Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
69 * create_worker() is in progress.
70 */
71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73 POOL_FREEZING = 1 << 3, /* freeze in progress */
74
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
106 HIGHPRI_NICE_LEVEL = -20,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * WQ: wq->mutex protected.
135 *
136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
137 *
138 * MD: wq_mayday_lock protected.
139 */
140
141 /* struct worker is defined in workqueue_internal.h */
142
143 struct worker_pool {
144 spinlock_t lock; /* the pool lock */
145 int cpu; /* I: the associated cpu */
146 int node; /* I: the associated node ID */
147 int id; /* I: pool ID */
148 unsigned int flags; /* X: flags */
149
150 struct list_head worklist; /* L: list of pending works */
151 int nr_workers; /* L: total number of workers */
152
153 /* nr_idle includes the ones off idle_list for rebinding */
154 int nr_idle; /* L: currently idle ones */
155
156 struct list_head idle_list; /* X: list of idle workers */
157 struct timer_list idle_timer; /* L: worker idle timeout */
158 struct timer_list mayday_timer; /* L: SOS timer for workers */
159
160 /* a workers is either on busy_hash or idle_list, or the manager */
161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 /* L: hash of busy workers */
163
164 /* see manage_workers() for details on the two manager mutexes */
165 struct mutex manager_arb; /* manager arbitration */
166 struct mutex manager_mutex; /* manager exclusion */
167 struct idr worker_idr; /* MG: worker IDs and iteration */
168
169 struct workqueue_attrs *attrs; /* I: worker attributes */
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
172
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
185 } ____cacheline_aligned_in_smp;
186
187 /*
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
192 */
193 struct pool_workqueue {
194 struct worker_pool *pool; /* I: the associated pool */
195 struct workqueue_struct *wq; /* I: the owning workqueue */
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
198 int refcnt; /* L: reference count */
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
201 int nr_active; /* L: nr of active works */
202 int max_active; /* L: max active works */
203 struct list_head delayed_works; /* L: delayed works */
204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
205 struct list_head mayday_node; /* MD: node on wq->maydays */
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
211 * determined without grabbing wq->mutex.
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216
217 /*
218 * Structure used to wait for workqueue flush.
219 */
220 struct wq_flusher {
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
223 struct completion done; /* flush completion */
224 };
225
226 struct wq_device;
227
228 /*
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
231 */
232 struct workqueue_struct {
233 struct list_head pwqs; /* WR: all pwqs of this wq */
234 struct list_head list; /* PL: list of all workqueues */
235
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
239 atomic_t nr_pwqs_to_flush; /* flush in progress */
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
243
244 struct list_head maydays; /* MD: pwqs requesting rescue */
245 struct worker *rescuer; /* I: rescue worker */
246
247 int nr_drainers; /* WQ: drain in progress */
248 int saved_max_active; /* WQ: saved pwq max_active */
249
250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
252
253 #ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 struct lockdep_map lockdep_map;
258 #endif
259 char name[WQ_NAME_LEN]; /* I: workqueue name */
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266
267 static struct kmem_cache *pwq_cache;
268
269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
292
293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294 static bool workqueue_freezing; /* PL: have wqs started freezing? */
295
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
301
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
308 /* I: attributes used when instantiating ordered pools on demand */
309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310
311 struct workqueue_struct *system_wq __read_mostly;
312 EXPORT_SYMBOL(system_wq);
313 struct workqueue_struct *system_highpri_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_highpri_wq);
315 struct workqueue_struct *system_long_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_long_wq);
317 struct workqueue_struct *system_unbound_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_unbound_wq);
319 struct workqueue_struct *system_freezable_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_wq);
321 struct workqueue_struct *system_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325
326 static int worker_thread(void *__worker);
327 static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 const struct workqueue_attrs *from);
329
330 #define CREATE_TRACE_POINTS
331 #include <trace/events/workqueue.h>
332
333 #define assert_rcu_or_pool_mutex() \
334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
335 lockdep_is_held(&wq_pool_mutex), \
336 "sched RCU or wq_pool_mutex should be held")
337
338 #define assert_rcu_or_wq_mutex(wq) \
339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
340 lockdep_is_held(&wq->mutex), \
341 "sched RCU or wq->mutex should be held")
342
343 #ifdef CONFIG_LOCKDEP
344 #define assert_manager_or_pool_lock(pool) \
345 WARN_ONCE(debug_locks && \
346 !lockdep_is_held(&(pool)->manager_mutex) && \
347 !lockdep_is_held(&(pool)->lock), \
348 "pool->manager_mutex or ->lock should be held")
349 #else
350 #define assert_manager_or_pool_lock(pool) do { } while (0)
351 #endif
352
353 #define for_each_cpu_worker_pool(pool, cpu) \
354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 (pool)++)
357
358 /**
359 * for_each_pool - iterate through all worker_pools in the system
360 * @pool: iteration cursor
361 * @pi: integer used for iteration
362 *
363 * This must be called either with wq_pool_mutex held or sched RCU read
364 * locked. If the pool needs to be used beyond the locking in effect, the
365 * caller is responsible for guaranteeing that the pool stays online.
366 *
367 * The if/else clause exists only for the lockdep assertion and can be
368 * ignored.
369 */
370 #define for_each_pool(pool, pi) \
371 idr_for_each_entry(&worker_pool_idr, pool, pi) \
372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
373 else
374
375 /**
376 * for_each_pool_worker - iterate through all workers of a worker_pool
377 * @worker: iteration cursor
378 * @wi: integer used for iteration
379 * @pool: worker_pool to iterate workers of
380 *
381 * This must be called with either @pool->manager_mutex or ->lock held.
382 *
383 * The if/else clause exists only for the lockdep assertion and can be
384 * ignored.
385 */
386 #define for_each_pool_worker(worker, wi, pool) \
387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 else
390
391 /**
392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393 * @pwq: iteration cursor
394 * @wq: the target workqueue
395 *
396 * This must be called either with wq->mutex held or sched RCU read locked.
397 * If the pwq needs to be used beyond the locking in effect, the caller is
398 * responsible for guaranteeing that the pwq stays online.
399 *
400 * The if/else clause exists only for the lockdep assertion and can be
401 * ignored.
402 */
403 #define for_each_pwq(pwq, wq) \
404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
406 else
407
408 #ifdef CONFIG_DEBUG_OBJECTS_WORK
409
410 static struct debug_obj_descr work_debug_descr;
411
412 static void *work_debug_hint(void *addr)
413 {
414 return ((struct work_struct *) addr)->func;
415 }
416
417 /*
418 * fixup_init is called when:
419 * - an active object is initialized
420 */
421 static int work_fixup_init(void *addr, enum debug_obj_state state)
422 {
423 struct work_struct *work = addr;
424
425 switch (state) {
426 case ODEBUG_STATE_ACTIVE:
427 cancel_work_sync(work);
428 debug_object_init(work, &work_debug_descr);
429 return 1;
430 default:
431 return 0;
432 }
433 }
434
435 /*
436 * fixup_activate is called when:
437 * - an active object is activated
438 * - an unknown object is activated (might be a statically initialized object)
439 */
440 static int work_fixup_activate(void *addr, enum debug_obj_state state)
441 {
442 struct work_struct *work = addr;
443
444 switch (state) {
445
446 case ODEBUG_STATE_NOTAVAILABLE:
447 /*
448 * This is not really a fixup. The work struct was
449 * statically initialized. We just make sure that it
450 * is tracked in the object tracker.
451 */
452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 debug_object_init(work, &work_debug_descr);
454 debug_object_activate(work, &work_debug_descr);
455 return 0;
456 }
457 WARN_ON_ONCE(1);
458 return 0;
459
460 case ODEBUG_STATE_ACTIVE:
461 WARN_ON(1);
462
463 default:
464 return 0;
465 }
466 }
467
468 /*
469 * fixup_free is called when:
470 * - an active object is freed
471 */
472 static int work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 struct work_struct *work = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 cancel_work_sync(work);
479 debug_object_free(work, &work_debug_descr);
480 return 1;
481 default:
482 return 0;
483 }
484 }
485
486 static struct debug_obj_descr work_debug_descr = {
487 .name = "work_struct",
488 .debug_hint = work_debug_hint,
489 .fixup_init = work_fixup_init,
490 .fixup_activate = work_fixup_activate,
491 .fixup_free = work_fixup_free,
492 };
493
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 debug_object_activate(work, &work_debug_descr);
497 }
498
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 debug_object_deactivate(work, &work_debug_descr);
502 }
503
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 if (onstack)
507 debug_object_init_on_stack(work, &work_debug_descr);
508 else
509 debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523
524 /**
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
527 *
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
530 */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 int ret;
534
535 lockdep_assert_held(&wq_pool_mutex);
536
537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 GFP_KERNEL);
539 if (ret >= 0) {
540 pool->id = ret;
541 return 0;
542 }
543 return ret;
544 }
545
546 /**
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
549 * @node: the node ID
550 *
551 * This must be called either with pwq_lock held or sched RCU read locked.
552 * If the pwq needs to be used beyond the locking in effect, the caller is
553 * responsible for guaranteeing that the pwq stays online.
554 *
555 * Return: The unbound pool_workqueue for @node.
556 */
557 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
558 int node)
559 {
560 assert_rcu_or_wq_mutex(wq);
561 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
562 }
563
564 static unsigned int work_color_to_flags(int color)
565 {
566 return color << WORK_STRUCT_COLOR_SHIFT;
567 }
568
569 static int get_work_color(struct work_struct *work)
570 {
571 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
572 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
573 }
574
575 static int work_next_color(int color)
576 {
577 return (color + 1) % WORK_NR_COLORS;
578 }
579
580 /*
581 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
582 * contain the pointer to the queued pwq. Once execution starts, the flag
583 * is cleared and the high bits contain OFFQ flags and pool ID.
584 *
585 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
586 * and clear_work_data() can be used to set the pwq, pool or clear
587 * work->data. These functions should only be called while the work is
588 * owned - ie. while the PENDING bit is set.
589 *
590 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
591 * corresponding to a work. Pool is available once the work has been
592 * queued anywhere after initialization until it is sync canceled. pwq is
593 * available only while the work item is queued.
594 *
595 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
596 * canceled. While being canceled, a work item may have its PENDING set
597 * but stay off timer and worklist for arbitrarily long and nobody should
598 * try to steal the PENDING bit.
599 */
600 static inline void set_work_data(struct work_struct *work, unsigned long data,
601 unsigned long flags)
602 {
603 WARN_ON_ONCE(!work_pending(work));
604 atomic_long_set(&work->data, data | flags | work_static(work));
605 }
606
607 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
608 unsigned long extra_flags)
609 {
610 set_work_data(work, (unsigned long)pwq,
611 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
612 }
613
614 static void set_work_pool_and_keep_pending(struct work_struct *work,
615 int pool_id)
616 {
617 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
618 WORK_STRUCT_PENDING);
619 }
620
621 static void set_work_pool_and_clear_pending(struct work_struct *work,
622 int pool_id)
623 {
624 /*
625 * The following wmb is paired with the implied mb in
626 * test_and_set_bit(PENDING) and ensures all updates to @work made
627 * here are visible to and precede any updates by the next PENDING
628 * owner.
629 */
630 smp_wmb();
631 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
632 }
633
634 static void clear_work_data(struct work_struct *work)
635 {
636 smp_wmb(); /* see set_work_pool_and_clear_pending() */
637 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
638 }
639
640 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
641 {
642 unsigned long data = atomic_long_read(&work->data);
643
644 if (data & WORK_STRUCT_PWQ)
645 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
646 else
647 return NULL;
648 }
649
650 /**
651 * get_work_pool - return the worker_pool a given work was associated with
652 * @work: the work item of interest
653 *
654 * Pools are created and destroyed under wq_pool_mutex, and allows read
655 * access under sched-RCU read lock. As such, this function should be
656 * called under wq_pool_mutex or with preemption disabled.
657 *
658 * All fields of the returned pool are accessible as long as the above
659 * mentioned locking is in effect. If the returned pool needs to be used
660 * beyond the critical section, the caller is responsible for ensuring the
661 * returned pool is and stays online.
662 *
663 * Return: The worker_pool @work was last associated with. %NULL if none.
664 */
665 static struct worker_pool *get_work_pool(struct work_struct *work)
666 {
667 unsigned long data = atomic_long_read(&work->data);
668 int pool_id;
669
670 assert_rcu_or_pool_mutex();
671
672 if (data & WORK_STRUCT_PWQ)
673 return ((struct pool_workqueue *)
674 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
675
676 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
677 if (pool_id == WORK_OFFQ_POOL_NONE)
678 return NULL;
679
680 return idr_find(&worker_pool_idr, pool_id);
681 }
682
683 /**
684 * get_work_pool_id - return the worker pool ID a given work is associated with
685 * @work: the work item of interest
686 *
687 * Return: The worker_pool ID @work was last associated with.
688 * %WORK_OFFQ_POOL_NONE if none.
689 */
690 static int get_work_pool_id(struct work_struct *work)
691 {
692 unsigned long data = atomic_long_read(&work->data);
693
694 if (data & WORK_STRUCT_PWQ)
695 return ((struct pool_workqueue *)
696 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
697
698 return data >> WORK_OFFQ_POOL_SHIFT;
699 }
700
701 static void mark_work_canceling(struct work_struct *work)
702 {
703 unsigned long pool_id = get_work_pool_id(work);
704
705 pool_id <<= WORK_OFFQ_POOL_SHIFT;
706 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
707 }
708
709 static bool work_is_canceling(struct work_struct *work)
710 {
711 unsigned long data = atomic_long_read(&work->data);
712
713 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
714 }
715
716 /*
717 * Policy functions. These define the policies on how the global worker
718 * pools are managed. Unless noted otherwise, these functions assume that
719 * they're being called with pool->lock held.
720 */
721
722 static bool __need_more_worker(struct worker_pool *pool)
723 {
724 return !atomic_read(&pool->nr_running);
725 }
726
727 /*
728 * Need to wake up a worker? Called from anything but currently
729 * running workers.
730 *
731 * Note that, because unbound workers never contribute to nr_running, this
732 * function will always return %true for unbound pools as long as the
733 * worklist isn't empty.
734 */
735 static bool need_more_worker(struct worker_pool *pool)
736 {
737 return !list_empty(&pool->worklist) && __need_more_worker(pool);
738 }
739
740 /* Can I start working? Called from busy but !running workers. */
741 static bool may_start_working(struct worker_pool *pool)
742 {
743 return pool->nr_idle;
744 }
745
746 /* Do I need to keep working? Called from currently running workers. */
747 static bool keep_working(struct worker_pool *pool)
748 {
749 return !list_empty(&pool->worklist) &&
750 atomic_read(&pool->nr_running) <= 1;
751 }
752
753 /* Do we need a new worker? Called from manager. */
754 static bool need_to_create_worker(struct worker_pool *pool)
755 {
756 return need_more_worker(pool) && !may_start_working(pool);
757 }
758
759 /* Do I need to be the manager? */
760 static bool need_to_manage_workers(struct worker_pool *pool)
761 {
762 return need_to_create_worker(pool) ||
763 (pool->flags & POOL_MANAGE_WORKERS);
764 }
765
766 /* Do we have too many workers and should some go away? */
767 static bool too_many_workers(struct worker_pool *pool)
768 {
769 bool managing = mutex_is_locked(&pool->manager_arb);
770 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
771 int nr_busy = pool->nr_workers - nr_idle;
772
773 /*
774 * nr_idle and idle_list may disagree if idle rebinding is in
775 * progress. Never return %true if idle_list is empty.
776 */
777 if (list_empty(&pool->idle_list))
778 return false;
779
780 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
781 }
782
783 /*
784 * Wake up functions.
785 */
786
787 /* Return the first worker. Safe with preemption disabled */
788 static struct worker *first_worker(struct worker_pool *pool)
789 {
790 if (unlikely(list_empty(&pool->idle_list)))
791 return NULL;
792
793 return list_first_entry(&pool->idle_list, struct worker, entry);
794 }
795
796 /**
797 * wake_up_worker - wake up an idle worker
798 * @pool: worker pool to wake worker from
799 *
800 * Wake up the first idle worker of @pool.
801 *
802 * CONTEXT:
803 * spin_lock_irq(pool->lock).
804 */
805 static void wake_up_worker(struct worker_pool *pool)
806 {
807 struct worker *worker = first_worker(pool);
808
809 if (likely(worker))
810 wake_up_process(worker->task);
811 }
812
813 /**
814 * wq_worker_waking_up - a worker is waking up
815 * @task: task waking up
816 * @cpu: CPU @task is waking up to
817 *
818 * This function is called during try_to_wake_up() when a worker is
819 * being awoken.
820 *
821 * CONTEXT:
822 * spin_lock_irq(rq->lock)
823 */
824 void wq_worker_waking_up(struct task_struct *task, int cpu)
825 {
826 struct worker *worker = kthread_data(task);
827
828 if (!(worker->flags & WORKER_NOT_RUNNING)) {
829 WARN_ON_ONCE(worker->pool->cpu != cpu);
830 atomic_inc(&worker->pool->nr_running);
831 }
832 }
833
834 /**
835 * wq_worker_sleeping - a worker is going to sleep
836 * @task: task going to sleep
837 * @cpu: CPU in question, must be the current CPU number
838 *
839 * This function is called during schedule() when a busy worker is
840 * going to sleep. Worker on the same cpu can be woken up by
841 * returning pointer to its task.
842 *
843 * CONTEXT:
844 * spin_lock_irq(rq->lock)
845 *
846 * Return:
847 * Worker task on @cpu to wake up, %NULL if none.
848 */
849 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
850 {
851 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
852 struct worker_pool *pool;
853
854 /*
855 * Rescuers, which may not have all the fields set up like normal
856 * workers, also reach here, let's not access anything before
857 * checking NOT_RUNNING.
858 */
859 if (worker->flags & WORKER_NOT_RUNNING)
860 return NULL;
861
862 pool = worker->pool;
863
864 /* this can only happen on the local cpu */
865 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
866 return NULL;
867
868 /*
869 * The counterpart of the following dec_and_test, implied mb,
870 * worklist not empty test sequence is in insert_work().
871 * Please read comment there.
872 *
873 * NOT_RUNNING is clear. This means that we're bound to and
874 * running on the local cpu w/ rq lock held and preemption
875 * disabled, which in turn means that none else could be
876 * manipulating idle_list, so dereferencing idle_list without pool
877 * lock is safe.
878 */
879 if (atomic_dec_and_test(&pool->nr_running) &&
880 !list_empty(&pool->worklist))
881 to_wakeup = first_worker(pool);
882 return to_wakeup ? to_wakeup->task : NULL;
883 }
884
885 /**
886 * worker_set_flags - set worker flags and adjust nr_running accordingly
887 * @worker: self
888 * @flags: flags to set
889 * @wakeup: wakeup an idle worker if necessary
890 *
891 * Set @flags in @worker->flags and adjust nr_running accordingly. If
892 * nr_running becomes zero and @wakeup is %true, an idle worker is
893 * woken up.
894 *
895 * CONTEXT:
896 * spin_lock_irq(pool->lock)
897 */
898 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
899 bool wakeup)
900 {
901 struct worker_pool *pool = worker->pool;
902
903 WARN_ON_ONCE(worker->task != current);
904
905 /*
906 * If transitioning into NOT_RUNNING, adjust nr_running and
907 * wake up an idle worker as necessary if requested by
908 * @wakeup.
909 */
910 if ((flags & WORKER_NOT_RUNNING) &&
911 !(worker->flags & WORKER_NOT_RUNNING)) {
912 if (wakeup) {
913 if (atomic_dec_and_test(&pool->nr_running) &&
914 !list_empty(&pool->worklist))
915 wake_up_worker(pool);
916 } else
917 atomic_dec(&pool->nr_running);
918 }
919
920 worker->flags |= flags;
921 }
922
923 /**
924 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
925 * @worker: self
926 * @flags: flags to clear
927 *
928 * Clear @flags in @worker->flags and adjust nr_running accordingly.
929 *
930 * CONTEXT:
931 * spin_lock_irq(pool->lock)
932 */
933 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
934 {
935 struct worker_pool *pool = worker->pool;
936 unsigned int oflags = worker->flags;
937
938 WARN_ON_ONCE(worker->task != current);
939
940 worker->flags &= ~flags;
941
942 /*
943 * If transitioning out of NOT_RUNNING, increment nr_running. Note
944 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
945 * of multiple flags, not a single flag.
946 */
947 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
948 if (!(worker->flags & WORKER_NOT_RUNNING))
949 atomic_inc(&pool->nr_running);
950 }
951
952 /**
953 * find_worker_executing_work - find worker which is executing a work
954 * @pool: pool of interest
955 * @work: work to find worker for
956 *
957 * Find a worker which is executing @work on @pool by searching
958 * @pool->busy_hash which is keyed by the address of @work. For a worker
959 * to match, its current execution should match the address of @work and
960 * its work function. This is to avoid unwanted dependency between
961 * unrelated work executions through a work item being recycled while still
962 * being executed.
963 *
964 * This is a bit tricky. A work item may be freed once its execution
965 * starts and nothing prevents the freed area from being recycled for
966 * another work item. If the same work item address ends up being reused
967 * before the original execution finishes, workqueue will identify the
968 * recycled work item as currently executing and make it wait until the
969 * current execution finishes, introducing an unwanted dependency.
970 *
971 * This function checks the work item address and work function to avoid
972 * false positives. Note that this isn't complete as one may construct a
973 * work function which can introduce dependency onto itself through a
974 * recycled work item. Well, if somebody wants to shoot oneself in the
975 * foot that badly, there's only so much we can do, and if such deadlock
976 * actually occurs, it should be easy to locate the culprit work function.
977 *
978 * CONTEXT:
979 * spin_lock_irq(pool->lock).
980 *
981 * Return:
982 * Pointer to worker which is executing @work if found, %NULL
983 * otherwise.
984 */
985 static struct worker *find_worker_executing_work(struct worker_pool *pool,
986 struct work_struct *work)
987 {
988 struct worker *worker;
989
990 hash_for_each_possible(pool->busy_hash, worker, hentry,
991 (unsigned long)work)
992 if (worker->current_work == work &&
993 worker->current_func == work->func)
994 return worker;
995
996 return NULL;
997 }
998
999 /**
1000 * move_linked_works - move linked works to a list
1001 * @work: start of series of works to be scheduled
1002 * @head: target list to append @work to
1003 * @nextp: out paramter for nested worklist walking
1004 *
1005 * Schedule linked works starting from @work to @head. Work series to
1006 * be scheduled starts at @work and includes any consecutive work with
1007 * WORK_STRUCT_LINKED set in its predecessor.
1008 *
1009 * If @nextp is not NULL, it's updated to point to the next work of
1010 * the last scheduled work. This allows move_linked_works() to be
1011 * nested inside outer list_for_each_entry_safe().
1012 *
1013 * CONTEXT:
1014 * spin_lock_irq(pool->lock).
1015 */
1016 static void move_linked_works(struct work_struct *work, struct list_head *head,
1017 struct work_struct **nextp)
1018 {
1019 struct work_struct *n;
1020
1021 /*
1022 * Linked worklist will always end before the end of the list,
1023 * use NULL for list head.
1024 */
1025 list_for_each_entry_safe_from(work, n, NULL, entry) {
1026 list_move_tail(&work->entry, head);
1027 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1028 break;
1029 }
1030
1031 /*
1032 * If we're already inside safe list traversal and have moved
1033 * multiple works to the scheduled queue, the next position
1034 * needs to be updated.
1035 */
1036 if (nextp)
1037 *nextp = n;
1038 }
1039
1040 /**
1041 * get_pwq - get an extra reference on the specified pool_workqueue
1042 * @pwq: pool_workqueue to get
1043 *
1044 * Obtain an extra reference on @pwq. The caller should guarantee that
1045 * @pwq has positive refcnt and be holding the matching pool->lock.
1046 */
1047 static void get_pwq(struct pool_workqueue *pwq)
1048 {
1049 lockdep_assert_held(&pwq->pool->lock);
1050 WARN_ON_ONCE(pwq->refcnt <= 0);
1051 pwq->refcnt++;
1052 }
1053
1054 /**
1055 * put_pwq - put a pool_workqueue reference
1056 * @pwq: pool_workqueue to put
1057 *
1058 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1059 * destruction. The caller should be holding the matching pool->lock.
1060 */
1061 static void put_pwq(struct pool_workqueue *pwq)
1062 {
1063 lockdep_assert_held(&pwq->pool->lock);
1064 if (likely(--pwq->refcnt))
1065 return;
1066 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1067 return;
1068 /*
1069 * @pwq can't be released under pool->lock, bounce to
1070 * pwq_unbound_release_workfn(). This never recurses on the same
1071 * pool->lock as this path is taken only for unbound workqueues and
1072 * the release work item is scheduled on a per-cpu workqueue. To
1073 * avoid lockdep warning, unbound pool->locks are given lockdep
1074 * subclass of 1 in get_unbound_pool().
1075 */
1076 schedule_work(&pwq->unbound_release_work);
1077 }
1078
1079 /**
1080 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1081 * @pwq: pool_workqueue to put (can be %NULL)
1082 *
1083 * put_pwq() with locking. This function also allows %NULL @pwq.
1084 */
1085 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1086 {
1087 if (pwq) {
1088 /*
1089 * As both pwqs and pools are sched-RCU protected, the
1090 * following lock operations are safe.
1091 */
1092 spin_lock_irq(&pwq->pool->lock);
1093 put_pwq(pwq);
1094 spin_unlock_irq(&pwq->pool->lock);
1095 }
1096 }
1097
1098 static void pwq_activate_delayed_work(struct work_struct *work)
1099 {
1100 struct pool_workqueue *pwq = get_work_pwq(work);
1101
1102 trace_workqueue_activate_work(work);
1103 move_linked_works(work, &pwq->pool->worklist, NULL);
1104 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1105 pwq->nr_active++;
1106 }
1107
1108 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1109 {
1110 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1111 struct work_struct, entry);
1112
1113 pwq_activate_delayed_work(work);
1114 }
1115
1116 /**
1117 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1118 * @pwq: pwq of interest
1119 * @color: color of work which left the queue
1120 *
1121 * A work either has completed or is removed from pending queue,
1122 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1123 *
1124 * CONTEXT:
1125 * spin_lock_irq(pool->lock).
1126 */
1127 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1128 {
1129 /* uncolored work items don't participate in flushing or nr_active */
1130 if (color == WORK_NO_COLOR)
1131 goto out_put;
1132
1133 pwq->nr_in_flight[color]--;
1134
1135 pwq->nr_active--;
1136 if (!list_empty(&pwq->delayed_works)) {
1137 /* one down, submit a delayed one */
1138 if (pwq->nr_active < pwq->max_active)
1139 pwq_activate_first_delayed(pwq);
1140 }
1141
1142 /* is flush in progress and are we at the flushing tip? */
1143 if (likely(pwq->flush_color != color))
1144 goto out_put;
1145
1146 /* are there still in-flight works? */
1147 if (pwq->nr_in_flight[color])
1148 goto out_put;
1149
1150 /* this pwq is done, clear flush_color */
1151 pwq->flush_color = -1;
1152
1153 /*
1154 * If this was the last pwq, wake up the first flusher. It
1155 * will handle the rest.
1156 */
1157 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1158 complete(&pwq->wq->first_flusher->done);
1159 out_put:
1160 put_pwq(pwq);
1161 }
1162
1163 /**
1164 * try_to_grab_pending - steal work item from worklist and disable irq
1165 * @work: work item to steal
1166 * @is_dwork: @work is a delayed_work
1167 * @flags: place to store irq state
1168 *
1169 * Try to grab PENDING bit of @work. This function can handle @work in any
1170 * stable state - idle, on timer or on worklist.
1171 *
1172 * Return:
1173 * 1 if @work was pending and we successfully stole PENDING
1174 * 0 if @work was idle and we claimed PENDING
1175 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1176 * -ENOENT if someone else is canceling @work, this state may persist
1177 * for arbitrarily long
1178 *
1179 * Note:
1180 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1181 * interrupted while holding PENDING and @work off queue, irq must be
1182 * disabled on entry. This, combined with delayed_work->timer being
1183 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1184 *
1185 * On successful return, >= 0, irq is disabled and the caller is
1186 * responsible for releasing it using local_irq_restore(*@flags).
1187 *
1188 * This function is safe to call from any context including IRQ handler.
1189 */
1190 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1191 unsigned long *flags)
1192 {
1193 struct worker_pool *pool;
1194 struct pool_workqueue *pwq;
1195
1196 local_irq_save(*flags);
1197
1198 /* try to steal the timer if it exists */
1199 if (is_dwork) {
1200 struct delayed_work *dwork = to_delayed_work(work);
1201
1202 /*
1203 * dwork->timer is irqsafe. If del_timer() fails, it's
1204 * guaranteed that the timer is not queued anywhere and not
1205 * running on the local CPU.
1206 */
1207 if (likely(del_timer(&dwork->timer)))
1208 return 1;
1209 }
1210
1211 /* try to claim PENDING the normal way */
1212 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1213 return 0;
1214
1215 /*
1216 * The queueing is in progress, or it is already queued. Try to
1217 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1218 */
1219 pool = get_work_pool(work);
1220 if (!pool)
1221 goto fail;
1222
1223 spin_lock(&pool->lock);
1224 /*
1225 * work->data is guaranteed to point to pwq only while the work
1226 * item is queued on pwq->wq, and both updating work->data to point
1227 * to pwq on queueing and to pool on dequeueing are done under
1228 * pwq->pool->lock. This in turn guarantees that, if work->data
1229 * points to pwq which is associated with a locked pool, the work
1230 * item is currently queued on that pool.
1231 */
1232 pwq = get_work_pwq(work);
1233 if (pwq && pwq->pool == pool) {
1234 debug_work_deactivate(work);
1235
1236 /*
1237 * A delayed work item cannot be grabbed directly because
1238 * it might have linked NO_COLOR work items which, if left
1239 * on the delayed_list, will confuse pwq->nr_active
1240 * management later on and cause stall. Make sure the work
1241 * item is activated before grabbing.
1242 */
1243 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1244 pwq_activate_delayed_work(work);
1245
1246 list_del_init(&work->entry);
1247 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1248
1249 /* work->data points to pwq iff queued, point to pool */
1250 set_work_pool_and_keep_pending(work, pool->id);
1251
1252 spin_unlock(&pool->lock);
1253 return 1;
1254 }
1255 spin_unlock(&pool->lock);
1256 fail:
1257 local_irq_restore(*flags);
1258 if (work_is_canceling(work))
1259 return -ENOENT;
1260 cpu_relax();
1261 return -EAGAIN;
1262 }
1263
1264 /**
1265 * insert_work - insert a work into a pool
1266 * @pwq: pwq @work belongs to
1267 * @work: work to insert
1268 * @head: insertion point
1269 * @extra_flags: extra WORK_STRUCT_* flags to set
1270 *
1271 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1272 * work_struct flags.
1273 *
1274 * CONTEXT:
1275 * spin_lock_irq(pool->lock).
1276 */
1277 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1278 struct list_head *head, unsigned int extra_flags)
1279 {
1280 struct worker_pool *pool = pwq->pool;
1281
1282 /* we own @work, set data and link */
1283 set_work_pwq(work, pwq, extra_flags);
1284 list_add_tail(&work->entry, head);
1285 get_pwq(pwq);
1286
1287 /*
1288 * Ensure either wq_worker_sleeping() sees the above
1289 * list_add_tail() or we see zero nr_running to avoid workers lying
1290 * around lazily while there are works to be processed.
1291 */
1292 smp_mb();
1293
1294 if (__need_more_worker(pool))
1295 wake_up_worker(pool);
1296 }
1297
1298 /*
1299 * Test whether @work is being queued from another work executing on the
1300 * same workqueue.
1301 */
1302 static bool is_chained_work(struct workqueue_struct *wq)
1303 {
1304 struct worker *worker;
1305
1306 worker = current_wq_worker();
1307 /*
1308 * Return %true iff I'm a worker execuing a work item on @wq. If
1309 * I'm @worker, it's safe to dereference it without locking.
1310 */
1311 return worker && worker->current_pwq->wq == wq;
1312 }
1313
1314 static void __queue_work(int cpu, struct workqueue_struct *wq,
1315 struct work_struct *work)
1316 {
1317 struct pool_workqueue *pwq;
1318 struct worker_pool *last_pool;
1319 struct list_head *worklist;
1320 unsigned int work_flags;
1321 unsigned int req_cpu = cpu;
1322
1323 /*
1324 * While a work item is PENDING && off queue, a task trying to
1325 * steal the PENDING will busy-loop waiting for it to either get
1326 * queued or lose PENDING. Grabbing PENDING and queueing should
1327 * happen with IRQ disabled.
1328 */
1329 WARN_ON_ONCE(!irqs_disabled());
1330
1331 debug_work_activate(work);
1332
1333 /* if draining, only works from the same workqueue are allowed */
1334 if (unlikely(wq->flags & __WQ_DRAINING) &&
1335 WARN_ON_ONCE(!is_chained_work(wq)))
1336 return;
1337 retry:
1338 if (req_cpu == WORK_CPU_UNBOUND)
1339 cpu = raw_smp_processor_id();
1340
1341 /* pwq which will be used unless @work is executing elsewhere */
1342 if (!(wq->flags & WQ_UNBOUND))
1343 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1344 else
1345 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1346
1347 /*
1348 * If @work was previously on a different pool, it might still be
1349 * running there, in which case the work needs to be queued on that
1350 * pool to guarantee non-reentrancy.
1351 */
1352 last_pool = get_work_pool(work);
1353 if (last_pool && last_pool != pwq->pool) {
1354 struct worker *worker;
1355
1356 spin_lock(&last_pool->lock);
1357
1358 worker = find_worker_executing_work(last_pool, work);
1359
1360 if (worker && worker->current_pwq->wq == wq) {
1361 pwq = worker->current_pwq;
1362 } else {
1363 /* meh... not running there, queue here */
1364 spin_unlock(&last_pool->lock);
1365 spin_lock(&pwq->pool->lock);
1366 }
1367 } else {
1368 spin_lock(&pwq->pool->lock);
1369 }
1370
1371 /*
1372 * pwq is determined and locked. For unbound pools, we could have
1373 * raced with pwq release and it could already be dead. If its
1374 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1375 * without another pwq replacing it in the numa_pwq_tbl or while
1376 * work items are executing on it, so the retrying is guaranteed to
1377 * make forward-progress.
1378 */
1379 if (unlikely(!pwq->refcnt)) {
1380 if (wq->flags & WQ_UNBOUND) {
1381 spin_unlock(&pwq->pool->lock);
1382 cpu_relax();
1383 goto retry;
1384 }
1385 /* oops */
1386 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1387 wq->name, cpu);
1388 }
1389
1390 /* pwq determined, queue */
1391 trace_workqueue_queue_work(req_cpu, pwq, work);
1392
1393 if (WARN_ON(!list_empty(&work->entry))) {
1394 spin_unlock(&pwq->pool->lock);
1395 return;
1396 }
1397
1398 pwq->nr_in_flight[pwq->work_color]++;
1399 work_flags = work_color_to_flags(pwq->work_color);
1400
1401 if (likely(pwq->nr_active < pwq->max_active)) {
1402 trace_workqueue_activate_work(work);
1403 pwq->nr_active++;
1404 worklist = &pwq->pool->worklist;
1405 } else {
1406 work_flags |= WORK_STRUCT_DELAYED;
1407 worklist = &pwq->delayed_works;
1408 }
1409
1410 insert_work(pwq, work, worklist, work_flags);
1411
1412 spin_unlock(&pwq->pool->lock);
1413 }
1414
1415 /**
1416 * queue_work_on - queue work on specific cpu
1417 * @cpu: CPU number to execute work on
1418 * @wq: workqueue to use
1419 * @work: work to queue
1420 *
1421 * We queue the work to a specific CPU, the caller must ensure it
1422 * can't go away.
1423 *
1424 * Return: %false if @work was already on a queue, %true otherwise.
1425 */
1426 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1427 struct work_struct *work)
1428 {
1429 bool ret = false;
1430 unsigned long flags;
1431
1432 local_irq_save(flags);
1433
1434 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1435 __queue_work(cpu, wq, work);
1436 ret = true;
1437 }
1438
1439 local_irq_restore(flags);
1440 return ret;
1441 }
1442 EXPORT_SYMBOL(queue_work_on);
1443
1444 void delayed_work_timer_fn(unsigned long __data)
1445 {
1446 struct delayed_work *dwork = (struct delayed_work *)__data;
1447
1448 /* should have been called from irqsafe timer with irq already off */
1449 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1450 }
1451 EXPORT_SYMBOL(delayed_work_timer_fn);
1452
1453 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1454 struct delayed_work *dwork, unsigned long delay)
1455 {
1456 struct timer_list *timer = &dwork->timer;
1457 struct work_struct *work = &dwork->work;
1458
1459 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1460 timer->data != (unsigned long)dwork);
1461 WARN_ON_ONCE(timer_pending(timer));
1462 WARN_ON_ONCE(!list_empty(&work->entry));
1463
1464 /*
1465 * If @delay is 0, queue @dwork->work immediately. This is for
1466 * both optimization and correctness. The earliest @timer can
1467 * expire is on the closest next tick and delayed_work users depend
1468 * on that there's no such delay when @delay is 0.
1469 */
1470 if (!delay) {
1471 __queue_work(cpu, wq, &dwork->work);
1472 return;
1473 }
1474
1475 timer_stats_timer_set_start_info(&dwork->timer);
1476
1477 dwork->wq = wq;
1478 dwork->cpu = cpu;
1479 timer->expires = jiffies + delay;
1480
1481 if (unlikely(cpu != WORK_CPU_UNBOUND))
1482 add_timer_on(timer, cpu);
1483 else
1484 add_timer(timer);
1485 }
1486
1487 /**
1488 * queue_delayed_work_on - queue work on specific CPU after delay
1489 * @cpu: CPU number to execute work on
1490 * @wq: workqueue to use
1491 * @dwork: work to queue
1492 * @delay: number of jiffies to wait before queueing
1493 *
1494 * Return: %false if @work was already on a queue, %true otherwise. If
1495 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1496 * execution.
1497 */
1498 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1499 struct delayed_work *dwork, unsigned long delay)
1500 {
1501 struct work_struct *work = &dwork->work;
1502 bool ret = false;
1503 unsigned long flags;
1504
1505 /* read the comment in __queue_work() */
1506 local_irq_save(flags);
1507
1508 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1509 __queue_delayed_work(cpu, wq, dwork, delay);
1510 ret = true;
1511 }
1512
1513 local_irq_restore(flags);
1514 return ret;
1515 }
1516 EXPORT_SYMBOL(queue_delayed_work_on);
1517
1518 /**
1519 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1520 * @cpu: CPU number to execute work on
1521 * @wq: workqueue to use
1522 * @dwork: work to queue
1523 * @delay: number of jiffies to wait before queueing
1524 *
1525 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1526 * modify @dwork's timer so that it expires after @delay. If @delay is
1527 * zero, @work is guaranteed to be scheduled immediately regardless of its
1528 * current state.
1529 *
1530 * Return: %false if @dwork was idle and queued, %true if @dwork was
1531 * pending and its timer was modified.
1532 *
1533 * This function is safe to call from any context including IRQ handler.
1534 * See try_to_grab_pending() for details.
1535 */
1536 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1537 struct delayed_work *dwork, unsigned long delay)
1538 {
1539 unsigned long flags;
1540 int ret;
1541
1542 do {
1543 ret = try_to_grab_pending(&dwork->work, true, &flags);
1544 } while (unlikely(ret == -EAGAIN));
1545
1546 if (likely(ret >= 0)) {
1547 __queue_delayed_work(cpu, wq, dwork, delay);
1548 local_irq_restore(flags);
1549 }
1550
1551 /* -ENOENT from try_to_grab_pending() becomes %true */
1552 return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1555
1556 /**
1557 * worker_enter_idle - enter idle state
1558 * @worker: worker which is entering idle state
1559 *
1560 * @worker is entering idle state. Update stats and idle timer if
1561 * necessary.
1562 *
1563 * LOCKING:
1564 * spin_lock_irq(pool->lock).
1565 */
1566 static void worker_enter_idle(struct worker *worker)
1567 {
1568 struct worker_pool *pool = worker->pool;
1569
1570 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1571 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1572 (worker->hentry.next || worker->hentry.pprev)))
1573 return;
1574
1575 /* can't use worker_set_flags(), also called from start_worker() */
1576 worker->flags |= WORKER_IDLE;
1577 pool->nr_idle++;
1578 worker->last_active = jiffies;
1579
1580 /* idle_list is LIFO */
1581 list_add(&worker->entry, &pool->idle_list);
1582
1583 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1584 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1585
1586 /*
1587 * Sanity check nr_running. Because wq_unbind_fn() releases
1588 * pool->lock between setting %WORKER_UNBOUND and zapping
1589 * nr_running, the warning may trigger spuriously. Check iff
1590 * unbind is not in progress.
1591 */
1592 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1593 pool->nr_workers == pool->nr_idle &&
1594 atomic_read(&pool->nr_running));
1595 }
1596
1597 /**
1598 * worker_leave_idle - leave idle state
1599 * @worker: worker which is leaving idle state
1600 *
1601 * @worker is leaving idle state. Update stats.
1602 *
1603 * LOCKING:
1604 * spin_lock_irq(pool->lock).
1605 */
1606 static void worker_leave_idle(struct worker *worker)
1607 {
1608 struct worker_pool *pool = worker->pool;
1609
1610 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1611 return;
1612 worker_clr_flags(worker, WORKER_IDLE);
1613 pool->nr_idle--;
1614 list_del_init(&worker->entry);
1615 }
1616
1617 /**
1618 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1619 * @pool: target worker_pool
1620 *
1621 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1622 *
1623 * Works which are scheduled while the cpu is online must at least be
1624 * scheduled to a worker which is bound to the cpu so that if they are
1625 * flushed from cpu callbacks while cpu is going down, they are
1626 * guaranteed to execute on the cpu.
1627 *
1628 * This function is to be used by unbound workers and rescuers to bind
1629 * themselves to the target cpu and may race with cpu going down or
1630 * coming online. kthread_bind() can't be used because it may put the
1631 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1632 * verbatim as it's best effort and blocking and pool may be
1633 * [dis]associated in the meantime.
1634 *
1635 * This function tries set_cpus_allowed() and locks pool and verifies the
1636 * binding against %POOL_DISASSOCIATED which is set during
1637 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1638 * enters idle state or fetches works without dropping lock, it can
1639 * guarantee the scheduling requirement described in the first paragraph.
1640 *
1641 * CONTEXT:
1642 * Might sleep. Called without any lock but returns with pool->lock
1643 * held.
1644 *
1645 * Return:
1646 * %true if the associated pool is online (@worker is successfully
1647 * bound), %false if offline.
1648 */
1649 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1650 __acquires(&pool->lock)
1651 {
1652 while (true) {
1653 /*
1654 * The following call may fail, succeed or succeed
1655 * without actually migrating the task to the cpu if
1656 * it races with cpu hotunplug operation. Verify
1657 * against POOL_DISASSOCIATED.
1658 */
1659 if (!(pool->flags & POOL_DISASSOCIATED))
1660 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1661
1662 spin_lock_irq(&pool->lock);
1663 if (pool->flags & POOL_DISASSOCIATED)
1664 return false;
1665 if (task_cpu(current) == pool->cpu &&
1666 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1667 return true;
1668 spin_unlock_irq(&pool->lock);
1669
1670 /*
1671 * We've raced with CPU hot[un]plug. Give it a breather
1672 * and retry migration. cond_resched() is required here;
1673 * otherwise, we might deadlock against cpu_stop trying to
1674 * bring down the CPU on non-preemptive kernel.
1675 */
1676 cpu_relax();
1677 cond_resched();
1678 }
1679 }
1680
1681 static struct worker *alloc_worker(void)
1682 {
1683 struct worker *worker;
1684
1685 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1686 if (worker) {
1687 INIT_LIST_HEAD(&worker->entry);
1688 INIT_LIST_HEAD(&worker->scheduled);
1689 /* on creation a worker is in !idle && prep state */
1690 worker->flags = WORKER_PREP;
1691 }
1692 return worker;
1693 }
1694
1695 /**
1696 * create_worker - create a new workqueue worker
1697 * @pool: pool the new worker will belong to
1698 *
1699 * Create a new worker which is bound to @pool. The returned worker
1700 * can be started by calling start_worker() or destroyed using
1701 * destroy_worker().
1702 *
1703 * CONTEXT:
1704 * Might sleep. Does GFP_KERNEL allocations.
1705 *
1706 * Return:
1707 * Pointer to the newly created worker.
1708 */
1709 static struct worker *create_worker(struct worker_pool *pool)
1710 {
1711 struct worker *worker = NULL;
1712 int id = -1;
1713 char id_buf[16];
1714
1715 lockdep_assert_held(&pool->manager_mutex);
1716
1717 /*
1718 * ID is needed to determine kthread name. Allocate ID first
1719 * without installing the pointer.
1720 */
1721 idr_preload(GFP_KERNEL);
1722 spin_lock_irq(&pool->lock);
1723
1724 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1725
1726 spin_unlock_irq(&pool->lock);
1727 idr_preload_end();
1728 if (id < 0)
1729 goto fail;
1730
1731 worker = alloc_worker();
1732 if (!worker)
1733 goto fail;
1734
1735 worker->pool = pool;
1736 worker->id = id;
1737
1738 if (pool->cpu >= 0)
1739 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1740 pool->attrs->nice < 0 ? "H" : "");
1741 else
1742 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1743
1744 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1745 "kworker/%s", id_buf);
1746 if (IS_ERR(worker->task))
1747 goto fail;
1748
1749 set_user_nice(worker->task, pool->attrs->nice);
1750
1751 /* prevent userland from meddling with cpumask of workqueue workers */
1752 worker->task->flags |= PF_NO_SETAFFINITY;
1753
1754 /*
1755 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1756 * online CPUs. It'll be re-applied when any of the CPUs come up.
1757 */
1758 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1759
1760 /*
1761 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1762 * remains stable across this function. See the comments above the
1763 * flag definition for details.
1764 */
1765 if (pool->flags & POOL_DISASSOCIATED)
1766 worker->flags |= WORKER_UNBOUND;
1767
1768 /* successful, commit the pointer to idr */
1769 spin_lock_irq(&pool->lock);
1770 idr_replace(&pool->worker_idr, worker, worker->id);
1771 spin_unlock_irq(&pool->lock);
1772
1773 return worker;
1774
1775 fail:
1776 if (id >= 0) {
1777 spin_lock_irq(&pool->lock);
1778 idr_remove(&pool->worker_idr, id);
1779 spin_unlock_irq(&pool->lock);
1780 }
1781 kfree(worker);
1782 return NULL;
1783 }
1784
1785 /**
1786 * start_worker - start a newly created worker
1787 * @worker: worker to start
1788 *
1789 * Make the pool aware of @worker and start it.
1790 *
1791 * CONTEXT:
1792 * spin_lock_irq(pool->lock).
1793 */
1794 static void start_worker(struct worker *worker)
1795 {
1796 worker->flags |= WORKER_STARTED;
1797 worker->pool->nr_workers++;
1798 worker_enter_idle(worker);
1799 wake_up_process(worker->task);
1800 }
1801
1802 /**
1803 * create_and_start_worker - create and start a worker for a pool
1804 * @pool: the target pool
1805 *
1806 * Grab the managership of @pool and create and start a new worker for it.
1807 *
1808 * Return: 0 on success. A negative error code otherwise.
1809 */
1810 static int create_and_start_worker(struct worker_pool *pool)
1811 {
1812 struct worker *worker;
1813
1814 mutex_lock(&pool->manager_mutex);
1815
1816 worker = create_worker(pool);
1817 if (worker) {
1818 spin_lock_irq(&pool->lock);
1819 start_worker(worker);
1820 spin_unlock_irq(&pool->lock);
1821 }
1822
1823 mutex_unlock(&pool->manager_mutex);
1824
1825 return worker ? 0 : -ENOMEM;
1826 }
1827
1828 /**
1829 * destroy_worker - destroy a workqueue worker
1830 * @worker: worker to be destroyed
1831 *
1832 * Destroy @worker and adjust @pool stats accordingly.
1833 *
1834 * CONTEXT:
1835 * spin_lock_irq(pool->lock) which is released and regrabbed.
1836 */
1837 static void destroy_worker(struct worker *worker)
1838 {
1839 struct worker_pool *pool = worker->pool;
1840
1841 lockdep_assert_held(&pool->manager_mutex);
1842 lockdep_assert_held(&pool->lock);
1843
1844 /* sanity check frenzy */
1845 if (WARN_ON(worker->current_work) ||
1846 WARN_ON(!list_empty(&worker->scheduled)))
1847 return;
1848
1849 if (worker->flags & WORKER_STARTED)
1850 pool->nr_workers--;
1851 if (worker->flags & WORKER_IDLE)
1852 pool->nr_idle--;
1853
1854 /*
1855 * Once WORKER_DIE is set, the kworker may destroy itself at any
1856 * point. Pin to ensure the task stays until we're done with it.
1857 */
1858 get_task_struct(worker->task);
1859
1860 list_del_init(&worker->entry);
1861 worker->flags |= WORKER_DIE;
1862
1863 idr_remove(&pool->worker_idr, worker->id);
1864
1865 spin_unlock_irq(&pool->lock);
1866
1867 kthread_stop(worker->task);
1868 put_task_struct(worker->task);
1869 kfree(worker);
1870
1871 spin_lock_irq(&pool->lock);
1872 }
1873
1874 static void idle_worker_timeout(unsigned long __pool)
1875 {
1876 struct worker_pool *pool = (void *)__pool;
1877
1878 spin_lock_irq(&pool->lock);
1879
1880 if (too_many_workers(pool)) {
1881 struct worker *worker;
1882 unsigned long expires;
1883
1884 /* idle_list is kept in LIFO order, check the last one */
1885 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1886 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1887
1888 if (time_before(jiffies, expires))
1889 mod_timer(&pool->idle_timer, expires);
1890 else {
1891 /* it's been idle for too long, wake up manager */
1892 pool->flags |= POOL_MANAGE_WORKERS;
1893 wake_up_worker(pool);
1894 }
1895 }
1896
1897 spin_unlock_irq(&pool->lock);
1898 }
1899
1900 static void send_mayday(struct work_struct *work)
1901 {
1902 struct pool_workqueue *pwq = get_work_pwq(work);
1903 struct workqueue_struct *wq = pwq->wq;
1904
1905 lockdep_assert_held(&wq_mayday_lock);
1906
1907 if (!wq->rescuer)
1908 return;
1909
1910 /* mayday mayday mayday */
1911 if (list_empty(&pwq->mayday_node)) {
1912 list_add_tail(&pwq->mayday_node, &wq->maydays);
1913 wake_up_process(wq->rescuer->task);
1914 }
1915 }
1916
1917 static void pool_mayday_timeout(unsigned long __pool)
1918 {
1919 struct worker_pool *pool = (void *)__pool;
1920 struct work_struct *work;
1921
1922 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1923 spin_lock(&pool->lock);
1924
1925 if (need_to_create_worker(pool)) {
1926 /*
1927 * We've been trying to create a new worker but
1928 * haven't been successful. We might be hitting an
1929 * allocation deadlock. Send distress signals to
1930 * rescuers.
1931 */
1932 list_for_each_entry(work, &pool->worklist, entry)
1933 send_mayday(work);
1934 }
1935
1936 spin_unlock(&pool->lock);
1937 spin_unlock_irq(&wq_mayday_lock);
1938
1939 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1940 }
1941
1942 /**
1943 * maybe_create_worker - create a new worker if necessary
1944 * @pool: pool to create a new worker for
1945 *
1946 * Create a new worker for @pool if necessary. @pool is guaranteed to
1947 * have at least one idle worker on return from this function. If
1948 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1949 * sent to all rescuers with works scheduled on @pool to resolve
1950 * possible allocation deadlock.
1951 *
1952 * On return, need_to_create_worker() is guaranteed to be %false and
1953 * may_start_working() %true.
1954 *
1955 * LOCKING:
1956 * spin_lock_irq(pool->lock) which may be released and regrabbed
1957 * multiple times. Does GFP_KERNEL allocations. Called only from
1958 * manager.
1959 *
1960 * Return:
1961 * %false if no action was taken and pool->lock stayed locked, %true
1962 * otherwise.
1963 */
1964 static bool maybe_create_worker(struct worker_pool *pool)
1965 __releases(&pool->lock)
1966 __acquires(&pool->lock)
1967 {
1968 if (!need_to_create_worker(pool))
1969 return false;
1970 restart:
1971 spin_unlock_irq(&pool->lock);
1972
1973 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1974 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1975
1976 while (true) {
1977 struct worker *worker;
1978
1979 worker = create_worker(pool);
1980 if (worker) {
1981 del_timer_sync(&pool->mayday_timer);
1982 spin_lock_irq(&pool->lock);
1983 start_worker(worker);
1984 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1985 goto restart;
1986 return true;
1987 }
1988
1989 if (!need_to_create_worker(pool))
1990 break;
1991
1992 __set_current_state(TASK_INTERRUPTIBLE);
1993 schedule_timeout(CREATE_COOLDOWN);
1994
1995 if (!need_to_create_worker(pool))
1996 break;
1997 }
1998
1999 del_timer_sync(&pool->mayday_timer);
2000 spin_lock_irq(&pool->lock);
2001 if (need_to_create_worker(pool))
2002 goto restart;
2003 return true;
2004 }
2005
2006 /**
2007 * maybe_destroy_worker - destroy workers which have been idle for a while
2008 * @pool: pool to destroy workers for
2009 *
2010 * Destroy @pool workers which have been idle for longer than
2011 * IDLE_WORKER_TIMEOUT.
2012 *
2013 * LOCKING:
2014 * spin_lock_irq(pool->lock) which may be released and regrabbed
2015 * multiple times. Called only from manager.
2016 *
2017 * Return:
2018 * %false if no action was taken and pool->lock stayed locked, %true
2019 * otherwise.
2020 */
2021 static bool maybe_destroy_workers(struct worker_pool *pool)
2022 {
2023 bool ret = false;
2024
2025 while (too_many_workers(pool)) {
2026 struct worker *worker;
2027 unsigned long expires;
2028
2029 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2030 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2031
2032 if (time_before(jiffies, expires)) {
2033 mod_timer(&pool->idle_timer, expires);
2034 break;
2035 }
2036
2037 destroy_worker(worker);
2038 ret = true;
2039 }
2040
2041 return ret;
2042 }
2043
2044 /**
2045 * manage_workers - manage worker pool
2046 * @worker: self
2047 *
2048 * Assume the manager role and manage the worker pool @worker belongs
2049 * to. At any given time, there can be only zero or one manager per
2050 * pool. The exclusion is handled automatically by this function.
2051 *
2052 * The caller can safely start processing works on false return. On
2053 * true return, it's guaranteed that need_to_create_worker() is false
2054 * and may_start_working() is true.
2055 *
2056 * CONTEXT:
2057 * spin_lock_irq(pool->lock) which may be released and regrabbed
2058 * multiple times. Does GFP_KERNEL allocations.
2059 *
2060 * Return:
2061 * %false if the pool don't need management and the caller can safely start
2062 * processing works, %true indicates that the function released pool->lock
2063 * and reacquired it to perform some management function and that the
2064 * conditions that the caller verified while holding the lock before
2065 * calling the function might no longer be true.
2066 */
2067 static bool manage_workers(struct worker *worker)
2068 {
2069 struct worker_pool *pool = worker->pool;
2070 bool ret = false;
2071
2072 /*
2073 * Managership is governed by two mutexes - manager_arb and
2074 * manager_mutex. manager_arb handles arbitration of manager role.
2075 * Anyone who successfully grabs manager_arb wins the arbitration
2076 * and becomes the manager. mutex_trylock() on pool->manager_arb
2077 * failure while holding pool->lock reliably indicates that someone
2078 * else is managing the pool and the worker which failed trylock
2079 * can proceed to executing work items. This means that anyone
2080 * grabbing manager_arb is responsible for actually performing
2081 * manager duties. If manager_arb is grabbed and released without
2082 * actual management, the pool may stall indefinitely.
2083 *
2084 * manager_mutex is used for exclusion of actual management
2085 * operations. The holder of manager_mutex can be sure that none
2086 * of management operations, including creation and destruction of
2087 * workers, won't take place until the mutex is released. Because
2088 * manager_mutex doesn't interfere with manager role arbitration,
2089 * it is guaranteed that the pool's management, while may be
2090 * delayed, won't be disturbed by someone else grabbing
2091 * manager_mutex.
2092 */
2093 if (!mutex_trylock(&pool->manager_arb))
2094 return ret;
2095
2096 /*
2097 * With manager arbitration won, manager_mutex would be free in
2098 * most cases. trylock first without dropping @pool->lock.
2099 */
2100 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2101 spin_unlock_irq(&pool->lock);
2102 mutex_lock(&pool->manager_mutex);
2103 spin_lock_irq(&pool->lock);
2104 ret = true;
2105 }
2106
2107 pool->flags &= ~POOL_MANAGE_WORKERS;
2108
2109 /*
2110 * Destroy and then create so that may_start_working() is true
2111 * on return.
2112 */
2113 ret |= maybe_destroy_workers(pool);
2114 ret |= maybe_create_worker(pool);
2115
2116 mutex_unlock(&pool->manager_mutex);
2117 mutex_unlock(&pool->manager_arb);
2118 return ret;
2119 }
2120
2121 /**
2122 * process_one_work - process single work
2123 * @worker: self
2124 * @work: work to process
2125 *
2126 * Process @work. This function contains all the logics necessary to
2127 * process a single work including synchronization against and
2128 * interaction with other workers on the same cpu, queueing and
2129 * flushing. As long as context requirement is met, any worker can
2130 * call this function to process a work.
2131 *
2132 * CONTEXT:
2133 * spin_lock_irq(pool->lock) which is released and regrabbed.
2134 */
2135 static void process_one_work(struct worker *worker, struct work_struct *work)
2136 __releases(&pool->lock)
2137 __acquires(&pool->lock)
2138 {
2139 struct pool_workqueue *pwq = get_work_pwq(work);
2140 struct worker_pool *pool = worker->pool;
2141 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2142 int work_color;
2143 struct worker *collision;
2144 #ifdef CONFIG_LOCKDEP
2145 /*
2146 * It is permissible to free the struct work_struct from
2147 * inside the function that is called from it, this we need to
2148 * take into account for lockdep too. To avoid bogus "held
2149 * lock freed" warnings as well as problems when looking into
2150 * work->lockdep_map, make a copy and use that here.
2151 */
2152 struct lockdep_map lockdep_map;
2153
2154 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2155 #endif
2156 /*
2157 * Ensure we're on the correct CPU. DISASSOCIATED test is
2158 * necessary to avoid spurious warnings from rescuers servicing the
2159 * unbound or a disassociated pool.
2160 */
2161 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2162 !(pool->flags & POOL_DISASSOCIATED) &&
2163 raw_smp_processor_id() != pool->cpu);
2164
2165 /*
2166 * A single work shouldn't be executed concurrently by
2167 * multiple workers on a single cpu. Check whether anyone is
2168 * already processing the work. If so, defer the work to the
2169 * currently executing one.
2170 */
2171 collision = find_worker_executing_work(pool, work);
2172 if (unlikely(collision)) {
2173 move_linked_works(work, &collision->scheduled, NULL);
2174 return;
2175 }
2176
2177 /* claim and dequeue */
2178 debug_work_deactivate(work);
2179 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2180 worker->current_work = work;
2181 worker->current_func = work->func;
2182 worker->current_pwq = pwq;
2183 work_color = get_work_color(work);
2184
2185 list_del_init(&work->entry);
2186
2187 /*
2188 * CPU intensive works don't participate in concurrency
2189 * management. They're the scheduler's responsibility.
2190 */
2191 if (unlikely(cpu_intensive))
2192 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2193
2194 /*
2195 * Unbound pool isn't concurrency managed and work items should be
2196 * executed ASAP. Wake up another worker if necessary.
2197 */
2198 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2199 wake_up_worker(pool);
2200
2201 /*
2202 * Record the last pool and clear PENDING which should be the last
2203 * update to @work. Also, do this inside @pool->lock so that
2204 * PENDING and queued state changes happen together while IRQ is
2205 * disabled.
2206 */
2207 set_work_pool_and_clear_pending(work, pool->id);
2208
2209 spin_unlock_irq(&pool->lock);
2210
2211 lock_map_acquire_read(&pwq->wq->lockdep_map);
2212 lock_map_acquire(&lockdep_map);
2213 trace_workqueue_execute_start(work);
2214 worker->current_func(work);
2215 /*
2216 * While we must be careful to not use "work" after this, the trace
2217 * point will only record its address.
2218 */
2219 trace_workqueue_execute_end(work);
2220 lock_map_release(&lockdep_map);
2221 lock_map_release(&pwq->wq->lockdep_map);
2222
2223 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2224 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2225 " last function: %pf\n",
2226 current->comm, preempt_count(), task_pid_nr(current),
2227 worker->current_func);
2228 debug_show_held_locks(current);
2229 dump_stack();
2230 }
2231
2232 /*
2233 * The following prevents a kworker from hogging CPU on !PREEMPT
2234 * kernels, where a requeueing work item waiting for something to
2235 * happen could deadlock with stop_machine as such work item could
2236 * indefinitely requeue itself while all other CPUs are trapped in
2237 * stop_machine.
2238 */
2239 cond_resched();
2240
2241 spin_lock_irq(&pool->lock);
2242
2243 /* clear cpu intensive status */
2244 if (unlikely(cpu_intensive))
2245 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2246
2247 /* we're done with it, release */
2248 hash_del(&worker->hentry);
2249 worker->current_work = NULL;
2250 worker->current_func = NULL;
2251 worker->current_pwq = NULL;
2252 worker->desc_valid = false;
2253 pwq_dec_nr_in_flight(pwq, work_color);
2254 }
2255
2256 /**
2257 * process_scheduled_works - process scheduled works
2258 * @worker: self
2259 *
2260 * Process all scheduled works. Please note that the scheduled list
2261 * may change while processing a work, so this function repeatedly
2262 * fetches a work from the top and executes it.
2263 *
2264 * CONTEXT:
2265 * spin_lock_irq(pool->lock) which may be released and regrabbed
2266 * multiple times.
2267 */
2268 static void process_scheduled_works(struct worker *worker)
2269 {
2270 while (!list_empty(&worker->scheduled)) {
2271 struct work_struct *work = list_first_entry(&worker->scheduled,
2272 struct work_struct, entry);
2273 process_one_work(worker, work);
2274 }
2275 }
2276
2277 /**
2278 * worker_thread - the worker thread function
2279 * @__worker: self
2280 *
2281 * The worker thread function. All workers belong to a worker_pool -
2282 * either a per-cpu one or dynamic unbound one. These workers process all
2283 * work items regardless of their specific target workqueue. The only
2284 * exception is work items which belong to workqueues with a rescuer which
2285 * will be explained in rescuer_thread().
2286 *
2287 * Return: 0
2288 */
2289 static int worker_thread(void *__worker)
2290 {
2291 struct worker *worker = __worker;
2292 struct worker_pool *pool = worker->pool;
2293
2294 /* tell the scheduler that this is a workqueue worker */
2295 worker->task->flags |= PF_WQ_WORKER;
2296 woke_up:
2297 spin_lock_irq(&pool->lock);
2298
2299 /* am I supposed to die? */
2300 if (unlikely(worker->flags & WORKER_DIE)) {
2301 spin_unlock_irq(&pool->lock);
2302 WARN_ON_ONCE(!list_empty(&worker->entry));
2303 worker->task->flags &= ~PF_WQ_WORKER;
2304 return 0;
2305 }
2306
2307 worker_leave_idle(worker);
2308 recheck:
2309 /* no more worker necessary? */
2310 if (!need_more_worker(pool))
2311 goto sleep;
2312
2313 /* do we need to manage? */
2314 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2315 goto recheck;
2316
2317 /*
2318 * ->scheduled list can only be filled while a worker is
2319 * preparing to process a work or actually processing it.
2320 * Make sure nobody diddled with it while I was sleeping.
2321 */
2322 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2323
2324 /*
2325 * Finish PREP stage. We're guaranteed to have at least one idle
2326 * worker or that someone else has already assumed the manager
2327 * role. This is where @worker starts participating in concurrency
2328 * management if applicable and concurrency management is restored
2329 * after being rebound. See rebind_workers() for details.
2330 */
2331 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2332
2333 do {
2334 struct work_struct *work =
2335 list_first_entry(&pool->worklist,
2336 struct work_struct, entry);
2337
2338 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2339 /* optimization path, not strictly necessary */
2340 process_one_work(worker, work);
2341 if (unlikely(!list_empty(&worker->scheduled)))
2342 process_scheduled_works(worker);
2343 } else {
2344 move_linked_works(work, &worker->scheduled, NULL);
2345 process_scheduled_works(worker);
2346 }
2347 } while (keep_working(pool));
2348
2349 worker_set_flags(worker, WORKER_PREP, false);
2350 sleep:
2351 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2352 goto recheck;
2353
2354 /*
2355 * pool->lock is held and there's no work to process and no need to
2356 * manage, sleep. Workers are woken up only while holding
2357 * pool->lock or from local cpu, so setting the current state
2358 * before releasing pool->lock is enough to prevent losing any
2359 * event.
2360 */
2361 worker_enter_idle(worker);
2362 __set_current_state(TASK_INTERRUPTIBLE);
2363 spin_unlock_irq(&pool->lock);
2364 schedule();
2365 goto woke_up;
2366 }
2367
2368 /**
2369 * rescuer_thread - the rescuer thread function
2370 * @__rescuer: self
2371 *
2372 * Workqueue rescuer thread function. There's one rescuer for each
2373 * workqueue which has WQ_MEM_RECLAIM set.
2374 *
2375 * Regular work processing on a pool may block trying to create a new
2376 * worker which uses GFP_KERNEL allocation which has slight chance of
2377 * developing into deadlock if some works currently on the same queue
2378 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2379 * the problem rescuer solves.
2380 *
2381 * When such condition is possible, the pool summons rescuers of all
2382 * workqueues which have works queued on the pool and let them process
2383 * those works so that forward progress can be guaranteed.
2384 *
2385 * This should happen rarely.
2386 *
2387 * Return: 0
2388 */
2389 static int rescuer_thread(void *__rescuer)
2390 {
2391 struct worker *rescuer = __rescuer;
2392 struct workqueue_struct *wq = rescuer->rescue_wq;
2393 struct list_head *scheduled = &rescuer->scheduled;
2394
2395 set_user_nice(current, RESCUER_NICE_LEVEL);
2396
2397 /*
2398 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2399 * doesn't participate in concurrency management.
2400 */
2401 rescuer->task->flags |= PF_WQ_WORKER;
2402 repeat:
2403 set_current_state(TASK_INTERRUPTIBLE);
2404
2405 if (kthread_should_stop()) {
2406 __set_current_state(TASK_RUNNING);
2407 rescuer->task->flags &= ~PF_WQ_WORKER;
2408 return 0;
2409 }
2410
2411 /* see whether any pwq is asking for help */
2412 spin_lock_irq(&wq_mayday_lock);
2413
2414 while (!list_empty(&wq->maydays)) {
2415 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2416 struct pool_workqueue, mayday_node);
2417 struct worker_pool *pool = pwq->pool;
2418 struct work_struct *work, *n;
2419
2420 __set_current_state(TASK_RUNNING);
2421 list_del_init(&pwq->mayday_node);
2422
2423 spin_unlock_irq(&wq_mayday_lock);
2424
2425 /* migrate to the target cpu if possible */
2426 worker_maybe_bind_and_lock(pool);
2427 rescuer->pool = pool;
2428
2429 /*
2430 * Slurp in all works issued via this workqueue and
2431 * process'em.
2432 */
2433 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2434 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2435 if (get_work_pwq(work) == pwq)
2436 move_linked_works(work, scheduled, &n);
2437
2438 process_scheduled_works(rescuer);
2439
2440 /*
2441 * Leave this pool. If keep_working() is %true, notify a
2442 * regular worker; otherwise, we end up with 0 concurrency
2443 * and stalling the execution.
2444 */
2445 if (keep_working(pool))
2446 wake_up_worker(pool);
2447
2448 rescuer->pool = NULL;
2449 spin_unlock(&pool->lock);
2450 spin_lock(&wq_mayday_lock);
2451 }
2452
2453 spin_unlock_irq(&wq_mayday_lock);
2454
2455 /* rescuers should never participate in concurrency management */
2456 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2457 schedule();
2458 goto repeat;
2459 }
2460
2461 struct wq_barrier {
2462 struct work_struct work;
2463 struct completion done;
2464 };
2465
2466 static void wq_barrier_func(struct work_struct *work)
2467 {
2468 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2469 complete(&barr->done);
2470 }
2471
2472 /**
2473 * insert_wq_barrier - insert a barrier work
2474 * @pwq: pwq to insert barrier into
2475 * @barr: wq_barrier to insert
2476 * @target: target work to attach @barr to
2477 * @worker: worker currently executing @target, NULL if @target is not executing
2478 *
2479 * @barr is linked to @target such that @barr is completed only after
2480 * @target finishes execution. Please note that the ordering
2481 * guarantee is observed only with respect to @target and on the local
2482 * cpu.
2483 *
2484 * Currently, a queued barrier can't be canceled. This is because
2485 * try_to_grab_pending() can't determine whether the work to be
2486 * grabbed is at the head of the queue and thus can't clear LINKED
2487 * flag of the previous work while there must be a valid next work
2488 * after a work with LINKED flag set.
2489 *
2490 * Note that when @worker is non-NULL, @target may be modified
2491 * underneath us, so we can't reliably determine pwq from @target.
2492 *
2493 * CONTEXT:
2494 * spin_lock_irq(pool->lock).
2495 */
2496 static void insert_wq_barrier(struct pool_workqueue *pwq,
2497 struct wq_barrier *barr,
2498 struct work_struct *target, struct worker *worker)
2499 {
2500 struct list_head *head;
2501 unsigned int linked = 0;
2502
2503 /*
2504 * debugobject calls are safe here even with pool->lock locked
2505 * as we know for sure that this will not trigger any of the
2506 * checks and call back into the fixup functions where we
2507 * might deadlock.
2508 */
2509 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2510 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2511 init_completion(&barr->done);
2512
2513 /*
2514 * If @target is currently being executed, schedule the
2515 * barrier to the worker; otherwise, put it after @target.
2516 */
2517 if (worker)
2518 head = worker->scheduled.next;
2519 else {
2520 unsigned long *bits = work_data_bits(target);
2521
2522 head = target->entry.next;
2523 /* there can already be other linked works, inherit and set */
2524 linked = *bits & WORK_STRUCT_LINKED;
2525 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2526 }
2527
2528 debug_work_activate(&barr->work);
2529 insert_work(pwq, &barr->work, head,
2530 work_color_to_flags(WORK_NO_COLOR) | linked);
2531 }
2532
2533 /**
2534 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2535 * @wq: workqueue being flushed
2536 * @flush_color: new flush color, < 0 for no-op
2537 * @work_color: new work color, < 0 for no-op
2538 *
2539 * Prepare pwqs for workqueue flushing.
2540 *
2541 * If @flush_color is non-negative, flush_color on all pwqs should be
2542 * -1. If no pwq has in-flight commands at the specified color, all
2543 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2544 * has in flight commands, its pwq->flush_color is set to
2545 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2546 * wakeup logic is armed and %true is returned.
2547 *
2548 * The caller should have initialized @wq->first_flusher prior to
2549 * calling this function with non-negative @flush_color. If
2550 * @flush_color is negative, no flush color update is done and %false
2551 * is returned.
2552 *
2553 * If @work_color is non-negative, all pwqs should have the same
2554 * work_color which is previous to @work_color and all will be
2555 * advanced to @work_color.
2556 *
2557 * CONTEXT:
2558 * mutex_lock(wq->mutex).
2559 *
2560 * Return:
2561 * %true if @flush_color >= 0 and there's something to flush. %false
2562 * otherwise.
2563 */
2564 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2565 int flush_color, int work_color)
2566 {
2567 bool wait = false;
2568 struct pool_workqueue *pwq;
2569
2570 if (flush_color >= 0) {
2571 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2572 atomic_set(&wq->nr_pwqs_to_flush, 1);
2573 }
2574
2575 for_each_pwq(pwq, wq) {
2576 struct worker_pool *pool = pwq->pool;
2577
2578 spin_lock_irq(&pool->lock);
2579
2580 if (flush_color >= 0) {
2581 WARN_ON_ONCE(pwq->flush_color != -1);
2582
2583 if (pwq->nr_in_flight[flush_color]) {
2584 pwq->flush_color = flush_color;
2585 atomic_inc(&wq->nr_pwqs_to_flush);
2586 wait = true;
2587 }
2588 }
2589
2590 if (work_color >= 0) {
2591 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2592 pwq->work_color = work_color;
2593 }
2594
2595 spin_unlock_irq(&pool->lock);
2596 }
2597
2598 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2599 complete(&wq->first_flusher->done);
2600
2601 return wait;
2602 }
2603
2604 /**
2605 * flush_workqueue - ensure that any scheduled work has run to completion.
2606 * @wq: workqueue to flush
2607 *
2608 * This function sleeps until all work items which were queued on entry
2609 * have finished execution, but it is not livelocked by new incoming ones.
2610 */
2611 void flush_workqueue(struct workqueue_struct *wq)
2612 {
2613 struct wq_flusher this_flusher = {
2614 .list = LIST_HEAD_INIT(this_flusher.list),
2615 .flush_color = -1,
2616 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2617 };
2618 int next_color;
2619
2620 lock_map_acquire(&wq->lockdep_map);
2621 lock_map_release(&wq->lockdep_map);
2622
2623 mutex_lock(&wq->mutex);
2624
2625 /*
2626 * Start-to-wait phase
2627 */
2628 next_color = work_next_color(wq->work_color);
2629
2630 if (next_color != wq->flush_color) {
2631 /*
2632 * Color space is not full. The current work_color
2633 * becomes our flush_color and work_color is advanced
2634 * by one.
2635 */
2636 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2637 this_flusher.flush_color = wq->work_color;
2638 wq->work_color = next_color;
2639
2640 if (!wq->first_flusher) {
2641 /* no flush in progress, become the first flusher */
2642 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2643
2644 wq->first_flusher = &this_flusher;
2645
2646 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2647 wq->work_color)) {
2648 /* nothing to flush, done */
2649 wq->flush_color = next_color;
2650 wq->first_flusher = NULL;
2651 goto out_unlock;
2652 }
2653 } else {
2654 /* wait in queue */
2655 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2656 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2657 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2658 }
2659 } else {
2660 /*
2661 * Oops, color space is full, wait on overflow queue.
2662 * The next flush completion will assign us
2663 * flush_color and transfer to flusher_queue.
2664 */
2665 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2666 }
2667
2668 mutex_unlock(&wq->mutex);
2669
2670 wait_for_completion(&this_flusher.done);
2671
2672 /*
2673 * Wake-up-and-cascade phase
2674 *
2675 * First flushers are responsible for cascading flushes and
2676 * handling overflow. Non-first flushers can simply return.
2677 */
2678 if (wq->first_flusher != &this_flusher)
2679 return;
2680
2681 mutex_lock(&wq->mutex);
2682
2683 /* we might have raced, check again with mutex held */
2684 if (wq->first_flusher != &this_flusher)
2685 goto out_unlock;
2686
2687 wq->first_flusher = NULL;
2688
2689 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2690 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2691
2692 while (true) {
2693 struct wq_flusher *next, *tmp;
2694
2695 /* complete all the flushers sharing the current flush color */
2696 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2697 if (next->flush_color != wq->flush_color)
2698 break;
2699 list_del_init(&next->list);
2700 complete(&next->done);
2701 }
2702
2703 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2704 wq->flush_color != work_next_color(wq->work_color));
2705
2706 /* this flush_color is finished, advance by one */
2707 wq->flush_color = work_next_color(wq->flush_color);
2708
2709 /* one color has been freed, handle overflow queue */
2710 if (!list_empty(&wq->flusher_overflow)) {
2711 /*
2712 * Assign the same color to all overflowed
2713 * flushers, advance work_color and append to
2714 * flusher_queue. This is the start-to-wait
2715 * phase for these overflowed flushers.
2716 */
2717 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2718 tmp->flush_color = wq->work_color;
2719
2720 wq->work_color = work_next_color(wq->work_color);
2721
2722 list_splice_tail_init(&wq->flusher_overflow,
2723 &wq->flusher_queue);
2724 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2725 }
2726
2727 if (list_empty(&wq->flusher_queue)) {
2728 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2729 break;
2730 }
2731
2732 /*
2733 * Need to flush more colors. Make the next flusher
2734 * the new first flusher and arm pwqs.
2735 */
2736 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2737 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2738
2739 list_del_init(&next->list);
2740 wq->first_flusher = next;
2741
2742 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2743 break;
2744
2745 /*
2746 * Meh... this color is already done, clear first
2747 * flusher and repeat cascading.
2748 */
2749 wq->first_flusher = NULL;
2750 }
2751
2752 out_unlock:
2753 mutex_unlock(&wq->mutex);
2754 }
2755 EXPORT_SYMBOL_GPL(flush_workqueue);
2756
2757 /**
2758 * drain_workqueue - drain a workqueue
2759 * @wq: workqueue to drain
2760 *
2761 * Wait until the workqueue becomes empty. While draining is in progress,
2762 * only chain queueing is allowed. IOW, only currently pending or running
2763 * work items on @wq can queue further work items on it. @wq is flushed
2764 * repeatedly until it becomes empty. The number of flushing is detemined
2765 * by the depth of chaining and should be relatively short. Whine if it
2766 * takes too long.
2767 */
2768 void drain_workqueue(struct workqueue_struct *wq)
2769 {
2770 unsigned int flush_cnt = 0;
2771 struct pool_workqueue *pwq;
2772
2773 /*
2774 * __queue_work() needs to test whether there are drainers, is much
2775 * hotter than drain_workqueue() and already looks at @wq->flags.
2776 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2777 */
2778 mutex_lock(&wq->mutex);
2779 if (!wq->nr_drainers++)
2780 wq->flags |= __WQ_DRAINING;
2781 mutex_unlock(&wq->mutex);
2782 reflush:
2783 flush_workqueue(wq);
2784
2785 mutex_lock(&wq->mutex);
2786
2787 for_each_pwq(pwq, wq) {
2788 bool drained;
2789
2790 spin_lock_irq(&pwq->pool->lock);
2791 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2792 spin_unlock_irq(&pwq->pool->lock);
2793
2794 if (drained)
2795 continue;
2796
2797 if (++flush_cnt == 10 ||
2798 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2799 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2800 wq->name, flush_cnt);
2801
2802 mutex_unlock(&wq->mutex);
2803 goto reflush;
2804 }
2805
2806 if (!--wq->nr_drainers)
2807 wq->flags &= ~__WQ_DRAINING;
2808 mutex_unlock(&wq->mutex);
2809 }
2810 EXPORT_SYMBOL_GPL(drain_workqueue);
2811
2812 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2813 {
2814 struct worker *worker = NULL;
2815 struct worker_pool *pool;
2816 struct pool_workqueue *pwq;
2817
2818 might_sleep();
2819
2820 local_irq_disable();
2821 pool = get_work_pool(work);
2822 if (!pool) {
2823 local_irq_enable();
2824 return false;
2825 }
2826
2827 spin_lock(&pool->lock);
2828 /* see the comment in try_to_grab_pending() with the same code */
2829 pwq = get_work_pwq(work);
2830 if (pwq) {
2831 if (unlikely(pwq->pool != pool))
2832 goto already_gone;
2833 } else {
2834 worker = find_worker_executing_work(pool, work);
2835 if (!worker)
2836 goto already_gone;
2837 pwq = worker->current_pwq;
2838 }
2839
2840 insert_wq_barrier(pwq, barr, work, worker);
2841 spin_unlock_irq(&pool->lock);
2842
2843 /*
2844 * If @max_active is 1 or rescuer is in use, flushing another work
2845 * item on the same workqueue may lead to deadlock. Make sure the
2846 * flusher is not running on the same workqueue by verifying write
2847 * access.
2848 */
2849 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2850 lock_map_acquire(&pwq->wq->lockdep_map);
2851 else
2852 lock_map_acquire_read(&pwq->wq->lockdep_map);
2853 lock_map_release(&pwq->wq->lockdep_map);
2854
2855 return true;
2856 already_gone:
2857 spin_unlock_irq(&pool->lock);
2858 return false;
2859 }
2860
2861 /**
2862 * flush_work - wait for a work to finish executing the last queueing instance
2863 * @work: the work to flush
2864 *
2865 * Wait until @work has finished execution. @work is guaranteed to be idle
2866 * on return if it hasn't been requeued since flush started.
2867 *
2868 * Return:
2869 * %true if flush_work() waited for the work to finish execution,
2870 * %false if it was already idle.
2871 */
2872 bool flush_work(struct work_struct *work)
2873 {
2874 struct wq_barrier barr;
2875
2876 lock_map_acquire(&work->lockdep_map);
2877 lock_map_release(&work->lockdep_map);
2878
2879 if (start_flush_work(work, &barr)) {
2880 wait_for_completion(&barr.done);
2881 destroy_work_on_stack(&barr.work);
2882 return true;
2883 } else {
2884 return false;
2885 }
2886 }
2887 EXPORT_SYMBOL_GPL(flush_work);
2888
2889 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2890 {
2891 unsigned long flags;
2892 int ret;
2893
2894 do {
2895 ret = try_to_grab_pending(work, is_dwork, &flags);
2896 /*
2897 * If someone else is canceling, wait for the same event it
2898 * would be waiting for before retrying.
2899 */
2900 if (unlikely(ret == -ENOENT))
2901 flush_work(work);
2902 } while (unlikely(ret < 0));
2903
2904 /* tell other tasks trying to grab @work to back off */
2905 mark_work_canceling(work);
2906 local_irq_restore(flags);
2907
2908 flush_work(work);
2909 clear_work_data(work);
2910 return ret;
2911 }
2912
2913 /**
2914 * cancel_work_sync - cancel a work and wait for it to finish
2915 * @work: the work to cancel
2916 *
2917 * Cancel @work and wait for its execution to finish. This function
2918 * can be used even if the work re-queues itself or migrates to
2919 * another workqueue. On return from this function, @work is
2920 * guaranteed to be not pending or executing on any CPU.
2921 *
2922 * cancel_work_sync(&delayed_work->work) must not be used for
2923 * delayed_work's. Use cancel_delayed_work_sync() instead.
2924 *
2925 * The caller must ensure that the workqueue on which @work was last
2926 * queued can't be destroyed before this function returns.
2927 *
2928 * Return:
2929 * %true if @work was pending, %false otherwise.
2930 */
2931 bool cancel_work_sync(struct work_struct *work)
2932 {
2933 return __cancel_work_timer(work, false);
2934 }
2935 EXPORT_SYMBOL_GPL(cancel_work_sync);
2936
2937 /**
2938 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2939 * @dwork: the delayed work to flush
2940 *
2941 * Delayed timer is cancelled and the pending work is queued for
2942 * immediate execution. Like flush_work(), this function only
2943 * considers the last queueing instance of @dwork.
2944 *
2945 * Return:
2946 * %true if flush_work() waited for the work to finish execution,
2947 * %false if it was already idle.
2948 */
2949 bool flush_delayed_work(struct delayed_work *dwork)
2950 {
2951 local_irq_disable();
2952 if (del_timer_sync(&dwork->timer))
2953 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2954 local_irq_enable();
2955 return flush_work(&dwork->work);
2956 }
2957 EXPORT_SYMBOL(flush_delayed_work);
2958
2959 /**
2960 * cancel_delayed_work - cancel a delayed work
2961 * @dwork: delayed_work to cancel
2962 *
2963 * Kill off a pending delayed_work.
2964 *
2965 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2966 * pending.
2967 *
2968 * Note:
2969 * The work callback function may still be running on return, unless
2970 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2971 * use cancel_delayed_work_sync() to wait on it.
2972 *
2973 * This function is safe to call from any context including IRQ handler.
2974 */
2975 bool cancel_delayed_work(struct delayed_work *dwork)
2976 {
2977 unsigned long flags;
2978 int ret;
2979
2980 do {
2981 ret = try_to_grab_pending(&dwork->work, true, &flags);
2982 } while (unlikely(ret == -EAGAIN));
2983
2984 if (unlikely(ret < 0))
2985 return false;
2986
2987 set_work_pool_and_clear_pending(&dwork->work,
2988 get_work_pool_id(&dwork->work));
2989 local_irq_restore(flags);
2990 return ret;
2991 }
2992 EXPORT_SYMBOL(cancel_delayed_work);
2993
2994 /**
2995 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2996 * @dwork: the delayed work cancel
2997 *
2998 * This is cancel_work_sync() for delayed works.
2999 *
3000 * Return:
3001 * %true if @dwork was pending, %false otherwise.
3002 */
3003 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3004 {
3005 return __cancel_work_timer(&dwork->work, true);
3006 }
3007 EXPORT_SYMBOL(cancel_delayed_work_sync);
3008
3009 /**
3010 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3011 * @func: the function to call
3012 *
3013 * schedule_on_each_cpu() executes @func on each online CPU using the
3014 * system workqueue and blocks until all CPUs have completed.
3015 * schedule_on_each_cpu() is very slow.
3016 *
3017 * Return:
3018 * 0 on success, -errno on failure.
3019 */
3020 int schedule_on_each_cpu(work_func_t func)
3021 {
3022 int cpu;
3023 struct work_struct __percpu *works;
3024
3025 works = alloc_percpu(struct work_struct);
3026 if (!works)
3027 return -ENOMEM;
3028
3029 get_online_cpus();
3030
3031 for_each_online_cpu(cpu) {
3032 struct work_struct *work = per_cpu_ptr(works, cpu);
3033
3034 INIT_WORK(work, func);
3035 schedule_work_on(cpu, work);
3036 }
3037
3038 for_each_online_cpu(cpu)
3039 flush_work(per_cpu_ptr(works, cpu));
3040
3041 put_online_cpus();
3042 free_percpu(works);
3043 return 0;
3044 }
3045
3046 /**
3047 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3048 *
3049 * Forces execution of the kernel-global workqueue and blocks until its
3050 * completion.
3051 *
3052 * Think twice before calling this function! It's very easy to get into
3053 * trouble if you don't take great care. Either of the following situations
3054 * will lead to deadlock:
3055 *
3056 * One of the work items currently on the workqueue needs to acquire
3057 * a lock held by your code or its caller.
3058 *
3059 * Your code is running in the context of a work routine.
3060 *
3061 * They will be detected by lockdep when they occur, but the first might not
3062 * occur very often. It depends on what work items are on the workqueue and
3063 * what locks they need, which you have no control over.
3064 *
3065 * In most situations flushing the entire workqueue is overkill; you merely
3066 * need to know that a particular work item isn't queued and isn't running.
3067 * In such cases you should use cancel_delayed_work_sync() or
3068 * cancel_work_sync() instead.
3069 */
3070 void flush_scheduled_work(void)
3071 {
3072 flush_workqueue(system_wq);
3073 }
3074 EXPORT_SYMBOL(flush_scheduled_work);
3075
3076 /**
3077 * execute_in_process_context - reliably execute the routine with user context
3078 * @fn: the function to execute
3079 * @ew: guaranteed storage for the execute work structure (must
3080 * be available when the work executes)
3081 *
3082 * Executes the function immediately if process context is available,
3083 * otherwise schedules the function for delayed execution.
3084 *
3085 * Return: 0 - function was executed
3086 * 1 - function was scheduled for execution
3087 */
3088 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3089 {
3090 if (!in_interrupt()) {
3091 fn(&ew->work);
3092 return 0;
3093 }
3094
3095 INIT_WORK(&ew->work, fn);
3096 schedule_work(&ew->work);
3097
3098 return 1;
3099 }
3100 EXPORT_SYMBOL_GPL(execute_in_process_context);
3101
3102 #ifdef CONFIG_SYSFS
3103 /*
3104 * Workqueues with WQ_SYSFS flag set is visible to userland via
3105 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3106 * following attributes.
3107 *
3108 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3109 * max_active RW int : maximum number of in-flight work items
3110 *
3111 * Unbound workqueues have the following extra attributes.
3112 *
3113 * id RO int : the associated pool ID
3114 * nice RW int : nice value of the workers
3115 * cpumask RW mask : bitmask of allowed CPUs for the workers
3116 */
3117 struct wq_device {
3118 struct workqueue_struct *wq;
3119 struct device dev;
3120 };
3121
3122 static struct workqueue_struct *dev_to_wq(struct device *dev)
3123 {
3124 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3125
3126 return wq_dev->wq;
3127 }
3128
3129 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3130 char *buf)
3131 {
3132 struct workqueue_struct *wq = dev_to_wq(dev);
3133
3134 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3135 }
3136 static DEVICE_ATTR_RO(per_cpu);
3137
3138 static ssize_t max_active_show(struct device *dev,
3139 struct device_attribute *attr, char *buf)
3140 {
3141 struct workqueue_struct *wq = dev_to_wq(dev);
3142
3143 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3144 }
3145
3146 static ssize_t max_active_store(struct device *dev,
3147 struct device_attribute *attr, const char *buf,
3148 size_t count)
3149 {
3150 struct workqueue_struct *wq = dev_to_wq(dev);
3151 int val;
3152
3153 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3154 return -EINVAL;
3155
3156 workqueue_set_max_active(wq, val);
3157 return count;
3158 }
3159 static DEVICE_ATTR_RW(max_active);
3160
3161 static struct attribute *wq_sysfs_attrs[] = {
3162 &dev_attr_per_cpu.attr,
3163 &dev_attr_max_active.attr,
3164 NULL,
3165 };
3166 ATTRIBUTE_GROUPS(wq_sysfs);
3167
3168 static ssize_t wq_pool_ids_show(struct device *dev,
3169 struct device_attribute *attr, char *buf)
3170 {
3171 struct workqueue_struct *wq = dev_to_wq(dev);
3172 const char *delim = "";
3173 int node, written = 0;
3174
3175 rcu_read_lock_sched();
3176 for_each_node(node) {
3177 written += scnprintf(buf + written, PAGE_SIZE - written,
3178 "%s%d:%d", delim, node,
3179 unbound_pwq_by_node(wq, node)->pool->id);
3180 delim = " ";
3181 }
3182 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3183 rcu_read_unlock_sched();
3184
3185 return written;
3186 }
3187
3188 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3189 char *buf)
3190 {
3191 struct workqueue_struct *wq = dev_to_wq(dev);
3192 int written;
3193
3194 mutex_lock(&wq->mutex);
3195 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3196 mutex_unlock(&wq->mutex);
3197
3198 return written;
3199 }
3200
3201 /* prepare workqueue_attrs for sysfs store operations */
3202 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3203 {
3204 struct workqueue_attrs *attrs;
3205
3206 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3207 if (!attrs)
3208 return NULL;
3209
3210 mutex_lock(&wq->mutex);
3211 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3212 mutex_unlock(&wq->mutex);
3213 return attrs;
3214 }
3215
3216 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3217 const char *buf, size_t count)
3218 {
3219 struct workqueue_struct *wq = dev_to_wq(dev);
3220 struct workqueue_attrs *attrs;
3221 int ret;
3222
3223 attrs = wq_sysfs_prep_attrs(wq);
3224 if (!attrs)
3225 return -ENOMEM;
3226
3227 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3228 attrs->nice >= -20 && attrs->nice <= 19)
3229 ret = apply_workqueue_attrs(wq, attrs);
3230 else
3231 ret = -EINVAL;
3232
3233 free_workqueue_attrs(attrs);
3234 return ret ?: count;
3235 }
3236
3237 static ssize_t wq_cpumask_show(struct device *dev,
3238 struct device_attribute *attr, char *buf)
3239 {
3240 struct workqueue_struct *wq = dev_to_wq(dev);
3241 int written;
3242
3243 mutex_lock(&wq->mutex);
3244 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3245 mutex_unlock(&wq->mutex);
3246
3247 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3248 return written;
3249 }
3250
3251 static ssize_t wq_cpumask_store(struct device *dev,
3252 struct device_attribute *attr,
3253 const char *buf, size_t count)
3254 {
3255 struct workqueue_struct *wq = dev_to_wq(dev);
3256 struct workqueue_attrs *attrs;
3257 int ret;
3258
3259 attrs = wq_sysfs_prep_attrs(wq);
3260 if (!attrs)
3261 return -ENOMEM;
3262
3263 ret = cpumask_parse(buf, attrs->cpumask);
3264 if (!ret)
3265 ret = apply_workqueue_attrs(wq, attrs);
3266
3267 free_workqueue_attrs(attrs);
3268 return ret ?: count;
3269 }
3270
3271 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3272 char *buf)
3273 {
3274 struct workqueue_struct *wq = dev_to_wq(dev);
3275 int written;
3276
3277 mutex_lock(&wq->mutex);
3278 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3279 !wq->unbound_attrs->no_numa);
3280 mutex_unlock(&wq->mutex);
3281
3282 return written;
3283 }
3284
3285 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3286 const char *buf, size_t count)
3287 {
3288 struct workqueue_struct *wq = dev_to_wq(dev);
3289 struct workqueue_attrs *attrs;
3290 int v, ret;
3291
3292 attrs = wq_sysfs_prep_attrs(wq);
3293 if (!attrs)
3294 return -ENOMEM;
3295
3296 ret = -EINVAL;
3297 if (sscanf(buf, "%d", &v) == 1) {
3298 attrs->no_numa = !v;
3299 ret = apply_workqueue_attrs(wq, attrs);
3300 }
3301
3302 free_workqueue_attrs(attrs);
3303 return ret ?: count;
3304 }
3305
3306 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3307 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3308 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3309 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3310 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3311 __ATTR_NULL,
3312 };
3313
3314 static struct bus_type wq_subsys = {
3315 .name = "workqueue",
3316 .dev_groups = wq_sysfs_groups,
3317 };
3318
3319 static int __init wq_sysfs_init(void)
3320 {
3321 return subsys_virtual_register(&wq_subsys, NULL);
3322 }
3323 core_initcall(wq_sysfs_init);
3324
3325 static void wq_device_release(struct device *dev)
3326 {
3327 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3328
3329 kfree(wq_dev);
3330 }
3331
3332 /**
3333 * workqueue_sysfs_register - make a workqueue visible in sysfs
3334 * @wq: the workqueue to register
3335 *
3336 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3337 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3338 * which is the preferred method.
3339 *
3340 * Workqueue user should use this function directly iff it wants to apply
3341 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3342 * apply_workqueue_attrs() may race against userland updating the
3343 * attributes.
3344 *
3345 * Return: 0 on success, -errno on failure.
3346 */
3347 int workqueue_sysfs_register(struct workqueue_struct *wq)
3348 {
3349 struct wq_device *wq_dev;
3350 int ret;
3351
3352 /*
3353 * Adjusting max_active or creating new pwqs by applyting
3354 * attributes breaks ordering guarantee. Disallow exposing ordered
3355 * workqueues.
3356 */
3357 if (WARN_ON(wq->flags & __WQ_ORDERED))
3358 return -EINVAL;
3359
3360 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3361 if (!wq_dev)
3362 return -ENOMEM;
3363
3364 wq_dev->wq = wq;
3365 wq_dev->dev.bus = &wq_subsys;
3366 wq_dev->dev.init_name = wq->name;
3367 wq_dev->dev.release = wq_device_release;
3368
3369 /*
3370 * unbound_attrs are created separately. Suppress uevent until
3371 * everything is ready.
3372 */
3373 dev_set_uevent_suppress(&wq_dev->dev, true);
3374
3375 ret = device_register(&wq_dev->dev);
3376 if (ret) {
3377 kfree(wq_dev);
3378 wq->wq_dev = NULL;
3379 return ret;
3380 }
3381
3382 if (wq->flags & WQ_UNBOUND) {
3383 struct device_attribute *attr;
3384
3385 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3386 ret = device_create_file(&wq_dev->dev, attr);
3387 if (ret) {
3388 device_unregister(&wq_dev->dev);
3389 wq->wq_dev = NULL;
3390 return ret;
3391 }
3392 }
3393 }
3394
3395 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3396 return 0;
3397 }
3398
3399 /**
3400 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3401 * @wq: the workqueue to unregister
3402 *
3403 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3404 */
3405 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3406 {
3407 struct wq_device *wq_dev = wq->wq_dev;
3408
3409 if (!wq->wq_dev)
3410 return;
3411
3412 wq->wq_dev = NULL;
3413 device_unregister(&wq_dev->dev);
3414 }
3415 #else /* CONFIG_SYSFS */
3416 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3417 #endif /* CONFIG_SYSFS */
3418
3419 /**
3420 * free_workqueue_attrs - free a workqueue_attrs
3421 * @attrs: workqueue_attrs to free
3422 *
3423 * Undo alloc_workqueue_attrs().
3424 */
3425 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3426 {
3427 if (attrs) {
3428 free_cpumask_var(attrs->cpumask);
3429 kfree(attrs);
3430 }
3431 }
3432
3433 /**
3434 * alloc_workqueue_attrs - allocate a workqueue_attrs
3435 * @gfp_mask: allocation mask to use
3436 *
3437 * Allocate a new workqueue_attrs, initialize with default settings and
3438 * return it.
3439 *
3440 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3441 */
3442 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3443 {
3444 struct workqueue_attrs *attrs;
3445
3446 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3447 if (!attrs)
3448 goto fail;
3449 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3450 goto fail;
3451
3452 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3453 return attrs;
3454 fail:
3455 free_workqueue_attrs(attrs);
3456 return NULL;
3457 }
3458
3459 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3460 const struct workqueue_attrs *from)
3461 {
3462 to->nice = from->nice;
3463 cpumask_copy(to->cpumask, from->cpumask);
3464 /*
3465 * Unlike hash and equality test, this function doesn't ignore
3466 * ->no_numa as it is used for both pool and wq attrs. Instead,
3467 * get_unbound_pool() explicitly clears ->no_numa after copying.
3468 */
3469 to->no_numa = from->no_numa;
3470 }
3471
3472 /* hash value of the content of @attr */
3473 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3474 {
3475 u32 hash = 0;
3476
3477 hash = jhash_1word(attrs->nice, hash);
3478 hash = jhash(cpumask_bits(attrs->cpumask),
3479 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3480 return hash;
3481 }
3482
3483 /* content equality test */
3484 static bool wqattrs_equal(const struct workqueue_attrs *a,
3485 const struct workqueue_attrs *b)
3486 {
3487 if (a->nice != b->nice)
3488 return false;
3489 if (!cpumask_equal(a->cpumask, b->cpumask))
3490 return false;
3491 return true;
3492 }
3493
3494 /**
3495 * init_worker_pool - initialize a newly zalloc'd worker_pool
3496 * @pool: worker_pool to initialize
3497 *
3498 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3499 *
3500 * Return: 0 on success, -errno on failure. Even on failure, all fields
3501 * inside @pool proper are initialized and put_unbound_pool() can be called
3502 * on @pool safely to release it.
3503 */
3504 static int init_worker_pool(struct worker_pool *pool)
3505 {
3506 spin_lock_init(&pool->lock);
3507 pool->id = -1;
3508 pool->cpu = -1;
3509 pool->node = NUMA_NO_NODE;
3510 pool->flags |= POOL_DISASSOCIATED;
3511 INIT_LIST_HEAD(&pool->worklist);
3512 INIT_LIST_HEAD(&pool->idle_list);
3513 hash_init(pool->busy_hash);
3514
3515 init_timer_deferrable(&pool->idle_timer);
3516 pool->idle_timer.function = idle_worker_timeout;
3517 pool->idle_timer.data = (unsigned long)pool;
3518
3519 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3520 (unsigned long)pool);
3521
3522 mutex_init(&pool->manager_arb);
3523 mutex_init(&pool->manager_mutex);
3524 idr_init(&pool->worker_idr);
3525
3526 INIT_HLIST_NODE(&pool->hash_node);
3527 pool->refcnt = 1;
3528
3529 /* shouldn't fail above this point */
3530 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3531 if (!pool->attrs)
3532 return -ENOMEM;
3533 return 0;
3534 }
3535
3536 static void rcu_free_pool(struct rcu_head *rcu)
3537 {
3538 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3539
3540 idr_destroy(&pool->worker_idr);
3541 free_workqueue_attrs(pool->attrs);
3542 kfree(pool);
3543 }
3544
3545 /**
3546 * put_unbound_pool - put a worker_pool
3547 * @pool: worker_pool to put
3548 *
3549 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3550 * safe manner. get_unbound_pool() calls this function on its failure path
3551 * and this function should be able to release pools which went through,
3552 * successfully or not, init_worker_pool().
3553 *
3554 * Should be called with wq_pool_mutex held.
3555 */
3556 static void put_unbound_pool(struct worker_pool *pool)
3557 {
3558 struct worker *worker;
3559
3560 lockdep_assert_held(&wq_pool_mutex);
3561
3562 if (--pool->refcnt)
3563 return;
3564
3565 /* sanity checks */
3566 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3567 WARN_ON(!list_empty(&pool->worklist)))
3568 return;
3569
3570 /* release id and unhash */
3571 if (pool->id >= 0)
3572 idr_remove(&worker_pool_idr, pool->id);
3573 hash_del(&pool->hash_node);
3574
3575 /*
3576 * Become the manager and destroy all workers. Grabbing
3577 * manager_arb prevents @pool's workers from blocking on
3578 * manager_mutex.
3579 */
3580 mutex_lock(&pool->manager_arb);
3581 mutex_lock(&pool->manager_mutex);
3582 spin_lock_irq(&pool->lock);
3583
3584 while ((worker = first_worker(pool)))
3585 destroy_worker(worker);
3586 WARN_ON(pool->nr_workers || pool->nr_idle);
3587
3588 spin_unlock_irq(&pool->lock);
3589 mutex_unlock(&pool->manager_mutex);
3590 mutex_unlock(&pool->manager_arb);
3591
3592 /* shut down the timers */
3593 del_timer_sync(&pool->idle_timer);
3594 del_timer_sync(&pool->mayday_timer);
3595
3596 /* sched-RCU protected to allow dereferences from get_work_pool() */
3597 call_rcu_sched(&pool->rcu, rcu_free_pool);
3598 }
3599
3600 /**
3601 * get_unbound_pool - get a worker_pool with the specified attributes
3602 * @attrs: the attributes of the worker_pool to get
3603 *
3604 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3605 * reference count and return it. If there already is a matching
3606 * worker_pool, it will be used; otherwise, this function attempts to
3607 * create a new one.
3608 *
3609 * Should be called with wq_pool_mutex held.
3610 *
3611 * Return: On success, a worker_pool with the same attributes as @attrs.
3612 * On failure, %NULL.
3613 */
3614 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3615 {
3616 u32 hash = wqattrs_hash(attrs);
3617 struct worker_pool *pool;
3618 int node;
3619
3620 lockdep_assert_held(&wq_pool_mutex);
3621
3622 /* do we already have a matching pool? */
3623 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3624 if (wqattrs_equal(pool->attrs, attrs)) {
3625 pool->refcnt++;
3626 goto out_unlock;
3627 }
3628 }
3629
3630 /* nope, create a new one */
3631 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3632 if (!pool || init_worker_pool(pool) < 0)
3633 goto fail;
3634
3635 if (workqueue_freezing)
3636 pool->flags |= POOL_FREEZING;
3637
3638 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3639 copy_workqueue_attrs(pool->attrs, attrs);
3640
3641 /*
3642 * no_numa isn't a worker_pool attribute, always clear it. See
3643 * 'struct workqueue_attrs' comments for detail.
3644 */
3645 pool->attrs->no_numa = false;
3646
3647 /* if cpumask is contained inside a NUMA node, we belong to that node */
3648 if (wq_numa_enabled) {
3649 for_each_node(node) {
3650 if (cpumask_subset(pool->attrs->cpumask,
3651 wq_numa_possible_cpumask[node])) {
3652 pool->node = node;
3653 break;
3654 }
3655 }
3656 }
3657
3658 if (worker_pool_assign_id(pool) < 0)
3659 goto fail;
3660
3661 /* create and start the initial worker */
3662 if (create_and_start_worker(pool) < 0)
3663 goto fail;
3664
3665 /* install */
3666 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3667 out_unlock:
3668 return pool;
3669 fail:
3670 if (pool)
3671 put_unbound_pool(pool);
3672 return NULL;
3673 }
3674
3675 static void rcu_free_pwq(struct rcu_head *rcu)
3676 {
3677 kmem_cache_free(pwq_cache,
3678 container_of(rcu, struct pool_workqueue, rcu));
3679 }
3680
3681 /*
3682 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3683 * and needs to be destroyed.
3684 */
3685 static void pwq_unbound_release_workfn(struct work_struct *work)
3686 {
3687 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3688 unbound_release_work);
3689 struct workqueue_struct *wq = pwq->wq;
3690 struct worker_pool *pool = pwq->pool;
3691 bool is_last;
3692
3693 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3694 return;
3695
3696 /*
3697 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3698 * necessary on release but do it anyway. It's easier to verify
3699 * and consistent with the linking path.
3700 */
3701 mutex_lock(&wq->mutex);
3702 list_del_rcu(&pwq->pwqs_node);
3703 is_last = list_empty(&wq->pwqs);
3704 mutex_unlock(&wq->mutex);
3705
3706 mutex_lock(&wq_pool_mutex);
3707 put_unbound_pool(pool);
3708 mutex_unlock(&wq_pool_mutex);
3709
3710 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3711
3712 /*
3713 * If we're the last pwq going away, @wq is already dead and no one
3714 * is gonna access it anymore. Free it.
3715 */
3716 if (is_last) {
3717 free_workqueue_attrs(wq->unbound_attrs);
3718 kfree(wq);
3719 }
3720 }
3721
3722 /**
3723 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3724 * @pwq: target pool_workqueue
3725 *
3726 * If @pwq isn't freezing, set @pwq->max_active to the associated
3727 * workqueue's saved_max_active and activate delayed work items
3728 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3729 */
3730 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3731 {
3732 struct workqueue_struct *wq = pwq->wq;
3733 bool freezable = wq->flags & WQ_FREEZABLE;
3734
3735 /* for @wq->saved_max_active */
3736 lockdep_assert_held(&wq->mutex);
3737
3738 /* fast exit for non-freezable wqs */
3739 if (!freezable && pwq->max_active == wq->saved_max_active)
3740 return;
3741
3742 spin_lock_irq(&pwq->pool->lock);
3743
3744 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3745 pwq->max_active = wq->saved_max_active;
3746
3747 while (!list_empty(&pwq->delayed_works) &&
3748 pwq->nr_active < pwq->max_active)
3749 pwq_activate_first_delayed(pwq);
3750
3751 /*
3752 * Need to kick a worker after thawed or an unbound wq's
3753 * max_active is bumped. It's a slow path. Do it always.
3754 */
3755 wake_up_worker(pwq->pool);
3756 } else {
3757 pwq->max_active = 0;
3758 }
3759
3760 spin_unlock_irq(&pwq->pool->lock);
3761 }
3762
3763 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3764 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3765 struct worker_pool *pool)
3766 {
3767 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3768
3769 memset(pwq, 0, sizeof(*pwq));
3770
3771 pwq->pool = pool;
3772 pwq->wq = wq;
3773 pwq->flush_color = -1;
3774 pwq->refcnt = 1;
3775 INIT_LIST_HEAD(&pwq->delayed_works);
3776 INIT_LIST_HEAD(&pwq->pwqs_node);
3777 INIT_LIST_HEAD(&pwq->mayday_node);
3778 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3779 }
3780
3781 /* sync @pwq with the current state of its associated wq and link it */
3782 static void link_pwq(struct pool_workqueue *pwq)
3783 {
3784 struct workqueue_struct *wq = pwq->wq;
3785
3786 lockdep_assert_held(&wq->mutex);
3787
3788 /* may be called multiple times, ignore if already linked */
3789 if (!list_empty(&pwq->pwqs_node))
3790 return;
3791
3792 /*
3793 * Set the matching work_color. This is synchronized with
3794 * wq->mutex to avoid confusing flush_workqueue().
3795 */
3796 pwq->work_color = wq->work_color;
3797
3798 /* sync max_active to the current setting */
3799 pwq_adjust_max_active(pwq);
3800
3801 /* link in @pwq */
3802 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3803 }
3804
3805 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3806 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3807 const struct workqueue_attrs *attrs)
3808 {
3809 struct worker_pool *pool;
3810 struct pool_workqueue *pwq;
3811
3812 lockdep_assert_held(&wq_pool_mutex);
3813
3814 pool = get_unbound_pool(attrs);
3815 if (!pool)
3816 return NULL;
3817
3818 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3819 if (!pwq) {
3820 put_unbound_pool(pool);
3821 return NULL;
3822 }
3823
3824 init_pwq(pwq, wq, pool);
3825 return pwq;
3826 }
3827
3828 /* undo alloc_unbound_pwq(), used only in the error path */
3829 static void free_unbound_pwq(struct pool_workqueue *pwq)
3830 {
3831 lockdep_assert_held(&wq_pool_mutex);
3832
3833 if (pwq) {
3834 put_unbound_pool(pwq->pool);
3835 kmem_cache_free(pwq_cache, pwq);
3836 }
3837 }
3838
3839 /**
3840 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3841 * @attrs: the wq_attrs of interest
3842 * @node: the target NUMA node
3843 * @cpu_going_down: if >= 0, the CPU to consider as offline
3844 * @cpumask: outarg, the resulting cpumask
3845 *
3846 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3847 * @cpu_going_down is >= 0, that cpu is considered offline during
3848 * calculation. The result is stored in @cpumask.
3849 *
3850 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3851 * enabled and @node has online CPUs requested by @attrs, the returned
3852 * cpumask is the intersection of the possible CPUs of @node and
3853 * @attrs->cpumask.
3854 *
3855 * The caller is responsible for ensuring that the cpumask of @node stays
3856 * stable.
3857 *
3858 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3859 * %false if equal.
3860 */
3861 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3862 int cpu_going_down, cpumask_t *cpumask)
3863 {
3864 if (!wq_numa_enabled || attrs->no_numa)
3865 goto use_dfl;
3866
3867 /* does @node have any online CPUs @attrs wants? */
3868 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3869 if (cpu_going_down >= 0)
3870 cpumask_clear_cpu(cpu_going_down, cpumask);
3871
3872 if (cpumask_empty(cpumask))
3873 goto use_dfl;
3874
3875 /* yeap, return possible CPUs in @node that @attrs wants */
3876 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3877 return !cpumask_equal(cpumask, attrs->cpumask);
3878
3879 use_dfl:
3880 cpumask_copy(cpumask, attrs->cpumask);
3881 return false;
3882 }
3883
3884 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3885 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3886 int node,
3887 struct pool_workqueue *pwq)
3888 {
3889 struct pool_workqueue *old_pwq;
3890
3891 lockdep_assert_held(&wq->mutex);
3892
3893 /* link_pwq() can handle duplicate calls */
3894 link_pwq(pwq);
3895
3896 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3897 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3898 return old_pwq;
3899 }
3900
3901 /**
3902 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3903 * @wq: the target workqueue
3904 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3905 *
3906 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3907 * machines, this function maps a separate pwq to each NUMA node with
3908 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3909 * NUMA node it was issued on. Older pwqs are released as in-flight work
3910 * items finish. Note that a work item which repeatedly requeues itself
3911 * back-to-back will stay on its current pwq.
3912 *
3913 * Performs GFP_KERNEL allocations.
3914 *
3915 * Return: 0 on success and -errno on failure.
3916 */
3917 int apply_workqueue_attrs(struct workqueue_struct *wq,
3918 const struct workqueue_attrs *attrs)
3919 {
3920 struct workqueue_attrs *new_attrs, *tmp_attrs;
3921 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3922 int node, ret;
3923
3924 /* only unbound workqueues can change attributes */
3925 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3926 return -EINVAL;
3927
3928 /* creating multiple pwqs breaks ordering guarantee */
3929 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3930 return -EINVAL;
3931
3932 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3933 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3934 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3935 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3936 goto enomem;
3937
3938 /* make a copy of @attrs and sanitize it */
3939 copy_workqueue_attrs(new_attrs, attrs);
3940 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3941
3942 /*
3943 * We may create multiple pwqs with differing cpumasks. Make a
3944 * copy of @new_attrs which will be modified and used to obtain
3945 * pools.
3946 */
3947 copy_workqueue_attrs(tmp_attrs, new_attrs);
3948
3949 /*
3950 * CPUs should stay stable across pwq creations and installations.
3951 * Pin CPUs, determine the target cpumask for each node and create
3952 * pwqs accordingly.
3953 */
3954 get_online_cpus();
3955
3956 mutex_lock(&wq_pool_mutex);
3957
3958 /*
3959 * If something goes wrong during CPU up/down, we'll fall back to
3960 * the default pwq covering whole @attrs->cpumask. Always create
3961 * it even if we don't use it immediately.
3962 */
3963 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3964 if (!dfl_pwq)
3965 goto enomem_pwq;
3966
3967 for_each_node(node) {
3968 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3969 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3970 if (!pwq_tbl[node])
3971 goto enomem_pwq;
3972 } else {
3973 dfl_pwq->refcnt++;
3974 pwq_tbl[node] = dfl_pwq;
3975 }
3976 }
3977
3978 mutex_unlock(&wq_pool_mutex);
3979
3980 /* all pwqs have been created successfully, let's install'em */
3981 mutex_lock(&wq->mutex);
3982
3983 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3984
3985 /* save the previous pwq and install the new one */
3986 for_each_node(node)
3987 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3988
3989 /* @dfl_pwq might not have been used, ensure it's linked */
3990 link_pwq(dfl_pwq);
3991 swap(wq->dfl_pwq, dfl_pwq);
3992
3993 mutex_unlock(&wq->mutex);
3994
3995 /* put the old pwqs */
3996 for_each_node(node)
3997 put_pwq_unlocked(pwq_tbl[node]);
3998 put_pwq_unlocked(dfl_pwq);
3999
4000 put_online_cpus();
4001 ret = 0;
4002 /* fall through */
4003 out_free:
4004 free_workqueue_attrs(tmp_attrs);
4005 free_workqueue_attrs(new_attrs);
4006 kfree(pwq_tbl);
4007 return ret;
4008
4009 enomem_pwq:
4010 free_unbound_pwq(dfl_pwq);
4011 for_each_node(node)
4012 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4013 free_unbound_pwq(pwq_tbl[node]);
4014 mutex_unlock(&wq_pool_mutex);
4015 put_online_cpus();
4016 enomem:
4017 ret = -ENOMEM;
4018 goto out_free;
4019 }
4020
4021 /**
4022 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4023 * @wq: the target workqueue
4024 * @cpu: the CPU coming up or going down
4025 * @online: whether @cpu is coming up or going down
4026 *
4027 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4028 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4029 * @wq accordingly.
4030 *
4031 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4032 * falls back to @wq->dfl_pwq which may not be optimal but is always
4033 * correct.
4034 *
4035 * Note that when the last allowed CPU of a NUMA node goes offline for a
4036 * workqueue with a cpumask spanning multiple nodes, the workers which were
4037 * already executing the work items for the workqueue will lose their CPU
4038 * affinity and may execute on any CPU. This is similar to how per-cpu
4039 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4040 * affinity, it's the user's responsibility to flush the work item from
4041 * CPU_DOWN_PREPARE.
4042 */
4043 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4044 bool online)
4045 {
4046 int node = cpu_to_node(cpu);
4047 int cpu_off = online ? -1 : cpu;
4048 struct pool_workqueue *old_pwq = NULL, *pwq;
4049 struct workqueue_attrs *target_attrs;
4050 cpumask_t *cpumask;
4051
4052 lockdep_assert_held(&wq_pool_mutex);
4053
4054 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4055 return;
4056
4057 /*
4058 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4059 * Let's use a preallocated one. The following buf is protected by
4060 * CPU hotplug exclusion.
4061 */
4062 target_attrs = wq_update_unbound_numa_attrs_buf;
4063 cpumask = target_attrs->cpumask;
4064
4065 mutex_lock(&wq->mutex);
4066 if (wq->unbound_attrs->no_numa)
4067 goto out_unlock;
4068
4069 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4070 pwq = unbound_pwq_by_node(wq, node);
4071
4072 /*
4073 * Let's determine what needs to be done. If the target cpumask is
4074 * different from wq's, we need to compare it to @pwq's and create
4075 * a new one if they don't match. If the target cpumask equals
4076 * wq's, the default pwq should be used. If @pwq is already the
4077 * default one, nothing to do; otherwise, install the default one.
4078 */
4079 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4080 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4081 goto out_unlock;
4082 } else {
4083 if (pwq == wq->dfl_pwq)
4084 goto out_unlock;
4085 else
4086 goto use_dfl_pwq;
4087 }
4088
4089 mutex_unlock(&wq->mutex);
4090
4091 /* create a new pwq */
4092 pwq = alloc_unbound_pwq(wq, target_attrs);
4093 if (!pwq) {
4094 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4095 wq->name);
4096 goto out_unlock;
4097 }
4098
4099 /*
4100 * Install the new pwq. As this function is called only from CPU
4101 * hotplug callbacks and applying a new attrs is wrapped with
4102 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4103 * inbetween.
4104 */
4105 mutex_lock(&wq->mutex);
4106 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4107 goto out_unlock;
4108
4109 use_dfl_pwq:
4110 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4111 get_pwq(wq->dfl_pwq);
4112 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4113 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4114 out_unlock:
4115 mutex_unlock(&wq->mutex);
4116 put_pwq_unlocked(old_pwq);
4117 }
4118
4119 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4120 {
4121 bool highpri = wq->flags & WQ_HIGHPRI;
4122 int cpu, ret;
4123
4124 if (!(wq->flags & WQ_UNBOUND)) {
4125 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4126 if (!wq->cpu_pwqs)
4127 return -ENOMEM;
4128
4129 for_each_possible_cpu(cpu) {
4130 struct pool_workqueue *pwq =
4131 per_cpu_ptr(wq->cpu_pwqs, cpu);
4132 struct worker_pool *cpu_pools =
4133 per_cpu(cpu_worker_pools, cpu);
4134
4135 init_pwq(pwq, wq, &cpu_pools[highpri]);
4136
4137 mutex_lock(&wq->mutex);
4138 link_pwq(pwq);
4139 mutex_unlock(&wq->mutex);
4140 }
4141 return 0;
4142 } else if (wq->flags & __WQ_ORDERED) {
4143 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4144 /* there should only be single pwq for ordering guarantee */
4145 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4146 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4147 "ordering guarantee broken for workqueue %s\n", wq->name);
4148 return ret;
4149 } else {
4150 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4151 }
4152 }
4153
4154 static int wq_clamp_max_active(int max_active, unsigned int flags,
4155 const char *name)
4156 {
4157 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4158
4159 if (max_active < 1 || max_active > lim)
4160 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4161 max_active, name, 1, lim);
4162
4163 return clamp_val(max_active, 1, lim);
4164 }
4165
4166 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4167 unsigned int flags,
4168 int max_active,
4169 struct lock_class_key *key,
4170 const char *lock_name, ...)
4171 {
4172 size_t tbl_size = 0;
4173 va_list args;
4174 struct workqueue_struct *wq;
4175 struct pool_workqueue *pwq;
4176
4177 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4178 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4179 flags |= WQ_UNBOUND;
4180
4181 /* allocate wq and format name */
4182 if (flags & WQ_UNBOUND)
4183 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4184
4185 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4186 if (!wq)
4187 return NULL;
4188
4189 if (flags & WQ_UNBOUND) {
4190 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4191 if (!wq->unbound_attrs)
4192 goto err_free_wq;
4193 }
4194
4195 va_start(args, lock_name);
4196 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4197 va_end(args);
4198
4199 max_active = max_active ?: WQ_DFL_ACTIVE;
4200 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4201
4202 /* init wq */
4203 wq->flags = flags;
4204 wq->saved_max_active = max_active;
4205 mutex_init(&wq->mutex);
4206 atomic_set(&wq->nr_pwqs_to_flush, 0);
4207 INIT_LIST_HEAD(&wq->pwqs);
4208 INIT_LIST_HEAD(&wq->flusher_queue);
4209 INIT_LIST_HEAD(&wq->flusher_overflow);
4210 INIT_LIST_HEAD(&wq->maydays);
4211
4212 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4213 INIT_LIST_HEAD(&wq->list);
4214
4215 if (alloc_and_link_pwqs(wq) < 0)
4216 goto err_free_wq;
4217
4218 /*
4219 * Workqueues which may be used during memory reclaim should
4220 * have a rescuer to guarantee forward progress.
4221 */
4222 if (flags & WQ_MEM_RECLAIM) {
4223 struct worker *rescuer;
4224
4225 rescuer = alloc_worker();
4226 if (!rescuer)
4227 goto err_destroy;
4228
4229 rescuer->rescue_wq = wq;
4230 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4231 wq->name);
4232 if (IS_ERR(rescuer->task)) {
4233 kfree(rescuer);
4234 goto err_destroy;
4235 }
4236
4237 wq->rescuer = rescuer;
4238 rescuer->task->flags |= PF_NO_SETAFFINITY;
4239 wake_up_process(rescuer->task);
4240 }
4241
4242 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4243 goto err_destroy;
4244
4245 /*
4246 * wq_pool_mutex protects global freeze state and workqueues list.
4247 * Grab it, adjust max_active and add the new @wq to workqueues
4248 * list.
4249 */
4250 mutex_lock(&wq_pool_mutex);
4251
4252 mutex_lock(&wq->mutex);
4253 for_each_pwq(pwq, wq)
4254 pwq_adjust_max_active(pwq);
4255 mutex_unlock(&wq->mutex);
4256
4257 list_add(&wq->list, &workqueues);
4258
4259 mutex_unlock(&wq_pool_mutex);
4260
4261 return wq;
4262
4263 err_free_wq:
4264 free_workqueue_attrs(wq->unbound_attrs);
4265 kfree(wq);
4266 return NULL;
4267 err_destroy:
4268 destroy_workqueue(wq);
4269 return NULL;
4270 }
4271 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4272
4273 /**
4274 * destroy_workqueue - safely terminate a workqueue
4275 * @wq: target workqueue
4276 *
4277 * Safely destroy a workqueue. All work currently pending will be done first.
4278 */
4279 void destroy_workqueue(struct workqueue_struct *wq)
4280 {
4281 struct pool_workqueue *pwq;
4282 int node;
4283
4284 /* drain it before proceeding with destruction */
4285 drain_workqueue(wq);
4286
4287 /* sanity checks */
4288 mutex_lock(&wq->mutex);
4289 for_each_pwq(pwq, wq) {
4290 int i;
4291
4292 for (i = 0; i < WORK_NR_COLORS; i++) {
4293 if (WARN_ON(pwq->nr_in_flight[i])) {
4294 mutex_unlock(&wq->mutex);
4295 return;
4296 }
4297 }
4298
4299 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4300 WARN_ON(pwq->nr_active) ||
4301 WARN_ON(!list_empty(&pwq->delayed_works))) {
4302 mutex_unlock(&wq->mutex);
4303 return;
4304 }
4305 }
4306 mutex_unlock(&wq->mutex);
4307
4308 /*
4309 * wq list is used to freeze wq, remove from list after
4310 * flushing is complete in case freeze races us.
4311 */
4312 mutex_lock(&wq_pool_mutex);
4313 list_del_init(&wq->list);
4314 mutex_unlock(&wq_pool_mutex);
4315
4316 workqueue_sysfs_unregister(wq);
4317
4318 if (wq->rescuer) {
4319 kthread_stop(wq->rescuer->task);
4320 kfree(wq->rescuer);
4321 wq->rescuer = NULL;
4322 }
4323
4324 if (!(wq->flags & WQ_UNBOUND)) {
4325 /*
4326 * The base ref is never dropped on per-cpu pwqs. Directly
4327 * free the pwqs and wq.
4328 */
4329 free_percpu(wq->cpu_pwqs);
4330 kfree(wq);
4331 } else {
4332 /*
4333 * We're the sole accessor of @wq at this point. Directly
4334 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4335 * @wq will be freed when the last pwq is released.
4336 */
4337 for_each_node(node) {
4338 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4339 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4340 put_pwq_unlocked(pwq);
4341 }
4342
4343 /*
4344 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4345 * put. Don't access it afterwards.
4346 */
4347 pwq = wq->dfl_pwq;
4348 wq->dfl_pwq = NULL;
4349 put_pwq_unlocked(pwq);
4350 }
4351 }
4352 EXPORT_SYMBOL_GPL(destroy_workqueue);
4353
4354 /**
4355 * workqueue_set_max_active - adjust max_active of a workqueue
4356 * @wq: target workqueue
4357 * @max_active: new max_active value.
4358 *
4359 * Set max_active of @wq to @max_active.
4360 *
4361 * CONTEXT:
4362 * Don't call from IRQ context.
4363 */
4364 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4365 {
4366 struct pool_workqueue *pwq;
4367
4368 /* disallow meddling with max_active for ordered workqueues */
4369 if (WARN_ON(wq->flags & __WQ_ORDERED))
4370 return;
4371
4372 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4373
4374 mutex_lock(&wq->mutex);
4375
4376 wq->saved_max_active = max_active;
4377
4378 for_each_pwq(pwq, wq)
4379 pwq_adjust_max_active(pwq);
4380
4381 mutex_unlock(&wq->mutex);
4382 }
4383 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4384
4385 /**
4386 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4387 *
4388 * Determine whether %current is a workqueue rescuer. Can be used from
4389 * work functions to determine whether it's being run off the rescuer task.
4390 *
4391 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4392 */
4393 bool current_is_workqueue_rescuer(void)
4394 {
4395 struct worker *worker = current_wq_worker();
4396
4397 return worker && worker->rescue_wq;
4398 }
4399
4400 /**
4401 * workqueue_congested - test whether a workqueue is congested
4402 * @cpu: CPU in question
4403 * @wq: target workqueue
4404 *
4405 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4406 * no synchronization around this function and the test result is
4407 * unreliable and only useful as advisory hints or for debugging.
4408 *
4409 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4410 * Note that both per-cpu and unbound workqueues may be associated with
4411 * multiple pool_workqueues which have separate congested states. A
4412 * workqueue being congested on one CPU doesn't mean the workqueue is also
4413 * contested on other CPUs / NUMA nodes.
4414 *
4415 * Return:
4416 * %true if congested, %false otherwise.
4417 */
4418 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4419 {
4420 struct pool_workqueue *pwq;
4421 bool ret;
4422
4423 rcu_read_lock_sched();
4424
4425 if (cpu == WORK_CPU_UNBOUND)
4426 cpu = smp_processor_id();
4427
4428 if (!(wq->flags & WQ_UNBOUND))
4429 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4430 else
4431 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4432
4433 ret = !list_empty(&pwq->delayed_works);
4434 rcu_read_unlock_sched();
4435
4436 return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(workqueue_congested);
4439
4440 /**
4441 * work_busy - test whether a work is currently pending or running
4442 * @work: the work to be tested
4443 *
4444 * Test whether @work is currently pending or running. There is no
4445 * synchronization around this function and the test result is
4446 * unreliable and only useful as advisory hints or for debugging.
4447 *
4448 * Return:
4449 * OR'd bitmask of WORK_BUSY_* bits.
4450 */
4451 unsigned int work_busy(struct work_struct *work)
4452 {
4453 struct worker_pool *pool;
4454 unsigned long flags;
4455 unsigned int ret = 0;
4456
4457 if (work_pending(work))
4458 ret |= WORK_BUSY_PENDING;
4459
4460 local_irq_save(flags);
4461 pool = get_work_pool(work);
4462 if (pool) {
4463 spin_lock(&pool->lock);
4464 if (find_worker_executing_work(pool, work))
4465 ret |= WORK_BUSY_RUNNING;
4466 spin_unlock(&pool->lock);
4467 }
4468 local_irq_restore(flags);
4469
4470 return ret;
4471 }
4472 EXPORT_SYMBOL_GPL(work_busy);
4473
4474 /**
4475 * set_worker_desc - set description for the current work item
4476 * @fmt: printf-style format string
4477 * @...: arguments for the format string
4478 *
4479 * This function can be called by a running work function to describe what
4480 * the work item is about. If the worker task gets dumped, this
4481 * information will be printed out together to help debugging. The
4482 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4483 */
4484 void set_worker_desc(const char *fmt, ...)
4485 {
4486 struct worker *worker = current_wq_worker();
4487 va_list args;
4488
4489 if (worker) {
4490 va_start(args, fmt);
4491 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4492 va_end(args);
4493 worker->desc_valid = true;
4494 }
4495 }
4496
4497 /**
4498 * print_worker_info - print out worker information and description
4499 * @log_lvl: the log level to use when printing
4500 * @task: target task
4501 *
4502 * If @task is a worker and currently executing a work item, print out the
4503 * name of the workqueue being serviced and worker description set with
4504 * set_worker_desc() by the currently executing work item.
4505 *
4506 * This function can be safely called on any task as long as the
4507 * task_struct itself is accessible. While safe, this function isn't
4508 * synchronized and may print out mixups or garbages of limited length.
4509 */
4510 void print_worker_info(const char *log_lvl, struct task_struct *task)
4511 {
4512 work_func_t *fn = NULL;
4513 char name[WQ_NAME_LEN] = { };
4514 char desc[WORKER_DESC_LEN] = { };
4515 struct pool_workqueue *pwq = NULL;
4516 struct workqueue_struct *wq = NULL;
4517 bool desc_valid = false;
4518 struct worker *worker;
4519
4520 if (!(task->flags & PF_WQ_WORKER))
4521 return;
4522
4523 /*
4524 * This function is called without any synchronization and @task
4525 * could be in any state. Be careful with dereferences.
4526 */
4527 worker = probe_kthread_data(task);
4528
4529 /*
4530 * Carefully copy the associated workqueue's workfn and name. Keep
4531 * the original last '\0' in case the original contains garbage.
4532 */
4533 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4534 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4535 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4536 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4537
4538 /* copy worker description */
4539 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4540 if (desc_valid)
4541 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4542
4543 if (fn || name[0] || desc[0]) {
4544 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4545 if (desc[0])
4546 pr_cont(" (%s)", desc);
4547 pr_cont("\n");
4548 }
4549 }
4550
4551 /*
4552 * CPU hotplug.
4553 *
4554 * There are two challenges in supporting CPU hotplug. Firstly, there
4555 * are a lot of assumptions on strong associations among work, pwq and
4556 * pool which make migrating pending and scheduled works very
4557 * difficult to implement without impacting hot paths. Secondly,
4558 * worker pools serve mix of short, long and very long running works making
4559 * blocked draining impractical.
4560 *
4561 * This is solved by allowing the pools to be disassociated from the CPU
4562 * running as an unbound one and allowing it to be reattached later if the
4563 * cpu comes back online.
4564 */
4565
4566 static void wq_unbind_fn(struct work_struct *work)
4567 {
4568 int cpu = smp_processor_id();
4569 struct worker_pool *pool;
4570 struct worker *worker;
4571 int wi;
4572
4573 for_each_cpu_worker_pool(pool, cpu) {
4574 WARN_ON_ONCE(cpu != smp_processor_id());
4575
4576 mutex_lock(&pool->manager_mutex);
4577 spin_lock_irq(&pool->lock);
4578
4579 /*
4580 * We've blocked all manager operations. Make all workers
4581 * unbound and set DISASSOCIATED. Before this, all workers
4582 * except for the ones which are still executing works from
4583 * before the last CPU down must be on the cpu. After
4584 * this, they may become diasporas.
4585 */
4586 for_each_pool_worker(worker, wi, pool)
4587 worker->flags |= WORKER_UNBOUND;
4588
4589 pool->flags |= POOL_DISASSOCIATED;
4590
4591 spin_unlock_irq(&pool->lock);
4592 mutex_unlock(&pool->manager_mutex);
4593
4594 /*
4595 * Call schedule() so that we cross rq->lock and thus can
4596 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4597 * This is necessary as scheduler callbacks may be invoked
4598 * from other cpus.
4599 */
4600 schedule();
4601
4602 /*
4603 * Sched callbacks are disabled now. Zap nr_running.
4604 * After this, nr_running stays zero and need_more_worker()
4605 * and keep_working() are always true as long as the
4606 * worklist is not empty. This pool now behaves as an
4607 * unbound (in terms of concurrency management) pool which
4608 * are served by workers tied to the pool.
4609 */
4610 atomic_set(&pool->nr_running, 0);
4611
4612 /*
4613 * With concurrency management just turned off, a busy
4614 * worker blocking could lead to lengthy stalls. Kick off
4615 * unbound chain execution of currently pending work items.
4616 */
4617 spin_lock_irq(&pool->lock);
4618 wake_up_worker(pool);
4619 spin_unlock_irq(&pool->lock);
4620 }
4621 }
4622
4623 /**
4624 * rebind_workers - rebind all workers of a pool to the associated CPU
4625 * @pool: pool of interest
4626 *
4627 * @pool->cpu is coming online. Rebind all workers to the CPU.
4628 */
4629 static void rebind_workers(struct worker_pool *pool)
4630 {
4631 struct worker *worker;
4632 int wi;
4633
4634 lockdep_assert_held(&pool->manager_mutex);
4635
4636 /*
4637 * Restore CPU affinity of all workers. As all idle workers should
4638 * be on the run-queue of the associated CPU before any local
4639 * wake-ups for concurrency management happen, restore CPU affinty
4640 * of all workers first and then clear UNBOUND. As we're called
4641 * from CPU_ONLINE, the following shouldn't fail.
4642 */
4643 for_each_pool_worker(worker, wi, pool)
4644 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4645 pool->attrs->cpumask) < 0);
4646
4647 spin_lock_irq(&pool->lock);
4648
4649 for_each_pool_worker(worker, wi, pool) {
4650 unsigned int worker_flags = worker->flags;
4651
4652 /*
4653 * A bound idle worker should actually be on the runqueue
4654 * of the associated CPU for local wake-ups targeting it to
4655 * work. Kick all idle workers so that they migrate to the
4656 * associated CPU. Doing this in the same loop as
4657 * replacing UNBOUND with REBOUND is safe as no worker will
4658 * be bound before @pool->lock is released.
4659 */
4660 if (worker_flags & WORKER_IDLE)
4661 wake_up_process(worker->task);
4662
4663 /*
4664 * We want to clear UNBOUND but can't directly call
4665 * worker_clr_flags() or adjust nr_running. Atomically
4666 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4667 * @worker will clear REBOUND using worker_clr_flags() when
4668 * it initiates the next execution cycle thus restoring
4669 * concurrency management. Note that when or whether
4670 * @worker clears REBOUND doesn't affect correctness.
4671 *
4672 * ACCESS_ONCE() is necessary because @worker->flags may be
4673 * tested without holding any lock in
4674 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4675 * fail incorrectly leading to premature concurrency
4676 * management operations.
4677 */
4678 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4679 worker_flags |= WORKER_REBOUND;
4680 worker_flags &= ~WORKER_UNBOUND;
4681 ACCESS_ONCE(worker->flags) = worker_flags;
4682 }
4683
4684 spin_unlock_irq(&pool->lock);
4685 }
4686
4687 /**
4688 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4689 * @pool: unbound pool of interest
4690 * @cpu: the CPU which is coming up
4691 *
4692 * An unbound pool may end up with a cpumask which doesn't have any online
4693 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4694 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4695 * online CPU before, cpus_allowed of all its workers should be restored.
4696 */
4697 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4698 {
4699 static cpumask_t cpumask;
4700 struct worker *worker;
4701 int wi;
4702
4703 lockdep_assert_held(&pool->manager_mutex);
4704
4705 /* is @cpu allowed for @pool? */
4706 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4707 return;
4708
4709 /* is @cpu the only online CPU? */
4710 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4711 if (cpumask_weight(&cpumask) != 1)
4712 return;
4713
4714 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4715 for_each_pool_worker(worker, wi, pool)
4716 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4717 pool->attrs->cpumask) < 0);
4718 }
4719
4720 /*
4721 * Workqueues should be brought up before normal priority CPU notifiers.
4722 * This will be registered high priority CPU notifier.
4723 */
4724 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4725 unsigned long action,
4726 void *hcpu)
4727 {
4728 int cpu = (unsigned long)hcpu;
4729 struct worker_pool *pool;
4730 struct workqueue_struct *wq;
4731 int pi;
4732
4733 switch (action & ~CPU_TASKS_FROZEN) {
4734 case CPU_UP_PREPARE:
4735 for_each_cpu_worker_pool(pool, cpu) {
4736 if (pool->nr_workers)
4737 continue;
4738 if (create_and_start_worker(pool) < 0)
4739 return NOTIFY_BAD;
4740 }
4741 break;
4742
4743 case CPU_DOWN_FAILED:
4744 case CPU_ONLINE:
4745 mutex_lock(&wq_pool_mutex);
4746
4747 for_each_pool(pool, pi) {
4748 mutex_lock(&pool->manager_mutex);
4749
4750 if (pool->cpu == cpu) {
4751 spin_lock_irq(&pool->lock);
4752 pool->flags &= ~POOL_DISASSOCIATED;
4753 spin_unlock_irq(&pool->lock);
4754
4755 rebind_workers(pool);
4756 } else if (pool->cpu < 0) {
4757 restore_unbound_workers_cpumask(pool, cpu);
4758 }
4759
4760 mutex_unlock(&pool->manager_mutex);
4761 }
4762
4763 /* update NUMA affinity of unbound workqueues */
4764 list_for_each_entry(wq, &workqueues, list)
4765 wq_update_unbound_numa(wq, cpu, true);
4766
4767 mutex_unlock(&wq_pool_mutex);
4768 break;
4769 }
4770 return NOTIFY_OK;
4771 }
4772
4773 /*
4774 * Workqueues should be brought down after normal priority CPU notifiers.
4775 * This will be registered as low priority CPU notifier.
4776 */
4777 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4778 unsigned long action,
4779 void *hcpu)
4780 {
4781 int cpu = (unsigned long)hcpu;
4782 struct work_struct unbind_work;
4783 struct workqueue_struct *wq;
4784
4785 switch (action & ~CPU_TASKS_FROZEN) {
4786 case CPU_DOWN_PREPARE:
4787 /* unbinding per-cpu workers should happen on the local CPU */
4788 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4789 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4790
4791 /* update NUMA affinity of unbound workqueues */
4792 mutex_lock(&wq_pool_mutex);
4793 list_for_each_entry(wq, &workqueues, list)
4794 wq_update_unbound_numa(wq, cpu, false);
4795 mutex_unlock(&wq_pool_mutex);
4796
4797 /* wait for per-cpu unbinding to finish */
4798 flush_work(&unbind_work);
4799 destroy_work_on_stack(&unbind_work);
4800 break;
4801 }
4802 return NOTIFY_OK;
4803 }
4804
4805 #ifdef CONFIG_SMP
4806
4807 struct work_for_cpu {
4808 struct work_struct work;
4809 long (*fn)(void *);
4810 void *arg;
4811 long ret;
4812 };
4813
4814 static void work_for_cpu_fn(struct work_struct *work)
4815 {
4816 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4817
4818 wfc->ret = wfc->fn(wfc->arg);
4819 }
4820
4821 /**
4822 * work_on_cpu - run a function in user context on a particular cpu
4823 * @cpu: the cpu to run on
4824 * @fn: the function to run
4825 * @arg: the function arg
4826 *
4827 * It is up to the caller to ensure that the cpu doesn't go offline.
4828 * The caller must not hold any locks which would prevent @fn from completing.
4829 *
4830 * Return: The value @fn returns.
4831 */
4832 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4833 {
4834 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4835
4836 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4837 schedule_work_on(cpu, &wfc.work);
4838 flush_work(&wfc.work);
4839 destroy_work_on_stack(&wfc.work);
4840 return wfc.ret;
4841 }
4842 EXPORT_SYMBOL_GPL(work_on_cpu);
4843 #endif /* CONFIG_SMP */
4844
4845 #ifdef CONFIG_FREEZER
4846
4847 /**
4848 * freeze_workqueues_begin - begin freezing workqueues
4849 *
4850 * Start freezing workqueues. After this function returns, all freezable
4851 * workqueues will queue new works to their delayed_works list instead of
4852 * pool->worklist.
4853 *
4854 * CONTEXT:
4855 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4856 */
4857 void freeze_workqueues_begin(void)
4858 {
4859 struct worker_pool *pool;
4860 struct workqueue_struct *wq;
4861 struct pool_workqueue *pwq;
4862 int pi;
4863
4864 mutex_lock(&wq_pool_mutex);
4865
4866 WARN_ON_ONCE(workqueue_freezing);
4867 workqueue_freezing = true;
4868
4869 /* set FREEZING */
4870 for_each_pool(pool, pi) {
4871 spin_lock_irq(&pool->lock);
4872 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4873 pool->flags |= POOL_FREEZING;
4874 spin_unlock_irq(&pool->lock);
4875 }
4876
4877 list_for_each_entry(wq, &workqueues, list) {
4878 mutex_lock(&wq->mutex);
4879 for_each_pwq(pwq, wq)
4880 pwq_adjust_max_active(pwq);
4881 mutex_unlock(&wq->mutex);
4882 }
4883
4884 mutex_unlock(&wq_pool_mutex);
4885 }
4886
4887 /**
4888 * freeze_workqueues_busy - are freezable workqueues still busy?
4889 *
4890 * Check whether freezing is complete. This function must be called
4891 * between freeze_workqueues_begin() and thaw_workqueues().
4892 *
4893 * CONTEXT:
4894 * Grabs and releases wq_pool_mutex.
4895 *
4896 * Return:
4897 * %true if some freezable workqueues are still busy. %false if freezing
4898 * is complete.
4899 */
4900 bool freeze_workqueues_busy(void)
4901 {
4902 bool busy = false;
4903 struct workqueue_struct *wq;
4904 struct pool_workqueue *pwq;
4905
4906 mutex_lock(&wq_pool_mutex);
4907
4908 WARN_ON_ONCE(!workqueue_freezing);
4909
4910 list_for_each_entry(wq, &workqueues, list) {
4911 if (!(wq->flags & WQ_FREEZABLE))
4912 continue;
4913 /*
4914 * nr_active is monotonically decreasing. It's safe
4915 * to peek without lock.
4916 */
4917 rcu_read_lock_sched();
4918 for_each_pwq(pwq, wq) {
4919 WARN_ON_ONCE(pwq->nr_active < 0);
4920 if (pwq->nr_active) {
4921 busy = true;
4922 rcu_read_unlock_sched();
4923 goto out_unlock;
4924 }
4925 }
4926 rcu_read_unlock_sched();
4927 }
4928 out_unlock:
4929 mutex_unlock(&wq_pool_mutex);
4930 return busy;
4931 }
4932
4933 /**
4934 * thaw_workqueues - thaw workqueues
4935 *
4936 * Thaw workqueues. Normal queueing is restored and all collected
4937 * frozen works are transferred to their respective pool worklists.
4938 *
4939 * CONTEXT:
4940 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4941 */
4942 void thaw_workqueues(void)
4943 {
4944 struct workqueue_struct *wq;
4945 struct pool_workqueue *pwq;
4946 struct worker_pool *pool;
4947 int pi;
4948
4949 mutex_lock(&wq_pool_mutex);
4950
4951 if (!workqueue_freezing)
4952 goto out_unlock;
4953
4954 /* clear FREEZING */
4955 for_each_pool(pool, pi) {
4956 spin_lock_irq(&pool->lock);
4957 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4958 pool->flags &= ~POOL_FREEZING;
4959 spin_unlock_irq(&pool->lock);
4960 }
4961
4962 /* restore max_active and repopulate worklist */
4963 list_for_each_entry(wq, &workqueues, list) {
4964 mutex_lock(&wq->mutex);
4965 for_each_pwq(pwq, wq)
4966 pwq_adjust_max_active(pwq);
4967 mutex_unlock(&wq->mutex);
4968 }
4969
4970 workqueue_freezing = false;
4971 out_unlock:
4972 mutex_unlock(&wq_pool_mutex);
4973 }
4974 #endif /* CONFIG_FREEZER */
4975
4976 static void __init wq_numa_init(void)
4977 {
4978 cpumask_var_t *tbl;
4979 int node, cpu;
4980
4981 /* determine NUMA pwq table len - highest node id + 1 */
4982 for_each_node(node)
4983 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4984
4985 if (num_possible_nodes() <= 1)
4986 return;
4987
4988 if (wq_disable_numa) {
4989 pr_info("workqueue: NUMA affinity support disabled\n");
4990 return;
4991 }
4992
4993 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4994 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4995
4996 /*
4997 * We want masks of possible CPUs of each node which isn't readily
4998 * available. Build one from cpu_to_node() which should have been
4999 * fully initialized by now.
5000 */
5001 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5002 BUG_ON(!tbl);
5003
5004 for_each_node(node)
5005 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5006 node_online(node) ? node : NUMA_NO_NODE));
5007
5008 for_each_possible_cpu(cpu) {
5009 node = cpu_to_node(cpu);
5010 if (WARN_ON(node == NUMA_NO_NODE)) {
5011 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5012 /* happens iff arch is bonkers, let's just proceed */
5013 return;
5014 }
5015 cpumask_set_cpu(cpu, tbl[node]);
5016 }
5017
5018 wq_numa_possible_cpumask = tbl;
5019 wq_numa_enabled = true;
5020 }
5021
5022 static int __init init_workqueues(void)
5023 {
5024 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5025 int i, cpu;
5026
5027 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5028
5029 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5030
5031 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5032 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5033
5034 wq_numa_init();
5035
5036 /* initialize CPU pools */
5037 for_each_possible_cpu(cpu) {
5038 struct worker_pool *pool;
5039
5040 i = 0;
5041 for_each_cpu_worker_pool(pool, cpu) {
5042 BUG_ON(init_worker_pool(pool));
5043 pool->cpu = cpu;
5044 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5045 pool->attrs->nice = std_nice[i++];
5046 pool->node = cpu_to_node(cpu);
5047
5048 /* alloc pool ID */
5049 mutex_lock(&wq_pool_mutex);
5050 BUG_ON(worker_pool_assign_id(pool));
5051 mutex_unlock(&wq_pool_mutex);
5052 }
5053 }
5054
5055 /* create the initial worker */
5056 for_each_online_cpu(cpu) {
5057 struct worker_pool *pool;
5058
5059 for_each_cpu_worker_pool(pool, cpu) {
5060 pool->flags &= ~POOL_DISASSOCIATED;
5061 BUG_ON(create_and_start_worker(pool) < 0);
5062 }
5063 }
5064
5065 /* create default unbound and ordered wq attrs */
5066 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5067 struct workqueue_attrs *attrs;
5068
5069 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5070 attrs->nice = std_nice[i];
5071 unbound_std_wq_attrs[i] = attrs;
5072
5073 /*
5074 * An ordered wq should have only one pwq as ordering is
5075 * guaranteed by max_active which is enforced by pwqs.
5076 * Turn off NUMA so that dfl_pwq is used for all nodes.
5077 */
5078 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5079 attrs->nice = std_nice[i];
5080 attrs->no_numa = true;
5081 ordered_wq_attrs[i] = attrs;
5082 }
5083
5084 system_wq = alloc_workqueue("events", 0, 0);
5085 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5086 system_long_wq = alloc_workqueue("events_long", 0, 0);
5087 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5088 WQ_UNBOUND_MAX_ACTIVE);
5089 system_freezable_wq = alloc_workqueue("events_freezable",
5090 WQ_FREEZABLE, 0);
5091 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5092 WQ_POWER_EFFICIENT, 0);
5093 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5094 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5095 0);
5096 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5097 !system_unbound_wq || !system_freezable_wq ||
5098 !system_power_efficient_wq ||
5099 !system_freezable_power_efficient_wq);
5100 return 0;
5101 }
5102 early_initcall(init_workqueues);
This page took 0.163146 seconds and 5 git commands to generate.