Merge git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * assoc_mutex of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
70
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
83
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
87
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
102 HIGHPRI_NICE_LEVEL = -20,
103 };
104
105 /*
106 * Structure fields follow one of the following exclusion rules.
107 *
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
110 *
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
114 * L: gcwq->lock protected. Access with gcwq->lock held.
115 *
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
120 *
121 * F: wq->flush_mutex protected.
122 *
123 * W: workqueue_lock protected.
124 */
125
126 struct global_cwq;
127 struct worker_pool;
128
129 /*
130 * The poor guys doing the actual heavy lifting. All on-duty workers
131 * are either serving the manager role, on idle list or on busy hash.
132 */
133 struct worker {
134 /* on idle list while idle, on busy hash table while busy */
135 union {
136 struct list_head entry; /* L: while idle */
137 struct hlist_node hentry; /* L: while busy */
138 };
139
140 struct work_struct *current_work; /* L: work being processed */
141 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
142 struct list_head scheduled; /* L: scheduled works */
143 struct task_struct *task; /* I: worker task */
144 struct worker_pool *pool; /* I: the associated pool */
145 /* 64 bytes boundary on 64bit, 32 on 32bit */
146 unsigned long last_active; /* L: last active timestamp */
147 unsigned int flags; /* X: flags */
148 int id; /* I: worker id */
149
150 /* for rebinding worker to CPU */
151 struct work_struct rebind_work; /* L: for busy worker */
152 };
153
154 struct worker_pool {
155 struct global_cwq *gcwq; /* I: the owning gcwq */
156 unsigned int flags; /* X: flags */
157
158 struct list_head worklist; /* L: list of pending works */
159 int nr_workers; /* L: total number of workers */
160
161 /* nr_idle includes the ones off idle_list for rebinding */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
168 struct mutex assoc_mutex; /* protect GCWQ_DISASSOCIATED */
169 struct ida worker_ida; /* L: for worker IDs */
170 };
171
172 /*
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
176 */
177 struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
180 unsigned int flags; /* L: GCWQ_* flags */
181
182 /* workers are chained either in busy_hash or pool idle_list */
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
188 } ____cacheline_aligned_in_smp;
189
190 /*
191 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
192 * work_struct->data are used for flags and thus cwqs need to be
193 * aligned at two's power of the number of flag bits.
194 */
195 struct cpu_workqueue_struct {
196 struct worker_pool *pool; /* I: the associated pool */
197 struct workqueue_struct *wq; /* I: the owning workqueue */
198 int work_color; /* L: current color */
199 int flush_color; /* L: flushing color */
200 int nr_in_flight[WORK_NR_COLORS];
201 /* L: nr of in_flight works */
202 int nr_active; /* L: nr of active works */
203 int max_active; /* L: max active works */
204 struct list_head delayed_works; /* L: delayed works */
205 };
206
207 /*
208 * Structure used to wait for workqueue flush.
209 */
210 struct wq_flusher {
211 struct list_head list; /* F: list of flushers */
212 int flush_color; /* F: flush color waiting for */
213 struct completion done; /* flush completion */
214 };
215
216 /*
217 * All cpumasks are assumed to be always set on UP and thus can't be
218 * used to determine whether there's something to be done.
219 */
220 #ifdef CONFIG_SMP
221 typedef cpumask_var_t mayday_mask_t;
222 #define mayday_test_and_set_cpu(cpu, mask) \
223 cpumask_test_and_set_cpu((cpu), (mask))
224 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
225 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
226 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
227 #define free_mayday_mask(mask) free_cpumask_var((mask))
228 #else
229 typedef unsigned long mayday_mask_t;
230 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
231 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
232 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
233 #define alloc_mayday_mask(maskp, gfp) true
234 #define free_mayday_mask(mask) do { } while (0)
235 #endif
236
237 /*
238 * The externally visible workqueue abstraction is an array of
239 * per-CPU workqueues:
240 */
241 struct workqueue_struct {
242 unsigned int flags; /* W: WQ_* flags */
243 union {
244 struct cpu_workqueue_struct __percpu *pcpu;
245 struct cpu_workqueue_struct *single;
246 unsigned long v;
247 } cpu_wq; /* I: cwq's */
248 struct list_head list; /* W: list of all workqueues */
249
250 struct mutex flush_mutex; /* protects wq flushing */
251 int work_color; /* F: current work color */
252 int flush_color; /* F: current flush color */
253 atomic_t nr_cwqs_to_flush; /* flush in progress */
254 struct wq_flusher *first_flusher; /* F: first flusher */
255 struct list_head flusher_queue; /* F: flush waiters */
256 struct list_head flusher_overflow; /* F: flush overflow list */
257
258 mayday_mask_t mayday_mask; /* cpus requesting rescue */
259 struct worker *rescuer; /* I: rescue worker */
260
261 int nr_drainers; /* W: drain in progress */
262 int saved_max_active; /* W: saved cwq max_active */
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[]; /* I: workqueue name */
267 };
268
269 struct workqueue_struct *system_wq __read_mostly;
270 EXPORT_SYMBOL_GPL(system_wq);
271 struct workqueue_struct *system_highpri_wq __read_mostly;
272 EXPORT_SYMBOL_GPL(system_highpri_wq);
273 struct workqueue_struct *system_long_wq __read_mostly;
274 EXPORT_SYMBOL_GPL(system_long_wq);
275 struct workqueue_struct *system_unbound_wq __read_mostly;
276 EXPORT_SYMBOL_GPL(system_unbound_wq);
277 struct workqueue_struct *system_freezable_wq __read_mostly;
278 EXPORT_SYMBOL_GPL(system_freezable_wq);
279
280 #define CREATE_TRACE_POINTS
281 #include <trace/events/workqueue.h>
282
283 #define for_each_worker_pool(pool, gcwq) \
284 for ((pool) = &(gcwq)->pools[0]; \
285 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
286
287 #define for_each_busy_worker(worker, i, pos, gcwq) \
288 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
289 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
290
291 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
292 unsigned int sw)
293 {
294 if (cpu < nr_cpu_ids) {
295 if (sw & 1) {
296 cpu = cpumask_next(cpu, mask);
297 if (cpu < nr_cpu_ids)
298 return cpu;
299 }
300 if (sw & 2)
301 return WORK_CPU_UNBOUND;
302 }
303 return WORK_CPU_NONE;
304 }
305
306 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
307 struct workqueue_struct *wq)
308 {
309 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
310 }
311
312 /*
313 * CPU iterators
314 *
315 * An extra gcwq is defined for an invalid cpu number
316 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
317 * specific CPU. The following iterators are similar to
318 * for_each_*_cpu() iterators but also considers the unbound gcwq.
319 *
320 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
321 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
322 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
323 * WORK_CPU_UNBOUND for unbound workqueues
324 */
325 #define for_each_gcwq_cpu(cpu) \
326 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
327 (cpu) < WORK_CPU_NONE; \
328 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
329
330 #define for_each_online_gcwq_cpu(cpu) \
331 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
332 (cpu) < WORK_CPU_NONE; \
333 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
334
335 #define for_each_cwq_cpu(cpu, wq) \
336 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
337 (cpu) < WORK_CPU_NONE; \
338 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
339
340 #ifdef CONFIG_DEBUG_OBJECTS_WORK
341
342 static struct debug_obj_descr work_debug_descr;
343
344 static void *work_debug_hint(void *addr)
345 {
346 return ((struct work_struct *) addr)->func;
347 }
348
349 /*
350 * fixup_init is called when:
351 * - an active object is initialized
352 */
353 static int work_fixup_init(void *addr, enum debug_obj_state state)
354 {
355 struct work_struct *work = addr;
356
357 switch (state) {
358 case ODEBUG_STATE_ACTIVE:
359 cancel_work_sync(work);
360 debug_object_init(work, &work_debug_descr);
361 return 1;
362 default:
363 return 0;
364 }
365 }
366
367 /*
368 * fixup_activate is called when:
369 * - an active object is activated
370 * - an unknown object is activated (might be a statically initialized object)
371 */
372 static int work_fixup_activate(void *addr, enum debug_obj_state state)
373 {
374 struct work_struct *work = addr;
375
376 switch (state) {
377
378 case ODEBUG_STATE_NOTAVAILABLE:
379 /*
380 * This is not really a fixup. The work struct was
381 * statically initialized. We just make sure that it
382 * is tracked in the object tracker.
383 */
384 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
385 debug_object_init(work, &work_debug_descr);
386 debug_object_activate(work, &work_debug_descr);
387 return 0;
388 }
389 WARN_ON_ONCE(1);
390 return 0;
391
392 case ODEBUG_STATE_ACTIVE:
393 WARN_ON(1);
394
395 default:
396 return 0;
397 }
398 }
399
400 /*
401 * fixup_free is called when:
402 * - an active object is freed
403 */
404 static int work_fixup_free(void *addr, enum debug_obj_state state)
405 {
406 struct work_struct *work = addr;
407
408 switch (state) {
409 case ODEBUG_STATE_ACTIVE:
410 cancel_work_sync(work);
411 debug_object_free(work, &work_debug_descr);
412 return 1;
413 default:
414 return 0;
415 }
416 }
417
418 static struct debug_obj_descr work_debug_descr = {
419 .name = "work_struct",
420 .debug_hint = work_debug_hint,
421 .fixup_init = work_fixup_init,
422 .fixup_activate = work_fixup_activate,
423 .fixup_free = work_fixup_free,
424 };
425
426 static inline void debug_work_activate(struct work_struct *work)
427 {
428 debug_object_activate(work, &work_debug_descr);
429 }
430
431 static inline void debug_work_deactivate(struct work_struct *work)
432 {
433 debug_object_deactivate(work, &work_debug_descr);
434 }
435
436 void __init_work(struct work_struct *work, int onstack)
437 {
438 if (onstack)
439 debug_object_init_on_stack(work, &work_debug_descr);
440 else
441 debug_object_init(work, &work_debug_descr);
442 }
443 EXPORT_SYMBOL_GPL(__init_work);
444
445 void destroy_work_on_stack(struct work_struct *work)
446 {
447 debug_object_free(work, &work_debug_descr);
448 }
449 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
450
451 #else
452 static inline void debug_work_activate(struct work_struct *work) { }
453 static inline void debug_work_deactivate(struct work_struct *work) { }
454 #endif
455
456 /* Serializes the accesses to the list of workqueues. */
457 static DEFINE_SPINLOCK(workqueue_lock);
458 static LIST_HEAD(workqueues);
459 static bool workqueue_freezing; /* W: have wqs started freezing? */
460
461 /*
462 * The almighty global cpu workqueues. nr_running is the only field
463 * which is expected to be used frequently by other cpus via
464 * try_to_wake_up(). Put it in a separate cacheline.
465 */
466 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
467 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
468
469 /*
470 * Global cpu workqueue and nr_running counter for unbound gcwq. The
471 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
472 * workers have WORKER_UNBOUND set.
473 */
474 static struct global_cwq unbound_global_cwq;
475 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
476 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
477 };
478
479 static int worker_thread(void *__worker);
480
481 static int worker_pool_pri(struct worker_pool *pool)
482 {
483 return pool - pool->gcwq->pools;
484 }
485
486 static struct global_cwq *get_gcwq(unsigned int cpu)
487 {
488 if (cpu != WORK_CPU_UNBOUND)
489 return &per_cpu(global_cwq, cpu);
490 else
491 return &unbound_global_cwq;
492 }
493
494 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
495 {
496 int cpu = pool->gcwq->cpu;
497 int idx = worker_pool_pri(pool);
498
499 if (cpu != WORK_CPU_UNBOUND)
500 return &per_cpu(pool_nr_running, cpu)[idx];
501 else
502 return &unbound_pool_nr_running[idx];
503 }
504
505 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
506 struct workqueue_struct *wq)
507 {
508 if (!(wq->flags & WQ_UNBOUND)) {
509 if (likely(cpu < nr_cpu_ids))
510 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
511 } else if (likely(cpu == WORK_CPU_UNBOUND))
512 return wq->cpu_wq.single;
513 return NULL;
514 }
515
516 static unsigned int work_color_to_flags(int color)
517 {
518 return color << WORK_STRUCT_COLOR_SHIFT;
519 }
520
521 static int get_work_color(struct work_struct *work)
522 {
523 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
524 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
525 }
526
527 static int work_next_color(int color)
528 {
529 return (color + 1) % WORK_NR_COLORS;
530 }
531
532 /*
533 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
534 * contain the pointer to the queued cwq. Once execution starts, the flag
535 * is cleared and the high bits contain OFFQ flags and CPU number.
536 *
537 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
538 * and clear_work_data() can be used to set the cwq, cpu or clear
539 * work->data. These functions should only be called while the work is
540 * owned - ie. while the PENDING bit is set.
541 *
542 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
543 * a work. gcwq is available once the work has been queued anywhere after
544 * initialization until it is sync canceled. cwq is available only while
545 * the work item is queued.
546 *
547 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
548 * canceled. While being canceled, a work item may have its PENDING set
549 * but stay off timer and worklist for arbitrarily long and nobody should
550 * try to steal the PENDING bit.
551 */
552 static inline void set_work_data(struct work_struct *work, unsigned long data,
553 unsigned long flags)
554 {
555 BUG_ON(!work_pending(work));
556 atomic_long_set(&work->data, data | flags | work_static(work));
557 }
558
559 static void set_work_cwq(struct work_struct *work,
560 struct cpu_workqueue_struct *cwq,
561 unsigned long extra_flags)
562 {
563 set_work_data(work, (unsigned long)cwq,
564 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
565 }
566
567 static void set_work_cpu_and_clear_pending(struct work_struct *work,
568 unsigned int cpu)
569 {
570 /*
571 * The following wmb is paired with the implied mb in
572 * test_and_set_bit(PENDING) and ensures all updates to @work made
573 * here are visible to and precede any updates by the next PENDING
574 * owner.
575 */
576 smp_wmb();
577 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
578 }
579
580 static void clear_work_data(struct work_struct *work)
581 {
582 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
583 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
584 }
585
586 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
587 {
588 unsigned long data = atomic_long_read(&work->data);
589
590 if (data & WORK_STRUCT_CWQ)
591 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
592 else
593 return NULL;
594 }
595
596 static struct global_cwq *get_work_gcwq(struct work_struct *work)
597 {
598 unsigned long data = atomic_long_read(&work->data);
599 unsigned int cpu;
600
601 if (data & WORK_STRUCT_CWQ)
602 return ((struct cpu_workqueue_struct *)
603 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
604
605 cpu = data >> WORK_OFFQ_CPU_SHIFT;
606 if (cpu == WORK_CPU_NONE)
607 return NULL;
608
609 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
610 return get_gcwq(cpu);
611 }
612
613 static void mark_work_canceling(struct work_struct *work)
614 {
615 struct global_cwq *gcwq = get_work_gcwq(work);
616 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
617
618 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
619 WORK_STRUCT_PENDING);
620 }
621
622 static bool work_is_canceling(struct work_struct *work)
623 {
624 unsigned long data = atomic_long_read(&work->data);
625
626 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
627 }
628
629 /*
630 * Policy functions. These define the policies on how the global worker
631 * pools are managed. Unless noted otherwise, these functions assume that
632 * they're being called with gcwq->lock held.
633 */
634
635 static bool __need_more_worker(struct worker_pool *pool)
636 {
637 return !atomic_read(get_pool_nr_running(pool));
638 }
639
640 /*
641 * Need to wake up a worker? Called from anything but currently
642 * running workers.
643 *
644 * Note that, because unbound workers never contribute to nr_running, this
645 * function will always return %true for unbound gcwq as long as the
646 * worklist isn't empty.
647 */
648 static bool need_more_worker(struct worker_pool *pool)
649 {
650 return !list_empty(&pool->worklist) && __need_more_worker(pool);
651 }
652
653 /* Can I start working? Called from busy but !running workers. */
654 static bool may_start_working(struct worker_pool *pool)
655 {
656 return pool->nr_idle;
657 }
658
659 /* Do I need to keep working? Called from currently running workers. */
660 static bool keep_working(struct worker_pool *pool)
661 {
662 atomic_t *nr_running = get_pool_nr_running(pool);
663
664 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
665 }
666
667 /* Do we need a new worker? Called from manager. */
668 static bool need_to_create_worker(struct worker_pool *pool)
669 {
670 return need_more_worker(pool) && !may_start_working(pool);
671 }
672
673 /* Do I need to be the manager? */
674 static bool need_to_manage_workers(struct worker_pool *pool)
675 {
676 return need_to_create_worker(pool) ||
677 (pool->flags & POOL_MANAGE_WORKERS);
678 }
679
680 /* Do we have too many workers and should some go away? */
681 static bool too_many_workers(struct worker_pool *pool)
682 {
683 bool managing = pool->flags & POOL_MANAGING_WORKERS;
684 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
685 int nr_busy = pool->nr_workers - nr_idle;
686
687 /*
688 * nr_idle and idle_list may disagree if idle rebinding is in
689 * progress. Never return %true if idle_list is empty.
690 */
691 if (list_empty(&pool->idle_list))
692 return false;
693
694 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
695 }
696
697 /*
698 * Wake up functions.
699 */
700
701 /* Return the first worker. Safe with preemption disabled */
702 static struct worker *first_worker(struct worker_pool *pool)
703 {
704 if (unlikely(list_empty(&pool->idle_list)))
705 return NULL;
706
707 return list_first_entry(&pool->idle_list, struct worker, entry);
708 }
709
710 /**
711 * wake_up_worker - wake up an idle worker
712 * @pool: worker pool to wake worker from
713 *
714 * Wake up the first idle worker of @pool.
715 *
716 * CONTEXT:
717 * spin_lock_irq(gcwq->lock).
718 */
719 static void wake_up_worker(struct worker_pool *pool)
720 {
721 struct worker *worker = first_worker(pool);
722
723 if (likely(worker))
724 wake_up_process(worker->task);
725 }
726
727 /**
728 * wq_worker_waking_up - a worker is waking up
729 * @task: task waking up
730 * @cpu: CPU @task is waking up to
731 *
732 * This function is called during try_to_wake_up() when a worker is
733 * being awoken.
734 *
735 * CONTEXT:
736 * spin_lock_irq(rq->lock)
737 */
738 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
739 {
740 struct worker *worker = kthread_data(task);
741
742 if (!(worker->flags & WORKER_NOT_RUNNING)) {
743 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
744 atomic_inc(get_pool_nr_running(worker->pool));
745 }
746 }
747
748 /**
749 * wq_worker_sleeping - a worker is going to sleep
750 * @task: task going to sleep
751 * @cpu: CPU in question, must be the current CPU number
752 *
753 * This function is called during schedule() when a busy worker is
754 * going to sleep. Worker on the same cpu can be woken up by
755 * returning pointer to its task.
756 *
757 * CONTEXT:
758 * spin_lock_irq(rq->lock)
759 *
760 * RETURNS:
761 * Worker task on @cpu to wake up, %NULL if none.
762 */
763 struct task_struct *wq_worker_sleeping(struct task_struct *task,
764 unsigned int cpu)
765 {
766 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
767 struct worker_pool *pool = worker->pool;
768 atomic_t *nr_running = get_pool_nr_running(pool);
769
770 if (worker->flags & WORKER_NOT_RUNNING)
771 return NULL;
772
773 /* this can only happen on the local cpu */
774 BUG_ON(cpu != raw_smp_processor_id());
775
776 /*
777 * The counterpart of the following dec_and_test, implied mb,
778 * worklist not empty test sequence is in insert_work().
779 * Please read comment there.
780 *
781 * NOT_RUNNING is clear. This means that we're bound to and
782 * running on the local cpu w/ rq lock held and preemption
783 * disabled, which in turn means that none else could be
784 * manipulating idle_list, so dereferencing idle_list without gcwq
785 * lock is safe.
786 */
787 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
788 to_wakeup = first_worker(pool);
789 return to_wakeup ? to_wakeup->task : NULL;
790 }
791
792 /**
793 * worker_set_flags - set worker flags and adjust nr_running accordingly
794 * @worker: self
795 * @flags: flags to set
796 * @wakeup: wakeup an idle worker if necessary
797 *
798 * Set @flags in @worker->flags and adjust nr_running accordingly. If
799 * nr_running becomes zero and @wakeup is %true, an idle worker is
800 * woken up.
801 *
802 * CONTEXT:
803 * spin_lock_irq(gcwq->lock)
804 */
805 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
806 bool wakeup)
807 {
808 struct worker_pool *pool = worker->pool;
809
810 WARN_ON_ONCE(worker->task != current);
811
812 /*
813 * If transitioning into NOT_RUNNING, adjust nr_running and
814 * wake up an idle worker as necessary if requested by
815 * @wakeup.
816 */
817 if ((flags & WORKER_NOT_RUNNING) &&
818 !(worker->flags & WORKER_NOT_RUNNING)) {
819 atomic_t *nr_running = get_pool_nr_running(pool);
820
821 if (wakeup) {
822 if (atomic_dec_and_test(nr_running) &&
823 !list_empty(&pool->worklist))
824 wake_up_worker(pool);
825 } else
826 atomic_dec(nr_running);
827 }
828
829 worker->flags |= flags;
830 }
831
832 /**
833 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
834 * @worker: self
835 * @flags: flags to clear
836 *
837 * Clear @flags in @worker->flags and adjust nr_running accordingly.
838 *
839 * CONTEXT:
840 * spin_lock_irq(gcwq->lock)
841 */
842 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
843 {
844 struct worker_pool *pool = worker->pool;
845 unsigned int oflags = worker->flags;
846
847 WARN_ON_ONCE(worker->task != current);
848
849 worker->flags &= ~flags;
850
851 /*
852 * If transitioning out of NOT_RUNNING, increment nr_running. Note
853 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
854 * of multiple flags, not a single flag.
855 */
856 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
857 if (!(worker->flags & WORKER_NOT_RUNNING))
858 atomic_inc(get_pool_nr_running(pool));
859 }
860
861 /**
862 * busy_worker_head - return the busy hash head for a work
863 * @gcwq: gcwq of interest
864 * @work: work to be hashed
865 *
866 * Return hash head of @gcwq for @work.
867 *
868 * CONTEXT:
869 * spin_lock_irq(gcwq->lock).
870 *
871 * RETURNS:
872 * Pointer to the hash head.
873 */
874 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
875 struct work_struct *work)
876 {
877 const int base_shift = ilog2(sizeof(struct work_struct));
878 unsigned long v = (unsigned long)work;
879
880 /* simple shift and fold hash, do we need something better? */
881 v >>= base_shift;
882 v += v >> BUSY_WORKER_HASH_ORDER;
883 v &= BUSY_WORKER_HASH_MASK;
884
885 return &gcwq->busy_hash[v];
886 }
887
888 /**
889 * __find_worker_executing_work - find worker which is executing a work
890 * @gcwq: gcwq of interest
891 * @bwh: hash head as returned by busy_worker_head()
892 * @work: work to find worker for
893 *
894 * Find a worker which is executing @work on @gcwq. @bwh should be
895 * the hash head obtained by calling busy_worker_head() with the same
896 * work.
897 *
898 * CONTEXT:
899 * spin_lock_irq(gcwq->lock).
900 *
901 * RETURNS:
902 * Pointer to worker which is executing @work if found, NULL
903 * otherwise.
904 */
905 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
906 struct hlist_head *bwh,
907 struct work_struct *work)
908 {
909 struct worker *worker;
910 struct hlist_node *tmp;
911
912 hlist_for_each_entry(worker, tmp, bwh, hentry)
913 if (worker->current_work == work)
914 return worker;
915 return NULL;
916 }
917
918 /**
919 * find_worker_executing_work - find worker which is executing a work
920 * @gcwq: gcwq of interest
921 * @work: work to find worker for
922 *
923 * Find a worker which is executing @work on @gcwq. This function is
924 * identical to __find_worker_executing_work() except that this
925 * function calculates @bwh itself.
926 *
927 * CONTEXT:
928 * spin_lock_irq(gcwq->lock).
929 *
930 * RETURNS:
931 * Pointer to worker which is executing @work if found, NULL
932 * otherwise.
933 */
934 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
935 struct work_struct *work)
936 {
937 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
938 work);
939 }
940
941 /**
942 * move_linked_works - move linked works to a list
943 * @work: start of series of works to be scheduled
944 * @head: target list to append @work to
945 * @nextp: out paramter for nested worklist walking
946 *
947 * Schedule linked works starting from @work to @head. Work series to
948 * be scheduled starts at @work and includes any consecutive work with
949 * WORK_STRUCT_LINKED set in its predecessor.
950 *
951 * If @nextp is not NULL, it's updated to point to the next work of
952 * the last scheduled work. This allows move_linked_works() to be
953 * nested inside outer list_for_each_entry_safe().
954 *
955 * CONTEXT:
956 * spin_lock_irq(gcwq->lock).
957 */
958 static void move_linked_works(struct work_struct *work, struct list_head *head,
959 struct work_struct **nextp)
960 {
961 struct work_struct *n;
962
963 /*
964 * Linked worklist will always end before the end of the list,
965 * use NULL for list head.
966 */
967 list_for_each_entry_safe_from(work, n, NULL, entry) {
968 list_move_tail(&work->entry, head);
969 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
970 break;
971 }
972
973 /*
974 * If we're already inside safe list traversal and have moved
975 * multiple works to the scheduled queue, the next position
976 * needs to be updated.
977 */
978 if (nextp)
979 *nextp = n;
980 }
981
982 static void cwq_activate_delayed_work(struct work_struct *work)
983 {
984 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
985
986 trace_workqueue_activate_work(work);
987 move_linked_works(work, &cwq->pool->worklist, NULL);
988 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
989 cwq->nr_active++;
990 }
991
992 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
993 {
994 struct work_struct *work = list_first_entry(&cwq->delayed_works,
995 struct work_struct, entry);
996
997 cwq_activate_delayed_work(work);
998 }
999
1000 /**
1001 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1002 * @cwq: cwq of interest
1003 * @color: color of work which left the queue
1004 *
1005 * A work either has completed or is removed from pending queue,
1006 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1007 *
1008 * CONTEXT:
1009 * spin_lock_irq(gcwq->lock).
1010 */
1011 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1012 {
1013 /* ignore uncolored works */
1014 if (color == WORK_NO_COLOR)
1015 return;
1016
1017 cwq->nr_in_flight[color]--;
1018
1019 cwq->nr_active--;
1020 if (!list_empty(&cwq->delayed_works)) {
1021 /* one down, submit a delayed one */
1022 if (cwq->nr_active < cwq->max_active)
1023 cwq_activate_first_delayed(cwq);
1024 }
1025
1026 /* is flush in progress and are we at the flushing tip? */
1027 if (likely(cwq->flush_color != color))
1028 return;
1029
1030 /* are there still in-flight works? */
1031 if (cwq->nr_in_flight[color])
1032 return;
1033
1034 /* this cwq is done, clear flush_color */
1035 cwq->flush_color = -1;
1036
1037 /*
1038 * If this was the last cwq, wake up the first flusher. It
1039 * will handle the rest.
1040 */
1041 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1042 complete(&cwq->wq->first_flusher->done);
1043 }
1044
1045 /**
1046 * try_to_grab_pending - steal work item from worklist and disable irq
1047 * @work: work item to steal
1048 * @is_dwork: @work is a delayed_work
1049 * @flags: place to store irq state
1050 *
1051 * Try to grab PENDING bit of @work. This function can handle @work in any
1052 * stable state - idle, on timer or on worklist. Return values are
1053 *
1054 * 1 if @work was pending and we successfully stole PENDING
1055 * 0 if @work was idle and we claimed PENDING
1056 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1057 * -ENOENT if someone else is canceling @work, this state may persist
1058 * for arbitrarily long
1059 *
1060 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1061 * interrupted while holding PENDING and @work off queue, irq must be
1062 * disabled on entry. This, combined with delayed_work->timer being
1063 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1064 *
1065 * On successful return, >= 0, irq is disabled and the caller is
1066 * responsible for releasing it using local_irq_restore(*@flags).
1067 *
1068 * This function is safe to call from any context including IRQ handler.
1069 */
1070 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1071 unsigned long *flags)
1072 {
1073 struct global_cwq *gcwq;
1074
1075 local_irq_save(*flags);
1076
1077 /* try to steal the timer if it exists */
1078 if (is_dwork) {
1079 struct delayed_work *dwork = to_delayed_work(work);
1080
1081 /*
1082 * dwork->timer is irqsafe. If del_timer() fails, it's
1083 * guaranteed that the timer is not queued anywhere and not
1084 * running on the local CPU.
1085 */
1086 if (likely(del_timer(&dwork->timer)))
1087 return 1;
1088 }
1089
1090 /* try to claim PENDING the normal way */
1091 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1092 return 0;
1093
1094 /*
1095 * The queueing is in progress, or it is already queued. Try to
1096 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1097 */
1098 gcwq = get_work_gcwq(work);
1099 if (!gcwq)
1100 goto fail;
1101
1102 spin_lock(&gcwq->lock);
1103 if (!list_empty(&work->entry)) {
1104 /*
1105 * This work is queued, but perhaps we locked the wrong gcwq.
1106 * In that case we must see the new value after rmb(), see
1107 * insert_work()->wmb().
1108 */
1109 smp_rmb();
1110 if (gcwq == get_work_gcwq(work)) {
1111 debug_work_deactivate(work);
1112
1113 /*
1114 * A delayed work item cannot be grabbed directly
1115 * because it might have linked NO_COLOR work items
1116 * which, if left on the delayed_list, will confuse
1117 * cwq->nr_active management later on and cause
1118 * stall. Make sure the work item is activated
1119 * before grabbing.
1120 */
1121 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1122 cwq_activate_delayed_work(work);
1123
1124 list_del_init(&work->entry);
1125 cwq_dec_nr_in_flight(get_work_cwq(work),
1126 get_work_color(work));
1127
1128 spin_unlock(&gcwq->lock);
1129 return 1;
1130 }
1131 }
1132 spin_unlock(&gcwq->lock);
1133 fail:
1134 local_irq_restore(*flags);
1135 if (work_is_canceling(work))
1136 return -ENOENT;
1137 cpu_relax();
1138 return -EAGAIN;
1139 }
1140
1141 /**
1142 * insert_work - insert a work into gcwq
1143 * @cwq: cwq @work belongs to
1144 * @work: work to insert
1145 * @head: insertion point
1146 * @extra_flags: extra WORK_STRUCT_* flags to set
1147 *
1148 * Insert @work which belongs to @cwq into @gcwq after @head.
1149 * @extra_flags is or'd to work_struct flags.
1150 *
1151 * CONTEXT:
1152 * spin_lock_irq(gcwq->lock).
1153 */
1154 static void insert_work(struct cpu_workqueue_struct *cwq,
1155 struct work_struct *work, struct list_head *head,
1156 unsigned int extra_flags)
1157 {
1158 struct worker_pool *pool = cwq->pool;
1159
1160 /* we own @work, set data and link */
1161 set_work_cwq(work, cwq, extra_flags);
1162
1163 /*
1164 * Ensure that we get the right work->data if we see the
1165 * result of list_add() below, see try_to_grab_pending().
1166 */
1167 smp_wmb();
1168
1169 list_add_tail(&work->entry, head);
1170
1171 /*
1172 * Ensure either worker_sched_deactivated() sees the above
1173 * list_add_tail() or we see zero nr_running to avoid workers
1174 * lying around lazily while there are works to be processed.
1175 */
1176 smp_mb();
1177
1178 if (__need_more_worker(pool))
1179 wake_up_worker(pool);
1180 }
1181
1182 /*
1183 * Test whether @work is being queued from another work executing on the
1184 * same workqueue. This is rather expensive and should only be used from
1185 * cold paths.
1186 */
1187 static bool is_chained_work(struct workqueue_struct *wq)
1188 {
1189 unsigned long flags;
1190 unsigned int cpu;
1191
1192 for_each_gcwq_cpu(cpu) {
1193 struct global_cwq *gcwq = get_gcwq(cpu);
1194 struct worker *worker;
1195 struct hlist_node *pos;
1196 int i;
1197
1198 spin_lock_irqsave(&gcwq->lock, flags);
1199 for_each_busy_worker(worker, i, pos, gcwq) {
1200 if (worker->task != current)
1201 continue;
1202 spin_unlock_irqrestore(&gcwq->lock, flags);
1203 /*
1204 * I'm @worker, no locking necessary. See if @work
1205 * is headed to the same workqueue.
1206 */
1207 return worker->current_cwq->wq == wq;
1208 }
1209 spin_unlock_irqrestore(&gcwq->lock, flags);
1210 }
1211 return false;
1212 }
1213
1214 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1215 struct work_struct *work)
1216 {
1217 struct global_cwq *gcwq;
1218 struct cpu_workqueue_struct *cwq;
1219 struct list_head *worklist;
1220 unsigned int work_flags;
1221 unsigned int req_cpu = cpu;
1222
1223 /*
1224 * While a work item is PENDING && off queue, a task trying to
1225 * steal the PENDING will busy-loop waiting for it to either get
1226 * queued or lose PENDING. Grabbing PENDING and queueing should
1227 * happen with IRQ disabled.
1228 */
1229 WARN_ON_ONCE(!irqs_disabled());
1230
1231 debug_work_activate(work);
1232
1233 /* if dying, only works from the same workqueue are allowed */
1234 if (unlikely(wq->flags & WQ_DRAINING) &&
1235 WARN_ON_ONCE(!is_chained_work(wq)))
1236 return;
1237
1238 /* determine gcwq to use */
1239 if (!(wq->flags & WQ_UNBOUND)) {
1240 struct global_cwq *last_gcwq;
1241
1242 if (cpu == WORK_CPU_UNBOUND)
1243 cpu = raw_smp_processor_id();
1244
1245 /*
1246 * It's multi cpu. If @work was previously on a different
1247 * cpu, it might still be running there, in which case the
1248 * work needs to be queued on that cpu to guarantee
1249 * non-reentrancy.
1250 */
1251 gcwq = get_gcwq(cpu);
1252 last_gcwq = get_work_gcwq(work);
1253
1254 if (last_gcwq && last_gcwq != gcwq) {
1255 struct worker *worker;
1256
1257 spin_lock(&last_gcwq->lock);
1258
1259 worker = find_worker_executing_work(last_gcwq, work);
1260
1261 if (worker && worker->current_cwq->wq == wq)
1262 gcwq = last_gcwq;
1263 else {
1264 /* meh... not running there, queue here */
1265 spin_unlock(&last_gcwq->lock);
1266 spin_lock(&gcwq->lock);
1267 }
1268 } else {
1269 spin_lock(&gcwq->lock);
1270 }
1271 } else {
1272 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1273 spin_lock(&gcwq->lock);
1274 }
1275
1276 /* gcwq determined, get cwq and queue */
1277 cwq = get_cwq(gcwq->cpu, wq);
1278 trace_workqueue_queue_work(req_cpu, cwq, work);
1279
1280 if (WARN_ON(!list_empty(&work->entry))) {
1281 spin_unlock(&gcwq->lock);
1282 return;
1283 }
1284
1285 cwq->nr_in_flight[cwq->work_color]++;
1286 work_flags = work_color_to_flags(cwq->work_color);
1287
1288 if (likely(cwq->nr_active < cwq->max_active)) {
1289 trace_workqueue_activate_work(work);
1290 cwq->nr_active++;
1291 worklist = &cwq->pool->worklist;
1292 } else {
1293 work_flags |= WORK_STRUCT_DELAYED;
1294 worklist = &cwq->delayed_works;
1295 }
1296
1297 insert_work(cwq, work, worklist, work_flags);
1298
1299 spin_unlock(&gcwq->lock);
1300 }
1301
1302 /**
1303 * queue_work_on - queue work on specific cpu
1304 * @cpu: CPU number to execute work on
1305 * @wq: workqueue to use
1306 * @work: work to queue
1307 *
1308 * Returns %false if @work was already on a queue, %true otherwise.
1309 *
1310 * We queue the work to a specific CPU, the caller must ensure it
1311 * can't go away.
1312 */
1313 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1314 struct work_struct *work)
1315 {
1316 bool ret = false;
1317 unsigned long flags;
1318
1319 local_irq_save(flags);
1320
1321 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1322 __queue_work(cpu, wq, work);
1323 ret = true;
1324 }
1325
1326 local_irq_restore(flags);
1327 return ret;
1328 }
1329 EXPORT_SYMBOL_GPL(queue_work_on);
1330
1331 /**
1332 * queue_work - queue work on a workqueue
1333 * @wq: workqueue to use
1334 * @work: work to queue
1335 *
1336 * Returns %false if @work was already on a queue, %true otherwise.
1337 *
1338 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1339 * it can be processed by another CPU.
1340 */
1341 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1342 {
1343 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1344 }
1345 EXPORT_SYMBOL_GPL(queue_work);
1346
1347 void delayed_work_timer_fn(unsigned long __data)
1348 {
1349 struct delayed_work *dwork = (struct delayed_work *)__data;
1350 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1351
1352 /* should have been called from irqsafe timer with irq already off */
1353 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1354 }
1355 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1356
1357 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1358 struct delayed_work *dwork, unsigned long delay)
1359 {
1360 struct timer_list *timer = &dwork->timer;
1361 struct work_struct *work = &dwork->work;
1362 unsigned int lcpu;
1363
1364 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1365 timer->data != (unsigned long)dwork);
1366 WARN_ON_ONCE(timer_pending(timer));
1367 WARN_ON_ONCE(!list_empty(&work->entry));
1368
1369 /*
1370 * If @delay is 0, queue @dwork->work immediately. This is for
1371 * both optimization and correctness. The earliest @timer can
1372 * expire is on the closest next tick and delayed_work users depend
1373 * on that there's no such delay when @delay is 0.
1374 */
1375 if (!delay) {
1376 __queue_work(cpu, wq, &dwork->work);
1377 return;
1378 }
1379
1380 timer_stats_timer_set_start_info(&dwork->timer);
1381
1382 /*
1383 * This stores cwq for the moment, for the timer_fn. Note that the
1384 * work's gcwq is preserved to allow reentrance detection for
1385 * delayed works.
1386 */
1387 if (!(wq->flags & WQ_UNBOUND)) {
1388 struct global_cwq *gcwq = get_work_gcwq(work);
1389
1390 /*
1391 * If we cannot get the last gcwq from @work directly,
1392 * select the last CPU such that it avoids unnecessarily
1393 * triggering non-reentrancy check in __queue_work().
1394 */
1395 lcpu = cpu;
1396 if (gcwq)
1397 lcpu = gcwq->cpu;
1398 if (lcpu == WORK_CPU_UNBOUND)
1399 lcpu = raw_smp_processor_id();
1400 } else {
1401 lcpu = WORK_CPU_UNBOUND;
1402 }
1403
1404 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1405
1406 dwork->cpu = cpu;
1407 timer->expires = jiffies + delay;
1408
1409 if (unlikely(cpu != WORK_CPU_UNBOUND))
1410 add_timer_on(timer, cpu);
1411 else
1412 add_timer(timer);
1413 }
1414
1415 /**
1416 * queue_delayed_work_on - queue work on specific CPU after delay
1417 * @cpu: CPU number to execute work on
1418 * @wq: workqueue to use
1419 * @dwork: work to queue
1420 * @delay: number of jiffies to wait before queueing
1421 *
1422 * Returns %false if @work was already on a queue, %true otherwise. If
1423 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1424 * execution.
1425 */
1426 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1427 struct delayed_work *dwork, unsigned long delay)
1428 {
1429 struct work_struct *work = &dwork->work;
1430 bool ret = false;
1431 unsigned long flags;
1432
1433 /* read the comment in __queue_work() */
1434 local_irq_save(flags);
1435
1436 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1437 __queue_delayed_work(cpu, wq, dwork, delay);
1438 ret = true;
1439 }
1440
1441 local_irq_restore(flags);
1442 return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1445
1446 /**
1447 * queue_delayed_work - queue work on a workqueue after delay
1448 * @wq: workqueue to use
1449 * @dwork: delayable work to queue
1450 * @delay: number of jiffies to wait before queueing
1451 *
1452 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1453 */
1454 bool queue_delayed_work(struct workqueue_struct *wq,
1455 struct delayed_work *dwork, unsigned long delay)
1456 {
1457 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1458 }
1459 EXPORT_SYMBOL_GPL(queue_delayed_work);
1460
1461 /**
1462 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1463 * @cpu: CPU number to execute work on
1464 * @wq: workqueue to use
1465 * @dwork: work to queue
1466 * @delay: number of jiffies to wait before queueing
1467 *
1468 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1469 * modify @dwork's timer so that it expires after @delay. If @delay is
1470 * zero, @work is guaranteed to be scheduled immediately regardless of its
1471 * current state.
1472 *
1473 * Returns %false if @dwork was idle and queued, %true if @dwork was
1474 * pending and its timer was modified.
1475 *
1476 * This function is safe to call from any context including IRQ handler.
1477 * See try_to_grab_pending() for details.
1478 */
1479 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1480 struct delayed_work *dwork, unsigned long delay)
1481 {
1482 unsigned long flags;
1483 int ret;
1484
1485 do {
1486 ret = try_to_grab_pending(&dwork->work, true, &flags);
1487 } while (unlikely(ret == -EAGAIN));
1488
1489 if (likely(ret >= 0)) {
1490 __queue_delayed_work(cpu, wq, dwork, delay);
1491 local_irq_restore(flags);
1492 }
1493
1494 /* -ENOENT from try_to_grab_pending() becomes %true */
1495 return ret;
1496 }
1497 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1498
1499 /**
1500 * mod_delayed_work - modify delay of or queue a delayed work
1501 * @wq: workqueue to use
1502 * @dwork: work to queue
1503 * @delay: number of jiffies to wait before queueing
1504 *
1505 * mod_delayed_work_on() on local CPU.
1506 */
1507 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1508 unsigned long delay)
1509 {
1510 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1511 }
1512 EXPORT_SYMBOL_GPL(mod_delayed_work);
1513
1514 /**
1515 * worker_enter_idle - enter idle state
1516 * @worker: worker which is entering idle state
1517 *
1518 * @worker is entering idle state. Update stats and idle timer if
1519 * necessary.
1520 *
1521 * LOCKING:
1522 * spin_lock_irq(gcwq->lock).
1523 */
1524 static void worker_enter_idle(struct worker *worker)
1525 {
1526 struct worker_pool *pool = worker->pool;
1527 struct global_cwq *gcwq = pool->gcwq;
1528
1529 BUG_ON(worker->flags & WORKER_IDLE);
1530 BUG_ON(!list_empty(&worker->entry) &&
1531 (worker->hentry.next || worker->hentry.pprev));
1532
1533 /* can't use worker_set_flags(), also called from start_worker() */
1534 worker->flags |= WORKER_IDLE;
1535 pool->nr_idle++;
1536 worker->last_active = jiffies;
1537
1538 /* idle_list is LIFO */
1539 list_add(&worker->entry, &pool->idle_list);
1540
1541 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1542 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1543
1544 /*
1545 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1546 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1547 * nr_running, the warning may trigger spuriously. Check iff
1548 * unbind is not in progress.
1549 */
1550 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1551 pool->nr_workers == pool->nr_idle &&
1552 atomic_read(get_pool_nr_running(pool)));
1553 }
1554
1555 /**
1556 * worker_leave_idle - leave idle state
1557 * @worker: worker which is leaving idle state
1558 *
1559 * @worker is leaving idle state. Update stats.
1560 *
1561 * LOCKING:
1562 * spin_lock_irq(gcwq->lock).
1563 */
1564 static void worker_leave_idle(struct worker *worker)
1565 {
1566 struct worker_pool *pool = worker->pool;
1567
1568 BUG_ON(!(worker->flags & WORKER_IDLE));
1569 worker_clr_flags(worker, WORKER_IDLE);
1570 pool->nr_idle--;
1571 list_del_init(&worker->entry);
1572 }
1573
1574 /**
1575 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1576 * @worker: self
1577 *
1578 * Works which are scheduled while the cpu is online must at least be
1579 * scheduled to a worker which is bound to the cpu so that if they are
1580 * flushed from cpu callbacks while cpu is going down, they are
1581 * guaranteed to execute on the cpu.
1582 *
1583 * This function is to be used by rogue workers and rescuers to bind
1584 * themselves to the target cpu and may race with cpu going down or
1585 * coming online. kthread_bind() can't be used because it may put the
1586 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1587 * verbatim as it's best effort and blocking and gcwq may be
1588 * [dis]associated in the meantime.
1589 *
1590 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1591 * binding against %GCWQ_DISASSOCIATED which is set during
1592 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1593 * enters idle state or fetches works without dropping lock, it can
1594 * guarantee the scheduling requirement described in the first paragraph.
1595 *
1596 * CONTEXT:
1597 * Might sleep. Called without any lock but returns with gcwq->lock
1598 * held.
1599 *
1600 * RETURNS:
1601 * %true if the associated gcwq is online (@worker is successfully
1602 * bound), %false if offline.
1603 */
1604 static bool worker_maybe_bind_and_lock(struct worker *worker)
1605 __acquires(&gcwq->lock)
1606 {
1607 struct global_cwq *gcwq = worker->pool->gcwq;
1608 struct task_struct *task = worker->task;
1609
1610 while (true) {
1611 /*
1612 * The following call may fail, succeed or succeed
1613 * without actually migrating the task to the cpu if
1614 * it races with cpu hotunplug operation. Verify
1615 * against GCWQ_DISASSOCIATED.
1616 */
1617 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1618 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1619
1620 spin_lock_irq(&gcwq->lock);
1621 if (gcwq->flags & GCWQ_DISASSOCIATED)
1622 return false;
1623 if (task_cpu(task) == gcwq->cpu &&
1624 cpumask_equal(&current->cpus_allowed,
1625 get_cpu_mask(gcwq->cpu)))
1626 return true;
1627 spin_unlock_irq(&gcwq->lock);
1628
1629 /*
1630 * We've raced with CPU hot[un]plug. Give it a breather
1631 * and retry migration. cond_resched() is required here;
1632 * otherwise, we might deadlock against cpu_stop trying to
1633 * bring down the CPU on non-preemptive kernel.
1634 */
1635 cpu_relax();
1636 cond_resched();
1637 }
1638 }
1639
1640 /*
1641 * Rebind an idle @worker to its CPU. worker_thread() will test
1642 * list_empty(@worker->entry) before leaving idle and call this function.
1643 */
1644 static void idle_worker_rebind(struct worker *worker)
1645 {
1646 struct global_cwq *gcwq = worker->pool->gcwq;
1647
1648 /* CPU may go down again inbetween, clear UNBOUND only on success */
1649 if (worker_maybe_bind_and_lock(worker))
1650 worker_clr_flags(worker, WORKER_UNBOUND);
1651
1652 /* rebind complete, become available again */
1653 list_add(&worker->entry, &worker->pool->idle_list);
1654 spin_unlock_irq(&gcwq->lock);
1655 }
1656
1657 /*
1658 * Function for @worker->rebind.work used to rebind unbound busy workers to
1659 * the associated cpu which is coming back online. This is scheduled by
1660 * cpu up but can race with other cpu hotplug operations and may be
1661 * executed twice without intervening cpu down.
1662 */
1663 static void busy_worker_rebind_fn(struct work_struct *work)
1664 {
1665 struct worker *worker = container_of(work, struct worker, rebind_work);
1666 struct global_cwq *gcwq = worker->pool->gcwq;
1667
1668 if (worker_maybe_bind_and_lock(worker))
1669 worker_clr_flags(worker, WORKER_UNBOUND);
1670
1671 spin_unlock_irq(&gcwq->lock);
1672 }
1673
1674 /**
1675 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1676 * @gcwq: gcwq of interest
1677 *
1678 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1679 * is different for idle and busy ones.
1680 *
1681 * Idle ones will be removed from the idle_list and woken up. They will
1682 * add themselves back after completing rebind. This ensures that the
1683 * idle_list doesn't contain any unbound workers when re-bound busy workers
1684 * try to perform local wake-ups for concurrency management.
1685 *
1686 * Busy workers can rebind after they finish their current work items.
1687 * Queueing the rebind work item at the head of the scheduled list is
1688 * enough. Note that nr_running will be properly bumped as busy workers
1689 * rebind.
1690 *
1691 * On return, all non-manager workers are scheduled for rebind - see
1692 * manage_workers() for the manager special case. Any idle worker
1693 * including the manager will not appear on @idle_list until rebind is
1694 * complete, making local wake-ups safe.
1695 */
1696 static void rebind_workers(struct global_cwq *gcwq)
1697 {
1698 struct worker_pool *pool;
1699 struct worker *worker, *n;
1700 struct hlist_node *pos;
1701 int i;
1702
1703 lockdep_assert_held(&gcwq->lock);
1704
1705 for_each_worker_pool(pool, gcwq)
1706 lockdep_assert_held(&pool->assoc_mutex);
1707
1708 /* dequeue and kick idle ones */
1709 for_each_worker_pool(pool, gcwq) {
1710 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1711 /*
1712 * idle workers should be off @pool->idle_list
1713 * until rebind is complete to avoid receiving
1714 * premature local wake-ups.
1715 */
1716 list_del_init(&worker->entry);
1717
1718 /*
1719 * worker_thread() will see the above dequeuing
1720 * and call idle_worker_rebind().
1721 */
1722 wake_up_process(worker->task);
1723 }
1724 }
1725
1726 /* rebind busy workers */
1727 for_each_busy_worker(worker, i, pos, gcwq) {
1728 struct work_struct *rebind_work = &worker->rebind_work;
1729 struct workqueue_struct *wq;
1730
1731 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1732 work_data_bits(rebind_work)))
1733 continue;
1734
1735 debug_work_activate(rebind_work);
1736
1737 /*
1738 * wq doesn't really matter but let's keep @worker->pool
1739 * and @cwq->pool consistent for sanity.
1740 */
1741 if (worker_pool_pri(worker->pool))
1742 wq = system_highpri_wq;
1743 else
1744 wq = system_wq;
1745
1746 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1747 worker->scheduled.next,
1748 work_color_to_flags(WORK_NO_COLOR));
1749 }
1750 }
1751
1752 static struct worker *alloc_worker(void)
1753 {
1754 struct worker *worker;
1755
1756 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1757 if (worker) {
1758 INIT_LIST_HEAD(&worker->entry);
1759 INIT_LIST_HEAD(&worker->scheduled);
1760 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1761 /* on creation a worker is in !idle && prep state */
1762 worker->flags = WORKER_PREP;
1763 }
1764 return worker;
1765 }
1766
1767 /**
1768 * create_worker - create a new workqueue worker
1769 * @pool: pool the new worker will belong to
1770 *
1771 * Create a new worker which is bound to @pool. The returned worker
1772 * can be started by calling start_worker() or destroyed using
1773 * destroy_worker().
1774 *
1775 * CONTEXT:
1776 * Might sleep. Does GFP_KERNEL allocations.
1777 *
1778 * RETURNS:
1779 * Pointer to the newly created worker.
1780 */
1781 static struct worker *create_worker(struct worker_pool *pool)
1782 {
1783 struct global_cwq *gcwq = pool->gcwq;
1784 const char *pri = worker_pool_pri(pool) ? "H" : "";
1785 struct worker *worker = NULL;
1786 int id = -1;
1787
1788 spin_lock_irq(&gcwq->lock);
1789 while (ida_get_new(&pool->worker_ida, &id)) {
1790 spin_unlock_irq(&gcwq->lock);
1791 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1792 goto fail;
1793 spin_lock_irq(&gcwq->lock);
1794 }
1795 spin_unlock_irq(&gcwq->lock);
1796
1797 worker = alloc_worker();
1798 if (!worker)
1799 goto fail;
1800
1801 worker->pool = pool;
1802 worker->id = id;
1803
1804 if (gcwq->cpu != WORK_CPU_UNBOUND)
1805 worker->task = kthread_create_on_node(worker_thread,
1806 worker, cpu_to_node(gcwq->cpu),
1807 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1808 else
1809 worker->task = kthread_create(worker_thread, worker,
1810 "kworker/u:%d%s", id, pri);
1811 if (IS_ERR(worker->task))
1812 goto fail;
1813
1814 if (worker_pool_pri(pool))
1815 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1816
1817 /*
1818 * Determine CPU binding of the new worker depending on
1819 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1820 * flag remains stable across this function. See the comments
1821 * above the flag definition for details.
1822 *
1823 * As an unbound worker may later become a regular one if CPU comes
1824 * online, make sure every worker has %PF_THREAD_BOUND set.
1825 */
1826 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1827 kthread_bind(worker->task, gcwq->cpu);
1828 } else {
1829 worker->task->flags |= PF_THREAD_BOUND;
1830 worker->flags |= WORKER_UNBOUND;
1831 }
1832
1833 return worker;
1834 fail:
1835 if (id >= 0) {
1836 spin_lock_irq(&gcwq->lock);
1837 ida_remove(&pool->worker_ida, id);
1838 spin_unlock_irq(&gcwq->lock);
1839 }
1840 kfree(worker);
1841 return NULL;
1842 }
1843
1844 /**
1845 * start_worker - start a newly created worker
1846 * @worker: worker to start
1847 *
1848 * Make the gcwq aware of @worker and start it.
1849 *
1850 * CONTEXT:
1851 * spin_lock_irq(gcwq->lock).
1852 */
1853 static void start_worker(struct worker *worker)
1854 {
1855 worker->flags |= WORKER_STARTED;
1856 worker->pool->nr_workers++;
1857 worker_enter_idle(worker);
1858 wake_up_process(worker->task);
1859 }
1860
1861 /**
1862 * destroy_worker - destroy a workqueue worker
1863 * @worker: worker to be destroyed
1864 *
1865 * Destroy @worker and adjust @gcwq stats accordingly.
1866 *
1867 * CONTEXT:
1868 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1869 */
1870 static void destroy_worker(struct worker *worker)
1871 {
1872 struct worker_pool *pool = worker->pool;
1873 struct global_cwq *gcwq = pool->gcwq;
1874 int id = worker->id;
1875
1876 /* sanity check frenzy */
1877 BUG_ON(worker->current_work);
1878 BUG_ON(!list_empty(&worker->scheduled));
1879
1880 if (worker->flags & WORKER_STARTED)
1881 pool->nr_workers--;
1882 if (worker->flags & WORKER_IDLE)
1883 pool->nr_idle--;
1884
1885 list_del_init(&worker->entry);
1886 worker->flags |= WORKER_DIE;
1887
1888 spin_unlock_irq(&gcwq->lock);
1889
1890 kthread_stop(worker->task);
1891 kfree(worker);
1892
1893 spin_lock_irq(&gcwq->lock);
1894 ida_remove(&pool->worker_ida, id);
1895 }
1896
1897 static void idle_worker_timeout(unsigned long __pool)
1898 {
1899 struct worker_pool *pool = (void *)__pool;
1900 struct global_cwq *gcwq = pool->gcwq;
1901
1902 spin_lock_irq(&gcwq->lock);
1903
1904 if (too_many_workers(pool)) {
1905 struct worker *worker;
1906 unsigned long expires;
1907
1908 /* idle_list is kept in LIFO order, check the last one */
1909 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1910 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1911
1912 if (time_before(jiffies, expires))
1913 mod_timer(&pool->idle_timer, expires);
1914 else {
1915 /* it's been idle for too long, wake up manager */
1916 pool->flags |= POOL_MANAGE_WORKERS;
1917 wake_up_worker(pool);
1918 }
1919 }
1920
1921 spin_unlock_irq(&gcwq->lock);
1922 }
1923
1924 static bool send_mayday(struct work_struct *work)
1925 {
1926 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1927 struct workqueue_struct *wq = cwq->wq;
1928 unsigned int cpu;
1929
1930 if (!(wq->flags & WQ_RESCUER))
1931 return false;
1932
1933 /* mayday mayday mayday */
1934 cpu = cwq->pool->gcwq->cpu;
1935 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1936 if (cpu == WORK_CPU_UNBOUND)
1937 cpu = 0;
1938 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1939 wake_up_process(wq->rescuer->task);
1940 return true;
1941 }
1942
1943 static void gcwq_mayday_timeout(unsigned long __pool)
1944 {
1945 struct worker_pool *pool = (void *)__pool;
1946 struct global_cwq *gcwq = pool->gcwq;
1947 struct work_struct *work;
1948
1949 spin_lock_irq(&gcwq->lock);
1950
1951 if (need_to_create_worker(pool)) {
1952 /*
1953 * We've been trying to create a new worker but
1954 * haven't been successful. We might be hitting an
1955 * allocation deadlock. Send distress signals to
1956 * rescuers.
1957 */
1958 list_for_each_entry(work, &pool->worklist, entry)
1959 send_mayday(work);
1960 }
1961
1962 spin_unlock_irq(&gcwq->lock);
1963
1964 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1965 }
1966
1967 /**
1968 * maybe_create_worker - create a new worker if necessary
1969 * @pool: pool to create a new worker for
1970 *
1971 * Create a new worker for @pool if necessary. @pool is guaranteed to
1972 * have at least one idle worker on return from this function. If
1973 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1974 * sent to all rescuers with works scheduled on @pool to resolve
1975 * possible allocation deadlock.
1976 *
1977 * On return, need_to_create_worker() is guaranteed to be false and
1978 * may_start_working() true.
1979 *
1980 * LOCKING:
1981 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1982 * multiple times. Does GFP_KERNEL allocations. Called only from
1983 * manager.
1984 *
1985 * RETURNS:
1986 * false if no action was taken and gcwq->lock stayed locked, true
1987 * otherwise.
1988 */
1989 static bool maybe_create_worker(struct worker_pool *pool)
1990 __releases(&gcwq->lock)
1991 __acquires(&gcwq->lock)
1992 {
1993 struct global_cwq *gcwq = pool->gcwq;
1994
1995 if (!need_to_create_worker(pool))
1996 return false;
1997 restart:
1998 spin_unlock_irq(&gcwq->lock);
1999
2000 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2001 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2002
2003 while (true) {
2004 struct worker *worker;
2005
2006 worker = create_worker(pool);
2007 if (worker) {
2008 del_timer_sync(&pool->mayday_timer);
2009 spin_lock_irq(&gcwq->lock);
2010 start_worker(worker);
2011 BUG_ON(need_to_create_worker(pool));
2012 return true;
2013 }
2014
2015 if (!need_to_create_worker(pool))
2016 break;
2017
2018 __set_current_state(TASK_INTERRUPTIBLE);
2019 schedule_timeout(CREATE_COOLDOWN);
2020
2021 if (!need_to_create_worker(pool))
2022 break;
2023 }
2024
2025 del_timer_sync(&pool->mayday_timer);
2026 spin_lock_irq(&gcwq->lock);
2027 if (need_to_create_worker(pool))
2028 goto restart;
2029 return true;
2030 }
2031
2032 /**
2033 * maybe_destroy_worker - destroy workers which have been idle for a while
2034 * @pool: pool to destroy workers for
2035 *
2036 * Destroy @pool workers which have been idle for longer than
2037 * IDLE_WORKER_TIMEOUT.
2038 *
2039 * LOCKING:
2040 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2041 * multiple times. Called only from manager.
2042 *
2043 * RETURNS:
2044 * false if no action was taken and gcwq->lock stayed locked, true
2045 * otherwise.
2046 */
2047 static bool maybe_destroy_workers(struct worker_pool *pool)
2048 {
2049 bool ret = false;
2050
2051 while (too_many_workers(pool)) {
2052 struct worker *worker;
2053 unsigned long expires;
2054
2055 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2056 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2057
2058 if (time_before(jiffies, expires)) {
2059 mod_timer(&pool->idle_timer, expires);
2060 break;
2061 }
2062
2063 destroy_worker(worker);
2064 ret = true;
2065 }
2066
2067 return ret;
2068 }
2069
2070 /**
2071 * manage_workers - manage worker pool
2072 * @worker: self
2073 *
2074 * Assume the manager role and manage gcwq worker pool @worker belongs
2075 * to. At any given time, there can be only zero or one manager per
2076 * gcwq. The exclusion is handled automatically by this function.
2077 *
2078 * The caller can safely start processing works on false return. On
2079 * true return, it's guaranteed that need_to_create_worker() is false
2080 * and may_start_working() is true.
2081 *
2082 * CONTEXT:
2083 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2084 * multiple times. Does GFP_KERNEL allocations.
2085 *
2086 * RETURNS:
2087 * false if no action was taken and gcwq->lock stayed locked, true if
2088 * some action was taken.
2089 */
2090 static bool manage_workers(struct worker *worker)
2091 {
2092 struct worker_pool *pool = worker->pool;
2093 bool ret = false;
2094
2095 if (pool->flags & POOL_MANAGING_WORKERS)
2096 return ret;
2097
2098 pool->flags |= POOL_MANAGING_WORKERS;
2099
2100 /*
2101 * To simplify both worker management and CPU hotplug, hold off
2102 * management while hotplug is in progress. CPU hotplug path can't
2103 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2104 * lead to idle worker depletion (all become busy thinking someone
2105 * else is managing) which in turn can result in deadlock under
2106 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2107 * manager against CPU hotplug.
2108 *
2109 * assoc_mutex would always be free unless CPU hotplug is in
2110 * progress. trylock first without dropping @gcwq->lock.
2111 */
2112 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2113 spin_unlock_irq(&pool->gcwq->lock);
2114 mutex_lock(&pool->assoc_mutex);
2115 /*
2116 * CPU hotplug could have happened while we were waiting
2117 * for assoc_mutex. Hotplug itself can't handle us
2118 * because manager isn't either on idle or busy list, and
2119 * @gcwq's state and ours could have deviated.
2120 *
2121 * As hotplug is now excluded via assoc_mutex, we can
2122 * simply try to bind. It will succeed or fail depending
2123 * on @gcwq's current state. Try it and adjust
2124 * %WORKER_UNBOUND accordingly.
2125 */
2126 if (worker_maybe_bind_and_lock(worker))
2127 worker->flags &= ~WORKER_UNBOUND;
2128 else
2129 worker->flags |= WORKER_UNBOUND;
2130
2131 ret = true;
2132 }
2133
2134 pool->flags &= ~POOL_MANAGE_WORKERS;
2135
2136 /*
2137 * Destroy and then create so that may_start_working() is true
2138 * on return.
2139 */
2140 ret |= maybe_destroy_workers(pool);
2141 ret |= maybe_create_worker(pool);
2142
2143 pool->flags &= ~POOL_MANAGING_WORKERS;
2144 mutex_unlock(&pool->assoc_mutex);
2145 return ret;
2146 }
2147
2148 /**
2149 * process_one_work - process single work
2150 * @worker: self
2151 * @work: work to process
2152 *
2153 * Process @work. This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing. As long as context requirement is met, any worker can
2157 * call this function to process a work.
2158 *
2159 * CONTEXT:
2160 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2161 */
2162 static void process_one_work(struct worker *worker, struct work_struct *work)
2163 __releases(&gcwq->lock)
2164 __acquires(&gcwq->lock)
2165 {
2166 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2167 struct worker_pool *pool = worker->pool;
2168 struct global_cwq *gcwq = pool->gcwq;
2169 struct hlist_head *bwh = busy_worker_head(gcwq, work);
2170 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2171 work_func_t f = work->func;
2172 int work_color;
2173 struct worker *collision;
2174 #ifdef CONFIG_LOCKDEP
2175 /*
2176 * It is permissible to free the struct work_struct from
2177 * inside the function that is called from it, this we need to
2178 * take into account for lockdep too. To avoid bogus "held
2179 * lock freed" warnings as well as problems when looking into
2180 * work->lockdep_map, make a copy and use that here.
2181 */
2182 struct lockdep_map lockdep_map;
2183
2184 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2185 #endif
2186 /*
2187 * Ensure we're on the correct CPU. DISASSOCIATED test is
2188 * necessary to avoid spurious warnings from rescuers servicing the
2189 * unbound or a disassociated gcwq.
2190 */
2191 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2192 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2193 raw_smp_processor_id() != gcwq->cpu);
2194
2195 /*
2196 * A single work shouldn't be executed concurrently by
2197 * multiple workers on a single cpu. Check whether anyone is
2198 * already processing the work. If so, defer the work to the
2199 * currently executing one.
2200 */
2201 collision = __find_worker_executing_work(gcwq, bwh, work);
2202 if (unlikely(collision)) {
2203 move_linked_works(work, &collision->scheduled, NULL);
2204 return;
2205 }
2206
2207 /* claim and dequeue */
2208 debug_work_deactivate(work);
2209 hlist_add_head(&worker->hentry, bwh);
2210 worker->current_work = work;
2211 worker->current_cwq = cwq;
2212 work_color = get_work_color(work);
2213
2214 list_del_init(&work->entry);
2215
2216 /*
2217 * CPU intensive works don't participate in concurrency
2218 * management. They're the scheduler's responsibility.
2219 */
2220 if (unlikely(cpu_intensive))
2221 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2222
2223 /*
2224 * Unbound gcwq isn't concurrency managed and work items should be
2225 * executed ASAP. Wake up another worker if necessary.
2226 */
2227 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2228 wake_up_worker(pool);
2229
2230 /*
2231 * Record the last CPU and clear PENDING which should be the last
2232 * update to @work. Also, do this inside @gcwq->lock so that
2233 * PENDING and queued state changes happen together while IRQ is
2234 * disabled.
2235 */
2236 set_work_cpu_and_clear_pending(work, gcwq->cpu);
2237
2238 spin_unlock_irq(&gcwq->lock);
2239
2240 lock_map_acquire_read(&cwq->wq->lockdep_map);
2241 lock_map_acquire(&lockdep_map);
2242 trace_workqueue_execute_start(work);
2243 f(work);
2244 /*
2245 * While we must be careful to not use "work" after this, the trace
2246 * point will only record its address.
2247 */
2248 trace_workqueue_execute_end(work);
2249 lock_map_release(&lockdep_map);
2250 lock_map_release(&cwq->wq->lockdep_map);
2251
2252 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2253 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2254 " last function: %pf\n",
2255 current->comm, preempt_count(), task_pid_nr(current), f);
2256 debug_show_held_locks(current);
2257 dump_stack();
2258 }
2259
2260 spin_lock_irq(&gcwq->lock);
2261
2262 /* clear cpu intensive status */
2263 if (unlikely(cpu_intensive))
2264 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2265
2266 /* we're done with it, release */
2267 hlist_del_init(&worker->hentry);
2268 worker->current_work = NULL;
2269 worker->current_cwq = NULL;
2270 cwq_dec_nr_in_flight(cwq, work_color);
2271 }
2272
2273 /**
2274 * process_scheduled_works - process scheduled works
2275 * @worker: self
2276 *
2277 * Process all scheduled works. Please note that the scheduled list
2278 * may change while processing a work, so this function repeatedly
2279 * fetches a work from the top and executes it.
2280 *
2281 * CONTEXT:
2282 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2283 * multiple times.
2284 */
2285 static void process_scheduled_works(struct worker *worker)
2286 {
2287 while (!list_empty(&worker->scheduled)) {
2288 struct work_struct *work = list_first_entry(&worker->scheduled,
2289 struct work_struct, entry);
2290 process_one_work(worker, work);
2291 }
2292 }
2293
2294 /**
2295 * worker_thread - the worker thread function
2296 * @__worker: self
2297 *
2298 * The gcwq worker thread function. There's a single dynamic pool of
2299 * these per each cpu. These workers process all works regardless of
2300 * their specific target workqueue. The only exception is works which
2301 * belong to workqueues with a rescuer which will be explained in
2302 * rescuer_thread().
2303 */
2304 static int worker_thread(void *__worker)
2305 {
2306 struct worker *worker = __worker;
2307 struct worker_pool *pool = worker->pool;
2308 struct global_cwq *gcwq = pool->gcwq;
2309
2310 /* tell the scheduler that this is a workqueue worker */
2311 worker->task->flags |= PF_WQ_WORKER;
2312 woke_up:
2313 spin_lock_irq(&gcwq->lock);
2314
2315 /* we are off idle list if destruction or rebind is requested */
2316 if (unlikely(list_empty(&worker->entry))) {
2317 spin_unlock_irq(&gcwq->lock);
2318
2319 /* if DIE is set, destruction is requested */
2320 if (worker->flags & WORKER_DIE) {
2321 worker->task->flags &= ~PF_WQ_WORKER;
2322 return 0;
2323 }
2324
2325 /* otherwise, rebind */
2326 idle_worker_rebind(worker);
2327 goto woke_up;
2328 }
2329
2330 worker_leave_idle(worker);
2331 recheck:
2332 /* no more worker necessary? */
2333 if (!need_more_worker(pool))
2334 goto sleep;
2335
2336 /* do we need to manage? */
2337 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2338 goto recheck;
2339
2340 /*
2341 * ->scheduled list can only be filled while a worker is
2342 * preparing to process a work or actually processing it.
2343 * Make sure nobody diddled with it while I was sleeping.
2344 */
2345 BUG_ON(!list_empty(&worker->scheduled));
2346
2347 /*
2348 * When control reaches this point, we're guaranteed to have
2349 * at least one idle worker or that someone else has already
2350 * assumed the manager role.
2351 */
2352 worker_clr_flags(worker, WORKER_PREP);
2353
2354 do {
2355 struct work_struct *work =
2356 list_first_entry(&pool->worklist,
2357 struct work_struct, entry);
2358
2359 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2360 /* optimization path, not strictly necessary */
2361 process_one_work(worker, work);
2362 if (unlikely(!list_empty(&worker->scheduled)))
2363 process_scheduled_works(worker);
2364 } else {
2365 move_linked_works(work, &worker->scheduled, NULL);
2366 process_scheduled_works(worker);
2367 }
2368 } while (keep_working(pool));
2369
2370 worker_set_flags(worker, WORKER_PREP, false);
2371 sleep:
2372 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2373 goto recheck;
2374
2375 /*
2376 * gcwq->lock is held and there's no work to process and no
2377 * need to manage, sleep. Workers are woken up only while
2378 * holding gcwq->lock or from local cpu, so setting the
2379 * current state before releasing gcwq->lock is enough to
2380 * prevent losing any event.
2381 */
2382 worker_enter_idle(worker);
2383 __set_current_state(TASK_INTERRUPTIBLE);
2384 spin_unlock_irq(&gcwq->lock);
2385 schedule();
2386 goto woke_up;
2387 }
2388
2389 /**
2390 * rescuer_thread - the rescuer thread function
2391 * @__wq: the associated workqueue
2392 *
2393 * Workqueue rescuer thread function. There's one rescuer for each
2394 * workqueue which has WQ_RESCUER set.
2395 *
2396 * Regular work processing on a gcwq may block trying to create a new
2397 * worker which uses GFP_KERNEL allocation which has slight chance of
2398 * developing into deadlock if some works currently on the same queue
2399 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2400 * the problem rescuer solves.
2401 *
2402 * When such condition is possible, the gcwq summons rescuers of all
2403 * workqueues which have works queued on the gcwq and let them process
2404 * those works so that forward progress can be guaranteed.
2405 *
2406 * This should happen rarely.
2407 */
2408 static int rescuer_thread(void *__wq)
2409 {
2410 struct workqueue_struct *wq = __wq;
2411 struct worker *rescuer = wq->rescuer;
2412 struct list_head *scheduled = &rescuer->scheduled;
2413 bool is_unbound = wq->flags & WQ_UNBOUND;
2414 unsigned int cpu;
2415
2416 set_user_nice(current, RESCUER_NICE_LEVEL);
2417 repeat:
2418 set_current_state(TASK_INTERRUPTIBLE);
2419
2420 if (kthread_should_stop()) {
2421 __set_current_state(TASK_RUNNING);
2422 return 0;
2423 }
2424
2425 /*
2426 * See whether any cpu is asking for help. Unbounded
2427 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2428 */
2429 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2430 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2431 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2432 struct worker_pool *pool = cwq->pool;
2433 struct global_cwq *gcwq = pool->gcwq;
2434 struct work_struct *work, *n;
2435
2436 __set_current_state(TASK_RUNNING);
2437 mayday_clear_cpu(cpu, wq->mayday_mask);
2438
2439 /* migrate to the target cpu if possible */
2440 rescuer->pool = pool;
2441 worker_maybe_bind_and_lock(rescuer);
2442
2443 /*
2444 * Slurp in all works issued via this workqueue and
2445 * process'em.
2446 */
2447 BUG_ON(!list_empty(&rescuer->scheduled));
2448 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2449 if (get_work_cwq(work) == cwq)
2450 move_linked_works(work, scheduled, &n);
2451
2452 process_scheduled_works(rescuer);
2453
2454 /*
2455 * Leave this gcwq. If keep_working() is %true, notify a
2456 * regular worker; otherwise, we end up with 0 concurrency
2457 * and stalling the execution.
2458 */
2459 if (keep_working(pool))
2460 wake_up_worker(pool);
2461
2462 spin_unlock_irq(&gcwq->lock);
2463 }
2464
2465 schedule();
2466 goto repeat;
2467 }
2468
2469 struct wq_barrier {
2470 struct work_struct work;
2471 struct completion done;
2472 };
2473
2474 static void wq_barrier_func(struct work_struct *work)
2475 {
2476 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2477 complete(&barr->done);
2478 }
2479
2480 /**
2481 * insert_wq_barrier - insert a barrier work
2482 * @cwq: cwq to insert barrier into
2483 * @barr: wq_barrier to insert
2484 * @target: target work to attach @barr to
2485 * @worker: worker currently executing @target, NULL if @target is not executing
2486 *
2487 * @barr is linked to @target such that @barr is completed only after
2488 * @target finishes execution. Please note that the ordering
2489 * guarantee is observed only with respect to @target and on the local
2490 * cpu.
2491 *
2492 * Currently, a queued barrier can't be canceled. This is because
2493 * try_to_grab_pending() can't determine whether the work to be
2494 * grabbed is at the head of the queue and thus can't clear LINKED
2495 * flag of the previous work while there must be a valid next work
2496 * after a work with LINKED flag set.
2497 *
2498 * Note that when @worker is non-NULL, @target may be modified
2499 * underneath us, so we can't reliably determine cwq from @target.
2500 *
2501 * CONTEXT:
2502 * spin_lock_irq(gcwq->lock).
2503 */
2504 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2505 struct wq_barrier *barr,
2506 struct work_struct *target, struct worker *worker)
2507 {
2508 struct list_head *head;
2509 unsigned int linked = 0;
2510
2511 /*
2512 * debugobject calls are safe here even with gcwq->lock locked
2513 * as we know for sure that this will not trigger any of the
2514 * checks and call back into the fixup functions where we
2515 * might deadlock.
2516 */
2517 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2518 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2519 init_completion(&barr->done);
2520
2521 /*
2522 * If @target is currently being executed, schedule the
2523 * barrier to the worker; otherwise, put it after @target.
2524 */
2525 if (worker)
2526 head = worker->scheduled.next;
2527 else {
2528 unsigned long *bits = work_data_bits(target);
2529
2530 head = target->entry.next;
2531 /* there can already be other linked works, inherit and set */
2532 linked = *bits & WORK_STRUCT_LINKED;
2533 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2534 }
2535
2536 debug_work_activate(&barr->work);
2537 insert_work(cwq, &barr->work, head,
2538 work_color_to_flags(WORK_NO_COLOR) | linked);
2539 }
2540
2541 /**
2542 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2543 * @wq: workqueue being flushed
2544 * @flush_color: new flush color, < 0 for no-op
2545 * @work_color: new work color, < 0 for no-op
2546 *
2547 * Prepare cwqs for workqueue flushing.
2548 *
2549 * If @flush_color is non-negative, flush_color on all cwqs should be
2550 * -1. If no cwq has in-flight commands at the specified color, all
2551 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2552 * has in flight commands, its cwq->flush_color is set to
2553 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2554 * wakeup logic is armed and %true is returned.
2555 *
2556 * The caller should have initialized @wq->first_flusher prior to
2557 * calling this function with non-negative @flush_color. If
2558 * @flush_color is negative, no flush color update is done and %false
2559 * is returned.
2560 *
2561 * If @work_color is non-negative, all cwqs should have the same
2562 * work_color which is previous to @work_color and all will be
2563 * advanced to @work_color.
2564 *
2565 * CONTEXT:
2566 * mutex_lock(wq->flush_mutex).
2567 *
2568 * RETURNS:
2569 * %true if @flush_color >= 0 and there's something to flush. %false
2570 * otherwise.
2571 */
2572 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2573 int flush_color, int work_color)
2574 {
2575 bool wait = false;
2576 unsigned int cpu;
2577
2578 if (flush_color >= 0) {
2579 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2580 atomic_set(&wq->nr_cwqs_to_flush, 1);
2581 }
2582
2583 for_each_cwq_cpu(cpu, wq) {
2584 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2585 struct global_cwq *gcwq = cwq->pool->gcwq;
2586
2587 spin_lock_irq(&gcwq->lock);
2588
2589 if (flush_color >= 0) {
2590 BUG_ON(cwq->flush_color != -1);
2591
2592 if (cwq->nr_in_flight[flush_color]) {
2593 cwq->flush_color = flush_color;
2594 atomic_inc(&wq->nr_cwqs_to_flush);
2595 wait = true;
2596 }
2597 }
2598
2599 if (work_color >= 0) {
2600 BUG_ON(work_color != work_next_color(cwq->work_color));
2601 cwq->work_color = work_color;
2602 }
2603
2604 spin_unlock_irq(&gcwq->lock);
2605 }
2606
2607 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2608 complete(&wq->first_flusher->done);
2609
2610 return wait;
2611 }
2612
2613 /**
2614 * flush_workqueue - ensure that any scheduled work has run to completion.
2615 * @wq: workqueue to flush
2616 *
2617 * Forces execution of the workqueue and blocks until its completion.
2618 * This is typically used in driver shutdown handlers.
2619 *
2620 * We sleep until all works which were queued on entry have been handled,
2621 * but we are not livelocked by new incoming ones.
2622 */
2623 void flush_workqueue(struct workqueue_struct *wq)
2624 {
2625 struct wq_flusher this_flusher = {
2626 .list = LIST_HEAD_INIT(this_flusher.list),
2627 .flush_color = -1,
2628 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2629 };
2630 int next_color;
2631
2632 lock_map_acquire(&wq->lockdep_map);
2633 lock_map_release(&wq->lockdep_map);
2634
2635 mutex_lock(&wq->flush_mutex);
2636
2637 /*
2638 * Start-to-wait phase
2639 */
2640 next_color = work_next_color(wq->work_color);
2641
2642 if (next_color != wq->flush_color) {
2643 /*
2644 * Color space is not full. The current work_color
2645 * becomes our flush_color and work_color is advanced
2646 * by one.
2647 */
2648 BUG_ON(!list_empty(&wq->flusher_overflow));
2649 this_flusher.flush_color = wq->work_color;
2650 wq->work_color = next_color;
2651
2652 if (!wq->first_flusher) {
2653 /* no flush in progress, become the first flusher */
2654 BUG_ON(wq->flush_color != this_flusher.flush_color);
2655
2656 wq->first_flusher = &this_flusher;
2657
2658 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2659 wq->work_color)) {
2660 /* nothing to flush, done */
2661 wq->flush_color = next_color;
2662 wq->first_flusher = NULL;
2663 goto out_unlock;
2664 }
2665 } else {
2666 /* wait in queue */
2667 BUG_ON(wq->flush_color == this_flusher.flush_color);
2668 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2669 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2670 }
2671 } else {
2672 /*
2673 * Oops, color space is full, wait on overflow queue.
2674 * The next flush completion will assign us
2675 * flush_color and transfer to flusher_queue.
2676 */
2677 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2678 }
2679
2680 mutex_unlock(&wq->flush_mutex);
2681
2682 wait_for_completion(&this_flusher.done);
2683
2684 /*
2685 * Wake-up-and-cascade phase
2686 *
2687 * First flushers are responsible for cascading flushes and
2688 * handling overflow. Non-first flushers can simply return.
2689 */
2690 if (wq->first_flusher != &this_flusher)
2691 return;
2692
2693 mutex_lock(&wq->flush_mutex);
2694
2695 /* we might have raced, check again with mutex held */
2696 if (wq->first_flusher != &this_flusher)
2697 goto out_unlock;
2698
2699 wq->first_flusher = NULL;
2700
2701 BUG_ON(!list_empty(&this_flusher.list));
2702 BUG_ON(wq->flush_color != this_flusher.flush_color);
2703
2704 while (true) {
2705 struct wq_flusher *next, *tmp;
2706
2707 /* complete all the flushers sharing the current flush color */
2708 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2709 if (next->flush_color != wq->flush_color)
2710 break;
2711 list_del_init(&next->list);
2712 complete(&next->done);
2713 }
2714
2715 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2716 wq->flush_color != work_next_color(wq->work_color));
2717
2718 /* this flush_color is finished, advance by one */
2719 wq->flush_color = work_next_color(wq->flush_color);
2720
2721 /* one color has been freed, handle overflow queue */
2722 if (!list_empty(&wq->flusher_overflow)) {
2723 /*
2724 * Assign the same color to all overflowed
2725 * flushers, advance work_color and append to
2726 * flusher_queue. This is the start-to-wait
2727 * phase for these overflowed flushers.
2728 */
2729 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2730 tmp->flush_color = wq->work_color;
2731
2732 wq->work_color = work_next_color(wq->work_color);
2733
2734 list_splice_tail_init(&wq->flusher_overflow,
2735 &wq->flusher_queue);
2736 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2737 }
2738
2739 if (list_empty(&wq->flusher_queue)) {
2740 BUG_ON(wq->flush_color != wq->work_color);
2741 break;
2742 }
2743
2744 /*
2745 * Need to flush more colors. Make the next flusher
2746 * the new first flusher and arm cwqs.
2747 */
2748 BUG_ON(wq->flush_color == wq->work_color);
2749 BUG_ON(wq->flush_color != next->flush_color);
2750
2751 list_del_init(&next->list);
2752 wq->first_flusher = next;
2753
2754 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2755 break;
2756
2757 /*
2758 * Meh... this color is already done, clear first
2759 * flusher and repeat cascading.
2760 */
2761 wq->first_flusher = NULL;
2762 }
2763
2764 out_unlock:
2765 mutex_unlock(&wq->flush_mutex);
2766 }
2767 EXPORT_SYMBOL_GPL(flush_workqueue);
2768
2769 /**
2770 * drain_workqueue - drain a workqueue
2771 * @wq: workqueue to drain
2772 *
2773 * Wait until the workqueue becomes empty. While draining is in progress,
2774 * only chain queueing is allowed. IOW, only currently pending or running
2775 * work items on @wq can queue further work items on it. @wq is flushed
2776 * repeatedly until it becomes empty. The number of flushing is detemined
2777 * by the depth of chaining and should be relatively short. Whine if it
2778 * takes too long.
2779 */
2780 void drain_workqueue(struct workqueue_struct *wq)
2781 {
2782 unsigned int flush_cnt = 0;
2783 unsigned int cpu;
2784
2785 /*
2786 * __queue_work() needs to test whether there are drainers, is much
2787 * hotter than drain_workqueue() and already looks at @wq->flags.
2788 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2789 */
2790 spin_lock(&workqueue_lock);
2791 if (!wq->nr_drainers++)
2792 wq->flags |= WQ_DRAINING;
2793 spin_unlock(&workqueue_lock);
2794 reflush:
2795 flush_workqueue(wq);
2796
2797 for_each_cwq_cpu(cpu, wq) {
2798 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2799 bool drained;
2800
2801 spin_lock_irq(&cwq->pool->gcwq->lock);
2802 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2803 spin_unlock_irq(&cwq->pool->gcwq->lock);
2804
2805 if (drained)
2806 continue;
2807
2808 if (++flush_cnt == 10 ||
2809 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2810 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2811 wq->name, flush_cnt);
2812 goto reflush;
2813 }
2814
2815 spin_lock(&workqueue_lock);
2816 if (!--wq->nr_drainers)
2817 wq->flags &= ~WQ_DRAINING;
2818 spin_unlock(&workqueue_lock);
2819 }
2820 EXPORT_SYMBOL_GPL(drain_workqueue);
2821
2822 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2823 {
2824 struct worker *worker = NULL;
2825 struct global_cwq *gcwq;
2826 struct cpu_workqueue_struct *cwq;
2827
2828 might_sleep();
2829 gcwq = get_work_gcwq(work);
2830 if (!gcwq)
2831 return false;
2832
2833 spin_lock_irq(&gcwq->lock);
2834 if (!list_empty(&work->entry)) {
2835 /*
2836 * See the comment near try_to_grab_pending()->smp_rmb().
2837 * If it was re-queued to a different gcwq under us, we
2838 * are not going to wait.
2839 */
2840 smp_rmb();
2841 cwq = get_work_cwq(work);
2842 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2843 goto already_gone;
2844 } else {
2845 worker = find_worker_executing_work(gcwq, work);
2846 if (!worker)
2847 goto already_gone;
2848 cwq = worker->current_cwq;
2849 }
2850
2851 insert_wq_barrier(cwq, barr, work, worker);
2852 spin_unlock_irq(&gcwq->lock);
2853
2854 /*
2855 * If @max_active is 1 or rescuer is in use, flushing another work
2856 * item on the same workqueue may lead to deadlock. Make sure the
2857 * flusher is not running on the same workqueue by verifying write
2858 * access.
2859 */
2860 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2861 lock_map_acquire(&cwq->wq->lockdep_map);
2862 else
2863 lock_map_acquire_read(&cwq->wq->lockdep_map);
2864 lock_map_release(&cwq->wq->lockdep_map);
2865
2866 return true;
2867 already_gone:
2868 spin_unlock_irq(&gcwq->lock);
2869 return false;
2870 }
2871
2872 /**
2873 * flush_work - wait for a work to finish executing the last queueing instance
2874 * @work: the work to flush
2875 *
2876 * Wait until @work has finished execution. @work is guaranteed to be idle
2877 * on return if it hasn't been requeued since flush started.
2878 *
2879 * RETURNS:
2880 * %true if flush_work() waited for the work to finish execution,
2881 * %false if it was already idle.
2882 */
2883 bool flush_work(struct work_struct *work)
2884 {
2885 struct wq_barrier barr;
2886
2887 lock_map_acquire(&work->lockdep_map);
2888 lock_map_release(&work->lockdep_map);
2889
2890 if (start_flush_work(work, &barr)) {
2891 wait_for_completion(&barr.done);
2892 destroy_work_on_stack(&barr.work);
2893 return true;
2894 } else {
2895 return false;
2896 }
2897 }
2898 EXPORT_SYMBOL_GPL(flush_work);
2899
2900 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2901 {
2902 unsigned long flags;
2903 int ret;
2904
2905 do {
2906 ret = try_to_grab_pending(work, is_dwork, &flags);
2907 /*
2908 * If someone else is canceling, wait for the same event it
2909 * would be waiting for before retrying.
2910 */
2911 if (unlikely(ret == -ENOENT))
2912 flush_work(work);
2913 } while (unlikely(ret < 0));
2914
2915 /* tell other tasks trying to grab @work to back off */
2916 mark_work_canceling(work);
2917 local_irq_restore(flags);
2918
2919 flush_work(work);
2920 clear_work_data(work);
2921 return ret;
2922 }
2923
2924 /**
2925 * cancel_work_sync - cancel a work and wait for it to finish
2926 * @work: the work to cancel
2927 *
2928 * Cancel @work and wait for its execution to finish. This function
2929 * can be used even if the work re-queues itself or migrates to
2930 * another workqueue. On return from this function, @work is
2931 * guaranteed to be not pending or executing on any CPU.
2932 *
2933 * cancel_work_sync(&delayed_work->work) must not be used for
2934 * delayed_work's. Use cancel_delayed_work_sync() instead.
2935 *
2936 * The caller must ensure that the workqueue on which @work was last
2937 * queued can't be destroyed before this function returns.
2938 *
2939 * RETURNS:
2940 * %true if @work was pending, %false otherwise.
2941 */
2942 bool cancel_work_sync(struct work_struct *work)
2943 {
2944 return __cancel_work_timer(work, false);
2945 }
2946 EXPORT_SYMBOL_GPL(cancel_work_sync);
2947
2948 /**
2949 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2950 * @dwork: the delayed work to flush
2951 *
2952 * Delayed timer is cancelled and the pending work is queued for
2953 * immediate execution. Like flush_work(), this function only
2954 * considers the last queueing instance of @dwork.
2955 *
2956 * RETURNS:
2957 * %true if flush_work() waited for the work to finish execution,
2958 * %false if it was already idle.
2959 */
2960 bool flush_delayed_work(struct delayed_work *dwork)
2961 {
2962 local_irq_disable();
2963 if (del_timer_sync(&dwork->timer))
2964 __queue_work(dwork->cpu,
2965 get_work_cwq(&dwork->work)->wq, &dwork->work);
2966 local_irq_enable();
2967 return flush_work(&dwork->work);
2968 }
2969 EXPORT_SYMBOL(flush_delayed_work);
2970
2971 /**
2972 * cancel_delayed_work - cancel a delayed work
2973 * @dwork: delayed_work to cancel
2974 *
2975 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2976 * and canceled; %false if wasn't pending. Note that the work callback
2977 * function may still be running on return, unless it returns %true and the
2978 * work doesn't re-arm itself. Explicitly flush or use
2979 * cancel_delayed_work_sync() to wait on it.
2980 *
2981 * This function is safe to call from any context including IRQ handler.
2982 */
2983 bool cancel_delayed_work(struct delayed_work *dwork)
2984 {
2985 unsigned long flags;
2986 int ret;
2987
2988 do {
2989 ret = try_to_grab_pending(&dwork->work, true, &flags);
2990 } while (unlikely(ret == -EAGAIN));
2991
2992 if (unlikely(ret < 0))
2993 return false;
2994
2995 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2996 local_irq_restore(flags);
2997 return ret;
2998 }
2999 EXPORT_SYMBOL(cancel_delayed_work);
3000
3001 /**
3002 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3003 * @dwork: the delayed work cancel
3004 *
3005 * This is cancel_work_sync() for delayed works.
3006 *
3007 * RETURNS:
3008 * %true if @dwork was pending, %false otherwise.
3009 */
3010 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3011 {
3012 return __cancel_work_timer(&dwork->work, true);
3013 }
3014 EXPORT_SYMBOL(cancel_delayed_work_sync);
3015
3016 /**
3017 * schedule_work_on - put work task on a specific cpu
3018 * @cpu: cpu to put the work task on
3019 * @work: job to be done
3020 *
3021 * This puts a job on a specific cpu
3022 */
3023 bool schedule_work_on(int cpu, struct work_struct *work)
3024 {
3025 return queue_work_on(cpu, system_wq, work);
3026 }
3027 EXPORT_SYMBOL(schedule_work_on);
3028
3029 /**
3030 * schedule_work - put work task in global workqueue
3031 * @work: job to be done
3032 *
3033 * Returns %false if @work was already on the kernel-global workqueue and
3034 * %true otherwise.
3035 *
3036 * This puts a job in the kernel-global workqueue if it was not already
3037 * queued and leaves it in the same position on the kernel-global
3038 * workqueue otherwise.
3039 */
3040 bool schedule_work(struct work_struct *work)
3041 {
3042 return queue_work(system_wq, work);
3043 }
3044 EXPORT_SYMBOL(schedule_work);
3045
3046 /**
3047 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3048 * @cpu: cpu to use
3049 * @dwork: job to be done
3050 * @delay: number of jiffies to wait
3051 *
3052 * After waiting for a given time this puts a job in the kernel-global
3053 * workqueue on the specified CPU.
3054 */
3055 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3056 unsigned long delay)
3057 {
3058 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3059 }
3060 EXPORT_SYMBOL(schedule_delayed_work_on);
3061
3062 /**
3063 * schedule_delayed_work - put work task in global workqueue after delay
3064 * @dwork: job to be done
3065 * @delay: number of jiffies to wait or 0 for immediate execution
3066 *
3067 * After waiting for a given time this puts a job in the kernel-global
3068 * workqueue.
3069 */
3070 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3071 {
3072 return queue_delayed_work(system_wq, dwork, delay);
3073 }
3074 EXPORT_SYMBOL(schedule_delayed_work);
3075
3076 /**
3077 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3078 * @func: the function to call
3079 *
3080 * schedule_on_each_cpu() executes @func on each online CPU using the
3081 * system workqueue and blocks until all CPUs have completed.
3082 * schedule_on_each_cpu() is very slow.
3083 *
3084 * RETURNS:
3085 * 0 on success, -errno on failure.
3086 */
3087 int schedule_on_each_cpu(work_func_t func)
3088 {
3089 int cpu;
3090 struct work_struct __percpu *works;
3091
3092 works = alloc_percpu(struct work_struct);
3093 if (!works)
3094 return -ENOMEM;
3095
3096 get_online_cpus();
3097
3098 for_each_online_cpu(cpu) {
3099 struct work_struct *work = per_cpu_ptr(works, cpu);
3100
3101 INIT_WORK(work, func);
3102 schedule_work_on(cpu, work);
3103 }
3104
3105 for_each_online_cpu(cpu)
3106 flush_work(per_cpu_ptr(works, cpu));
3107
3108 put_online_cpus();
3109 free_percpu(works);
3110 return 0;
3111 }
3112
3113 /**
3114 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3115 *
3116 * Forces execution of the kernel-global workqueue and blocks until its
3117 * completion.
3118 *
3119 * Think twice before calling this function! It's very easy to get into
3120 * trouble if you don't take great care. Either of the following situations
3121 * will lead to deadlock:
3122 *
3123 * One of the work items currently on the workqueue needs to acquire
3124 * a lock held by your code or its caller.
3125 *
3126 * Your code is running in the context of a work routine.
3127 *
3128 * They will be detected by lockdep when they occur, but the first might not
3129 * occur very often. It depends on what work items are on the workqueue and
3130 * what locks they need, which you have no control over.
3131 *
3132 * In most situations flushing the entire workqueue is overkill; you merely
3133 * need to know that a particular work item isn't queued and isn't running.
3134 * In such cases you should use cancel_delayed_work_sync() or
3135 * cancel_work_sync() instead.
3136 */
3137 void flush_scheduled_work(void)
3138 {
3139 flush_workqueue(system_wq);
3140 }
3141 EXPORT_SYMBOL(flush_scheduled_work);
3142
3143 /**
3144 * execute_in_process_context - reliably execute the routine with user context
3145 * @fn: the function to execute
3146 * @ew: guaranteed storage for the execute work structure (must
3147 * be available when the work executes)
3148 *
3149 * Executes the function immediately if process context is available,
3150 * otherwise schedules the function for delayed execution.
3151 *
3152 * Returns: 0 - function was executed
3153 * 1 - function was scheduled for execution
3154 */
3155 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3156 {
3157 if (!in_interrupt()) {
3158 fn(&ew->work);
3159 return 0;
3160 }
3161
3162 INIT_WORK(&ew->work, fn);
3163 schedule_work(&ew->work);
3164
3165 return 1;
3166 }
3167 EXPORT_SYMBOL_GPL(execute_in_process_context);
3168
3169 int keventd_up(void)
3170 {
3171 return system_wq != NULL;
3172 }
3173
3174 static int alloc_cwqs(struct workqueue_struct *wq)
3175 {
3176 /*
3177 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3178 * Make sure that the alignment isn't lower than that of
3179 * unsigned long long.
3180 */
3181 const size_t size = sizeof(struct cpu_workqueue_struct);
3182 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3183 __alignof__(unsigned long long));
3184
3185 if (!(wq->flags & WQ_UNBOUND))
3186 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3187 else {
3188 void *ptr;
3189
3190 /*
3191 * Allocate enough room to align cwq and put an extra
3192 * pointer at the end pointing back to the originally
3193 * allocated pointer which will be used for free.
3194 */
3195 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3196 if (ptr) {
3197 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3198 *(void **)(wq->cpu_wq.single + 1) = ptr;
3199 }
3200 }
3201
3202 /* just in case, make sure it's actually aligned */
3203 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3204 return wq->cpu_wq.v ? 0 : -ENOMEM;
3205 }
3206
3207 static void free_cwqs(struct workqueue_struct *wq)
3208 {
3209 if (!(wq->flags & WQ_UNBOUND))
3210 free_percpu(wq->cpu_wq.pcpu);
3211 else if (wq->cpu_wq.single) {
3212 /* the pointer to free is stored right after the cwq */
3213 kfree(*(void **)(wq->cpu_wq.single + 1));
3214 }
3215 }
3216
3217 static int wq_clamp_max_active(int max_active, unsigned int flags,
3218 const char *name)
3219 {
3220 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3221
3222 if (max_active < 1 || max_active > lim)
3223 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3224 max_active, name, 1, lim);
3225
3226 return clamp_val(max_active, 1, lim);
3227 }
3228
3229 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3230 unsigned int flags,
3231 int max_active,
3232 struct lock_class_key *key,
3233 const char *lock_name, ...)
3234 {
3235 va_list args, args1;
3236 struct workqueue_struct *wq;
3237 unsigned int cpu;
3238 size_t namelen;
3239
3240 /* determine namelen, allocate wq and format name */
3241 va_start(args, lock_name);
3242 va_copy(args1, args);
3243 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3244
3245 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3246 if (!wq)
3247 goto err;
3248
3249 vsnprintf(wq->name, namelen, fmt, args1);
3250 va_end(args);
3251 va_end(args1);
3252
3253 /*
3254 * Workqueues which may be used during memory reclaim should
3255 * have a rescuer to guarantee forward progress.
3256 */
3257 if (flags & WQ_MEM_RECLAIM)
3258 flags |= WQ_RESCUER;
3259
3260 max_active = max_active ?: WQ_DFL_ACTIVE;
3261 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3262
3263 /* init wq */
3264 wq->flags = flags;
3265 wq->saved_max_active = max_active;
3266 mutex_init(&wq->flush_mutex);
3267 atomic_set(&wq->nr_cwqs_to_flush, 0);
3268 INIT_LIST_HEAD(&wq->flusher_queue);
3269 INIT_LIST_HEAD(&wq->flusher_overflow);
3270
3271 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3272 INIT_LIST_HEAD(&wq->list);
3273
3274 if (alloc_cwqs(wq) < 0)
3275 goto err;
3276
3277 for_each_cwq_cpu(cpu, wq) {
3278 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3279 struct global_cwq *gcwq = get_gcwq(cpu);
3280 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3281
3282 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3283 cwq->pool = &gcwq->pools[pool_idx];
3284 cwq->wq = wq;
3285 cwq->flush_color = -1;
3286 cwq->max_active = max_active;
3287 INIT_LIST_HEAD(&cwq->delayed_works);
3288 }
3289
3290 if (flags & WQ_RESCUER) {
3291 struct worker *rescuer;
3292
3293 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3294 goto err;
3295
3296 wq->rescuer = rescuer = alloc_worker();
3297 if (!rescuer)
3298 goto err;
3299
3300 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3301 wq->name);
3302 if (IS_ERR(rescuer->task))
3303 goto err;
3304
3305 rescuer->task->flags |= PF_THREAD_BOUND;
3306 wake_up_process(rescuer->task);
3307 }
3308
3309 /*
3310 * workqueue_lock protects global freeze state and workqueues
3311 * list. Grab it, set max_active accordingly and add the new
3312 * workqueue to workqueues list.
3313 */
3314 spin_lock(&workqueue_lock);
3315
3316 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3317 for_each_cwq_cpu(cpu, wq)
3318 get_cwq(cpu, wq)->max_active = 0;
3319
3320 list_add(&wq->list, &workqueues);
3321
3322 spin_unlock(&workqueue_lock);
3323
3324 return wq;
3325 err:
3326 if (wq) {
3327 free_cwqs(wq);
3328 free_mayday_mask(wq->mayday_mask);
3329 kfree(wq->rescuer);
3330 kfree(wq);
3331 }
3332 return NULL;
3333 }
3334 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3335
3336 /**
3337 * destroy_workqueue - safely terminate a workqueue
3338 * @wq: target workqueue
3339 *
3340 * Safely destroy a workqueue. All work currently pending will be done first.
3341 */
3342 void destroy_workqueue(struct workqueue_struct *wq)
3343 {
3344 unsigned int cpu;
3345
3346 /* drain it before proceeding with destruction */
3347 drain_workqueue(wq);
3348
3349 /*
3350 * wq list is used to freeze wq, remove from list after
3351 * flushing is complete in case freeze races us.
3352 */
3353 spin_lock(&workqueue_lock);
3354 list_del(&wq->list);
3355 spin_unlock(&workqueue_lock);
3356
3357 /* sanity check */
3358 for_each_cwq_cpu(cpu, wq) {
3359 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3360 int i;
3361
3362 for (i = 0; i < WORK_NR_COLORS; i++)
3363 BUG_ON(cwq->nr_in_flight[i]);
3364 BUG_ON(cwq->nr_active);
3365 BUG_ON(!list_empty(&cwq->delayed_works));
3366 }
3367
3368 if (wq->flags & WQ_RESCUER) {
3369 kthread_stop(wq->rescuer->task);
3370 free_mayday_mask(wq->mayday_mask);
3371 kfree(wq->rescuer);
3372 }
3373
3374 free_cwqs(wq);
3375 kfree(wq);
3376 }
3377 EXPORT_SYMBOL_GPL(destroy_workqueue);
3378
3379 /**
3380 * cwq_set_max_active - adjust max_active of a cwq
3381 * @cwq: target cpu_workqueue_struct
3382 * @max_active: new max_active value.
3383 *
3384 * Set @cwq->max_active to @max_active and activate delayed works if
3385 * increased.
3386 *
3387 * CONTEXT:
3388 * spin_lock_irq(gcwq->lock).
3389 */
3390 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3391 {
3392 cwq->max_active = max_active;
3393
3394 while (!list_empty(&cwq->delayed_works) &&
3395 cwq->nr_active < cwq->max_active)
3396 cwq_activate_first_delayed(cwq);
3397 }
3398
3399 /**
3400 * workqueue_set_max_active - adjust max_active of a workqueue
3401 * @wq: target workqueue
3402 * @max_active: new max_active value.
3403 *
3404 * Set max_active of @wq to @max_active.
3405 *
3406 * CONTEXT:
3407 * Don't call from IRQ context.
3408 */
3409 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3410 {
3411 unsigned int cpu;
3412
3413 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3414
3415 spin_lock(&workqueue_lock);
3416
3417 wq->saved_max_active = max_active;
3418
3419 for_each_cwq_cpu(cpu, wq) {
3420 struct global_cwq *gcwq = get_gcwq(cpu);
3421
3422 spin_lock_irq(&gcwq->lock);
3423
3424 if (!(wq->flags & WQ_FREEZABLE) ||
3425 !(gcwq->flags & GCWQ_FREEZING))
3426 cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3427
3428 spin_unlock_irq(&gcwq->lock);
3429 }
3430
3431 spin_unlock(&workqueue_lock);
3432 }
3433 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3434
3435 /**
3436 * workqueue_congested - test whether a workqueue is congested
3437 * @cpu: CPU in question
3438 * @wq: target workqueue
3439 *
3440 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3441 * no synchronization around this function and the test result is
3442 * unreliable and only useful as advisory hints or for debugging.
3443 *
3444 * RETURNS:
3445 * %true if congested, %false otherwise.
3446 */
3447 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3448 {
3449 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3450
3451 return !list_empty(&cwq->delayed_works);
3452 }
3453 EXPORT_SYMBOL_GPL(workqueue_congested);
3454
3455 /**
3456 * work_cpu - return the last known associated cpu for @work
3457 * @work: the work of interest
3458 *
3459 * RETURNS:
3460 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3461 */
3462 unsigned int work_cpu(struct work_struct *work)
3463 {
3464 struct global_cwq *gcwq = get_work_gcwq(work);
3465
3466 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3467 }
3468 EXPORT_SYMBOL_GPL(work_cpu);
3469
3470 /**
3471 * work_busy - test whether a work is currently pending or running
3472 * @work: the work to be tested
3473 *
3474 * Test whether @work is currently pending or running. There is no
3475 * synchronization around this function and the test result is
3476 * unreliable and only useful as advisory hints or for debugging.
3477 * Especially for reentrant wqs, the pending state might hide the
3478 * running state.
3479 *
3480 * RETURNS:
3481 * OR'd bitmask of WORK_BUSY_* bits.
3482 */
3483 unsigned int work_busy(struct work_struct *work)
3484 {
3485 struct global_cwq *gcwq = get_work_gcwq(work);
3486 unsigned long flags;
3487 unsigned int ret = 0;
3488
3489 if (!gcwq)
3490 return 0;
3491
3492 spin_lock_irqsave(&gcwq->lock, flags);
3493
3494 if (work_pending(work))
3495 ret |= WORK_BUSY_PENDING;
3496 if (find_worker_executing_work(gcwq, work))
3497 ret |= WORK_BUSY_RUNNING;
3498
3499 spin_unlock_irqrestore(&gcwq->lock, flags);
3500
3501 return ret;
3502 }
3503 EXPORT_SYMBOL_GPL(work_busy);
3504
3505 /*
3506 * CPU hotplug.
3507 *
3508 * There are two challenges in supporting CPU hotplug. Firstly, there
3509 * are a lot of assumptions on strong associations among work, cwq and
3510 * gcwq which make migrating pending and scheduled works very
3511 * difficult to implement without impacting hot paths. Secondly,
3512 * gcwqs serve mix of short, long and very long running works making
3513 * blocked draining impractical.
3514 *
3515 * This is solved by allowing a gcwq to be disassociated from the CPU
3516 * running as an unbound one and allowing it to be reattached later if the
3517 * cpu comes back online.
3518 */
3519
3520 /* claim manager positions of all pools */
3521 static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3522 {
3523 struct worker_pool *pool;
3524
3525 for_each_worker_pool(pool, gcwq)
3526 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
3527 spin_lock_irq(&gcwq->lock);
3528 }
3529
3530 /* release manager positions */
3531 static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3532 {
3533 struct worker_pool *pool;
3534
3535 spin_unlock_irq(&gcwq->lock);
3536 for_each_worker_pool(pool, gcwq)
3537 mutex_unlock(&pool->assoc_mutex);
3538 }
3539
3540 static void gcwq_unbind_fn(struct work_struct *work)
3541 {
3542 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3543 struct worker_pool *pool;
3544 struct worker *worker;
3545 struct hlist_node *pos;
3546 int i;
3547
3548 BUG_ON(gcwq->cpu != smp_processor_id());
3549
3550 gcwq_claim_assoc_and_lock(gcwq);
3551
3552 /*
3553 * We've claimed all manager positions. Make all workers unbound
3554 * and set DISASSOCIATED. Before this, all workers except for the
3555 * ones which are still executing works from before the last CPU
3556 * down must be on the cpu. After this, they may become diasporas.
3557 */
3558 for_each_worker_pool(pool, gcwq)
3559 list_for_each_entry(worker, &pool->idle_list, entry)
3560 worker->flags |= WORKER_UNBOUND;
3561
3562 for_each_busy_worker(worker, i, pos, gcwq)
3563 worker->flags |= WORKER_UNBOUND;
3564
3565 gcwq->flags |= GCWQ_DISASSOCIATED;
3566
3567 gcwq_release_assoc_and_unlock(gcwq);
3568
3569 /*
3570 * Call schedule() so that we cross rq->lock and thus can guarantee
3571 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3572 * as scheduler callbacks may be invoked from other cpus.
3573 */
3574 schedule();
3575
3576 /*
3577 * Sched callbacks are disabled now. Zap nr_running. After this,
3578 * nr_running stays zero and need_more_worker() and keep_working()
3579 * are always true as long as the worklist is not empty. @gcwq now
3580 * behaves as unbound (in terms of concurrency management) gcwq
3581 * which is served by workers tied to the CPU.
3582 *
3583 * On return from this function, the current worker would trigger
3584 * unbound chain execution of pending work items if other workers
3585 * didn't already.
3586 */
3587 for_each_worker_pool(pool, gcwq)
3588 atomic_set(get_pool_nr_running(pool), 0);
3589 }
3590
3591 /*
3592 * Workqueues should be brought up before normal priority CPU notifiers.
3593 * This will be registered high priority CPU notifier.
3594 */
3595 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3596 unsigned long action,
3597 void *hcpu)
3598 {
3599 unsigned int cpu = (unsigned long)hcpu;
3600 struct global_cwq *gcwq = get_gcwq(cpu);
3601 struct worker_pool *pool;
3602
3603 switch (action & ~CPU_TASKS_FROZEN) {
3604 case CPU_UP_PREPARE:
3605 for_each_worker_pool(pool, gcwq) {
3606 struct worker *worker;
3607
3608 if (pool->nr_workers)
3609 continue;
3610
3611 worker = create_worker(pool);
3612 if (!worker)
3613 return NOTIFY_BAD;
3614
3615 spin_lock_irq(&gcwq->lock);
3616 start_worker(worker);
3617 spin_unlock_irq(&gcwq->lock);
3618 }
3619 break;
3620
3621 case CPU_DOWN_FAILED:
3622 case CPU_ONLINE:
3623 gcwq_claim_assoc_and_lock(gcwq);
3624 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3625 rebind_workers(gcwq);
3626 gcwq_release_assoc_and_unlock(gcwq);
3627 break;
3628 }
3629 return NOTIFY_OK;
3630 }
3631
3632 /*
3633 * Workqueues should be brought down after normal priority CPU notifiers.
3634 * This will be registered as low priority CPU notifier.
3635 */
3636 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3637 unsigned long action,
3638 void *hcpu)
3639 {
3640 unsigned int cpu = (unsigned long)hcpu;
3641 struct work_struct unbind_work;
3642
3643 switch (action & ~CPU_TASKS_FROZEN) {
3644 case CPU_DOWN_PREPARE:
3645 /* unbinding should happen on the local CPU */
3646 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3647 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3648 flush_work(&unbind_work);
3649 break;
3650 }
3651 return NOTIFY_OK;
3652 }
3653
3654 #ifdef CONFIG_SMP
3655
3656 struct work_for_cpu {
3657 struct work_struct work;
3658 long (*fn)(void *);
3659 void *arg;
3660 long ret;
3661 };
3662
3663 static void work_for_cpu_fn(struct work_struct *work)
3664 {
3665 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3666
3667 wfc->ret = wfc->fn(wfc->arg);
3668 }
3669
3670 /**
3671 * work_on_cpu - run a function in user context on a particular cpu
3672 * @cpu: the cpu to run on
3673 * @fn: the function to run
3674 * @arg: the function arg
3675 *
3676 * This will return the value @fn returns.
3677 * It is up to the caller to ensure that the cpu doesn't go offline.
3678 * The caller must not hold any locks which would prevent @fn from completing.
3679 */
3680 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3681 {
3682 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3683
3684 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3685 schedule_work_on(cpu, &wfc.work);
3686 flush_work(&wfc.work);
3687 return wfc.ret;
3688 }
3689 EXPORT_SYMBOL_GPL(work_on_cpu);
3690 #endif /* CONFIG_SMP */
3691
3692 #ifdef CONFIG_FREEZER
3693
3694 /**
3695 * freeze_workqueues_begin - begin freezing workqueues
3696 *
3697 * Start freezing workqueues. After this function returns, all freezable
3698 * workqueues will queue new works to their frozen_works list instead of
3699 * gcwq->worklist.
3700 *
3701 * CONTEXT:
3702 * Grabs and releases workqueue_lock and gcwq->lock's.
3703 */
3704 void freeze_workqueues_begin(void)
3705 {
3706 unsigned int cpu;
3707
3708 spin_lock(&workqueue_lock);
3709
3710 BUG_ON(workqueue_freezing);
3711 workqueue_freezing = true;
3712
3713 for_each_gcwq_cpu(cpu) {
3714 struct global_cwq *gcwq = get_gcwq(cpu);
3715 struct workqueue_struct *wq;
3716
3717 spin_lock_irq(&gcwq->lock);
3718
3719 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3720 gcwq->flags |= GCWQ_FREEZING;
3721
3722 list_for_each_entry(wq, &workqueues, list) {
3723 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3724
3725 if (cwq && wq->flags & WQ_FREEZABLE)
3726 cwq->max_active = 0;
3727 }
3728
3729 spin_unlock_irq(&gcwq->lock);
3730 }
3731
3732 spin_unlock(&workqueue_lock);
3733 }
3734
3735 /**
3736 * freeze_workqueues_busy - are freezable workqueues still busy?
3737 *
3738 * Check whether freezing is complete. This function must be called
3739 * between freeze_workqueues_begin() and thaw_workqueues().
3740 *
3741 * CONTEXT:
3742 * Grabs and releases workqueue_lock.
3743 *
3744 * RETURNS:
3745 * %true if some freezable workqueues are still busy. %false if freezing
3746 * is complete.
3747 */
3748 bool freeze_workqueues_busy(void)
3749 {
3750 unsigned int cpu;
3751 bool busy = false;
3752
3753 spin_lock(&workqueue_lock);
3754
3755 BUG_ON(!workqueue_freezing);
3756
3757 for_each_gcwq_cpu(cpu) {
3758 struct workqueue_struct *wq;
3759 /*
3760 * nr_active is monotonically decreasing. It's safe
3761 * to peek without lock.
3762 */
3763 list_for_each_entry(wq, &workqueues, list) {
3764 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3765
3766 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3767 continue;
3768
3769 BUG_ON(cwq->nr_active < 0);
3770 if (cwq->nr_active) {
3771 busy = true;
3772 goto out_unlock;
3773 }
3774 }
3775 }
3776 out_unlock:
3777 spin_unlock(&workqueue_lock);
3778 return busy;
3779 }
3780
3781 /**
3782 * thaw_workqueues - thaw workqueues
3783 *
3784 * Thaw workqueues. Normal queueing is restored and all collected
3785 * frozen works are transferred to their respective gcwq worklists.
3786 *
3787 * CONTEXT:
3788 * Grabs and releases workqueue_lock and gcwq->lock's.
3789 */
3790 void thaw_workqueues(void)
3791 {
3792 unsigned int cpu;
3793
3794 spin_lock(&workqueue_lock);
3795
3796 if (!workqueue_freezing)
3797 goto out_unlock;
3798
3799 for_each_gcwq_cpu(cpu) {
3800 struct global_cwq *gcwq = get_gcwq(cpu);
3801 struct worker_pool *pool;
3802 struct workqueue_struct *wq;
3803
3804 spin_lock_irq(&gcwq->lock);
3805
3806 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3807 gcwq->flags &= ~GCWQ_FREEZING;
3808
3809 list_for_each_entry(wq, &workqueues, list) {
3810 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3811
3812 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3813 continue;
3814
3815 /* restore max_active and repopulate worklist */
3816 cwq_set_max_active(cwq, wq->saved_max_active);
3817 }
3818
3819 for_each_worker_pool(pool, gcwq)
3820 wake_up_worker(pool);
3821
3822 spin_unlock_irq(&gcwq->lock);
3823 }
3824
3825 workqueue_freezing = false;
3826 out_unlock:
3827 spin_unlock(&workqueue_lock);
3828 }
3829 #endif /* CONFIG_FREEZER */
3830
3831 static int __init init_workqueues(void)
3832 {
3833 unsigned int cpu;
3834 int i;
3835
3836 /* make sure we have enough bits for OFFQ CPU number */
3837 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3838 WORK_CPU_LAST);
3839
3840 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3841 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3842
3843 /* initialize gcwqs */
3844 for_each_gcwq_cpu(cpu) {
3845 struct global_cwq *gcwq = get_gcwq(cpu);
3846 struct worker_pool *pool;
3847
3848 spin_lock_init(&gcwq->lock);
3849 gcwq->cpu = cpu;
3850 gcwq->flags |= GCWQ_DISASSOCIATED;
3851
3852 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3853 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3854
3855 for_each_worker_pool(pool, gcwq) {
3856 pool->gcwq = gcwq;
3857 INIT_LIST_HEAD(&pool->worklist);
3858 INIT_LIST_HEAD(&pool->idle_list);
3859
3860 init_timer_deferrable(&pool->idle_timer);
3861 pool->idle_timer.function = idle_worker_timeout;
3862 pool->idle_timer.data = (unsigned long)pool;
3863
3864 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3865 (unsigned long)pool);
3866
3867 mutex_init(&pool->assoc_mutex);
3868 ida_init(&pool->worker_ida);
3869 }
3870 }
3871
3872 /* create the initial worker */
3873 for_each_online_gcwq_cpu(cpu) {
3874 struct global_cwq *gcwq = get_gcwq(cpu);
3875 struct worker_pool *pool;
3876
3877 if (cpu != WORK_CPU_UNBOUND)
3878 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3879
3880 for_each_worker_pool(pool, gcwq) {
3881 struct worker *worker;
3882
3883 worker = create_worker(pool);
3884 BUG_ON(!worker);
3885 spin_lock_irq(&gcwq->lock);
3886 start_worker(worker);
3887 spin_unlock_irq(&gcwq->lock);
3888 }
3889 }
3890
3891 system_wq = alloc_workqueue("events", 0, 0);
3892 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3893 system_long_wq = alloc_workqueue("events_long", 0, 0);
3894 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3895 WQ_UNBOUND_MAX_ACTIVE);
3896 system_freezable_wq = alloc_workqueue("events_freezable",
3897 WQ_FREEZABLE, 0);
3898 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3899 !system_unbound_wq || !system_freezable_wq);
3900 return 0;
3901 }
3902 early_initcall(init_workqueues);
This page took 0.117978 seconds and 5 git commands to generate.