workqueue: add queue_work and activate_work trace points
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /* global_cwq flags */
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
54
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
59 WORKER_PREP = 1 << 3, /* preparing to run works */
60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
64
65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
74
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
78
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
81
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
83 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
84 CREATE_COOLDOWN = HZ, /* time to breath after fail */
85 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
86
87 /*
88 * Rescue workers are used only on emergencies and shared by
89 * all cpus. Give -20.
90 */
91 RESCUER_NICE_LEVEL = -20,
92 };
93
94 /*
95 * Structure fields follow one of the following exclusion rules.
96 *
97 * I: Modifiable by initialization/destruction paths and read-only for
98 * everyone else.
99 *
100 * P: Preemption protected. Disabling preemption is enough and should
101 * only be modified and accessed from the local cpu.
102 *
103 * L: gcwq->lock protected. Access with gcwq->lock held.
104 *
105 * X: During normal operation, modification requires gcwq->lock and
106 * should be done only from local cpu. Either disabling preemption
107 * on local cpu or grabbing gcwq->lock is enough for read access.
108 * If GCWQ_DISASSOCIATED is set, it's identical to L.
109 *
110 * F: wq->flush_mutex protected.
111 *
112 * W: workqueue_lock protected.
113 */
114
115 struct global_cwq;
116
117 /*
118 * The poor guys doing the actual heavy lifting. All on-duty workers
119 * are either serving the manager role, on idle list or on busy hash.
120 */
121 struct worker {
122 /* on idle list while idle, on busy hash table while busy */
123 union {
124 struct list_head entry; /* L: while idle */
125 struct hlist_node hentry; /* L: while busy */
126 };
127
128 struct work_struct *current_work; /* L: work being processed */
129 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
130 struct list_head scheduled; /* L: scheduled works */
131 struct task_struct *task; /* I: worker task */
132 struct global_cwq *gcwq; /* I: the associated gcwq */
133 /* 64 bytes boundary on 64bit, 32 on 32bit */
134 unsigned long last_active; /* L: last active timestamp */
135 unsigned int flags; /* X: flags */
136 int id; /* I: worker id */
137 struct work_struct rebind_work; /* L: rebind worker to cpu */
138 };
139
140 /*
141 * Global per-cpu workqueue. There's one and only one for each cpu
142 * and all works are queued and processed here regardless of their
143 * target workqueues.
144 */
145 struct global_cwq {
146 spinlock_t lock; /* the gcwq lock */
147 struct list_head worklist; /* L: list of pending works */
148 unsigned int cpu; /* I: the associated cpu */
149 unsigned int flags; /* L: GCWQ_* flags */
150
151 int nr_workers; /* L: total number of workers */
152 int nr_idle; /* L: currently idle ones */
153
154 /* workers are chained either in the idle_list or busy_hash */
155 struct list_head idle_list; /* X: list of idle workers */
156 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
157 /* L: hash of busy workers */
158
159 struct timer_list idle_timer; /* L: worker idle timeout */
160 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
161
162 struct ida worker_ida; /* L: for worker IDs */
163
164 struct task_struct *trustee; /* L: for gcwq shutdown */
165 unsigned int trustee_state; /* L: trustee state */
166 wait_queue_head_t trustee_wait; /* trustee wait */
167 struct worker *first_idle; /* L: first idle worker */
168 } ____cacheline_aligned_in_smp;
169
170 /*
171 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
172 * work_struct->data are used for flags and thus cwqs need to be
173 * aligned at two's power of the number of flag bits.
174 */
175 struct cpu_workqueue_struct {
176 struct global_cwq *gcwq; /* I: the associated gcwq */
177 struct workqueue_struct *wq; /* I: the owning workqueue */
178 int work_color; /* L: current color */
179 int flush_color; /* L: flushing color */
180 int nr_in_flight[WORK_NR_COLORS];
181 /* L: nr of in_flight works */
182 int nr_active; /* L: nr of active works */
183 int max_active; /* L: max active works */
184 struct list_head delayed_works; /* L: delayed works */
185 };
186
187 /*
188 * Structure used to wait for workqueue flush.
189 */
190 struct wq_flusher {
191 struct list_head list; /* F: list of flushers */
192 int flush_color; /* F: flush color waiting for */
193 struct completion done; /* flush completion */
194 };
195
196 /*
197 * All cpumasks are assumed to be always set on UP and thus can't be
198 * used to determine whether there's something to be done.
199 */
200 #ifdef CONFIG_SMP
201 typedef cpumask_var_t mayday_mask_t;
202 #define mayday_test_and_set_cpu(cpu, mask) \
203 cpumask_test_and_set_cpu((cpu), (mask))
204 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
205 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
206 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
207 #define free_mayday_mask(mask) free_cpumask_var((mask))
208 #else
209 typedef unsigned long mayday_mask_t;
210 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
211 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
212 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
213 #define alloc_mayday_mask(maskp, gfp) true
214 #define free_mayday_mask(mask) do { } while (0)
215 #endif
216
217 /*
218 * The externally visible workqueue abstraction is an array of
219 * per-CPU workqueues:
220 */
221 struct workqueue_struct {
222 unsigned int flags; /* I: WQ_* flags */
223 union {
224 struct cpu_workqueue_struct __percpu *pcpu;
225 struct cpu_workqueue_struct *single;
226 unsigned long v;
227 } cpu_wq; /* I: cwq's */
228 struct list_head list; /* W: list of all workqueues */
229
230 struct mutex flush_mutex; /* protects wq flushing */
231 int work_color; /* F: current work color */
232 int flush_color; /* F: current flush color */
233 atomic_t nr_cwqs_to_flush; /* flush in progress */
234 struct wq_flusher *first_flusher; /* F: first flusher */
235 struct list_head flusher_queue; /* F: flush waiters */
236 struct list_head flusher_overflow; /* F: flush overflow list */
237
238 mayday_mask_t mayday_mask; /* cpus requesting rescue */
239 struct worker *rescuer; /* I: rescue worker */
240
241 int saved_max_active; /* W: saved cwq max_active */
242 const char *name; /* I: workqueue name */
243 #ifdef CONFIG_LOCKDEP
244 struct lockdep_map lockdep_map;
245 #endif
246 };
247
248 struct workqueue_struct *system_wq __read_mostly;
249 struct workqueue_struct *system_long_wq __read_mostly;
250 struct workqueue_struct *system_nrt_wq __read_mostly;
251 struct workqueue_struct *system_unbound_wq __read_mostly;
252 EXPORT_SYMBOL_GPL(system_wq);
253 EXPORT_SYMBOL_GPL(system_long_wq);
254 EXPORT_SYMBOL_GPL(system_nrt_wq);
255 EXPORT_SYMBOL_GPL(system_unbound_wq);
256
257 #define CREATE_TRACE_POINTS
258 #include <trace/events/workqueue.h>
259
260 #define for_each_busy_worker(worker, i, pos, gcwq) \
261 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
262 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
263
264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
265 unsigned int sw)
266 {
267 if (cpu < nr_cpu_ids) {
268 if (sw & 1) {
269 cpu = cpumask_next(cpu, mask);
270 if (cpu < nr_cpu_ids)
271 return cpu;
272 }
273 if (sw & 2)
274 return WORK_CPU_UNBOUND;
275 }
276 return WORK_CPU_NONE;
277 }
278
279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
280 struct workqueue_struct *wq)
281 {
282 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
283 }
284
285 /*
286 * CPU iterators
287 *
288 * An extra gcwq is defined for an invalid cpu number
289 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
290 * specific CPU. The following iterators are similar to
291 * for_each_*_cpu() iterators but also considers the unbound gcwq.
292 *
293 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
294 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
295 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
296 * WORK_CPU_UNBOUND for unbound workqueues
297 */
298 #define for_each_gcwq_cpu(cpu) \
299 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
300 (cpu) < WORK_CPU_NONE; \
301 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
302
303 #define for_each_online_gcwq_cpu(cpu) \
304 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
305 (cpu) < WORK_CPU_NONE; \
306 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
307
308 #define for_each_cwq_cpu(cpu, wq) \
309 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
310 (cpu) < WORK_CPU_NONE; \
311 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
312
313 #ifdef CONFIG_LOCKDEP
314 /**
315 * in_workqueue_context() - in context of specified workqueue?
316 * @wq: the workqueue of interest
317 *
318 * Checks lockdep state to see if the current task is executing from
319 * within a workqueue item. This function exists only if lockdep is
320 * enabled.
321 */
322 int in_workqueue_context(struct workqueue_struct *wq)
323 {
324 return lock_is_held(&wq->lockdep_map);
325 }
326 #endif
327
328 #ifdef CONFIG_DEBUG_OBJECTS_WORK
329
330 static struct debug_obj_descr work_debug_descr;
331
332 /*
333 * fixup_init is called when:
334 * - an active object is initialized
335 */
336 static int work_fixup_init(void *addr, enum debug_obj_state state)
337 {
338 struct work_struct *work = addr;
339
340 switch (state) {
341 case ODEBUG_STATE_ACTIVE:
342 cancel_work_sync(work);
343 debug_object_init(work, &work_debug_descr);
344 return 1;
345 default:
346 return 0;
347 }
348 }
349
350 /*
351 * fixup_activate is called when:
352 * - an active object is activated
353 * - an unknown object is activated (might be a statically initialized object)
354 */
355 static int work_fixup_activate(void *addr, enum debug_obj_state state)
356 {
357 struct work_struct *work = addr;
358
359 switch (state) {
360
361 case ODEBUG_STATE_NOTAVAILABLE:
362 /*
363 * This is not really a fixup. The work struct was
364 * statically initialized. We just make sure that it
365 * is tracked in the object tracker.
366 */
367 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
368 debug_object_init(work, &work_debug_descr);
369 debug_object_activate(work, &work_debug_descr);
370 return 0;
371 }
372 WARN_ON_ONCE(1);
373 return 0;
374
375 case ODEBUG_STATE_ACTIVE:
376 WARN_ON(1);
377
378 default:
379 return 0;
380 }
381 }
382
383 /*
384 * fixup_free is called when:
385 * - an active object is freed
386 */
387 static int work_fixup_free(void *addr, enum debug_obj_state state)
388 {
389 struct work_struct *work = addr;
390
391 switch (state) {
392 case ODEBUG_STATE_ACTIVE:
393 cancel_work_sync(work);
394 debug_object_free(work, &work_debug_descr);
395 return 1;
396 default:
397 return 0;
398 }
399 }
400
401 static struct debug_obj_descr work_debug_descr = {
402 .name = "work_struct",
403 .fixup_init = work_fixup_init,
404 .fixup_activate = work_fixup_activate,
405 .fixup_free = work_fixup_free,
406 };
407
408 static inline void debug_work_activate(struct work_struct *work)
409 {
410 debug_object_activate(work, &work_debug_descr);
411 }
412
413 static inline void debug_work_deactivate(struct work_struct *work)
414 {
415 debug_object_deactivate(work, &work_debug_descr);
416 }
417
418 void __init_work(struct work_struct *work, int onstack)
419 {
420 if (onstack)
421 debug_object_init_on_stack(work, &work_debug_descr);
422 else
423 debug_object_init(work, &work_debug_descr);
424 }
425 EXPORT_SYMBOL_GPL(__init_work);
426
427 void destroy_work_on_stack(struct work_struct *work)
428 {
429 debug_object_free(work, &work_debug_descr);
430 }
431 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
432
433 #else
434 static inline void debug_work_activate(struct work_struct *work) { }
435 static inline void debug_work_deactivate(struct work_struct *work) { }
436 #endif
437
438 /* Serializes the accesses to the list of workqueues. */
439 static DEFINE_SPINLOCK(workqueue_lock);
440 static LIST_HEAD(workqueues);
441 static bool workqueue_freezing; /* W: have wqs started freezing? */
442
443 /*
444 * The almighty global cpu workqueues. nr_running is the only field
445 * which is expected to be used frequently by other cpus via
446 * try_to_wake_up(). Put it in a separate cacheline.
447 */
448 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
449 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
450
451 /*
452 * Global cpu workqueue and nr_running counter for unbound gcwq. The
453 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
454 * workers have WORKER_UNBOUND set.
455 */
456 static struct global_cwq unbound_global_cwq;
457 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
458
459 static int worker_thread(void *__worker);
460
461 static struct global_cwq *get_gcwq(unsigned int cpu)
462 {
463 if (cpu != WORK_CPU_UNBOUND)
464 return &per_cpu(global_cwq, cpu);
465 else
466 return &unbound_global_cwq;
467 }
468
469 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
470 {
471 if (cpu != WORK_CPU_UNBOUND)
472 return &per_cpu(gcwq_nr_running, cpu);
473 else
474 return &unbound_gcwq_nr_running;
475 }
476
477 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
478 struct workqueue_struct *wq)
479 {
480 if (!(wq->flags & WQ_UNBOUND)) {
481 if (likely(cpu < nr_cpu_ids)) {
482 #ifdef CONFIG_SMP
483 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
484 #else
485 return wq->cpu_wq.single;
486 #endif
487 }
488 } else if (likely(cpu == WORK_CPU_UNBOUND))
489 return wq->cpu_wq.single;
490 return NULL;
491 }
492
493 static unsigned int work_color_to_flags(int color)
494 {
495 return color << WORK_STRUCT_COLOR_SHIFT;
496 }
497
498 static int get_work_color(struct work_struct *work)
499 {
500 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
501 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
502 }
503
504 static int work_next_color(int color)
505 {
506 return (color + 1) % WORK_NR_COLORS;
507 }
508
509 /*
510 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
511 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
512 * cleared and the work data contains the cpu number it was last on.
513 *
514 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
515 * cwq, cpu or clear work->data. These functions should only be
516 * called while the work is owned - ie. while the PENDING bit is set.
517 *
518 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
519 * corresponding to a work. gcwq is available once the work has been
520 * queued anywhere after initialization. cwq is available only from
521 * queueing until execution starts.
522 */
523 static inline void set_work_data(struct work_struct *work, unsigned long data,
524 unsigned long flags)
525 {
526 BUG_ON(!work_pending(work));
527 atomic_long_set(&work->data, data | flags | work_static(work));
528 }
529
530 static void set_work_cwq(struct work_struct *work,
531 struct cpu_workqueue_struct *cwq,
532 unsigned long extra_flags)
533 {
534 set_work_data(work, (unsigned long)cwq,
535 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
536 }
537
538 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
539 {
540 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
541 }
542
543 static void clear_work_data(struct work_struct *work)
544 {
545 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
546 }
547
548 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
549 {
550 unsigned long data = atomic_long_read(&work->data);
551
552 if (data & WORK_STRUCT_CWQ)
553 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
554 else
555 return NULL;
556 }
557
558 static struct global_cwq *get_work_gcwq(struct work_struct *work)
559 {
560 unsigned long data = atomic_long_read(&work->data);
561 unsigned int cpu;
562
563 if (data & WORK_STRUCT_CWQ)
564 return ((struct cpu_workqueue_struct *)
565 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
566
567 cpu = data >> WORK_STRUCT_FLAG_BITS;
568 if (cpu == WORK_CPU_NONE)
569 return NULL;
570
571 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
572 return get_gcwq(cpu);
573 }
574
575 /*
576 * Policy functions. These define the policies on how the global
577 * worker pool is managed. Unless noted otherwise, these functions
578 * assume that they're being called with gcwq->lock held.
579 */
580
581 static bool __need_more_worker(struct global_cwq *gcwq)
582 {
583 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
584 gcwq->flags & GCWQ_HIGHPRI_PENDING;
585 }
586
587 /*
588 * Need to wake up a worker? Called from anything but currently
589 * running workers.
590 */
591 static bool need_more_worker(struct global_cwq *gcwq)
592 {
593 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
594 }
595
596 /* Can I start working? Called from busy but !running workers. */
597 static bool may_start_working(struct global_cwq *gcwq)
598 {
599 return gcwq->nr_idle;
600 }
601
602 /* Do I need to keep working? Called from currently running workers. */
603 static bool keep_working(struct global_cwq *gcwq)
604 {
605 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
606
607 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
608 }
609
610 /* Do we need a new worker? Called from manager. */
611 static bool need_to_create_worker(struct global_cwq *gcwq)
612 {
613 return need_more_worker(gcwq) && !may_start_working(gcwq);
614 }
615
616 /* Do I need to be the manager? */
617 static bool need_to_manage_workers(struct global_cwq *gcwq)
618 {
619 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
620 }
621
622 /* Do we have too many workers and should some go away? */
623 static bool too_many_workers(struct global_cwq *gcwq)
624 {
625 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
626 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
627 int nr_busy = gcwq->nr_workers - nr_idle;
628
629 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
630 }
631
632 /*
633 * Wake up functions.
634 */
635
636 /* Return the first worker. Safe with preemption disabled */
637 static struct worker *first_worker(struct global_cwq *gcwq)
638 {
639 if (unlikely(list_empty(&gcwq->idle_list)))
640 return NULL;
641
642 return list_first_entry(&gcwq->idle_list, struct worker, entry);
643 }
644
645 /**
646 * wake_up_worker - wake up an idle worker
647 * @gcwq: gcwq to wake worker for
648 *
649 * Wake up the first idle worker of @gcwq.
650 *
651 * CONTEXT:
652 * spin_lock_irq(gcwq->lock).
653 */
654 static void wake_up_worker(struct global_cwq *gcwq)
655 {
656 struct worker *worker = first_worker(gcwq);
657
658 if (likely(worker))
659 wake_up_process(worker->task);
660 }
661
662 /**
663 * wq_worker_waking_up - a worker is waking up
664 * @task: task waking up
665 * @cpu: CPU @task is waking up to
666 *
667 * This function is called during try_to_wake_up() when a worker is
668 * being awoken.
669 *
670 * CONTEXT:
671 * spin_lock_irq(rq->lock)
672 */
673 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
674 {
675 struct worker *worker = kthread_data(task);
676
677 if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
678 atomic_inc(get_gcwq_nr_running(cpu));
679 }
680
681 /**
682 * wq_worker_sleeping - a worker is going to sleep
683 * @task: task going to sleep
684 * @cpu: CPU in question, must be the current CPU number
685 *
686 * This function is called during schedule() when a busy worker is
687 * going to sleep. Worker on the same cpu can be woken up by
688 * returning pointer to its task.
689 *
690 * CONTEXT:
691 * spin_lock_irq(rq->lock)
692 *
693 * RETURNS:
694 * Worker task on @cpu to wake up, %NULL if none.
695 */
696 struct task_struct *wq_worker_sleeping(struct task_struct *task,
697 unsigned int cpu)
698 {
699 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
700 struct global_cwq *gcwq = get_gcwq(cpu);
701 atomic_t *nr_running = get_gcwq_nr_running(cpu);
702
703 if (unlikely(worker->flags & WORKER_NOT_RUNNING))
704 return NULL;
705
706 /* this can only happen on the local cpu */
707 BUG_ON(cpu != raw_smp_processor_id());
708
709 /*
710 * The counterpart of the following dec_and_test, implied mb,
711 * worklist not empty test sequence is in insert_work().
712 * Please read comment there.
713 *
714 * NOT_RUNNING is clear. This means that trustee is not in
715 * charge and we're running on the local cpu w/ rq lock held
716 * and preemption disabled, which in turn means that none else
717 * could be manipulating idle_list, so dereferencing idle_list
718 * without gcwq lock is safe.
719 */
720 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
721 to_wakeup = first_worker(gcwq);
722 return to_wakeup ? to_wakeup->task : NULL;
723 }
724
725 /**
726 * worker_set_flags - set worker flags and adjust nr_running accordingly
727 * @worker: self
728 * @flags: flags to set
729 * @wakeup: wakeup an idle worker if necessary
730 *
731 * Set @flags in @worker->flags and adjust nr_running accordingly. If
732 * nr_running becomes zero and @wakeup is %true, an idle worker is
733 * woken up.
734 *
735 * CONTEXT:
736 * spin_lock_irq(gcwq->lock)
737 */
738 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
739 bool wakeup)
740 {
741 struct global_cwq *gcwq = worker->gcwq;
742
743 WARN_ON_ONCE(worker->task != current);
744
745 /*
746 * If transitioning into NOT_RUNNING, adjust nr_running and
747 * wake up an idle worker as necessary if requested by
748 * @wakeup.
749 */
750 if ((flags & WORKER_NOT_RUNNING) &&
751 !(worker->flags & WORKER_NOT_RUNNING)) {
752 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
753
754 if (wakeup) {
755 if (atomic_dec_and_test(nr_running) &&
756 !list_empty(&gcwq->worklist))
757 wake_up_worker(gcwq);
758 } else
759 atomic_dec(nr_running);
760 }
761
762 worker->flags |= flags;
763 }
764
765 /**
766 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
767 * @worker: self
768 * @flags: flags to clear
769 *
770 * Clear @flags in @worker->flags and adjust nr_running accordingly.
771 *
772 * CONTEXT:
773 * spin_lock_irq(gcwq->lock)
774 */
775 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
776 {
777 struct global_cwq *gcwq = worker->gcwq;
778 unsigned int oflags = worker->flags;
779
780 WARN_ON_ONCE(worker->task != current);
781
782 worker->flags &= ~flags;
783
784 /* if transitioning out of NOT_RUNNING, increment nr_running */
785 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
786 if (!(worker->flags & WORKER_NOT_RUNNING))
787 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
788 }
789
790 /**
791 * busy_worker_head - return the busy hash head for a work
792 * @gcwq: gcwq of interest
793 * @work: work to be hashed
794 *
795 * Return hash head of @gcwq for @work.
796 *
797 * CONTEXT:
798 * spin_lock_irq(gcwq->lock).
799 *
800 * RETURNS:
801 * Pointer to the hash head.
802 */
803 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
804 struct work_struct *work)
805 {
806 const int base_shift = ilog2(sizeof(struct work_struct));
807 unsigned long v = (unsigned long)work;
808
809 /* simple shift and fold hash, do we need something better? */
810 v >>= base_shift;
811 v += v >> BUSY_WORKER_HASH_ORDER;
812 v &= BUSY_WORKER_HASH_MASK;
813
814 return &gcwq->busy_hash[v];
815 }
816
817 /**
818 * __find_worker_executing_work - find worker which is executing a work
819 * @gcwq: gcwq of interest
820 * @bwh: hash head as returned by busy_worker_head()
821 * @work: work to find worker for
822 *
823 * Find a worker which is executing @work on @gcwq. @bwh should be
824 * the hash head obtained by calling busy_worker_head() with the same
825 * work.
826 *
827 * CONTEXT:
828 * spin_lock_irq(gcwq->lock).
829 *
830 * RETURNS:
831 * Pointer to worker which is executing @work if found, NULL
832 * otherwise.
833 */
834 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
835 struct hlist_head *bwh,
836 struct work_struct *work)
837 {
838 struct worker *worker;
839 struct hlist_node *tmp;
840
841 hlist_for_each_entry(worker, tmp, bwh, hentry)
842 if (worker->current_work == work)
843 return worker;
844 return NULL;
845 }
846
847 /**
848 * find_worker_executing_work - find worker which is executing a work
849 * @gcwq: gcwq of interest
850 * @work: work to find worker for
851 *
852 * Find a worker which is executing @work on @gcwq. This function is
853 * identical to __find_worker_executing_work() except that this
854 * function calculates @bwh itself.
855 *
856 * CONTEXT:
857 * spin_lock_irq(gcwq->lock).
858 *
859 * RETURNS:
860 * Pointer to worker which is executing @work if found, NULL
861 * otherwise.
862 */
863 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
864 struct work_struct *work)
865 {
866 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
867 work);
868 }
869
870 /**
871 * gcwq_determine_ins_pos - find insertion position
872 * @gcwq: gcwq of interest
873 * @cwq: cwq a work is being queued for
874 *
875 * A work for @cwq is about to be queued on @gcwq, determine insertion
876 * position for the work. If @cwq is for HIGHPRI wq, the work is
877 * queued at the head of the queue but in FIFO order with respect to
878 * other HIGHPRI works; otherwise, at the end of the queue. This
879 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
880 * there are HIGHPRI works pending.
881 *
882 * CONTEXT:
883 * spin_lock_irq(gcwq->lock).
884 *
885 * RETURNS:
886 * Pointer to inserstion position.
887 */
888 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
889 struct cpu_workqueue_struct *cwq)
890 {
891 struct work_struct *twork;
892
893 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
894 return &gcwq->worklist;
895
896 list_for_each_entry(twork, &gcwq->worklist, entry) {
897 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
898
899 if (!(tcwq->wq->flags & WQ_HIGHPRI))
900 break;
901 }
902
903 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
904 return &twork->entry;
905 }
906
907 /**
908 * insert_work - insert a work into gcwq
909 * @cwq: cwq @work belongs to
910 * @work: work to insert
911 * @head: insertion point
912 * @extra_flags: extra WORK_STRUCT_* flags to set
913 *
914 * Insert @work which belongs to @cwq into @gcwq after @head.
915 * @extra_flags is or'd to work_struct flags.
916 *
917 * CONTEXT:
918 * spin_lock_irq(gcwq->lock).
919 */
920 static void insert_work(struct cpu_workqueue_struct *cwq,
921 struct work_struct *work, struct list_head *head,
922 unsigned int extra_flags)
923 {
924 struct global_cwq *gcwq = cwq->gcwq;
925
926 /* we own @work, set data and link */
927 set_work_cwq(work, cwq, extra_flags);
928
929 /*
930 * Ensure that we get the right work->data if we see the
931 * result of list_add() below, see try_to_grab_pending().
932 */
933 smp_wmb();
934
935 list_add_tail(&work->entry, head);
936
937 /*
938 * Ensure either worker_sched_deactivated() sees the above
939 * list_add_tail() or we see zero nr_running to avoid workers
940 * lying around lazily while there are works to be processed.
941 */
942 smp_mb();
943
944 if (__need_more_worker(gcwq))
945 wake_up_worker(gcwq);
946 }
947
948 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
949 struct work_struct *work)
950 {
951 struct global_cwq *gcwq;
952 struct cpu_workqueue_struct *cwq;
953 struct list_head *worklist;
954 unsigned int work_flags;
955 unsigned long flags;
956
957 debug_work_activate(work);
958
959 if (WARN_ON_ONCE(wq->flags & WQ_DYING))
960 return;
961
962 /* determine gcwq to use */
963 if (!(wq->flags & WQ_UNBOUND)) {
964 struct global_cwq *last_gcwq;
965
966 if (unlikely(cpu == WORK_CPU_UNBOUND))
967 cpu = raw_smp_processor_id();
968
969 /*
970 * It's multi cpu. If @wq is non-reentrant and @work
971 * was previously on a different cpu, it might still
972 * be running there, in which case the work needs to
973 * be queued on that cpu to guarantee non-reentrance.
974 */
975 gcwq = get_gcwq(cpu);
976 if (wq->flags & WQ_NON_REENTRANT &&
977 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
978 struct worker *worker;
979
980 spin_lock_irqsave(&last_gcwq->lock, flags);
981
982 worker = find_worker_executing_work(last_gcwq, work);
983
984 if (worker && worker->current_cwq->wq == wq)
985 gcwq = last_gcwq;
986 else {
987 /* meh... not running there, queue here */
988 spin_unlock_irqrestore(&last_gcwq->lock, flags);
989 spin_lock_irqsave(&gcwq->lock, flags);
990 }
991 } else
992 spin_lock_irqsave(&gcwq->lock, flags);
993 } else {
994 gcwq = get_gcwq(WORK_CPU_UNBOUND);
995 spin_lock_irqsave(&gcwq->lock, flags);
996 }
997
998 /* gcwq determined, get cwq and queue */
999 cwq = get_cwq(gcwq->cpu, wq);
1000 trace_workqueue_queue_work(cpu, cwq, work);
1001
1002 BUG_ON(!list_empty(&work->entry));
1003
1004 cwq->nr_in_flight[cwq->work_color]++;
1005 work_flags = work_color_to_flags(cwq->work_color);
1006
1007 if (likely(cwq->nr_active < cwq->max_active)) {
1008 trace_workqueue_activate_work(work);
1009 cwq->nr_active++;
1010 worklist = gcwq_determine_ins_pos(gcwq, cwq);
1011 } else {
1012 work_flags |= WORK_STRUCT_DELAYED;
1013 worklist = &cwq->delayed_works;
1014 }
1015
1016 insert_work(cwq, work, worklist, work_flags);
1017
1018 spin_unlock_irqrestore(&gcwq->lock, flags);
1019 }
1020
1021 /**
1022 * queue_work - queue work on a workqueue
1023 * @wq: workqueue to use
1024 * @work: work to queue
1025 *
1026 * Returns 0 if @work was already on a queue, non-zero otherwise.
1027 *
1028 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1029 * it can be processed by another CPU.
1030 */
1031 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1032 {
1033 int ret;
1034
1035 ret = queue_work_on(get_cpu(), wq, work);
1036 put_cpu();
1037
1038 return ret;
1039 }
1040 EXPORT_SYMBOL_GPL(queue_work);
1041
1042 /**
1043 * queue_work_on - queue work on specific cpu
1044 * @cpu: CPU number to execute work on
1045 * @wq: workqueue to use
1046 * @work: work to queue
1047 *
1048 * Returns 0 if @work was already on a queue, non-zero otherwise.
1049 *
1050 * We queue the work to a specific CPU, the caller must ensure it
1051 * can't go away.
1052 */
1053 int
1054 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1055 {
1056 int ret = 0;
1057
1058 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1059 __queue_work(cpu, wq, work);
1060 ret = 1;
1061 }
1062 return ret;
1063 }
1064 EXPORT_SYMBOL_GPL(queue_work_on);
1065
1066 static void delayed_work_timer_fn(unsigned long __data)
1067 {
1068 struct delayed_work *dwork = (struct delayed_work *)__data;
1069 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1070
1071 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1072 }
1073
1074 /**
1075 * queue_delayed_work - queue work on a workqueue after delay
1076 * @wq: workqueue to use
1077 * @dwork: delayable work to queue
1078 * @delay: number of jiffies to wait before queueing
1079 *
1080 * Returns 0 if @work was already on a queue, non-zero otherwise.
1081 */
1082 int queue_delayed_work(struct workqueue_struct *wq,
1083 struct delayed_work *dwork, unsigned long delay)
1084 {
1085 if (delay == 0)
1086 return queue_work(wq, &dwork->work);
1087
1088 return queue_delayed_work_on(-1, wq, dwork, delay);
1089 }
1090 EXPORT_SYMBOL_GPL(queue_delayed_work);
1091
1092 /**
1093 * queue_delayed_work_on - queue work on specific CPU after delay
1094 * @cpu: CPU number to execute work on
1095 * @wq: workqueue to use
1096 * @dwork: work to queue
1097 * @delay: number of jiffies to wait before queueing
1098 *
1099 * Returns 0 if @work was already on a queue, non-zero otherwise.
1100 */
1101 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1102 struct delayed_work *dwork, unsigned long delay)
1103 {
1104 int ret = 0;
1105 struct timer_list *timer = &dwork->timer;
1106 struct work_struct *work = &dwork->work;
1107
1108 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1109 unsigned int lcpu;
1110
1111 BUG_ON(timer_pending(timer));
1112 BUG_ON(!list_empty(&work->entry));
1113
1114 timer_stats_timer_set_start_info(&dwork->timer);
1115
1116 /*
1117 * This stores cwq for the moment, for the timer_fn.
1118 * Note that the work's gcwq is preserved to allow
1119 * reentrance detection for delayed works.
1120 */
1121 if (!(wq->flags & WQ_UNBOUND)) {
1122 struct global_cwq *gcwq = get_work_gcwq(work);
1123
1124 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1125 lcpu = gcwq->cpu;
1126 else
1127 lcpu = raw_smp_processor_id();
1128 } else
1129 lcpu = WORK_CPU_UNBOUND;
1130
1131 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1132
1133 timer->expires = jiffies + delay;
1134 timer->data = (unsigned long)dwork;
1135 timer->function = delayed_work_timer_fn;
1136
1137 if (unlikely(cpu >= 0))
1138 add_timer_on(timer, cpu);
1139 else
1140 add_timer(timer);
1141 ret = 1;
1142 }
1143 return ret;
1144 }
1145 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1146
1147 /**
1148 * worker_enter_idle - enter idle state
1149 * @worker: worker which is entering idle state
1150 *
1151 * @worker is entering idle state. Update stats and idle timer if
1152 * necessary.
1153 *
1154 * LOCKING:
1155 * spin_lock_irq(gcwq->lock).
1156 */
1157 static void worker_enter_idle(struct worker *worker)
1158 {
1159 struct global_cwq *gcwq = worker->gcwq;
1160
1161 BUG_ON(worker->flags & WORKER_IDLE);
1162 BUG_ON(!list_empty(&worker->entry) &&
1163 (worker->hentry.next || worker->hentry.pprev));
1164
1165 /* can't use worker_set_flags(), also called from start_worker() */
1166 worker->flags |= WORKER_IDLE;
1167 gcwq->nr_idle++;
1168 worker->last_active = jiffies;
1169
1170 /* idle_list is LIFO */
1171 list_add(&worker->entry, &gcwq->idle_list);
1172
1173 if (likely(!(worker->flags & WORKER_ROGUE))) {
1174 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1175 mod_timer(&gcwq->idle_timer,
1176 jiffies + IDLE_WORKER_TIMEOUT);
1177 } else
1178 wake_up_all(&gcwq->trustee_wait);
1179
1180 /* sanity check nr_running */
1181 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1182 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1183 }
1184
1185 /**
1186 * worker_leave_idle - leave idle state
1187 * @worker: worker which is leaving idle state
1188 *
1189 * @worker is leaving idle state. Update stats.
1190 *
1191 * LOCKING:
1192 * spin_lock_irq(gcwq->lock).
1193 */
1194 static void worker_leave_idle(struct worker *worker)
1195 {
1196 struct global_cwq *gcwq = worker->gcwq;
1197
1198 BUG_ON(!(worker->flags & WORKER_IDLE));
1199 worker_clr_flags(worker, WORKER_IDLE);
1200 gcwq->nr_idle--;
1201 list_del_init(&worker->entry);
1202 }
1203
1204 /**
1205 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1206 * @worker: self
1207 *
1208 * Works which are scheduled while the cpu is online must at least be
1209 * scheduled to a worker which is bound to the cpu so that if they are
1210 * flushed from cpu callbacks while cpu is going down, they are
1211 * guaranteed to execute on the cpu.
1212 *
1213 * This function is to be used by rogue workers and rescuers to bind
1214 * themselves to the target cpu and may race with cpu going down or
1215 * coming online. kthread_bind() can't be used because it may put the
1216 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1217 * verbatim as it's best effort and blocking and gcwq may be
1218 * [dis]associated in the meantime.
1219 *
1220 * This function tries set_cpus_allowed() and locks gcwq and verifies
1221 * the binding against GCWQ_DISASSOCIATED which is set during
1222 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1223 * idle state or fetches works without dropping lock, it can guarantee
1224 * the scheduling requirement described in the first paragraph.
1225 *
1226 * CONTEXT:
1227 * Might sleep. Called without any lock but returns with gcwq->lock
1228 * held.
1229 *
1230 * RETURNS:
1231 * %true if the associated gcwq is online (@worker is successfully
1232 * bound), %false if offline.
1233 */
1234 static bool worker_maybe_bind_and_lock(struct worker *worker)
1235 __acquires(&gcwq->lock)
1236 {
1237 struct global_cwq *gcwq = worker->gcwq;
1238 struct task_struct *task = worker->task;
1239
1240 while (true) {
1241 /*
1242 * The following call may fail, succeed or succeed
1243 * without actually migrating the task to the cpu if
1244 * it races with cpu hotunplug operation. Verify
1245 * against GCWQ_DISASSOCIATED.
1246 */
1247 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1248 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1249
1250 spin_lock_irq(&gcwq->lock);
1251 if (gcwq->flags & GCWQ_DISASSOCIATED)
1252 return false;
1253 if (task_cpu(task) == gcwq->cpu &&
1254 cpumask_equal(&current->cpus_allowed,
1255 get_cpu_mask(gcwq->cpu)))
1256 return true;
1257 spin_unlock_irq(&gcwq->lock);
1258
1259 /* CPU has come up inbetween, retry migration */
1260 cpu_relax();
1261 }
1262 }
1263
1264 /*
1265 * Function for worker->rebind_work used to rebind rogue busy workers
1266 * to the associated cpu which is coming back online. This is
1267 * scheduled by cpu up but can race with other cpu hotplug operations
1268 * and may be executed twice without intervening cpu down.
1269 */
1270 static void worker_rebind_fn(struct work_struct *work)
1271 {
1272 struct worker *worker = container_of(work, struct worker, rebind_work);
1273 struct global_cwq *gcwq = worker->gcwq;
1274
1275 if (worker_maybe_bind_and_lock(worker))
1276 worker_clr_flags(worker, WORKER_REBIND);
1277
1278 spin_unlock_irq(&gcwq->lock);
1279 }
1280
1281 static struct worker *alloc_worker(void)
1282 {
1283 struct worker *worker;
1284
1285 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1286 if (worker) {
1287 INIT_LIST_HEAD(&worker->entry);
1288 INIT_LIST_HEAD(&worker->scheduled);
1289 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1290 /* on creation a worker is in !idle && prep state */
1291 worker->flags = WORKER_PREP;
1292 }
1293 return worker;
1294 }
1295
1296 /**
1297 * create_worker - create a new workqueue worker
1298 * @gcwq: gcwq the new worker will belong to
1299 * @bind: whether to set affinity to @cpu or not
1300 *
1301 * Create a new worker which is bound to @gcwq. The returned worker
1302 * can be started by calling start_worker() or destroyed using
1303 * destroy_worker().
1304 *
1305 * CONTEXT:
1306 * Might sleep. Does GFP_KERNEL allocations.
1307 *
1308 * RETURNS:
1309 * Pointer to the newly created worker.
1310 */
1311 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1312 {
1313 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1314 struct worker *worker = NULL;
1315 int id = -1;
1316
1317 spin_lock_irq(&gcwq->lock);
1318 while (ida_get_new(&gcwq->worker_ida, &id)) {
1319 spin_unlock_irq(&gcwq->lock);
1320 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1321 goto fail;
1322 spin_lock_irq(&gcwq->lock);
1323 }
1324 spin_unlock_irq(&gcwq->lock);
1325
1326 worker = alloc_worker();
1327 if (!worker)
1328 goto fail;
1329
1330 worker->gcwq = gcwq;
1331 worker->id = id;
1332
1333 if (!on_unbound_cpu)
1334 worker->task = kthread_create(worker_thread, worker,
1335 "kworker/%u:%d", gcwq->cpu, id);
1336 else
1337 worker->task = kthread_create(worker_thread, worker,
1338 "kworker/u:%d", id);
1339 if (IS_ERR(worker->task))
1340 goto fail;
1341
1342 /*
1343 * A rogue worker will become a regular one if CPU comes
1344 * online later on. Make sure every worker has
1345 * PF_THREAD_BOUND set.
1346 */
1347 if (bind && !on_unbound_cpu)
1348 kthread_bind(worker->task, gcwq->cpu);
1349 else {
1350 worker->task->flags |= PF_THREAD_BOUND;
1351 if (on_unbound_cpu)
1352 worker->flags |= WORKER_UNBOUND;
1353 }
1354
1355 return worker;
1356 fail:
1357 if (id >= 0) {
1358 spin_lock_irq(&gcwq->lock);
1359 ida_remove(&gcwq->worker_ida, id);
1360 spin_unlock_irq(&gcwq->lock);
1361 }
1362 kfree(worker);
1363 return NULL;
1364 }
1365
1366 /**
1367 * start_worker - start a newly created worker
1368 * @worker: worker to start
1369 *
1370 * Make the gcwq aware of @worker and start it.
1371 *
1372 * CONTEXT:
1373 * spin_lock_irq(gcwq->lock).
1374 */
1375 static void start_worker(struct worker *worker)
1376 {
1377 worker->flags |= WORKER_STARTED;
1378 worker->gcwq->nr_workers++;
1379 worker_enter_idle(worker);
1380 wake_up_process(worker->task);
1381 }
1382
1383 /**
1384 * destroy_worker - destroy a workqueue worker
1385 * @worker: worker to be destroyed
1386 *
1387 * Destroy @worker and adjust @gcwq stats accordingly.
1388 *
1389 * CONTEXT:
1390 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1391 */
1392 static void destroy_worker(struct worker *worker)
1393 {
1394 struct global_cwq *gcwq = worker->gcwq;
1395 int id = worker->id;
1396
1397 /* sanity check frenzy */
1398 BUG_ON(worker->current_work);
1399 BUG_ON(!list_empty(&worker->scheduled));
1400
1401 if (worker->flags & WORKER_STARTED)
1402 gcwq->nr_workers--;
1403 if (worker->flags & WORKER_IDLE)
1404 gcwq->nr_idle--;
1405
1406 list_del_init(&worker->entry);
1407 worker->flags |= WORKER_DIE;
1408
1409 spin_unlock_irq(&gcwq->lock);
1410
1411 kthread_stop(worker->task);
1412 kfree(worker);
1413
1414 spin_lock_irq(&gcwq->lock);
1415 ida_remove(&gcwq->worker_ida, id);
1416 }
1417
1418 static void idle_worker_timeout(unsigned long __gcwq)
1419 {
1420 struct global_cwq *gcwq = (void *)__gcwq;
1421
1422 spin_lock_irq(&gcwq->lock);
1423
1424 if (too_many_workers(gcwq)) {
1425 struct worker *worker;
1426 unsigned long expires;
1427
1428 /* idle_list is kept in LIFO order, check the last one */
1429 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1430 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1431
1432 if (time_before(jiffies, expires))
1433 mod_timer(&gcwq->idle_timer, expires);
1434 else {
1435 /* it's been idle for too long, wake up manager */
1436 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1437 wake_up_worker(gcwq);
1438 }
1439 }
1440
1441 spin_unlock_irq(&gcwq->lock);
1442 }
1443
1444 static bool send_mayday(struct work_struct *work)
1445 {
1446 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1447 struct workqueue_struct *wq = cwq->wq;
1448 unsigned int cpu;
1449
1450 if (!(wq->flags & WQ_RESCUER))
1451 return false;
1452
1453 /* mayday mayday mayday */
1454 cpu = cwq->gcwq->cpu;
1455 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1456 if (cpu == WORK_CPU_UNBOUND)
1457 cpu = 0;
1458 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1459 wake_up_process(wq->rescuer->task);
1460 return true;
1461 }
1462
1463 static void gcwq_mayday_timeout(unsigned long __gcwq)
1464 {
1465 struct global_cwq *gcwq = (void *)__gcwq;
1466 struct work_struct *work;
1467
1468 spin_lock_irq(&gcwq->lock);
1469
1470 if (need_to_create_worker(gcwq)) {
1471 /*
1472 * We've been trying to create a new worker but
1473 * haven't been successful. We might be hitting an
1474 * allocation deadlock. Send distress signals to
1475 * rescuers.
1476 */
1477 list_for_each_entry(work, &gcwq->worklist, entry)
1478 send_mayday(work);
1479 }
1480
1481 spin_unlock_irq(&gcwq->lock);
1482
1483 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1484 }
1485
1486 /**
1487 * maybe_create_worker - create a new worker if necessary
1488 * @gcwq: gcwq to create a new worker for
1489 *
1490 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1491 * have at least one idle worker on return from this function. If
1492 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1493 * sent to all rescuers with works scheduled on @gcwq to resolve
1494 * possible allocation deadlock.
1495 *
1496 * On return, need_to_create_worker() is guaranteed to be false and
1497 * may_start_working() true.
1498 *
1499 * LOCKING:
1500 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1501 * multiple times. Does GFP_KERNEL allocations. Called only from
1502 * manager.
1503 *
1504 * RETURNS:
1505 * false if no action was taken and gcwq->lock stayed locked, true
1506 * otherwise.
1507 */
1508 static bool maybe_create_worker(struct global_cwq *gcwq)
1509 __releases(&gcwq->lock)
1510 __acquires(&gcwq->lock)
1511 {
1512 if (!need_to_create_worker(gcwq))
1513 return false;
1514 restart:
1515 spin_unlock_irq(&gcwq->lock);
1516
1517 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1518 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1519
1520 while (true) {
1521 struct worker *worker;
1522
1523 worker = create_worker(gcwq, true);
1524 if (worker) {
1525 del_timer_sync(&gcwq->mayday_timer);
1526 spin_lock_irq(&gcwq->lock);
1527 start_worker(worker);
1528 BUG_ON(need_to_create_worker(gcwq));
1529 return true;
1530 }
1531
1532 if (!need_to_create_worker(gcwq))
1533 break;
1534
1535 __set_current_state(TASK_INTERRUPTIBLE);
1536 schedule_timeout(CREATE_COOLDOWN);
1537
1538 if (!need_to_create_worker(gcwq))
1539 break;
1540 }
1541
1542 del_timer_sync(&gcwq->mayday_timer);
1543 spin_lock_irq(&gcwq->lock);
1544 if (need_to_create_worker(gcwq))
1545 goto restart;
1546 return true;
1547 }
1548
1549 /**
1550 * maybe_destroy_worker - destroy workers which have been idle for a while
1551 * @gcwq: gcwq to destroy workers for
1552 *
1553 * Destroy @gcwq workers which have been idle for longer than
1554 * IDLE_WORKER_TIMEOUT.
1555 *
1556 * LOCKING:
1557 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1558 * multiple times. Called only from manager.
1559 *
1560 * RETURNS:
1561 * false if no action was taken and gcwq->lock stayed locked, true
1562 * otherwise.
1563 */
1564 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1565 {
1566 bool ret = false;
1567
1568 while (too_many_workers(gcwq)) {
1569 struct worker *worker;
1570 unsigned long expires;
1571
1572 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1573 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1574
1575 if (time_before(jiffies, expires)) {
1576 mod_timer(&gcwq->idle_timer, expires);
1577 break;
1578 }
1579
1580 destroy_worker(worker);
1581 ret = true;
1582 }
1583
1584 return ret;
1585 }
1586
1587 /**
1588 * manage_workers - manage worker pool
1589 * @worker: self
1590 *
1591 * Assume the manager role and manage gcwq worker pool @worker belongs
1592 * to. At any given time, there can be only zero or one manager per
1593 * gcwq. The exclusion is handled automatically by this function.
1594 *
1595 * The caller can safely start processing works on false return. On
1596 * true return, it's guaranteed that need_to_create_worker() is false
1597 * and may_start_working() is true.
1598 *
1599 * CONTEXT:
1600 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1601 * multiple times. Does GFP_KERNEL allocations.
1602 *
1603 * RETURNS:
1604 * false if no action was taken and gcwq->lock stayed locked, true if
1605 * some action was taken.
1606 */
1607 static bool manage_workers(struct worker *worker)
1608 {
1609 struct global_cwq *gcwq = worker->gcwq;
1610 bool ret = false;
1611
1612 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1613 return ret;
1614
1615 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1616 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1617
1618 /*
1619 * Destroy and then create so that may_start_working() is true
1620 * on return.
1621 */
1622 ret |= maybe_destroy_workers(gcwq);
1623 ret |= maybe_create_worker(gcwq);
1624
1625 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1626
1627 /*
1628 * The trustee might be waiting to take over the manager
1629 * position, tell it we're done.
1630 */
1631 if (unlikely(gcwq->trustee))
1632 wake_up_all(&gcwq->trustee_wait);
1633
1634 return ret;
1635 }
1636
1637 /**
1638 * move_linked_works - move linked works to a list
1639 * @work: start of series of works to be scheduled
1640 * @head: target list to append @work to
1641 * @nextp: out paramter for nested worklist walking
1642 *
1643 * Schedule linked works starting from @work to @head. Work series to
1644 * be scheduled starts at @work and includes any consecutive work with
1645 * WORK_STRUCT_LINKED set in its predecessor.
1646 *
1647 * If @nextp is not NULL, it's updated to point to the next work of
1648 * the last scheduled work. This allows move_linked_works() to be
1649 * nested inside outer list_for_each_entry_safe().
1650 *
1651 * CONTEXT:
1652 * spin_lock_irq(gcwq->lock).
1653 */
1654 static void move_linked_works(struct work_struct *work, struct list_head *head,
1655 struct work_struct **nextp)
1656 {
1657 struct work_struct *n;
1658
1659 /*
1660 * Linked worklist will always end before the end of the list,
1661 * use NULL for list head.
1662 */
1663 list_for_each_entry_safe_from(work, n, NULL, entry) {
1664 list_move_tail(&work->entry, head);
1665 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1666 break;
1667 }
1668
1669 /*
1670 * If we're already inside safe list traversal and have moved
1671 * multiple works to the scheduled queue, the next position
1672 * needs to be updated.
1673 */
1674 if (nextp)
1675 *nextp = n;
1676 }
1677
1678 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1679 {
1680 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1681 struct work_struct, entry);
1682 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1683
1684 trace_workqueue_activate_work(work);
1685 move_linked_works(work, pos, NULL);
1686 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1687 cwq->nr_active++;
1688 }
1689
1690 /**
1691 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1692 * @cwq: cwq of interest
1693 * @color: color of work which left the queue
1694 * @delayed: for a delayed work
1695 *
1696 * A work either has completed or is removed from pending queue,
1697 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1698 *
1699 * CONTEXT:
1700 * spin_lock_irq(gcwq->lock).
1701 */
1702 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1703 bool delayed)
1704 {
1705 /* ignore uncolored works */
1706 if (color == WORK_NO_COLOR)
1707 return;
1708
1709 cwq->nr_in_flight[color]--;
1710
1711 if (!delayed) {
1712 cwq->nr_active--;
1713 if (!list_empty(&cwq->delayed_works)) {
1714 /* one down, submit a delayed one */
1715 if (cwq->nr_active < cwq->max_active)
1716 cwq_activate_first_delayed(cwq);
1717 }
1718 }
1719
1720 /* is flush in progress and are we at the flushing tip? */
1721 if (likely(cwq->flush_color != color))
1722 return;
1723
1724 /* are there still in-flight works? */
1725 if (cwq->nr_in_flight[color])
1726 return;
1727
1728 /* this cwq is done, clear flush_color */
1729 cwq->flush_color = -1;
1730
1731 /*
1732 * If this was the last cwq, wake up the first flusher. It
1733 * will handle the rest.
1734 */
1735 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1736 complete(&cwq->wq->first_flusher->done);
1737 }
1738
1739 /**
1740 * process_one_work - process single work
1741 * @worker: self
1742 * @work: work to process
1743 *
1744 * Process @work. This function contains all the logics necessary to
1745 * process a single work including synchronization against and
1746 * interaction with other workers on the same cpu, queueing and
1747 * flushing. As long as context requirement is met, any worker can
1748 * call this function to process a work.
1749 *
1750 * CONTEXT:
1751 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1752 */
1753 static void process_one_work(struct worker *worker, struct work_struct *work)
1754 __releases(&gcwq->lock)
1755 __acquires(&gcwq->lock)
1756 {
1757 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1758 struct global_cwq *gcwq = cwq->gcwq;
1759 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1760 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1761 work_func_t f = work->func;
1762 int work_color;
1763 struct worker *collision;
1764 #ifdef CONFIG_LOCKDEP
1765 /*
1766 * It is permissible to free the struct work_struct from
1767 * inside the function that is called from it, this we need to
1768 * take into account for lockdep too. To avoid bogus "held
1769 * lock freed" warnings as well as problems when looking into
1770 * work->lockdep_map, make a copy and use that here.
1771 */
1772 struct lockdep_map lockdep_map = work->lockdep_map;
1773 #endif
1774 /*
1775 * A single work shouldn't be executed concurrently by
1776 * multiple workers on a single cpu. Check whether anyone is
1777 * already processing the work. If so, defer the work to the
1778 * currently executing one.
1779 */
1780 collision = __find_worker_executing_work(gcwq, bwh, work);
1781 if (unlikely(collision)) {
1782 move_linked_works(work, &collision->scheduled, NULL);
1783 return;
1784 }
1785
1786 /* claim and process */
1787 debug_work_deactivate(work);
1788 hlist_add_head(&worker->hentry, bwh);
1789 worker->current_work = work;
1790 worker->current_cwq = cwq;
1791 work_color = get_work_color(work);
1792
1793 /* record the current cpu number in the work data and dequeue */
1794 set_work_cpu(work, gcwq->cpu);
1795 list_del_init(&work->entry);
1796
1797 /*
1798 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1799 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1800 */
1801 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1802 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1803 struct work_struct, entry);
1804
1805 if (!list_empty(&gcwq->worklist) &&
1806 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1807 wake_up_worker(gcwq);
1808 else
1809 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1810 }
1811
1812 /*
1813 * CPU intensive works don't participate in concurrency
1814 * management. They're the scheduler's responsibility.
1815 */
1816 if (unlikely(cpu_intensive))
1817 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1818
1819 spin_unlock_irq(&gcwq->lock);
1820
1821 work_clear_pending(work);
1822 lock_map_acquire(&cwq->wq->lockdep_map);
1823 lock_map_acquire(&lockdep_map);
1824 trace_workqueue_execute_start(work);
1825 f(work);
1826 /*
1827 * While we must be careful to not use "work" after this, the trace
1828 * point will only record its address.
1829 */
1830 trace_workqueue_execute_end(work);
1831 lock_map_release(&lockdep_map);
1832 lock_map_release(&cwq->wq->lockdep_map);
1833
1834 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1835 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1836 "%s/0x%08x/%d\n",
1837 current->comm, preempt_count(), task_pid_nr(current));
1838 printk(KERN_ERR " last function: ");
1839 print_symbol("%s\n", (unsigned long)f);
1840 debug_show_held_locks(current);
1841 dump_stack();
1842 }
1843
1844 spin_lock_irq(&gcwq->lock);
1845
1846 /* clear cpu intensive status */
1847 if (unlikely(cpu_intensive))
1848 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1849
1850 /* we're done with it, release */
1851 hlist_del_init(&worker->hentry);
1852 worker->current_work = NULL;
1853 worker->current_cwq = NULL;
1854 cwq_dec_nr_in_flight(cwq, work_color, false);
1855 }
1856
1857 /**
1858 * process_scheduled_works - process scheduled works
1859 * @worker: self
1860 *
1861 * Process all scheduled works. Please note that the scheduled list
1862 * may change while processing a work, so this function repeatedly
1863 * fetches a work from the top and executes it.
1864 *
1865 * CONTEXT:
1866 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1867 * multiple times.
1868 */
1869 static void process_scheduled_works(struct worker *worker)
1870 {
1871 while (!list_empty(&worker->scheduled)) {
1872 struct work_struct *work = list_first_entry(&worker->scheduled,
1873 struct work_struct, entry);
1874 process_one_work(worker, work);
1875 }
1876 }
1877
1878 /**
1879 * worker_thread - the worker thread function
1880 * @__worker: self
1881 *
1882 * The gcwq worker thread function. There's a single dynamic pool of
1883 * these per each cpu. These workers process all works regardless of
1884 * their specific target workqueue. The only exception is works which
1885 * belong to workqueues with a rescuer which will be explained in
1886 * rescuer_thread().
1887 */
1888 static int worker_thread(void *__worker)
1889 {
1890 struct worker *worker = __worker;
1891 struct global_cwq *gcwq = worker->gcwq;
1892
1893 /* tell the scheduler that this is a workqueue worker */
1894 worker->task->flags |= PF_WQ_WORKER;
1895 woke_up:
1896 spin_lock_irq(&gcwq->lock);
1897
1898 /* DIE can be set only while we're idle, checking here is enough */
1899 if (worker->flags & WORKER_DIE) {
1900 spin_unlock_irq(&gcwq->lock);
1901 worker->task->flags &= ~PF_WQ_WORKER;
1902 return 0;
1903 }
1904
1905 worker_leave_idle(worker);
1906 recheck:
1907 /* no more worker necessary? */
1908 if (!need_more_worker(gcwq))
1909 goto sleep;
1910
1911 /* do we need to manage? */
1912 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1913 goto recheck;
1914
1915 /*
1916 * ->scheduled list can only be filled while a worker is
1917 * preparing to process a work or actually processing it.
1918 * Make sure nobody diddled with it while I was sleeping.
1919 */
1920 BUG_ON(!list_empty(&worker->scheduled));
1921
1922 /*
1923 * When control reaches this point, we're guaranteed to have
1924 * at least one idle worker or that someone else has already
1925 * assumed the manager role.
1926 */
1927 worker_clr_flags(worker, WORKER_PREP);
1928
1929 do {
1930 struct work_struct *work =
1931 list_first_entry(&gcwq->worklist,
1932 struct work_struct, entry);
1933
1934 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1935 /* optimization path, not strictly necessary */
1936 process_one_work(worker, work);
1937 if (unlikely(!list_empty(&worker->scheduled)))
1938 process_scheduled_works(worker);
1939 } else {
1940 move_linked_works(work, &worker->scheduled, NULL);
1941 process_scheduled_works(worker);
1942 }
1943 } while (keep_working(gcwq));
1944
1945 worker_set_flags(worker, WORKER_PREP, false);
1946 sleep:
1947 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1948 goto recheck;
1949
1950 /*
1951 * gcwq->lock is held and there's no work to process and no
1952 * need to manage, sleep. Workers are woken up only while
1953 * holding gcwq->lock or from local cpu, so setting the
1954 * current state before releasing gcwq->lock is enough to
1955 * prevent losing any event.
1956 */
1957 worker_enter_idle(worker);
1958 __set_current_state(TASK_INTERRUPTIBLE);
1959 spin_unlock_irq(&gcwq->lock);
1960 schedule();
1961 goto woke_up;
1962 }
1963
1964 /**
1965 * rescuer_thread - the rescuer thread function
1966 * @__wq: the associated workqueue
1967 *
1968 * Workqueue rescuer thread function. There's one rescuer for each
1969 * workqueue which has WQ_RESCUER set.
1970 *
1971 * Regular work processing on a gcwq may block trying to create a new
1972 * worker which uses GFP_KERNEL allocation which has slight chance of
1973 * developing into deadlock if some works currently on the same queue
1974 * need to be processed to satisfy the GFP_KERNEL allocation. This is
1975 * the problem rescuer solves.
1976 *
1977 * When such condition is possible, the gcwq summons rescuers of all
1978 * workqueues which have works queued on the gcwq and let them process
1979 * those works so that forward progress can be guaranteed.
1980 *
1981 * This should happen rarely.
1982 */
1983 static int rescuer_thread(void *__wq)
1984 {
1985 struct workqueue_struct *wq = __wq;
1986 struct worker *rescuer = wq->rescuer;
1987 struct list_head *scheduled = &rescuer->scheduled;
1988 bool is_unbound = wq->flags & WQ_UNBOUND;
1989 unsigned int cpu;
1990
1991 set_user_nice(current, RESCUER_NICE_LEVEL);
1992 repeat:
1993 set_current_state(TASK_INTERRUPTIBLE);
1994
1995 if (kthread_should_stop())
1996 return 0;
1997
1998 /*
1999 * See whether any cpu is asking for help. Unbounded
2000 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2001 */
2002 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2003 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2004 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2005 struct global_cwq *gcwq = cwq->gcwq;
2006 struct work_struct *work, *n;
2007
2008 __set_current_state(TASK_RUNNING);
2009 mayday_clear_cpu(cpu, wq->mayday_mask);
2010
2011 /* migrate to the target cpu if possible */
2012 rescuer->gcwq = gcwq;
2013 worker_maybe_bind_and_lock(rescuer);
2014
2015 /*
2016 * Slurp in all works issued via this workqueue and
2017 * process'em.
2018 */
2019 BUG_ON(!list_empty(&rescuer->scheduled));
2020 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2021 if (get_work_cwq(work) == cwq)
2022 move_linked_works(work, scheduled, &n);
2023
2024 process_scheduled_works(rescuer);
2025 spin_unlock_irq(&gcwq->lock);
2026 }
2027
2028 schedule();
2029 goto repeat;
2030 }
2031
2032 struct wq_barrier {
2033 struct work_struct work;
2034 struct completion done;
2035 };
2036
2037 static void wq_barrier_func(struct work_struct *work)
2038 {
2039 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2040 complete(&barr->done);
2041 }
2042
2043 /**
2044 * insert_wq_barrier - insert a barrier work
2045 * @cwq: cwq to insert barrier into
2046 * @barr: wq_barrier to insert
2047 * @target: target work to attach @barr to
2048 * @worker: worker currently executing @target, NULL if @target is not executing
2049 *
2050 * @barr is linked to @target such that @barr is completed only after
2051 * @target finishes execution. Please note that the ordering
2052 * guarantee is observed only with respect to @target and on the local
2053 * cpu.
2054 *
2055 * Currently, a queued barrier can't be canceled. This is because
2056 * try_to_grab_pending() can't determine whether the work to be
2057 * grabbed is at the head of the queue and thus can't clear LINKED
2058 * flag of the previous work while there must be a valid next work
2059 * after a work with LINKED flag set.
2060 *
2061 * Note that when @worker is non-NULL, @target may be modified
2062 * underneath us, so we can't reliably determine cwq from @target.
2063 *
2064 * CONTEXT:
2065 * spin_lock_irq(gcwq->lock).
2066 */
2067 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2068 struct wq_barrier *barr,
2069 struct work_struct *target, struct worker *worker)
2070 {
2071 struct list_head *head;
2072 unsigned int linked = 0;
2073
2074 /*
2075 * debugobject calls are safe here even with gcwq->lock locked
2076 * as we know for sure that this will not trigger any of the
2077 * checks and call back into the fixup functions where we
2078 * might deadlock.
2079 */
2080 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
2081 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2082 init_completion(&barr->done);
2083
2084 /*
2085 * If @target is currently being executed, schedule the
2086 * barrier to the worker; otherwise, put it after @target.
2087 */
2088 if (worker)
2089 head = worker->scheduled.next;
2090 else {
2091 unsigned long *bits = work_data_bits(target);
2092
2093 head = target->entry.next;
2094 /* there can already be other linked works, inherit and set */
2095 linked = *bits & WORK_STRUCT_LINKED;
2096 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2097 }
2098
2099 debug_work_activate(&barr->work);
2100 insert_work(cwq, &barr->work, head,
2101 work_color_to_flags(WORK_NO_COLOR) | linked);
2102 }
2103
2104 /**
2105 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2106 * @wq: workqueue being flushed
2107 * @flush_color: new flush color, < 0 for no-op
2108 * @work_color: new work color, < 0 for no-op
2109 *
2110 * Prepare cwqs for workqueue flushing.
2111 *
2112 * If @flush_color is non-negative, flush_color on all cwqs should be
2113 * -1. If no cwq has in-flight commands at the specified color, all
2114 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2115 * has in flight commands, its cwq->flush_color is set to
2116 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2117 * wakeup logic is armed and %true is returned.
2118 *
2119 * The caller should have initialized @wq->first_flusher prior to
2120 * calling this function with non-negative @flush_color. If
2121 * @flush_color is negative, no flush color update is done and %false
2122 * is returned.
2123 *
2124 * If @work_color is non-negative, all cwqs should have the same
2125 * work_color which is previous to @work_color and all will be
2126 * advanced to @work_color.
2127 *
2128 * CONTEXT:
2129 * mutex_lock(wq->flush_mutex).
2130 *
2131 * RETURNS:
2132 * %true if @flush_color >= 0 and there's something to flush. %false
2133 * otherwise.
2134 */
2135 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2136 int flush_color, int work_color)
2137 {
2138 bool wait = false;
2139 unsigned int cpu;
2140
2141 if (flush_color >= 0) {
2142 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2143 atomic_set(&wq->nr_cwqs_to_flush, 1);
2144 }
2145
2146 for_each_cwq_cpu(cpu, wq) {
2147 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2148 struct global_cwq *gcwq = cwq->gcwq;
2149
2150 spin_lock_irq(&gcwq->lock);
2151
2152 if (flush_color >= 0) {
2153 BUG_ON(cwq->flush_color != -1);
2154
2155 if (cwq->nr_in_flight[flush_color]) {
2156 cwq->flush_color = flush_color;
2157 atomic_inc(&wq->nr_cwqs_to_flush);
2158 wait = true;
2159 }
2160 }
2161
2162 if (work_color >= 0) {
2163 BUG_ON(work_color != work_next_color(cwq->work_color));
2164 cwq->work_color = work_color;
2165 }
2166
2167 spin_unlock_irq(&gcwq->lock);
2168 }
2169
2170 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2171 complete(&wq->first_flusher->done);
2172
2173 return wait;
2174 }
2175
2176 /**
2177 * flush_workqueue - ensure that any scheduled work has run to completion.
2178 * @wq: workqueue to flush
2179 *
2180 * Forces execution of the workqueue and blocks until its completion.
2181 * This is typically used in driver shutdown handlers.
2182 *
2183 * We sleep until all works which were queued on entry have been handled,
2184 * but we are not livelocked by new incoming ones.
2185 */
2186 void flush_workqueue(struct workqueue_struct *wq)
2187 {
2188 struct wq_flusher this_flusher = {
2189 .list = LIST_HEAD_INIT(this_flusher.list),
2190 .flush_color = -1,
2191 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2192 };
2193 int next_color;
2194
2195 lock_map_acquire(&wq->lockdep_map);
2196 lock_map_release(&wq->lockdep_map);
2197
2198 mutex_lock(&wq->flush_mutex);
2199
2200 /*
2201 * Start-to-wait phase
2202 */
2203 next_color = work_next_color(wq->work_color);
2204
2205 if (next_color != wq->flush_color) {
2206 /*
2207 * Color space is not full. The current work_color
2208 * becomes our flush_color and work_color is advanced
2209 * by one.
2210 */
2211 BUG_ON(!list_empty(&wq->flusher_overflow));
2212 this_flusher.flush_color = wq->work_color;
2213 wq->work_color = next_color;
2214
2215 if (!wq->first_flusher) {
2216 /* no flush in progress, become the first flusher */
2217 BUG_ON(wq->flush_color != this_flusher.flush_color);
2218
2219 wq->first_flusher = &this_flusher;
2220
2221 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2222 wq->work_color)) {
2223 /* nothing to flush, done */
2224 wq->flush_color = next_color;
2225 wq->first_flusher = NULL;
2226 goto out_unlock;
2227 }
2228 } else {
2229 /* wait in queue */
2230 BUG_ON(wq->flush_color == this_flusher.flush_color);
2231 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2232 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2233 }
2234 } else {
2235 /*
2236 * Oops, color space is full, wait on overflow queue.
2237 * The next flush completion will assign us
2238 * flush_color and transfer to flusher_queue.
2239 */
2240 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2241 }
2242
2243 mutex_unlock(&wq->flush_mutex);
2244
2245 wait_for_completion(&this_flusher.done);
2246
2247 /*
2248 * Wake-up-and-cascade phase
2249 *
2250 * First flushers are responsible for cascading flushes and
2251 * handling overflow. Non-first flushers can simply return.
2252 */
2253 if (wq->first_flusher != &this_flusher)
2254 return;
2255
2256 mutex_lock(&wq->flush_mutex);
2257
2258 /* we might have raced, check again with mutex held */
2259 if (wq->first_flusher != &this_flusher)
2260 goto out_unlock;
2261
2262 wq->first_flusher = NULL;
2263
2264 BUG_ON(!list_empty(&this_flusher.list));
2265 BUG_ON(wq->flush_color != this_flusher.flush_color);
2266
2267 while (true) {
2268 struct wq_flusher *next, *tmp;
2269
2270 /* complete all the flushers sharing the current flush color */
2271 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2272 if (next->flush_color != wq->flush_color)
2273 break;
2274 list_del_init(&next->list);
2275 complete(&next->done);
2276 }
2277
2278 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2279 wq->flush_color != work_next_color(wq->work_color));
2280
2281 /* this flush_color is finished, advance by one */
2282 wq->flush_color = work_next_color(wq->flush_color);
2283
2284 /* one color has been freed, handle overflow queue */
2285 if (!list_empty(&wq->flusher_overflow)) {
2286 /*
2287 * Assign the same color to all overflowed
2288 * flushers, advance work_color and append to
2289 * flusher_queue. This is the start-to-wait
2290 * phase for these overflowed flushers.
2291 */
2292 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2293 tmp->flush_color = wq->work_color;
2294
2295 wq->work_color = work_next_color(wq->work_color);
2296
2297 list_splice_tail_init(&wq->flusher_overflow,
2298 &wq->flusher_queue);
2299 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2300 }
2301
2302 if (list_empty(&wq->flusher_queue)) {
2303 BUG_ON(wq->flush_color != wq->work_color);
2304 break;
2305 }
2306
2307 /*
2308 * Need to flush more colors. Make the next flusher
2309 * the new first flusher and arm cwqs.
2310 */
2311 BUG_ON(wq->flush_color == wq->work_color);
2312 BUG_ON(wq->flush_color != next->flush_color);
2313
2314 list_del_init(&next->list);
2315 wq->first_flusher = next;
2316
2317 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2318 break;
2319
2320 /*
2321 * Meh... this color is already done, clear first
2322 * flusher and repeat cascading.
2323 */
2324 wq->first_flusher = NULL;
2325 }
2326
2327 out_unlock:
2328 mutex_unlock(&wq->flush_mutex);
2329 }
2330 EXPORT_SYMBOL_GPL(flush_workqueue);
2331
2332 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2333 bool wait_executing)
2334 {
2335 struct worker *worker = NULL;
2336 struct global_cwq *gcwq;
2337 struct cpu_workqueue_struct *cwq;
2338
2339 might_sleep();
2340 gcwq = get_work_gcwq(work);
2341 if (!gcwq)
2342 return false;
2343
2344 spin_lock_irq(&gcwq->lock);
2345 if (!list_empty(&work->entry)) {
2346 /*
2347 * See the comment near try_to_grab_pending()->smp_rmb().
2348 * If it was re-queued to a different gcwq under us, we
2349 * are not going to wait.
2350 */
2351 smp_rmb();
2352 cwq = get_work_cwq(work);
2353 if (unlikely(!cwq || gcwq != cwq->gcwq))
2354 goto already_gone;
2355 } else if (wait_executing) {
2356 worker = find_worker_executing_work(gcwq, work);
2357 if (!worker)
2358 goto already_gone;
2359 cwq = worker->current_cwq;
2360 } else
2361 goto already_gone;
2362
2363 insert_wq_barrier(cwq, barr, work, worker);
2364 spin_unlock_irq(&gcwq->lock);
2365
2366 lock_map_acquire(&cwq->wq->lockdep_map);
2367 lock_map_release(&cwq->wq->lockdep_map);
2368 return true;
2369 already_gone:
2370 spin_unlock_irq(&gcwq->lock);
2371 return false;
2372 }
2373
2374 /**
2375 * flush_work - wait for a work to finish executing the last queueing instance
2376 * @work: the work to flush
2377 *
2378 * Wait until @work has finished execution. This function considers
2379 * only the last queueing instance of @work. If @work has been
2380 * enqueued across different CPUs on a non-reentrant workqueue or on
2381 * multiple workqueues, @work might still be executing on return on
2382 * some of the CPUs from earlier queueing.
2383 *
2384 * If @work was queued only on a non-reentrant, ordered or unbound
2385 * workqueue, @work is guaranteed to be idle on return if it hasn't
2386 * been requeued since flush started.
2387 *
2388 * RETURNS:
2389 * %true if flush_work() waited for the work to finish execution,
2390 * %false if it was already idle.
2391 */
2392 bool flush_work(struct work_struct *work)
2393 {
2394 struct wq_barrier barr;
2395
2396 if (start_flush_work(work, &barr, true)) {
2397 wait_for_completion(&barr.done);
2398 destroy_work_on_stack(&barr.work);
2399 return true;
2400 } else
2401 return false;
2402 }
2403 EXPORT_SYMBOL_GPL(flush_work);
2404
2405 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2406 {
2407 struct wq_barrier barr;
2408 struct worker *worker;
2409
2410 spin_lock_irq(&gcwq->lock);
2411
2412 worker = find_worker_executing_work(gcwq, work);
2413 if (unlikely(worker))
2414 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2415
2416 spin_unlock_irq(&gcwq->lock);
2417
2418 if (unlikely(worker)) {
2419 wait_for_completion(&barr.done);
2420 destroy_work_on_stack(&barr.work);
2421 return true;
2422 } else
2423 return false;
2424 }
2425
2426 static bool wait_on_work(struct work_struct *work)
2427 {
2428 bool ret = false;
2429 int cpu;
2430
2431 might_sleep();
2432
2433 lock_map_acquire(&work->lockdep_map);
2434 lock_map_release(&work->lockdep_map);
2435
2436 for_each_gcwq_cpu(cpu)
2437 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2438 return ret;
2439 }
2440
2441 /**
2442 * flush_work_sync - wait until a work has finished execution
2443 * @work: the work to flush
2444 *
2445 * Wait until @work has finished execution. On return, it's
2446 * guaranteed that all queueing instances of @work which happened
2447 * before this function is called are finished. In other words, if
2448 * @work hasn't been requeued since this function was called, @work is
2449 * guaranteed to be idle on return.
2450 *
2451 * RETURNS:
2452 * %true if flush_work_sync() waited for the work to finish execution,
2453 * %false if it was already idle.
2454 */
2455 bool flush_work_sync(struct work_struct *work)
2456 {
2457 struct wq_barrier barr;
2458 bool pending, waited;
2459
2460 /* we'll wait for executions separately, queue barr only if pending */
2461 pending = start_flush_work(work, &barr, false);
2462
2463 /* wait for executions to finish */
2464 waited = wait_on_work(work);
2465
2466 /* wait for the pending one */
2467 if (pending) {
2468 wait_for_completion(&barr.done);
2469 destroy_work_on_stack(&barr.work);
2470 }
2471
2472 return pending || waited;
2473 }
2474 EXPORT_SYMBOL_GPL(flush_work_sync);
2475
2476 /*
2477 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2478 * so this work can't be re-armed in any way.
2479 */
2480 static int try_to_grab_pending(struct work_struct *work)
2481 {
2482 struct global_cwq *gcwq;
2483 int ret = -1;
2484
2485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2486 return 0;
2487
2488 /*
2489 * The queueing is in progress, or it is already queued. Try to
2490 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2491 */
2492 gcwq = get_work_gcwq(work);
2493 if (!gcwq)
2494 return ret;
2495
2496 spin_lock_irq(&gcwq->lock);
2497 if (!list_empty(&work->entry)) {
2498 /*
2499 * This work is queued, but perhaps we locked the wrong gcwq.
2500 * In that case we must see the new value after rmb(), see
2501 * insert_work()->wmb().
2502 */
2503 smp_rmb();
2504 if (gcwq == get_work_gcwq(work)) {
2505 debug_work_deactivate(work);
2506 list_del_init(&work->entry);
2507 cwq_dec_nr_in_flight(get_work_cwq(work),
2508 get_work_color(work),
2509 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2510 ret = 1;
2511 }
2512 }
2513 spin_unlock_irq(&gcwq->lock);
2514
2515 return ret;
2516 }
2517
2518 static bool __cancel_work_timer(struct work_struct *work,
2519 struct timer_list* timer)
2520 {
2521 int ret;
2522
2523 do {
2524 ret = (timer && likely(del_timer(timer)));
2525 if (!ret)
2526 ret = try_to_grab_pending(work);
2527 wait_on_work(work);
2528 } while (unlikely(ret < 0));
2529
2530 clear_work_data(work);
2531 return ret;
2532 }
2533
2534 /**
2535 * cancel_work_sync - cancel a work and wait for it to finish
2536 * @work: the work to cancel
2537 *
2538 * Cancel @work and wait for its execution to finish. This function
2539 * can be used even if the work re-queues itself or migrates to
2540 * another workqueue. On return from this function, @work is
2541 * guaranteed to be not pending or executing on any CPU.
2542 *
2543 * cancel_work_sync(&delayed_work->work) must not be used for
2544 * delayed_work's. Use cancel_delayed_work_sync() instead.
2545 *
2546 * The caller must ensure that the workqueue on which @work was last
2547 * queued can't be destroyed before this function returns.
2548 *
2549 * RETURNS:
2550 * %true if @work was pending, %false otherwise.
2551 */
2552 bool cancel_work_sync(struct work_struct *work)
2553 {
2554 return __cancel_work_timer(work, NULL);
2555 }
2556 EXPORT_SYMBOL_GPL(cancel_work_sync);
2557
2558 /**
2559 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2560 * @dwork: the delayed work to flush
2561 *
2562 * Delayed timer is cancelled and the pending work is queued for
2563 * immediate execution. Like flush_work(), this function only
2564 * considers the last queueing instance of @dwork.
2565 *
2566 * RETURNS:
2567 * %true if flush_work() waited for the work to finish execution,
2568 * %false if it was already idle.
2569 */
2570 bool flush_delayed_work(struct delayed_work *dwork)
2571 {
2572 if (del_timer_sync(&dwork->timer))
2573 __queue_work(raw_smp_processor_id(),
2574 get_work_cwq(&dwork->work)->wq, &dwork->work);
2575 return flush_work(&dwork->work);
2576 }
2577 EXPORT_SYMBOL(flush_delayed_work);
2578
2579 /**
2580 * flush_delayed_work_sync - wait for a dwork to finish
2581 * @dwork: the delayed work to flush
2582 *
2583 * Delayed timer is cancelled and the pending work is queued for
2584 * execution immediately. Other than timer handling, its behavior
2585 * is identical to flush_work_sync().
2586 *
2587 * RETURNS:
2588 * %true if flush_work_sync() waited for the work to finish execution,
2589 * %false if it was already idle.
2590 */
2591 bool flush_delayed_work_sync(struct delayed_work *dwork)
2592 {
2593 if (del_timer_sync(&dwork->timer))
2594 __queue_work(raw_smp_processor_id(),
2595 get_work_cwq(&dwork->work)->wq, &dwork->work);
2596 return flush_work_sync(&dwork->work);
2597 }
2598 EXPORT_SYMBOL(flush_delayed_work_sync);
2599
2600 /**
2601 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2602 * @dwork: the delayed work cancel
2603 *
2604 * This is cancel_work_sync() for delayed works.
2605 *
2606 * RETURNS:
2607 * %true if @dwork was pending, %false otherwise.
2608 */
2609 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2610 {
2611 return __cancel_work_timer(&dwork->work, &dwork->timer);
2612 }
2613 EXPORT_SYMBOL(cancel_delayed_work_sync);
2614
2615 /**
2616 * schedule_work - put work task in global workqueue
2617 * @work: job to be done
2618 *
2619 * Returns zero if @work was already on the kernel-global workqueue and
2620 * non-zero otherwise.
2621 *
2622 * This puts a job in the kernel-global workqueue if it was not already
2623 * queued and leaves it in the same position on the kernel-global
2624 * workqueue otherwise.
2625 */
2626 int schedule_work(struct work_struct *work)
2627 {
2628 return queue_work(system_wq, work);
2629 }
2630 EXPORT_SYMBOL(schedule_work);
2631
2632 /*
2633 * schedule_work_on - put work task on a specific cpu
2634 * @cpu: cpu to put the work task on
2635 * @work: job to be done
2636 *
2637 * This puts a job on a specific cpu
2638 */
2639 int schedule_work_on(int cpu, struct work_struct *work)
2640 {
2641 return queue_work_on(cpu, system_wq, work);
2642 }
2643 EXPORT_SYMBOL(schedule_work_on);
2644
2645 /**
2646 * schedule_delayed_work - put work task in global workqueue after delay
2647 * @dwork: job to be done
2648 * @delay: number of jiffies to wait or 0 for immediate execution
2649 *
2650 * After waiting for a given time this puts a job in the kernel-global
2651 * workqueue.
2652 */
2653 int schedule_delayed_work(struct delayed_work *dwork,
2654 unsigned long delay)
2655 {
2656 return queue_delayed_work(system_wq, dwork, delay);
2657 }
2658 EXPORT_SYMBOL(schedule_delayed_work);
2659
2660 /**
2661 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2662 * @cpu: cpu to use
2663 * @dwork: job to be done
2664 * @delay: number of jiffies to wait
2665 *
2666 * After waiting for a given time this puts a job in the kernel-global
2667 * workqueue on the specified CPU.
2668 */
2669 int schedule_delayed_work_on(int cpu,
2670 struct delayed_work *dwork, unsigned long delay)
2671 {
2672 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2673 }
2674 EXPORT_SYMBOL(schedule_delayed_work_on);
2675
2676 /**
2677 * schedule_on_each_cpu - call a function on each online CPU from keventd
2678 * @func: the function to call
2679 *
2680 * Returns zero on success.
2681 * Returns -ve errno on failure.
2682 *
2683 * schedule_on_each_cpu() is very slow.
2684 */
2685 int schedule_on_each_cpu(work_func_t func)
2686 {
2687 int cpu;
2688 struct work_struct __percpu *works;
2689
2690 works = alloc_percpu(struct work_struct);
2691 if (!works)
2692 return -ENOMEM;
2693
2694 get_online_cpus();
2695
2696 for_each_online_cpu(cpu) {
2697 struct work_struct *work = per_cpu_ptr(works, cpu);
2698
2699 INIT_WORK(work, func);
2700 schedule_work_on(cpu, work);
2701 }
2702
2703 for_each_online_cpu(cpu)
2704 flush_work(per_cpu_ptr(works, cpu));
2705
2706 put_online_cpus();
2707 free_percpu(works);
2708 return 0;
2709 }
2710
2711 /**
2712 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2713 *
2714 * Forces execution of the kernel-global workqueue and blocks until its
2715 * completion.
2716 *
2717 * Think twice before calling this function! It's very easy to get into
2718 * trouble if you don't take great care. Either of the following situations
2719 * will lead to deadlock:
2720 *
2721 * One of the work items currently on the workqueue needs to acquire
2722 * a lock held by your code or its caller.
2723 *
2724 * Your code is running in the context of a work routine.
2725 *
2726 * They will be detected by lockdep when they occur, but the first might not
2727 * occur very often. It depends on what work items are on the workqueue and
2728 * what locks they need, which you have no control over.
2729 *
2730 * In most situations flushing the entire workqueue is overkill; you merely
2731 * need to know that a particular work item isn't queued and isn't running.
2732 * In such cases you should use cancel_delayed_work_sync() or
2733 * cancel_work_sync() instead.
2734 */
2735 void flush_scheduled_work(void)
2736 {
2737 flush_workqueue(system_wq);
2738 }
2739 EXPORT_SYMBOL(flush_scheduled_work);
2740
2741 /**
2742 * execute_in_process_context - reliably execute the routine with user context
2743 * @fn: the function to execute
2744 * @ew: guaranteed storage for the execute work structure (must
2745 * be available when the work executes)
2746 *
2747 * Executes the function immediately if process context is available,
2748 * otherwise schedules the function for delayed execution.
2749 *
2750 * Returns: 0 - function was executed
2751 * 1 - function was scheduled for execution
2752 */
2753 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2754 {
2755 if (!in_interrupt()) {
2756 fn(&ew->work);
2757 return 0;
2758 }
2759
2760 INIT_WORK(&ew->work, fn);
2761 schedule_work(&ew->work);
2762
2763 return 1;
2764 }
2765 EXPORT_SYMBOL_GPL(execute_in_process_context);
2766
2767 int keventd_up(void)
2768 {
2769 return system_wq != NULL;
2770 }
2771
2772 static int alloc_cwqs(struct workqueue_struct *wq)
2773 {
2774 /*
2775 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2776 * Make sure that the alignment isn't lower than that of
2777 * unsigned long long.
2778 */
2779 const size_t size = sizeof(struct cpu_workqueue_struct);
2780 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2781 __alignof__(unsigned long long));
2782 #ifdef CONFIG_SMP
2783 bool percpu = !(wq->flags & WQ_UNBOUND);
2784 #else
2785 bool percpu = false;
2786 #endif
2787
2788 if (percpu)
2789 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2790 else {
2791 void *ptr;
2792
2793 /*
2794 * Allocate enough room to align cwq and put an extra
2795 * pointer at the end pointing back to the originally
2796 * allocated pointer which will be used for free.
2797 */
2798 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2799 if (ptr) {
2800 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2801 *(void **)(wq->cpu_wq.single + 1) = ptr;
2802 }
2803 }
2804
2805 /* just in case, make sure it's actually aligned */
2806 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2807 return wq->cpu_wq.v ? 0 : -ENOMEM;
2808 }
2809
2810 static void free_cwqs(struct workqueue_struct *wq)
2811 {
2812 #ifdef CONFIG_SMP
2813 bool percpu = !(wq->flags & WQ_UNBOUND);
2814 #else
2815 bool percpu = false;
2816 #endif
2817
2818 if (percpu)
2819 free_percpu(wq->cpu_wq.pcpu);
2820 else if (wq->cpu_wq.single) {
2821 /* the pointer to free is stored right after the cwq */
2822 kfree(*(void **)(wq->cpu_wq.single + 1));
2823 }
2824 }
2825
2826 static int wq_clamp_max_active(int max_active, unsigned int flags,
2827 const char *name)
2828 {
2829 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2830
2831 if (max_active < 1 || max_active > lim)
2832 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2833 "is out of range, clamping between %d and %d\n",
2834 max_active, name, 1, lim);
2835
2836 return clamp_val(max_active, 1, lim);
2837 }
2838
2839 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2840 unsigned int flags,
2841 int max_active,
2842 struct lock_class_key *key,
2843 const char *lock_name)
2844 {
2845 struct workqueue_struct *wq;
2846 unsigned int cpu;
2847
2848 /*
2849 * Unbound workqueues aren't concurrency managed and should be
2850 * dispatched to workers immediately.
2851 */
2852 if (flags & WQ_UNBOUND)
2853 flags |= WQ_HIGHPRI;
2854
2855 max_active = max_active ?: WQ_DFL_ACTIVE;
2856 max_active = wq_clamp_max_active(max_active, flags, name);
2857
2858 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2859 if (!wq)
2860 goto err;
2861
2862 wq->flags = flags;
2863 wq->saved_max_active = max_active;
2864 mutex_init(&wq->flush_mutex);
2865 atomic_set(&wq->nr_cwqs_to_flush, 0);
2866 INIT_LIST_HEAD(&wq->flusher_queue);
2867 INIT_LIST_HEAD(&wq->flusher_overflow);
2868
2869 wq->name = name;
2870 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2871 INIT_LIST_HEAD(&wq->list);
2872
2873 if (alloc_cwqs(wq) < 0)
2874 goto err;
2875
2876 for_each_cwq_cpu(cpu, wq) {
2877 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2878 struct global_cwq *gcwq = get_gcwq(cpu);
2879
2880 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2881 cwq->gcwq = gcwq;
2882 cwq->wq = wq;
2883 cwq->flush_color = -1;
2884 cwq->max_active = max_active;
2885 INIT_LIST_HEAD(&cwq->delayed_works);
2886 }
2887
2888 if (flags & WQ_RESCUER) {
2889 struct worker *rescuer;
2890
2891 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2892 goto err;
2893
2894 wq->rescuer = rescuer = alloc_worker();
2895 if (!rescuer)
2896 goto err;
2897
2898 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2899 if (IS_ERR(rescuer->task))
2900 goto err;
2901
2902 rescuer->task->flags |= PF_THREAD_BOUND;
2903 wake_up_process(rescuer->task);
2904 }
2905
2906 /*
2907 * workqueue_lock protects global freeze state and workqueues
2908 * list. Grab it, set max_active accordingly and add the new
2909 * workqueue to workqueues list.
2910 */
2911 spin_lock(&workqueue_lock);
2912
2913 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2914 for_each_cwq_cpu(cpu, wq)
2915 get_cwq(cpu, wq)->max_active = 0;
2916
2917 list_add(&wq->list, &workqueues);
2918
2919 spin_unlock(&workqueue_lock);
2920
2921 return wq;
2922 err:
2923 if (wq) {
2924 free_cwqs(wq);
2925 free_mayday_mask(wq->mayday_mask);
2926 kfree(wq->rescuer);
2927 kfree(wq);
2928 }
2929 return NULL;
2930 }
2931 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2932
2933 /**
2934 * destroy_workqueue - safely terminate a workqueue
2935 * @wq: target workqueue
2936 *
2937 * Safely destroy a workqueue. All work currently pending will be done first.
2938 */
2939 void destroy_workqueue(struct workqueue_struct *wq)
2940 {
2941 unsigned int cpu;
2942
2943 wq->flags |= WQ_DYING;
2944 flush_workqueue(wq);
2945
2946 /*
2947 * wq list is used to freeze wq, remove from list after
2948 * flushing is complete in case freeze races us.
2949 */
2950 spin_lock(&workqueue_lock);
2951 list_del(&wq->list);
2952 spin_unlock(&workqueue_lock);
2953
2954 /* sanity check */
2955 for_each_cwq_cpu(cpu, wq) {
2956 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2957 int i;
2958
2959 for (i = 0; i < WORK_NR_COLORS; i++)
2960 BUG_ON(cwq->nr_in_flight[i]);
2961 BUG_ON(cwq->nr_active);
2962 BUG_ON(!list_empty(&cwq->delayed_works));
2963 }
2964
2965 if (wq->flags & WQ_RESCUER) {
2966 kthread_stop(wq->rescuer->task);
2967 free_mayday_mask(wq->mayday_mask);
2968 kfree(wq->rescuer);
2969 }
2970
2971 free_cwqs(wq);
2972 kfree(wq);
2973 }
2974 EXPORT_SYMBOL_GPL(destroy_workqueue);
2975
2976 /**
2977 * workqueue_set_max_active - adjust max_active of a workqueue
2978 * @wq: target workqueue
2979 * @max_active: new max_active value.
2980 *
2981 * Set max_active of @wq to @max_active.
2982 *
2983 * CONTEXT:
2984 * Don't call from IRQ context.
2985 */
2986 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2987 {
2988 unsigned int cpu;
2989
2990 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
2991
2992 spin_lock(&workqueue_lock);
2993
2994 wq->saved_max_active = max_active;
2995
2996 for_each_cwq_cpu(cpu, wq) {
2997 struct global_cwq *gcwq = get_gcwq(cpu);
2998
2999 spin_lock_irq(&gcwq->lock);
3000
3001 if (!(wq->flags & WQ_FREEZEABLE) ||
3002 !(gcwq->flags & GCWQ_FREEZING))
3003 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3004
3005 spin_unlock_irq(&gcwq->lock);
3006 }
3007
3008 spin_unlock(&workqueue_lock);
3009 }
3010 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3011
3012 /**
3013 * workqueue_congested - test whether a workqueue is congested
3014 * @cpu: CPU in question
3015 * @wq: target workqueue
3016 *
3017 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3018 * no synchronization around this function and the test result is
3019 * unreliable and only useful as advisory hints or for debugging.
3020 *
3021 * RETURNS:
3022 * %true if congested, %false otherwise.
3023 */
3024 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3025 {
3026 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3027
3028 return !list_empty(&cwq->delayed_works);
3029 }
3030 EXPORT_SYMBOL_GPL(workqueue_congested);
3031
3032 /**
3033 * work_cpu - return the last known associated cpu for @work
3034 * @work: the work of interest
3035 *
3036 * RETURNS:
3037 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3038 */
3039 unsigned int work_cpu(struct work_struct *work)
3040 {
3041 struct global_cwq *gcwq = get_work_gcwq(work);
3042
3043 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3044 }
3045 EXPORT_SYMBOL_GPL(work_cpu);
3046
3047 /**
3048 * work_busy - test whether a work is currently pending or running
3049 * @work: the work to be tested
3050 *
3051 * Test whether @work is currently pending or running. There is no
3052 * synchronization around this function and the test result is
3053 * unreliable and only useful as advisory hints or for debugging.
3054 * Especially for reentrant wqs, the pending state might hide the
3055 * running state.
3056 *
3057 * RETURNS:
3058 * OR'd bitmask of WORK_BUSY_* bits.
3059 */
3060 unsigned int work_busy(struct work_struct *work)
3061 {
3062 struct global_cwq *gcwq = get_work_gcwq(work);
3063 unsigned long flags;
3064 unsigned int ret = 0;
3065
3066 if (!gcwq)
3067 return false;
3068
3069 spin_lock_irqsave(&gcwq->lock, flags);
3070
3071 if (work_pending(work))
3072 ret |= WORK_BUSY_PENDING;
3073 if (find_worker_executing_work(gcwq, work))
3074 ret |= WORK_BUSY_RUNNING;
3075
3076 spin_unlock_irqrestore(&gcwq->lock, flags);
3077
3078 return ret;
3079 }
3080 EXPORT_SYMBOL_GPL(work_busy);
3081
3082 /*
3083 * CPU hotplug.
3084 *
3085 * There are two challenges in supporting CPU hotplug. Firstly, there
3086 * are a lot of assumptions on strong associations among work, cwq and
3087 * gcwq which make migrating pending and scheduled works very
3088 * difficult to implement without impacting hot paths. Secondly,
3089 * gcwqs serve mix of short, long and very long running works making
3090 * blocked draining impractical.
3091 *
3092 * This is solved by allowing a gcwq to be detached from CPU, running
3093 * it with unbound (rogue) workers and allowing it to be reattached
3094 * later if the cpu comes back online. A separate thread is created
3095 * to govern a gcwq in such state and is called the trustee of the
3096 * gcwq.
3097 *
3098 * Trustee states and their descriptions.
3099 *
3100 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3101 * new trustee is started with this state.
3102 *
3103 * IN_CHARGE Once started, trustee will enter this state after
3104 * assuming the manager role and making all existing
3105 * workers rogue. DOWN_PREPARE waits for trustee to
3106 * enter this state. After reaching IN_CHARGE, trustee
3107 * tries to execute the pending worklist until it's empty
3108 * and the state is set to BUTCHER, or the state is set
3109 * to RELEASE.
3110 *
3111 * BUTCHER Command state which is set by the cpu callback after
3112 * the cpu has went down. Once this state is set trustee
3113 * knows that there will be no new works on the worklist
3114 * and once the worklist is empty it can proceed to
3115 * killing idle workers.
3116 *
3117 * RELEASE Command state which is set by the cpu callback if the
3118 * cpu down has been canceled or it has come online
3119 * again. After recognizing this state, trustee stops
3120 * trying to drain or butcher and clears ROGUE, rebinds
3121 * all remaining workers back to the cpu and releases
3122 * manager role.
3123 *
3124 * DONE Trustee will enter this state after BUTCHER or RELEASE
3125 * is complete.
3126 *
3127 * trustee CPU draining
3128 * took over down complete
3129 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3130 * | | ^
3131 * | CPU is back online v return workers |
3132 * ----------------> RELEASE --------------
3133 */
3134
3135 /**
3136 * trustee_wait_event_timeout - timed event wait for trustee
3137 * @cond: condition to wait for
3138 * @timeout: timeout in jiffies
3139 *
3140 * wait_event_timeout() for trustee to use. Handles locking and
3141 * checks for RELEASE request.
3142 *
3143 * CONTEXT:
3144 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3145 * multiple times. To be used by trustee.
3146 *
3147 * RETURNS:
3148 * Positive indicating left time if @cond is satisfied, 0 if timed
3149 * out, -1 if canceled.
3150 */
3151 #define trustee_wait_event_timeout(cond, timeout) ({ \
3152 long __ret = (timeout); \
3153 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3154 __ret) { \
3155 spin_unlock_irq(&gcwq->lock); \
3156 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3157 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3158 __ret); \
3159 spin_lock_irq(&gcwq->lock); \
3160 } \
3161 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3162 })
3163
3164 /**
3165 * trustee_wait_event - event wait for trustee
3166 * @cond: condition to wait for
3167 *
3168 * wait_event() for trustee to use. Automatically handles locking and
3169 * checks for CANCEL request.
3170 *
3171 * CONTEXT:
3172 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3173 * multiple times. To be used by trustee.
3174 *
3175 * RETURNS:
3176 * 0 if @cond is satisfied, -1 if canceled.
3177 */
3178 #define trustee_wait_event(cond) ({ \
3179 long __ret1; \
3180 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3181 __ret1 < 0 ? -1 : 0; \
3182 })
3183
3184 static int __cpuinit trustee_thread(void *__gcwq)
3185 {
3186 struct global_cwq *gcwq = __gcwq;
3187 struct worker *worker;
3188 struct work_struct *work;
3189 struct hlist_node *pos;
3190 long rc;
3191 int i;
3192
3193 BUG_ON(gcwq->cpu != smp_processor_id());
3194
3195 spin_lock_irq(&gcwq->lock);
3196 /*
3197 * Claim the manager position and make all workers rogue.
3198 * Trustee must be bound to the target cpu and can't be
3199 * cancelled.
3200 */
3201 BUG_ON(gcwq->cpu != smp_processor_id());
3202 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3203 BUG_ON(rc < 0);
3204
3205 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3206
3207 list_for_each_entry(worker, &gcwq->idle_list, entry)
3208 worker->flags |= WORKER_ROGUE;
3209
3210 for_each_busy_worker(worker, i, pos, gcwq)
3211 worker->flags |= WORKER_ROGUE;
3212
3213 /*
3214 * Call schedule() so that we cross rq->lock and thus can
3215 * guarantee sched callbacks see the rogue flag. This is
3216 * necessary as scheduler callbacks may be invoked from other
3217 * cpus.
3218 */
3219 spin_unlock_irq(&gcwq->lock);
3220 schedule();
3221 spin_lock_irq(&gcwq->lock);
3222
3223 /*
3224 * Sched callbacks are disabled now. Zap nr_running. After
3225 * this, nr_running stays zero and need_more_worker() and
3226 * keep_working() are always true as long as the worklist is
3227 * not empty.
3228 */
3229 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3230
3231 spin_unlock_irq(&gcwq->lock);
3232 del_timer_sync(&gcwq->idle_timer);
3233 spin_lock_irq(&gcwq->lock);
3234
3235 /*
3236 * We're now in charge. Notify and proceed to drain. We need
3237 * to keep the gcwq running during the whole CPU down
3238 * procedure as other cpu hotunplug callbacks may need to
3239 * flush currently running tasks.
3240 */
3241 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3242 wake_up_all(&gcwq->trustee_wait);
3243
3244 /*
3245 * The original cpu is in the process of dying and may go away
3246 * anytime now. When that happens, we and all workers would
3247 * be migrated to other cpus. Try draining any left work. We
3248 * want to get it over with ASAP - spam rescuers, wake up as
3249 * many idlers as necessary and create new ones till the
3250 * worklist is empty. Note that if the gcwq is frozen, there
3251 * may be frozen works in freezeable cwqs. Don't declare
3252 * completion while frozen.
3253 */
3254 while (gcwq->nr_workers != gcwq->nr_idle ||
3255 gcwq->flags & GCWQ_FREEZING ||
3256 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3257 int nr_works = 0;
3258
3259 list_for_each_entry(work, &gcwq->worklist, entry) {
3260 send_mayday(work);
3261 nr_works++;
3262 }
3263
3264 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3265 if (!nr_works--)
3266 break;
3267 wake_up_process(worker->task);
3268 }
3269
3270 if (need_to_create_worker(gcwq)) {
3271 spin_unlock_irq(&gcwq->lock);
3272 worker = create_worker(gcwq, false);
3273 spin_lock_irq(&gcwq->lock);
3274 if (worker) {
3275 worker->flags |= WORKER_ROGUE;
3276 start_worker(worker);
3277 }
3278 }
3279
3280 /* give a breather */
3281 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3282 break;
3283 }
3284
3285 /*
3286 * Either all works have been scheduled and cpu is down, or
3287 * cpu down has already been canceled. Wait for and butcher
3288 * all workers till we're canceled.
3289 */
3290 do {
3291 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3292 while (!list_empty(&gcwq->idle_list))
3293 destroy_worker(list_first_entry(&gcwq->idle_list,
3294 struct worker, entry));
3295 } while (gcwq->nr_workers && rc >= 0);
3296
3297 /*
3298 * At this point, either draining has completed and no worker
3299 * is left, or cpu down has been canceled or the cpu is being
3300 * brought back up. There shouldn't be any idle one left.
3301 * Tell the remaining busy ones to rebind once it finishes the
3302 * currently scheduled works by scheduling the rebind_work.
3303 */
3304 WARN_ON(!list_empty(&gcwq->idle_list));
3305
3306 for_each_busy_worker(worker, i, pos, gcwq) {
3307 struct work_struct *rebind_work = &worker->rebind_work;
3308
3309 /*
3310 * Rebind_work may race with future cpu hotplug
3311 * operations. Use a separate flag to mark that
3312 * rebinding is scheduled.
3313 */
3314 worker->flags |= WORKER_REBIND;
3315 worker->flags &= ~WORKER_ROGUE;
3316
3317 /* queue rebind_work, wq doesn't matter, use the default one */
3318 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3319 work_data_bits(rebind_work)))
3320 continue;
3321
3322 debug_work_activate(rebind_work);
3323 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3324 worker->scheduled.next,
3325 work_color_to_flags(WORK_NO_COLOR));
3326 }
3327
3328 /* relinquish manager role */
3329 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3330
3331 /* notify completion */
3332 gcwq->trustee = NULL;
3333 gcwq->trustee_state = TRUSTEE_DONE;
3334 wake_up_all(&gcwq->trustee_wait);
3335 spin_unlock_irq(&gcwq->lock);
3336 return 0;
3337 }
3338
3339 /**
3340 * wait_trustee_state - wait for trustee to enter the specified state
3341 * @gcwq: gcwq the trustee of interest belongs to
3342 * @state: target state to wait for
3343 *
3344 * Wait for the trustee to reach @state. DONE is already matched.
3345 *
3346 * CONTEXT:
3347 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3348 * multiple times. To be used by cpu_callback.
3349 */
3350 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3351 __releases(&gcwq->lock)
3352 __acquires(&gcwq->lock)
3353 {
3354 if (!(gcwq->trustee_state == state ||
3355 gcwq->trustee_state == TRUSTEE_DONE)) {
3356 spin_unlock_irq(&gcwq->lock);
3357 __wait_event(gcwq->trustee_wait,
3358 gcwq->trustee_state == state ||
3359 gcwq->trustee_state == TRUSTEE_DONE);
3360 spin_lock_irq(&gcwq->lock);
3361 }
3362 }
3363
3364 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3365 unsigned long action,
3366 void *hcpu)
3367 {
3368 unsigned int cpu = (unsigned long)hcpu;
3369 struct global_cwq *gcwq = get_gcwq(cpu);
3370 struct task_struct *new_trustee = NULL;
3371 struct worker *uninitialized_var(new_worker);
3372 unsigned long flags;
3373
3374 action &= ~CPU_TASKS_FROZEN;
3375
3376 switch (action) {
3377 case CPU_DOWN_PREPARE:
3378 new_trustee = kthread_create(trustee_thread, gcwq,
3379 "workqueue_trustee/%d\n", cpu);
3380 if (IS_ERR(new_trustee))
3381 return notifier_from_errno(PTR_ERR(new_trustee));
3382 kthread_bind(new_trustee, cpu);
3383 /* fall through */
3384 case CPU_UP_PREPARE:
3385 BUG_ON(gcwq->first_idle);
3386 new_worker = create_worker(gcwq, false);
3387 if (!new_worker) {
3388 if (new_trustee)
3389 kthread_stop(new_trustee);
3390 return NOTIFY_BAD;
3391 }
3392 }
3393
3394 /* some are called w/ irq disabled, don't disturb irq status */
3395 spin_lock_irqsave(&gcwq->lock, flags);
3396
3397 switch (action) {
3398 case CPU_DOWN_PREPARE:
3399 /* initialize trustee and tell it to acquire the gcwq */
3400 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3401 gcwq->trustee = new_trustee;
3402 gcwq->trustee_state = TRUSTEE_START;
3403 wake_up_process(gcwq->trustee);
3404 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3405 /* fall through */
3406 case CPU_UP_PREPARE:
3407 BUG_ON(gcwq->first_idle);
3408 gcwq->first_idle = new_worker;
3409 break;
3410
3411 case CPU_DYING:
3412 /*
3413 * Before this, the trustee and all workers except for
3414 * the ones which are still executing works from
3415 * before the last CPU down must be on the cpu. After
3416 * this, they'll all be diasporas.
3417 */
3418 gcwq->flags |= GCWQ_DISASSOCIATED;
3419 break;
3420
3421 case CPU_POST_DEAD:
3422 gcwq->trustee_state = TRUSTEE_BUTCHER;
3423 /* fall through */
3424 case CPU_UP_CANCELED:
3425 destroy_worker(gcwq->first_idle);
3426 gcwq->first_idle = NULL;
3427 break;
3428
3429 case CPU_DOWN_FAILED:
3430 case CPU_ONLINE:
3431 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3432 if (gcwq->trustee_state != TRUSTEE_DONE) {
3433 gcwq->trustee_state = TRUSTEE_RELEASE;
3434 wake_up_process(gcwq->trustee);
3435 wait_trustee_state(gcwq, TRUSTEE_DONE);
3436 }
3437
3438 /*
3439 * Trustee is done and there might be no worker left.
3440 * Put the first_idle in and request a real manager to
3441 * take a look.
3442 */
3443 spin_unlock_irq(&gcwq->lock);
3444 kthread_bind(gcwq->first_idle->task, cpu);
3445 spin_lock_irq(&gcwq->lock);
3446 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3447 start_worker(gcwq->first_idle);
3448 gcwq->first_idle = NULL;
3449 break;
3450 }
3451
3452 spin_unlock_irqrestore(&gcwq->lock, flags);
3453
3454 return notifier_from_errno(0);
3455 }
3456
3457 #ifdef CONFIG_SMP
3458
3459 struct work_for_cpu {
3460 struct completion completion;
3461 long (*fn)(void *);
3462 void *arg;
3463 long ret;
3464 };
3465
3466 static int do_work_for_cpu(void *_wfc)
3467 {
3468 struct work_for_cpu *wfc = _wfc;
3469 wfc->ret = wfc->fn(wfc->arg);
3470 complete(&wfc->completion);
3471 return 0;
3472 }
3473
3474 /**
3475 * work_on_cpu - run a function in user context on a particular cpu
3476 * @cpu: the cpu to run on
3477 * @fn: the function to run
3478 * @arg: the function arg
3479 *
3480 * This will return the value @fn returns.
3481 * It is up to the caller to ensure that the cpu doesn't go offline.
3482 * The caller must not hold any locks which would prevent @fn from completing.
3483 */
3484 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3485 {
3486 struct task_struct *sub_thread;
3487 struct work_for_cpu wfc = {
3488 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3489 .fn = fn,
3490 .arg = arg,
3491 };
3492
3493 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3494 if (IS_ERR(sub_thread))
3495 return PTR_ERR(sub_thread);
3496 kthread_bind(sub_thread, cpu);
3497 wake_up_process(sub_thread);
3498 wait_for_completion(&wfc.completion);
3499 return wfc.ret;
3500 }
3501 EXPORT_SYMBOL_GPL(work_on_cpu);
3502 #endif /* CONFIG_SMP */
3503
3504 #ifdef CONFIG_FREEZER
3505
3506 /**
3507 * freeze_workqueues_begin - begin freezing workqueues
3508 *
3509 * Start freezing workqueues. After this function returns, all
3510 * freezeable workqueues will queue new works to their frozen_works
3511 * list instead of gcwq->worklist.
3512 *
3513 * CONTEXT:
3514 * Grabs and releases workqueue_lock and gcwq->lock's.
3515 */
3516 void freeze_workqueues_begin(void)
3517 {
3518 unsigned int cpu;
3519
3520 spin_lock(&workqueue_lock);
3521
3522 BUG_ON(workqueue_freezing);
3523 workqueue_freezing = true;
3524
3525 for_each_gcwq_cpu(cpu) {
3526 struct global_cwq *gcwq = get_gcwq(cpu);
3527 struct workqueue_struct *wq;
3528
3529 spin_lock_irq(&gcwq->lock);
3530
3531 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3532 gcwq->flags |= GCWQ_FREEZING;
3533
3534 list_for_each_entry(wq, &workqueues, list) {
3535 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3536
3537 if (cwq && wq->flags & WQ_FREEZEABLE)
3538 cwq->max_active = 0;
3539 }
3540
3541 spin_unlock_irq(&gcwq->lock);
3542 }
3543
3544 spin_unlock(&workqueue_lock);
3545 }
3546
3547 /**
3548 * freeze_workqueues_busy - are freezeable workqueues still busy?
3549 *
3550 * Check whether freezing is complete. This function must be called
3551 * between freeze_workqueues_begin() and thaw_workqueues().
3552 *
3553 * CONTEXT:
3554 * Grabs and releases workqueue_lock.
3555 *
3556 * RETURNS:
3557 * %true if some freezeable workqueues are still busy. %false if
3558 * freezing is complete.
3559 */
3560 bool freeze_workqueues_busy(void)
3561 {
3562 unsigned int cpu;
3563 bool busy = false;
3564
3565 spin_lock(&workqueue_lock);
3566
3567 BUG_ON(!workqueue_freezing);
3568
3569 for_each_gcwq_cpu(cpu) {
3570 struct workqueue_struct *wq;
3571 /*
3572 * nr_active is monotonically decreasing. It's safe
3573 * to peek without lock.
3574 */
3575 list_for_each_entry(wq, &workqueues, list) {
3576 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3577
3578 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3579 continue;
3580
3581 BUG_ON(cwq->nr_active < 0);
3582 if (cwq->nr_active) {
3583 busy = true;
3584 goto out_unlock;
3585 }
3586 }
3587 }
3588 out_unlock:
3589 spin_unlock(&workqueue_lock);
3590 return busy;
3591 }
3592
3593 /**
3594 * thaw_workqueues - thaw workqueues
3595 *
3596 * Thaw workqueues. Normal queueing is restored and all collected
3597 * frozen works are transferred to their respective gcwq worklists.
3598 *
3599 * CONTEXT:
3600 * Grabs and releases workqueue_lock and gcwq->lock's.
3601 */
3602 void thaw_workqueues(void)
3603 {
3604 unsigned int cpu;
3605
3606 spin_lock(&workqueue_lock);
3607
3608 if (!workqueue_freezing)
3609 goto out_unlock;
3610
3611 for_each_gcwq_cpu(cpu) {
3612 struct global_cwq *gcwq = get_gcwq(cpu);
3613 struct workqueue_struct *wq;
3614
3615 spin_lock_irq(&gcwq->lock);
3616
3617 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3618 gcwq->flags &= ~GCWQ_FREEZING;
3619
3620 list_for_each_entry(wq, &workqueues, list) {
3621 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3622
3623 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3624 continue;
3625
3626 /* restore max_active and repopulate worklist */
3627 cwq->max_active = wq->saved_max_active;
3628
3629 while (!list_empty(&cwq->delayed_works) &&
3630 cwq->nr_active < cwq->max_active)
3631 cwq_activate_first_delayed(cwq);
3632 }
3633
3634 wake_up_worker(gcwq);
3635
3636 spin_unlock_irq(&gcwq->lock);
3637 }
3638
3639 workqueue_freezing = false;
3640 out_unlock:
3641 spin_unlock(&workqueue_lock);
3642 }
3643 #endif /* CONFIG_FREEZER */
3644
3645 static int __init init_workqueues(void)
3646 {
3647 unsigned int cpu;
3648 int i;
3649
3650 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3651
3652 /* initialize gcwqs */
3653 for_each_gcwq_cpu(cpu) {
3654 struct global_cwq *gcwq = get_gcwq(cpu);
3655
3656 spin_lock_init(&gcwq->lock);
3657 INIT_LIST_HEAD(&gcwq->worklist);
3658 gcwq->cpu = cpu;
3659 gcwq->flags |= GCWQ_DISASSOCIATED;
3660
3661 INIT_LIST_HEAD(&gcwq->idle_list);
3662 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3663 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3664
3665 init_timer_deferrable(&gcwq->idle_timer);
3666 gcwq->idle_timer.function = idle_worker_timeout;
3667 gcwq->idle_timer.data = (unsigned long)gcwq;
3668
3669 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3670 (unsigned long)gcwq);
3671
3672 ida_init(&gcwq->worker_ida);
3673
3674 gcwq->trustee_state = TRUSTEE_DONE;
3675 init_waitqueue_head(&gcwq->trustee_wait);
3676 }
3677
3678 /* create the initial worker */
3679 for_each_online_gcwq_cpu(cpu) {
3680 struct global_cwq *gcwq = get_gcwq(cpu);
3681 struct worker *worker;
3682
3683 if (cpu != WORK_CPU_UNBOUND)
3684 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3685 worker = create_worker(gcwq, true);
3686 BUG_ON(!worker);
3687 spin_lock_irq(&gcwq->lock);
3688 start_worker(worker);
3689 spin_unlock_irq(&gcwq->lock);
3690 }
3691
3692 system_wq = alloc_workqueue("events", 0, 0);
3693 system_long_wq = alloc_workqueue("events_long", 0, 0);
3694 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3695 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3696 WQ_UNBOUND_MAX_ACTIVE);
3697 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
3698 return 0;
3699 }
3700 early_initcall(init_workqueues);
This page took 0.11589 seconds and 5 git commands to generate.