again:
2582 add_timestamp = 0;
2583 delta = 0;
2584
2585 /*
2586 * We allow for interrupts to reenter here and do a trace.
2587 * If one does, it will cause this original code to loop
2588 * back here. Even with heavy interrupts happening, this
2589 * should only happen a few times in a row. If this happens
2590 * 1000 times in a row, there must be either an interrupt
2591 * storm or we have something buggy.
2592 * Bail!
2593 */
2594 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2595 goto out_fail;
2596
2597 ts = rb_time_stamp(cpu_buffer->buffer);
2598 diff = ts - cpu_buffer->write_stamp;
2599
2600 /* make sure this diff is calculated here */
2601 barrier();
2602
2603 /* Did the write stamp get updated already? */
2604 if (likely(ts >= cpu_buffer->write_stamp)) {
2605 delta = diff;
2606 if (unlikely(test_time_stamp(delta))) {
2607 int local_clock_stable = 1;
2608 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2609 local_clock_stable = sched_clock_stable();
2610 #endif
2611 WARN_ONCE(delta > (1ULL << 59),
2612 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2613 (unsigned long long)delta,
2614 (unsigned long long)ts,
2615 (unsigned long long)cpu_buffer->write_stamp,
2616 local_clock_stable ? "" :
2617 "If you just came from a suspend/resume,\n"
2618 "please switch to the trace global clock:\n"
2619 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2620 add_timestamp = 1;
2621 }
2622 }
2623
2624 event = __rb_reserve_next(cpu_buffer, length, ts,
2625 delta, add_timestamp);
2626 if (unlikely(PTR_ERR(event) == -EAGAIN))
2627 goto again;
2628
2629 if (!event)
2630 goto out_fail;
2631
2632 return event;
2633
2634 out_fail:
2635 rb_end_commit(cpu_buffer);
2636 return NULL;
2637 }
2638
2639 #ifdef CONFIG_TRACING
2640
2641 /*
2642 * The lock and unlock are done within a preempt disable section.
2643 * The current_context per_cpu variable can only be modified
2644 * by the current task between lock and unlock. But it can
2645 * be modified more than once via an interrupt. To pass this
2646 * information from the lock to the unlock without having to
2647 * access the 'in_interrupt()' functions again (which do show
2648 * a bit of overhead in something as critical as function tracing,
2649 * we use a bitmask trick.
2650 *
2651 * bit 0 = NMI context
2652 * bit 1 = IRQ context
2653 * bit 2 = SoftIRQ context
2654 * bit 3 = normal context.
2655 *
2656 * This works because this is the order of contexts that can
2657 * preempt other contexts. A SoftIRQ never preempts an IRQ
2658 * context.
2659 *
2660 * When the context is determined, the corresponding bit is
2661 * checked and set (if it was set, then a recursion of that context
2662 * happened).
2663 *
2664 * On unlock, we need to clear this bit. To do so, just subtract
2665 * 1 from the current_context and AND it to itself.
2666 *
2667 * (binary)
2668 * 101 - 1 = 100
2669 * 101 & 100 = 100 (clearing bit zero)
2670 *
2671 * 1010 - 1 = 1001
2672 * 1010 & 1001 = 1000 (clearing bit 1)
2673 *
2674 * The least significant bit can be cleared this way, and it
2675 * just so happens that it is the same bit corresponding to
2676 * the current context.
2677 */
2678 static DEFINE_PER_CPU(unsigned int, current_context);
2679
2680 static __always_inline int trace_recursive_lock(void)
2681 {
2682 unsigned int val = this_cpu_read(current_context);
2683 int bit;
2684
2685 if (in_interrupt()) {
2686 if (in_nmi())
2687 bit = 0;
2688 else if (in_irq())
2689 bit = 1;
2690 else
2691 bit = 2;
2692 } else
2693 bit = 3;
2694
2695 if (unlikely(val & (1 << bit)))
2696 return 1;
2697
2698 val |= (1 << bit);
2699 this_cpu_write(current_context, val);
2700
2701 return 0;
2702 }
2703
2704 static __always_inline void trace_recursive_unlock(void)
2705 {
2706 unsigned int val = this_cpu_read(current_context);
2707
2708 val--;
2709 val &= this_cpu_read(current_context);
2710 this_cpu_write(current_context, val);
2711 }
2712
2713 #else
2714
2715 #define trace_recursive_lock() (0)
2716 #define trace_recursive_unlock() do { } while (0)
2717
2718 #endif
2719
2720 /**
2721 * ring_buffer_lock_reserve - reserve a part of the buffer
2722 * @buffer: the ring buffer to reserve from
2723 * @length: the length of the data to reserve (excluding event header)
2724 *
2725 * Returns a reseverd event on the ring buffer to copy directly to.
2726 * The user of this interface will need to get the body to write into
2727 * and can use the ring_buffer_event_data() interface.
2728 *
2729 * The length is the length of the data needed, not the event length
2730 * which also includes the event header.
2731 *
2732 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2733 * If NULL is returned, then nothing has been allocated or locked.
2734 */
2735 struct ring_buffer_event *
2736 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2737 {
2738 struct ring_buffer_per_cpu *cpu_buffer;
2739 struct ring_buffer_event *event;
2740 int cpu;
2741
2742 if (ring_buffer_flags != RB_BUFFERS_ON)
2743 return NULL;
2744
2745 /* If we are tracing schedule, we don't want to recurse */
2746 preempt_disable_notrace();
2747
2748 if (atomic_read(&buffer->record_disabled))
2749 goto out_nocheck;
2750
2751 if (trace_recursive_lock())
2752 goto out_nocheck;
2753
2754 cpu = raw_smp_processor_id();
2755
2756 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2757 goto out;
2758
2759 cpu_buffer = buffer->buffers[cpu];
2760
2761 if (atomic_read(&cpu_buffer->record_disabled))
2762 goto out;
2763
2764 if (length > BUF_MAX_DATA_SIZE)
2765 goto out;
2766
2767 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2768 if (!event)
2769 goto out;
2770
2771 return event;
2772
2773 out:
2774 trace_recursive_unlock();
2775
2776 out_nocheck:
2777 preempt_enable_notrace();
2778 return NULL;
2779 }
2780 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2781
2782 static void
2783 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2784 struct ring_buffer_event *event)
2785 {
2786 u64 delta;
2787
2788 /*
2789 * The event first in the commit queue updates the
2790 * time stamp.
2791 */
2792 if (rb_event_is_commit(cpu_buffer, event)) {
2793 /*
2794 * A commit event that is first on a page
2795 * updates the write timestamp with the page stamp
2796 */
2797 if (!rb_event_index(event))
2798 cpu_buffer->write_stamp =
2799 cpu_buffer->commit_page->page->time_stamp;
2800 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2801 delta = event->array[0];
2802 delta <<= TS_SHIFT;
2803 delta += event->time_delta;
2804 cpu_buffer->write_stamp += delta;
2805 } else
2806 cpu_buffer->write_stamp += event->time_delta;
2807 }
2808 }
2809
2810 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2811 struct ring_buffer_event *event)
2812 {
2813 local_inc(&cpu_buffer->entries);
2814 rb_update_write_stamp(cpu_buffer, event);
2815 rb_end_commit(cpu_buffer);
2816 }
2817
2818 static __always_inline void
2819 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2820 {
2821 bool pagebusy;
2822
2823 if (buffer->irq_work.waiters_pending) {
2824 buffer->irq_work.waiters_pending = false;
2825 /* irq_work_queue() supplies it's own memory barriers */
2826 irq_work_queue(&buffer->irq_work.work);
2827 }
2828
2829 if (cpu_buffer->irq_work.waiters_pending) {
2830 cpu_buffer->irq_work.waiters_pending = false;
2831 /* irq_work_queue() supplies it's own memory barriers */
2832 irq_work_queue(&cpu_buffer->irq_work.work);
2833 }
2834
2835 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2836
2837 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2838 cpu_buffer->irq_work.wakeup_full = true;
2839 cpu_buffer->irq_work.full_waiters_pending = false;
2840 /* irq_work_queue() supplies it's own memory barriers */
2841 irq_work_queue(&cpu_buffer->irq_work.work);
2842 }
2843 }
2844
2845 /**
2846 * ring_buffer_unlock_commit - commit a reserved
2847 * @buffer: The buffer to commit to
2848 * @event: The event pointer to commit.
2849 *
2850 * This commits the data to the ring buffer, and releases any locks held.
2851 *
2852 * Must be paired with ring_buffer_lock_reserve.
2853 */
2854 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2855 struct ring_buffer_event *event)
2856 {
2857 struct ring_buffer_per_cpu *cpu_buffer;
2858 int cpu = raw_smp_processor_id();
2859
2860 cpu_buffer = buffer->buffers[cpu];
2861
2862 rb_commit(cpu_buffer, event);
2863
2864 rb_wakeups(buffer, cpu_buffer);
2865
2866 trace_recursive_unlock();
2867
2868 preempt_enable_notrace();
2869
2870 return 0;
2871 }
2872 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2873
2874 static inline void rb_event_discard(struct ring_buffer_event *event)
2875 {
2876 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2877 event = skip_time_extend(event);
2878
2879 /* array[0] holds the actual length for the discarded event */
2880 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2881 event->type_len = RINGBUF_TYPE_PADDING;
2882 /* time delta must be non zero */
2883 if (!event->time_delta)
2884 event->time_delta = 1;
2885 }
2886
2887 /*
2888 * Decrement the entries to the page that an event is on.
2889 * The event does not even need to exist, only the pointer
2890 * to the page it is on. This may only be called before the commit
2891 * takes place.
2892 */
2893 static inline void
2894 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2895 struct ring_buffer_event *event)
2896 {
2897 unsigned long addr = (unsigned long)event;
2898 struct buffer_page *bpage = cpu_buffer->commit_page;
2899 struct buffer_page *start;
2900
2901 addr &= PAGE_MASK;
2902
2903 /* Do the likely case first */
2904 if (likely(bpage->page == (void *)addr)) {
2905 local_dec(&bpage->entries);
2906 return;
2907 }
2908
2909 /*
2910 * Because the commit page may be on the reader page we
2911 * start with the next page and check the end loop there.
2912 */
2913 rb_inc_page(cpu_buffer, &bpage);
2914 start = bpage;
2915 do {
2916 if (bpage->page == (void *)addr) {
2917 local_dec(&bpage->entries);
2918 return;
2919 }
2920 rb_inc_page(cpu_buffer, &bpage);
2921 } while (bpage != start);
2922
2923 /* commit not part of this buffer?? */
2924 RB_WARN_ON(cpu_buffer, 1);
2925 }
2926
2927 /**
2928 * ring_buffer_commit_discard - discard an event that has not been committed
2929 * @buffer: the ring buffer
2930 * @event: non committed event to discard
2931 *
2932 * Sometimes an event that is in the ring buffer needs to be ignored.
2933 * This function lets the user discard an event in the ring buffer
2934 * and then that event will not be read later.
2935 *
2936 * This function only works if it is called before the the item has been
2937 * committed. It will try to free the event from the ring buffer
2938 * if another event has not been added behind it.
2939 *
2940 * If another event has been added behind it, it will set the event
2941 * up as discarded, and perform the commit.
2942 *
2943 * If this function is called, do not call ring_buffer_unlock_commit on
2944 * the event.
2945 */
2946 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2947 struct ring_buffer_event *event)
2948 {
2949 struct ring_buffer_per_cpu *cpu_buffer;
2950 int cpu;
2951
2952 /* The event is discarded regardless */
2953 rb_event_discard(event);
2954
2955 cpu = smp_processor_id();
2956 cpu_buffer = buffer->buffers[cpu];
2957
2958 /*
2959 * This must only be called if the event has not been
2960 * committed yet. Thus we can assume that preemption
2961 * is still disabled.
2962 */
2963 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2964
2965 rb_decrement_entry(cpu_buffer, event);
2966 if (rb_try_to_discard(cpu_buffer, event))
2967 goto out;
2968
2969 /*
2970 * The commit is still visible by the reader, so we
2971 * must still update the timestamp.
2972 */
2973 rb_update_write_stamp(cpu_buffer, event);
2974 out:
2975 rb_end_commit(cpu_buffer);
2976
2977 trace_recursive_unlock();
2978
2979 preempt_enable_notrace();
2980
2981 }
2982 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2983
2984 /**
2985 * ring_buffer_write - write data to the buffer without reserving
2986 * @buffer: The ring buffer to write to.
2987 * @length: The length of the data being written (excluding the event header)
2988 * @data: The data to write to the buffer.
2989 *
2990 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2991 * one function. If you already have the data to write to the buffer, it
2992 * may be easier to simply call this function.
2993 *
2994 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2995 * and not the length of the event which would hold the header.
2996 */
2997 int ring_buffer_write(struct ring_buffer *buffer,
2998 unsigned long length,
2999 void *data)
3000 {
3001 struct ring_buffer_per_cpu *cpu_buffer;
3002 struct ring_buffer_event *event;
3003 void *body;
3004 int ret = -EBUSY;
3005 int cpu;
3006
3007 if (ring_buffer_flags != RB_BUFFERS_ON)
3008 return -EBUSY;
3009
3010 preempt_disable_notrace();
3011
3012 if (atomic_read(&buffer->record_disabled))
3013 goto out;
3014
3015 cpu = raw_smp_processor_id();
3016
3017 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3018 goto out;
3019
3020 cpu_buffer = buffer->buffers[cpu];
3021
3022 if (atomic_read(&cpu_buffer->record_disabled))
3023 goto out;
3024
3025 if (length > BUF_MAX_DATA_SIZE)
3026 goto out;
3027
3028 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3029 if (!event)
3030 goto out;
3031
3032 body = rb_event_data(event);
3033
3034 memcpy(body, data, length);
3035
3036 rb_commit(cpu_buffer, event);
3037
3038 rb_wakeups(buffer, cpu_buffer);
3039
3040 ret = 0;
3041 out:
3042 preempt_enable_notrace();
3043
3044 return ret;
3045 }
3046 EXPORT_SYMBOL_GPL(ring_buffer_write);
3047
3048 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3049 {
3050 struct buffer_page *reader = cpu_buffer->reader_page;
3051 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3052 struct buffer_page *commit = cpu_buffer->commit_page;
3053
3054 /* In case of error, head will be NULL */
3055 if (unlikely(!head))
3056 return 1;
3057
3058 return reader->read == rb_page_commit(reader) &&
3059 (commit == reader ||
3060 (commit == head &&
3061 head->read == rb_page_commit(commit)));
3062 }
3063
3064 /**
3065 * ring_buffer_record_disable - stop all writes into the buffer
3066 * @buffer: The ring buffer to stop writes to.
3067 *
3068 * This prevents all writes to the buffer. Any attempt to write
3069 * to the buffer after this will fail and return NULL.
3070 *
3071 * The caller should call synchronize_sched() after this.
3072 */
3073 void ring_buffer_record_disable(struct ring_buffer *buffer)
3074 {
3075 atomic_inc(&buffer->record_disabled);
3076 }
3077 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3078
3079 /**
3080 * ring_buffer_record_enable - enable writes to the buffer
3081 * @buffer: The ring buffer to enable writes
3082 *
3083 * Note, multiple disables will need the same number of enables
3084 * to truly enable the writing (much like preempt_disable).
3085 */
3086 void ring_buffer_record_enable(struct ring_buffer *buffer)
3087 {
3088 atomic_dec(&buffer->record_disabled);
3089 }
3090 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3091
3092 /**
3093 * ring_buffer_record_off - stop all writes into the buffer
3094 * @buffer: The ring buffer to stop writes to.
3095 *
3096 * This prevents all writes to the buffer. Any attempt to write
3097 * to the buffer after this will fail and return NULL.
3098 *
3099 * This is different than ring_buffer_record_disable() as
3100 * it works like an on/off switch, where as the disable() version
3101 * must be paired with a enable().
3102 */
3103 void ring_buffer_record_off(struct ring_buffer *buffer)
3104 {
3105 unsigned int rd;
3106 unsigned int new_rd;
3107
3108 do {
3109 rd = atomic_read(&buffer->record_disabled);
3110 new_rd = rd | RB_BUFFER_OFF;
3111 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3112 }
3113 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3114
3115 /**
3116 * ring_buffer_record_on - restart writes into the buffer
3117 * @buffer: The ring buffer to start writes to.
3118 *
3119 * This enables all writes to the buffer that was disabled by
3120 * ring_buffer_record_off().
3121 *
3122 * This is different than ring_buffer_record_enable() as
3123 * it works like an on/off switch, where as the enable() version
3124 * must be paired with a disable().
3125 */
3126 void ring_buffer_record_on(struct ring_buffer *buffer)
3127 {
3128 unsigned int rd;
3129 unsigned int new_rd;
3130
3131 do {
3132 rd = atomic_read(&buffer->record_disabled);
3133 new_rd = rd & ~RB_BUFFER_OFF;
3134 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3135 }
3136 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3137
3138 /**
3139 * ring_buffer_record_is_on - return true if the ring buffer can write
3140 * @buffer: The ring buffer to see if write is enabled
3141 *
3142 * Returns true if the ring buffer is in a state that it accepts writes.
3143 */
3144 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3145 {
3146 return !atomic_read(&buffer->record_disabled);
3147 }
3148
3149 /**
3150 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3151 * @buffer: The ring buffer to stop writes to.
3152 * @cpu: The CPU buffer to stop
3153 *
3154 * This prevents all writes to the buffer. Any attempt to write
3155 * to the buffer after this will fail and return NULL.
3156 *
3157 * The caller should call synchronize_sched() after this.
3158 */
3159 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3160 {
3161 struct ring_buffer_per_cpu *cpu_buffer;
3162
3163 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3164 return;
3165
3166 cpu_buffer = buffer->buffers[cpu];
3167 atomic_inc(&cpu_buffer->record_disabled);
3168 }
3169 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3170
3171 /**
3172 * ring_buffer_record_enable_cpu - enable writes to the buffer
3173 * @buffer: The ring buffer to enable writes
3174 * @cpu: The CPU to enable.
3175 *
3176 * Note, multiple disables will need the same number of enables
3177 * to truly enable the writing (much like preempt_disable).
3178 */
3179 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3180 {
3181 struct ring_buffer_per_cpu *cpu_buffer;
3182
3183 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3184 return;
3185
3186 cpu_buffer = buffer->buffers[cpu];
3187 atomic_dec(&cpu_buffer->record_disabled);
3188 }
3189 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3190
3191 /*
3192 * The total entries in the ring buffer is the running counter
3193 * of entries entered into the ring buffer, minus the sum of
3194 * the entries read from the ring buffer and the number of
3195 * entries that were overwritten.
3196 */
3197 static inline unsigned long
3198 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3199 {
3200 return local_read(&cpu_buffer->entries) -
3201 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3202 }
3203
3204 /**
3205 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3206 * @buffer: The ring buffer
3207 * @cpu: The per CPU buffer to read from.
3208 */
3209 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3210 {
3211 unsigned long flags;
3212 struct ring_buffer_per_cpu *cpu_buffer;
3213 struct buffer_page *bpage;
3214 u64 ret = 0;
3215
3216 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3217 return 0;
3218
3219 cpu_buffer = buffer->buffers[cpu];
3220 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3221 /*
3222 * if the tail is on reader_page, oldest time stamp is on the reader
3223 * page
3224 */
3225 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3226 bpage = cpu_buffer->reader_page;
3227 else
3228 bpage = rb_set_head_page(cpu_buffer);
3229 if (bpage)
3230 ret = bpage->page->time_stamp;
3231 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3232
3233 return ret;
3234 }
3235 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3236
3237 /**
3238 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3239 * @buffer: The ring buffer
3240 * @cpu: The per CPU buffer to read from.
3241 */
3242 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3243 {
3244 struct ring_buffer_per_cpu *cpu_buffer;
3245 unsigned long ret;
3246
3247 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3248 return 0;
3249
3250 cpu_buffer = buffer->buffers[cpu];
3251 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3252
3253 return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3256
3257 /**
3258 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3259 * @buffer: The ring buffer
3260 * @cpu: The per CPU buffer to get the entries from.
3261 */
3262 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3263 {
3264 struct ring_buffer_per_cpu *cpu_buffer;
3265
3266 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3267 return 0;
3268
3269 cpu_buffer = buffer->buffers[cpu];
3270
3271 return rb_num_of_entries(cpu_buffer);
3272 }
3273 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3274
3275 /**
3276 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3277 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3278 * @buffer: The ring buffer
3279 * @cpu: The per CPU buffer to get the number of overruns from
3280 */
3281 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3282 {
3283 struct ring_buffer_per_cpu *cpu_buffer;
3284 unsigned long ret;
3285
3286 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3287 return 0;
3288
3289 cpu_buffer = buffer->buffers[cpu];
3290 ret = local_read(&cpu_buffer->overrun);
3291
3292 return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3295
3296 /**
3297 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3298 * commits failing due to the buffer wrapping around while there are uncommitted
3299 * events, such as during an interrupt storm.
3300 * @buffer: The ring buffer
3301 * @cpu: The per CPU buffer to get the number of overruns from
3302 */
3303 unsigned long
3304 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3305 {
3306 struct ring_buffer_per_cpu *cpu_buffer;
3307 unsigned long ret;
3308
3309 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3310 return 0;
3311
3312 cpu_buffer = buffer->buffers[cpu];
3313 ret = local_read(&cpu_buffer->commit_overrun);
3314
3315 return ret;
3316 }
3317 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3318
3319 /**
3320 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3321 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3322 * @buffer: The ring buffer
3323 * @cpu: The per CPU buffer to get the number of overruns from
3324 */
3325 unsigned long
3326 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3327 {
3328 struct ring_buffer_per_cpu *cpu_buffer;
3329 unsigned long ret;
3330
3331 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3332 return 0;
3333
3334 cpu_buffer = buffer->buffers[cpu];
3335 ret = local_read(&cpu_buffer->dropped_events);
3336
3337 return ret;
3338 }
3339 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3340
3341 /**
3342 * ring_buffer_read_events_cpu - get the number of events successfully read
3343 * @buffer: The ring buffer
3344 * @cpu: The per CPU buffer to get the number of events read
3345 */
3346 unsigned long
3347 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3348 {
3349 struct ring_buffer_per_cpu *cpu_buffer;
3350
3351 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3352 return 0;
3353
3354 cpu_buffer = buffer->buffers[cpu];
3355 return cpu_buffer->read;
3356 }
3357 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3358
3359 /**
3360 * ring_buffer_entries - get the number of entries in a buffer
3361 * @buffer: The ring buffer
3362 *
3363 * Returns the total number of entries in the ring buffer
3364 * (all CPU entries)
3365 */
3366 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3367 {
3368 struct ring_buffer_per_cpu *cpu_buffer;
3369 unsigned long entries = 0;
3370 int cpu;
3371
3372 /* if you care about this being correct, lock the buffer */
3373 for_each_buffer_cpu(buffer, cpu) {
3374 cpu_buffer = buffer->buffers[cpu];
3375 entries += rb_num_of_entries(cpu_buffer);
3376 }
3377
3378 return entries;
3379 }
3380 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3381
3382 /**
3383 * ring_buffer_overruns - get the number of overruns in buffer
3384 * @buffer: The ring buffer
3385 *
3386 * Returns the total number of overruns in the ring buffer
3387 * (all CPU entries)
3388 */
3389 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3390 {
3391 struct ring_buffer_per_cpu *cpu_buffer;
3392 unsigned long overruns = 0;
3393 int cpu;
3394
3395 /* if you care about this being correct, lock the buffer */
3396 for_each_buffer_cpu(buffer, cpu) {
3397 cpu_buffer = buffer->buffers[cpu];
3398 overruns += local_read(&cpu_buffer->overrun);
3399 }
3400
3401 return overruns;
3402 }
3403 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3404
3405 static void rb_iter_reset(struct ring_buffer_iter *iter)
3406 {
3407 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3408
3409 /* Iterator usage is expected to have record disabled */
3410 iter->head_page = cpu_buffer->reader_page;
3411 iter->head = cpu_buffer->reader_page->read;
3412
3413 iter->cache_reader_page = iter->head_page;
3414 iter->cache_read = cpu_buffer->read;
3415
3416 if (iter->head)
3417 iter->read_stamp = cpu_buffer->read_stamp;
3418 else
3419 iter->read_stamp = iter->head_page->page->time_stamp;
3420 }
3421
3422 /**
3423 * ring_buffer_iter_reset - reset an iterator
3424 * @iter: The iterator to reset
3425 *
3426 * Resets the iterator, so that it will start from the beginning
3427 * again.
3428 */
3429 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3430 {
3431 struct ring_buffer_per_cpu *cpu_buffer;
3432 unsigned long flags;
3433
3434 if (!iter)
3435 return;
3436
3437 cpu_buffer = iter->cpu_buffer;
3438
3439 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3440 rb_iter_reset(iter);
3441 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3442 }
3443 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3444
3445 /**
3446 * ring_buffer_iter_empty - check if an iterator has no more to read
3447 * @iter: The iterator to check
3448 */
3449 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3450 {
3451 struct ring_buffer_per_cpu *cpu_buffer;
3452
3453 cpu_buffer = iter->cpu_buffer;
3454
3455 return iter->head_page == cpu_buffer->commit_page &&
3456 iter->head == rb_commit_index(cpu_buffer);
3457 }
3458 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3459
3460 static void
3461 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3462 struct ring_buffer_event *event)
3463 {
3464 u64 delta;
3465
3466 switch (event->type_len) {
3467 case RINGBUF_TYPE_PADDING:
3468 return;
3469
3470 case RINGBUF_TYPE_TIME_EXTEND:
3471 delta = event->array[0];
3472 delta <<= TS_SHIFT;
3473 delta += event->time_delta;
3474 cpu_buffer->read_stamp += delta;
3475 return;
3476
3477 case RINGBUF_TYPE_TIME_STAMP:
3478 /* FIXME: not implemented */
3479 return;
3480
3481 case RINGBUF_TYPE_DATA:
3482 cpu_buffer->read_stamp += event->time_delta;
3483 return;
3484
3485 default:
3486 BUG();
3487 }
3488 return;
3489 }
3490
3491 static void
3492 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3493 struct ring_buffer_event *event)
3494 {
3495 u64 delta;
3496
3497 switch (event->type_len) {
3498 case RINGBUF_TYPE_PADDING:
3499 return;
3500
3501 case RINGBUF_TYPE_TIME_EXTEND:
3502 delta = event->array[0];
3503 delta <<= TS_SHIFT;
3504 delta += event->time_delta;
3505 iter->read_stamp += delta;
3506 return;
3507
3508 case RINGBUF_TYPE_TIME_STAMP:
3509 /* FIXME: not implemented */
3510 return;
3511
3512 case RINGBUF_TYPE_DATA:
3513 iter->read_stamp += event->time_delta;
3514 return;
3515
3516 default:
3517 BUG();
3518 }
3519 return;
3520 }
3521
3522 static struct buffer_page *
3523 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3524 {
3525 struct buffer_page *reader = NULL;
3526 unsigned long overwrite;
3527 unsigned long flags;
3528 int nr_loops = 0;
3529 int ret;
3530
3531 local_irq_save(flags);
3532 arch_spin_lock(&cpu_buffer->lock);
3533
3534 again:
3535 /*
3536 * This should normally only loop twice. But because the
3537 * start of the reader inserts an empty page, it causes
3538 * a case where we will loop three times. There should be no
3539 * reason to loop four times (that I know of).
3540 */
3541 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3542 reader = NULL;
3543 goto out;
3544 }
3545
3546 reader = cpu_buffer->reader_page;
3547
3548 /* If there's more to read, return this page */
3549 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3550 goto out;
3551
3552 /* Never should we have an index greater than the size */
3553 if (RB_WARN_ON(cpu_buffer,
3554 cpu_buffer->reader_page->read > rb_page_size(reader)))
3555 goto out;
3556
3557 /* check if we caught up to the tail */
3558 reader = NULL;
3559 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3560 goto out;
3561
3562 /* Don't bother swapping if the ring buffer is empty */
3563 if (rb_num_of_entries(cpu_buffer) == 0)
3564 goto out;
3565
3566 /*
3567 * Reset the reader page to size zero.
3568 */
3569 local_set(&cpu_buffer->reader_page->write, 0);
3570 local_set(&cpu_buffer->reader_page->entries, 0);
3571 local_set(&cpu_buffer->reader_page->page->commit, 0);
3572 cpu_buffer->reader_page->real_end = 0;
3573
3574 spin:
3575 /*
3576 * Splice the empty reader page into the list around the head.
3577 */
3578 reader = rb_set_head_page(cpu_buffer);
3579 if (!reader)
3580 goto out;
3581 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3582 cpu_buffer->reader_page->list.prev = reader->list.prev;
3583
3584 /*
3585 * cpu_buffer->pages just needs to point to the buffer, it
3586 * has no specific buffer page to point to. Lets move it out
3587 * of our way so we don't accidentally swap it.
3588 */
3589 cpu_buffer->pages = reader->list.prev;
3590
3591 /* The reader page will be pointing to the new head */
3592 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3593
3594 /*
3595 * We want to make sure we read the overruns after we set up our
3596 * pointers to the next object. The writer side does a
3597 * cmpxchg to cross pages which acts as the mb on the writer
3598 * side. Note, the reader will constantly fail the swap
3599 * while the writer is updating the pointers, so this
3600 * guarantees that the overwrite recorded here is the one we
3601 * want to compare with the last_overrun.
3602 */
3603 smp_mb();
3604 overwrite = local_read(&(cpu_buffer->overrun));
3605
3606 /*
3607 * Here's the tricky part.
3608 *
3609 * We need to move the pointer past the header page.
3610 * But we can only do that if a writer is not currently
3611 * moving it. The page before the header page has the
3612 * flag bit '1' set if it is pointing to the page we want.
3613 * but if the writer is in the process of moving it
3614 * than it will be '2' or already moved '0'.
3615 */
3616
3617 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3618
3619 /*
3620 * If we did not convert it, then we must try again.
3621 */
3622 if (!ret)
3623 goto spin;
3624
3625 /*
3626 * Yeah! We succeeded in replacing the page.
3627 *
3628 * Now make the new head point back to the reader page.
3629 */
3630 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3631 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3632
3633 /* Finally update the reader page to the new head */
3634 cpu_buffer->reader_page = reader;
3635 rb_reset_reader_page(cpu_buffer);
3636
3637 if (overwrite != cpu_buffer->last_overrun) {
3638 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3639 cpu_buffer->last_overrun = overwrite;
3640 }
3641
3642 goto again;
3643
3644 out:
3645 arch_spin_unlock(&cpu_buffer->lock);
3646 local_irq_restore(flags);
3647
3648 return reader;
3649 }
3650
3651 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3652 {
3653 struct ring_buffer_event *event;
3654 struct buffer_page *reader;
3655 unsigned length;
3656
3657 reader = rb_get_reader_page(cpu_buffer);
3658
3659 /* This function should not be called when buffer is empty */
3660 if (RB_WARN_ON(cpu_buffer, !reader))
3661 return;
3662
3663 event = rb_reader_event(cpu_buffer);
3664
3665 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3666 cpu_buffer->read++;
3667
3668 rb_update_read_stamp(cpu_buffer, event);
3669
3670 length = rb_event_length(event);
3671 cpu_buffer->reader_page->read += length;
3672 }
3673
3674 static void rb_advance_iter(struct ring_buffer_iter *iter)
3675 {
3676 struct ring_buffer_per_cpu *cpu_buffer;
3677 struct ring_buffer_event *event;
3678 unsigned length;
3679
3680 cpu_buffer = iter->cpu_buffer;
3681
3682 /*
3683 * Check if we are at the end of the buffer.
3684 */
3685 if (iter->head >= rb_page_size(iter->head_page)) {
3686 /* discarded commits can make the page empty */
3687 if (iter->head_page == cpu_buffer->commit_page)
3688 return;
3689 rb_inc_iter(iter);
3690 return;
3691 }
3692
3693 event = rb_iter_head_event(iter);
3694
3695 length = rb_event_length(event);
3696
3697 /*
3698 * This should not be called to advance the header if we are
3699 * at the tail of the buffer.
3700 */
3701 if (RB_WARN_ON(cpu_buffer,
3702 (iter->head_page == cpu_buffer->commit_page) &&
3703 (iter->head + length > rb_commit_index(cpu_buffer))))
3704 return;
3705
3706 rb_update_iter_read_stamp(iter, event);
3707
3708 iter->head += length;
3709
3710 /* check for end of page padding */
3711 if ((iter->head >= rb_page_size(iter->head_page)) &&
3712 (iter->head_page != cpu_buffer->commit_page))
3713 rb_inc_iter(iter);
3714 }
3715
3716 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3717 {
3718 return cpu_buffer->lost_events;
3719 }
3720
3721 static struct ring_buffer_event *
3722 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3723 unsigned long *lost_events)
3724 {
3725 struct ring_buffer_event *event;
3726 struct buffer_page *reader;
3727 int nr_loops = 0;
3728
3729 again:
3730 /*
3731 * We repeat when a time extend is encountered.
3732 * Since the time extend is always attached to a data event,
3733 * we should never loop more than once.
3734 * (We never hit the following condition more than twice).
3735 */
3736 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3737 return NULL;
3738
3739 reader = rb_get_reader_page(cpu_buffer);
3740 if (!reader)
3741 return NULL;
3742
3743 event = rb_reader_event(cpu_buffer);
3744
3745 switch (event->type_len) {
3746 case RINGBUF_TYPE_PADDING:
3747 if (rb_null_event(event))
3748 RB_WARN_ON(cpu_buffer, 1);
3749 /*
3750 * Because the writer could be discarding every
3751 * event it creates (which would probably be bad)
3752 * if we were to go back to "again" then we may never
3753 * catch up, and will trigger the warn on, or lock
3754 * the box. Return the padding, and we will release
3755 * the current locks, and try again.
3756 */
3757 return event;
3758
3759 case RINGBUF_TYPE_TIME_EXTEND:
3760 /* Internal data, OK to advance */
3761 rb_advance_reader(cpu_buffer);
3762 goto again;
3763
3764 case RINGBUF_TYPE_TIME_STAMP:
3765 /* FIXME: not implemented */
3766 rb_advance_reader(cpu_buffer);
3767 goto again;
3768
3769 case RINGBUF_TYPE_DATA:
3770 if (ts) {
3771 *ts = cpu_buffer->read_stamp + event->time_delta;
3772 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3773 cpu_buffer->cpu, ts);
3774 }
3775 if (lost_events)
3776 *lost_events = rb_lost_events(cpu_buffer);
3777 return event;
3778
3779 default:
3780 BUG();
3781 }
3782
3783 return NULL;
3784 }
3785 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3786
3787 static struct ring_buffer_event *
3788 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3789 {
3790 struct ring_buffer *buffer;
3791 struct ring_buffer_per_cpu *cpu_buffer;
3792 struct ring_buffer_event *event;
3793 int nr_loops = 0;
3794
3795 cpu_buffer = iter->cpu_buffer;
3796 buffer = cpu_buffer->buffer;
3797
3798 /*
3799 * Check if someone performed a consuming read to
3800 * the buffer. A consuming read invalidates the iterator
3801 * and we need to reset the iterator in this case.
3802 */
3803 if (unlikely(iter->cache_read != cpu_buffer->read ||
3804 iter->cache_reader_page != cpu_buffer->reader_page))
3805 rb_iter_reset(iter);
3806
3807 again:
3808 if (ring_buffer_iter_empty(iter))
3809 return NULL;
3810
3811 /*
3812 * We repeat when a time extend is encountered or we hit
3813 * the end of the page. Since the time extend is always attached
3814 * to a data event, we should never loop more than three times.
3815 * Once for going to next page, once on time extend, and
3816 * finally once to get the event.
3817 * (We never hit the following condition more than thrice).
3818 */
3819 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3820 return NULL;
3821
3822 if (rb_per_cpu_empty(cpu_buffer))
3823 return NULL;
3824
3825 if (iter->head >= rb_page_size(iter->head_page)) {
3826 rb_inc_iter(iter);
3827 goto again;
3828 }
3829
3830 event = rb_iter_head_event(iter);
3831
3832 switch (event->type_len) {
3833 case RINGBUF_TYPE_PADDING:
3834 if (rb_null_event(event)) {
3835 rb_inc_iter(iter);
3836 goto again;
3837 }
3838 rb_advance_iter(iter);
3839 return event;
3840
3841 case RINGBUF_TYPE_TIME_EXTEND:
3842 /* Internal data, OK to advance */
3843 rb_advance_iter(iter);
3844 goto again;
3845
3846 case RINGBUF_TYPE_TIME_STAMP:
3847 /* FIXME: not implemented */
3848 rb_advance_iter(iter);
3849 goto again;
3850
3851 case RINGBUF_TYPE_DATA:
3852 if (ts) {
3853 *ts = iter->read_stamp + event->time_delta;
3854 ring_buffer_normalize_time_stamp(buffer,
3855 cpu_buffer->cpu, ts);
3856 }
3857 return event;
3858
3859 default:
3860 BUG();
3861 }
3862
3863 return NULL;
3864 }
3865 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3866
3867 static inline int rb_ok_to_lock(void)
3868 {
3869 /*
3870 * If an NMI die dumps out the content of the ring buffer
3871 * do not grab locks. We also permanently disable the ring
3872 * buffer too. A one time deal is all you get from reading
3873 * the ring buffer from an NMI.
3874 */
3875 if (likely(!in_nmi()))
3876 return 1;
3877
3878 tracing_off_permanent();
3879 return 0;
3880 }
3881
3882 /**
3883 * ring_buffer_peek - peek at the next event to be read
3884 * @buffer: The ring buffer to read
3885 * @cpu: The cpu to peak at
3886 * @ts: The timestamp counter of this event.
3887 * @lost_events: a variable to store if events were lost (may be NULL)
3888 *
3889 * This will return the event that will be read next, but does
3890 * not consume the data.
3891 */
3892 struct ring_buffer_event *
3893 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3894 unsigned long *lost_events)
3895 {
3896 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3897 struct ring_buffer_event *event;
3898 unsigned long flags;
3899 int dolock;
3900
3901 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3902 return NULL;
3903
3904 dolock = rb_ok_to_lock();
3905 again:
3906 local_irq_save(flags);
3907 if (dolock)
3908 raw_spin_lock(&cpu_buffer->reader_lock);
3909 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3910 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3911 rb_advance_reader(cpu_buffer);
3912 if (dolock)
3913 raw_spin_unlock(&cpu_buffer->reader_lock);
3914 local_irq_restore(flags);
3915
3916 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3917 goto again;
3918
3919 return event;
3920 }
3921
3922 /**
3923 * ring_buffer_iter_peek - peek at the next event to be read
3924 * @iter: The ring buffer iterator
3925 * @ts: The timestamp counter of this event.
3926 *
3927 * This will return the event that will be read next, but does
3928 * not increment the iterator.
3929 */
3930 struct ring_buffer_event *
3931 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3932 {
3933 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3934 struct ring_buffer_event *event;
3935 unsigned long flags;
3936
3937 again:
3938 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3939 event = rb_iter_peek(iter, ts);
3940 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3941
3942 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3943 goto again;
3944
3945 return event;
3946 }
3947
3948 /**
3949 * ring_buffer_consume - return an event and consume it
3950 * @buffer: The ring buffer to get the next event from
3951 * @cpu: the cpu to read the buffer from
3952 * @ts: a variable to store the timestamp (may be NULL)
3953 * @lost_events: a variable to store if events were lost (may be NULL)
3954 *
3955 * Returns the next event in the ring buffer, and that event is consumed.
3956 * Meaning, that sequential reads will keep returning a different event,
3957 * and eventually empty the ring buffer if the producer is slower.
3958 */
3959 struct ring_buffer_event *
3960 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3961 unsigned long *lost_events)
3962 {
3963 struct ring_buffer_per_cpu *cpu_buffer;
3964 struct ring_buffer_event *event = NULL;
3965 unsigned long flags;
3966 int dolock;
3967
3968 dolock = rb_ok_to_lock();
3969
3970 again:
3971 /* might be called in atomic */
3972 preempt_disable();
3973
3974 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3975 goto out;
3976
3977 cpu_buffer = buffer->buffers[cpu];
3978 local_irq_save(flags);
3979 if (dolock)
3980 raw_spin_lock(&cpu_buffer->reader_lock);
3981
3982 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3983 if (event) {
3984 cpu_buffer->lost_events = 0;
3985 rb_advance_reader(cpu_buffer);
3986 }
3987
3988 if (dolock)
3989 raw_spin_unlock(&cpu_buffer->reader_lock);
3990 local_irq_restore(flags);
3991
3992 out:
3993 preempt_enable();
3994
3995 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3996 goto again;
3997
3998 return event;
3999 }
4000 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4001
4002 /**
4003 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4004 * @buffer: The ring buffer to read from
4005 * @cpu: The cpu buffer to iterate over
4006 *
4007 * This performs the initial preparations necessary to iterate
4008 * through the buffer. Memory is allocated, buffer recording
4009 * is disabled, and the iterator pointer is returned to the caller.
4010 *
4011 * Disabling buffer recordng prevents the reading from being
4012 * corrupted. This is not a consuming read, so a producer is not
4013 * expected.
4014 *
4015 * After a sequence of ring_buffer_read_prepare calls, the user is
4016 * expected to make at least one call to ring_buffer_read_prepare_sync.
4017 * Afterwards, ring_buffer_read_start is invoked to get things going
4018 * for real.
4019 *
4020 * This overall must be paired with ring_buffer_read_finish.
4021 */
4022 struct ring_buffer_iter *
4023 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4024 {
4025 struct ring_buffer_per_cpu *cpu_buffer;
4026 struct ring_buffer_iter *iter;
4027
4028 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4029 return NULL;
4030
4031 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4032 if (!iter)
4033 return NULL;
4034
4035 cpu_buffer = buffer->buffers[cpu];
4036
4037 iter->cpu_buffer = cpu_buffer;
4038
4039 atomic_inc(&buffer->resize_disabled);
4040 atomic_inc(&cpu_buffer->record_disabled);
4041
4042 return iter;
4043 }
4044 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4045
4046 /**
4047 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4048 *
4049 * All previously invoked ring_buffer_read_prepare calls to prepare
4050 * iterators will be synchronized. Afterwards, read_buffer_read_start
4051 * calls on those iterators are allowed.
4052 */
4053 void
4054 ring_buffer_read_prepare_sync(void)
4055 {
4056 synchronize_sched();
4057 }
4058 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4059
4060 /**
4061 * ring_buffer_read_start - start a non consuming read of the buffer
4062 * @iter: The iterator returned by ring_buffer_read_prepare
4063 *
4064 * This finalizes the startup of an iteration through the buffer.
4065 * The iterator comes from a call to ring_buffer_read_prepare and
4066 * an intervening ring_buffer_read_prepare_sync must have been
4067 * performed.
4068 *
4069 * Must be paired with ring_buffer_read_finish.
4070 */
4071 void
4072 ring_buffer_read_start(struct ring_buffer_iter *iter)
4073 {
4074 struct ring_buffer_per_cpu *cpu_buffer;
4075 unsigned long flags;
4076
4077 if (!iter)
4078 return;
4079
4080 cpu_buffer = iter->cpu_buffer;
4081
4082 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4083 arch_spin_lock(&cpu_buffer->lock);
4084 rb_iter_reset(iter);
4085 arch_spin_unlock(&cpu_buffer->lock);
4086 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087 }
4088 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4089
4090 /**
4091 * ring_buffer_read_finish - finish reading the iterator of the buffer
4092 * @iter: The iterator retrieved by ring_buffer_start
4093 *
4094 * This re-enables the recording to the buffer, and frees the
4095 * iterator.
4096 */
4097 void
4098 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4099 {
4100 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101 unsigned long flags;
4102
4103 /*
4104 * Ring buffer is disabled from recording, here's a good place
4105 * to check the integrity of the ring buffer.
4106 * Must prevent readers from trying to read, as the check
4107 * clears the HEAD page and readers require it.
4108 */
4109 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4110 rb_check_pages(cpu_buffer);
4111 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4112
4113 atomic_dec(&cpu_buffer->record_disabled);
4114 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4115 kfree(iter);
4116 }
4117 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4118
4119 /**
4120 * ring_buffer_read - read the next item in the ring buffer by the iterator
4121 * @iter: The ring buffer iterator
4122 * @ts: The time stamp of the event read.
4123 *
4124 * This reads the next event in the ring buffer and increments the iterator.
4125 */
4126 struct ring_buffer_event *
4127 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4128 {
4129 struct ring_buffer_event *event;
4130 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4131 unsigned long flags;
4132
4133 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4134 again:
4135 event = rb_iter_peek(iter, ts);
4136 if (!event)
4137 goto out;
4138
4139 if (event->type_len == RINGBUF_TYPE_PADDING)
4140 goto again;
4141
4142 rb_advance_iter(iter);
4143 out:
4144 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4145
4146 return event;
4147 }
4148 EXPORT_SYMBOL_GPL(ring_buffer_read);
4149
4150 /**
4151 * ring_buffer_size - return the size of the ring buffer (in bytes)
4152 * @buffer: The ring buffer.
4153 */
4154 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4155 {
4156 /*
4157 * Earlier, this method returned
4158 * BUF_PAGE_SIZE * buffer->nr_pages
4159 * Since the nr_pages field is now removed, we have converted this to
4160 * return the per cpu buffer value.
4161 */
4162 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163 return 0;
4164
4165 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4166 }
4167 EXPORT_SYMBOL_GPL(ring_buffer_size);
4168
4169 static void
4170 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4171 {
4172 rb_head_page_deactivate(cpu_buffer);
4173
4174 cpu_buffer->head_page
4175 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4176 local_set(&cpu_buffer->head_page->write, 0);
4177 local_set(&cpu_buffer->head_page->entries, 0);
4178 local_set(&cpu_buffer->head_page->page->commit, 0);
4179
4180 cpu_buffer->head_page->read = 0;
4181
4182 cpu_buffer->tail_page = cpu_buffer->head_page;
4183 cpu_buffer->commit_page = cpu_buffer->head_page;
4184
4185 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4186 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4187 local_set(&cpu_buffer->reader_page->write, 0);
4188 local_set(&cpu_buffer->reader_page->entries, 0);
4189 local_set(&cpu_buffer->reader_page->page->commit, 0);
4190 cpu_buffer->reader_page->read = 0;
4191
4192 local_set(&cpu_buffer->entries_bytes, 0);
4193 local_set(&cpu_buffer->overrun, 0);
4194 local_set(&cpu_buffer->commit_overrun, 0);
4195 local_set(&cpu_buffer->dropped_events, 0);
4196 local_set(&cpu_buffer->entries, 0);
4197 local_set(&cpu_buffer->committing, 0);
4198 local_set(&cpu_buffer->commits, 0);
4199 cpu_buffer->read = 0;
4200 cpu_buffer->read_bytes = 0;
4201
4202 cpu_buffer->write_stamp = 0;
4203 cpu_buffer->read_stamp = 0;
4204
4205 cpu_buffer->lost_events = 0;
4206 cpu_buffer->last_overrun = 0;
4207
4208 rb_head_page_activate(cpu_buffer);
4209 }
4210
4211 /**
4212 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4213 * @buffer: The ring buffer to reset a per cpu buffer of
4214 * @cpu: The CPU buffer to be reset
4215 */
4216 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4217 {
4218 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4219 unsigned long flags;
4220
4221 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222 return;
4223
4224 atomic_inc(&buffer->resize_disabled);
4225 atomic_inc(&cpu_buffer->record_disabled);
4226
4227 /* Make sure all commits have finished */
4228 synchronize_sched();
4229
4230 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4231
4232 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4233 goto out;
4234
4235 arch_spin_lock(&cpu_buffer->lock);
4236
4237 rb_reset_cpu(cpu_buffer);
4238
4239 arch_spin_unlock(&cpu_buffer->lock);
4240
4241 out:
4242 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4243
4244 atomic_dec(&cpu_buffer->record_disabled);
4245 atomic_dec(&buffer->resize_disabled);
4246 }
4247 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4248
4249 /**
4250 * ring_buffer_reset - reset a ring buffer
4251 * @buffer: The ring buffer to reset all cpu buffers
4252 */
4253 void ring_buffer_reset(struct ring_buffer *buffer)
4254 {
4255 int cpu;
4256
4257 for_each_buffer_cpu(buffer, cpu)
4258 ring_buffer_reset_cpu(buffer, cpu);
4259 }
4260 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4261
4262 /**
4263 * rind_buffer_empty - is the ring buffer empty?
4264 * @buffer: The ring buffer to test
4265 */
4266 int ring_buffer_empty(struct ring_buffer *buffer)
4267 {
4268 struct ring_buffer_per_cpu *cpu_buffer;
4269 unsigned long flags;
4270 int dolock;
4271 int cpu;
4272 int ret;
4273
4274 dolock = rb_ok_to_lock();
4275
4276 /* yes this is racy, but if you don't like the race, lock the buffer */
4277 for_each_buffer_cpu(buffer, cpu) {
4278 cpu_buffer = buffer->buffers[cpu];
4279 local_irq_save(flags);
4280 if (dolock)
4281 raw_spin_lock(&cpu_buffer->reader_lock);
4282 ret = rb_per_cpu_empty(cpu_buffer);
4283 if (dolock)
4284 raw_spin_unlock(&cpu_buffer->reader_lock);
4285 local_irq_restore(flags);
4286
4287 if (!ret)
4288 return 0;
4289 }
4290
4291 return 1;
4292 }
4293 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4294
4295 /**
4296 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4297 * @buffer: The ring buffer
4298 * @cpu: The CPU buffer to test
4299 */
4300 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4301 {
4302 struct ring_buffer_per_cpu *cpu_buffer;
4303 unsigned long flags;
4304 int dolock;
4305 int ret;
4306
4307 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4308 return 1;
4309
4310 dolock = rb_ok_to_lock();
4311
4312 cpu_buffer = buffer->buffers[cpu];
4313 local_irq_save(flags);
4314 if (dolock)
4315 raw_spin_lock(&cpu_buffer->reader_lock);
4316 ret = rb_per_cpu_empty(cpu_buffer);
4317 if (dolock)
4318 raw_spin_unlock(&cpu_buffer->reader_lock);
4319 local_irq_restore(flags);
4320
4321 return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4324
4325 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4326 /**
4327 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4328 * @buffer_a: One buffer to swap with
4329 * @buffer_b: The other buffer to swap with
4330 *
4331 * This function is useful for tracers that want to take a "snapshot"
4332 * of a CPU buffer and has another back up buffer lying around.
4333 * it is expected that the tracer handles the cpu buffer not being
4334 * used at the moment.
4335 */
4336 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4337 struct ring_buffer *buffer_b, int cpu)
4338 {
4339 struct ring_buffer_per_cpu *cpu_buffer_a;
4340 struct ring_buffer_per_cpu *cpu_buffer_b;
4341 int ret = -EINVAL;
4342
4343 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4344 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4345 goto out;
4346
4347 cpu_buffer_a = buffer_a->buffers[cpu];
4348 cpu_buffer_b = buffer_b->buffers[cpu];
4349
4350 /* At least make sure the two buffers are somewhat the same */
4351 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4352 goto out;
4353
4354 ret = -EAGAIN;
4355
4356 if (ring_buffer_flags != RB_BUFFERS_ON)
4357 goto out;
4358
4359 if (atomic_read(&buffer_a->record_disabled))
4360 goto out;
4361
4362 if (atomic_read(&buffer_b->record_disabled))
4363 goto out;
4364
4365 if (atomic_read(&cpu_buffer_a->record_disabled))
4366 goto out;
4367
4368 if (atomic_read(&cpu_buffer_b->record_disabled))
4369 goto out;
4370
4371 /*
4372 * We can't do a synchronize_sched here because this
4373 * function can be called in atomic context.
4374 * Normally this will be called from the same CPU as cpu.
4375 * If not it's up to the caller to protect this.
4376 */
4377 atomic_inc(&cpu_buffer_a->record_disabled);
4378 atomic_inc(&cpu_buffer_b->record_disabled);
4379
4380 ret = -EBUSY;
4381 if (local_read(&cpu_buffer_a->committing))
4382 goto out_dec;
4383 if (local_read(&cpu_buffer_b->committing))
4384 goto out_dec;
4385
4386 buffer_a->buffers[cpu] = cpu_buffer_b;
4387 buffer_b->buffers[cpu] = cpu_buffer_a;
4388
4389 cpu_buffer_b->buffer = buffer_a;
4390 cpu_buffer_a->buffer = buffer_b;
4391
4392 ret = 0;
4393
4394 out_dec:
4395 atomic_dec(&cpu_buffer_a->record_disabled);
4396 atomic_dec(&cpu_buffer_b->record_disabled);
4397 out:
4398 return ret;
4399 }
4400 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4401 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4402
4403 /**
4404 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4405 * @buffer: the buffer to allocate for.
4406 * @cpu: the cpu buffer to allocate.
4407 *
4408 * This function is used in conjunction with ring_buffer_read_page.
4409 * When reading a full page from the ring buffer, these functions
4410 * can be used to speed up the process. The calling function should
4411 * allocate a few pages first with this function. Then when it
4412 * needs to get pages from the ring buffer, it passes the result
4413 * of this function into ring_buffer_read_page, which will swap
4414 * the page that was allocated, with the read page of the buffer.
4415 *
4416 * Returns:
4417 * The page allocated, or NULL on error.
4418 */
4419 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4420 {
4421 struct buffer_data_page *bpage;
4422 struct page *page;
4423
4424 page = alloc_pages_node(cpu_to_node(cpu),
4425 GFP_KERNEL | __GFP_NORETRY, 0);
4426 if (!page)
4427 return NULL;
4428
4429 bpage = page_address(page);
4430
4431 rb_init_page(bpage);
4432
4433 return bpage;
4434 }
4435 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4436
4437 /**
4438 * ring_buffer_free_read_page - free an allocated read page
4439 * @buffer: the buffer the page was allocate for
4440 * @data: the page to free
4441 *
4442 * Free a page allocated from ring_buffer_alloc_read_page.
4443 */
4444 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4445 {
4446 free_page((unsigned long)data);
4447 }
4448 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4449
4450 /**
4451 * ring_buffer_read_page - extract a page from the ring buffer
4452 * @buffer: buffer to extract from
4453 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4454 * @len: amount to extract
4455 * @cpu: the cpu of the buffer to extract
4456 * @full: should the extraction only happen when the page is full.
4457 *
4458 * This function will pull out a page from the ring buffer and consume it.
4459 * @data_page must be the address of the variable that was returned
4460 * from ring_buffer_alloc_read_page. This is because the page might be used
4461 * to swap with a page in the ring buffer.
4462 *
4463 * for example:
4464 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4465 * if (!rpage)
4466 * return error;
4467 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4468 * if (ret >= 0)
4469 * process_page(rpage, ret);
4470 *
4471 * When @full is set, the function will not return true unless
4472 * the writer is off the reader page.
4473 *
4474 * Note: it is up to the calling functions to handle sleeps and wakeups.
4475 * The ring buffer can be used anywhere in the kernel and can not
4476 * blindly call wake_up. The layer that uses the ring buffer must be
4477 * responsible for that.
4478 *
4479 * Returns:
4480 * >=0 if data has been transferred, returns the offset of consumed data.
4481 * <0 if no data has been transferred.
4482 */
4483 int ring_buffer_read_page(struct ring_buffer *buffer,
4484 void **data_page, size_t len, int cpu, int full)
4485 {
4486 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4487 struct ring_buffer_event *event;
4488 struct buffer_data_page *bpage;
4489 struct buffer_page *reader;
4490 unsigned long missed_events;
4491 unsigned long flags;
4492 unsigned int commit;
4493 unsigned int read;
4494 u64 save_timestamp;
4495 int ret = -1;
4496
4497 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4498 goto out;
4499
4500 /*
4501 * If len is not big enough to hold the page header, then
4502 * we can not copy anything.
4503 */
4504 if (len <= BUF_PAGE_HDR_SIZE)
4505 goto out;
4506
4507 len -= BUF_PAGE_HDR_SIZE;
4508
4509 if (!data_page)
4510 goto out;
4511
4512 bpage = *data_page;
4513 if (!bpage)
4514 goto out;
4515
4516 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4517
4518 reader = rb_get_reader_page(cpu_buffer);
4519 if (!reader)
4520 goto out_unlock;
4521
4522 event = rb_reader_event(cpu_buffer);
4523
4524 read = reader->read;
4525 commit = rb_page_commit(reader);
4526
4527 /* Check if any events were dropped */
4528 missed_events = cpu_buffer->lost_events;
4529
4530 /*
4531 * If this page has been partially read or
4532 * if len is not big enough to read the rest of the page or
4533 * a writer is still on the page, then
4534 * we must copy the data from the page to the buffer.
4535 * Otherwise, we can simply swap the page with the one passed in.
4536 */
4537 if (read || (len < (commit - read)) ||
4538 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4539 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4540 unsigned int rpos = read;
4541 unsigned int pos = 0;
4542 unsigned int size;
4543
4544 if (full)
4545 goto out_unlock;
4546
4547 if (len > (commit - read))
4548 len = (commit - read);
4549
4550 /* Always keep the time extend and data together */
4551 size = rb_event_ts_length(event);
4552
4553 if (len < size)
4554 goto out_unlock;
4555
4556 /* save the current timestamp, since the user will need it */
4557 save_timestamp = cpu_buffer->read_stamp;
4558
4559 /* Need to copy one event at a time */
4560 do {
4561 /* We need the size of one event, because
4562 * rb_advance_reader only advances by one event,
4563 * whereas rb_event_ts_length may include the size of
4564 * one or two events.
4565 * We have already ensured there's enough space if this
4566 * is a time extend. */
4567 size = rb_event_length(event);
4568 memcpy(bpage->data + pos, rpage->data + rpos, size);
4569
4570 len -= size;
4571
4572 rb_advance_reader(cpu_buffer);
4573 rpos = reader->read;
4574 pos += size;
4575
4576 if (rpos >= commit)
4577 break;
4578
4579 event = rb_reader_event(cpu_buffer);
4580 /* Always keep the time extend and data together */
4581 size = rb_event_ts_length(event);
4582 } while (len >= size);
4583
4584 /* update bpage */
4585 local_set(&bpage->commit, pos);
4586 bpage->time_stamp = save_timestamp;
4587
4588 /* we copied everything to the beginning */
4589 read = 0;
4590 } else {
4591 /* update the entry counter */
4592 cpu_buffer->read += rb_page_entries(reader);
4593 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4594
4595 /* swap the pages */
4596 rb_init_page(bpage);
4597 bpage = reader->page;
4598 reader->page = *data_page;
4599 local_set(&reader->write, 0);
4600 local_set(&reader->entries, 0);
4601 reader->read = 0;
4602 *data_page = bpage;
4603
4604 /*
4605 * Use the real_end for the data size,
4606 * This gives us a chance to store the lost events
4607 * on the page.
4608 */
4609 if (reader->real_end)
4610 local_set(&bpage->commit, reader->real_end);
4611 }
4612 ret = read;
4613
4614 cpu_buffer->lost_events = 0;
4615
4616 commit = local_read(&bpage->commit);
4617 /*
4618 * Set a flag in the commit field if we lost events
4619 */
4620 if (missed_events) {
4621 /* If there is room at the end of the page to save the
4622 * missed events, then record it there.
4623 */
4624 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4625 memcpy(&bpage->data[commit], &missed_events,
4626 sizeof(missed_events));
4627 local_add(RB_MISSED_STORED, &bpage->commit);
4628 commit += sizeof(missed_events);
4629 }
4630 local_add(RB_MISSED_EVENTS, &bpage->commit);
4631 }
4632
4633 /*
4634 * This page may be off to user land. Zero it out here.
4635 */
4636 if (commit < BUF_PAGE_SIZE)
4637 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4638
4639 out_unlock:
4640 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4641
4642 out:
4643 return ret;
4644 }
4645 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4646
4647 #ifdef CONFIG_HOTPLUG_CPU
4648 static int rb_cpu_notify(struct notifier_block *self,
4649 unsigned long action, void *hcpu)
4650 {
4651 struct ring_buffer *buffer =
4652 container_of(self, struct ring_buffer, cpu_notify);
4653 long cpu = (long)hcpu;
4654 int cpu_i, nr_pages_same;
4655 unsigned int nr_pages;
4656
4657 switch (action) {
4658 case CPU_UP_PREPARE:
4659 case CPU_UP_PREPARE_FROZEN:
4660 if (cpumask_test_cpu(cpu, buffer->cpumask))
4661 return NOTIFY_OK;
4662
4663 nr_pages = 0;
4664 nr_pages_same = 1;
4665 /* check if all cpu sizes are same */
4666 for_each_buffer_cpu(buffer, cpu_i) {
4667 /* fill in the size from first enabled cpu */
4668 if (nr_pages == 0)
4669 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4670 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4671 nr_pages_same = 0;
4672 break;
4673 }
4674 }
4675 /* allocate minimum pages, user can later expand it */
4676 if (!nr_pages_same)
4677 nr_pages = 2;
4678 buffer->buffers[cpu] =
4679 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4680 if (!buffer->buffers[cpu]) {
4681 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4682 cpu);
4683 return NOTIFY_OK;
4684 }
4685 smp_wmb();
4686 cpumask_set_cpu(cpu, buffer->cpumask);
4687 break;
4688 case CPU_DOWN_PREPARE:
4689 case CPU_DOWN_PREPARE_FROZEN:
4690 /*
4691 * Do nothing.
4692 * If we were to free the buffer, then the user would
4693 * lose any trace that was in the buffer.
4694 */
4695 break;
4696 default:
4697 break;
4698 }
4699 return NOTIFY_OK;
4700 }
4701 #endif
4702
4703 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4704 /*
4705 * This is a basic integrity check of the ring buffer.
4706 * Late in the boot cycle this test will run when configured in.
4707 * It will kick off a thread per CPU that will go into a loop
4708 * writing to the per cpu ring buffer various sizes of data.
4709 * Some of the data will be large items, some small.
4710 *
4711 * Another thread is created that goes into a spin, sending out
4712 * IPIs to the other CPUs to also write into the ring buffer.
4713 * this is to test the nesting ability of the buffer.
4714 *
4715 * Basic stats are recorded and reported. If something in the
4716 * ring buffer should happen that's not expected, a big warning
4717 * is displayed and all ring buffers are disabled.
4718 */
4719 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4720
4721 struct rb_test_data {
4722 struct ring_buffer *buffer;
4723 unsigned long events;
4724 unsigned long bytes_written;
4725 unsigned long bytes_alloc;
4726 unsigned long bytes_dropped;
4727 unsigned long events_nested;
4728 unsigned long bytes_written_nested;
4729 unsigned long bytes_alloc_nested;
4730 unsigned long bytes_dropped_nested;
4731 int min_size_nested;
4732 int max_size_nested;
4733 int max_size;
4734 int min_size;
4735 int cpu;
4736 int cnt;
4737 };
4738
4739 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4740
4741 /* 1 meg per cpu */
4742 #define RB_TEST_BUFFER_SIZE 1048576
4743
4744 static char rb_string[] __initdata =
4745 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4746 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4747 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4748
4749 static bool rb_test_started __initdata;
4750
4751 struct rb_item {
4752 int size;
4753 char str[];
4754 };
4755
4756 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4757 {
4758 struct ring_buffer_event *event;
4759 struct rb_item *item;
4760 bool started;
4761 int event_len;
4762 int size;
4763 int len;
4764 int cnt;
4765
4766 /* Have nested writes different that what is written */
4767 cnt = data->cnt + (nested ? 27 : 0);
4768
4769 /* Multiply cnt by ~e, to make some unique increment */
4770 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4771
4772 len = size + sizeof(struct rb_item);
4773
4774 started = rb_test_started;
4775 /* read rb_test_started before checking buffer enabled */
4776 smp_rmb();
4777
4778 event = ring_buffer_lock_reserve(data->buffer, len);
4779 if (!event) {
4780 /* Ignore dropped events before test starts. */
4781 if (started) {
4782 if (nested)
4783 data->bytes_dropped += len;
4784 else
4785 data->bytes_dropped_nested += len;
4786 }
4787 return len;
4788 }
4789
4790 event_len = ring_buffer_event_length(event);
4791
4792 if (RB_WARN_ON(data->buffer, event_len < len))
4793 goto out;
4794
4795 item = ring_buffer_event_data(event);
4796 item->size = size;
4797 memcpy(item->str, rb_string, size);
4798
4799 if (nested) {
4800 data->bytes_alloc_nested += event_len;
4801 data->bytes_written_nested += len;
4802 data->events_nested++;
4803 if (!data->min_size_nested || len < data->min_size_nested)
4804 data->min_size_nested = len;
4805 if (len > data->max_size_nested)
4806 data->max_size_nested = len;
4807 } else {
4808 data->bytes_alloc += event_len;
4809 data->bytes_written += len;
4810 data->events++;
4811 if (!data->min_size || len < data->min_size)
4812 data->max_size = len;
4813 if (len > data->max_size)
4814 data->max_size = len;
4815 }
4816
4817 out:
4818 ring_buffer_unlock_commit(data->buffer, event);
4819
4820 return 0;
4821 }
4822
4823 static __init int rb_test(void *arg)
4824 {
4825 struct rb_test_data *data = arg;
4826
4827 while (!kthread_should_stop()) {
4828 rb_write_something(data, false);
4829 data->cnt++;
4830
4831 set_current_state(TASK_INTERRUPTIBLE);
4832 /* Now sleep between a min of 100-300us and a max of 1ms */
4833 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4834 }
4835
4836 return 0;
4837 }
4838
4839 static __init void rb_ipi(void *ignore)
4840 {
4841 struct rb_test_data *data;
4842 int cpu = smp_processor_id();
4843
4844 data = &rb_data[cpu];
4845 rb_write_something(data, true);
4846 }
4847
4848 static __init int rb_hammer_test(void *arg)
4849 {
4850 while (!kthread_should_stop()) {
4851
4852 /* Send an IPI to all cpus to write data! */
4853 smp_call_function(rb_ipi, NULL, 1);
4854 /* No sleep, but for non preempt, let others run */
4855 schedule();
4856 }
4857
4858 return 0;
4859 }
4860
4861 static __init int test_ringbuffer(void)
4862 {
4863 struct task_struct *rb_hammer;
4864 struct ring_buffer *buffer;
4865 int cpu;
4866 int ret = 0;
4867
4868 pr_info("Running ring buffer tests...\n");
4869
4870 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4871 if (WARN_ON(!buffer))
4872 return 0;
4873
4874 /* Disable buffer so that threads can't write to it yet */
4875 ring_buffer_record_off(buffer);
4876
4877 for_each_online_cpu(cpu) {
4878 rb_data[cpu].buffer = buffer;
4879 rb_data[cpu].cpu = cpu;
4880 rb_data[cpu].cnt = cpu;
4881 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4882 "rbtester/%d", cpu);
4883 if (WARN_ON(!rb_threads[cpu])) {
4884 pr_cont("FAILED\n");
4885 ret = -1;
4886 goto out_free;
4887 }
4888
4889 kthread_bind(rb_threads[cpu], cpu);
4890 wake_up_process(rb_threads[cpu]);
4891 }
4892
4893 /* Now create the rb hammer! */
4894 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4895 if (WARN_ON(!rb_hammer)) {
4896 pr_cont("FAILED\n");
4897 ret = -1;
4898 goto out_free;
4899 }
4900
4901 ring_buffer_record_on(buffer);
4902 /*
4903 * Show buffer is enabled before setting rb_test_started.
4904 * Yes there's a small race window where events could be
4905 * dropped and the thread wont catch it. But when a ring
4906 * buffer gets enabled, there will always be some kind of
4907 * delay before other CPUs see it. Thus, we don't care about
4908 * those dropped events. We care about events dropped after
4909 * the threads see that the buffer is active.
4910 */
4911 smp_wmb();
4912 rb_test_started = true;
4913
4914 set_current_state(TASK_INTERRUPTIBLE);
4915 /* Just run for 10 seconds */;
4916 schedule_timeout(10 * HZ);
4917
4918 kthread_stop(rb_hammer);
4919
4920 out_free:
4921 for_each_online_cpu(cpu) {
4922 if (!rb_threads[cpu])
4923 break;
4924 kthread_stop(rb_threads[cpu]);
4925 }
4926 if (ret) {
4927 ring_buffer_free(buffer);
4928 return ret;
4929 }
4930
4931 /* Report! */
4932 pr_info("finished\n");
4933 for_each_online_cpu(cpu) {
4934 struct ring_buffer_event *event;
4935 struct rb_test_data *data = &rb_data[cpu];
4936 struct rb_item *item;
4937 unsigned long total_events;
4938 unsigned long total_dropped;
4939 unsigned long total_written;
4940 unsigned long total_alloc;
4941 unsigned long total_read = 0;
4942 unsigned long total_size = 0;
4943 unsigned long total_len = 0;
4944 unsigned long total_lost = 0;
4945 unsigned long lost;
4946 int big_event_size;
4947 int small_event_size;
4948
4949 ret = -1;
4950
4951 total_events = data->events + data->events_nested;
4952 total_written = data->bytes_written + data->bytes_written_nested;
4953 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4954 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4955
4956 big_event_size = data->max_size + data->max_size_nested;
4957 small_event_size = data->min_size + data->min_size_nested;
4958
4959 pr_info("CPU %d:\n", cpu);
4960 pr_info(" events: %ld\n", total_events);
4961 pr_info(" dropped bytes: %ld\n", total_dropped);
4962 pr_info(" alloced bytes: %ld\n", total_alloc);
4963 pr_info(" written bytes: %ld\n", total_written);
4964 pr_info(" biggest event: %d\n", big_event_size);
4965 pr_info(" smallest event: %d\n", small_event_size);
4966
4967 if (RB_WARN_ON(buffer, total_dropped))
4968 break;
4969
4970 ret = 0;
4971
4972 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4973 total_lost += lost;
4974 item = ring_buffer_event_data(event);
4975 total_len += ring_buffer_event_length(event);
4976 total_size += item->size + sizeof(struct rb_item);
4977 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4978 pr_info("FAILED!\n");
4979 pr_info("buffer had: %.*s\n", item->size, item->str);
4980 pr_info("expected: %.*s\n", item->size, rb_string);
4981 RB_WARN_ON(buffer, 1);
4982 ret = -1;
4983 break;
4984 }
4985 total_read++;
4986 }
4987 if (ret)
4988 break;
4989
4990 ret = -1;
4991
4992 pr_info(" read events: %ld\n", total_read);
4993 pr_info(" lost events: %ld\n", total_lost);
4994 pr_info(" total events: %ld\n", total_lost + total_read);
4995 pr_info(" recorded len bytes: %ld\n", total_len);
4996 pr_info(" recorded size bytes: %ld\n", total_size);
4997 if (total_lost)
4998 pr_info(" With dropped events, record len and size may not match\n"
4999 " alloced and written from above\n");
5000 if (!total_lost) {
5001 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5002 total_size != total_written))
5003 break;
5004 }
5005 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5006 break;
5007
5008 ret = 0;
5009 }
5010 if (!ret)
5011 pr_info("Ring buffer PASSED!\n");
5012
5013 ring_buffer_free(buffer);
5014 return 0;
5015 }
5016
5017 late_initcall(test_ringbuffer);
5018 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 0.233852 seconds and 6 git commands to generate.