Freezer: make kernel threads nonfreezable by default
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37 * The per-CPU workqueue (if single thread, we always use the first
38 * possible cpu).
39 */
40 struct cpu_workqueue_struct {
41
42 spinlock_t lock;
43
44 struct list_head worklist;
45 wait_queue_head_t more_work;
46 struct work_struct *current_work;
47
48 struct workqueue_struct *wq;
49 struct task_struct *thread;
50
51 int run_depth; /* Detect run_workqueue() recursion depth */
52 } ____cacheline_aligned;
53
54 /*
55 * The externally visible workqueue abstraction is an array of
56 * per-CPU workqueues:
57 */
58 struct workqueue_struct {
59 struct cpu_workqueue_struct *cpu_wq;
60 struct list_head list;
61 const char *name;
62 int singlethread;
63 int freezeable; /* Freeze threads during suspend */
64 };
65
66 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
67 threads to each one as cpus come/go. */
68 static DEFINE_MUTEX(workqueue_mutex);
69 static LIST_HEAD(workqueues);
70
71 static int singlethread_cpu __read_mostly;
72 static cpumask_t cpu_singlethread_map __read_mostly;
73 /*
74 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
75 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
76 * which comes in between can't use for_each_online_cpu(). We could
77 * use cpu_possible_map, the cpumask below is more a documentation
78 * than optimization.
79 */
80 static cpumask_t cpu_populated_map __read_mostly;
81
82 /* If it's single threaded, it isn't in the list of workqueues. */
83 static inline int is_single_threaded(struct workqueue_struct *wq)
84 {
85 return wq->singlethread;
86 }
87
88 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
89 {
90 return is_single_threaded(wq)
91 ? &cpu_singlethread_map : &cpu_populated_map;
92 }
93
94 static
95 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
96 {
97 if (unlikely(is_single_threaded(wq)))
98 cpu = singlethread_cpu;
99 return per_cpu_ptr(wq->cpu_wq, cpu);
100 }
101
102 /*
103 * Set the workqueue on which a work item is to be run
104 * - Must *only* be called if the pending flag is set
105 */
106 static inline void set_wq_data(struct work_struct *work,
107 struct cpu_workqueue_struct *cwq)
108 {
109 unsigned long new;
110
111 BUG_ON(!work_pending(work));
112
113 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
114 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
115 atomic_long_set(&work->data, new);
116 }
117
118 static inline
119 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
120 {
121 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
122 }
123
124 static void insert_work(struct cpu_workqueue_struct *cwq,
125 struct work_struct *work, int tail)
126 {
127 set_wq_data(work, cwq);
128 /*
129 * Ensure that we get the right work->data if we see the
130 * result of list_add() below, see try_to_grab_pending().
131 */
132 smp_wmb();
133 if (tail)
134 list_add_tail(&work->entry, &cwq->worklist);
135 else
136 list_add(&work->entry, &cwq->worklist);
137 wake_up(&cwq->more_work);
138 }
139
140 /* Preempt must be disabled. */
141 static void __queue_work(struct cpu_workqueue_struct *cwq,
142 struct work_struct *work)
143 {
144 unsigned long flags;
145
146 spin_lock_irqsave(&cwq->lock, flags);
147 insert_work(cwq, work, 1);
148 spin_unlock_irqrestore(&cwq->lock, flags);
149 }
150
151 /**
152 * queue_work - queue work on a workqueue
153 * @wq: workqueue to use
154 * @work: work to queue
155 *
156 * Returns 0 if @work was already on a queue, non-zero otherwise.
157 *
158 * We queue the work to the CPU it was submitted, but there is no
159 * guarantee that it will be processed by that CPU.
160 */
161 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
162 {
163 int ret = 0;
164
165 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
166 BUG_ON(!list_empty(&work->entry));
167 __queue_work(wq_per_cpu(wq, get_cpu()), work);
168 put_cpu();
169 ret = 1;
170 }
171 return ret;
172 }
173 EXPORT_SYMBOL_GPL(queue_work);
174
175 void delayed_work_timer_fn(unsigned long __data)
176 {
177 struct delayed_work *dwork = (struct delayed_work *)__data;
178 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
179 struct workqueue_struct *wq = cwq->wq;
180
181 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
182 }
183
184 /**
185 * queue_delayed_work - queue work on a workqueue after delay
186 * @wq: workqueue to use
187 * @dwork: delayable work to queue
188 * @delay: number of jiffies to wait before queueing
189 *
190 * Returns 0 if @work was already on a queue, non-zero otherwise.
191 */
192 int fastcall queue_delayed_work(struct workqueue_struct *wq,
193 struct delayed_work *dwork, unsigned long delay)
194 {
195 timer_stats_timer_set_start_info(&dwork->timer);
196 if (delay == 0)
197 return queue_work(wq, &dwork->work);
198
199 return queue_delayed_work_on(-1, wq, dwork, delay);
200 }
201 EXPORT_SYMBOL_GPL(queue_delayed_work);
202
203 /**
204 * queue_delayed_work_on - queue work on specific CPU after delay
205 * @cpu: CPU number to execute work on
206 * @wq: workqueue to use
207 * @dwork: work to queue
208 * @delay: number of jiffies to wait before queueing
209 *
210 * Returns 0 if @work was already on a queue, non-zero otherwise.
211 */
212 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
213 struct delayed_work *dwork, unsigned long delay)
214 {
215 int ret = 0;
216 struct timer_list *timer = &dwork->timer;
217 struct work_struct *work = &dwork->work;
218
219 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
220 BUG_ON(timer_pending(timer));
221 BUG_ON(!list_empty(&work->entry));
222
223 /* This stores cwq for the moment, for the timer_fn */
224 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
225 timer->expires = jiffies + delay;
226 timer->data = (unsigned long)dwork;
227 timer->function = delayed_work_timer_fn;
228
229 if (unlikely(cpu >= 0))
230 add_timer_on(timer, cpu);
231 else
232 add_timer(timer);
233 ret = 1;
234 }
235 return ret;
236 }
237 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
238
239 static void run_workqueue(struct cpu_workqueue_struct *cwq)
240 {
241 spin_lock_irq(&cwq->lock);
242 cwq->run_depth++;
243 if (cwq->run_depth > 3) {
244 /* morton gets to eat his hat */
245 printk("%s: recursion depth exceeded: %d\n",
246 __FUNCTION__, cwq->run_depth);
247 dump_stack();
248 }
249 while (!list_empty(&cwq->worklist)) {
250 struct work_struct *work = list_entry(cwq->worklist.next,
251 struct work_struct, entry);
252 work_func_t f = work->func;
253
254 cwq->current_work = work;
255 list_del_init(cwq->worklist.next);
256 spin_unlock_irq(&cwq->lock);
257
258 BUG_ON(get_wq_data(work) != cwq);
259 work_clear_pending(work);
260 f(work);
261
262 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
263 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
264 "%s/0x%08x/%d\n",
265 current->comm, preempt_count(),
266 current->pid);
267 printk(KERN_ERR " last function: ");
268 print_symbol("%s\n", (unsigned long)f);
269 debug_show_held_locks(current);
270 dump_stack();
271 }
272
273 spin_lock_irq(&cwq->lock);
274 cwq->current_work = NULL;
275 }
276 cwq->run_depth--;
277 spin_unlock_irq(&cwq->lock);
278 }
279
280 static int worker_thread(void *__cwq)
281 {
282 struct cpu_workqueue_struct *cwq = __cwq;
283 DEFINE_WAIT(wait);
284
285 if (cwq->wq->freezeable)
286 set_freezable();
287
288 set_user_nice(current, -5);
289
290 for (;;) {
291 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
292 if (!freezing(current) &&
293 !kthread_should_stop() &&
294 list_empty(&cwq->worklist))
295 schedule();
296 finish_wait(&cwq->more_work, &wait);
297
298 try_to_freeze();
299
300 if (kthread_should_stop())
301 break;
302
303 run_workqueue(cwq);
304 }
305
306 return 0;
307 }
308
309 struct wq_barrier {
310 struct work_struct work;
311 struct completion done;
312 };
313
314 static void wq_barrier_func(struct work_struct *work)
315 {
316 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
317 complete(&barr->done);
318 }
319
320 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
321 struct wq_barrier *barr, int tail)
322 {
323 INIT_WORK(&barr->work, wq_barrier_func);
324 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
325
326 init_completion(&barr->done);
327
328 insert_work(cwq, &barr->work, tail);
329 }
330
331 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
332 {
333 int active;
334
335 if (cwq->thread == current) {
336 /*
337 * Probably keventd trying to flush its own queue. So simply run
338 * it by hand rather than deadlocking.
339 */
340 run_workqueue(cwq);
341 active = 1;
342 } else {
343 struct wq_barrier barr;
344
345 active = 0;
346 spin_lock_irq(&cwq->lock);
347 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
348 insert_wq_barrier(cwq, &barr, 1);
349 active = 1;
350 }
351 spin_unlock_irq(&cwq->lock);
352
353 if (active)
354 wait_for_completion(&barr.done);
355 }
356
357 return active;
358 }
359
360 /**
361 * flush_workqueue - ensure that any scheduled work has run to completion.
362 * @wq: workqueue to flush
363 *
364 * Forces execution of the workqueue and blocks until its completion.
365 * This is typically used in driver shutdown handlers.
366 *
367 * We sleep until all works which were queued on entry have been handled,
368 * but we are not livelocked by new incoming ones.
369 *
370 * This function used to run the workqueues itself. Now we just wait for the
371 * helper threads to do it.
372 */
373 void fastcall flush_workqueue(struct workqueue_struct *wq)
374 {
375 const cpumask_t *cpu_map = wq_cpu_map(wq);
376 int cpu;
377
378 might_sleep();
379 for_each_cpu_mask(cpu, *cpu_map)
380 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
381 }
382 EXPORT_SYMBOL_GPL(flush_workqueue);
383
384 /*
385 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
386 * so this work can't be re-armed in any way.
387 */
388 static int try_to_grab_pending(struct work_struct *work)
389 {
390 struct cpu_workqueue_struct *cwq;
391 int ret = -1;
392
393 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
394 return 0;
395
396 /*
397 * The queueing is in progress, or it is already queued. Try to
398 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
399 */
400
401 cwq = get_wq_data(work);
402 if (!cwq)
403 return ret;
404
405 spin_lock_irq(&cwq->lock);
406 if (!list_empty(&work->entry)) {
407 /*
408 * This work is queued, but perhaps we locked the wrong cwq.
409 * In that case we must see the new value after rmb(), see
410 * insert_work()->wmb().
411 */
412 smp_rmb();
413 if (cwq == get_wq_data(work)) {
414 list_del_init(&work->entry);
415 ret = 1;
416 }
417 }
418 spin_unlock_irq(&cwq->lock);
419
420 return ret;
421 }
422
423 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
424 struct work_struct *work)
425 {
426 struct wq_barrier barr;
427 int running = 0;
428
429 spin_lock_irq(&cwq->lock);
430 if (unlikely(cwq->current_work == work)) {
431 insert_wq_barrier(cwq, &barr, 0);
432 running = 1;
433 }
434 spin_unlock_irq(&cwq->lock);
435
436 if (unlikely(running))
437 wait_for_completion(&barr.done);
438 }
439
440 static void wait_on_work(struct work_struct *work)
441 {
442 struct cpu_workqueue_struct *cwq;
443 struct workqueue_struct *wq;
444 const cpumask_t *cpu_map;
445 int cpu;
446
447 might_sleep();
448
449 cwq = get_wq_data(work);
450 if (!cwq)
451 return;
452
453 wq = cwq->wq;
454 cpu_map = wq_cpu_map(wq);
455
456 for_each_cpu_mask(cpu, *cpu_map)
457 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
458 }
459
460 static int __cancel_work_timer(struct work_struct *work,
461 struct timer_list* timer)
462 {
463 int ret;
464
465 do {
466 ret = (timer && likely(del_timer(timer)));
467 if (!ret)
468 ret = try_to_grab_pending(work);
469 wait_on_work(work);
470 } while (unlikely(ret < 0));
471
472 work_clear_pending(work);
473 return ret;
474 }
475
476 /**
477 * cancel_work_sync - block until a work_struct's callback has terminated
478 * @work: the work which is to be flushed
479 *
480 * Returns true if @work was pending.
481 *
482 * cancel_work_sync() will cancel the work if it is queued. If the work's
483 * callback appears to be running, cancel_work_sync() will block until it
484 * has completed.
485 *
486 * It is possible to use this function if the work re-queues itself. It can
487 * cancel the work even if it migrates to another workqueue, however in that
488 * case it only guarantees that work->func() has completed on the last queued
489 * workqueue.
490 *
491 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
492 * pending, otherwise it goes into a busy-wait loop until the timer expires.
493 *
494 * The caller must ensure that workqueue_struct on which this work was last
495 * queued can't be destroyed before this function returns.
496 */
497 int cancel_work_sync(struct work_struct *work)
498 {
499 return __cancel_work_timer(work, NULL);
500 }
501 EXPORT_SYMBOL_GPL(cancel_work_sync);
502
503 /**
504 * cancel_delayed_work_sync - reliably kill off a delayed work.
505 * @dwork: the delayed work struct
506 *
507 * Returns true if @dwork was pending.
508 *
509 * It is possible to use this function if @dwork rearms itself via queue_work()
510 * or queue_delayed_work(). See also the comment for cancel_work_sync().
511 */
512 int cancel_delayed_work_sync(struct delayed_work *dwork)
513 {
514 return __cancel_work_timer(&dwork->work, &dwork->timer);
515 }
516 EXPORT_SYMBOL(cancel_delayed_work_sync);
517
518 static struct workqueue_struct *keventd_wq __read_mostly;
519
520 /**
521 * schedule_work - put work task in global workqueue
522 * @work: job to be done
523 *
524 * This puts a job in the kernel-global workqueue.
525 */
526 int fastcall schedule_work(struct work_struct *work)
527 {
528 return queue_work(keventd_wq, work);
529 }
530 EXPORT_SYMBOL(schedule_work);
531
532 /**
533 * schedule_delayed_work - put work task in global workqueue after delay
534 * @dwork: job to be done
535 * @delay: number of jiffies to wait or 0 for immediate execution
536 *
537 * After waiting for a given time this puts a job in the kernel-global
538 * workqueue.
539 */
540 int fastcall schedule_delayed_work(struct delayed_work *dwork,
541 unsigned long delay)
542 {
543 timer_stats_timer_set_start_info(&dwork->timer);
544 return queue_delayed_work(keventd_wq, dwork, delay);
545 }
546 EXPORT_SYMBOL(schedule_delayed_work);
547
548 /**
549 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
550 * @cpu: cpu to use
551 * @dwork: job to be done
552 * @delay: number of jiffies to wait
553 *
554 * After waiting for a given time this puts a job in the kernel-global
555 * workqueue on the specified CPU.
556 */
557 int schedule_delayed_work_on(int cpu,
558 struct delayed_work *dwork, unsigned long delay)
559 {
560 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
561 }
562 EXPORT_SYMBOL(schedule_delayed_work_on);
563
564 /**
565 * schedule_on_each_cpu - call a function on each online CPU from keventd
566 * @func: the function to call
567 *
568 * Returns zero on success.
569 * Returns -ve errno on failure.
570 *
571 * Appears to be racy against CPU hotplug.
572 *
573 * schedule_on_each_cpu() is very slow.
574 */
575 int schedule_on_each_cpu(work_func_t func)
576 {
577 int cpu;
578 struct work_struct *works;
579
580 works = alloc_percpu(struct work_struct);
581 if (!works)
582 return -ENOMEM;
583
584 preempt_disable(); /* CPU hotplug */
585 for_each_online_cpu(cpu) {
586 struct work_struct *work = per_cpu_ptr(works, cpu);
587
588 INIT_WORK(work, func);
589 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
590 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
591 }
592 preempt_enable();
593 flush_workqueue(keventd_wq);
594 free_percpu(works);
595 return 0;
596 }
597
598 void flush_scheduled_work(void)
599 {
600 flush_workqueue(keventd_wq);
601 }
602 EXPORT_SYMBOL(flush_scheduled_work);
603
604 /**
605 * execute_in_process_context - reliably execute the routine with user context
606 * @fn: the function to execute
607 * @ew: guaranteed storage for the execute work structure (must
608 * be available when the work executes)
609 *
610 * Executes the function immediately if process context is available,
611 * otherwise schedules the function for delayed execution.
612 *
613 * Returns: 0 - function was executed
614 * 1 - function was scheduled for execution
615 */
616 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
617 {
618 if (!in_interrupt()) {
619 fn(&ew->work);
620 return 0;
621 }
622
623 INIT_WORK(&ew->work, fn);
624 schedule_work(&ew->work);
625
626 return 1;
627 }
628 EXPORT_SYMBOL_GPL(execute_in_process_context);
629
630 int keventd_up(void)
631 {
632 return keventd_wq != NULL;
633 }
634
635 int current_is_keventd(void)
636 {
637 struct cpu_workqueue_struct *cwq;
638 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
639 int ret = 0;
640
641 BUG_ON(!keventd_wq);
642
643 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
644 if (current == cwq->thread)
645 ret = 1;
646
647 return ret;
648
649 }
650
651 static struct cpu_workqueue_struct *
652 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
653 {
654 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
655
656 cwq->wq = wq;
657 spin_lock_init(&cwq->lock);
658 INIT_LIST_HEAD(&cwq->worklist);
659 init_waitqueue_head(&cwq->more_work);
660
661 return cwq;
662 }
663
664 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
665 {
666 struct workqueue_struct *wq = cwq->wq;
667 const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
668 struct task_struct *p;
669
670 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
671 /*
672 * Nobody can add the work_struct to this cwq,
673 * if (caller is __create_workqueue)
674 * nobody should see this wq
675 * else // caller is CPU_UP_PREPARE
676 * cpu is not on cpu_online_map
677 * so we can abort safely.
678 */
679 if (IS_ERR(p))
680 return PTR_ERR(p);
681
682 cwq->thread = p;
683
684 return 0;
685 }
686
687 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
688 {
689 struct task_struct *p = cwq->thread;
690
691 if (p != NULL) {
692 if (cpu >= 0)
693 kthread_bind(p, cpu);
694 wake_up_process(p);
695 }
696 }
697
698 struct workqueue_struct *__create_workqueue(const char *name,
699 int singlethread, int freezeable)
700 {
701 struct workqueue_struct *wq;
702 struct cpu_workqueue_struct *cwq;
703 int err = 0, cpu;
704
705 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
706 if (!wq)
707 return NULL;
708
709 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
710 if (!wq->cpu_wq) {
711 kfree(wq);
712 return NULL;
713 }
714
715 wq->name = name;
716 wq->singlethread = singlethread;
717 wq->freezeable = freezeable;
718 INIT_LIST_HEAD(&wq->list);
719
720 if (singlethread) {
721 cwq = init_cpu_workqueue(wq, singlethread_cpu);
722 err = create_workqueue_thread(cwq, singlethread_cpu);
723 start_workqueue_thread(cwq, -1);
724 } else {
725 mutex_lock(&workqueue_mutex);
726 list_add(&wq->list, &workqueues);
727
728 for_each_possible_cpu(cpu) {
729 cwq = init_cpu_workqueue(wq, cpu);
730 if (err || !cpu_online(cpu))
731 continue;
732 err = create_workqueue_thread(cwq, cpu);
733 start_workqueue_thread(cwq, cpu);
734 }
735 mutex_unlock(&workqueue_mutex);
736 }
737
738 if (err) {
739 destroy_workqueue(wq);
740 wq = NULL;
741 }
742 return wq;
743 }
744 EXPORT_SYMBOL_GPL(__create_workqueue);
745
746 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
747 {
748 /*
749 * Our caller is either destroy_workqueue() or CPU_DEAD,
750 * workqueue_mutex protects cwq->thread
751 */
752 if (cwq->thread == NULL)
753 return;
754
755 /*
756 * If the caller is CPU_DEAD the single flush_cpu_workqueue()
757 * is not enough, a concurrent flush_workqueue() can insert a
758 * barrier after us.
759 * When ->worklist becomes empty it is safe to exit because no
760 * more work_structs can be queued on this cwq: flush_workqueue
761 * checks list_empty(), and a "normal" queue_work() can't use
762 * a dead CPU.
763 */
764 while (flush_cpu_workqueue(cwq))
765 ;
766
767 kthread_stop(cwq->thread);
768 cwq->thread = NULL;
769 }
770
771 /**
772 * destroy_workqueue - safely terminate a workqueue
773 * @wq: target workqueue
774 *
775 * Safely destroy a workqueue. All work currently pending will be done first.
776 */
777 void destroy_workqueue(struct workqueue_struct *wq)
778 {
779 const cpumask_t *cpu_map = wq_cpu_map(wq);
780 struct cpu_workqueue_struct *cwq;
781 int cpu;
782
783 mutex_lock(&workqueue_mutex);
784 list_del(&wq->list);
785 mutex_unlock(&workqueue_mutex);
786
787 for_each_cpu_mask(cpu, *cpu_map) {
788 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
789 cleanup_workqueue_thread(cwq, cpu);
790 }
791
792 free_percpu(wq->cpu_wq);
793 kfree(wq);
794 }
795 EXPORT_SYMBOL_GPL(destroy_workqueue);
796
797 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
798 unsigned long action,
799 void *hcpu)
800 {
801 unsigned int cpu = (unsigned long)hcpu;
802 struct cpu_workqueue_struct *cwq;
803 struct workqueue_struct *wq;
804
805 action &= ~CPU_TASKS_FROZEN;
806
807 switch (action) {
808 case CPU_LOCK_ACQUIRE:
809 mutex_lock(&workqueue_mutex);
810 return NOTIFY_OK;
811
812 case CPU_LOCK_RELEASE:
813 mutex_unlock(&workqueue_mutex);
814 return NOTIFY_OK;
815
816 case CPU_UP_PREPARE:
817 cpu_set(cpu, cpu_populated_map);
818 }
819
820 list_for_each_entry(wq, &workqueues, list) {
821 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
822
823 switch (action) {
824 case CPU_UP_PREPARE:
825 if (!create_workqueue_thread(cwq, cpu))
826 break;
827 printk(KERN_ERR "workqueue for %i failed\n", cpu);
828 return NOTIFY_BAD;
829
830 case CPU_ONLINE:
831 start_workqueue_thread(cwq, cpu);
832 break;
833
834 case CPU_UP_CANCELED:
835 start_workqueue_thread(cwq, -1);
836 case CPU_DEAD:
837 cleanup_workqueue_thread(cwq, cpu);
838 break;
839 }
840 }
841
842 return NOTIFY_OK;
843 }
844
845 void __init init_workqueues(void)
846 {
847 cpu_populated_map = cpu_online_map;
848 singlethread_cpu = first_cpu(cpu_possible_map);
849 cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
850 hotcpu_notifier(workqueue_cpu_callback, 0);
851 keventd_wq = create_workqueue("events");
852 BUG_ON(!keventd_wq);
853 }
This page took 0.0516 seconds and 5 git commands to generate.