Merge tag 'arc-v3.13-rc1-part1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
69 * create_worker() is in progress.
70 */
71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73 POOL_FREEZING = 1 << 3, /* freeze in progress */
74
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
106 HIGHPRI_NICE_LEVEL = -20,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * WQ: wq->mutex protected.
135 *
136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
137 *
138 * MD: wq_mayday_lock protected.
139 */
140
141 /* struct worker is defined in workqueue_internal.h */
142
143 struct worker_pool {
144 spinlock_t lock; /* the pool lock */
145 int cpu; /* I: the associated cpu */
146 int node; /* I: the associated node ID */
147 int id; /* I: pool ID */
148 unsigned int flags; /* X: flags */
149
150 struct list_head worklist; /* L: list of pending works */
151 int nr_workers; /* L: total number of workers */
152
153 /* nr_idle includes the ones off idle_list for rebinding */
154 int nr_idle; /* L: currently idle ones */
155
156 struct list_head idle_list; /* X: list of idle workers */
157 struct timer_list idle_timer; /* L: worker idle timeout */
158 struct timer_list mayday_timer; /* L: SOS timer for workers */
159
160 /* a workers is either on busy_hash or idle_list, or the manager */
161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 /* L: hash of busy workers */
163
164 /* see manage_workers() for details on the two manager mutexes */
165 struct mutex manager_arb; /* manager arbitration */
166 struct mutex manager_mutex; /* manager exclusion */
167 struct idr worker_idr; /* MG: worker IDs and iteration */
168
169 struct workqueue_attrs *attrs; /* I: worker attributes */
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
172
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
185 } ____cacheline_aligned_in_smp;
186
187 /*
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
192 */
193 struct pool_workqueue {
194 struct worker_pool *pool; /* I: the associated pool */
195 struct workqueue_struct *wq; /* I: the owning workqueue */
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
198 int refcnt; /* L: reference count */
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
201 int nr_active; /* L: nr of active works */
202 int max_active; /* L: max active works */
203 struct list_head delayed_works; /* L: delayed works */
204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
205 struct list_head mayday_node; /* MD: node on wq->maydays */
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
211 * determined without grabbing wq->mutex.
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216
217 /*
218 * Structure used to wait for workqueue flush.
219 */
220 struct wq_flusher {
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
223 struct completion done; /* flush completion */
224 };
225
226 struct wq_device;
227
228 /*
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
231 */
232 struct workqueue_struct {
233 struct list_head pwqs; /* WR: all pwqs of this wq */
234 struct list_head list; /* PL: list of all workqueues */
235
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
239 atomic_t nr_pwqs_to_flush; /* flush in progress */
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
243
244 struct list_head maydays; /* MD: pwqs requesting rescue */
245 struct worker *rescuer; /* I: rescue worker */
246
247 int nr_drainers; /* WQ: drain in progress */
248 int saved_max_active; /* WQ: saved pwq max_active */
249
250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
252
253 #ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 struct lockdep_map lockdep_map;
258 #endif
259 char name[WQ_NAME_LEN]; /* I: workqueue name */
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266
267 static struct kmem_cache *pwq_cache;
268
269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
292
293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294 static bool workqueue_freezing; /* PL: have wqs started freezing? */
295
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
301
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
308 struct workqueue_struct *system_wq __read_mostly;
309 EXPORT_SYMBOL(system_wq);
310 struct workqueue_struct *system_highpri_wq __read_mostly;
311 EXPORT_SYMBOL_GPL(system_highpri_wq);
312 struct workqueue_struct *system_long_wq __read_mostly;
313 EXPORT_SYMBOL_GPL(system_long_wq);
314 struct workqueue_struct *system_unbound_wq __read_mostly;
315 EXPORT_SYMBOL_GPL(system_unbound_wq);
316 struct workqueue_struct *system_freezable_wq __read_mostly;
317 EXPORT_SYMBOL_GPL(system_freezable_wq);
318 struct workqueue_struct *system_power_efficient_wq __read_mostly;
319 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
320 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
321 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
322
323 static int worker_thread(void *__worker);
324 static void copy_workqueue_attrs(struct workqueue_attrs *to,
325 const struct workqueue_attrs *from);
326
327 #define CREATE_TRACE_POINTS
328 #include <trace/events/workqueue.h>
329
330 #define assert_rcu_or_pool_mutex() \
331 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
332 lockdep_is_held(&wq_pool_mutex), \
333 "sched RCU or wq_pool_mutex should be held")
334
335 #define assert_rcu_or_wq_mutex(wq) \
336 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
337 lockdep_is_held(&wq->mutex), \
338 "sched RCU or wq->mutex should be held")
339
340 #ifdef CONFIG_LOCKDEP
341 #define assert_manager_or_pool_lock(pool) \
342 WARN_ONCE(debug_locks && \
343 !lockdep_is_held(&(pool)->manager_mutex) && \
344 !lockdep_is_held(&(pool)->lock), \
345 "pool->manager_mutex or ->lock should be held")
346 #else
347 #define assert_manager_or_pool_lock(pool) do { } while (0)
348 #endif
349
350 #define for_each_cpu_worker_pool(pool, cpu) \
351 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
352 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
353 (pool)++)
354
355 /**
356 * for_each_pool - iterate through all worker_pools in the system
357 * @pool: iteration cursor
358 * @pi: integer used for iteration
359 *
360 * This must be called either with wq_pool_mutex held or sched RCU read
361 * locked. If the pool needs to be used beyond the locking in effect, the
362 * caller is responsible for guaranteeing that the pool stays online.
363 *
364 * The if/else clause exists only for the lockdep assertion and can be
365 * ignored.
366 */
367 #define for_each_pool(pool, pi) \
368 idr_for_each_entry(&worker_pool_idr, pool, pi) \
369 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
370 else
371
372 /**
373 * for_each_pool_worker - iterate through all workers of a worker_pool
374 * @worker: iteration cursor
375 * @wi: integer used for iteration
376 * @pool: worker_pool to iterate workers of
377 *
378 * This must be called with either @pool->manager_mutex or ->lock held.
379 *
380 * The if/else clause exists only for the lockdep assertion and can be
381 * ignored.
382 */
383 #define for_each_pool_worker(worker, wi, pool) \
384 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
385 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
386 else
387
388 /**
389 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
390 * @pwq: iteration cursor
391 * @wq: the target workqueue
392 *
393 * This must be called either with wq->mutex held or sched RCU read locked.
394 * If the pwq needs to be used beyond the locking in effect, the caller is
395 * responsible for guaranteeing that the pwq stays online.
396 *
397 * The if/else clause exists only for the lockdep assertion and can be
398 * ignored.
399 */
400 #define for_each_pwq(pwq, wq) \
401 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
402 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
403 else
404
405 #ifdef CONFIG_DEBUG_OBJECTS_WORK
406
407 static struct debug_obj_descr work_debug_descr;
408
409 static void *work_debug_hint(void *addr)
410 {
411 return ((struct work_struct *) addr)->func;
412 }
413
414 /*
415 * fixup_init is called when:
416 * - an active object is initialized
417 */
418 static int work_fixup_init(void *addr, enum debug_obj_state state)
419 {
420 struct work_struct *work = addr;
421
422 switch (state) {
423 case ODEBUG_STATE_ACTIVE:
424 cancel_work_sync(work);
425 debug_object_init(work, &work_debug_descr);
426 return 1;
427 default:
428 return 0;
429 }
430 }
431
432 /*
433 * fixup_activate is called when:
434 * - an active object is activated
435 * - an unknown object is activated (might be a statically initialized object)
436 */
437 static int work_fixup_activate(void *addr, enum debug_obj_state state)
438 {
439 struct work_struct *work = addr;
440
441 switch (state) {
442
443 case ODEBUG_STATE_NOTAVAILABLE:
444 /*
445 * This is not really a fixup. The work struct was
446 * statically initialized. We just make sure that it
447 * is tracked in the object tracker.
448 */
449 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
450 debug_object_init(work, &work_debug_descr);
451 debug_object_activate(work, &work_debug_descr);
452 return 0;
453 }
454 WARN_ON_ONCE(1);
455 return 0;
456
457 case ODEBUG_STATE_ACTIVE:
458 WARN_ON(1);
459
460 default:
461 return 0;
462 }
463 }
464
465 /*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
469 static int work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
477 return 1;
478 default:
479 return 0;
480 }
481 }
482
483 static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
485 .debug_hint = work_debug_hint,
486 .fixup_init = work_fixup_init,
487 .fixup_activate = work_fixup_activate,
488 .fixup_free = work_fixup_free,
489 };
490
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 debug_object_activate(work, &work_debug_descr);
494 }
495
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 debug_object_deactivate(work, &work_debug_descr);
499 }
500
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
516 #else
517 static inline void debug_work_activate(struct work_struct *work) { }
518 static inline void debug_work_deactivate(struct work_struct *work) { }
519 #endif
520
521 /* allocate ID and assign it to @pool */
522 static int worker_pool_assign_id(struct worker_pool *pool)
523 {
524 int ret;
525
526 lockdep_assert_held(&wq_pool_mutex);
527
528 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
529 if (ret >= 0) {
530 pool->id = ret;
531 return 0;
532 }
533 return ret;
534 }
535
536 /**
537 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
538 * @wq: the target workqueue
539 * @node: the node ID
540 *
541 * This must be called either with pwq_lock held or sched RCU read locked.
542 * If the pwq needs to be used beyond the locking in effect, the caller is
543 * responsible for guaranteeing that the pwq stays online.
544 *
545 * Return: The unbound pool_workqueue for @node.
546 */
547 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
548 int node)
549 {
550 assert_rcu_or_wq_mutex(wq);
551 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
552 }
553
554 static unsigned int work_color_to_flags(int color)
555 {
556 return color << WORK_STRUCT_COLOR_SHIFT;
557 }
558
559 static int get_work_color(struct work_struct *work)
560 {
561 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
562 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
563 }
564
565 static int work_next_color(int color)
566 {
567 return (color + 1) % WORK_NR_COLORS;
568 }
569
570 /*
571 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
572 * contain the pointer to the queued pwq. Once execution starts, the flag
573 * is cleared and the high bits contain OFFQ flags and pool ID.
574 *
575 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
576 * and clear_work_data() can be used to set the pwq, pool or clear
577 * work->data. These functions should only be called while the work is
578 * owned - ie. while the PENDING bit is set.
579 *
580 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
581 * corresponding to a work. Pool is available once the work has been
582 * queued anywhere after initialization until it is sync canceled. pwq is
583 * available only while the work item is queued.
584 *
585 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
586 * canceled. While being canceled, a work item may have its PENDING set
587 * but stay off timer and worklist for arbitrarily long and nobody should
588 * try to steal the PENDING bit.
589 */
590 static inline void set_work_data(struct work_struct *work, unsigned long data,
591 unsigned long flags)
592 {
593 WARN_ON_ONCE(!work_pending(work));
594 atomic_long_set(&work->data, data | flags | work_static(work));
595 }
596
597 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
598 unsigned long extra_flags)
599 {
600 set_work_data(work, (unsigned long)pwq,
601 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
602 }
603
604 static void set_work_pool_and_keep_pending(struct work_struct *work,
605 int pool_id)
606 {
607 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
608 WORK_STRUCT_PENDING);
609 }
610
611 static void set_work_pool_and_clear_pending(struct work_struct *work,
612 int pool_id)
613 {
614 /*
615 * The following wmb is paired with the implied mb in
616 * test_and_set_bit(PENDING) and ensures all updates to @work made
617 * here are visible to and precede any updates by the next PENDING
618 * owner.
619 */
620 smp_wmb();
621 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
622 }
623
624 static void clear_work_data(struct work_struct *work)
625 {
626 smp_wmb(); /* see set_work_pool_and_clear_pending() */
627 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
628 }
629
630 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
631 {
632 unsigned long data = atomic_long_read(&work->data);
633
634 if (data & WORK_STRUCT_PWQ)
635 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
636 else
637 return NULL;
638 }
639
640 /**
641 * get_work_pool - return the worker_pool a given work was associated with
642 * @work: the work item of interest
643 *
644 * Pools are created and destroyed under wq_pool_mutex, and allows read
645 * access under sched-RCU read lock. As such, this function should be
646 * called under wq_pool_mutex or with preemption disabled.
647 *
648 * All fields of the returned pool are accessible as long as the above
649 * mentioned locking is in effect. If the returned pool needs to be used
650 * beyond the critical section, the caller is responsible for ensuring the
651 * returned pool is and stays online.
652 *
653 * Return: The worker_pool @work was last associated with. %NULL if none.
654 */
655 static struct worker_pool *get_work_pool(struct work_struct *work)
656 {
657 unsigned long data = atomic_long_read(&work->data);
658 int pool_id;
659
660 assert_rcu_or_pool_mutex();
661
662 if (data & WORK_STRUCT_PWQ)
663 return ((struct pool_workqueue *)
664 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
665
666 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
667 if (pool_id == WORK_OFFQ_POOL_NONE)
668 return NULL;
669
670 return idr_find(&worker_pool_idr, pool_id);
671 }
672
673 /**
674 * get_work_pool_id - return the worker pool ID a given work is associated with
675 * @work: the work item of interest
676 *
677 * Return: The worker_pool ID @work was last associated with.
678 * %WORK_OFFQ_POOL_NONE if none.
679 */
680 static int get_work_pool_id(struct work_struct *work)
681 {
682 unsigned long data = atomic_long_read(&work->data);
683
684 if (data & WORK_STRUCT_PWQ)
685 return ((struct pool_workqueue *)
686 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
687
688 return data >> WORK_OFFQ_POOL_SHIFT;
689 }
690
691 static void mark_work_canceling(struct work_struct *work)
692 {
693 unsigned long pool_id = get_work_pool_id(work);
694
695 pool_id <<= WORK_OFFQ_POOL_SHIFT;
696 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
697 }
698
699 static bool work_is_canceling(struct work_struct *work)
700 {
701 unsigned long data = atomic_long_read(&work->data);
702
703 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
704 }
705
706 /*
707 * Policy functions. These define the policies on how the global worker
708 * pools are managed. Unless noted otherwise, these functions assume that
709 * they're being called with pool->lock held.
710 */
711
712 static bool __need_more_worker(struct worker_pool *pool)
713 {
714 return !atomic_read(&pool->nr_running);
715 }
716
717 /*
718 * Need to wake up a worker? Called from anything but currently
719 * running workers.
720 *
721 * Note that, because unbound workers never contribute to nr_running, this
722 * function will always return %true for unbound pools as long as the
723 * worklist isn't empty.
724 */
725 static bool need_more_worker(struct worker_pool *pool)
726 {
727 return !list_empty(&pool->worklist) && __need_more_worker(pool);
728 }
729
730 /* Can I start working? Called from busy but !running workers. */
731 static bool may_start_working(struct worker_pool *pool)
732 {
733 return pool->nr_idle;
734 }
735
736 /* Do I need to keep working? Called from currently running workers. */
737 static bool keep_working(struct worker_pool *pool)
738 {
739 return !list_empty(&pool->worklist) &&
740 atomic_read(&pool->nr_running) <= 1;
741 }
742
743 /* Do we need a new worker? Called from manager. */
744 static bool need_to_create_worker(struct worker_pool *pool)
745 {
746 return need_more_worker(pool) && !may_start_working(pool);
747 }
748
749 /* Do I need to be the manager? */
750 static bool need_to_manage_workers(struct worker_pool *pool)
751 {
752 return need_to_create_worker(pool) ||
753 (pool->flags & POOL_MANAGE_WORKERS);
754 }
755
756 /* Do we have too many workers and should some go away? */
757 static bool too_many_workers(struct worker_pool *pool)
758 {
759 bool managing = mutex_is_locked(&pool->manager_arb);
760 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
761 int nr_busy = pool->nr_workers - nr_idle;
762
763 /*
764 * nr_idle and idle_list may disagree if idle rebinding is in
765 * progress. Never return %true if idle_list is empty.
766 */
767 if (list_empty(&pool->idle_list))
768 return false;
769
770 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
771 }
772
773 /*
774 * Wake up functions.
775 */
776
777 /* Return the first worker. Safe with preemption disabled */
778 static struct worker *first_worker(struct worker_pool *pool)
779 {
780 if (unlikely(list_empty(&pool->idle_list)))
781 return NULL;
782
783 return list_first_entry(&pool->idle_list, struct worker, entry);
784 }
785
786 /**
787 * wake_up_worker - wake up an idle worker
788 * @pool: worker pool to wake worker from
789 *
790 * Wake up the first idle worker of @pool.
791 *
792 * CONTEXT:
793 * spin_lock_irq(pool->lock).
794 */
795 static void wake_up_worker(struct worker_pool *pool)
796 {
797 struct worker *worker = first_worker(pool);
798
799 if (likely(worker))
800 wake_up_process(worker->task);
801 }
802
803 /**
804 * wq_worker_waking_up - a worker is waking up
805 * @task: task waking up
806 * @cpu: CPU @task is waking up to
807 *
808 * This function is called during try_to_wake_up() when a worker is
809 * being awoken.
810 *
811 * CONTEXT:
812 * spin_lock_irq(rq->lock)
813 */
814 void wq_worker_waking_up(struct task_struct *task, int cpu)
815 {
816 struct worker *worker = kthread_data(task);
817
818 if (!(worker->flags & WORKER_NOT_RUNNING)) {
819 WARN_ON_ONCE(worker->pool->cpu != cpu);
820 atomic_inc(&worker->pool->nr_running);
821 }
822 }
823
824 /**
825 * wq_worker_sleeping - a worker is going to sleep
826 * @task: task going to sleep
827 * @cpu: CPU in question, must be the current CPU number
828 *
829 * This function is called during schedule() when a busy worker is
830 * going to sleep. Worker on the same cpu can be woken up by
831 * returning pointer to its task.
832 *
833 * CONTEXT:
834 * spin_lock_irq(rq->lock)
835 *
836 * Return:
837 * Worker task on @cpu to wake up, %NULL if none.
838 */
839 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
840 {
841 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
842 struct worker_pool *pool;
843
844 /*
845 * Rescuers, which may not have all the fields set up like normal
846 * workers, also reach here, let's not access anything before
847 * checking NOT_RUNNING.
848 */
849 if (worker->flags & WORKER_NOT_RUNNING)
850 return NULL;
851
852 pool = worker->pool;
853
854 /* this can only happen on the local cpu */
855 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
856 return NULL;
857
858 /*
859 * The counterpart of the following dec_and_test, implied mb,
860 * worklist not empty test sequence is in insert_work().
861 * Please read comment there.
862 *
863 * NOT_RUNNING is clear. This means that we're bound to and
864 * running on the local cpu w/ rq lock held and preemption
865 * disabled, which in turn means that none else could be
866 * manipulating idle_list, so dereferencing idle_list without pool
867 * lock is safe.
868 */
869 if (atomic_dec_and_test(&pool->nr_running) &&
870 !list_empty(&pool->worklist))
871 to_wakeup = first_worker(pool);
872 return to_wakeup ? to_wakeup->task : NULL;
873 }
874
875 /**
876 * worker_set_flags - set worker flags and adjust nr_running accordingly
877 * @worker: self
878 * @flags: flags to set
879 * @wakeup: wakeup an idle worker if necessary
880 *
881 * Set @flags in @worker->flags and adjust nr_running accordingly. If
882 * nr_running becomes zero and @wakeup is %true, an idle worker is
883 * woken up.
884 *
885 * CONTEXT:
886 * spin_lock_irq(pool->lock)
887 */
888 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
889 bool wakeup)
890 {
891 struct worker_pool *pool = worker->pool;
892
893 WARN_ON_ONCE(worker->task != current);
894
895 /*
896 * If transitioning into NOT_RUNNING, adjust nr_running and
897 * wake up an idle worker as necessary if requested by
898 * @wakeup.
899 */
900 if ((flags & WORKER_NOT_RUNNING) &&
901 !(worker->flags & WORKER_NOT_RUNNING)) {
902 if (wakeup) {
903 if (atomic_dec_and_test(&pool->nr_running) &&
904 !list_empty(&pool->worklist))
905 wake_up_worker(pool);
906 } else
907 atomic_dec(&pool->nr_running);
908 }
909
910 worker->flags |= flags;
911 }
912
913 /**
914 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
915 * @worker: self
916 * @flags: flags to clear
917 *
918 * Clear @flags in @worker->flags and adjust nr_running accordingly.
919 *
920 * CONTEXT:
921 * spin_lock_irq(pool->lock)
922 */
923 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
924 {
925 struct worker_pool *pool = worker->pool;
926 unsigned int oflags = worker->flags;
927
928 WARN_ON_ONCE(worker->task != current);
929
930 worker->flags &= ~flags;
931
932 /*
933 * If transitioning out of NOT_RUNNING, increment nr_running. Note
934 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
935 * of multiple flags, not a single flag.
936 */
937 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
938 if (!(worker->flags & WORKER_NOT_RUNNING))
939 atomic_inc(&pool->nr_running);
940 }
941
942 /**
943 * find_worker_executing_work - find worker which is executing a work
944 * @pool: pool of interest
945 * @work: work to find worker for
946 *
947 * Find a worker which is executing @work on @pool by searching
948 * @pool->busy_hash which is keyed by the address of @work. For a worker
949 * to match, its current execution should match the address of @work and
950 * its work function. This is to avoid unwanted dependency between
951 * unrelated work executions through a work item being recycled while still
952 * being executed.
953 *
954 * This is a bit tricky. A work item may be freed once its execution
955 * starts and nothing prevents the freed area from being recycled for
956 * another work item. If the same work item address ends up being reused
957 * before the original execution finishes, workqueue will identify the
958 * recycled work item as currently executing and make it wait until the
959 * current execution finishes, introducing an unwanted dependency.
960 *
961 * This function checks the work item address and work function to avoid
962 * false positives. Note that this isn't complete as one may construct a
963 * work function which can introduce dependency onto itself through a
964 * recycled work item. Well, if somebody wants to shoot oneself in the
965 * foot that badly, there's only so much we can do, and if such deadlock
966 * actually occurs, it should be easy to locate the culprit work function.
967 *
968 * CONTEXT:
969 * spin_lock_irq(pool->lock).
970 *
971 * Return:
972 * Pointer to worker which is executing @work if found, %NULL
973 * otherwise.
974 */
975 static struct worker *find_worker_executing_work(struct worker_pool *pool,
976 struct work_struct *work)
977 {
978 struct worker *worker;
979
980 hash_for_each_possible(pool->busy_hash, worker, hentry,
981 (unsigned long)work)
982 if (worker->current_work == work &&
983 worker->current_func == work->func)
984 return worker;
985
986 return NULL;
987 }
988
989 /**
990 * move_linked_works - move linked works to a list
991 * @work: start of series of works to be scheduled
992 * @head: target list to append @work to
993 * @nextp: out paramter for nested worklist walking
994 *
995 * Schedule linked works starting from @work to @head. Work series to
996 * be scheduled starts at @work and includes any consecutive work with
997 * WORK_STRUCT_LINKED set in its predecessor.
998 *
999 * If @nextp is not NULL, it's updated to point to the next work of
1000 * the last scheduled work. This allows move_linked_works() to be
1001 * nested inside outer list_for_each_entry_safe().
1002 *
1003 * CONTEXT:
1004 * spin_lock_irq(pool->lock).
1005 */
1006 static void move_linked_works(struct work_struct *work, struct list_head *head,
1007 struct work_struct **nextp)
1008 {
1009 struct work_struct *n;
1010
1011 /*
1012 * Linked worklist will always end before the end of the list,
1013 * use NULL for list head.
1014 */
1015 list_for_each_entry_safe_from(work, n, NULL, entry) {
1016 list_move_tail(&work->entry, head);
1017 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1018 break;
1019 }
1020
1021 /*
1022 * If we're already inside safe list traversal and have moved
1023 * multiple works to the scheduled queue, the next position
1024 * needs to be updated.
1025 */
1026 if (nextp)
1027 *nextp = n;
1028 }
1029
1030 /**
1031 * get_pwq - get an extra reference on the specified pool_workqueue
1032 * @pwq: pool_workqueue to get
1033 *
1034 * Obtain an extra reference on @pwq. The caller should guarantee that
1035 * @pwq has positive refcnt and be holding the matching pool->lock.
1036 */
1037 static void get_pwq(struct pool_workqueue *pwq)
1038 {
1039 lockdep_assert_held(&pwq->pool->lock);
1040 WARN_ON_ONCE(pwq->refcnt <= 0);
1041 pwq->refcnt++;
1042 }
1043
1044 /**
1045 * put_pwq - put a pool_workqueue reference
1046 * @pwq: pool_workqueue to put
1047 *
1048 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1049 * destruction. The caller should be holding the matching pool->lock.
1050 */
1051 static void put_pwq(struct pool_workqueue *pwq)
1052 {
1053 lockdep_assert_held(&pwq->pool->lock);
1054 if (likely(--pwq->refcnt))
1055 return;
1056 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1057 return;
1058 /*
1059 * @pwq can't be released under pool->lock, bounce to
1060 * pwq_unbound_release_workfn(). This never recurses on the same
1061 * pool->lock as this path is taken only for unbound workqueues and
1062 * the release work item is scheduled on a per-cpu workqueue. To
1063 * avoid lockdep warning, unbound pool->locks are given lockdep
1064 * subclass of 1 in get_unbound_pool().
1065 */
1066 schedule_work(&pwq->unbound_release_work);
1067 }
1068
1069 /**
1070 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1071 * @pwq: pool_workqueue to put (can be %NULL)
1072 *
1073 * put_pwq() with locking. This function also allows %NULL @pwq.
1074 */
1075 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1076 {
1077 if (pwq) {
1078 /*
1079 * As both pwqs and pools are sched-RCU protected, the
1080 * following lock operations are safe.
1081 */
1082 spin_lock_irq(&pwq->pool->lock);
1083 put_pwq(pwq);
1084 spin_unlock_irq(&pwq->pool->lock);
1085 }
1086 }
1087
1088 static void pwq_activate_delayed_work(struct work_struct *work)
1089 {
1090 struct pool_workqueue *pwq = get_work_pwq(work);
1091
1092 trace_workqueue_activate_work(work);
1093 move_linked_works(work, &pwq->pool->worklist, NULL);
1094 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1095 pwq->nr_active++;
1096 }
1097
1098 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1099 {
1100 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1101 struct work_struct, entry);
1102
1103 pwq_activate_delayed_work(work);
1104 }
1105
1106 /**
1107 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1108 * @pwq: pwq of interest
1109 * @color: color of work which left the queue
1110 *
1111 * A work either has completed or is removed from pending queue,
1112 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1113 *
1114 * CONTEXT:
1115 * spin_lock_irq(pool->lock).
1116 */
1117 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1118 {
1119 /* uncolored work items don't participate in flushing or nr_active */
1120 if (color == WORK_NO_COLOR)
1121 goto out_put;
1122
1123 pwq->nr_in_flight[color]--;
1124
1125 pwq->nr_active--;
1126 if (!list_empty(&pwq->delayed_works)) {
1127 /* one down, submit a delayed one */
1128 if (pwq->nr_active < pwq->max_active)
1129 pwq_activate_first_delayed(pwq);
1130 }
1131
1132 /* is flush in progress and are we at the flushing tip? */
1133 if (likely(pwq->flush_color != color))
1134 goto out_put;
1135
1136 /* are there still in-flight works? */
1137 if (pwq->nr_in_flight[color])
1138 goto out_put;
1139
1140 /* this pwq is done, clear flush_color */
1141 pwq->flush_color = -1;
1142
1143 /*
1144 * If this was the last pwq, wake up the first flusher. It
1145 * will handle the rest.
1146 */
1147 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1148 complete(&pwq->wq->first_flusher->done);
1149 out_put:
1150 put_pwq(pwq);
1151 }
1152
1153 /**
1154 * try_to_grab_pending - steal work item from worklist and disable irq
1155 * @work: work item to steal
1156 * @is_dwork: @work is a delayed_work
1157 * @flags: place to store irq state
1158 *
1159 * Try to grab PENDING bit of @work. This function can handle @work in any
1160 * stable state - idle, on timer or on worklist.
1161 *
1162 * Return:
1163 * 1 if @work was pending and we successfully stole PENDING
1164 * 0 if @work was idle and we claimed PENDING
1165 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1166 * -ENOENT if someone else is canceling @work, this state may persist
1167 * for arbitrarily long
1168 *
1169 * Note:
1170 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1171 * interrupted while holding PENDING and @work off queue, irq must be
1172 * disabled on entry. This, combined with delayed_work->timer being
1173 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1174 *
1175 * On successful return, >= 0, irq is disabled and the caller is
1176 * responsible for releasing it using local_irq_restore(*@flags).
1177 *
1178 * This function is safe to call from any context including IRQ handler.
1179 */
1180 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1181 unsigned long *flags)
1182 {
1183 struct worker_pool *pool;
1184 struct pool_workqueue *pwq;
1185
1186 local_irq_save(*flags);
1187
1188 /* try to steal the timer if it exists */
1189 if (is_dwork) {
1190 struct delayed_work *dwork = to_delayed_work(work);
1191
1192 /*
1193 * dwork->timer is irqsafe. If del_timer() fails, it's
1194 * guaranteed that the timer is not queued anywhere and not
1195 * running on the local CPU.
1196 */
1197 if (likely(del_timer(&dwork->timer)))
1198 return 1;
1199 }
1200
1201 /* try to claim PENDING the normal way */
1202 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1203 return 0;
1204
1205 /*
1206 * The queueing is in progress, or it is already queued. Try to
1207 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1208 */
1209 pool = get_work_pool(work);
1210 if (!pool)
1211 goto fail;
1212
1213 spin_lock(&pool->lock);
1214 /*
1215 * work->data is guaranteed to point to pwq only while the work
1216 * item is queued on pwq->wq, and both updating work->data to point
1217 * to pwq on queueing and to pool on dequeueing are done under
1218 * pwq->pool->lock. This in turn guarantees that, if work->data
1219 * points to pwq which is associated with a locked pool, the work
1220 * item is currently queued on that pool.
1221 */
1222 pwq = get_work_pwq(work);
1223 if (pwq && pwq->pool == pool) {
1224 debug_work_deactivate(work);
1225
1226 /*
1227 * A delayed work item cannot be grabbed directly because
1228 * it might have linked NO_COLOR work items which, if left
1229 * on the delayed_list, will confuse pwq->nr_active
1230 * management later on and cause stall. Make sure the work
1231 * item is activated before grabbing.
1232 */
1233 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1234 pwq_activate_delayed_work(work);
1235
1236 list_del_init(&work->entry);
1237 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1238
1239 /* work->data points to pwq iff queued, point to pool */
1240 set_work_pool_and_keep_pending(work, pool->id);
1241
1242 spin_unlock(&pool->lock);
1243 return 1;
1244 }
1245 spin_unlock(&pool->lock);
1246 fail:
1247 local_irq_restore(*flags);
1248 if (work_is_canceling(work))
1249 return -ENOENT;
1250 cpu_relax();
1251 return -EAGAIN;
1252 }
1253
1254 /**
1255 * insert_work - insert a work into a pool
1256 * @pwq: pwq @work belongs to
1257 * @work: work to insert
1258 * @head: insertion point
1259 * @extra_flags: extra WORK_STRUCT_* flags to set
1260 *
1261 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1262 * work_struct flags.
1263 *
1264 * CONTEXT:
1265 * spin_lock_irq(pool->lock).
1266 */
1267 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1268 struct list_head *head, unsigned int extra_flags)
1269 {
1270 struct worker_pool *pool = pwq->pool;
1271
1272 /* we own @work, set data and link */
1273 set_work_pwq(work, pwq, extra_flags);
1274 list_add_tail(&work->entry, head);
1275 get_pwq(pwq);
1276
1277 /*
1278 * Ensure either wq_worker_sleeping() sees the above
1279 * list_add_tail() or we see zero nr_running to avoid workers lying
1280 * around lazily while there are works to be processed.
1281 */
1282 smp_mb();
1283
1284 if (__need_more_worker(pool))
1285 wake_up_worker(pool);
1286 }
1287
1288 /*
1289 * Test whether @work is being queued from another work executing on the
1290 * same workqueue.
1291 */
1292 static bool is_chained_work(struct workqueue_struct *wq)
1293 {
1294 struct worker *worker;
1295
1296 worker = current_wq_worker();
1297 /*
1298 * Return %true iff I'm a worker execuing a work item on @wq. If
1299 * I'm @worker, it's safe to dereference it without locking.
1300 */
1301 return worker && worker->current_pwq->wq == wq;
1302 }
1303
1304 static void __queue_work(int cpu, struct workqueue_struct *wq,
1305 struct work_struct *work)
1306 {
1307 struct pool_workqueue *pwq;
1308 struct worker_pool *last_pool;
1309 struct list_head *worklist;
1310 unsigned int work_flags;
1311 unsigned int req_cpu = cpu;
1312
1313 /*
1314 * While a work item is PENDING && off queue, a task trying to
1315 * steal the PENDING will busy-loop waiting for it to either get
1316 * queued or lose PENDING. Grabbing PENDING and queueing should
1317 * happen with IRQ disabled.
1318 */
1319 WARN_ON_ONCE(!irqs_disabled());
1320
1321 debug_work_activate(work);
1322
1323 /* if dying, only works from the same workqueue are allowed */
1324 if (unlikely(wq->flags & __WQ_DRAINING) &&
1325 WARN_ON_ONCE(!is_chained_work(wq)))
1326 return;
1327 retry:
1328 if (req_cpu == WORK_CPU_UNBOUND)
1329 cpu = raw_smp_processor_id();
1330
1331 /* pwq which will be used unless @work is executing elsewhere */
1332 if (!(wq->flags & WQ_UNBOUND))
1333 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1334 else
1335 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1336
1337 /*
1338 * If @work was previously on a different pool, it might still be
1339 * running there, in which case the work needs to be queued on that
1340 * pool to guarantee non-reentrancy.
1341 */
1342 last_pool = get_work_pool(work);
1343 if (last_pool && last_pool != pwq->pool) {
1344 struct worker *worker;
1345
1346 spin_lock(&last_pool->lock);
1347
1348 worker = find_worker_executing_work(last_pool, work);
1349
1350 if (worker && worker->current_pwq->wq == wq) {
1351 pwq = worker->current_pwq;
1352 } else {
1353 /* meh... not running there, queue here */
1354 spin_unlock(&last_pool->lock);
1355 spin_lock(&pwq->pool->lock);
1356 }
1357 } else {
1358 spin_lock(&pwq->pool->lock);
1359 }
1360
1361 /*
1362 * pwq is determined and locked. For unbound pools, we could have
1363 * raced with pwq release and it could already be dead. If its
1364 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1365 * without another pwq replacing it in the numa_pwq_tbl or while
1366 * work items are executing on it, so the retrying is guaranteed to
1367 * make forward-progress.
1368 */
1369 if (unlikely(!pwq->refcnt)) {
1370 if (wq->flags & WQ_UNBOUND) {
1371 spin_unlock(&pwq->pool->lock);
1372 cpu_relax();
1373 goto retry;
1374 }
1375 /* oops */
1376 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1377 wq->name, cpu);
1378 }
1379
1380 /* pwq determined, queue */
1381 trace_workqueue_queue_work(req_cpu, pwq, work);
1382
1383 if (WARN_ON(!list_empty(&work->entry))) {
1384 spin_unlock(&pwq->pool->lock);
1385 return;
1386 }
1387
1388 pwq->nr_in_flight[pwq->work_color]++;
1389 work_flags = work_color_to_flags(pwq->work_color);
1390
1391 if (likely(pwq->nr_active < pwq->max_active)) {
1392 trace_workqueue_activate_work(work);
1393 pwq->nr_active++;
1394 worklist = &pwq->pool->worklist;
1395 } else {
1396 work_flags |= WORK_STRUCT_DELAYED;
1397 worklist = &pwq->delayed_works;
1398 }
1399
1400 insert_work(pwq, work, worklist, work_flags);
1401
1402 spin_unlock(&pwq->pool->lock);
1403 }
1404
1405 /**
1406 * queue_work_on - queue work on specific cpu
1407 * @cpu: CPU number to execute work on
1408 * @wq: workqueue to use
1409 * @work: work to queue
1410 *
1411 * We queue the work to a specific CPU, the caller must ensure it
1412 * can't go away.
1413 *
1414 * Return: %false if @work was already on a queue, %true otherwise.
1415 */
1416 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1417 struct work_struct *work)
1418 {
1419 bool ret = false;
1420 unsigned long flags;
1421
1422 local_irq_save(flags);
1423
1424 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1425 __queue_work(cpu, wq, work);
1426 ret = true;
1427 }
1428
1429 local_irq_restore(flags);
1430 return ret;
1431 }
1432 EXPORT_SYMBOL(queue_work_on);
1433
1434 void delayed_work_timer_fn(unsigned long __data)
1435 {
1436 struct delayed_work *dwork = (struct delayed_work *)__data;
1437
1438 /* should have been called from irqsafe timer with irq already off */
1439 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1440 }
1441 EXPORT_SYMBOL(delayed_work_timer_fn);
1442
1443 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1444 struct delayed_work *dwork, unsigned long delay)
1445 {
1446 struct timer_list *timer = &dwork->timer;
1447 struct work_struct *work = &dwork->work;
1448
1449 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1450 timer->data != (unsigned long)dwork);
1451 WARN_ON_ONCE(timer_pending(timer));
1452 WARN_ON_ONCE(!list_empty(&work->entry));
1453
1454 /*
1455 * If @delay is 0, queue @dwork->work immediately. This is for
1456 * both optimization and correctness. The earliest @timer can
1457 * expire is on the closest next tick and delayed_work users depend
1458 * on that there's no such delay when @delay is 0.
1459 */
1460 if (!delay) {
1461 __queue_work(cpu, wq, &dwork->work);
1462 return;
1463 }
1464
1465 timer_stats_timer_set_start_info(&dwork->timer);
1466
1467 dwork->wq = wq;
1468 dwork->cpu = cpu;
1469 timer->expires = jiffies + delay;
1470
1471 if (unlikely(cpu != WORK_CPU_UNBOUND))
1472 add_timer_on(timer, cpu);
1473 else
1474 add_timer(timer);
1475 }
1476
1477 /**
1478 * queue_delayed_work_on - queue work on specific CPU after delay
1479 * @cpu: CPU number to execute work on
1480 * @wq: workqueue to use
1481 * @dwork: work to queue
1482 * @delay: number of jiffies to wait before queueing
1483 *
1484 * Return: %false if @work was already on a queue, %true otherwise. If
1485 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1486 * execution.
1487 */
1488 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1489 struct delayed_work *dwork, unsigned long delay)
1490 {
1491 struct work_struct *work = &dwork->work;
1492 bool ret = false;
1493 unsigned long flags;
1494
1495 /* read the comment in __queue_work() */
1496 local_irq_save(flags);
1497
1498 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1499 __queue_delayed_work(cpu, wq, dwork, delay);
1500 ret = true;
1501 }
1502
1503 local_irq_restore(flags);
1504 return ret;
1505 }
1506 EXPORT_SYMBOL(queue_delayed_work_on);
1507
1508 /**
1509 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1510 * @cpu: CPU number to execute work on
1511 * @wq: workqueue to use
1512 * @dwork: work to queue
1513 * @delay: number of jiffies to wait before queueing
1514 *
1515 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1516 * modify @dwork's timer so that it expires after @delay. If @delay is
1517 * zero, @work is guaranteed to be scheduled immediately regardless of its
1518 * current state.
1519 *
1520 * Return: %false if @dwork was idle and queued, %true if @dwork was
1521 * pending and its timer was modified.
1522 *
1523 * This function is safe to call from any context including IRQ handler.
1524 * See try_to_grab_pending() for details.
1525 */
1526 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1527 struct delayed_work *dwork, unsigned long delay)
1528 {
1529 unsigned long flags;
1530 int ret;
1531
1532 do {
1533 ret = try_to_grab_pending(&dwork->work, true, &flags);
1534 } while (unlikely(ret == -EAGAIN));
1535
1536 if (likely(ret >= 0)) {
1537 __queue_delayed_work(cpu, wq, dwork, delay);
1538 local_irq_restore(flags);
1539 }
1540
1541 /* -ENOENT from try_to_grab_pending() becomes %true */
1542 return ret;
1543 }
1544 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1545
1546 /**
1547 * worker_enter_idle - enter idle state
1548 * @worker: worker which is entering idle state
1549 *
1550 * @worker is entering idle state. Update stats and idle timer if
1551 * necessary.
1552 *
1553 * LOCKING:
1554 * spin_lock_irq(pool->lock).
1555 */
1556 static void worker_enter_idle(struct worker *worker)
1557 {
1558 struct worker_pool *pool = worker->pool;
1559
1560 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1561 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1562 (worker->hentry.next || worker->hentry.pprev)))
1563 return;
1564
1565 /* can't use worker_set_flags(), also called from start_worker() */
1566 worker->flags |= WORKER_IDLE;
1567 pool->nr_idle++;
1568 worker->last_active = jiffies;
1569
1570 /* idle_list is LIFO */
1571 list_add(&worker->entry, &pool->idle_list);
1572
1573 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1574 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1575
1576 /*
1577 * Sanity check nr_running. Because wq_unbind_fn() releases
1578 * pool->lock between setting %WORKER_UNBOUND and zapping
1579 * nr_running, the warning may trigger spuriously. Check iff
1580 * unbind is not in progress.
1581 */
1582 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1583 pool->nr_workers == pool->nr_idle &&
1584 atomic_read(&pool->nr_running));
1585 }
1586
1587 /**
1588 * worker_leave_idle - leave idle state
1589 * @worker: worker which is leaving idle state
1590 *
1591 * @worker is leaving idle state. Update stats.
1592 *
1593 * LOCKING:
1594 * spin_lock_irq(pool->lock).
1595 */
1596 static void worker_leave_idle(struct worker *worker)
1597 {
1598 struct worker_pool *pool = worker->pool;
1599
1600 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1601 return;
1602 worker_clr_flags(worker, WORKER_IDLE);
1603 pool->nr_idle--;
1604 list_del_init(&worker->entry);
1605 }
1606
1607 /**
1608 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1609 * @pool: target worker_pool
1610 *
1611 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1612 *
1613 * Works which are scheduled while the cpu is online must at least be
1614 * scheduled to a worker which is bound to the cpu so that if they are
1615 * flushed from cpu callbacks while cpu is going down, they are
1616 * guaranteed to execute on the cpu.
1617 *
1618 * This function is to be used by unbound workers and rescuers to bind
1619 * themselves to the target cpu and may race with cpu going down or
1620 * coming online. kthread_bind() can't be used because it may put the
1621 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1622 * verbatim as it's best effort and blocking and pool may be
1623 * [dis]associated in the meantime.
1624 *
1625 * This function tries set_cpus_allowed() and locks pool and verifies the
1626 * binding against %POOL_DISASSOCIATED which is set during
1627 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1628 * enters idle state or fetches works without dropping lock, it can
1629 * guarantee the scheduling requirement described in the first paragraph.
1630 *
1631 * CONTEXT:
1632 * Might sleep. Called without any lock but returns with pool->lock
1633 * held.
1634 *
1635 * Return:
1636 * %true if the associated pool is online (@worker is successfully
1637 * bound), %false if offline.
1638 */
1639 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1640 __acquires(&pool->lock)
1641 {
1642 while (true) {
1643 /*
1644 * The following call may fail, succeed or succeed
1645 * without actually migrating the task to the cpu if
1646 * it races with cpu hotunplug operation. Verify
1647 * against POOL_DISASSOCIATED.
1648 */
1649 if (!(pool->flags & POOL_DISASSOCIATED))
1650 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1651
1652 spin_lock_irq(&pool->lock);
1653 if (pool->flags & POOL_DISASSOCIATED)
1654 return false;
1655 if (task_cpu(current) == pool->cpu &&
1656 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1657 return true;
1658 spin_unlock_irq(&pool->lock);
1659
1660 /*
1661 * We've raced with CPU hot[un]plug. Give it a breather
1662 * and retry migration. cond_resched() is required here;
1663 * otherwise, we might deadlock against cpu_stop trying to
1664 * bring down the CPU on non-preemptive kernel.
1665 */
1666 cpu_relax();
1667 cond_resched();
1668 }
1669 }
1670
1671 static struct worker *alloc_worker(void)
1672 {
1673 struct worker *worker;
1674
1675 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1676 if (worker) {
1677 INIT_LIST_HEAD(&worker->entry);
1678 INIT_LIST_HEAD(&worker->scheduled);
1679 /* on creation a worker is in !idle && prep state */
1680 worker->flags = WORKER_PREP;
1681 }
1682 return worker;
1683 }
1684
1685 /**
1686 * create_worker - create a new workqueue worker
1687 * @pool: pool the new worker will belong to
1688 *
1689 * Create a new worker which is bound to @pool. The returned worker
1690 * can be started by calling start_worker() or destroyed using
1691 * destroy_worker().
1692 *
1693 * CONTEXT:
1694 * Might sleep. Does GFP_KERNEL allocations.
1695 *
1696 * Return:
1697 * Pointer to the newly created worker.
1698 */
1699 static struct worker *create_worker(struct worker_pool *pool)
1700 {
1701 struct worker *worker = NULL;
1702 int id = -1;
1703 char id_buf[16];
1704
1705 lockdep_assert_held(&pool->manager_mutex);
1706
1707 /*
1708 * ID is needed to determine kthread name. Allocate ID first
1709 * without installing the pointer.
1710 */
1711 idr_preload(GFP_KERNEL);
1712 spin_lock_irq(&pool->lock);
1713
1714 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1715
1716 spin_unlock_irq(&pool->lock);
1717 idr_preload_end();
1718 if (id < 0)
1719 goto fail;
1720
1721 worker = alloc_worker();
1722 if (!worker)
1723 goto fail;
1724
1725 worker->pool = pool;
1726 worker->id = id;
1727
1728 if (pool->cpu >= 0)
1729 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1730 pool->attrs->nice < 0 ? "H" : "");
1731 else
1732 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1733
1734 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1735 "kworker/%s", id_buf);
1736 if (IS_ERR(worker->task))
1737 goto fail;
1738
1739 /*
1740 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1741 * online CPUs. It'll be re-applied when any of the CPUs come up.
1742 */
1743 set_user_nice(worker->task, pool->attrs->nice);
1744 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1745
1746 /* prevent userland from meddling with cpumask of workqueue workers */
1747 worker->task->flags |= PF_NO_SETAFFINITY;
1748
1749 /*
1750 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1751 * remains stable across this function. See the comments above the
1752 * flag definition for details.
1753 */
1754 if (pool->flags & POOL_DISASSOCIATED)
1755 worker->flags |= WORKER_UNBOUND;
1756
1757 /* successful, commit the pointer to idr */
1758 spin_lock_irq(&pool->lock);
1759 idr_replace(&pool->worker_idr, worker, worker->id);
1760 spin_unlock_irq(&pool->lock);
1761
1762 return worker;
1763
1764 fail:
1765 if (id >= 0) {
1766 spin_lock_irq(&pool->lock);
1767 idr_remove(&pool->worker_idr, id);
1768 spin_unlock_irq(&pool->lock);
1769 }
1770 kfree(worker);
1771 return NULL;
1772 }
1773
1774 /**
1775 * start_worker - start a newly created worker
1776 * @worker: worker to start
1777 *
1778 * Make the pool aware of @worker and start it.
1779 *
1780 * CONTEXT:
1781 * spin_lock_irq(pool->lock).
1782 */
1783 static void start_worker(struct worker *worker)
1784 {
1785 worker->flags |= WORKER_STARTED;
1786 worker->pool->nr_workers++;
1787 worker_enter_idle(worker);
1788 wake_up_process(worker->task);
1789 }
1790
1791 /**
1792 * create_and_start_worker - create and start a worker for a pool
1793 * @pool: the target pool
1794 *
1795 * Grab the managership of @pool and create and start a new worker for it.
1796 *
1797 * Return: 0 on success. A negative error code otherwise.
1798 */
1799 static int create_and_start_worker(struct worker_pool *pool)
1800 {
1801 struct worker *worker;
1802
1803 mutex_lock(&pool->manager_mutex);
1804
1805 worker = create_worker(pool);
1806 if (worker) {
1807 spin_lock_irq(&pool->lock);
1808 start_worker(worker);
1809 spin_unlock_irq(&pool->lock);
1810 }
1811
1812 mutex_unlock(&pool->manager_mutex);
1813
1814 return worker ? 0 : -ENOMEM;
1815 }
1816
1817 /**
1818 * destroy_worker - destroy a workqueue worker
1819 * @worker: worker to be destroyed
1820 *
1821 * Destroy @worker and adjust @pool stats accordingly.
1822 *
1823 * CONTEXT:
1824 * spin_lock_irq(pool->lock) which is released and regrabbed.
1825 */
1826 static void destroy_worker(struct worker *worker)
1827 {
1828 struct worker_pool *pool = worker->pool;
1829
1830 lockdep_assert_held(&pool->manager_mutex);
1831 lockdep_assert_held(&pool->lock);
1832
1833 /* sanity check frenzy */
1834 if (WARN_ON(worker->current_work) ||
1835 WARN_ON(!list_empty(&worker->scheduled)))
1836 return;
1837
1838 if (worker->flags & WORKER_STARTED)
1839 pool->nr_workers--;
1840 if (worker->flags & WORKER_IDLE)
1841 pool->nr_idle--;
1842
1843 list_del_init(&worker->entry);
1844 worker->flags |= WORKER_DIE;
1845
1846 idr_remove(&pool->worker_idr, worker->id);
1847
1848 spin_unlock_irq(&pool->lock);
1849
1850 kthread_stop(worker->task);
1851 kfree(worker);
1852
1853 spin_lock_irq(&pool->lock);
1854 }
1855
1856 static void idle_worker_timeout(unsigned long __pool)
1857 {
1858 struct worker_pool *pool = (void *)__pool;
1859
1860 spin_lock_irq(&pool->lock);
1861
1862 if (too_many_workers(pool)) {
1863 struct worker *worker;
1864 unsigned long expires;
1865
1866 /* idle_list is kept in LIFO order, check the last one */
1867 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1868 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1869
1870 if (time_before(jiffies, expires))
1871 mod_timer(&pool->idle_timer, expires);
1872 else {
1873 /* it's been idle for too long, wake up manager */
1874 pool->flags |= POOL_MANAGE_WORKERS;
1875 wake_up_worker(pool);
1876 }
1877 }
1878
1879 spin_unlock_irq(&pool->lock);
1880 }
1881
1882 static void send_mayday(struct work_struct *work)
1883 {
1884 struct pool_workqueue *pwq = get_work_pwq(work);
1885 struct workqueue_struct *wq = pwq->wq;
1886
1887 lockdep_assert_held(&wq_mayday_lock);
1888
1889 if (!wq->rescuer)
1890 return;
1891
1892 /* mayday mayday mayday */
1893 if (list_empty(&pwq->mayday_node)) {
1894 list_add_tail(&pwq->mayday_node, &wq->maydays);
1895 wake_up_process(wq->rescuer->task);
1896 }
1897 }
1898
1899 static void pool_mayday_timeout(unsigned long __pool)
1900 {
1901 struct worker_pool *pool = (void *)__pool;
1902 struct work_struct *work;
1903
1904 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1905 spin_lock(&pool->lock);
1906
1907 if (need_to_create_worker(pool)) {
1908 /*
1909 * We've been trying to create a new worker but
1910 * haven't been successful. We might be hitting an
1911 * allocation deadlock. Send distress signals to
1912 * rescuers.
1913 */
1914 list_for_each_entry(work, &pool->worklist, entry)
1915 send_mayday(work);
1916 }
1917
1918 spin_unlock(&pool->lock);
1919 spin_unlock_irq(&wq_mayday_lock);
1920
1921 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1922 }
1923
1924 /**
1925 * maybe_create_worker - create a new worker if necessary
1926 * @pool: pool to create a new worker for
1927 *
1928 * Create a new worker for @pool if necessary. @pool is guaranteed to
1929 * have at least one idle worker on return from this function. If
1930 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1931 * sent to all rescuers with works scheduled on @pool to resolve
1932 * possible allocation deadlock.
1933 *
1934 * On return, need_to_create_worker() is guaranteed to be %false and
1935 * may_start_working() %true.
1936 *
1937 * LOCKING:
1938 * spin_lock_irq(pool->lock) which may be released and regrabbed
1939 * multiple times. Does GFP_KERNEL allocations. Called only from
1940 * manager.
1941 *
1942 * Return:
1943 * %false if no action was taken and pool->lock stayed locked, %true
1944 * otherwise.
1945 */
1946 static bool maybe_create_worker(struct worker_pool *pool)
1947 __releases(&pool->lock)
1948 __acquires(&pool->lock)
1949 {
1950 if (!need_to_create_worker(pool))
1951 return false;
1952 restart:
1953 spin_unlock_irq(&pool->lock);
1954
1955 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1956 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1957
1958 while (true) {
1959 struct worker *worker;
1960
1961 worker = create_worker(pool);
1962 if (worker) {
1963 del_timer_sync(&pool->mayday_timer);
1964 spin_lock_irq(&pool->lock);
1965 start_worker(worker);
1966 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1967 goto restart;
1968 return true;
1969 }
1970
1971 if (!need_to_create_worker(pool))
1972 break;
1973
1974 __set_current_state(TASK_INTERRUPTIBLE);
1975 schedule_timeout(CREATE_COOLDOWN);
1976
1977 if (!need_to_create_worker(pool))
1978 break;
1979 }
1980
1981 del_timer_sync(&pool->mayday_timer);
1982 spin_lock_irq(&pool->lock);
1983 if (need_to_create_worker(pool))
1984 goto restart;
1985 return true;
1986 }
1987
1988 /**
1989 * maybe_destroy_worker - destroy workers which have been idle for a while
1990 * @pool: pool to destroy workers for
1991 *
1992 * Destroy @pool workers which have been idle for longer than
1993 * IDLE_WORKER_TIMEOUT.
1994 *
1995 * LOCKING:
1996 * spin_lock_irq(pool->lock) which may be released and regrabbed
1997 * multiple times. Called only from manager.
1998 *
1999 * Return:
2000 * %false if no action was taken and pool->lock stayed locked, %true
2001 * otherwise.
2002 */
2003 static bool maybe_destroy_workers(struct worker_pool *pool)
2004 {
2005 bool ret = false;
2006
2007 while (too_many_workers(pool)) {
2008 struct worker *worker;
2009 unsigned long expires;
2010
2011 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2012 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2013
2014 if (time_before(jiffies, expires)) {
2015 mod_timer(&pool->idle_timer, expires);
2016 break;
2017 }
2018
2019 destroy_worker(worker);
2020 ret = true;
2021 }
2022
2023 return ret;
2024 }
2025
2026 /**
2027 * manage_workers - manage worker pool
2028 * @worker: self
2029 *
2030 * Assume the manager role and manage the worker pool @worker belongs
2031 * to. At any given time, there can be only zero or one manager per
2032 * pool. The exclusion is handled automatically by this function.
2033 *
2034 * The caller can safely start processing works on false return. On
2035 * true return, it's guaranteed that need_to_create_worker() is false
2036 * and may_start_working() is true.
2037 *
2038 * CONTEXT:
2039 * spin_lock_irq(pool->lock) which may be released and regrabbed
2040 * multiple times. Does GFP_KERNEL allocations.
2041 *
2042 * Return:
2043 * %false if the pool don't need management and the caller can safely start
2044 * processing works, %true indicates that the function released pool->lock
2045 * and reacquired it to perform some management function and that the
2046 * conditions that the caller verified while holding the lock before
2047 * calling the function might no longer be true.
2048 */
2049 static bool manage_workers(struct worker *worker)
2050 {
2051 struct worker_pool *pool = worker->pool;
2052 bool ret = false;
2053
2054 /*
2055 * Managership is governed by two mutexes - manager_arb and
2056 * manager_mutex. manager_arb handles arbitration of manager role.
2057 * Anyone who successfully grabs manager_arb wins the arbitration
2058 * and becomes the manager. mutex_trylock() on pool->manager_arb
2059 * failure while holding pool->lock reliably indicates that someone
2060 * else is managing the pool and the worker which failed trylock
2061 * can proceed to executing work items. This means that anyone
2062 * grabbing manager_arb is responsible for actually performing
2063 * manager duties. If manager_arb is grabbed and released without
2064 * actual management, the pool may stall indefinitely.
2065 *
2066 * manager_mutex is used for exclusion of actual management
2067 * operations. The holder of manager_mutex can be sure that none
2068 * of management operations, including creation and destruction of
2069 * workers, won't take place until the mutex is released. Because
2070 * manager_mutex doesn't interfere with manager role arbitration,
2071 * it is guaranteed that the pool's management, while may be
2072 * delayed, won't be disturbed by someone else grabbing
2073 * manager_mutex.
2074 */
2075 if (!mutex_trylock(&pool->manager_arb))
2076 return ret;
2077
2078 /*
2079 * With manager arbitration won, manager_mutex would be free in
2080 * most cases. trylock first without dropping @pool->lock.
2081 */
2082 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2083 spin_unlock_irq(&pool->lock);
2084 mutex_lock(&pool->manager_mutex);
2085 spin_lock_irq(&pool->lock);
2086 ret = true;
2087 }
2088
2089 pool->flags &= ~POOL_MANAGE_WORKERS;
2090
2091 /*
2092 * Destroy and then create so that may_start_working() is true
2093 * on return.
2094 */
2095 ret |= maybe_destroy_workers(pool);
2096 ret |= maybe_create_worker(pool);
2097
2098 mutex_unlock(&pool->manager_mutex);
2099 mutex_unlock(&pool->manager_arb);
2100 return ret;
2101 }
2102
2103 /**
2104 * process_one_work - process single work
2105 * @worker: self
2106 * @work: work to process
2107 *
2108 * Process @work. This function contains all the logics necessary to
2109 * process a single work including synchronization against and
2110 * interaction with other workers on the same cpu, queueing and
2111 * flushing. As long as context requirement is met, any worker can
2112 * call this function to process a work.
2113 *
2114 * CONTEXT:
2115 * spin_lock_irq(pool->lock) which is released and regrabbed.
2116 */
2117 static void process_one_work(struct worker *worker, struct work_struct *work)
2118 __releases(&pool->lock)
2119 __acquires(&pool->lock)
2120 {
2121 struct pool_workqueue *pwq = get_work_pwq(work);
2122 struct worker_pool *pool = worker->pool;
2123 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2124 int work_color;
2125 struct worker *collision;
2126 #ifdef CONFIG_LOCKDEP
2127 /*
2128 * It is permissible to free the struct work_struct from
2129 * inside the function that is called from it, this we need to
2130 * take into account for lockdep too. To avoid bogus "held
2131 * lock freed" warnings as well as problems when looking into
2132 * work->lockdep_map, make a copy and use that here.
2133 */
2134 struct lockdep_map lockdep_map;
2135
2136 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2137 #endif
2138 /*
2139 * Ensure we're on the correct CPU. DISASSOCIATED test is
2140 * necessary to avoid spurious warnings from rescuers servicing the
2141 * unbound or a disassociated pool.
2142 */
2143 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2144 !(pool->flags & POOL_DISASSOCIATED) &&
2145 raw_smp_processor_id() != pool->cpu);
2146
2147 /*
2148 * A single work shouldn't be executed concurrently by
2149 * multiple workers on a single cpu. Check whether anyone is
2150 * already processing the work. If so, defer the work to the
2151 * currently executing one.
2152 */
2153 collision = find_worker_executing_work(pool, work);
2154 if (unlikely(collision)) {
2155 move_linked_works(work, &collision->scheduled, NULL);
2156 return;
2157 }
2158
2159 /* claim and dequeue */
2160 debug_work_deactivate(work);
2161 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2162 worker->current_work = work;
2163 worker->current_func = work->func;
2164 worker->current_pwq = pwq;
2165 work_color = get_work_color(work);
2166
2167 list_del_init(&work->entry);
2168
2169 /*
2170 * CPU intensive works don't participate in concurrency
2171 * management. They're the scheduler's responsibility.
2172 */
2173 if (unlikely(cpu_intensive))
2174 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2175
2176 /*
2177 * Unbound pool isn't concurrency managed and work items should be
2178 * executed ASAP. Wake up another worker if necessary.
2179 */
2180 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2181 wake_up_worker(pool);
2182
2183 /*
2184 * Record the last pool and clear PENDING which should be the last
2185 * update to @work. Also, do this inside @pool->lock so that
2186 * PENDING and queued state changes happen together while IRQ is
2187 * disabled.
2188 */
2189 set_work_pool_and_clear_pending(work, pool->id);
2190
2191 spin_unlock_irq(&pool->lock);
2192
2193 lock_map_acquire_read(&pwq->wq->lockdep_map);
2194 lock_map_acquire(&lockdep_map);
2195 trace_workqueue_execute_start(work);
2196 worker->current_func(work);
2197 /*
2198 * While we must be careful to not use "work" after this, the trace
2199 * point will only record its address.
2200 */
2201 trace_workqueue_execute_end(work);
2202 lock_map_release(&lockdep_map);
2203 lock_map_release(&pwq->wq->lockdep_map);
2204
2205 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2206 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2207 " last function: %pf\n",
2208 current->comm, preempt_count(), task_pid_nr(current),
2209 worker->current_func);
2210 debug_show_held_locks(current);
2211 dump_stack();
2212 }
2213
2214 /*
2215 * The following prevents a kworker from hogging CPU on !PREEMPT
2216 * kernels, where a requeueing work item waiting for something to
2217 * happen could deadlock with stop_machine as such work item could
2218 * indefinitely requeue itself while all other CPUs are trapped in
2219 * stop_machine.
2220 */
2221 cond_resched();
2222
2223 spin_lock_irq(&pool->lock);
2224
2225 /* clear cpu intensive status */
2226 if (unlikely(cpu_intensive))
2227 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2228
2229 /* we're done with it, release */
2230 hash_del(&worker->hentry);
2231 worker->current_work = NULL;
2232 worker->current_func = NULL;
2233 worker->current_pwq = NULL;
2234 worker->desc_valid = false;
2235 pwq_dec_nr_in_flight(pwq, work_color);
2236 }
2237
2238 /**
2239 * process_scheduled_works - process scheduled works
2240 * @worker: self
2241 *
2242 * Process all scheduled works. Please note that the scheduled list
2243 * may change while processing a work, so this function repeatedly
2244 * fetches a work from the top and executes it.
2245 *
2246 * CONTEXT:
2247 * spin_lock_irq(pool->lock) which may be released and regrabbed
2248 * multiple times.
2249 */
2250 static void process_scheduled_works(struct worker *worker)
2251 {
2252 while (!list_empty(&worker->scheduled)) {
2253 struct work_struct *work = list_first_entry(&worker->scheduled,
2254 struct work_struct, entry);
2255 process_one_work(worker, work);
2256 }
2257 }
2258
2259 /**
2260 * worker_thread - the worker thread function
2261 * @__worker: self
2262 *
2263 * The worker thread function. All workers belong to a worker_pool -
2264 * either a per-cpu one or dynamic unbound one. These workers process all
2265 * work items regardless of their specific target workqueue. The only
2266 * exception is work items which belong to workqueues with a rescuer which
2267 * will be explained in rescuer_thread().
2268 *
2269 * Return: 0
2270 */
2271 static int worker_thread(void *__worker)
2272 {
2273 struct worker *worker = __worker;
2274 struct worker_pool *pool = worker->pool;
2275
2276 /* tell the scheduler that this is a workqueue worker */
2277 worker->task->flags |= PF_WQ_WORKER;
2278 woke_up:
2279 spin_lock_irq(&pool->lock);
2280
2281 /* am I supposed to die? */
2282 if (unlikely(worker->flags & WORKER_DIE)) {
2283 spin_unlock_irq(&pool->lock);
2284 WARN_ON_ONCE(!list_empty(&worker->entry));
2285 worker->task->flags &= ~PF_WQ_WORKER;
2286 return 0;
2287 }
2288
2289 worker_leave_idle(worker);
2290 recheck:
2291 /* no more worker necessary? */
2292 if (!need_more_worker(pool))
2293 goto sleep;
2294
2295 /* do we need to manage? */
2296 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2297 goto recheck;
2298
2299 /*
2300 * ->scheduled list can only be filled while a worker is
2301 * preparing to process a work or actually processing it.
2302 * Make sure nobody diddled with it while I was sleeping.
2303 */
2304 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2305
2306 /*
2307 * Finish PREP stage. We're guaranteed to have at least one idle
2308 * worker or that someone else has already assumed the manager
2309 * role. This is where @worker starts participating in concurrency
2310 * management if applicable and concurrency management is restored
2311 * after being rebound. See rebind_workers() for details.
2312 */
2313 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2314
2315 do {
2316 struct work_struct *work =
2317 list_first_entry(&pool->worklist,
2318 struct work_struct, entry);
2319
2320 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2321 /* optimization path, not strictly necessary */
2322 process_one_work(worker, work);
2323 if (unlikely(!list_empty(&worker->scheduled)))
2324 process_scheduled_works(worker);
2325 } else {
2326 move_linked_works(work, &worker->scheduled, NULL);
2327 process_scheduled_works(worker);
2328 }
2329 } while (keep_working(pool));
2330
2331 worker_set_flags(worker, WORKER_PREP, false);
2332 sleep:
2333 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2334 goto recheck;
2335
2336 /*
2337 * pool->lock is held and there's no work to process and no need to
2338 * manage, sleep. Workers are woken up only while holding
2339 * pool->lock or from local cpu, so setting the current state
2340 * before releasing pool->lock is enough to prevent losing any
2341 * event.
2342 */
2343 worker_enter_idle(worker);
2344 __set_current_state(TASK_INTERRUPTIBLE);
2345 spin_unlock_irq(&pool->lock);
2346 schedule();
2347 goto woke_up;
2348 }
2349
2350 /**
2351 * rescuer_thread - the rescuer thread function
2352 * @__rescuer: self
2353 *
2354 * Workqueue rescuer thread function. There's one rescuer for each
2355 * workqueue which has WQ_MEM_RECLAIM set.
2356 *
2357 * Regular work processing on a pool may block trying to create a new
2358 * worker which uses GFP_KERNEL allocation which has slight chance of
2359 * developing into deadlock if some works currently on the same queue
2360 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2361 * the problem rescuer solves.
2362 *
2363 * When such condition is possible, the pool summons rescuers of all
2364 * workqueues which have works queued on the pool and let them process
2365 * those works so that forward progress can be guaranteed.
2366 *
2367 * This should happen rarely.
2368 *
2369 * Return: 0
2370 */
2371 static int rescuer_thread(void *__rescuer)
2372 {
2373 struct worker *rescuer = __rescuer;
2374 struct workqueue_struct *wq = rescuer->rescue_wq;
2375 struct list_head *scheduled = &rescuer->scheduled;
2376
2377 set_user_nice(current, RESCUER_NICE_LEVEL);
2378
2379 /*
2380 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2381 * doesn't participate in concurrency management.
2382 */
2383 rescuer->task->flags |= PF_WQ_WORKER;
2384 repeat:
2385 set_current_state(TASK_INTERRUPTIBLE);
2386
2387 if (kthread_should_stop()) {
2388 __set_current_state(TASK_RUNNING);
2389 rescuer->task->flags &= ~PF_WQ_WORKER;
2390 return 0;
2391 }
2392
2393 /* see whether any pwq is asking for help */
2394 spin_lock_irq(&wq_mayday_lock);
2395
2396 while (!list_empty(&wq->maydays)) {
2397 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2398 struct pool_workqueue, mayday_node);
2399 struct worker_pool *pool = pwq->pool;
2400 struct work_struct *work, *n;
2401
2402 __set_current_state(TASK_RUNNING);
2403 list_del_init(&pwq->mayday_node);
2404
2405 spin_unlock_irq(&wq_mayday_lock);
2406
2407 /* migrate to the target cpu if possible */
2408 worker_maybe_bind_and_lock(pool);
2409 rescuer->pool = pool;
2410
2411 /*
2412 * Slurp in all works issued via this workqueue and
2413 * process'em.
2414 */
2415 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2416 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2417 if (get_work_pwq(work) == pwq)
2418 move_linked_works(work, scheduled, &n);
2419
2420 process_scheduled_works(rescuer);
2421
2422 /*
2423 * Leave this pool. If keep_working() is %true, notify a
2424 * regular worker; otherwise, we end up with 0 concurrency
2425 * and stalling the execution.
2426 */
2427 if (keep_working(pool))
2428 wake_up_worker(pool);
2429
2430 rescuer->pool = NULL;
2431 spin_unlock(&pool->lock);
2432 spin_lock(&wq_mayday_lock);
2433 }
2434
2435 spin_unlock_irq(&wq_mayday_lock);
2436
2437 /* rescuers should never participate in concurrency management */
2438 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2439 schedule();
2440 goto repeat;
2441 }
2442
2443 struct wq_barrier {
2444 struct work_struct work;
2445 struct completion done;
2446 };
2447
2448 static void wq_barrier_func(struct work_struct *work)
2449 {
2450 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2451 complete(&barr->done);
2452 }
2453
2454 /**
2455 * insert_wq_barrier - insert a barrier work
2456 * @pwq: pwq to insert barrier into
2457 * @barr: wq_barrier to insert
2458 * @target: target work to attach @barr to
2459 * @worker: worker currently executing @target, NULL if @target is not executing
2460 *
2461 * @barr is linked to @target such that @barr is completed only after
2462 * @target finishes execution. Please note that the ordering
2463 * guarantee is observed only with respect to @target and on the local
2464 * cpu.
2465 *
2466 * Currently, a queued barrier can't be canceled. This is because
2467 * try_to_grab_pending() can't determine whether the work to be
2468 * grabbed is at the head of the queue and thus can't clear LINKED
2469 * flag of the previous work while there must be a valid next work
2470 * after a work with LINKED flag set.
2471 *
2472 * Note that when @worker is non-NULL, @target may be modified
2473 * underneath us, so we can't reliably determine pwq from @target.
2474 *
2475 * CONTEXT:
2476 * spin_lock_irq(pool->lock).
2477 */
2478 static void insert_wq_barrier(struct pool_workqueue *pwq,
2479 struct wq_barrier *barr,
2480 struct work_struct *target, struct worker *worker)
2481 {
2482 struct list_head *head;
2483 unsigned int linked = 0;
2484
2485 /*
2486 * debugobject calls are safe here even with pool->lock locked
2487 * as we know for sure that this will not trigger any of the
2488 * checks and call back into the fixup functions where we
2489 * might deadlock.
2490 */
2491 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2492 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2493 init_completion(&barr->done);
2494
2495 /*
2496 * If @target is currently being executed, schedule the
2497 * barrier to the worker; otherwise, put it after @target.
2498 */
2499 if (worker)
2500 head = worker->scheduled.next;
2501 else {
2502 unsigned long *bits = work_data_bits(target);
2503
2504 head = target->entry.next;
2505 /* there can already be other linked works, inherit and set */
2506 linked = *bits & WORK_STRUCT_LINKED;
2507 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2508 }
2509
2510 debug_work_activate(&barr->work);
2511 insert_work(pwq, &barr->work, head,
2512 work_color_to_flags(WORK_NO_COLOR) | linked);
2513 }
2514
2515 /**
2516 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2517 * @wq: workqueue being flushed
2518 * @flush_color: new flush color, < 0 for no-op
2519 * @work_color: new work color, < 0 for no-op
2520 *
2521 * Prepare pwqs for workqueue flushing.
2522 *
2523 * If @flush_color is non-negative, flush_color on all pwqs should be
2524 * -1. If no pwq has in-flight commands at the specified color, all
2525 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2526 * has in flight commands, its pwq->flush_color is set to
2527 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2528 * wakeup logic is armed and %true is returned.
2529 *
2530 * The caller should have initialized @wq->first_flusher prior to
2531 * calling this function with non-negative @flush_color. If
2532 * @flush_color is negative, no flush color update is done and %false
2533 * is returned.
2534 *
2535 * If @work_color is non-negative, all pwqs should have the same
2536 * work_color which is previous to @work_color and all will be
2537 * advanced to @work_color.
2538 *
2539 * CONTEXT:
2540 * mutex_lock(wq->mutex).
2541 *
2542 * Return:
2543 * %true if @flush_color >= 0 and there's something to flush. %false
2544 * otherwise.
2545 */
2546 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2547 int flush_color, int work_color)
2548 {
2549 bool wait = false;
2550 struct pool_workqueue *pwq;
2551
2552 if (flush_color >= 0) {
2553 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2554 atomic_set(&wq->nr_pwqs_to_flush, 1);
2555 }
2556
2557 for_each_pwq(pwq, wq) {
2558 struct worker_pool *pool = pwq->pool;
2559
2560 spin_lock_irq(&pool->lock);
2561
2562 if (flush_color >= 0) {
2563 WARN_ON_ONCE(pwq->flush_color != -1);
2564
2565 if (pwq->nr_in_flight[flush_color]) {
2566 pwq->flush_color = flush_color;
2567 atomic_inc(&wq->nr_pwqs_to_flush);
2568 wait = true;
2569 }
2570 }
2571
2572 if (work_color >= 0) {
2573 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2574 pwq->work_color = work_color;
2575 }
2576
2577 spin_unlock_irq(&pool->lock);
2578 }
2579
2580 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2581 complete(&wq->first_flusher->done);
2582
2583 return wait;
2584 }
2585
2586 /**
2587 * flush_workqueue - ensure that any scheduled work has run to completion.
2588 * @wq: workqueue to flush
2589 *
2590 * This function sleeps until all work items which were queued on entry
2591 * have finished execution, but it is not livelocked by new incoming ones.
2592 */
2593 void flush_workqueue(struct workqueue_struct *wq)
2594 {
2595 struct wq_flusher this_flusher = {
2596 .list = LIST_HEAD_INIT(this_flusher.list),
2597 .flush_color = -1,
2598 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2599 };
2600 int next_color;
2601
2602 lock_map_acquire(&wq->lockdep_map);
2603 lock_map_release(&wq->lockdep_map);
2604
2605 mutex_lock(&wq->mutex);
2606
2607 /*
2608 * Start-to-wait phase
2609 */
2610 next_color = work_next_color(wq->work_color);
2611
2612 if (next_color != wq->flush_color) {
2613 /*
2614 * Color space is not full. The current work_color
2615 * becomes our flush_color and work_color is advanced
2616 * by one.
2617 */
2618 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2619 this_flusher.flush_color = wq->work_color;
2620 wq->work_color = next_color;
2621
2622 if (!wq->first_flusher) {
2623 /* no flush in progress, become the first flusher */
2624 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2625
2626 wq->first_flusher = &this_flusher;
2627
2628 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2629 wq->work_color)) {
2630 /* nothing to flush, done */
2631 wq->flush_color = next_color;
2632 wq->first_flusher = NULL;
2633 goto out_unlock;
2634 }
2635 } else {
2636 /* wait in queue */
2637 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2638 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2639 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2640 }
2641 } else {
2642 /*
2643 * Oops, color space is full, wait on overflow queue.
2644 * The next flush completion will assign us
2645 * flush_color and transfer to flusher_queue.
2646 */
2647 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2648 }
2649
2650 mutex_unlock(&wq->mutex);
2651
2652 wait_for_completion(&this_flusher.done);
2653
2654 /*
2655 * Wake-up-and-cascade phase
2656 *
2657 * First flushers are responsible for cascading flushes and
2658 * handling overflow. Non-first flushers can simply return.
2659 */
2660 if (wq->first_flusher != &this_flusher)
2661 return;
2662
2663 mutex_lock(&wq->mutex);
2664
2665 /* we might have raced, check again with mutex held */
2666 if (wq->first_flusher != &this_flusher)
2667 goto out_unlock;
2668
2669 wq->first_flusher = NULL;
2670
2671 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2672 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2673
2674 while (true) {
2675 struct wq_flusher *next, *tmp;
2676
2677 /* complete all the flushers sharing the current flush color */
2678 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2679 if (next->flush_color != wq->flush_color)
2680 break;
2681 list_del_init(&next->list);
2682 complete(&next->done);
2683 }
2684
2685 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2686 wq->flush_color != work_next_color(wq->work_color));
2687
2688 /* this flush_color is finished, advance by one */
2689 wq->flush_color = work_next_color(wq->flush_color);
2690
2691 /* one color has been freed, handle overflow queue */
2692 if (!list_empty(&wq->flusher_overflow)) {
2693 /*
2694 * Assign the same color to all overflowed
2695 * flushers, advance work_color and append to
2696 * flusher_queue. This is the start-to-wait
2697 * phase for these overflowed flushers.
2698 */
2699 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2700 tmp->flush_color = wq->work_color;
2701
2702 wq->work_color = work_next_color(wq->work_color);
2703
2704 list_splice_tail_init(&wq->flusher_overflow,
2705 &wq->flusher_queue);
2706 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2707 }
2708
2709 if (list_empty(&wq->flusher_queue)) {
2710 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2711 break;
2712 }
2713
2714 /*
2715 * Need to flush more colors. Make the next flusher
2716 * the new first flusher and arm pwqs.
2717 */
2718 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2719 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2720
2721 list_del_init(&next->list);
2722 wq->first_flusher = next;
2723
2724 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2725 break;
2726
2727 /*
2728 * Meh... this color is already done, clear first
2729 * flusher and repeat cascading.
2730 */
2731 wq->first_flusher = NULL;
2732 }
2733
2734 out_unlock:
2735 mutex_unlock(&wq->mutex);
2736 }
2737 EXPORT_SYMBOL_GPL(flush_workqueue);
2738
2739 /**
2740 * drain_workqueue - drain a workqueue
2741 * @wq: workqueue to drain
2742 *
2743 * Wait until the workqueue becomes empty. While draining is in progress,
2744 * only chain queueing is allowed. IOW, only currently pending or running
2745 * work items on @wq can queue further work items on it. @wq is flushed
2746 * repeatedly until it becomes empty. The number of flushing is detemined
2747 * by the depth of chaining and should be relatively short. Whine if it
2748 * takes too long.
2749 */
2750 void drain_workqueue(struct workqueue_struct *wq)
2751 {
2752 unsigned int flush_cnt = 0;
2753 struct pool_workqueue *pwq;
2754
2755 /*
2756 * __queue_work() needs to test whether there are drainers, is much
2757 * hotter than drain_workqueue() and already looks at @wq->flags.
2758 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2759 */
2760 mutex_lock(&wq->mutex);
2761 if (!wq->nr_drainers++)
2762 wq->flags |= __WQ_DRAINING;
2763 mutex_unlock(&wq->mutex);
2764 reflush:
2765 flush_workqueue(wq);
2766
2767 mutex_lock(&wq->mutex);
2768
2769 for_each_pwq(pwq, wq) {
2770 bool drained;
2771
2772 spin_lock_irq(&pwq->pool->lock);
2773 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2774 spin_unlock_irq(&pwq->pool->lock);
2775
2776 if (drained)
2777 continue;
2778
2779 if (++flush_cnt == 10 ||
2780 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2781 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2782 wq->name, flush_cnt);
2783
2784 mutex_unlock(&wq->mutex);
2785 goto reflush;
2786 }
2787
2788 if (!--wq->nr_drainers)
2789 wq->flags &= ~__WQ_DRAINING;
2790 mutex_unlock(&wq->mutex);
2791 }
2792 EXPORT_SYMBOL_GPL(drain_workqueue);
2793
2794 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2795 {
2796 struct worker *worker = NULL;
2797 struct worker_pool *pool;
2798 struct pool_workqueue *pwq;
2799
2800 might_sleep();
2801
2802 local_irq_disable();
2803 pool = get_work_pool(work);
2804 if (!pool) {
2805 local_irq_enable();
2806 return false;
2807 }
2808
2809 spin_lock(&pool->lock);
2810 /* see the comment in try_to_grab_pending() with the same code */
2811 pwq = get_work_pwq(work);
2812 if (pwq) {
2813 if (unlikely(pwq->pool != pool))
2814 goto already_gone;
2815 } else {
2816 worker = find_worker_executing_work(pool, work);
2817 if (!worker)
2818 goto already_gone;
2819 pwq = worker->current_pwq;
2820 }
2821
2822 insert_wq_barrier(pwq, barr, work, worker);
2823 spin_unlock_irq(&pool->lock);
2824
2825 /*
2826 * If @max_active is 1 or rescuer is in use, flushing another work
2827 * item on the same workqueue may lead to deadlock. Make sure the
2828 * flusher is not running on the same workqueue by verifying write
2829 * access.
2830 */
2831 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2832 lock_map_acquire(&pwq->wq->lockdep_map);
2833 else
2834 lock_map_acquire_read(&pwq->wq->lockdep_map);
2835 lock_map_release(&pwq->wq->lockdep_map);
2836
2837 return true;
2838 already_gone:
2839 spin_unlock_irq(&pool->lock);
2840 return false;
2841 }
2842
2843 static bool __flush_work(struct work_struct *work)
2844 {
2845 struct wq_barrier barr;
2846
2847 if (start_flush_work(work, &barr)) {
2848 wait_for_completion(&barr.done);
2849 destroy_work_on_stack(&barr.work);
2850 return true;
2851 } else {
2852 return false;
2853 }
2854 }
2855
2856 /**
2857 * flush_work - wait for a work to finish executing the last queueing instance
2858 * @work: the work to flush
2859 *
2860 * Wait until @work has finished execution. @work is guaranteed to be idle
2861 * on return if it hasn't been requeued since flush started.
2862 *
2863 * Return:
2864 * %true if flush_work() waited for the work to finish execution,
2865 * %false if it was already idle.
2866 */
2867 bool flush_work(struct work_struct *work)
2868 {
2869 lock_map_acquire(&work->lockdep_map);
2870 lock_map_release(&work->lockdep_map);
2871
2872 return __flush_work(work);
2873 }
2874 EXPORT_SYMBOL_GPL(flush_work);
2875
2876 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2877 {
2878 unsigned long flags;
2879 int ret;
2880
2881 do {
2882 ret = try_to_grab_pending(work, is_dwork, &flags);
2883 /*
2884 * If someone else is canceling, wait for the same event it
2885 * would be waiting for before retrying.
2886 */
2887 if (unlikely(ret == -ENOENT))
2888 flush_work(work);
2889 } while (unlikely(ret < 0));
2890
2891 /* tell other tasks trying to grab @work to back off */
2892 mark_work_canceling(work);
2893 local_irq_restore(flags);
2894
2895 flush_work(work);
2896 clear_work_data(work);
2897 return ret;
2898 }
2899
2900 /**
2901 * cancel_work_sync - cancel a work and wait for it to finish
2902 * @work: the work to cancel
2903 *
2904 * Cancel @work and wait for its execution to finish. This function
2905 * can be used even if the work re-queues itself or migrates to
2906 * another workqueue. On return from this function, @work is
2907 * guaranteed to be not pending or executing on any CPU.
2908 *
2909 * cancel_work_sync(&delayed_work->work) must not be used for
2910 * delayed_work's. Use cancel_delayed_work_sync() instead.
2911 *
2912 * The caller must ensure that the workqueue on which @work was last
2913 * queued can't be destroyed before this function returns.
2914 *
2915 * Return:
2916 * %true if @work was pending, %false otherwise.
2917 */
2918 bool cancel_work_sync(struct work_struct *work)
2919 {
2920 return __cancel_work_timer(work, false);
2921 }
2922 EXPORT_SYMBOL_GPL(cancel_work_sync);
2923
2924 /**
2925 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2926 * @dwork: the delayed work to flush
2927 *
2928 * Delayed timer is cancelled and the pending work is queued for
2929 * immediate execution. Like flush_work(), this function only
2930 * considers the last queueing instance of @dwork.
2931 *
2932 * Return:
2933 * %true if flush_work() waited for the work to finish execution,
2934 * %false if it was already idle.
2935 */
2936 bool flush_delayed_work(struct delayed_work *dwork)
2937 {
2938 local_irq_disable();
2939 if (del_timer_sync(&dwork->timer))
2940 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2941 local_irq_enable();
2942 return flush_work(&dwork->work);
2943 }
2944 EXPORT_SYMBOL(flush_delayed_work);
2945
2946 /**
2947 * cancel_delayed_work - cancel a delayed work
2948 * @dwork: delayed_work to cancel
2949 *
2950 * Kill off a pending delayed_work.
2951 *
2952 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2953 * pending.
2954 *
2955 * Note:
2956 * The work callback function may still be running on return, unless
2957 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2958 * use cancel_delayed_work_sync() to wait on it.
2959 *
2960 * This function is safe to call from any context including IRQ handler.
2961 */
2962 bool cancel_delayed_work(struct delayed_work *dwork)
2963 {
2964 unsigned long flags;
2965 int ret;
2966
2967 do {
2968 ret = try_to_grab_pending(&dwork->work, true, &flags);
2969 } while (unlikely(ret == -EAGAIN));
2970
2971 if (unlikely(ret < 0))
2972 return false;
2973
2974 set_work_pool_and_clear_pending(&dwork->work,
2975 get_work_pool_id(&dwork->work));
2976 local_irq_restore(flags);
2977 return ret;
2978 }
2979 EXPORT_SYMBOL(cancel_delayed_work);
2980
2981 /**
2982 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2983 * @dwork: the delayed work cancel
2984 *
2985 * This is cancel_work_sync() for delayed works.
2986 *
2987 * Return:
2988 * %true if @dwork was pending, %false otherwise.
2989 */
2990 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2991 {
2992 return __cancel_work_timer(&dwork->work, true);
2993 }
2994 EXPORT_SYMBOL(cancel_delayed_work_sync);
2995
2996 /**
2997 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2998 * @func: the function to call
2999 *
3000 * schedule_on_each_cpu() executes @func on each online CPU using the
3001 * system workqueue and blocks until all CPUs have completed.
3002 * schedule_on_each_cpu() is very slow.
3003 *
3004 * Return:
3005 * 0 on success, -errno on failure.
3006 */
3007 int schedule_on_each_cpu(work_func_t func)
3008 {
3009 int cpu;
3010 struct work_struct __percpu *works;
3011
3012 works = alloc_percpu(struct work_struct);
3013 if (!works)
3014 return -ENOMEM;
3015
3016 get_online_cpus();
3017
3018 for_each_online_cpu(cpu) {
3019 struct work_struct *work = per_cpu_ptr(works, cpu);
3020
3021 INIT_WORK(work, func);
3022 schedule_work_on(cpu, work);
3023 }
3024
3025 for_each_online_cpu(cpu)
3026 flush_work(per_cpu_ptr(works, cpu));
3027
3028 put_online_cpus();
3029 free_percpu(works);
3030 return 0;
3031 }
3032
3033 /**
3034 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3035 *
3036 * Forces execution of the kernel-global workqueue and blocks until its
3037 * completion.
3038 *
3039 * Think twice before calling this function! It's very easy to get into
3040 * trouble if you don't take great care. Either of the following situations
3041 * will lead to deadlock:
3042 *
3043 * One of the work items currently on the workqueue needs to acquire
3044 * a lock held by your code or its caller.
3045 *
3046 * Your code is running in the context of a work routine.
3047 *
3048 * They will be detected by lockdep when they occur, but the first might not
3049 * occur very often. It depends on what work items are on the workqueue and
3050 * what locks they need, which you have no control over.
3051 *
3052 * In most situations flushing the entire workqueue is overkill; you merely
3053 * need to know that a particular work item isn't queued and isn't running.
3054 * In such cases you should use cancel_delayed_work_sync() or
3055 * cancel_work_sync() instead.
3056 */
3057 void flush_scheduled_work(void)
3058 {
3059 flush_workqueue(system_wq);
3060 }
3061 EXPORT_SYMBOL(flush_scheduled_work);
3062
3063 /**
3064 * execute_in_process_context - reliably execute the routine with user context
3065 * @fn: the function to execute
3066 * @ew: guaranteed storage for the execute work structure (must
3067 * be available when the work executes)
3068 *
3069 * Executes the function immediately if process context is available,
3070 * otherwise schedules the function for delayed execution.
3071 *
3072 * Return: 0 - function was executed
3073 * 1 - function was scheduled for execution
3074 */
3075 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3076 {
3077 if (!in_interrupt()) {
3078 fn(&ew->work);
3079 return 0;
3080 }
3081
3082 INIT_WORK(&ew->work, fn);
3083 schedule_work(&ew->work);
3084
3085 return 1;
3086 }
3087 EXPORT_SYMBOL_GPL(execute_in_process_context);
3088
3089 #ifdef CONFIG_SYSFS
3090 /*
3091 * Workqueues with WQ_SYSFS flag set is visible to userland via
3092 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3093 * following attributes.
3094 *
3095 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3096 * max_active RW int : maximum number of in-flight work items
3097 *
3098 * Unbound workqueues have the following extra attributes.
3099 *
3100 * id RO int : the associated pool ID
3101 * nice RW int : nice value of the workers
3102 * cpumask RW mask : bitmask of allowed CPUs for the workers
3103 */
3104 struct wq_device {
3105 struct workqueue_struct *wq;
3106 struct device dev;
3107 };
3108
3109 static struct workqueue_struct *dev_to_wq(struct device *dev)
3110 {
3111 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3112
3113 return wq_dev->wq;
3114 }
3115
3116 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3117 char *buf)
3118 {
3119 struct workqueue_struct *wq = dev_to_wq(dev);
3120
3121 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3122 }
3123 static DEVICE_ATTR_RO(per_cpu);
3124
3125 static ssize_t max_active_show(struct device *dev,
3126 struct device_attribute *attr, char *buf)
3127 {
3128 struct workqueue_struct *wq = dev_to_wq(dev);
3129
3130 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3131 }
3132
3133 static ssize_t max_active_store(struct device *dev,
3134 struct device_attribute *attr, const char *buf,
3135 size_t count)
3136 {
3137 struct workqueue_struct *wq = dev_to_wq(dev);
3138 int val;
3139
3140 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3141 return -EINVAL;
3142
3143 workqueue_set_max_active(wq, val);
3144 return count;
3145 }
3146 static DEVICE_ATTR_RW(max_active);
3147
3148 static struct attribute *wq_sysfs_attrs[] = {
3149 &dev_attr_per_cpu.attr,
3150 &dev_attr_max_active.attr,
3151 NULL,
3152 };
3153 ATTRIBUTE_GROUPS(wq_sysfs);
3154
3155 static ssize_t wq_pool_ids_show(struct device *dev,
3156 struct device_attribute *attr, char *buf)
3157 {
3158 struct workqueue_struct *wq = dev_to_wq(dev);
3159 const char *delim = "";
3160 int node, written = 0;
3161
3162 rcu_read_lock_sched();
3163 for_each_node(node) {
3164 written += scnprintf(buf + written, PAGE_SIZE - written,
3165 "%s%d:%d", delim, node,
3166 unbound_pwq_by_node(wq, node)->pool->id);
3167 delim = " ";
3168 }
3169 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3170 rcu_read_unlock_sched();
3171
3172 return written;
3173 }
3174
3175 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3176 char *buf)
3177 {
3178 struct workqueue_struct *wq = dev_to_wq(dev);
3179 int written;
3180
3181 mutex_lock(&wq->mutex);
3182 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3183 mutex_unlock(&wq->mutex);
3184
3185 return written;
3186 }
3187
3188 /* prepare workqueue_attrs for sysfs store operations */
3189 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3190 {
3191 struct workqueue_attrs *attrs;
3192
3193 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3194 if (!attrs)
3195 return NULL;
3196
3197 mutex_lock(&wq->mutex);
3198 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3199 mutex_unlock(&wq->mutex);
3200 return attrs;
3201 }
3202
3203 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3204 const char *buf, size_t count)
3205 {
3206 struct workqueue_struct *wq = dev_to_wq(dev);
3207 struct workqueue_attrs *attrs;
3208 int ret;
3209
3210 attrs = wq_sysfs_prep_attrs(wq);
3211 if (!attrs)
3212 return -ENOMEM;
3213
3214 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3215 attrs->nice >= -20 && attrs->nice <= 19)
3216 ret = apply_workqueue_attrs(wq, attrs);
3217 else
3218 ret = -EINVAL;
3219
3220 free_workqueue_attrs(attrs);
3221 return ret ?: count;
3222 }
3223
3224 static ssize_t wq_cpumask_show(struct device *dev,
3225 struct device_attribute *attr, char *buf)
3226 {
3227 struct workqueue_struct *wq = dev_to_wq(dev);
3228 int written;
3229
3230 mutex_lock(&wq->mutex);
3231 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3232 mutex_unlock(&wq->mutex);
3233
3234 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3235 return written;
3236 }
3237
3238 static ssize_t wq_cpumask_store(struct device *dev,
3239 struct device_attribute *attr,
3240 const char *buf, size_t count)
3241 {
3242 struct workqueue_struct *wq = dev_to_wq(dev);
3243 struct workqueue_attrs *attrs;
3244 int ret;
3245
3246 attrs = wq_sysfs_prep_attrs(wq);
3247 if (!attrs)
3248 return -ENOMEM;
3249
3250 ret = cpumask_parse(buf, attrs->cpumask);
3251 if (!ret)
3252 ret = apply_workqueue_attrs(wq, attrs);
3253
3254 free_workqueue_attrs(attrs);
3255 return ret ?: count;
3256 }
3257
3258 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3259 char *buf)
3260 {
3261 struct workqueue_struct *wq = dev_to_wq(dev);
3262 int written;
3263
3264 mutex_lock(&wq->mutex);
3265 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3266 !wq->unbound_attrs->no_numa);
3267 mutex_unlock(&wq->mutex);
3268
3269 return written;
3270 }
3271
3272 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3273 const char *buf, size_t count)
3274 {
3275 struct workqueue_struct *wq = dev_to_wq(dev);
3276 struct workqueue_attrs *attrs;
3277 int v, ret;
3278
3279 attrs = wq_sysfs_prep_attrs(wq);
3280 if (!attrs)
3281 return -ENOMEM;
3282
3283 ret = -EINVAL;
3284 if (sscanf(buf, "%d", &v) == 1) {
3285 attrs->no_numa = !v;
3286 ret = apply_workqueue_attrs(wq, attrs);
3287 }
3288
3289 free_workqueue_attrs(attrs);
3290 return ret ?: count;
3291 }
3292
3293 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3294 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3295 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3296 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3297 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3298 __ATTR_NULL,
3299 };
3300
3301 static struct bus_type wq_subsys = {
3302 .name = "workqueue",
3303 .dev_groups = wq_sysfs_groups,
3304 };
3305
3306 static int __init wq_sysfs_init(void)
3307 {
3308 return subsys_virtual_register(&wq_subsys, NULL);
3309 }
3310 core_initcall(wq_sysfs_init);
3311
3312 static void wq_device_release(struct device *dev)
3313 {
3314 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3315
3316 kfree(wq_dev);
3317 }
3318
3319 /**
3320 * workqueue_sysfs_register - make a workqueue visible in sysfs
3321 * @wq: the workqueue to register
3322 *
3323 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3324 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3325 * which is the preferred method.
3326 *
3327 * Workqueue user should use this function directly iff it wants to apply
3328 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3329 * apply_workqueue_attrs() may race against userland updating the
3330 * attributes.
3331 *
3332 * Return: 0 on success, -errno on failure.
3333 */
3334 int workqueue_sysfs_register(struct workqueue_struct *wq)
3335 {
3336 struct wq_device *wq_dev;
3337 int ret;
3338
3339 /*
3340 * Adjusting max_active or creating new pwqs by applyting
3341 * attributes breaks ordering guarantee. Disallow exposing ordered
3342 * workqueues.
3343 */
3344 if (WARN_ON(wq->flags & __WQ_ORDERED))
3345 return -EINVAL;
3346
3347 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3348 if (!wq_dev)
3349 return -ENOMEM;
3350
3351 wq_dev->wq = wq;
3352 wq_dev->dev.bus = &wq_subsys;
3353 wq_dev->dev.init_name = wq->name;
3354 wq_dev->dev.release = wq_device_release;
3355
3356 /*
3357 * unbound_attrs are created separately. Suppress uevent until
3358 * everything is ready.
3359 */
3360 dev_set_uevent_suppress(&wq_dev->dev, true);
3361
3362 ret = device_register(&wq_dev->dev);
3363 if (ret) {
3364 kfree(wq_dev);
3365 wq->wq_dev = NULL;
3366 return ret;
3367 }
3368
3369 if (wq->flags & WQ_UNBOUND) {
3370 struct device_attribute *attr;
3371
3372 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3373 ret = device_create_file(&wq_dev->dev, attr);
3374 if (ret) {
3375 device_unregister(&wq_dev->dev);
3376 wq->wq_dev = NULL;
3377 return ret;
3378 }
3379 }
3380 }
3381
3382 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3383 return 0;
3384 }
3385
3386 /**
3387 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3388 * @wq: the workqueue to unregister
3389 *
3390 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3391 */
3392 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3393 {
3394 struct wq_device *wq_dev = wq->wq_dev;
3395
3396 if (!wq->wq_dev)
3397 return;
3398
3399 wq->wq_dev = NULL;
3400 device_unregister(&wq_dev->dev);
3401 }
3402 #else /* CONFIG_SYSFS */
3403 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3404 #endif /* CONFIG_SYSFS */
3405
3406 /**
3407 * free_workqueue_attrs - free a workqueue_attrs
3408 * @attrs: workqueue_attrs to free
3409 *
3410 * Undo alloc_workqueue_attrs().
3411 */
3412 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3413 {
3414 if (attrs) {
3415 free_cpumask_var(attrs->cpumask);
3416 kfree(attrs);
3417 }
3418 }
3419
3420 /**
3421 * alloc_workqueue_attrs - allocate a workqueue_attrs
3422 * @gfp_mask: allocation mask to use
3423 *
3424 * Allocate a new workqueue_attrs, initialize with default settings and
3425 * return it.
3426 *
3427 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3428 */
3429 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3430 {
3431 struct workqueue_attrs *attrs;
3432
3433 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3434 if (!attrs)
3435 goto fail;
3436 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3437 goto fail;
3438
3439 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3440 return attrs;
3441 fail:
3442 free_workqueue_attrs(attrs);
3443 return NULL;
3444 }
3445
3446 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3447 const struct workqueue_attrs *from)
3448 {
3449 to->nice = from->nice;
3450 cpumask_copy(to->cpumask, from->cpumask);
3451 /*
3452 * Unlike hash and equality test, this function doesn't ignore
3453 * ->no_numa as it is used for both pool and wq attrs. Instead,
3454 * get_unbound_pool() explicitly clears ->no_numa after copying.
3455 */
3456 to->no_numa = from->no_numa;
3457 }
3458
3459 /* hash value of the content of @attr */
3460 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3461 {
3462 u32 hash = 0;
3463
3464 hash = jhash_1word(attrs->nice, hash);
3465 hash = jhash(cpumask_bits(attrs->cpumask),
3466 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3467 return hash;
3468 }
3469
3470 /* content equality test */
3471 static bool wqattrs_equal(const struct workqueue_attrs *a,
3472 const struct workqueue_attrs *b)
3473 {
3474 if (a->nice != b->nice)
3475 return false;
3476 if (!cpumask_equal(a->cpumask, b->cpumask))
3477 return false;
3478 return true;
3479 }
3480
3481 /**
3482 * init_worker_pool - initialize a newly zalloc'd worker_pool
3483 * @pool: worker_pool to initialize
3484 *
3485 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3486 *
3487 * Return: 0 on success, -errno on failure. Even on failure, all fields
3488 * inside @pool proper are initialized and put_unbound_pool() can be called
3489 * on @pool safely to release it.
3490 */
3491 static int init_worker_pool(struct worker_pool *pool)
3492 {
3493 spin_lock_init(&pool->lock);
3494 pool->id = -1;
3495 pool->cpu = -1;
3496 pool->node = NUMA_NO_NODE;
3497 pool->flags |= POOL_DISASSOCIATED;
3498 INIT_LIST_HEAD(&pool->worklist);
3499 INIT_LIST_HEAD(&pool->idle_list);
3500 hash_init(pool->busy_hash);
3501
3502 init_timer_deferrable(&pool->idle_timer);
3503 pool->idle_timer.function = idle_worker_timeout;
3504 pool->idle_timer.data = (unsigned long)pool;
3505
3506 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3507 (unsigned long)pool);
3508
3509 mutex_init(&pool->manager_arb);
3510 mutex_init(&pool->manager_mutex);
3511 idr_init(&pool->worker_idr);
3512
3513 INIT_HLIST_NODE(&pool->hash_node);
3514 pool->refcnt = 1;
3515
3516 /* shouldn't fail above this point */
3517 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3518 if (!pool->attrs)
3519 return -ENOMEM;
3520 return 0;
3521 }
3522
3523 static void rcu_free_pool(struct rcu_head *rcu)
3524 {
3525 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3526
3527 idr_destroy(&pool->worker_idr);
3528 free_workqueue_attrs(pool->attrs);
3529 kfree(pool);
3530 }
3531
3532 /**
3533 * put_unbound_pool - put a worker_pool
3534 * @pool: worker_pool to put
3535 *
3536 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3537 * safe manner. get_unbound_pool() calls this function on its failure path
3538 * and this function should be able to release pools which went through,
3539 * successfully or not, init_worker_pool().
3540 *
3541 * Should be called with wq_pool_mutex held.
3542 */
3543 static void put_unbound_pool(struct worker_pool *pool)
3544 {
3545 struct worker *worker;
3546
3547 lockdep_assert_held(&wq_pool_mutex);
3548
3549 if (--pool->refcnt)
3550 return;
3551
3552 /* sanity checks */
3553 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3554 WARN_ON(!list_empty(&pool->worklist)))
3555 return;
3556
3557 /* release id and unhash */
3558 if (pool->id >= 0)
3559 idr_remove(&worker_pool_idr, pool->id);
3560 hash_del(&pool->hash_node);
3561
3562 /*
3563 * Become the manager and destroy all workers. Grabbing
3564 * manager_arb prevents @pool's workers from blocking on
3565 * manager_mutex.
3566 */
3567 mutex_lock(&pool->manager_arb);
3568 mutex_lock(&pool->manager_mutex);
3569 spin_lock_irq(&pool->lock);
3570
3571 while ((worker = first_worker(pool)))
3572 destroy_worker(worker);
3573 WARN_ON(pool->nr_workers || pool->nr_idle);
3574
3575 spin_unlock_irq(&pool->lock);
3576 mutex_unlock(&pool->manager_mutex);
3577 mutex_unlock(&pool->manager_arb);
3578
3579 /* shut down the timers */
3580 del_timer_sync(&pool->idle_timer);
3581 del_timer_sync(&pool->mayday_timer);
3582
3583 /* sched-RCU protected to allow dereferences from get_work_pool() */
3584 call_rcu_sched(&pool->rcu, rcu_free_pool);
3585 }
3586
3587 /**
3588 * get_unbound_pool - get a worker_pool with the specified attributes
3589 * @attrs: the attributes of the worker_pool to get
3590 *
3591 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3592 * reference count and return it. If there already is a matching
3593 * worker_pool, it will be used; otherwise, this function attempts to
3594 * create a new one.
3595 *
3596 * Should be called with wq_pool_mutex held.
3597 *
3598 * Return: On success, a worker_pool with the same attributes as @attrs.
3599 * On failure, %NULL.
3600 */
3601 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3602 {
3603 u32 hash = wqattrs_hash(attrs);
3604 struct worker_pool *pool;
3605 int node;
3606
3607 lockdep_assert_held(&wq_pool_mutex);
3608
3609 /* do we already have a matching pool? */
3610 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3611 if (wqattrs_equal(pool->attrs, attrs)) {
3612 pool->refcnt++;
3613 goto out_unlock;
3614 }
3615 }
3616
3617 /* nope, create a new one */
3618 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3619 if (!pool || init_worker_pool(pool) < 0)
3620 goto fail;
3621
3622 if (workqueue_freezing)
3623 pool->flags |= POOL_FREEZING;
3624
3625 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3626 copy_workqueue_attrs(pool->attrs, attrs);
3627
3628 /*
3629 * no_numa isn't a worker_pool attribute, always clear it. See
3630 * 'struct workqueue_attrs' comments for detail.
3631 */
3632 pool->attrs->no_numa = false;
3633
3634 /* if cpumask is contained inside a NUMA node, we belong to that node */
3635 if (wq_numa_enabled) {
3636 for_each_node(node) {
3637 if (cpumask_subset(pool->attrs->cpumask,
3638 wq_numa_possible_cpumask[node])) {
3639 pool->node = node;
3640 break;
3641 }
3642 }
3643 }
3644
3645 if (worker_pool_assign_id(pool) < 0)
3646 goto fail;
3647
3648 /* create and start the initial worker */
3649 if (create_and_start_worker(pool) < 0)
3650 goto fail;
3651
3652 /* install */
3653 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3654 out_unlock:
3655 return pool;
3656 fail:
3657 if (pool)
3658 put_unbound_pool(pool);
3659 return NULL;
3660 }
3661
3662 static void rcu_free_pwq(struct rcu_head *rcu)
3663 {
3664 kmem_cache_free(pwq_cache,
3665 container_of(rcu, struct pool_workqueue, rcu));
3666 }
3667
3668 /*
3669 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3670 * and needs to be destroyed.
3671 */
3672 static void pwq_unbound_release_workfn(struct work_struct *work)
3673 {
3674 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3675 unbound_release_work);
3676 struct workqueue_struct *wq = pwq->wq;
3677 struct worker_pool *pool = pwq->pool;
3678 bool is_last;
3679
3680 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3681 return;
3682
3683 /*
3684 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3685 * necessary on release but do it anyway. It's easier to verify
3686 * and consistent with the linking path.
3687 */
3688 mutex_lock(&wq->mutex);
3689 list_del_rcu(&pwq->pwqs_node);
3690 is_last = list_empty(&wq->pwqs);
3691 mutex_unlock(&wq->mutex);
3692
3693 mutex_lock(&wq_pool_mutex);
3694 put_unbound_pool(pool);
3695 mutex_unlock(&wq_pool_mutex);
3696
3697 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3698
3699 /*
3700 * If we're the last pwq going away, @wq is already dead and no one
3701 * is gonna access it anymore. Free it.
3702 */
3703 if (is_last) {
3704 free_workqueue_attrs(wq->unbound_attrs);
3705 kfree(wq);
3706 }
3707 }
3708
3709 /**
3710 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3711 * @pwq: target pool_workqueue
3712 *
3713 * If @pwq isn't freezing, set @pwq->max_active to the associated
3714 * workqueue's saved_max_active and activate delayed work items
3715 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3716 */
3717 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3718 {
3719 struct workqueue_struct *wq = pwq->wq;
3720 bool freezable = wq->flags & WQ_FREEZABLE;
3721
3722 /* for @wq->saved_max_active */
3723 lockdep_assert_held(&wq->mutex);
3724
3725 /* fast exit for non-freezable wqs */
3726 if (!freezable && pwq->max_active == wq->saved_max_active)
3727 return;
3728
3729 spin_lock_irq(&pwq->pool->lock);
3730
3731 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3732 pwq->max_active = wq->saved_max_active;
3733
3734 while (!list_empty(&pwq->delayed_works) &&
3735 pwq->nr_active < pwq->max_active)
3736 pwq_activate_first_delayed(pwq);
3737
3738 /*
3739 * Need to kick a worker after thawed or an unbound wq's
3740 * max_active is bumped. It's a slow path. Do it always.
3741 */
3742 wake_up_worker(pwq->pool);
3743 } else {
3744 pwq->max_active = 0;
3745 }
3746
3747 spin_unlock_irq(&pwq->pool->lock);
3748 }
3749
3750 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3751 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3752 struct worker_pool *pool)
3753 {
3754 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3755
3756 memset(pwq, 0, sizeof(*pwq));
3757
3758 pwq->pool = pool;
3759 pwq->wq = wq;
3760 pwq->flush_color = -1;
3761 pwq->refcnt = 1;
3762 INIT_LIST_HEAD(&pwq->delayed_works);
3763 INIT_LIST_HEAD(&pwq->pwqs_node);
3764 INIT_LIST_HEAD(&pwq->mayday_node);
3765 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3766 }
3767
3768 /* sync @pwq with the current state of its associated wq and link it */
3769 static void link_pwq(struct pool_workqueue *pwq)
3770 {
3771 struct workqueue_struct *wq = pwq->wq;
3772
3773 lockdep_assert_held(&wq->mutex);
3774
3775 /* may be called multiple times, ignore if already linked */
3776 if (!list_empty(&pwq->pwqs_node))
3777 return;
3778
3779 /*
3780 * Set the matching work_color. This is synchronized with
3781 * wq->mutex to avoid confusing flush_workqueue().
3782 */
3783 pwq->work_color = wq->work_color;
3784
3785 /* sync max_active to the current setting */
3786 pwq_adjust_max_active(pwq);
3787
3788 /* link in @pwq */
3789 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3790 }
3791
3792 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3793 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3794 const struct workqueue_attrs *attrs)
3795 {
3796 struct worker_pool *pool;
3797 struct pool_workqueue *pwq;
3798
3799 lockdep_assert_held(&wq_pool_mutex);
3800
3801 pool = get_unbound_pool(attrs);
3802 if (!pool)
3803 return NULL;
3804
3805 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3806 if (!pwq) {
3807 put_unbound_pool(pool);
3808 return NULL;
3809 }
3810
3811 init_pwq(pwq, wq, pool);
3812 return pwq;
3813 }
3814
3815 /* undo alloc_unbound_pwq(), used only in the error path */
3816 static void free_unbound_pwq(struct pool_workqueue *pwq)
3817 {
3818 lockdep_assert_held(&wq_pool_mutex);
3819
3820 if (pwq) {
3821 put_unbound_pool(pwq->pool);
3822 kmem_cache_free(pwq_cache, pwq);
3823 }
3824 }
3825
3826 /**
3827 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3828 * @attrs: the wq_attrs of interest
3829 * @node: the target NUMA node
3830 * @cpu_going_down: if >= 0, the CPU to consider as offline
3831 * @cpumask: outarg, the resulting cpumask
3832 *
3833 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3834 * @cpu_going_down is >= 0, that cpu is considered offline during
3835 * calculation. The result is stored in @cpumask.
3836 *
3837 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3838 * enabled and @node has online CPUs requested by @attrs, the returned
3839 * cpumask is the intersection of the possible CPUs of @node and
3840 * @attrs->cpumask.
3841 *
3842 * The caller is responsible for ensuring that the cpumask of @node stays
3843 * stable.
3844 *
3845 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3846 * %false if equal.
3847 */
3848 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3849 int cpu_going_down, cpumask_t *cpumask)
3850 {
3851 if (!wq_numa_enabled || attrs->no_numa)
3852 goto use_dfl;
3853
3854 /* does @node have any online CPUs @attrs wants? */
3855 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3856 if (cpu_going_down >= 0)
3857 cpumask_clear_cpu(cpu_going_down, cpumask);
3858
3859 if (cpumask_empty(cpumask))
3860 goto use_dfl;
3861
3862 /* yeap, return possible CPUs in @node that @attrs wants */
3863 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3864 return !cpumask_equal(cpumask, attrs->cpumask);
3865
3866 use_dfl:
3867 cpumask_copy(cpumask, attrs->cpumask);
3868 return false;
3869 }
3870
3871 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3872 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3873 int node,
3874 struct pool_workqueue *pwq)
3875 {
3876 struct pool_workqueue *old_pwq;
3877
3878 lockdep_assert_held(&wq->mutex);
3879
3880 /* link_pwq() can handle duplicate calls */
3881 link_pwq(pwq);
3882
3883 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3884 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3885 return old_pwq;
3886 }
3887
3888 /**
3889 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3890 * @wq: the target workqueue
3891 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3892 *
3893 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3894 * machines, this function maps a separate pwq to each NUMA node with
3895 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3896 * NUMA node it was issued on. Older pwqs are released as in-flight work
3897 * items finish. Note that a work item which repeatedly requeues itself
3898 * back-to-back will stay on its current pwq.
3899 *
3900 * Performs GFP_KERNEL allocations.
3901 *
3902 * Return: 0 on success and -errno on failure.
3903 */
3904 int apply_workqueue_attrs(struct workqueue_struct *wq,
3905 const struct workqueue_attrs *attrs)
3906 {
3907 struct workqueue_attrs *new_attrs, *tmp_attrs;
3908 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3909 int node, ret;
3910
3911 /* only unbound workqueues can change attributes */
3912 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3913 return -EINVAL;
3914
3915 /* creating multiple pwqs breaks ordering guarantee */
3916 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3917 return -EINVAL;
3918
3919 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3920 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3921 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3922 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3923 goto enomem;
3924
3925 /* make a copy of @attrs and sanitize it */
3926 copy_workqueue_attrs(new_attrs, attrs);
3927 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3928
3929 /*
3930 * We may create multiple pwqs with differing cpumasks. Make a
3931 * copy of @new_attrs which will be modified and used to obtain
3932 * pools.
3933 */
3934 copy_workqueue_attrs(tmp_attrs, new_attrs);
3935
3936 /*
3937 * CPUs should stay stable across pwq creations and installations.
3938 * Pin CPUs, determine the target cpumask for each node and create
3939 * pwqs accordingly.
3940 */
3941 get_online_cpus();
3942
3943 mutex_lock(&wq_pool_mutex);
3944
3945 /*
3946 * If something goes wrong during CPU up/down, we'll fall back to
3947 * the default pwq covering whole @attrs->cpumask. Always create
3948 * it even if we don't use it immediately.
3949 */
3950 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3951 if (!dfl_pwq)
3952 goto enomem_pwq;
3953
3954 for_each_node(node) {
3955 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3956 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3957 if (!pwq_tbl[node])
3958 goto enomem_pwq;
3959 } else {
3960 dfl_pwq->refcnt++;
3961 pwq_tbl[node] = dfl_pwq;
3962 }
3963 }
3964
3965 mutex_unlock(&wq_pool_mutex);
3966
3967 /* all pwqs have been created successfully, let's install'em */
3968 mutex_lock(&wq->mutex);
3969
3970 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3971
3972 /* save the previous pwq and install the new one */
3973 for_each_node(node)
3974 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3975
3976 /* @dfl_pwq might not have been used, ensure it's linked */
3977 link_pwq(dfl_pwq);
3978 swap(wq->dfl_pwq, dfl_pwq);
3979
3980 mutex_unlock(&wq->mutex);
3981
3982 /* put the old pwqs */
3983 for_each_node(node)
3984 put_pwq_unlocked(pwq_tbl[node]);
3985 put_pwq_unlocked(dfl_pwq);
3986
3987 put_online_cpus();
3988 ret = 0;
3989 /* fall through */
3990 out_free:
3991 free_workqueue_attrs(tmp_attrs);
3992 free_workqueue_attrs(new_attrs);
3993 kfree(pwq_tbl);
3994 return ret;
3995
3996 enomem_pwq:
3997 free_unbound_pwq(dfl_pwq);
3998 for_each_node(node)
3999 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4000 free_unbound_pwq(pwq_tbl[node]);
4001 mutex_unlock(&wq_pool_mutex);
4002 put_online_cpus();
4003 enomem:
4004 ret = -ENOMEM;
4005 goto out_free;
4006 }
4007
4008 /**
4009 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4010 * @wq: the target workqueue
4011 * @cpu: the CPU coming up or going down
4012 * @online: whether @cpu is coming up or going down
4013 *
4014 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4015 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4016 * @wq accordingly.
4017 *
4018 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4019 * falls back to @wq->dfl_pwq which may not be optimal but is always
4020 * correct.
4021 *
4022 * Note that when the last allowed CPU of a NUMA node goes offline for a
4023 * workqueue with a cpumask spanning multiple nodes, the workers which were
4024 * already executing the work items for the workqueue will lose their CPU
4025 * affinity and may execute on any CPU. This is similar to how per-cpu
4026 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4027 * affinity, it's the user's responsibility to flush the work item from
4028 * CPU_DOWN_PREPARE.
4029 */
4030 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4031 bool online)
4032 {
4033 int node = cpu_to_node(cpu);
4034 int cpu_off = online ? -1 : cpu;
4035 struct pool_workqueue *old_pwq = NULL, *pwq;
4036 struct workqueue_attrs *target_attrs;
4037 cpumask_t *cpumask;
4038
4039 lockdep_assert_held(&wq_pool_mutex);
4040
4041 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4042 return;
4043
4044 /*
4045 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4046 * Let's use a preallocated one. The following buf is protected by
4047 * CPU hotplug exclusion.
4048 */
4049 target_attrs = wq_update_unbound_numa_attrs_buf;
4050 cpumask = target_attrs->cpumask;
4051
4052 mutex_lock(&wq->mutex);
4053 if (wq->unbound_attrs->no_numa)
4054 goto out_unlock;
4055
4056 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4057 pwq = unbound_pwq_by_node(wq, node);
4058
4059 /*
4060 * Let's determine what needs to be done. If the target cpumask is
4061 * different from wq's, we need to compare it to @pwq's and create
4062 * a new one if they don't match. If the target cpumask equals
4063 * wq's, the default pwq should be used. If @pwq is already the
4064 * default one, nothing to do; otherwise, install the default one.
4065 */
4066 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4067 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4068 goto out_unlock;
4069 } else {
4070 if (pwq == wq->dfl_pwq)
4071 goto out_unlock;
4072 else
4073 goto use_dfl_pwq;
4074 }
4075
4076 mutex_unlock(&wq->mutex);
4077
4078 /* create a new pwq */
4079 pwq = alloc_unbound_pwq(wq, target_attrs);
4080 if (!pwq) {
4081 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4082 wq->name);
4083 goto out_unlock;
4084 }
4085
4086 /*
4087 * Install the new pwq. As this function is called only from CPU
4088 * hotplug callbacks and applying a new attrs is wrapped with
4089 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4090 * inbetween.
4091 */
4092 mutex_lock(&wq->mutex);
4093 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4094 goto out_unlock;
4095
4096 use_dfl_pwq:
4097 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4098 get_pwq(wq->dfl_pwq);
4099 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4100 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4101 out_unlock:
4102 mutex_unlock(&wq->mutex);
4103 put_pwq_unlocked(old_pwq);
4104 }
4105
4106 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4107 {
4108 bool highpri = wq->flags & WQ_HIGHPRI;
4109 int cpu;
4110
4111 if (!(wq->flags & WQ_UNBOUND)) {
4112 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4113 if (!wq->cpu_pwqs)
4114 return -ENOMEM;
4115
4116 for_each_possible_cpu(cpu) {
4117 struct pool_workqueue *pwq =
4118 per_cpu_ptr(wq->cpu_pwqs, cpu);
4119 struct worker_pool *cpu_pools =
4120 per_cpu(cpu_worker_pools, cpu);
4121
4122 init_pwq(pwq, wq, &cpu_pools[highpri]);
4123
4124 mutex_lock(&wq->mutex);
4125 link_pwq(pwq);
4126 mutex_unlock(&wq->mutex);
4127 }
4128 return 0;
4129 } else {
4130 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4131 }
4132 }
4133
4134 static int wq_clamp_max_active(int max_active, unsigned int flags,
4135 const char *name)
4136 {
4137 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4138
4139 if (max_active < 1 || max_active > lim)
4140 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4141 max_active, name, 1, lim);
4142
4143 return clamp_val(max_active, 1, lim);
4144 }
4145
4146 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4147 unsigned int flags,
4148 int max_active,
4149 struct lock_class_key *key,
4150 const char *lock_name, ...)
4151 {
4152 size_t tbl_size = 0;
4153 va_list args;
4154 struct workqueue_struct *wq;
4155 struct pool_workqueue *pwq;
4156
4157 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4158 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4159 flags |= WQ_UNBOUND;
4160
4161 /* allocate wq and format name */
4162 if (flags & WQ_UNBOUND)
4163 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4164
4165 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4166 if (!wq)
4167 return NULL;
4168
4169 if (flags & WQ_UNBOUND) {
4170 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4171 if (!wq->unbound_attrs)
4172 goto err_free_wq;
4173 }
4174
4175 va_start(args, lock_name);
4176 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4177 va_end(args);
4178
4179 max_active = max_active ?: WQ_DFL_ACTIVE;
4180 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4181
4182 /* init wq */
4183 wq->flags = flags;
4184 wq->saved_max_active = max_active;
4185 mutex_init(&wq->mutex);
4186 atomic_set(&wq->nr_pwqs_to_flush, 0);
4187 INIT_LIST_HEAD(&wq->pwqs);
4188 INIT_LIST_HEAD(&wq->flusher_queue);
4189 INIT_LIST_HEAD(&wq->flusher_overflow);
4190 INIT_LIST_HEAD(&wq->maydays);
4191
4192 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4193 INIT_LIST_HEAD(&wq->list);
4194
4195 if (alloc_and_link_pwqs(wq) < 0)
4196 goto err_free_wq;
4197
4198 /*
4199 * Workqueues which may be used during memory reclaim should
4200 * have a rescuer to guarantee forward progress.
4201 */
4202 if (flags & WQ_MEM_RECLAIM) {
4203 struct worker *rescuer;
4204
4205 rescuer = alloc_worker();
4206 if (!rescuer)
4207 goto err_destroy;
4208
4209 rescuer->rescue_wq = wq;
4210 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4211 wq->name);
4212 if (IS_ERR(rescuer->task)) {
4213 kfree(rescuer);
4214 goto err_destroy;
4215 }
4216
4217 wq->rescuer = rescuer;
4218 rescuer->task->flags |= PF_NO_SETAFFINITY;
4219 wake_up_process(rescuer->task);
4220 }
4221
4222 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4223 goto err_destroy;
4224
4225 /*
4226 * wq_pool_mutex protects global freeze state and workqueues list.
4227 * Grab it, adjust max_active and add the new @wq to workqueues
4228 * list.
4229 */
4230 mutex_lock(&wq_pool_mutex);
4231
4232 mutex_lock(&wq->mutex);
4233 for_each_pwq(pwq, wq)
4234 pwq_adjust_max_active(pwq);
4235 mutex_unlock(&wq->mutex);
4236
4237 list_add(&wq->list, &workqueues);
4238
4239 mutex_unlock(&wq_pool_mutex);
4240
4241 return wq;
4242
4243 err_free_wq:
4244 free_workqueue_attrs(wq->unbound_attrs);
4245 kfree(wq);
4246 return NULL;
4247 err_destroy:
4248 destroy_workqueue(wq);
4249 return NULL;
4250 }
4251 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4252
4253 /**
4254 * destroy_workqueue - safely terminate a workqueue
4255 * @wq: target workqueue
4256 *
4257 * Safely destroy a workqueue. All work currently pending will be done first.
4258 */
4259 void destroy_workqueue(struct workqueue_struct *wq)
4260 {
4261 struct pool_workqueue *pwq;
4262 int node;
4263
4264 /* drain it before proceeding with destruction */
4265 drain_workqueue(wq);
4266
4267 /* sanity checks */
4268 mutex_lock(&wq->mutex);
4269 for_each_pwq(pwq, wq) {
4270 int i;
4271
4272 for (i = 0; i < WORK_NR_COLORS; i++) {
4273 if (WARN_ON(pwq->nr_in_flight[i])) {
4274 mutex_unlock(&wq->mutex);
4275 return;
4276 }
4277 }
4278
4279 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4280 WARN_ON(pwq->nr_active) ||
4281 WARN_ON(!list_empty(&pwq->delayed_works))) {
4282 mutex_unlock(&wq->mutex);
4283 return;
4284 }
4285 }
4286 mutex_unlock(&wq->mutex);
4287
4288 /*
4289 * wq list is used to freeze wq, remove from list after
4290 * flushing is complete in case freeze races us.
4291 */
4292 mutex_lock(&wq_pool_mutex);
4293 list_del_init(&wq->list);
4294 mutex_unlock(&wq_pool_mutex);
4295
4296 workqueue_sysfs_unregister(wq);
4297
4298 if (wq->rescuer) {
4299 kthread_stop(wq->rescuer->task);
4300 kfree(wq->rescuer);
4301 wq->rescuer = NULL;
4302 }
4303
4304 if (!(wq->flags & WQ_UNBOUND)) {
4305 /*
4306 * The base ref is never dropped on per-cpu pwqs. Directly
4307 * free the pwqs and wq.
4308 */
4309 free_percpu(wq->cpu_pwqs);
4310 kfree(wq);
4311 } else {
4312 /*
4313 * We're the sole accessor of @wq at this point. Directly
4314 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4315 * @wq will be freed when the last pwq is released.
4316 */
4317 for_each_node(node) {
4318 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4319 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4320 put_pwq_unlocked(pwq);
4321 }
4322
4323 /*
4324 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4325 * put. Don't access it afterwards.
4326 */
4327 pwq = wq->dfl_pwq;
4328 wq->dfl_pwq = NULL;
4329 put_pwq_unlocked(pwq);
4330 }
4331 }
4332 EXPORT_SYMBOL_GPL(destroy_workqueue);
4333
4334 /**
4335 * workqueue_set_max_active - adjust max_active of a workqueue
4336 * @wq: target workqueue
4337 * @max_active: new max_active value.
4338 *
4339 * Set max_active of @wq to @max_active.
4340 *
4341 * CONTEXT:
4342 * Don't call from IRQ context.
4343 */
4344 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4345 {
4346 struct pool_workqueue *pwq;
4347
4348 /* disallow meddling with max_active for ordered workqueues */
4349 if (WARN_ON(wq->flags & __WQ_ORDERED))
4350 return;
4351
4352 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4353
4354 mutex_lock(&wq->mutex);
4355
4356 wq->saved_max_active = max_active;
4357
4358 for_each_pwq(pwq, wq)
4359 pwq_adjust_max_active(pwq);
4360
4361 mutex_unlock(&wq->mutex);
4362 }
4363 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4364
4365 /**
4366 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4367 *
4368 * Determine whether %current is a workqueue rescuer. Can be used from
4369 * work functions to determine whether it's being run off the rescuer task.
4370 *
4371 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4372 */
4373 bool current_is_workqueue_rescuer(void)
4374 {
4375 struct worker *worker = current_wq_worker();
4376
4377 return worker && worker->rescue_wq;
4378 }
4379
4380 /**
4381 * workqueue_congested - test whether a workqueue is congested
4382 * @cpu: CPU in question
4383 * @wq: target workqueue
4384 *
4385 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4386 * no synchronization around this function and the test result is
4387 * unreliable and only useful as advisory hints or for debugging.
4388 *
4389 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4390 * Note that both per-cpu and unbound workqueues may be associated with
4391 * multiple pool_workqueues which have separate congested states. A
4392 * workqueue being congested on one CPU doesn't mean the workqueue is also
4393 * contested on other CPUs / NUMA nodes.
4394 *
4395 * Return:
4396 * %true if congested, %false otherwise.
4397 */
4398 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4399 {
4400 struct pool_workqueue *pwq;
4401 bool ret;
4402
4403 rcu_read_lock_sched();
4404
4405 if (cpu == WORK_CPU_UNBOUND)
4406 cpu = smp_processor_id();
4407
4408 if (!(wq->flags & WQ_UNBOUND))
4409 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4410 else
4411 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4412
4413 ret = !list_empty(&pwq->delayed_works);
4414 rcu_read_unlock_sched();
4415
4416 return ret;
4417 }
4418 EXPORT_SYMBOL_GPL(workqueue_congested);
4419
4420 /**
4421 * work_busy - test whether a work is currently pending or running
4422 * @work: the work to be tested
4423 *
4424 * Test whether @work is currently pending or running. There is no
4425 * synchronization around this function and the test result is
4426 * unreliable and only useful as advisory hints or for debugging.
4427 *
4428 * Return:
4429 * OR'd bitmask of WORK_BUSY_* bits.
4430 */
4431 unsigned int work_busy(struct work_struct *work)
4432 {
4433 struct worker_pool *pool;
4434 unsigned long flags;
4435 unsigned int ret = 0;
4436
4437 if (work_pending(work))
4438 ret |= WORK_BUSY_PENDING;
4439
4440 local_irq_save(flags);
4441 pool = get_work_pool(work);
4442 if (pool) {
4443 spin_lock(&pool->lock);
4444 if (find_worker_executing_work(pool, work))
4445 ret |= WORK_BUSY_RUNNING;
4446 spin_unlock(&pool->lock);
4447 }
4448 local_irq_restore(flags);
4449
4450 return ret;
4451 }
4452 EXPORT_SYMBOL_GPL(work_busy);
4453
4454 /**
4455 * set_worker_desc - set description for the current work item
4456 * @fmt: printf-style format string
4457 * @...: arguments for the format string
4458 *
4459 * This function can be called by a running work function to describe what
4460 * the work item is about. If the worker task gets dumped, this
4461 * information will be printed out together to help debugging. The
4462 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4463 */
4464 void set_worker_desc(const char *fmt, ...)
4465 {
4466 struct worker *worker = current_wq_worker();
4467 va_list args;
4468
4469 if (worker) {
4470 va_start(args, fmt);
4471 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4472 va_end(args);
4473 worker->desc_valid = true;
4474 }
4475 }
4476
4477 /**
4478 * print_worker_info - print out worker information and description
4479 * @log_lvl: the log level to use when printing
4480 * @task: target task
4481 *
4482 * If @task is a worker and currently executing a work item, print out the
4483 * name of the workqueue being serviced and worker description set with
4484 * set_worker_desc() by the currently executing work item.
4485 *
4486 * This function can be safely called on any task as long as the
4487 * task_struct itself is accessible. While safe, this function isn't
4488 * synchronized and may print out mixups or garbages of limited length.
4489 */
4490 void print_worker_info(const char *log_lvl, struct task_struct *task)
4491 {
4492 work_func_t *fn = NULL;
4493 char name[WQ_NAME_LEN] = { };
4494 char desc[WORKER_DESC_LEN] = { };
4495 struct pool_workqueue *pwq = NULL;
4496 struct workqueue_struct *wq = NULL;
4497 bool desc_valid = false;
4498 struct worker *worker;
4499
4500 if (!(task->flags & PF_WQ_WORKER))
4501 return;
4502
4503 /*
4504 * This function is called without any synchronization and @task
4505 * could be in any state. Be careful with dereferences.
4506 */
4507 worker = probe_kthread_data(task);
4508
4509 /*
4510 * Carefully copy the associated workqueue's workfn and name. Keep
4511 * the original last '\0' in case the original contains garbage.
4512 */
4513 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4514 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4515 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4516 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4517
4518 /* copy worker description */
4519 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4520 if (desc_valid)
4521 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4522
4523 if (fn || name[0] || desc[0]) {
4524 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4525 if (desc[0])
4526 pr_cont(" (%s)", desc);
4527 pr_cont("\n");
4528 }
4529 }
4530
4531 /*
4532 * CPU hotplug.
4533 *
4534 * There are two challenges in supporting CPU hotplug. Firstly, there
4535 * are a lot of assumptions on strong associations among work, pwq and
4536 * pool which make migrating pending and scheduled works very
4537 * difficult to implement without impacting hot paths. Secondly,
4538 * worker pools serve mix of short, long and very long running works making
4539 * blocked draining impractical.
4540 *
4541 * This is solved by allowing the pools to be disassociated from the CPU
4542 * running as an unbound one and allowing it to be reattached later if the
4543 * cpu comes back online.
4544 */
4545
4546 static void wq_unbind_fn(struct work_struct *work)
4547 {
4548 int cpu = smp_processor_id();
4549 struct worker_pool *pool;
4550 struct worker *worker;
4551 int wi;
4552
4553 for_each_cpu_worker_pool(pool, cpu) {
4554 WARN_ON_ONCE(cpu != smp_processor_id());
4555
4556 mutex_lock(&pool->manager_mutex);
4557 spin_lock_irq(&pool->lock);
4558
4559 /*
4560 * We've blocked all manager operations. Make all workers
4561 * unbound and set DISASSOCIATED. Before this, all workers
4562 * except for the ones which are still executing works from
4563 * before the last CPU down must be on the cpu. After
4564 * this, they may become diasporas.
4565 */
4566 for_each_pool_worker(worker, wi, pool)
4567 worker->flags |= WORKER_UNBOUND;
4568
4569 pool->flags |= POOL_DISASSOCIATED;
4570
4571 spin_unlock_irq(&pool->lock);
4572 mutex_unlock(&pool->manager_mutex);
4573
4574 /*
4575 * Call schedule() so that we cross rq->lock and thus can
4576 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4577 * This is necessary as scheduler callbacks may be invoked
4578 * from other cpus.
4579 */
4580 schedule();
4581
4582 /*
4583 * Sched callbacks are disabled now. Zap nr_running.
4584 * After this, nr_running stays zero and need_more_worker()
4585 * and keep_working() are always true as long as the
4586 * worklist is not empty. This pool now behaves as an
4587 * unbound (in terms of concurrency management) pool which
4588 * are served by workers tied to the pool.
4589 */
4590 atomic_set(&pool->nr_running, 0);
4591
4592 /*
4593 * With concurrency management just turned off, a busy
4594 * worker blocking could lead to lengthy stalls. Kick off
4595 * unbound chain execution of currently pending work items.
4596 */
4597 spin_lock_irq(&pool->lock);
4598 wake_up_worker(pool);
4599 spin_unlock_irq(&pool->lock);
4600 }
4601 }
4602
4603 /**
4604 * rebind_workers - rebind all workers of a pool to the associated CPU
4605 * @pool: pool of interest
4606 *
4607 * @pool->cpu is coming online. Rebind all workers to the CPU.
4608 */
4609 static void rebind_workers(struct worker_pool *pool)
4610 {
4611 struct worker *worker;
4612 int wi;
4613
4614 lockdep_assert_held(&pool->manager_mutex);
4615
4616 /*
4617 * Restore CPU affinity of all workers. As all idle workers should
4618 * be on the run-queue of the associated CPU before any local
4619 * wake-ups for concurrency management happen, restore CPU affinty
4620 * of all workers first and then clear UNBOUND. As we're called
4621 * from CPU_ONLINE, the following shouldn't fail.
4622 */
4623 for_each_pool_worker(worker, wi, pool)
4624 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4625 pool->attrs->cpumask) < 0);
4626
4627 spin_lock_irq(&pool->lock);
4628
4629 for_each_pool_worker(worker, wi, pool) {
4630 unsigned int worker_flags = worker->flags;
4631
4632 /*
4633 * A bound idle worker should actually be on the runqueue
4634 * of the associated CPU for local wake-ups targeting it to
4635 * work. Kick all idle workers so that they migrate to the
4636 * associated CPU. Doing this in the same loop as
4637 * replacing UNBOUND with REBOUND is safe as no worker will
4638 * be bound before @pool->lock is released.
4639 */
4640 if (worker_flags & WORKER_IDLE)
4641 wake_up_process(worker->task);
4642
4643 /*
4644 * We want to clear UNBOUND but can't directly call
4645 * worker_clr_flags() or adjust nr_running. Atomically
4646 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4647 * @worker will clear REBOUND using worker_clr_flags() when
4648 * it initiates the next execution cycle thus restoring
4649 * concurrency management. Note that when or whether
4650 * @worker clears REBOUND doesn't affect correctness.
4651 *
4652 * ACCESS_ONCE() is necessary because @worker->flags may be
4653 * tested without holding any lock in
4654 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4655 * fail incorrectly leading to premature concurrency
4656 * management operations.
4657 */
4658 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4659 worker_flags |= WORKER_REBOUND;
4660 worker_flags &= ~WORKER_UNBOUND;
4661 ACCESS_ONCE(worker->flags) = worker_flags;
4662 }
4663
4664 spin_unlock_irq(&pool->lock);
4665 }
4666
4667 /**
4668 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4669 * @pool: unbound pool of interest
4670 * @cpu: the CPU which is coming up
4671 *
4672 * An unbound pool may end up with a cpumask which doesn't have any online
4673 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4674 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4675 * online CPU before, cpus_allowed of all its workers should be restored.
4676 */
4677 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4678 {
4679 static cpumask_t cpumask;
4680 struct worker *worker;
4681 int wi;
4682
4683 lockdep_assert_held(&pool->manager_mutex);
4684
4685 /* is @cpu allowed for @pool? */
4686 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4687 return;
4688
4689 /* is @cpu the only online CPU? */
4690 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4691 if (cpumask_weight(&cpumask) != 1)
4692 return;
4693
4694 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4695 for_each_pool_worker(worker, wi, pool)
4696 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4697 pool->attrs->cpumask) < 0);
4698 }
4699
4700 /*
4701 * Workqueues should be brought up before normal priority CPU notifiers.
4702 * This will be registered high priority CPU notifier.
4703 */
4704 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4705 unsigned long action,
4706 void *hcpu)
4707 {
4708 int cpu = (unsigned long)hcpu;
4709 struct worker_pool *pool;
4710 struct workqueue_struct *wq;
4711 int pi;
4712
4713 switch (action & ~CPU_TASKS_FROZEN) {
4714 case CPU_UP_PREPARE:
4715 for_each_cpu_worker_pool(pool, cpu) {
4716 if (pool->nr_workers)
4717 continue;
4718 if (create_and_start_worker(pool) < 0)
4719 return NOTIFY_BAD;
4720 }
4721 break;
4722
4723 case CPU_DOWN_FAILED:
4724 case CPU_ONLINE:
4725 mutex_lock(&wq_pool_mutex);
4726
4727 for_each_pool(pool, pi) {
4728 mutex_lock(&pool->manager_mutex);
4729
4730 if (pool->cpu == cpu) {
4731 spin_lock_irq(&pool->lock);
4732 pool->flags &= ~POOL_DISASSOCIATED;
4733 spin_unlock_irq(&pool->lock);
4734
4735 rebind_workers(pool);
4736 } else if (pool->cpu < 0) {
4737 restore_unbound_workers_cpumask(pool, cpu);
4738 }
4739
4740 mutex_unlock(&pool->manager_mutex);
4741 }
4742
4743 /* update NUMA affinity of unbound workqueues */
4744 list_for_each_entry(wq, &workqueues, list)
4745 wq_update_unbound_numa(wq, cpu, true);
4746
4747 mutex_unlock(&wq_pool_mutex);
4748 break;
4749 }
4750 return NOTIFY_OK;
4751 }
4752
4753 /*
4754 * Workqueues should be brought down after normal priority CPU notifiers.
4755 * This will be registered as low priority CPU notifier.
4756 */
4757 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4758 unsigned long action,
4759 void *hcpu)
4760 {
4761 int cpu = (unsigned long)hcpu;
4762 struct work_struct unbind_work;
4763 struct workqueue_struct *wq;
4764
4765 switch (action & ~CPU_TASKS_FROZEN) {
4766 case CPU_DOWN_PREPARE:
4767 /* unbinding per-cpu workers should happen on the local CPU */
4768 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4769 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4770
4771 /* update NUMA affinity of unbound workqueues */
4772 mutex_lock(&wq_pool_mutex);
4773 list_for_each_entry(wq, &workqueues, list)
4774 wq_update_unbound_numa(wq, cpu, false);
4775 mutex_unlock(&wq_pool_mutex);
4776
4777 /* wait for per-cpu unbinding to finish */
4778 flush_work(&unbind_work);
4779 break;
4780 }
4781 return NOTIFY_OK;
4782 }
4783
4784 #ifdef CONFIG_SMP
4785
4786 struct work_for_cpu {
4787 struct work_struct work;
4788 long (*fn)(void *);
4789 void *arg;
4790 long ret;
4791 };
4792
4793 static void work_for_cpu_fn(struct work_struct *work)
4794 {
4795 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4796
4797 wfc->ret = wfc->fn(wfc->arg);
4798 }
4799
4800 /**
4801 * work_on_cpu - run a function in user context on a particular cpu
4802 * @cpu: the cpu to run on
4803 * @fn: the function to run
4804 * @arg: the function arg
4805 *
4806 * It is up to the caller to ensure that the cpu doesn't go offline.
4807 * The caller must not hold any locks which would prevent @fn from completing.
4808 *
4809 * Return: The value @fn returns.
4810 */
4811 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4812 {
4813 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4814
4815 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4816 schedule_work_on(cpu, &wfc.work);
4817
4818 /*
4819 * The work item is on-stack and can't lead to deadlock through
4820 * flushing. Use __flush_work() to avoid spurious lockdep warnings
4821 * when work_on_cpu()s are nested.
4822 */
4823 __flush_work(&wfc.work);
4824
4825 return wfc.ret;
4826 }
4827 EXPORT_SYMBOL_GPL(work_on_cpu);
4828 #endif /* CONFIG_SMP */
4829
4830 #ifdef CONFIG_FREEZER
4831
4832 /**
4833 * freeze_workqueues_begin - begin freezing workqueues
4834 *
4835 * Start freezing workqueues. After this function returns, all freezable
4836 * workqueues will queue new works to their delayed_works list instead of
4837 * pool->worklist.
4838 *
4839 * CONTEXT:
4840 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4841 */
4842 void freeze_workqueues_begin(void)
4843 {
4844 struct worker_pool *pool;
4845 struct workqueue_struct *wq;
4846 struct pool_workqueue *pwq;
4847 int pi;
4848
4849 mutex_lock(&wq_pool_mutex);
4850
4851 WARN_ON_ONCE(workqueue_freezing);
4852 workqueue_freezing = true;
4853
4854 /* set FREEZING */
4855 for_each_pool(pool, pi) {
4856 spin_lock_irq(&pool->lock);
4857 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4858 pool->flags |= POOL_FREEZING;
4859 spin_unlock_irq(&pool->lock);
4860 }
4861
4862 list_for_each_entry(wq, &workqueues, list) {
4863 mutex_lock(&wq->mutex);
4864 for_each_pwq(pwq, wq)
4865 pwq_adjust_max_active(pwq);
4866 mutex_unlock(&wq->mutex);
4867 }
4868
4869 mutex_unlock(&wq_pool_mutex);
4870 }
4871
4872 /**
4873 * freeze_workqueues_busy - are freezable workqueues still busy?
4874 *
4875 * Check whether freezing is complete. This function must be called
4876 * between freeze_workqueues_begin() and thaw_workqueues().
4877 *
4878 * CONTEXT:
4879 * Grabs and releases wq_pool_mutex.
4880 *
4881 * Return:
4882 * %true if some freezable workqueues are still busy. %false if freezing
4883 * is complete.
4884 */
4885 bool freeze_workqueues_busy(void)
4886 {
4887 bool busy = false;
4888 struct workqueue_struct *wq;
4889 struct pool_workqueue *pwq;
4890
4891 mutex_lock(&wq_pool_mutex);
4892
4893 WARN_ON_ONCE(!workqueue_freezing);
4894
4895 list_for_each_entry(wq, &workqueues, list) {
4896 if (!(wq->flags & WQ_FREEZABLE))
4897 continue;
4898 /*
4899 * nr_active is monotonically decreasing. It's safe
4900 * to peek without lock.
4901 */
4902 rcu_read_lock_sched();
4903 for_each_pwq(pwq, wq) {
4904 WARN_ON_ONCE(pwq->nr_active < 0);
4905 if (pwq->nr_active) {
4906 busy = true;
4907 rcu_read_unlock_sched();
4908 goto out_unlock;
4909 }
4910 }
4911 rcu_read_unlock_sched();
4912 }
4913 out_unlock:
4914 mutex_unlock(&wq_pool_mutex);
4915 return busy;
4916 }
4917
4918 /**
4919 * thaw_workqueues - thaw workqueues
4920 *
4921 * Thaw workqueues. Normal queueing is restored and all collected
4922 * frozen works are transferred to their respective pool worklists.
4923 *
4924 * CONTEXT:
4925 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4926 */
4927 void thaw_workqueues(void)
4928 {
4929 struct workqueue_struct *wq;
4930 struct pool_workqueue *pwq;
4931 struct worker_pool *pool;
4932 int pi;
4933
4934 mutex_lock(&wq_pool_mutex);
4935
4936 if (!workqueue_freezing)
4937 goto out_unlock;
4938
4939 /* clear FREEZING */
4940 for_each_pool(pool, pi) {
4941 spin_lock_irq(&pool->lock);
4942 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4943 pool->flags &= ~POOL_FREEZING;
4944 spin_unlock_irq(&pool->lock);
4945 }
4946
4947 /* restore max_active and repopulate worklist */
4948 list_for_each_entry(wq, &workqueues, list) {
4949 mutex_lock(&wq->mutex);
4950 for_each_pwq(pwq, wq)
4951 pwq_adjust_max_active(pwq);
4952 mutex_unlock(&wq->mutex);
4953 }
4954
4955 workqueue_freezing = false;
4956 out_unlock:
4957 mutex_unlock(&wq_pool_mutex);
4958 }
4959 #endif /* CONFIG_FREEZER */
4960
4961 static void __init wq_numa_init(void)
4962 {
4963 cpumask_var_t *tbl;
4964 int node, cpu;
4965
4966 /* determine NUMA pwq table len - highest node id + 1 */
4967 for_each_node(node)
4968 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4969
4970 if (num_possible_nodes() <= 1)
4971 return;
4972
4973 if (wq_disable_numa) {
4974 pr_info("workqueue: NUMA affinity support disabled\n");
4975 return;
4976 }
4977
4978 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4979 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4980
4981 /*
4982 * We want masks of possible CPUs of each node which isn't readily
4983 * available. Build one from cpu_to_node() which should have been
4984 * fully initialized by now.
4985 */
4986 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4987 BUG_ON(!tbl);
4988
4989 for_each_node(node)
4990 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4991 node_online(node) ? node : NUMA_NO_NODE));
4992
4993 for_each_possible_cpu(cpu) {
4994 node = cpu_to_node(cpu);
4995 if (WARN_ON(node == NUMA_NO_NODE)) {
4996 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4997 /* happens iff arch is bonkers, let's just proceed */
4998 return;
4999 }
5000 cpumask_set_cpu(cpu, tbl[node]);
5001 }
5002
5003 wq_numa_possible_cpumask = tbl;
5004 wq_numa_enabled = true;
5005 }
5006
5007 static int __init init_workqueues(void)
5008 {
5009 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5010 int i, cpu;
5011
5012 /* make sure we have enough bits for OFFQ pool ID */
5013 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
5014 WORK_CPU_END * NR_STD_WORKER_POOLS);
5015
5016 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5017
5018 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5019
5020 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5021 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5022
5023 wq_numa_init();
5024
5025 /* initialize CPU pools */
5026 for_each_possible_cpu(cpu) {
5027 struct worker_pool *pool;
5028
5029 i = 0;
5030 for_each_cpu_worker_pool(pool, cpu) {
5031 BUG_ON(init_worker_pool(pool));
5032 pool->cpu = cpu;
5033 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5034 pool->attrs->nice = std_nice[i++];
5035 pool->node = cpu_to_node(cpu);
5036
5037 /* alloc pool ID */
5038 mutex_lock(&wq_pool_mutex);
5039 BUG_ON(worker_pool_assign_id(pool));
5040 mutex_unlock(&wq_pool_mutex);
5041 }
5042 }
5043
5044 /* create the initial worker */
5045 for_each_online_cpu(cpu) {
5046 struct worker_pool *pool;
5047
5048 for_each_cpu_worker_pool(pool, cpu) {
5049 pool->flags &= ~POOL_DISASSOCIATED;
5050 BUG_ON(create_and_start_worker(pool) < 0);
5051 }
5052 }
5053
5054 /* create default unbound wq attrs */
5055 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5056 struct workqueue_attrs *attrs;
5057
5058 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5059 attrs->nice = std_nice[i];
5060 unbound_std_wq_attrs[i] = attrs;
5061 }
5062
5063 system_wq = alloc_workqueue("events", 0, 0);
5064 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5065 system_long_wq = alloc_workqueue("events_long", 0, 0);
5066 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5067 WQ_UNBOUND_MAX_ACTIVE);
5068 system_freezable_wq = alloc_workqueue("events_freezable",
5069 WQ_FREEZABLE, 0);
5070 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5071 WQ_POWER_EFFICIENT, 0);
5072 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5073 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5074 0);
5075 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5076 !system_unbound_wq || !system_freezable_wq ||
5077 !system_power_efficient_wq ||
5078 !system_freezable_power_efficient_wq);
5079 return 0;
5080 }
5081 early_initcall(init_workqueues);
This page took 0.158779 seconds and 5 git commands to generate.