workqueue: make GCWQ_DISASSOCIATED a pool flag
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45
46 #include "workqueue_internal.h"
47
48 enum {
49 /*
50 * global_cwq flags
51 */
52 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
53
54 /*
55 * worker_pool flags
56 *
57 * A bound pool is either associated or disassociated with its CPU.
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 * be executing on any CPU. The pool behaves as an unbound one.
65 *
66 * Note that DISASSOCIATED can be flipped only while holding
67 * assoc_mutex to avoid changing binding state while
68 * create_worker() is in progress.
69 */
70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
71 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81
82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
83 WORKER_CPU_INTENSIVE,
84
85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
86
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give -20.
101 */
102 RESCUER_NICE_LEVEL = -20,
103 HIGHPRI_NICE_LEVEL = -20,
104 };
105
106 /*
107 * Structure fields follow one of the following exclusion rules.
108 *
109 * I: Modifiable by initialization/destruction paths and read-only for
110 * everyone else.
111 *
112 * P: Preemption protected. Disabling preemption is enough and should
113 * only be modified and accessed from the local cpu.
114 *
115 * L: gcwq->lock protected. Access with gcwq->lock held.
116 *
117 * X: During normal operation, modification requires gcwq->lock and
118 * should be done only from local cpu. Either disabling preemption
119 * on local cpu or grabbing gcwq->lock is enough for read access.
120 * If POOL_DISASSOCIATED is set, it's identical to L.
121 *
122 * F: wq->flush_mutex protected.
123 *
124 * W: workqueue_lock protected.
125 */
126
127 /* struct worker is defined in workqueue_internal.h */
128
129 struct worker_pool {
130 struct global_cwq *gcwq; /* I: the owning gcwq */
131 unsigned int flags; /* X: flags */
132
133 struct list_head worklist; /* L: list of pending works */
134 int nr_workers; /* L: total number of workers */
135
136 /* nr_idle includes the ones off idle_list for rebinding */
137 int nr_idle; /* L: currently idle ones */
138
139 struct list_head idle_list; /* X: list of idle workers */
140 struct timer_list idle_timer; /* L: worker idle timeout */
141 struct timer_list mayday_timer; /* L: SOS timer for workers */
142
143 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
144 struct ida worker_ida; /* L: for worker IDs */
145 };
146
147 /*
148 * Global per-cpu workqueue. There's one and only one for each cpu
149 * and all works are queued and processed here regardless of their
150 * target workqueues.
151 */
152 struct global_cwq {
153 spinlock_t lock; /* the gcwq lock */
154 unsigned int cpu; /* I: the associated cpu */
155 unsigned int flags; /* L: GCWQ_* flags */
156
157 /* workers are chained either in busy_hash or pool idle_list */
158 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
159 /* L: hash of busy workers */
160
161 struct worker_pool pools[NR_STD_WORKER_POOLS];
162 /* normal and highpri pools */
163 } ____cacheline_aligned_in_smp;
164
165 /*
166 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
167 * work_struct->data are used for flags and thus cwqs need to be
168 * aligned at two's power of the number of flag bits.
169 */
170 struct cpu_workqueue_struct {
171 struct worker_pool *pool; /* I: the associated pool */
172 struct workqueue_struct *wq; /* I: the owning workqueue */
173 int work_color; /* L: current color */
174 int flush_color; /* L: flushing color */
175 int nr_in_flight[WORK_NR_COLORS];
176 /* L: nr of in_flight works */
177 int nr_active; /* L: nr of active works */
178 int max_active; /* L: max active works */
179 struct list_head delayed_works; /* L: delayed works */
180 };
181
182 /*
183 * Structure used to wait for workqueue flush.
184 */
185 struct wq_flusher {
186 struct list_head list; /* F: list of flushers */
187 int flush_color; /* F: flush color waiting for */
188 struct completion done; /* flush completion */
189 };
190
191 /*
192 * All cpumasks are assumed to be always set on UP and thus can't be
193 * used to determine whether there's something to be done.
194 */
195 #ifdef CONFIG_SMP
196 typedef cpumask_var_t mayday_mask_t;
197 #define mayday_test_and_set_cpu(cpu, mask) \
198 cpumask_test_and_set_cpu((cpu), (mask))
199 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
200 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
201 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
202 #define free_mayday_mask(mask) free_cpumask_var((mask))
203 #else
204 typedef unsigned long mayday_mask_t;
205 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
206 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
207 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
208 #define alloc_mayday_mask(maskp, gfp) true
209 #define free_mayday_mask(mask) do { } while (0)
210 #endif
211
212 /*
213 * The externally visible workqueue abstraction is an array of
214 * per-CPU workqueues:
215 */
216 struct workqueue_struct {
217 unsigned int flags; /* W: WQ_* flags */
218 union {
219 struct cpu_workqueue_struct __percpu *pcpu;
220 struct cpu_workqueue_struct *single;
221 unsigned long v;
222 } cpu_wq; /* I: cwq's */
223 struct list_head list; /* W: list of all workqueues */
224
225 struct mutex flush_mutex; /* protects wq flushing */
226 int work_color; /* F: current work color */
227 int flush_color; /* F: current flush color */
228 atomic_t nr_cwqs_to_flush; /* flush in progress */
229 struct wq_flusher *first_flusher; /* F: first flusher */
230 struct list_head flusher_queue; /* F: flush waiters */
231 struct list_head flusher_overflow; /* F: flush overflow list */
232
233 mayday_mask_t mayday_mask; /* cpus requesting rescue */
234 struct worker *rescuer; /* I: rescue worker */
235
236 int nr_drainers; /* W: drain in progress */
237 int saved_max_active; /* W: saved cwq max_active */
238 #ifdef CONFIG_LOCKDEP
239 struct lockdep_map lockdep_map;
240 #endif
241 char name[]; /* I: workqueue name */
242 };
243
244 struct workqueue_struct *system_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_wq);
246 struct workqueue_struct *system_highpri_wq __read_mostly;
247 EXPORT_SYMBOL_GPL(system_highpri_wq);
248 struct workqueue_struct *system_long_wq __read_mostly;
249 EXPORT_SYMBOL_GPL(system_long_wq);
250 struct workqueue_struct *system_unbound_wq __read_mostly;
251 EXPORT_SYMBOL_GPL(system_unbound_wq);
252 struct workqueue_struct *system_freezable_wq __read_mostly;
253 EXPORT_SYMBOL_GPL(system_freezable_wq);
254
255 #define CREATE_TRACE_POINTS
256 #include <trace/events/workqueue.h>
257
258 #define for_each_worker_pool(pool, gcwq) \
259 for ((pool) = &(gcwq)->pools[0]; \
260 (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
261
262 #define for_each_busy_worker(worker, i, pos, gcwq) \
263 hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
264
265 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
266 unsigned int sw)
267 {
268 if (cpu < nr_cpu_ids) {
269 if (sw & 1) {
270 cpu = cpumask_next(cpu, mask);
271 if (cpu < nr_cpu_ids)
272 return cpu;
273 }
274 if (sw & 2)
275 return WORK_CPU_UNBOUND;
276 }
277 return WORK_CPU_NONE;
278 }
279
280 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
281 struct workqueue_struct *wq)
282 {
283 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
284 }
285
286 /*
287 * CPU iterators
288 *
289 * An extra gcwq is defined for an invalid cpu number
290 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
291 * specific CPU. The following iterators are similar to
292 * for_each_*_cpu() iterators but also considers the unbound gcwq.
293 *
294 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
295 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
296 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
297 * WORK_CPU_UNBOUND for unbound workqueues
298 */
299 #define for_each_gcwq_cpu(cpu) \
300 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
301 (cpu) < WORK_CPU_NONE; \
302 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
303
304 #define for_each_online_gcwq_cpu(cpu) \
305 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
306 (cpu) < WORK_CPU_NONE; \
307 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
308
309 #define for_each_cwq_cpu(cpu, wq) \
310 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
311 (cpu) < WORK_CPU_NONE; \
312 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
313
314 #ifdef CONFIG_DEBUG_OBJECTS_WORK
315
316 static struct debug_obj_descr work_debug_descr;
317
318 static void *work_debug_hint(void *addr)
319 {
320 return ((struct work_struct *) addr)->func;
321 }
322
323 /*
324 * fixup_init is called when:
325 * - an active object is initialized
326 */
327 static int work_fixup_init(void *addr, enum debug_obj_state state)
328 {
329 struct work_struct *work = addr;
330
331 switch (state) {
332 case ODEBUG_STATE_ACTIVE:
333 cancel_work_sync(work);
334 debug_object_init(work, &work_debug_descr);
335 return 1;
336 default:
337 return 0;
338 }
339 }
340
341 /*
342 * fixup_activate is called when:
343 * - an active object is activated
344 * - an unknown object is activated (might be a statically initialized object)
345 */
346 static int work_fixup_activate(void *addr, enum debug_obj_state state)
347 {
348 struct work_struct *work = addr;
349
350 switch (state) {
351
352 case ODEBUG_STATE_NOTAVAILABLE:
353 /*
354 * This is not really a fixup. The work struct was
355 * statically initialized. We just make sure that it
356 * is tracked in the object tracker.
357 */
358 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
359 debug_object_init(work, &work_debug_descr);
360 debug_object_activate(work, &work_debug_descr);
361 return 0;
362 }
363 WARN_ON_ONCE(1);
364 return 0;
365
366 case ODEBUG_STATE_ACTIVE:
367 WARN_ON(1);
368
369 default:
370 return 0;
371 }
372 }
373
374 /*
375 * fixup_free is called when:
376 * - an active object is freed
377 */
378 static int work_fixup_free(void *addr, enum debug_obj_state state)
379 {
380 struct work_struct *work = addr;
381
382 switch (state) {
383 case ODEBUG_STATE_ACTIVE:
384 cancel_work_sync(work);
385 debug_object_free(work, &work_debug_descr);
386 return 1;
387 default:
388 return 0;
389 }
390 }
391
392 static struct debug_obj_descr work_debug_descr = {
393 .name = "work_struct",
394 .debug_hint = work_debug_hint,
395 .fixup_init = work_fixup_init,
396 .fixup_activate = work_fixup_activate,
397 .fixup_free = work_fixup_free,
398 };
399
400 static inline void debug_work_activate(struct work_struct *work)
401 {
402 debug_object_activate(work, &work_debug_descr);
403 }
404
405 static inline void debug_work_deactivate(struct work_struct *work)
406 {
407 debug_object_deactivate(work, &work_debug_descr);
408 }
409
410 void __init_work(struct work_struct *work, int onstack)
411 {
412 if (onstack)
413 debug_object_init_on_stack(work, &work_debug_descr);
414 else
415 debug_object_init(work, &work_debug_descr);
416 }
417 EXPORT_SYMBOL_GPL(__init_work);
418
419 void destroy_work_on_stack(struct work_struct *work)
420 {
421 debug_object_free(work, &work_debug_descr);
422 }
423 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
424
425 #else
426 static inline void debug_work_activate(struct work_struct *work) { }
427 static inline void debug_work_deactivate(struct work_struct *work) { }
428 #endif
429
430 /* Serializes the accesses to the list of workqueues. */
431 static DEFINE_SPINLOCK(workqueue_lock);
432 static LIST_HEAD(workqueues);
433 static bool workqueue_freezing; /* W: have wqs started freezing? */
434
435 /*
436 * The almighty global cpu workqueues. nr_running is the only field
437 * which is expected to be used frequently by other cpus via
438 * try_to_wake_up(). Put it in a separate cacheline.
439 */
440 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
441 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
442
443 /*
444 * Global cpu workqueue and nr_running counter for unbound gcwq. The pools
445 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
446 * WORKER_UNBOUND set.
447 */
448 static struct global_cwq unbound_global_cwq;
449 static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
450 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
451 };
452
453 static int worker_thread(void *__worker);
454 static unsigned int work_cpu(struct work_struct *work);
455
456 static int std_worker_pool_pri(struct worker_pool *pool)
457 {
458 return pool - pool->gcwq->pools;
459 }
460
461 static struct global_cwq *get_gcwq(unsigned int cpu)
462 {
463 if (cpu != WORK_CPU_UNBOUND)
464 return &per_cpu(global_cwq, cpu);
465 else
466 return &unbound_global_cwq;
467 }
468
469 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
470 {
471 int cpu = pool->gcwq->cpu;
472 int idx = std_worker_pool_pri(pool);
473
474 if (cpu != WORK_CPU_UNBOUND)
475 return &per_cpu(pool_nr_running, cpu)[idx];
476 else
477 return &unbound_pool_nr_running[idx];
478 }
479
480 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
481 struct workqueue_struct *wq)
482 {
483 if (!(wq->flags & WQ_UNBOUND)) {
484 if (likely(cpu < nr_cpu_ids))
485 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
486 } else if (likely(cpu == WORK_CPU_UNBOUND))
487 return wq->cpu_wq.single;
488 return NULL;
489 }
490
491 static unsigned int work_color_to_flags(int color)
492 {
493 return color << WORK_STRUCT_COLOR_SHIFT;
494 }
495
496 static int get_work_color(struct work_struct *work)
497 {
498 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
499 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
500 }
501
502 static int work_next_color(int color)
503 {
504 return (color + 1) % WORK_NR_COLORS;
505 }
506
507 /*
508 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
509 * contain the pointer to the queued cwq. Once execution starts, the flag
510 * is cleared and the high bits contain OFFQ flags and CPU number.
511 *
512 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
513 * and clear_work_data() can be used to set the cwq, cpu or clear
514 * work->data. These functions should only be called while the work is
515 * owned - ie. while the PENDING bit is set.
516 *
517 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
518 * a work. gcwq is available once the work has been queued anywhere after
519 * initialization until it is sync canceled. cwq is available only while
520 * the work item is queued.
521 *
522 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
523 * canceled. While being canceled, a work item may have its PENDING set
524 * but stay off timer and worklist for arbitrarily long and nobody should
525 * try to steal the PENDING bit.
526 */
527 static inline void set_work_data(struct work_struct *work, unsigned long data,
528 unsigned long flags)
529 {
530 BUG_ON(!work_pending(work));
531 atomic_long_set(&work->data, data | flags | work_static(work));
532 }
533
534 static void set_work_cwq(struct work_struct *work,
535 struct cpu_workqueue_struct *cwq,
536 unsigned long extra_flags)
537 {
538 set_work_data(work, (unsigned long)cwq,
539 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
540 }
541
542 static void set_work_cpu_and_clear_pending(struct work_struct *work,
543 unsigned int cpu)
544 {
545 /*
546 * The following wmb is paired with the implied mb in
547 * test_and_set_bit(PENDING) and ensures all updates to @work made
548 * here are visible to and precede any updates by the next PENDING
549 * owner.
550 */
551 smp_wmb();
552 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
553 }
554
555 static void clear_work_data(struct work_struct *work)
556 {
557 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
558 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
559 }
560
561 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
562 {
563 unsigned long data = atomic_long_read(&work->data);
564
565 if (data & WORK_STRUCT_CWQ)
566 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
567 else
568 return NULL;
569 }
570
571 static struct global_cwq *get_work_gcwq(struct work_struct *work)
572 {
573 unsigned long data = atomic_long_read(&work->data);
574 unsigned int cpu;
575
576 if (data & WORK_STRUCT_CWQ)
577 return ((struct cpu_workqueue_struct *)
578 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
579
580 cpu = data >> WORK_OFFQ_CPU_SHIFT;
581 if (cpu == WORK_CPU_NONE)
582 return NULL;
583
584 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
585 return get_gcwq(cpu);
586 }
587
588 static void mark_work_canceling(struct work_struct *work)
589 {
590 struct global_cwq *gcwq = get_work_gcwq(work);
591 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
592
593 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
594 WORK_STRUCT_PENDING);
595 }
596
597 static bool work_is_canceling(struct work_struct *work)
598 {
599 unsigned long data = atomic_long_read(&work->data);
600
601 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
602 }
603
604 /*
605 * Policy functions. These define the policies on how the global worker
606 * pools are managed. Unless noted otherwise, these functions assume that
607 * they're being called with gcwq->lock held.
608 */
609
610 static bool __need_more_worker(struct worker_pool *pool)
611 {
612 return !atomic_read(get_pool_nr_running(pool));
613 }
614
615 /*
616 * Need to wake up a worker? Called from anything but currently
617 * running workers.
618 *
619 * Note that, because unbound workers never contribute to nr_running, this
620 * function will always return %true for unbound gcwq as long as the
621 * worklist isn't empty.
622 */
623 static bool need_more_worker(struct worker_pool *pool)
624 {
625 return !list_empty(&pool->worklist) && __need_more_worker(pool);
626 }
627
628 /* Can I start working? Called from busy but !running workers. */
629 static bool may_start_working(struct worker_pool *pool)
630 {
631 return pool->nr_idle;
632 }
633
634 /* Do I need to keep working? Called from currently running workers. */
635 static bool keep_working(struct worker_pool *pool)
636 {
637 atomic_t *nr_running = get_pool_nr_running(pool);
638
639 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
640 }
641
642 /* Do we need a new worker? Called from manager. */
643 static bool need_to_create_worker(struct worker_pool *pool)
644 {
645 return need_more_worker(pool) && !may_start_working(pool);
646 }
647
648 /* Do I need to be the manager? */
649 static bool need_to_manage_workers(struct worker_pool *pool)
650 {
651 return need_to_create_worker(pool) ||
652 (pool->flags & POOL_MANAGE_WORKERS);
653 }
654
655 /* Do we have too many workers and should some go away? */
656 static bool too_many_workers(struct worker_pool *pool)
657 {
658 bool managing = pool->flags & POOL_MANAGING_WORKERS;
659 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
660 int nr_busy = pool->nr_workers - nr_idle;
661
662 /*
663 * nr_idle and idle_list may disagree if idle rebinding is in
664 * progress. Never return %true if idle_list is empty.
665 */
666 if (list_empty(&pool->idle_list))
667 return false;
668
669 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
670 }
671
672 /*
673 * Wake up functions.
674 */
675
676 /* Return the first worker. Safe with preemption disabled */
677 static struct worker *first_worker(struct worker_pool *pool)
678 {
679 if (unlikely(list_empty(&pool->idle_list)))
680 return NULL;
681
682 return list_first_entry(&pool->idle_list, struct worker, entry);
683 }
684
685 /**
686 * wake_up_worker - wake up an idle worker
687 * @pool: worker pool to wake worker from
688 *
689 * Wake up the first idle worker of @pool.
690 *
691 * CONTEXT:
692 * spin_lock_irq(gcwq->lock).
693 */
694 static void wake_up_worker(struct worker_pool *pool)
695 {
696 struct worker *worker = first_worker(pool);
697
698 if (likely(worker))
699 wake_up_process(worker->task);
700 }
701
702 /**
703 * wq_worker_waking_up - a worker is waking up
704 * @task: task waking up
705 * @cpu: CPU @task is waking up to
706 *
707 * This function is called during try_to_wake_up() when a worker is
708 * being awoken.
709 *
710 * CONTEXT:
711 * spin_lock_irq(rq->lock)
712 */
713 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
714 {
715 struct worker *worker = kthread_data(task);
716
717 if (!(worker->flags & WORKER_NOT_RUNNING)) {
718 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
719 atomic_inc(get_pool_nr_running(worker->pool));
720 }
721 }
722
723 /**
724 * wq_worker_sleeping - a worker is going to sleep
725 * @task: task going to sleep
726 * @cpu: CPU in question, must be the current CPU number
727 *
728 * This function is called during schedule() when a busy worker is
729 * going to sleep. Worker on the same cpu can be woken up by
730 * returning pointer to its task.
731 *
732 * CONTEXT:
733 * spin_lock_irq(rq->lock)
734 *
735 * RETURNS:
736 * Worker task on @cpu to wake up, %NULL if none.
737 */
738 struct task_struct *wq_worker_sleeping(struct task_struct *task,
739 unsigned int cpu)
740 {
741 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
742 struct worker_pool *pool;
743 atomic_t *nr_running;
744
745 /*
746 * Rescuers, which may not have all the fields set up like normal
747 * workers, also reach here, let's not access anything before
748 * checking NOT_RUNNING.
749 */
750 if (worker->flags & WORKER_NOT_RUNNING)
751 return NULL;
752
753 pool = worker->pool;
754 nr_running = get_pool_nr_running(pool);
755
756 /* this can only happen on the local cpu */
757 BUG_ON(cpu != raw_smp_processor_id());
758
759 /*
760 * The counterpart of the following dec_and_test, implied mb,
761 * worklist not empty test sequence is in insert_work().
762 * Please read comment there.
763 *
764 * NOT_RUNNING is clear. This means that we're bound to and
765 * running on the local cpu w/ rq lock held and preemption
766 * disabled, which in turn means that none else could be
767 * manipulating idle_list, so dereferencing idle_list without gcwq
768 * lock is safe.
769 */
770 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
771 to_wakeup = first_worker(pool);
772 return to_wakeup ? to_wakeup->task : NULL;
773 }
774
775 /**
776 * worker_set_flags - set worker flags and adjust nr_running accordingly
777 * @worker: self
778 * @flags: flags to set
779 * @wakeup: wakeup an idle worker if necessary
780 *
781 * Set @flags in @worker->flags and adjust nr_running accordingly. If
782 * nr_running becomes zero and @wakeup is %true, an idle worker is
783 * woken up.
784 *
785 * CONTEXT:
786 * spin_lock_irq(gcwq->lock)
787 */
788 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
789 bool wakeup)
790 {
791 struct worker_pool *pool = worker->pool;
792
793 WARN_ON_ONCE(worker->task != current);
794
795 /*
796 * If transitioning into NOT_RUNNING, adjust nr_running and
797 * wake up an idle worker as necessary if requested by
798 * @wakeup.
799 */
800 if ((flags & WORKER_NOT_RUNNING) &&
801 !(worker->flags & WORKER_NOT_RUNNING)) {
802 atomic_t *nr_running = get_pool_nr_running(pool);
803
804 if (wakeup) {
805 if (atomic_dec_and_test(nr_running) &&
806 !list_empty(&pool->worklist))
807 wake_up_worker(pool);
808 } else
809 atomic_dec(nr_running);
810 }
811
812 worker->flags |= flags;
813 }
814
815 /**
816 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
817 * @worker: self
818 * @flags: flags to clear
819 *
820 * Clear @flags in @worker->flags and adjust nr_running accordingly.
821 *
822 * CONTEXT:
823 * spin_lock_irq(gcwq->lock)
824 */
825 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
826 {
827 struct worker_pool *pool = worker->pool;
828 unsigned int oflags = worker->flags;
829
830 WARN_ON_ONCE(worker->task != current);
831
832 worker->flags &= ~flags;
833
834 /*
835 * If transitioning out of NOT_RUNNING, increment nr_running. Note
836 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
837 * of multiple flags, not a single flag.
838 */
839 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
840 if (!(worker->flags & WORKER_NOT_RUNNING))
841 atomic_inc(get_pool_nr_running(pool));
842 }
843
844 /**
845 * find_worker_executing_work - find worker which is executing a work
846 * @gcwq: gcwq of interest
847 * @work: work to find worker for
848 *
849 * Find a worker which is executing @work on @gcwq by searching
850 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
851 * to match, its current execution should match the address of @work and
852 * its work function. This is to avoid unwanted dependency between
853 * unrelated work executions through a work item being recycled while still
854 * being executed.
855 *
856 * This is a bit tricky. A work item may be freed once its execution
857 * starts and nothing prevents the freed area from being recycled for
858 * another work item. If the same work item address ends up being reused
859 * before the original execution finishes, workqueue will identify the
860 * recycled work item as currently executing and make it wait until the
861 * current execution finishes, introducing an unwanted dependency.
862 *
863 * This function checks the work item address, work function and workqueue
864 * to avoid false positives. Note that this isn't complete as one may
865 * construct a work function which can introduce dependency onto itself
866 * through a recycled work item. Well, if somebody wants to shoot oneself
867 * in the foot that badly, there's only so much we can do, and if such
868 * deadlock actually occurs, it should be easy to locate the culprit work
869 * function.
870 *
871 * CONTEXT:
872 * spin_lock_irq(gcwq->lock).
873 *
874 * RETURNS:
875 * Pointer to worker which is executing @work if found, NULL
876 * otherwise.
877 */
878 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
879 struct work_struct *work)
880 {
881 struct worker *worker;
882 struct hlist_node *tmp;
883
884 hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
885 (unsigned long)work)
886 if (worker->current_work == work &&
887 worker->current_func == work->func)
888 return worker;
889
890 return NULL;
891 }
892
893 /**
894 * move_linked_works - move linked works to a list
895 * @work: start of series of works to be scheduled
896 * @head: target list to append @work to
897 * @nextp: out paramter for nested worklist walking
898 *
899 * Schedule linked works starting from @work to @head. Work series to
900 * be scheduled starts at @work and includes any consecutive work with
901 * WORK_STRUCT_LINKED set in its predecessor.
902 *
903 * If @nextp is not NULL, it's updated to point to the next work of
904 * the last scheduled work. This allows move_linked_works() to be
905 * nested inside outer list_for_each_entry_safe().
906 *
907 * CONTEXT:
908 * spin_lock_irq(gcwq->lock).
909 */
910 static void move_linked_works(struct work_struct *work, struct list_head *head,
911 struct work_struct **nextp)
912 {
913 struct work_struct *n;
914
915 /*
916 * Linked worklist will always end before the end of the list,
917 * use NULL for list head.
918 */
919 list_for_each_entry_safe_from(work, n, NULL, entry) {
920 list_move_tail(&work->entry, head);
921 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
922 break;
923 }
924
925 /*
926 * If we're already inside safe list traversal and have moved
927 * multiple works to the scheduled queue, the next position
928 * needs to be updated.
929 */
930 if (nextp)
931 *nextp = n;
932 }
933
934 static void cwq_activate_delayed_work(struct work_struct *work)
935 {
936 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
937
938 trace_workqueue_activate_work(work);
939 move_linked_works(work, &cwq->pool->worklist, NULL);
940 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
941 cwq->nr_active++;
942 }
943
944 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
945 {
946 struct work_struct *work = list_first_entry(&cwq->delayed_works,
947 struct work_struct, entry);
948
949 cwq_activate_delayed_work(work);
950 }
951
952 /**
953 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
954 * @cwq: cwq of interest
955 * @color: color of work which left the queue
956 *
957 * A work either has completed or is removed from pending queue,
958 * decrement nr_in_flight of its cwq and handle workqueue flushing.
959 *
960 * CONTEXT:
961 * spin_lock_irq(gcwq->lock).
962 */
963 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
964 {
965 /* ignore uncolored works */
966 if (color == WORK_NO_COLOR)
967 return;
968
969 cwq->nr_in_flight[color]--;
970
971 cwq->nr_active--;
972 if (!list_empty(&cwq->delayed_works)) {
973 /* one down, submit a delayed one */
974 if (cwq->nr_active < cwq->max_active)
975 cwq_activate_first_delayed(cwq);
976 }
977
978 /* is flush in progress and are we at the flushing tip? */
979 if (likely(cwq->flush_color != color))
980 return;
981
982 /* are there still in-flight works? */
983 if (cwq->nr_in_flight[color])
984 return;
985
986 /* this cwq is done, clear flush_color */
987 cwq->flush_color = -1;
988
989 /*
990 * If this was the last cwq, wake up the first flusher. It
991 * will handle the rest.
992 */
993 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
994 complete(&cwq->wq->first_flusher->done);
995 }
996
997 /**
998 * try_to_grab_pending - steal work item from worklist and disable irq
999 * @work: work item to steal
1000 * @is_dwork: @work is a delayed_work
1001 * @flags: place to store irq state
1002 *
1003 * Try to grab PENDING bit of @work. This function can handle @work in any
1004 * stable state - idle, on timer or on worklist. Return values are
1005 *
1006 * 1 if @work was pending and we successfully stole PENDING
1007 * 0 if @work was idle and we claimed PENDING
1008 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1009 * -ENOENT if someone else is canceling @work, this state may persist
1010 * for arbitrarily long
1011 *
1012 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1013 * interrupted while holding PENDING and @work off queue, irq must be
1014 * disabled on entry. This, combined with delayed_work->timer being
1015 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1016 *
1017 * On successful return, >= 0, irq is disabled and the caller is
1018 * responsible for releasing it using local_irq_restore(*@flags).
1019 *
1020 * This function is safe to call from any context including IRQ handler.
1021 */
1022 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1023 unsigned long *flags)
1024 {
1025 struct global_cwq *gcwq;
1026
1027 local_irq_save(*flags);
1028
1029 /* try to steal the timer if it exists */
1030 if (is_dwork) {
1031 struct delayed_work *dwork = to_delayed_work(work);
1032
1033 /*
1034 * dwork->timer is irqsafe. If del_timer() fails, it's
1035 * guaranteed that the timer is not queued anywhere and not
1036 * running on the local CPU.
1037 */
1038 if (likely(del_timer(&dwork->timer)))
1039 return 1;
1040 }
1041
1042 /* try to claim PENDING the normal way */
1043 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1044 return 0;
1045
1046 /*
1047 * The queueing is in progress, or it is already queued. Try to
1048 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1049 */
1050 gcwq = get_work_gcwq(work);
1051 if (!gcwq)
1052 goto fail;
1053
1054 spin_lock(&gcwq->lock);
1055 if (!list_empty(&work->entry)) {
1056 /*
1057 * This work is queued, but perhaps we locked the wrong gcwq.
1058 * In that case we must see the new value after rmb(), see
1059 * insert_work()->wmb().
1060 */
1061 smp_rmb();
1062 if (gcwq == get_work_gcwq(work)) {
1063 debug_work_deactivate(work);
1064
1065 /*
1066 * A delayed work item cannot be grabbed directly
1067 * because it might have linked NO_COLOR work items
1068 * which, if left on the delayed_list, will confuse
1069 * cwq->nr_active management later on and cause
1070 * stall. Make sure the work item is activated
1071 * before grabbing.
1072 */
1073 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1074 cwq_activate_delayed_work(work);
1075
1076 list_del_init(&work->entry);
1077 cwq_dec_nr_in_flight(get_work_cwq(work),
1078 get_work_color(work));
1079
1080 spin_unlock(&gcwq->lock);
1081 return 1;
1082 }
1083 }
1084 spin_unlock(&gcwq->lock);
1085 fail:
1086 local_irq_restore(*flags);
1087 if (work_is_canceling(work))
1088 return -ENOENT;
1089 cpu_relax();
1090 return -EAGAIN;
1091 }
1092
1093 /**
1094 * insert_work - insert a work into gcwq
1095 * @cwq: cwq @work belongs to
1096 * @work: work to insert
1097 * @head: insertion point
1098 * @extra_flags: extra WORK_STRUCT_* flags to set
1099 *
1100 * Insert @work which belongs to @cwq into @gcwq after @head.
1101 * @extra_flags is or'd to work_struct flags.
1102 *
1103 * CONTEXT:
1104 * spin_lock_irq(gcwq->lock).
1105 */
1106 static void insert_work(struct cpu_workqueue_struct *cwq,
1107 struct work_struct *work, struct list_head *head,
1108 unsigned int extra_flags)
1109 {
1110 struct worker_pool *pool = cwq->pool;
1111
1112 /* we own @work, set data and link */
1113 set_work_cwq(work, cwq, extra_flags);
1114
1115 /*
1116 * Ensure that we get the right work->data if we see the
1117 * result of list_add() below, see try_to_grab_pending().
1118 */
1119 smp_wmb();
1120
1121 list_add_tail(&work->entry, head);
1122
1123 /*
1124 * Ensure either worker_sched_deactivated() sees the above
1125 * list_add_tail() or we see zero nr_running to avoid workers
1126 * lying around lazily while there are works to be processed.
1127 */
1128 smp_mb();
1129
1130 if (__need_more_worker(pool))
1131 wake_up_worker(pool);
1132 }
1133
1134 /*
1135 * Test whether @work is being queued from another work executing on the
1136 * same workqueue. This is rather expensive and should only be used from
1137 * cold paths.
1138 */
1139 static bool is_chained_work(struct workqueue_struct *wq)
1140 {
1141 unsigned long flags;
1142 unsigned int cpu;
1143
1144 for_each_gcwq_cpu(cpu) {
1145 struct global_cwq *gcwq = get_gcwq(cpu);
1146 struct worker *worker;
1147 struct hlist_node *pos;
1148 int i;
1149
1150 spin_lock_irqsave(&gcwq->lock, flags);
1151 for_each_busy_worker(worker, i, pos, gcwq) {
1152 if (worker->task != current)
1153 continue;
1154 spin_unlock_irqrestore(&gcwq->lock, flags);
1155 /*
1156 * I'm @worker, no locking necessary. See if @work
1157 * is headed to the same workqueue.
1158 */
1159 return worker->current_cwq->wq == wq;
1160 }
1161 spin_unlock_irqrestore(&gcwq->lock, flags);
1162 }
1163 return false;
1164 }
1165
1166 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1167 struct work_struct *work)
1168 {
1169 struct global_cwq *gcwq;
1170 struct cpu_workqueue_struct *cwq;
1171 struct list_head *worklist;
1172 unsigned int work_flags;
1173 unsigned int req_cpu = cpu;
1174
1175 /*
1176 * While a work item is PENDING && off queue, a task trying to
1177 * steal the PENDING will busy-loop waiting for it to either get
1178 * queued or lose PENDING. Grabbing PENDING and queueing should
1179 * happen with IRQ disabled.
1180 */
1181 WARN_ON_ONCE(!irqs_disabled());
1182
1183 debug_work_activate(work);
1184
1185 /* if dying, only works from the same workqueue are allowed */
1186 if (unlikely(wq->flags & WQ_DRAINING) &&
1187 WARN_ON_ONCE(!is_chained_work(wq)))
1188 return;
1189
1190 /* determine gcwq to use */
1191 if (!(wq->flags & WQ_UNBOUND)) {
1192 struct global_cwq *last_gcwq;
1193
1194 if (cpu == WORK_CPU_UNBOUND)
1195 cpu = raw_smp_processor_id();
1196
1197 /*
1198 * It's multi cpu. If @work was previously on a different
1199 * cpu, it might still be running there, in which case the
1200 * work needs to be queued on that cpu to guarantee
1201 * non-reentrancy.
1202 */
1203 gcwq = get_gcwq(cpu);
1204 last_gcwq = get_work_gcwq(work);
1205
1206 if (last_gcwq && last_gcwq != gcwq) {
1207 struct worker *worker;
1208
1209 spin_lock(&last_gcwq->lock);
1210
1211 worker = find_worker_executing_work(last_gcwq, work);
1212
1213 if (worker && worker->current_cwq->wq == wq)
1214 gcwq = last_gcwq;
1215 else {
1216 /* meh... not running there, queue here */
1217 spin_unlock(&last_gcwq->lock);
1218 spin_lock(&gcwq->lock);
1219 }
1220 } else {
1221 spin_lock(&gcwq->lock);
1222 }
1223 } else {
1224 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1225 spin_lock(&gcwq->lock);
1226 }
1227
1228 /* gcwq determined, get cwq and queue */
1229 cwq = get_cwq(gcwq->cpu, wq);
1230 trace_workqueue_queue_work(req_cpu, cwq, work);
1231
1232 if (WARN_ON(!list_empty(&work->entry))) {
1233 spin_unlock(&gcwq->lock);
1234 return;
1235 }
1236
1237 cwq->nr_in_flight[cwq->work_color]++;
1238 work_flags = work_color_to_flags(cwq->work_color);
1239
1240 if (likely(cwq->nr_active < cwq->max_active)) {
1241 trace_workqueue_activate_work(work);
1242 cwq->nr_active++;
1243 worklist = &cwq->pool->worklist;
1244 } else {
1245 work_flags |= WORK_STRUCT_DELAYED;
1246 worklist = &cwq->delayed_works;
1247 }
1248
1249 insert_work(cwq, work, worklist, work_flags);
1250
1251 spin_unlock(&gcwq->lock);
1252 }
1253
1254 /**
1255 * queue_work_on - queue work on specific cpu
1256 * @cpu: CPU number to execute work on
1257 * @wq: workqueue to use
1258 * @work: work to queue
1259 *
1260 * Returns %false if @work was already on a queue, %true otherwise.
1261 *
1262 * We queue the work to a specific CPU, the caller must ensure it
1263 * can't go away.
1264 */
1265 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1266 struct work_struct *work)
1267 {
1268 bool ret = false;
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272
1273 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1274 __queue_work(cpu, wq, work);
1275 ret = true;
1276 }
1277
1278 local_irq_restore(flags);
1279 return ret;
1280 }
1281 EXPORT_SYMBOL_GPL(queue_work_on);
1282
1283 /**
1284 * queue_work - queue work on a workqueue
1285 * @wq: workqueue to use
1286 * @work: work to queue
1287 *
1288 * Returns %false if @work was already on a queue, %true otherwise.
1289 *
1290 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1291 * it can be processed by another CPU.
1292 */
1293 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1294 {
1295 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1296 }
1297 EXPORT_SYMBOL_GPL(queue_work);
1298
1299 void delayed_work_timer_fn(unsigned long __data)
1300 {
1301 struct delayed_work *dwork = (struct delayed_work *)__data;
1302 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1303
1304 /* should have been called from irqsafe timer with irq already off */
1305 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1306 }
1307 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1308
1309 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1310 struct delayed_work *dwork, unsigned long delay)
1311 {
1312 struct timer_list *timer = &dwork->timer;
1313 struct work_struct *work = &dwork->work;
1314 unsigned int lcpu;
1315
1316 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1317 timer->data != (unsigned long)dwork);
1318 WARN_ON_ONCE(timer_pending(timer));
1319 WARN_ON_ONCE(!list_empty(&work->entry));
1320
1321 /*
1322 * If @delay is 0, queue @dwork->work immediately. This is for
1323 * both optimization and correctness. The earliest @timer can
1324 * expire is on the closest next tick and delayed_work users depend
1325 * on that there's no such delay when @delay is 0.
1326 */
1327 if (!delay) {
1328 __queue_work(cpu, wq, &dwork->work);
1329 return;
1330 }
1331
1332 timer_stats_timer_set_start_info(&dwork->timer);
1333
1334 /*
1335 * This stores cwq for the moment, for the timer_fn. Note that the
1336 * work's gcwq is preserved to allow reentrance detection for
1337 * delayed works.
1338 */
1339 if (!(wq->flags & WQ_UNBOUND)) {
1340 struct global_cwq *gcwq = get_work_gcwq(work);
1341
1342 /*
1343 * If we cannot get the last gcwq from @work directly,
1344 * select the last CPU such that it avoids unnecessarily
1345 * triggering non-reentrancy check in __queue_work().
1346 */
1347 lcpu = cpu;
1348 if (gcwq)
1349 lcpu = gcwq->cpu;
1350 if (lcpu == WORK_CPU_UNBOUND)
1351 lcpu = raw_smp_processor_id();
1352 } else {
1353 lcpu = WORK_CPU_UNBOUND;
1354 }
1355
1356 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1357
1358 dwork->cpu = cpu;
1359 timer->expires = jiffies + delay;
1360
1361 if (unlikely(cpu != WORK_CPU_UNBOUND))
1362 add_timer_on(timer, cpu);
1363 else
1364 add_timer(timer);
1365 }
1366
1367 /**
1368 * queue_delayed_work_on - queue work on specific CPU after delay
1369 * @cpu: CPU number to execute work on
1370 * @wq: workqueue to use
1371 * @dwork: work to queue
1372 * @delay: number of jiffies to wait before queueing
1373 *
1374 * Returns %false if @work was already on a queue, %true otherwise. If
1375 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1376 * execution.
1377 */
1378 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1379 struct delayed_work *dwork, unsigned long delay)
1380 {
1381 struct work_struct *work = &dwork->work;
1382 bool ret = false;
1383 unsigned long flags;
1384
1385 /* read the comment in __queue_work() */
1386 local_irq_save(flags);
1387
1388 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1389 __queue_delayed_work(cpu, wq, dwork, delay);
1390 ret = true;
1391 }
1392
1393 local_irq_restore(flags);
1394 return ret;
1395 }
1396 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1397
1398 /**
1399 * queue_delayed_work - queue work on a workqueue after delay
1400 * @wq: workqueue to use
1401 * @dwork: delayable work to queue
1402 * @delay: number of jiffies to wait before queueing
1403 *
1404 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1405 */
1406 bool queue_delayed_work(struct workqueue_struct *wq,
1407 struct delayed_work *dwork, unsigned long delay)
1408 {
1409 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1410 }
1411 EXPORT_SYMBOL_GPL(queue_delayed_work);
1412
1413 /**
1414 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1415 * @cpu: CPU number to execute work on
1416 * @wq: workqueue to use
1417 * @dwork: work to queue
1418 * @delay: number of jiffies to wait before queueing
1419 *
1420 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1421 * modify @dwork's timer so that it expires after @delay. If @delay is
1422 * zero, @work is guaranteed to be scheduled immediately regardless of its
1423 * current state.
1424 *
1425 * Returns %false if @dwork was idle and queued, %true if @dwork was
1426 * pending and its timer was modified.
1427 *
1428 * This function is safe to call from any context including IRQ handler.
1429 * See try_to_grab_pending() for details.
1430 */
1431 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1432 struct delayed_work *dwork, unsigned long delay)
1433 {
1434 unsigned long flags;
1435 int ret;
1436
1437 do {
1438 ret = try_to_grab_pending(&dwork->work, true, &flags);
1439 } while (unlikely(ret == -EAGAIN));
1440
1441 if (likely(ret >= 0)) {
1442 __queue_delayed_work(cpu, wq, dwork, delay);
1443 local_irq_restore(flags);
1444 }
1445
1446 /* -ENOENT from try_to_grab_pending() becomes %true */
1447 return ret;
1448 }
1449 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1450
1451 /**
1452 * mod_delayed_work - modify delay of or queue a delayed work
1453 * @wq: workqueue to use
1454 * @dwork: work to queue
1455 * @delay: number of jiffies to wait before queueing
1456 *
1457 * mod_delayed_work_on() on local CPU.
1458 */
1459 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1460 unsigned long delay)
1461 {
1462 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1463 }
1464 EXPORT_SYMBOL_GPL(mod_delayed_work);
1465
1466 /**
1467 * worker_enter_idle - enter idle state
1468 * @worker: worker which is entering idle state
1469 *
1470 * @worker is entering idle state. Update stats and idle timer if
1471 * necessary.
1472 *
1473 * LOCKING:
1474 * spin_lock_irq(gcwq->lock).
1475 */
1476 static void worker_enter_idle(struct worker *worker)
1477 {
1478 struct worker_pool *pool = worker->pool;
1479
1480 BUG_ON(worker->flags & WORKER_IDLE);
1481 BUG_ON(!list_empty(&worker->entry) &&
1482 (worker->hentry.next || worker->hentry.pprev));
1483
1484 /* can't use worker_set_flags(), also called from start_worker() */
1485 worker->flags |= WORKER_IDLE;
1486 pool->nr_idle++;
1487 worker->last_active = jiffies;
1488
1489 /* idle_list is LIFO */
1490 list_add(&worker->entry, &pool->idle_list);
1491
1492 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1493 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1494
1495 /*
1496 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1497 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1498 * nr_running, the warning may trigger spuriously. Check iff
1499 * unbind is not in progress.
1500 */
1501 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1502 pool->nr_workers == pool->nr_idle &&
1503 atomic_read(get_pool_nr_running(pool)));
1504 }
1505
1506 /**
1507 * worker_leave_idle - leave idle state
1508 * @worker: worker which is leaving idle state
1509 *
1510 * @worker is leaving idle state. Update stats.
1511 *
1512 * LOCKING:
1513 * spin_lock_irq(gcwq->lock).
1514 */
1515 static void worker_leave_idle(struct worker *worker)
1516 {
1517 struct worker_pool *pool = worker->pool;
1518
1519 BUG_ON(!(worker->flags & WORKER_IDLE));
1520 worker_clr_flags(worker, WORKER_IDLE);
1521 pool->nr_idle--;
1522 list_del_init(&worker->entry);
1523 }
1524
1525 /**
1526 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1527 * @worker: self
1528 *
1529 * Works which are scheduled while the cpu is online must at least be
1530 * scheduled to a worker which is bound to the cpu so that if they are
1531 * flushed from cpu callbacks while cpu is going down, they are
1532 * guaranteed to execute on the cpu.
1533 *
1534 * This function is to be used by rogue workers and rescuers to bind
1535 * themselves to the target cpu and may race with cpu going down or
1536 * coming online. kthread_bind() can't be used because it may put the
1537 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1538 * verbatim as it's best effort and blocking and gcwq may be
1539 * [dis]associated in the meantime.
1540 *
1541 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1542 * binding against %POOL_DISASSOCIATED which is set during
1543 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1544 * enters idle state or fetches works without dropping lock, it can
1545 * guarantee the scheduling requirement described in the first paragraph.
1546 *
1547 * CONTEXT:
1548 * Might sleep. Called without any lock but returns with gcwq->lock
1549 * held.
1550 *
1551 * RETURNS:
1552 * %true if the associated gcwq is online (@worker is successfully
1553 * bound), %false if offline.
1554 */
1555 static bool worker_maybe_bind_and_lock(struct worker *worker)
1556 __acquires(&gcwq->lock)
1557 {
1558 struct worker_pool *pool = worker->pool;
1559 struct global_cwq *gcwq = pool->gcwq;
1560 struct task_struct *task = worker->task;
1561
1562 while (true) {
1563 /*
1564 * The following call may fail, succeed or succeed
1565 * without actually migrating the task to the cpu if
1566 * it races with cpu hotunplug operation. Verify
1567 * against POOL_DISASSOCIATED.
1568 */
1569 if (!(pool->flags & POOL_DISASSOCIATED))
1570 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1571
1572 spin_lock_irq(&gcwq->lock);
1573 if (pool->flags & POOL_DISASSOCIATED)
1574 return false;
1575 if (task_cpu(task) == gcwq->cpu &&
1576 cpumask_equal(&current->cpus_allowed,
1577 get_cpu_mask(gcwq->cpu)))
1578 return true;
1579 spin_unlock_irq(&gcwq->lock);
1580
1581 /*
1582 * We've raced with CPU hot[un]plug. Give it a breather
1583 * and retry migration. cond_resched() is required here;
1584 * otherwise, we might deadlock against cpu_stop trying to
1585 * bring down the CPU on non-preemptive kernel.
1586 */
1587 cpu_relax();
1588 cond_resched();
1589 }
1590 }
1591
1592 /*
1593 * Rebind an idle @worker to its CPU. worker_thread() will test
1594 * list_empty(@worker->entry) before leaving idle and call this function.
1595 */
1596 static void idle_worker_rebind(struct worker *worker)
1597 {
1598 struct global_cwq *gcwq = worker->pool->gcwq;
1599
1600 /* CPU may go down again inbetween, clear UNBOUND only on success */
1601 if (worker_maybe_bind_and_lock(worker))
1602 worker_clr_flags(worker, WORKER_UNBOUND);
1603
1604 /* rebind complete, become available again */
1605 list_add(&worker->entry, &worker->pool->idle_list);
1606 spin_unlock_irq(&gcwq->lock);
1607 }
1608
1609 /*
1610 * Function for @worker->rebind.work used to rebind unbound busy workers to
1611 * the associated cpu which is coming back online. This is scheduled by
1612 * cpu up but can race with other cpu hotplug operations and may be
1613 * executed twice without intervening cpu down.
1614 */
1615 static void busy_worker_rebind_fn(struct work_struct *work)
1616 {
1617 struct worker *worker = container_of(work, struct worker, rebind_work);
1618 struct global_cwq *gcwq = worker->pool->gcwq;
1619
1620 if (worker_maybe_bind_and_lock(worker))
1621 worker_clr_flags(worker, WORKER_UNBOUND);
1622
1623 spin_unlock_irq(&gcwq->lock);
1624 }
1625
1626 /**
1627 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1628 * @gcwq: gcwq of interest
1629 *
1630 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1631 * is different for idle and busy ones.
1632 *
1633 * Idle ones will be removed from the idle_list and woken up. They will
1634 * add themselves back after completing rebind. This ensures that the
1635 * idle_list doesn't contain any unbound workers when re-bound busy workers
1636 * try to perform local wake-ups for concurrency management.
1637 *
1638 * Busy workers can rebind after they finish their current work items.
1639 * Queueing the rebind work item at the head of the scheduled list is
1640 * enough. Note that nr_running will be properly bumped as busy workers
1641 * rebind.
1642 *
1643 * On return, all non-manager workers are scheduled for rebind - see
1644 * manage_workers() for the manager special case. Any idle worker
1645 * including the manager will not appear on @idle_list until rebind is
1646 * complete, making local wake-ups safe.
1647 */
1648 static void rebind_workers(struct global_cwq *gcwq)
1649 {
1650 struct worker_pool *pool;
1651 struct worker *worker, *n;
1652 struct hlist_node *pos;
1653 int i;
1654
1655 lockdep_assert_held(&gcwq->lock);
1656
1657 for_each_worker_pool(pool, gcwq)
1658 lockdep_assert_held(&pool->assoc_mutex);
1659
1660 /* dequeue and kick idle ones */
1661 for_each_worker_pool(pool, gcwq) {
1662 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1663 /*
1664 * idle workers should be off @pool->idle_list
1665 * until rebind is complete to avoid receiving
1666 * premature local wake-ups.
1667 */
1668 list_del_init(&worker->entry);
1669
1670 /*
1671 * worker_thread() will see the above dequeuing
1672 * and call idle_worker_rebind().
1673 */
1674 wake_up_process(worker->task);
1675 }
1676 }
1677
1678 /* rebind busy workers */
1679 for_each_busy_worker(worker, i, pos, gcwq) {
1680 struct work_struct *rebind_work = &worker->rebind_work;
1681 struct workqueue_struct *wq;
1682
1683 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1684 work_data_bits(rebind_work)))
1685 continue;
1686
1687 debug_work_activate(rebind_work);
1688
1689 /*
1690 * wq doesn't really matter but let's keep @worker->pool
1691 * and @cwq->pool consistent for sanity.
1692 */
1693 if (std_worker_pool_pri(worker->pool))
1694 wq = system_highpri_wq;
1695 else
1696 wq = system_wq;
1697
1698 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1699 worker->scheduled.next,
1700 work_color_to_flags(WORK_NO_COLOR));
1701 }
1702 }
1703
1704 static struct worker *alloc_worker(void)
1705 {
1706 struct worker *worker;
1707
1708 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1709 if (worker) {
1710 INIT_LIST_HEAD(&worker->entry);
1711 INIT_LIST_HEAD(&worker->scheduled);
1712 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1713 /* on creation a worker is in !idle && prep state */
1714 worker->flags = WORKER_PREP;
1715 }
1716 return worker;
1717 }
1718
1719 /**
1720 * create_worker - create a new workqueue worker
1721 * @pool: pool the new worker will belong to
1722 *
1723 * Create a new worker which is bound to @pool. The returned worker
1724 * can be started by calling start_worker() or destroyed using
1725 * destroy_worker().
1726 *
1727 * CONTEXT:
1728 * Might sleep. Does GFP_KERNEL allocations.
1729 *
1730 * RETURNS:
1731 * Pointer to the newly created worker.
1732 */
1733 static struct worker *create_worker(struct worker_pool *pool)
1734 {
1735 struct global_cwq *gcwq = pool->gcwq;
1736 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1737 struct worker *worker = NULL;
1738 int id = -1;
1739
1740 spin_lock_irq(&gcwq->lock);
1741 while (ida_get_new(&pool->worker_ida, &id)) {
1742 spin_unlock_irq(&gcwq->lock);
1743 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1744 goto fail;
1745 spin_lock_irq(&gcwq->lock);
1746 }
1747 spin_unlock_irq(&gcwq->lock);
1748
1749 worker = alloc_worker();
1750 if (!worker)
1751 goto fail;
1752
1753 worker->pool = pool;
1754 worker->id = id;
1755
1756 if (gcwq->cpu != WORK_CPU_UNBOUND)
1757 worker->task = kthread_create_on_node(worker_thread,
1758 worker, cpu_to_node(gcwq->cpu),
1759 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1760 else
1761 worker->task = kthread_create(worker_thread, worker,
1762 "kworker/u:%d%s", id, pri);
1763 if (IS_ERR(worker->task))
1764 goto fail;
1765
1766 if (std_worker_pool_pri(pool))
1767 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1768
1769 /*
1770 * Determine CPU binding of the new worker depending on
1771 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
1772 * flag remains stable across this function. See the comments
1773 * above the flag definition for details.
1774 *
1775 * As an unbound worker may later become a regular one if CPU comes
1776 * online, make sure every worker has %PF_THREAD_BOUND set.
1777 */
1778 if (!(pool->flags & POOL_DISASSOCIATED)) {
1779 kthread_bind(worker->task, gcwq->cpu);
1780 } else {
1781 worker->task->flags |= PF_THREAD_BOUND;
1782 worker->flags |= WORKER_UNBOUND;
1783 }
1784
1785 return worker;
1786 fail:
1787 if (id >= 0) {
1788 spin_lock_irq(&gcwq->lock);
1789 ida_remove(&pool->worker_ida, id);
1790 spin_unlock_irq(&gcwq->lock);
1791 }
1792 kfree(worker);
1793 return NULL;
1794 }
1795
1796 /**
1797 * start_worker - start a newly created worker
1798 * @worker: worker to start
1799 *
1800 * Make the gcwq aware of @worker and start it.
1801 *
1802 * CONTEXT:
1803 * spin_lock_irq(gcwq->lock).
1804 */
1805 static void start_worker(struct worker *worker)
1806 {
1807 worker->flags |= WORKER_STARTED;
1808 worker->pool->nr_workers++;
1809 worker_enter_idle(worker);
1810 wake_up_process(worker->task);
1811 }
1812
1813 /**
1814 * destroy_worker - destroy a workqueue worker
1815 * @worker: worker to be destroyed
1816 *
1817 * Destroy @worker and adjust @gcwq stats accordingly.
1818 *
1819 * CONTEXT:
1820 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1821 */
1822 static void destroy_worker(struct worker *worker)
1823 {
1824 struct worker_pool *pool = worker->pool;
1825 struct global_cwq *gcwq = pool->gcwq;
1826 int id = worker->id;
1827
1828 /* sanity check frenzy */
1829 BUG_ON(worker->current_work);
1830 BUG_ON(!list_empty(&worker->scheduled));
1831
1832 if (worker->flags & WORKER_STARTED)
1833 pool->nr_workers--;
1834 if (worker->flags & WORKER_IDLE)
1835 pool->nr_idle--;
1836
1837 list_del_init(&worker->entry);
1838 worker->flags |= WORKER_DIE;
1839
1840 spin_unlock_irq(&gcwq->lock);
1841
1842 kthread_stop(worker->task);
1843 kfree(worker);
1844
1845 spin_lock_irq(&gcwq->lock);
1846 ida_remove(&pool->worker_ida, id);
1847 }
1848
1849 static void idle_worker_timeout(unsigned long __pool)
1850 {
1851 struct worker_pool *pool = (void *)__pool;
1852 struct global_cwq *gcwq = pool->gcwq;
1853
1854 spin_lock_irq(&gcwq->lock);
1855
1856 if (too_many_workers(pool)) {
1857 struct worker *worker;
1858 unsigned long expires;
1859
1860 /* idle_list is kept in LIFO order, check the last one */
1861 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1862 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1863
1864 if (time_before(jiffies, expires))
1865 mod_timer(&pool->idle_timer, expires);
1866 else {
1867 /* it's been idle for too long, wake up manager */
1868 pool->flags |= POOL_MANAGE_WORKERS;
1869 wake_up_worker(pool);
1870 }
1871 }
1872
1873 spin_unlock_irq(&gcwq->lock);
1874 }
1875
1876 static bool send_mayday(struct work_struct *work)
1877 {
1878 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1879 struct workqueue_struct *wq = cwq->wq;
1880 unsigned int cpu;
1881
1882 if (!(wq->flags & WQ_RESCUER))
1883 return false;
1884
1885 /* mayday mayday mayday */
1886 cpu = cwq->pool->gcwq->cpu;
1887 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1888 if (cpu == WORK_CPU_UNBOUND)
1889 cpu = 0;
1890 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1891 wake_up_process(wq->rescuer->task);
1892 return true;
1893 }
1894
1895 static void gcwq_mayday_timeout(unsigned long __pool)
1896 {
1897 struct worker_pool *pool = (void *)__pool;
1898 struct global_cwq *gcwq = pool->gcwq;
1899 struct work_struct *work;
1900
1901 spin_lock_irq(&gcwq->lock);
1902
1903 if (need_to_create_worker(pool)) {
1904 /*
1905 * We've been trying to create a new worker but
1906 * haven't been successful. We might be hitting an
1907 * allocation deadlock. Send distress signals to
1908 * rescuers.
1909 */
1910 list_for_each_entry(work, &pool->worklist, entry)
1911 send_mayday(work);
1912 }
1913
1914 spin_unlock_irq(&gcwq->lock);
1915
1916 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1917 }
1918
1919 /**
1920 * maybe_create_worker - create a new worker if necessary
1921 * @pool: pool to create a new worker for
1922 *
1923 * Create a new worker for @pool if necessary. @pool is guaranteed to
1924 * have at least one idle worker on return from this function. If
1925 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1926 * sent to all rescuers with works scheduled on @pool to resolve
1927 * possible allocation deadlock.
1928 *
1929 * On return, need_to_create_worker() is guaranteed to be false and
1930 * may_start_working() true.
1931 *
1932 * LOCKING:
1933 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1934 * multiple times. Does GFP_KERNEL allocations. Called only from
1935 * manager.
1936 *
1937 * RETURNS:
1938 * false if no action was taken and gcwq->lock stayed locked, true
1939 * otherwise.
1940 */
1941 static bool maybe_create_worker(struct worker_pool *pool)
1942 __releases(&gcwq->lock)
1943 __acquires(&gcwq->lock)
1944 {
1945 struct global_cwq *gcwq = pool->gcwq;
1946
1947 if (!need_to_create_worker(pool))
1948 return false;
1949 restart:
1950 spin_unlock_irq(&gcwq->lock);
1951
1952 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1953 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1954
1955 while (true) {
1956 struct worker *worker;
1957
1958 worker = create_worker(pool);
1959 if (worker) {
1960 del_timer_sync(&pool->mayday_timer);
1961 spin_lock_irq(&gcwq->lock);
1962 start_worker(worker);
1963 BUG_ON(need_to_create_worker(pool));
1964 return true;
1965 }
1966
1967 if (!need_to_create_worker(pool))
1968 break;
1969
1970 __set_current_state(TASK_INTERRUPTIBLE);
1971 schedule_timeout(CREATE_COOLDOWN);
1972
1973 if (!need_to_create_worker(pool))
1974 break;
1975 }
1976
1977 del_timer_sync(&pool->mayday_timer);
1978 spin_lock_irq(&gcwq->lock);
1979 if (need_to_create_worker(pool))
1980 goto restart;
1981 return true;
1982 }
1983
1984 /**
1985 * maybe_destroy_worker - destroy workers which have been idle for a while
1986 * @pool: pool to destroy workers for
1987 *
1988 * Destroy @pool workers which have been idle for longer than
1989 * IDLE_WORKER_TIMEOUT.
1990 *
1991 * LOCKING:
1992 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1993 * multiple times. Called only from manager.
1994 *
1995 * RETURNS:
1996 * false if no action was taken and gcwq->lock stayed locked, true
1997 * otherwise.
1998 */
1999 static bool maybe_destroy_workers(struct worker_pool *pool)
2000 {
2001 bool ret = false;
2002
2003 while (too_many_workers(pool)) {
2004 struct worker *worker;
2005 unsigned long expires;
2006
2007 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2008 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2009
2010 if (time_before(jiffies, expires)) {
2011 mod_timer(&pool->idle_timer, expires);
2012 break;
2013 }
2014
2015 destroy_worker(worker);
2016 ret = true;
2017 }
2018
2019 return ret;
2020 }
2021
2022 /**
2023 * manage_workers - manage worker pool
2024 * @worker: self
2025 *
2026 * Assume the manager role and manage gcwq worker pool @worker belongs
2027 * to. At any given time, there can be only zero or one manager per
2028 * gcwq. The exclusion is handled automatically by this function.
2029 *
2030 * The caller can safely start processing works on false return. On
2031 * true return, it's guaranteed that need_to_create_worker() is false
2032 * and may_start_working() is true.
2033 *
2034 * CONTEXT:
2035 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2036 * multiple times. Does GFP_KERNEL allocations.
2037 *
2038 * RETURNS:
2039 * false if no action was taken and gcwq->lock stayed locked, true if
2040 * some action was taken.
2041 */
2042 static bool manage_workers(struct worker *worker)
2043 {
2044 struct worker_pool *pool = worker->pool;
2045 bool ret = false;
2046
2047 if (pool->flags & POOL_MANAGING_WORKERS)
2048 return ret;
2049
2050 pool->flags |= POOL_MANAGING_WORKERS;
2051
2052 /*
2053 * To simplify both worker management and CPU hotplug, hold off
2054 * management while hotplug is in progress. CPU hotplug path can't
2055 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2056 * lead to idle worker depletion (all become busy thinking someone
2057 * else is managing) which in turn can result in deadlock under
2058 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2059 * manager against CPU hotplug.
2060 *
2061 * assoc_mutex would always be free unless CPU hotplug is in
2062 * progress. trylock first without dropping @gcwq->lock.
2063 */
2064 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2065 spin_unlock_irq(&pool->gcwq->lock);
2066 mutex_lock(&pool->assoc_mutex);
2067 /*
2068 * CPU hotplug could have happened while we were waiting
2069 * for assoc_mutex. Hotplug itself can't handle us
2070 * because manager isn't either on idle or busy list, and
2071 * @gcwq's state and ours could have deviated.
2072 *
2073 * As hotplug is now excluded via assoc_mutex, we can
2074 * simply try to bind. It will succeed or fail depending
2075 * on @gcwq's current state. Try it and adjust
2076 * %WORKER_UNBOUND accordingly.
2077 */
2078 if (worker_maybe_bind_and_lock(worker))
2079 worker->flags &= ~WORKER_UNBOUND;
2080 else
2081 worker->flags |= WORKER_UNBOUND;
2082
2083 ret = true;
2084 }
2085
2086 pool->flags &= ~POOL_MANAGE_WORKERS;
2087
2088 /*
2089 * Destroy and then create so that may_start_working() is true
2090 * on return.
2091 */
2092 ret |= maybe_destroy_workers(pool);
2093 ret |= maybe_create_worker(pool);
2094
2095 pool->flags &= ~POOL_MANAGING_WORKERS;
2096 mutex_unlock(&pool->assoc_mutex);
2097 return ret;
2098 }
2099
2100 /**
2101 * process_one_work - process single work
2102 * @worker: self
2103 * @work: work to process
2104 *
2105 * Process @work. This function contains all the logics necessary to
2106 * process a single work including synchronization against and
2107 * interaction with other workers on the same cpu, queueing and
2108 * flushing. As long as context requirement is met, any worker can
2109 * call this function to process a work.
2110 *
2111 * CONTEXT:
2112 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2113 */
2114 static void process_one_work(struct worker *worker, struct work_struct *work)
2115 __releases(&gcwq->lock)
2116 __acquires(&gcwq->lock)
2117 {
2118 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2119 struct worker_pool *pool = worker->pool;
2120 struct global_cwq *gcwq = pool->gcwq;
2121 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2122 int work_color;
2123 struct worker *collision;
2124 #ifdef CONFIG_LOCKDEP
2125 /*
2126 * It is permissible to free the struct work_struct from
2127 * inside the function that is called from it, this we need to
2128 * take into account for lockdep too. To avoid bogus "held
2129 * lock freed" warnings as well as problems when looking into
2130 * work->lockdep_map, make a copy and use that here.
2131 */
2132 struct lockdep_map lockdep_map;
2133
2134 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2135 #endif
2136 /*
2137 * Ensure we're on the correct CPU. DISASSOCIATED test is
2138 * necessary to avoid spurious warnings from rescuers servicing the
2139 * unbound or a disassociated pool.
2140 */
2141 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2142 !(pool->flags & POOL_DISASSOCIATED) &&
2143 raw_smp_processor_id() != gcwq->cpu);
2144
2145 /*
2146 * A single work shouldn't be executed concurrently by
2147 * multiple workers on a single cpu. Check whether anyone is
2148 * already processing the work. If so, defer the work to the
2149 * currently executing one.
2150 */
2151 collision = find_worker_executing_work(gcwq, work);
2152 if (unlikely(collision)) {
2153 move_linked_works(work, &collision->scheduled, NULL);
2154 return;
2155 }
2156
2157 /* claim and dequeue */
2158 debug_work_deactivate(work);
2159 hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
2160 worker->current_work = work;
2161 worker->current_func = work->func;
2162 worker->current_cwq = cwq;
2163 work_color = get_work_color(work);
2164
2165 list_del_init(&work->entry);
2166
2167 /*
2168 * CPU intensive works don't participate in concurrency
2169 * management. They're the scheduler's responsibility.
2170 */
2171 if (unlikely(cpu_intensive))
2172 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2173
2174 /*
2175 * Unbound gcwq isn't concurrency managed and work items should be
2176 * executed ASAP. Wake up another worker if necessary.
2177 */
2178 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2179 wake_up_worker(pool);
2180
2181 /*
2182 * Record the last CPU and clear PENDING which should be the last
2183 * update to @work. Also, do this inside @gcwq->lock so that
2184 * PENDING and queued state changes happen together while IRQ is
2185 * disabled.
2186 */
2187 set_work_cpu_and_clear_pending(work, gcwq->cpu);
2188
2189 spin_unlock_irq(&gcwq->lock);
2190
2191 lock_map_acquire_read(&cwq->wq->lockdep_map);
2192 lock_map_acquire(&lockdep_map);
2193 trace_workqueue_execute_start(work);
2194 worker->current_func(work);
2195 /*
2196 * While we must be careful to not use "work" after this, the trace
2197 * point will only record its address.
2198 */
2199 trace_workqueue_execute_end(work);
2200 lock_map_release(&lockdep_map);
2201 lock_map_release(&cwq->wq->lockdep_map);
2202
2203 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2204 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2205 " last function: %pf\n",
2206 current->comm, preempt_count(), task_pid_nr(current),
2207 worker->current_func);
2208 debug_show_held_locks(current);
2209 dump_stack();
2210 }
2211
2212 spin_lock_irq(&gcwq->lock);
2213
2214 /* clear cpu intensive status */
2215 if (unlikely(cpu_intensive))
2216 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2217
2218 /* we're done with it, release */
2219 hash_del(&worker->hentry);
2220 worker->current_work = NULL;
2221 worker->current_func = NULL;
2222 worker->current_cwq = NULL;
2223 cwq_dec_nr_in_flight(cwq, work_color);
2224 }
2225
2226 /**
2227 * process_scheduled_works - process scheduled works
2228 * @worker: self
2229 *
2230 * Process all scheduled works. Please note that the scheduled list
2231 * may change while processing a work, so this function repeatedly
2232 * fetches a work from the top and executes it.
2233 *
2234 * CONTEXT:
2235 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2236 * multiple times.
2237 */
2238 static void process_scheduled_works(struct worker *worker)
2239 {
2240 while (!list_empty(&worker->scheduled)) {
2241 struct work_struct *work = list_first_entry(&worker->scheduled,
2242 struct work_struct, entry);
2243 process_one_work(worker, work);
2244 }
2245 }
2246
2247 /**
2248 * worker_thread - the worker thread function
2249 * @__worker: self
2250 *
2251 * The gcwq worker thread function. There's a single dynamic pool of
2252 * these per each cpu. These workers process all works regardless of
2253 * their specific target workqueue. The only exception is works which
2254 * belong to workqueues with a rescuer which will be explained in
2255 * rescuer_thread().
2256 */
2257 static int worker_thread(void *__worker)
2258 {
2259 struct worker *worker = __worker;
2260 struct worker_pool *pool = worker->pool;
2261 struct global_cwq *gcwq = pool->gcwq;
2262
2263 /* tell the scheduler that this is a workqueue worker */
2264 worker->task->flags |= PF_WQ_WORKER;
2265 woke_up:
2266 spin_lock_irq(&gcwq->lock);
2267
2268 /* we are off idle list if destruction or rebind is requested */
2269 if (unlikely(list_empty(&worker->entry))) {
2270 spin_unlock_irq(&gcwq->lock);
2271
2272 /* if DIE is set, destruction is requested */
2273 if (worker->flags & WORKER_DIE) {
2274 worker->task->flags &= ~PF_WQ_WORKER;
2275 return 0;
2276 }
2277
2278 /* otherwise, rebind */
2279 idle_worker_rebind(worker);
2280 goto woke_up;
2281 }
2282
2283 worker_leave_idle(worker);
2284 recheck:
2285 /* no more worker necessary? */
2286 if (!need_more_worker(pool))
2287 goto sleep;
2288
2289 /* do we need to manage? */
2290 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2291 goto recheck;
2292
2293 /*
2294 * ->scheduled list can only be filled while a worker is
2295 * preparing to process a work or actually processing it.
2296 * Make sure nobody diddled with it while I was sleeping.
2297 */
2298 BUG_ON(!list_empty(&worker->scheduled));
2299
2300 /*
2301 * When control reaches this point, we're guaranteed to have
2302 * at least one idle worker or that someone else has already
2303 * assumed the manager role.
2304 */
2305 worker_clr_flags(worker, WORKER_PREP);
2306
2307 do {
2308 struct work_struct *work =
2309 list_first_entry(&pool->worklist,
2310 struct work_struct, entry);
2311
2312 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2313 /* optimization path, not strictly necessary */
2314 process_one_work(worker, work);
2315 if (unlikely(!list_empty(&worker->scheduled)))
2316 process_scheduled_works(worker);
2317 } else {
2318 move_linked_works(work, &worker->scheduled, NULL);
2319 process_scheduled_works(worker);
2320 }
2321 } while (keep_working(pool));
2322
2323 worker_set_flags(worker, WORKER_PREP, false);
2324 sleep:
2325 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2326 goto recheck;
2327
2328 /*
2329 * gcwq->lock is held and there's no work to process and no
2330 * need to manage, sleep. Workers are woken up only while
2331 * holding gcwq->lock or from local cpu, so setting the
2332 * current state before releasing gcwq->lock is enough to
2333 * prevent losing any event.
2334 */
2335 worker_enter_idle(worker);
2336 __set_current_state(TASK_INTERRUPTIBLE);
2337 spin_unlock_irq(&gcwq->lock);
2338 schedule();
2339 goto woke_up;
2340 }
2341
2342 /**
2343 * rescuer_thread - the rescuer thread function
2344 * @__rescuer: self
2345 *
2346 * Workqueue rescuer thread function. There's one rescuer for each
2347 * workqueue which has WQ_RESCUER set.
2348 *
2349 * Regular work processing on a gcwq may block trying to create a new
2350 * worker which uses GFP_KERNEL allocation which has slight chance of
2351 * developing into deadlock if some works currently on the same queue
2352 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2353 * the problem rescuer solves.
2354 *
2355 * When such condition is possible, the gcwq summons rescuers of all
2356 * workqueues which have works queued on the gcwq and let them process
2357 * those works so that forward progress can be guaranteed.
2358 *
2359 * This should happen rarely.
2360 */
2361 static int rescuer_thread(void *__rescuer)
2362 {
2363 struct worker *rescuer = __rescuer;
2364 struct workqueue_struct *wq = rescuer->rescue_wq;
2365 struct list_head *scheduled = &rescuer->scheduled;
2366 bool is_unbound = wq->flags & WQ_UNBOUND;
2367 unsigned int cpu;
2368
2369 set_user_nice(current, RESCUER_NICE_LEVEL);
2370
2371 /*
2372 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2373 * doesn't participate in concurrency management.
2374 */
2375 rescuer->task->flags |= PF_WQ_WORKER;
2376 repeat:
2377 set_current_state(TASK_INTERRUPTIBLE);
2378
2379 if (kthread_should_stop()) {
2380 __set_current_state(TASK_RUNNING);
2381 rescuer->task->flags &= ~PF_WQ_WORKER;
2382 return 0;
2383 }
2384
2385 /*
2386 * See whether any cpu is asking for help. Unbounded
2387 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2388 */
2389 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2390 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2391 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2392 struct worker_pool *pool = cwq->pool;
2393 struct global_cwq *gcwq = pool->gcwq;
2394 struct work_struct *work, *n;
2395
2396 __set_current_state(TASK_RUNNING);
2397 mayday_clear_cpu(cpu, wq->mayday_mask);
2398
2399 /* migrate to the target cpu if possible */
2400 rescuer->pool = pool;
2401 worker_maybe_bind_and_lock(rescuer);
2402
2403 /*
2404 * Slurp in all works issued via this workqueue and
2405 * process'em.
2406 */
2407 BUG_ON(!list_empty(&rescuer->scheduled));
2408 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2409 if (get_work_cwq(work) == cwq)
2410 move_linked_works(work, scheduled, &n);
2411
2412 process_scheduled_works(rescuer);
2413
2414 /*
2415 * Leave this gcwq. If keep_working() is %true, notify a
2416 * regular worker; otherwise, we end up with 0 concurrency
2417 * and stalling the execution.
2418 */
2419 if (keep_working(pool))
2420 wake_up_worker(pool);
2421
2422 spin_unlock_irq(&gcwq->lock);
2423 }
2424
2425 /* rescuers should never participate in concurrency management */
2426 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2427 schedule();
2428 goto repeat;
2429 }
2430
2431 struct wq_barrier {
2432 struct work_struct work;
2433 struct completion done;
2434 };
2435
2436 static void wq_barrier_func(struct work_struct *work)
2437 {
2438 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2439 complete(&barr->done);
2440 }
2441
2442 /**
2443 * insert_wq_barrier - insert a barrier work
2444 * @cwq: cwq to insert barrier into
2445 * @barr: wq_barrier to insert
2446 * @target: target work to attach @barr to
2447 * @worker: worker currently executing @target, NULL if @target is not executing
2448 *
2449 * @barr is linked to @target such that @barr is completed only after
2450 * @target finishes execution. Please note that the ordering
2451 * guarantee is observed only with respect to @target and on the local
2452 * cpu.
2453 *
2454 * Currently, a queued barrier can't be canceled. This is because
2455 * try_to_grab_pending() can't determine whether the work to be
2456 * grabbed is at the head of the queue and thus can't clear LINKED
2457 * flag of the previous work while there must be a valid next work
2458 * after a work with LINKED flag set.
2459 *
2460 * Note that when @worker is non-NULL, @target may be modified
2461 * underneath us, so we can't reliably determine cwq from @target.
2462 *
2463 * CONTEXT:
2464 * spin_lock_irq(gcwq->lock).
2465 */
2466 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2467 struct wq_barrier *barr,
2468 struct work_struct *target, struct worker *worker)
2469 {
2470 struct list_head *head;
2471 unsigned int linked = 0;
2472
2473 /*
2474 * debugobject calls are safe here even with gcwq->lock locked
2475 * as we know for sure that this will not trigger any of the
2476 * checks and call back into the fixup functions where we
2477 * might deadlock.
2478 */
2479 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2480 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2481 init_completion(&barr->done);
2482
2483 /*
2484 * If @target is currently being executed, schedule the
2485 * barrier to the worker; otherwise, put it after @target.
2486 */
2487 if (worker)
2488 head = worker->scheduled.next;
2489 else {
2490 unsigned long *bits = work_data_bits(target);
2491
2492 head = target->entry.next;
2493 /* there can already be other linked works, inherit and set */
2494 linked = *bits & WORK_STRUCT_LINKED;
2495 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2496 }
2497
2498 debug_work_activate(&barr->work);
2499 insert_work(cwq, &barr->work, head,
2500 work_color_to_flags(WORK_NO_COLOR) | linked);
2501 }
2502
2503 /**
2504 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2505 * @wq: workqueue being flushed
2506 * @flush_color: new flush color, < 0 for no-op
2507 * @work_color: new work color, < 0 for no-op
2508 *
2509 * Prepare cwqs for workqueue flushing.
2510 *
2511 * If @flush_color is non-negative, flush_color on all cwqs should be
2512 * -1. If no cwq has in-flight commands at the specified color, all
2513 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2514 * has in flight commands, its cwq->flush_color is set to
2515 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2516 * wakeup logic is armed and %true is returned.
2517 *
2518 * The caller should have initialized @wq->first_flusher prior to
2519 * calling this function with non-negative @flush_color. If
2520 * @flush_color is negative, no flush color update is done and %false
2521 * is returned.
2522 *
2523 * If @work_color is non-negative, all cwqs should have the same
2524 * work_color which is previous to @work_color and all will be
2525 * advanced to @work_color.
2526 *
2527 * CONTEXT:
2528 * mutex_lock(wq->flush_mutex).
2529 *
2530 * RETURNS:
2531 * %true if @flush_color >= 0 and there's something to flush. %false
2532 * otherwise.
2533 */
2534 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2535 int flush_color, int work_color)
2536 {
2537 bool wait = false;
2538 unsigned int cpu;
2539
2540 if (flush_color >= 0) {
2541 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2542 atomic_set(&wq->nr_cwqs_to_flush, 1);
2543 }
2544
2545 for_each_cwq_cpu(cpu, wq) {
2546 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2547 struct global_cwq *gcwq = cwq->pool->gcwq;
2548
2549 spin_lock_irq(&gcwq->lock);
2550
2551 if (flush_color >= 0) {
2552 BUG_ON(cwq->flush_color != -1);
2553
2554 if (cwq->nr_in_flight[flush_color]) {
2555 cwq->flush_color = flush_color;
2556 atomic_inc(&wq->nr_cwqs_to_flush);
2557 wait = true;
2558 }
2559 }
2560
2561 if (work_color >= 0) {
2562 BUG_ON(work_color != work_next_color(cwq->work_color));
2563 cwq->work_color = work_color;
2564 }
2565
2566 spin_unlock_irq(&gcwq->lock);
2567 }
2568
2569 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2570 complete(&wq->first_flusher->done);
2571
2572 return wait;
2573 }
2574
2575 /**
2576 * flush_workqueue - ensure that any scheduled work has run to completion.
2577 * @wq: workqueue to flush
2578 *
2579 * Forces execution of the workqueue and blocks until its completion.
2580 * This is typically used in driver shutdown handlers.
2581 *
2582 * We sleep until all works which were queued on entry have been handled,
2583 * but we are not livelocked by new incoming ones.
2584 */
2585 void flush_workqueue(struct workqueue_struct *wq)
2586 {
2587 struct wq_flusher this_flusher = {
2588 .list = LIST_HEAD_INIT(this_flusher.list),
2589 .flush_color = -1,
2590 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2591 };
2592 int next_color;
2593
2594 lock_map_acquire(&wq->lockdep_map);
2595 lock_map_release(&wq->lockdep_map);
2596
2597 mutex_lock(&wq->flush_mutex);
2598
2599 /*
2600 * Start-to-wait phase
2601 */
2602 next_color = work_next_color(wq->work_color);
2603
2604 if (next_color != wq->flush_color) {
2605 /*
2606 * Color space is not full. The current work_color
2607 * becomes our flush_color and work_color is advanced
2608 * by one.
2609 */
2610 BUG_ON(!list_empty(&wq->flusher_overflow));
2611 this_flusher.flush_color = wq->work_color;
2612 wq->work_color = next_color;
2613
2614 if (!wq->first_flusher) {
2615 /* no flush in progress, become the first flusher */
2616 BUG_ON(wq->flush_color != this_flusher.flush_color);
2617
2618 wq->first_flusher = &this_flusher;
2619
2620 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2621 wq->work_color)) {
2622 /* nothing to flush, done */
2623 wq->flush_color = next_color;
2624 wq->first_flusher = NULL;
2625 goto out_unlock;
2626 }
2627 } else {
2628 /* wait in queue */
2629 BUG_ON(wq->flush_color == this_flusher.flush_color);
2630 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2631 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2632 }
2633 } else {
2634 /*
2635 * Oops, color space is full, wait on overflow queue.
2636 * The next flush completion will assign us
2637 * flush_color and transfer to flusher_queue.
2638 */
2639 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2640 }
2641
2642 mutex_unlock(&wq->flush_mutex);
2643
2644 wait_for_completion(&this_flusher.done);
2645
2646 /*
2647 * Wake-up-and-cascade phase
2648 *
2649 * First flushers are responsible for cascading flushes and
2650 * handling overflow. Non-first flushers can simply return.
2651 */
2652 if (wq->first_flusher != &this_flusher)
2653 return;
2654
2655 mutex_lock(&wq->flush_mutex);
2656
2657 /* we might have raced, check again with mutex held */
2658 if (wq->first_flusher != &this_flusher)
2659 goto out_unlock;
2660
2661 wq->first_flusher = NULL;
2662
2663 BUG_ON(!list_empty(&this_flusher.list));
2664 BUG_ON(wq->flush_color != this_flusher.flush_color);
2665
2666 while (true) {
2667 struct wq_flusher *next, *tmp;
2668
2669 /* complete all the flushers sharing the current flush color */
2670 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2671 if (next->flush_color != wq->flush_color)
2672 break;
2673 list_del_init(&next->list);
2674 complete(&next->done);
2675 }
2676
2677 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2678 wq->flush_color != work_next_color(wq->work_color));
2679
2680 /* this flush_color is finished, advance by one */
2681 wq->flush_color = work_next_color(wq->flush_color);
2682
2683 /* one color has been freed, handle overflow queue */
2684 if (!list_empty(&wq->flusher_overflow)) {
2685 /*
2686 * Assign the same color to all overflowed
2687 * flushers, advance work_color and append to
2688 * flusher_queue. This is the start-to-wait
2689 * phase for these overflowed flushers.
2690 */
2691 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2692 tmp->flush_color = wq->work_color;
2693
2694 wq->work_color = work_next_color(wq->work_color);
2695
2696 list_splice_tail_init(&wq->flusher_overflow,
2697 &wq->flusher_queue);
2698 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2699 }
2700
2701 if (list_empty(&wq->flusher_queue)) {
2702 BUG_ON(wq->flush_color != wq->work_color);
2703 break;
2704 }
2705
2706 /*
2707 * Need to flush more colors. Make the next flusher
2708 * the new first flusher and arm cwqs.
2709 */
2710 BUG_ON(wq->flush_color == wq->work_color);
2711 BUG_ON(wq->flush_color != next->flush_color);
2712
2713 list_del_init(&next->list);
2714 wq->first_flusher = next;
2715
2716 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2717 break;
2718
2719 /*
2720 * Meh... this color is already done, clear first
2721 * flusher and repeat cascading.
2722 */
2723 wq->first_flusher = NULL;
2724 }
2725
2726 out_unlock:
2727 mutex_unlock(&wq->flush_mutex);
2728 }
2729 EXPORT_SYMBOL_GPL(flush_workqueue);
2730
2731 /**
2732 * drain_workqueue - drain a workqueue
2733 * @wq: workqueue to drain
2734 *
2735 * Wait until the workqueue becomes empty. While draining is in progress,
2736 * only chain queueing is allowed. IOW, only currently pending or running
2737 * work items on @wq can queue further work items on it. @wq is flushed
2738 * repeatedly until it becomes empty. The number of flushing is detemined
2739 * by the depth of chaining and should be relatively short. Whine if it
2740 * takes too long.
2741 */
2742 void drain_workqueue(struct workqueue_struct *wq)
2743 {
2744 unsigned int flush_cnt = 0;
2745 unsigned int cpu;
2746
2747 /*
2748 * __queue_work() needs to test whether there are drainers, is much
2749 * hotter than drain_workqueue() and already looks at @wq->flags.
2750 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2751 */
2752 spin_lock(&workqueue_lock);
2753 if (!wq->nr_drainers++)
2754 wq->flags |= WQ_DRAINING;
2755 spin_unlock(&workqueue_lock);
2756 reflush:
2757 flush_workqueue(wq);
2758
2759 for_each_cwq_cpu(cpu, wq) {
2760 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2761 bool drained;
2762
2763 spin_lock_irq(&cwq->pool->gcwq->lock);
2764 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2765 spin_unlock_irq(&cwq->pool->gcwq->lock);
2766
2767 if (drained)
2768 continue;
2769
2770 if (++flush_cnt == 10 ||
2771 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2772 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2773 wq->name, flush_cnt);
2774 goto reflush;
2775 }
2776
2777 spin_lock(&workqueue_lock);
2778 if (!--wq->nr_drainers)
2779 wq->flags &= ~WQ_DRAINING;
2780 spin_unlock(&workqueue_lock);
2781 }
2782 EXPORT_SYMBOL_GPL(drain_workqueue);
2783
2784 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2785 {
2786 struct worker *worker = NULL;
2787 struct global_cwq *gcwq;
2788 struct cpu_workqueue_struct *cwq;
2789
2790 might_sleep();
2791 gcwq = get_work_gcwq(work);
2792 if (!gcwq)
2793 return false;
2794
2795 spin_lock_irq(&gcwq->lock);
2796 if (!list_empty(&work->entry)) {
2797 /*
2798 * See the comment near try_to_grab_pending()->smp_rmb().
2799 * If it was re-queued to a different gcwq under us, we
2800 * are not going to wait.
2801 */
2802 smp_rmb();
2803 cwq = get_work_cwq(work);
2804 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2805 goto already_gone;
2806 } else {
2807 worker = find_worker_executing_work(gcwq, work);
2808 if (!worker)
2809 goto already_gone;
2810 cwq = worker->current_cwq;
2811 }
2812
2813 insert_wq_barrier(cwq, barr, work, worker);
2814 spin_unlock_irq(&gcwq->lock);
2815
2816 /*
2817 * If @max_active is 1 or rescuer is in use, flushing another work
2818 * item on the same workqueue may lead to deadlock. Make sure the
2819 * flusher is not running on the same workqueue by verifying write
2820 * access.
2821 */
2822 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2823 lock_map_acquire(&cwq->wq->lockdep_map);
2824 else
2825 lock_map_acquire_read(&cwq->wq->lockdep_map);
2826 lock_map_release(&cwq->wq->lockdep_map);
2827
2828 return true;
2829 already_gone:
2830 spin_unlock_irq(&gcwq->lock);
2831 return false;
2832 }
2833
2834 /**
2835 * flush_work - wait for a work to finish executing the last queueing instance
2836 * @work: the work to flush
2837 *
2838 * Wait until @work has finished execution. @work is guaranteed to be idle
2839 * on return if it hasn't been requeued since flush started.
2840 *
2841 * RETURNS:
2842 * %true if flush_work() waited for the work to finish execution,
2843 * %false if it was already idle.
2844 */
2845 bool flush_work(struct work_struct *work)
2846 {
2847 struct wq_barrier barr;
2848
2849 lock_map_acquire(&work->lockdep_map);
2850 lock_map_release(&work->lockdep_map);
2851
2852 if (start_flush_work(work, &barr)) {
2853 wait_for_completion(&barr.done);
2854 destroy_work_on_stack(&barr.work);
2855 return true;
2856 } else {
2857 return false;
2858 }
2859 }
2860 EXPORT_SYMBOL_GPL(flush_work);
2861
2862 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2863 {
2864 unsigned long flags;
2865 int ret;
2866
2867 do {
2868 ret = try_to_grab_pending(work, is_dwork, &flags);
2869 /*
2870 * If someone else is canceling, wait for the same event it
2871 * would be waiting for before retrying.
2872 */
2873 if (unlikely(ret == -ENOENT))
2874 flush_work(work);
2875 } while (unlikely(ret < 0));
2876
2877 /* tell other tasks trying to grab @work to back off */
2878 mark_work_canceling(work);
2879 local_irq_restore(flags);
2880
2881 flush_work(work);
2882 clear_work_data(work);
2883 return ret;
2884 }
2885
2886 /**
2887 * cancel_work_sync - cancel a work and wait for it to finish
2888 * @work: the work to cancel
2889 *
2890 * Cancel @work and wait for its execution to finish. This function
2891 * can be used even if the work re-queues itself or migrates to
2892 * another workqueue. On return from this function, @work is
2893 * guaranteed to be not pending or executing on any CPU.
2894 *
2895 * cancel_work_sync(&delayed_work->work) must not be used for
2896 * delayed_work's. Use cancel_delayed_work_sync() instead.
2897 *
2898 * The caller must ensure that the workqueue on which @work was last
2899 * queued can't be destroyed before this function returns.
2900 *
2901 * RETURNS:
2902 * %true if @work was pending, %false otherwise.
2903 */
2904 bool cancel_work_sync(struct work_struct *work)
2905 {
2906 return __cancel_work_timer(work, false);
2907 }
2908 EXPORT_SYMBOL_GPL(cancel_work_sync);
2909
2910 /**
2911 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2912 * @dwork: the delayed work to flush
2913 *
2914 * Delayed timer is cancelled and the pending work is queued for
2915 * immediate execution. Like flush_work(), this function only
2916 * considers the last queueing instance of @dwork.
2917 *
2918 * RETURNS:
2919 * %true if flush_work() waited for the work to finish execution,
2920 * %false if it was already idle.
2921 */
2922 bool flush_delayed_work(struct delayed_work *dwork)
2923 {
2924 local_irq_disable();
2925 if (del_timer_sync(&dwork->timer))
2926 __queue_work(dwork->cpu,
2927 get_work_cwq(&dwork->work)->wq, &dwork->work);
2928 local_irq_enable();
2929 return flush_work(&dwork->work);
2930 }
2931 EXPORT_SYMBOL(flush_delayed_work);
2932
2933 /**
2934 * cancel_delayed_work - cancel a delayed work
2935 * @dwork: delayed_work to cancel
2936 *
2937 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2938 * and canceled; %false if wasn't pending. Note that the work callback
2939 * function may still be running on return, unless it returns %true and the
2940 * work doesn't re-arm itself. Explicitly flush or use
2941 * cancel_delayed_work_sync() to wait on it.
2942 *
2943 * This function is safe to call from any context including IRQ handler.
2944 */
2945 bool cancel_delayed_work(struct delayed_work *dwork)
2946 {
2947 unsigned long flags;
2948 int ret;
2949
2950 do {
2951 ret = try_to_grab_pending(&dwork->work, true, &flags);
2952 } while (unlikely(ret == -EAGAIN));
2953
2954 if (unlikely(ret < 0))
2955 return false;
2956
2957 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2958 local_irq_restore(flags);
2959 return ret;
2960 }
2961 EXPORT_SYMBOL(cancel_delayed_work);
2962
2963 /**
2964 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2965 * @dwork: the delayed work cancel
2966 *
2967 * This is cancel_work_sync() for delayed works.
2968 *
2969 * RETURNS:
2970 * %true if @dwork was pending, %false otherwise.
2971 */
2972 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2973 {
2974 return __cancel_work_timer(&dwork->work, true);
2975 }
2976 EXPORT_SYMBOL(cancel_delayed_work_sync);
2977
2978 /**
2979 * schedule_work_on - put work task on a specific cpu
2980 * @cpu: cpu to put the work task on
2981 * @work: job to be done
2982 *
2983 * This puts a job on a specific cpu
2984 */
2985 bool schedule_work_on(int cpu, struct work_struct *work)
2986 {
2987 return queue_work_on(cpu, system_wq, work);
2988 }
2989 EXPORT_SYMBOL(schedule_work_on);
2990
2991 /**
2992 * schedule_work - put work task in global workqueue
2993 * @work: job to be done
2994 *
2995 * Returns %false if @work was already on the kernel-global workqueue and
2996 * %true otherwise.
2997 *
2998 * This puts a job in the kernel-global workqueue if it was not already
2999 * queued and leaves it in the same position on the kernel-global
3000 * workqueue otherwise.
3001 */
3002 bool schedule_work(struct work_struct *work)
3003 {
3004 return queue_work(system_wq, work);
3005 }
3006 EXPORT_SYMBOL(schedule_work);
3007
3008 /**
3009 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3010 * @cpu: cpu to use
3011 * @dwork: job to be done
3012 * @delay: number of jiffies to wait
3013 *
3014 * After waiting for a given time this puts a job in the kernel-global
3015 * workqueue on the specified CPU.
3016 */
3017 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3018 unsigned long delay)
3019 {
3020 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3021 }
3022 EXPORT_SYMBOL(schedule_delayed_work_on);
3023
3024 /**
3025 * schedule_delayed_work - put work task in global workqueue after delay
3026 * @dwork: job to be done
3027 * @delay: number of jiffies to wait or 0 for immediate execution
3028 *
3029 * After waiting for a given time this puts a job in the kernel-global
3030 * workqueue.
3031 */
3032 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3033 {
3034 return queue_delayed_work(system_wq, dwork, delay);
3035 }
3036 EXPORT_SYMBOL(schedule_delayed_work);
3037
3038 /**
3039 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3040 * @func: the function to call
3041 *
3042 * schedule_on_each_cpu() executes @func on each online CPU using the
3043 * system workqueue and blocks until all CPUs have completed.
3044 * schedule_on_each_cpu() is very slow.
3045 *
3046 * RETURNS:
3047 * 0 on success, -errno on failure.
3048 */
3049 int schedule_on_each_cpu(work_func_t func)
3050 {
3051 int cpu;
3052 struct work_struct __percpu *works;
3053
3054 works = alloc_percpu(struct work_struct);
3055 if (!works)
3056 return -ENOMEM;
3057
3058 get_online_cpus();
3059
3060 for_each_online_cpu(cpu) {
3061 struct work_struct *work = per_cpu_ptr(works, cpu);
3062
3063 INIT_WORK(work, func);
3064 schedule_work_on(cpu, work);
3065 }
3066
3067 for_each_online_cpu(cpu)
3068 flush_work(per_cpu_ptr(works, cpu));
3069
3070 put_online_cpus();
3071 free_percpu(works);
3072 return 0;
3073 }
3074
3075 /**
3076 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3077 *
3078 * Forces execution of the kernel-global workqueue and blocks until its
3079 * completion.
3080 *
3081 * Think twice before calling this function! It's very easy to get into
3082 * trouble if you don't take great care. Either of the following situations
3083 * will lead to deadlock:
3084 *
3085 * One of the work items currently on the workqueue needs to acquire
3086 * a lock held by your code or its caller.
3087 *
3088 * Your code is running in the context of a work routine.
3089 *
3090 * They will be detected by lockdep when they occur, but the first might not
3091 * occur very often. It depends on what work items are on the workqueue and
3092 * what locks they need, which you have no control over.
3093 *
3094 * In most situations flushing the entire workqueue is overkill; you merely
3095 * need to know that a particular work item isn't queued and isn't running.
3096 * In such cases you should use cancel_delayed_work_sync() or
3097 * cancel_work_sync() instead.
3098 */
3099 void flush_scheduled_work(void)
3100 {
3101 flush_workqueue(system_wq);
3102 }
3103 EXPORT_SYMBOL(flush_scheduled_work);
3104
3105 /**
3106 * execute_in_process_context - reliably execute the routine with user context
3107 * @fn: the function to execute
3108 * @ew: guaranteed storage for the execute work structure (must
3109 * be available when the work executes)
3110 *
3111 * Executes the function immediately if process context is available,
3112 * otherwise schedules the function for delayed execution.
3113 *
3114 * Returns: 0 - function was executed
3115 * 1 - function was scheduled for execution
3116 */
3117 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3118 {
3119 if (!in_interrupt()) {
3120 fn(&ew->work);
3121 return 0;
3122 }
3123
3124 INIT_WORK(&ew->work, fn);
3125 schedule_work(&ew->work);
3126
3127 return 1;
3128 }
3129 EXPORT_SYMBOL_GPL(execute_in_process_context);
3130
3131 int keventd_up(void)
3132 {
3133 return system_wq != NULL;
3134 }
3135
3136 static int alloc_cwqs(struct workqueue_struct *wq)
3137 {
3138 /*
3139 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3140 * Make sure that the alignment isn't lower than that of
3141 * unsigned long long.
3142 */
3143 const size_t size = sizeof(struct cpu_workqueue_struct);
3144 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3145 __alignof__(unsigned long long));
3146
3147 if (!(wq->flags & WQ_UNBOUND))
3148 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3149 else {
3150 void *ptr;
3151
3152 /*
3153 * Allocate enough room to align cwq and put an extra
3154 * pointer at the end pointing back to the originally
3155 * allocated pointer which will be used for free.
3156 */
3157 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3158 if (ptr) {
3159 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3160 *(void **)(wq->cpu_wq.single + 1) = ptr;
3161 }
3162 }
3163
3164 /* just in case, make sure it's actually aligned */
3165 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3166 return wq->cpu_wq.v ? 0 : -ENOMEM;
3167 }
3168
3169 static void free_cwqs(struct workqueue_struct *wq)
3170 {
3171 if (!(wq->flags & WQ_UNBOUND))
3172 free_percpu(wq->cpu_wq.pcpu);
3173 else if (wq->cpu_wq.single) {
3174 /* the pointer to free is stored right after the cwq */
3175 kfree(*(void **)(wq->cpu_wq.single + 1));
3176 }
3177 }
3178
3179 static int wq_clamp_max_active(int max_active, unsigned int flags,
3180 const char *name)
3181 {
3182 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3183
3184 if (max_active < 1 || max_active > lim)
3185 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3186 max_active, name, 1, lim);
3187
3188 return clamp_val(max_active, 1, lim);
3189 }
3190
3191 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3192 unsigned int flags,
3193 int max_active,
3194 struct lock_class_key *key,
3195 const char *lock_name, ...)
3196 {
3197 va_list args, args1;
3198 struct workqueue_struct *wq;
3199 unsigned int cpu;
3200 size_t namelen;
3201
3202 /* determine namelen, allocate wq and format name */
3203 va_start(args, lock_name);
3204 va_copy(args1, args);
3205 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3206
3207 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3208 if (!wq)
3209 goto err;
3210
3211 vsnprintf(wq->name, namelen, fmt, args1);
3212 va_end(args);
3213 va_end(args1);
3214
3215 /*
3216 * Workqueues which may be used during memory reclaim should
3217 * have a rescuer to guarantee forward progress.
3218 */
3219 if (flags & WQ_MEM_RECLAIM)
3220 flags |= WQ_RESCUER;
3221
3222 max_active = max_active ?: WQ_DFL_ACTIVE;
3223 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3224
3225 /* init wq */
3226 wq->flags = flags;
3227 wq->saved_max_active = max_active;
3228 mutex_init(&wq->flush_mutex);
3229 atomic_set(&wq->nr_cwqs_to_flush, 0);
3230 INIT_LIST_HEAD(&wq->flusher_queue);
3231 INIT_LIST_HEAD(&wq->flusher_overflow);
3232
3233 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3234 INIT_LIST_HEAD(&wq->list);
3235
3236 if (alloc_cwqs(wq) < 0)
3237 goto err;
3238
3239 for_each_cwq_cpu(cpu, wq) {
3240 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3241 struct global_cwq *gcwq = get_gcwq(cpu);
3242 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3243
3244 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3245 cwq->pool = &gcwq->pools[pool_idx];
3246 cwq->wq = wq;
3247 cwq->flush_color = -1;
3248 cwq->max_active = max_active;
3249 INIT_LIST_HEAD(&cwq->delayed_works);
3250 }
3251
3252 if (flags & WQ_RESCUER) {
3253 struct worker *rescuer;
3254
3255 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3256 goto err;
3257
3258 wq->rescuer = rescuer = alloc_worker();
3259 if (!rescuer)
3260 goto err;
3261
3262 rescuer->rescue_wq = wq;
3263 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3264 wq->name);
3265 if (IS_ERR(rescuer->task))
3266 goto err;
3267
3268 rescuer->task->flags |= PF_THREAD_BOUND;
3269 wake_up_process(rescuer->task);
3270 }
3271
3272 /*
3273 * workqueue_lock protects global freeze state and workqueues
3274 * list. Grab it, set max_active accordingly and add the new
3275 * workqueue to workqueues list.
3276 */
3277 spin_lock(&workqueue_lock);
3278
3279 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3280 for_each_cwq_cpu(cpu, wq)
3281 get_cwq(cpu, wq)->max_active = 0;
3282
3283 list_add(&wq->list, &workqueues);
3284
3285 spin_unlock(&workqueue_lock);
3286
3287 return wq;
3288 err:
3289 if (wq) {
3290 free_cwqs(wq);
3291 free_mayday_mask(wq->mayday_mask);
3292 kfree(wq->rescuer);
3293 kfree(wq);
3294 }
3295 return NULL;
3296 }
3297 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3298
3299 /**
3300 * destroy_workqueue - safely terminate a workqueue
3301 * @wq: target workqueue
3302 *
3303 * Safely destroy a workqueue. All work currently pending will be done first.
3304 */
3305 void destroy_workqueue(struct workqueue_struct *wq)
3306 {
3307 unsigned int cpu;
3308
3309 /* drain it before proceeding with destruction */
3310 drain_workqueue(wq);
3311
3312 /*
3313 * wq list is used to freeze wq, remove from list after
3314 * flushing is complete in case freeze races us.
3315 */
3316 spin_lock(&workqueue_lock);
3317 list_del(&wq->list);
3318 spin_unlock(&workqueue_lock);
3319
3320 /* sanity check */
3321 for_each_cwq_cpu(cpu, wq) {
3322 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3323 int i;
3324
3325 for (i = 0; i < WORK_NR_COLORS; i++)
3326 BUG_ON(cwq->nr_in_flight[i]);
3327 BUG_ON(cwq->nr_active);
3328 BUG_ON(!list_empty(&cwq->delayed_works));
3329 }
3330
3331 if (wq->flags & WQ_RESCUER) {
3332 kthread_stop(wq->rescuer->task);
3333 free_mayday_mask(wq->mayday_mask);
3334 kfree(wq->rescuer);
3335 }
3336
3337 free_cwqs(wq);
3338 kfree(wq);
3339 }
3340 EXPORT_SYMBOL_GPL(destroy_workqueue);
3341
3342 /**
3343 * cwq_set_max_active - adjust max_active of a cwq
3344 * @cwq: target cpu_workqueue_struct
3345 * @max_active: new max_active value.
3346 *
3347 * Set @cwq->max_active to @max_active and activate delayed works if
3348 * increased.
3349 *
3350 * CONTEXT:
3351 * spin_lock_irq(gcwq->lock).
3352 */
3353 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3354 {
3355 cwq->max_active = max_active;
3356
3357 while (!list_empty(&cwq->delayed_works) &&
3358 cwq->nr_active < cwq->max_active)
3359 cwq_activate_first_delayed(cwq);
3360 }
3361
3362 /**
3363 * workqueue_set_max_active - adjust max_active of a workqueue
3364 * @wq: target workqueue
3365 * @max_active: new max_active value.
3366 *
3367 * Set max_active of @wq to @max_active.
3368 *
3369 * CONTEXT:
3370 * Don't call from IRQ context.
3371 */
3372 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3373 {
3374 unsigned int cpu;
3375
3376 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3377
3378 spin_lock(&workqueue_lock);
3379
3380 wq->saved_max_active = max_active;
3381
3382 for_each_cwq_cpu(cpu, wq) {
3383 struct global_cwq *gcwq = get_gcwq(cpu);
3384
3385 spin_lock_irq(&gcwq->lock);
3386
3387 if (!(wq->flags & WQ_FREEZABLE) ||
3388 !(gcwq->flags & GCWQ_FREEZING))
3389 cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3390
3391 spin_unlock_irq(&gcwq->lock);
3392 }
3393
3394 spin_unlock(&workqueue_lock);
3395 }
3396 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3397
3398 /**
3399 * workqueue_congested - test whether a workqueue is congested
3400 * @cpu: CPU in question
3401 * @wq: target workqueue
3402 *
3403 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3404 * no synchronization around this function and the test result is
3405 * unreliable and only useful as advisory hints or for debugging.
3406 *
3407 * RETURNS:
3408 * %true if congested, %false otherwise.
3409 */
3410 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3411 {
3412 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3413
3414 return !list_empty(&cwq->delayed_works);
3415 }
3416 EXPORT_SYMBOL_GPL(workqueue_congested);
3417
3418 /**
3419 * work_cpu - return the last known associated cpu for @work
3420 * @work: the work of interest
3421 *
3422 * RETURNS:
3423 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3424 */
3425 static unsigned int work_cpu(struct work_struct *work)
3426 {
3427 struct global_cwq *gcwq = get_work_gcwq(work);
3428
3429 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3430 }
3431
3432 /**
3433 * work_busy - test whether a work is currently pending or running
3434 * @work: the work to be tested
3435 *
3436 * Test whether @work is currently pending or running. There is no
3437 * synchronization around this function and the test result is
3438 * unreliable and only useful as advisory hints or for debugging.
3439 * Especially for reentrant wqs, the pending state might hide the
3440 * running state.
3441 *
3442 * RETURNS:
3443 * OR'd bitmask of WORK_BUSY_* bits.
3444 */
3445 unsigned int work_busy(struct work_struct *work)
3446 {
3447 struct global_cwq *gcwq = get_work_gcwq(work);
3448 unsigned long flags;
3449 unsigned int ret = 0;
3450
3451 if (!gcwq)
3452 return 0;
3453
3454 spin_lock_irqsave(&gcwq->lock, flags);
3455
3456 if (work_pending(work))
3457 ret |= WORK_BUSY_PENDING;
3458 if (find_worker_executing_work(gcwq, work))
3459 ret |= WORK_BUSY_RUNNING;
3460
3461 spin_unlock_irqrestore(&gcwq->lock, flags);
3462
3463 return ret;
3464 }
3465 EXPORT_SYMBOL_GPL(work_busy);
3466
3467 /*
3468 * CPU hotplug.
3469 *
3470 * There are two challenges in supporting CPU hotplug. Firstly, there
3471 * are a lot of assumptions on strong associations among work, cwq and
3472 * gcwq which make migrating pending and scheduled works very
3473 * difficult to implement without impacting hot paths. Secondly,
3474 * gcwqs serve mix of short, long and very long running works making
3475 * blocked draining impractical.
3476 *
3477 * This is solved by allowing the pools to be disassociated from the CPU
3478 * running as an unbound one and allowing it to be reattached later if the
3479 * cpu comes back online.
3480 */
3481
3482 /* claim manager positions of all pools */
3483 static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3484 {
3485 struct worker_pool *pool;
3486
3487 for_each_worker_pool(pool, gcwq)
3488 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
3489 spin_lock_irq(&gcwq->lock);
3490 }
3491
3492 /* release manager positions */
3493 static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3494 {
3495 struct worker_pool *pool;
3496
3497 spin_unlock_irq(&gcwq->lock);
3498 for_each_worker_pool(pool, gcwq)
3499 mutex_unlock(&pool->assoc_mutex);
3500 }
3501
3502 static void gcwq_unbind_fn(struct work_struct *work)
3503 {
3504 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3505 struct worker_pool *pool;
3506 struct worker *worker;
3507 struct hlist_node *pos;
3508 int i;
3509
3510 BUG_ON(gcwq->cpu != smp_processor_id());
3511
3512 gcwq_claim_assoc_and_lock(gcwq);
3513
3514 /*
3515 * We've claimed all manager positions. Make all workers unbound
3516 * and set DISASSOCIATED. Before this, all workers except for the
3517 * ones which are still executing works from before the last CPU
3518 * down must be on the cpu. After this, they may become diasporas.
3519 */
3520 for_each_worker_pool(pool, gcwq)
3521 list_for_each_entry(worker, &pool->idle_list, entry)
3522 worker->flags |= WORKER_UNBOUND;
3523
3524 for_each_busy_worker(worker, i, pos, gcwq)
3525 worker->flags |= WORKER_UNBOUND;
3526
3527 for_each_worker_pool(pool, gcwq)
3528 pool->flags |= POOL_DISASSOCIATED;
3529
3530 gcwq_release_assoc_and_unlock(gcwq);
3531
3532 /*
3533 * Call schedule() so that we cross rq->lock and thus can guarantee
3534 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3535 * as scheduler callbacks may be invoked from other cpus.
3536 */
3537 schedule();
3538
3539 /*
3540 * Sched callbacks are disabled now. Zap nr_running. After this,
3541 * nr_running stays zero and need_more_worker() and keep_working()
3542 * are always true as long as the worklist is not empty. @gcwq now
3543 * behaves as unbound (in terms of concurrency management) gcwq
3544 * which is served by workers tied to the CPU.
3545 *
3546 * On return from this function, the current worker would trigger
3547 * unbound chain execution of pending work items if other workers
3548 * didn't already.
3549 */
3550 for_each_worker_pool(pool, gcwq)
3551 atomic_set(get_pool_nr_running(pool), 0);
3552 }
3553
3554 /*
3555 * Workqueues should be brought up before normal priority CPU notifiers.
3556 * This will be registered high priority CPU notifier.
3557 */
3558 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3559 unsigned long action,
3560 void *hcpu)
3561 {
3562 unsigned int cpu = (unsigned long)hcpu;
3563 struct global_cwq *gcwq = get_gcwq(cpu);
3564 struct worker_pool *pool;
3565
3566 switch (action & ~CPU_TASKS_FROZEN) {
3567 case CPU_UP_PREPARE:
3568 for_each_worker_pool(pool, gcwq) {
3569 struct worker *worker;
3570
3571 if (pool->nr_workers)
3572 continue;
3573
3574 worker = create_worker(pool);
3575 if (!worker)
3576 return NOTIFY_BAD;
3577
3578 spin_lock_irq(&gcwq->lock);
3579 start_worker(worker);
3580 spin_unlock_irq(&gcwq->lock);
3581 }
3582 break;
3583
3584 case CPU_DOWN_FAILED:
3585 case CPU_ONLINE:
3586 gcwq_claim_assoc_and_lock(gcwq);
3587 for_each_worker_pool(pool, gcwq)
3588 pool->flags &= ~POOL_DISASSOCIATED;
3589 rebind_workers(gcwq);
3590 gcwq_release_assoc_and_unlock(gcwq);
3591 break;
3592 }
3593 return NOTIFY_OK;
3594 }
3595
3596 /*
3597 * Workqueues should be brought down after normal priority CPU notifiers.
3598 * This will be registered as low priority CPU notifier.
3599 */
3600 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3601 unsigned long action,
3602 void *hcpu)
3603 {
3604 unsigned int cpu = (unsigned long)hcpu;
3605 struct work_struct unbind_work;
3606
3607 switch (action & ~CPU_TASKS_FROZEN) {
3608 case CPU_DOWN_PREPARE:
3609 /* unbinding should happen on the local CPU */
3610 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3611 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3612 flush_work(&unbind_work);
3613 break;
3614 }
3615 return NOTIFY_OK;
3616 }
3617
3618 #ifdef CONFIG_SMP
3619
3620 struct work_for_cpu {
3621 struct work_struct work;
3622 long (*fn)(void *);
3623 void *arg;
3624 long ret;
3625 };
3626
3627 static void work_for_cpu_fn(struct work_struct *work)
3628 {
3629 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3630
3631 wfc->ret = wfc->fn(wfc->arg);
3632 }
3633
3634 /**
3635 * work_on_cpu - run a function in user context on a particular cpu
3636 * @cpu: the cpu to run on
3637 * @fn: the function to run
3638 * @arg: the function arg
3639 *
3640 * This will return the value @fn returns.
3641 * It is up to the caller to ensure that the cpu doesn't go offline.
3642 * The caller must not hold any locks which would prevent @fn from completing.
3643 */
3644 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3645 {
3646 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3647
3648 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3649 schedule_work_on(cpu, &wfc.work);
3650 flush_work(&wfc.work);
3651 return wfc.ret;
3652 }
3653 EXPORT_SYMBOL_GPL(work_on_cpu);
3654 #endif /* CONFIG_SMP */
3655
3656 #ifdef CONFIG_FREEZER
3657
3658 /**
3659 * freeze_workqueues_begin - begin freezing workqueues
3660 *
3661 * Start freezing workqueues. After this function returns, all freezable
3662 * workqueues will queue new works to their frozen_works list instead of
3663 * gcwq->worklist.
3664 *
3665 * CONTEXT:
3666 * Grabs and releases workqueue_lock and gcwq->lock's.
3667 */
3668 void freeze_workqueues_begin(void)
3669 {
3670 unsigned int cpu;
3671
3672 spin_lock(&workqueue_lock);
3673
3674 BUG_ON(workqueue_freezing);
3675 workqueue_freezing = true;
3676
3677 for_each_gcwq_cpu(cpu) {
3678 struct global_cwq *gcwq = get_gcwq(cpu);
3679 struct workqueue_struct *wq;
3680
3681 spin_lock_irq(&gcwq->lock);
3682
3683 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3684 gcwq->flags |= GCWQ_FREEZING;
3685
3686 list_for_each_entry(wq, &workqueues, list) {
3687 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3688
3689 if (cwq && wq->flags & WQ_FREEZABLE)
3690 cwq->max_active = 0;
3691 }
3692
3693 spin_unlock_irq(&gcwq->lock);
3694 }
3695
3696 spin_unlock(&workqueue_lock);
3697 }
3698
3699 /**
3700 * freeze_workqueues_busy - are freezable workqueues still busy?
3701 *
3702 * Check whether freezing is complete. This function must be called
3703 * between freeze_workqueues_begin() and thaw_workqueues().
3704 *
3705 * CONTEXT:
3706 * Grabs and releases workqueue_lock.
3707 *
3708 * RETURNS:
3709 * %true if some freezable workqueues are still busy. %false if freezing
3710 * is complete.
3711 */
3712 bool freeze_workqueues_busy(void)
3713 {
3714 unsigned int cpu;
3715 bool busy = false;
3716
3717 spin_lock(&workqueue_lock);
3718
3719 BUG_ON(!workqueue_freezing);
3720
3721 for_each_gcwq_cpu(cpu) {
3722 struct workqueue_struct *wq;
3723 /*
3724 * nr_active is monotonically decreasing. It's safe
3725 * to peek without lock.
3726 */
3727 list_for_each_entry(wq, &workqueues, list) {
3728 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3729
3730 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3731 continue;
3732
3733 BUG_ON(cwq->nr_active < 0);
3734 if (cwq->nr_active) {
3735 busy = true;
3736 goto out_unlock;
3737 }
3738 }
3739 }
3740 out_unlock:
3741 spin_unlock(&workqueue_lock);
3742 return busy;
3743 }
3744
3745 /**
3746 * thaw_workqueues - thaw workqueues
3747 *
3748 * Thaw workqueues. Normal queueing is restored and all collected
3749 * frozen works are transferred to their respective gcwq worklists.
3750 *
3751 * CONTEXT:
3752 * Grabs and releases workqueue_lock and gcwq->lock's.
3753 */
3754 void thaw_workqueues(void)
3755 {
3756 unsigned int cpu;
3757
3758 spin_lock(&workqueue_lock);
3759
3760 if (!workqueue_freezing)
3761 goto out_unlock;
3762
3763 for_each_gcwq_cpu(cpu) {
3764 struct global_cwq *gcwq = get_gcwq(cpu);
3765 struct worker_pool *pool;
3766 struct workqueue_struct *wq;
3767
3768 spin_lock_irq(&gcwq->lock);
3769
3770 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3771 gcwq->flags &= ~GCWQ_FREEZING;
3772
3773 list_for_each_entry(wq, &workqueues, list) {
3774 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3775
3776 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3777 continue;
3778
3779 /* restore max_active and repopulate worklist */
3780 cwq_set_max_active(cwq, wq->saved_max_active);
3781 }
3782
3783 for_each_worker_pool(pool, gcwq)
3784 wake_up_worker(pool);
3785
3786 spin_unlock_irq(&gcwq->lock);
3787 }
3788
3789 workqueue_freezing = false;
3790 out_unlock:
3791 spin_unlock(&workqueue_lock);
3792 }
3793 #endif /* CONFIG_FREEZER */
3794
3795 static int __init init_workqueues(void)
3796 {
3797 unsigned int cpu;
3798
3799 /* make sure we have enough bits for OFFQ CPU number */
3800 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3801 WORK_CPU_LAST);
3802
3803 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3804 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3805
3806 /* initialize gcwqs */
3807 for_each_gcwq_cpu(cpu) {
3808 struct global_cwq *gcwq = get_gcwq(cpu);
3809 struct worker_pool *pool;
3810
3811 spin_lock_init(&gcwq->lock);
3812 gcwq->cpu = cpu;
3813
3814 hash_init(gcwq->busy_hash);
3815
3816 for_each_worker_pool(pool, gcwq) {
3817 pool->gcwq = gcwq;
3818 pool->flags |= POOL_DISASSOCIATED;
3819 INIT_LIST_HEAD(&pool->worklist);
3820 INIT_LIST_HEAD(&pool->idle_list);
3821
3822 init_timer_deferrable(&pool->idle_timer);
3823 pool->idle_timer.function = idle_worker_timeout;
3824 pool->idle_timer.data = (unsigned long)pool;
3825
3826 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3827 (unsigned long)pool);
3828
3829 mutex_init(&pool->assoc_mutex);
3830 ida_init(&pool->worker_ida);
3831 }
3832 }
3833
3834 /* create the initial worker */
3835 for_each_online_gcwq_cpu(cpu) {
3836 struct global_cwq *gcwq = get_gcwq(cpu);
3837 struct worker_pool *pool;
3838
3839 for_each_worker_pool(pool, gcwq) {
3840 struct worker *worker;
3841
3842 if (cpu != WORK_CPU_UNBOUND)
3843 pool->flags &= ~POOL_DISASSOCIATED;
3844
3845 worker = create_worker(pool);
3846 BUG_ON(!worker);
3847 spin_lock_irq(&gcwq->lock);
3848 start_worker(worker);
3849 spin_unlock_irq(&gcwq->lock);
3850 }
3851 }
3852
3853 system_wq = alloc_workqueue("events", 0, 0);
3854 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3855 system_long_wq = alloc_workqueue("events_long", 0, 0);
3856 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3857 WQ_UNBOUND_MAX_ACTIVE);
3858 system_freezable_wq = alloc_workqueue("events_freezable",
3859 WQ_FREEZABLE, 0);
3860 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3861 !system_unbound_wq || !system_freezable_wq);
3862 return 0;
3863 }
3864 early_initcall(init_workqueues);
This page took 0.152768 seconds and 6 git commands to generate.