workqueue: remove worker_pool->gcwq
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45
46 #include "workqueue_internal.h"
47
48 enum {
49 /*
50 * worker_pool flags
51 *
52 * A bound pool is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The pool behaves as an unbound one.
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
64 */
65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
68 POOL_FREEZING = 1 << 3, /* freeze in progress */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
77
78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
79 WORKER_CPU_INTENSIVE,
80
81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
82
83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
84
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
99 HIGHPRI_NICE_LEVEL = -20,
100 };
101
102 /*
103 * Structure fields follow one of the following exclusion rules.
104 *
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
107 *
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
111 * L: pool->lock protected. Access with pool->lock held.
112 *
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
117 *
118 * F: wq->flush_mutex protected.
119 *
120 * W: workqueue_lock protected.
121 */
122
123 /* struct worker is defined in workqueue_internal.h */
124
125 struct worker_pool {
126 spinlock_t lock; /* the pool lock */
127 unsigned int cpu; /* I: the associated cpu */
128 int id; /* I: pool ID */
129 unsigned int flags; /* X: flags */
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
133
134 /* nr_idle includes the ones off idle_list for rebinding */
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
146 struct ida worker_ida; /* L: for worker IDs */
147 };
148
149 /*
150 * Global per-cpu workqueue. There's one and only one for each cpu
151 * and all works are queued and processed here regardless of their
152 * target workqueues.
153 */
154 struct global_cwq {
155 struct worker_pool pools[NR_STD_WORKER_POOLS];
156 /* normal and highpri pools */
157 } ____cacheline_aligned_in_smp;
158
159 /*
160 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
161 * work_struct->data are used for flags and thus cwqs need to be
162 * aligned at two's power of the number of flag bits.
163 */
164 struct cpu_workqueue_struct {
165 struct worker_pool *pool; /* I: the associated pool */
166 struct workqueue_struct *wq; /* I: the owning workqueue */
167 int work_color; /* L: current color */
168 int flush_color; /* L: flushing color */
169 int nr_in_flight[WORK_NR_COLORS];
170 /* L: nr of in_flight works */
171 int nr_active; /* L: nr of active works */
172 int max_active; /* L: max active works */
173 struct list_head delayed_works; /* L: delayed works */
174 };
175
176 /*
177 * Structure used to wait for workqueue flush.
178 */
179 struct wq_flusher {
180 struct list_head list; /* F: list of flushers */
181 int flush_color; /* F: flush color waiting for */
182 struct completion done; /* flush completion */
183 };
184
185 /*
186 * All cpumasks are assumed to be always set on UP and thus can't be
187 * used to determine whether there's something to be done.
188 */
189 #ifdef CONFIG_SMP
190 typedef cpumask_var_t mayday_mask_t;
191 #define mayday_test_and_set_cpu(cpu, mask) \
192 cpumask_test_and_set_cpu((cpu), (mask))
193 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
194 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
195 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
196 #define free_mayday_mask(mask) free_cpumask_var((mask))
197 #else
198 typedef unsigned long mayday_mask_t;
199 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
200 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
201 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
202 #define alloc_mayday_mask(maskp, gfp) true
203 #define free_mayday_mask(mask) do { } while (0)
204 #endif
205
206 /*
207 * The externally visible workqueue abstraction is an array of
208 * per-CPU workqueues:
209 */
210 struct workqueue_struct {
211 unsigned int flags; /* W: WQ_* flags */
212 union {
213 struct cpu_workqueue_struct __percpu *pcpu;
214 struct cpu_workqueue_struct *single;
215 unsigned long v;
216 } cpu_wq; /* I: cwq's */
217 struct list_head list; /* W: list of all workqueues */
218
219 struct mutex flush_mutex; /* protects wq flushing */
220 int work_color; /* F: current work color */
221 int flush_color; /* F: current flush color */
222 atomic_t nr_cwqs_to_flush; /* flush in progress */
223 struct wq_flusher *first_flusher; /* F: first flusher */
224 struct list_head flusher_queue; /* F: flush waiters */
225 struct list_head flusher_overflow; /* F: flush overflow list */
226
227 mayday_mask_t mayday_mask; /* cpus requesting rescue */
228 struct worker *rescuer; /* I: rescue worker */
229
230 int nr_drainers; /* W: drain in progress */
231 int saved_max_active; /* W: saved cwq max_active */
232 #ifdef CONFIG_LOCKDEP
233 struct lockdep_map lockdep_map;
234 #endif
235 char name[]; /* I: workqueue name */
236 };
237
238 struct workqueue_struct *system_wq __read_mostly;
239 EXPORT_SYMBOL_GPL(system_wq);
240 struct workqueue_struct *system_highpri_wq __read_mostly;
241 EXPORT_SYMBOL_GPL(system_highpri_wq);
242 struct workqueue_struct *system_long_wq __read_mostly;
243 EXPORT_SYMBOL_GPL(system_long_wq);
244 struct workqueue_struct *system_unbound_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_unbound_wq);
246 struct workqueue_struct *system_freezable_wq __read_mostly;
247 EXPORT_SYMBOL_GPL(system_freezable_wq);
248
249 #define CREATE_TRACE_POINTS
250 #include <trace/events/workqueue.h>
251
252 #define for_each_std_worker_pool(pool, cpu) \
253 for ((pool) = &get_gcwq((cpu))->pools[0]; \
254 (pool) < &get_gcwq((cpu))->pools[NR_STD_WORKER_POOLS]; (pool)++)
255
256 #define for_each_busy_worker(worker, i, pos, pool) \
257 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
258
259 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
260 unsigned int sw)
261 {
262 if (cpu < nr_cpu_ids) {
263 if (sw & 1) {
264 cpu = cpumask_next(cpu, mask);
265 if (cpu < nr_cpu_ids)
266 return cpu;
267 }
268 if (sw & 2)
269 return WORK_CPU_UNBOUND;
270 }
271 return WORK_CPU_NONE;
272 }
273
274 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
275 struct workqueue_struct *wq)
276 {
277 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
278 }
279
280 /*
281 * CPU iterators
282 *
283 * An extra gcwq is defined for an invalid cpu number
284 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
285 * specific CPU. The following iterators are similar to
286 * for_each_*_cpu() iterators but also considers the unbound gcwq.
287 *
288 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
289 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
290 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
291 * WORK_CPU_UNBOUND for unbound workqueues
292 */
293 #define for_each_gcwq_cpu(cpu) \
294 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
295 (cpu) < WORK_CPU_NONE; \
296 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
297
298 #define for_each_online_gcwq_cpu(cpu) \
299 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
300 (cpu) < WORK_CPU_NONE; \
301 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
302
303 #define for_each_cwq_cpu(cpu, wq) \
304 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
305 (cpu) < WORK_CPU_NONE; \
306 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
307
308 #ifdef CONFIG_DEBUG_OBJECTS_WORK
309
310 static struct debug_obj_descr work_debug_descr;
311
312 static void *work_debug_hint(void *addr)
313 {
314 return ((struct work_struct *) addr)->func;
315 }
316
317 /*
318 * fixup_init is called when:
319 * - an active object is initialized
320 */
321 static int work_fixup_init(void *addr, enum debug_obj_state state)
322 {
323 struct work_struct *work = addr;
324
325 switch (state) {
326 case ODEBUG_STATE_ACTIVE:
327 cancel_work_sync(work);
328 debug_object_init(work, &work_debug_descr);
329 return 1;
330 default:
331 return 0;
332 }
333 }
334
335 /*
336 * fixup_activate is called when:
337 * - an active object is activated
338 * - an unknown object is activated (might be a statically initialized object)
339 */
340 static int work_fixup_activate(void *addr, enum debug_obj_state state)
341 {
342 struct work_struct *work = addr;
343
344 switch (state) {
345
346 case ODEBUG_STATE_NOTAVAILABLE:
347 /*
348 * This is not really a fixup. The work struct was
349 * statically initialized. We just make sure that it
350 * is tracked in the object tracker.
351 */
352 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
353 debug_object_init(work, &work_debug_descr);
354 debug_object_activate(work, &work_debug_descr);
355 return 0;
356 }
357 WARN_ON_ONCE(1);
358 return 0;
359
360 case ODEBUG_STATE_ACTIVE:
361 WARN_ON(1);
362
363 default:
364 return 0;
365 }
366 }
367
368 /*
369 * fixup_free is called when:
370 * - an active object is freed
371 */
372 static int work_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 struct work_struct *work = addr;
375
376 switch (state) {
377 case ODEBUG_STATE_ACTIVE:
378 cancel_work_sync(work);
379 debug_object_free(work, &work_debug_descr);
380 return 1;
381 default:
382 return 0;
383 }
384 }
385
386 static struct debug_obj_descr work_debug_descr = {
387 .name = "work_struct",
388 .debug_hint = work_debug_hint,
389 .fixup_init = work_fixup_init,
390 .fixup_activate = work_fixup_activate,
391 .fixup_free = work_fixup_free,
392 };
393
394 static inline void debug_work_activate(struct work_struct *work)
395 {
396 debug_object_activate(work, &work_debug_descr);
397 }
398
399 static inline void debug_work_deactivate(struct work_struct *work)
400 {
401 debug_object_deactivate(work, &work_debug_descr);
402 }
403
404 void __init_work(struct work_struct *work, int onstack)
405 {
406 if (onstack)
407 debug_object_init_on_stack(work, &work_debug_descr);
408 else
409 debug_object_init(work, &work_debug_descr);
410 }
411 EXPORT_SYMBOL_GPL(__init_work);
412
413 void destroy_work_on_stack(struct work_struct *work)
414 {
415 debug_object_free(work, &work_debug_descr);
416 }
417 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
418
419 #else
420 static inline void debug_work_activate(struct work_struct *work) { }
421 static inline void debug_work_deactivate(struct work_struct *work) { }
422 #endif
423
424 /* Serializes the accesses to the list of workqueues. */
425 static DEFINE_SPINLOCK(workqueue_lock);
426 static LIST_HEAD(workqueues);
427 static bool workqueue_freezing; /* W: have wqs started freezing? */
428
429 /*
430 * The almighty global cpu workqueues. nr_running is the only field
431 * which is expected to be used frequently by other cpus via
432 * try_to_wake_up(). Put it in a separate cacheline.
433 */
434 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
435 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
436
437 /*
438 * Global cpu workqueue and nr_running counter for unbound gcwq. The pools
439 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
440 * WORKER_UNBOUND set.
441 */
442 static struct global_cwq unbound_global_cwq;
443 static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
444 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
445 };
446
447 /* idr of all pools */
448 static DEFINE_MUTEX(worker_pool_idr_mutex);
449 static DEFINE_IDR(worker_pool_idr);
450
451 static int worker_thread(void *__worker);
452
453 static struct global_cwq *get_gcwq(unsigned int cpu)
454 {
455 if (cpu != WORK_CPU_UNBOUND)
456 return &per_cpu(global_cwq, cpu);
457 else
458 return &unbound_global_cwq;
459 }
460
461 static int std_worker_pool_pri(struct worker_pool *pool)
462 {
463 return pool - get_gcwq(pool->cpu)->pools;
464 }
465
466 /* allocate ID and assign it to @pool */
467 static int worker_pool_assign_id(struct worker_pool *pool)
468 {
469 int ret;
470
471 mutex_lock(&worker_pool_idr_mutex);
472 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
473 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
474 mutex_unlock(&worker_pool_idr_mutex);
475
476 return ret;
477 }
478
479 /*
480 * Lookup worker_pool by id. The idr currently is built during boot and
481 * never modified. Don't worry about locking for now.
482 */
483 static struct worker_pool *worker_pool_by_id(int pool_id)
484 {
485 return idr_find(&worker_pool_idr, pool_id);
486 }
487
488 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
489 {
490 struct global_cwq *gcwq = get_gcwq(cpu);
491
492 return &gcwq->pools[highpri];
493 }
494
495 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
496 {
497 int cpu = pool->cpu;
498 int idx = std_worker_pool_pri(pool);
499
500 if (cpu != WORK_CPU_UNBOUND)
501 return &per_cpu(pool_nr_running, cpu)[idx];
502 else
503 return &unbound_pool_nr_running[idx];
504 }
505
506 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
507 struct workqueue_struct *wq)
508 {
509 if (!(wq->flags & WQ_UNBOUND)) {
510 if (likely(cpu < nr_cpu_ids))
511 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
512 } else if (likely(cpu == WORK_CPU_UNBOUND))
513 return wq->cpu_wq.single;
514 return NULL;
515 }
516
517 static unsigned int work_color_to_flags(int color)
518 {
519 return color << WORK_STRUCT_COLOR_SHIFT;
520 }
521
522 static int get_work_color(struct work_struct *work)
523 {
524 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
525 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
526 }
527
528 static int work_next_color(int color)
529 {
530 return (color + 1) % WORK_NR_COLORS;
531 }
532
533 /*
534 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
535 * contain the pointer to the queued cwq. Once execution starts, the flag
536 * is cleared and the high bits contain OFFQ flags and pool ID.
537 *
538 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
539 * and clear_work_data() can be used to set the cwq, pool or clear
540 * work->data. These functions should only be called while the work is
541 * owned - ie. while the PENDING bit is set.
542 *
543 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
544 * corresponding to a work. Pool is available once the work has been
545 * queued anywhere after initialization until it is sync canceled. cwq is
546 * available only while the work item is queued.
547 *
548 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
549 * canceled. While being canceled, a work item may have its PENDING set
550 * but stay off timer and worklist for arbitrarily long and nobody should
551 * try to steal the PENDING bit.
552 */
553 static inline void set_work_data(struct work_struct *work, unsigned long data,
554 unsigned long flags)
555 {
556 BUG_ON(!work_pending(work));
557 atomic_long_set(&work->data, data | flags | work_static(work));
558 }
559
560 static void set_work_cwq(struct work_struct *work,
561 struct cpu_workqueue_struct *cwq,
562 unsigned long extra_flags)
563 {
564 set_work_data(work, (unsigned long)cwq,
565 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
566 }
567
568 static void set_work_pool_and_clear_pending(struct work_struct *work,
569 int pool_id)
570 {
571 /*
572 * The following wmb is paired with the implied mb in
573 * test_and_set_bit(PENDING) and ensures all updates to @work made
574 * here are visible to and precede any updates by the next PENDING
575 * owner.
576 */
577 smp_wmb();
578 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
579 }
580
581 static void clear_work_data(struct work_struct *work)
582 {
583 smp_wmb(); /* see set_work_pool_and_clear_pending() */
584 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
585 }
586
587 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
588 {
589 unsigned long data = atomic_long_read(&work->data);
590
591 if (data & WORK_STRUCT_CWQ)
592 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
593 else
594 return NULL;
595 }
596
597 /**
598 * get_work_pool - return the worker_pool a given work was associated with
599 * @work: the work item of interest
600 *
601 * Return the worker_pool @work was last associated with. %NULL if none.
602 */
603 static struct worker_pool *get_work_pool(struct work_struct *work)
604 {
605 unsigned long data = atomic_long_read(&work->data);
606 struct worker_pool *pool;
607 int pool_id;
608
609 if (data & WORK_STRUCT_CWQ)
610 return ((struct cpu_workqueue_struct *)
611 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
612
613 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
614 if (pool_id == WORK_OFFQ_POOL_NONE)
615 return NULL;
616
617 pool = worker_pool_by_id(pool_id);
618 WARN_ON_ONCE(!pool);
619 return pool;
620 }
621
622 /**
623 * get_work_pool_id - return the worker pool ID a given work is associated with
624 * @work: the work item of interest
625 *
626 * Return the worker_pool ID @work was last associated with.
627 * %WORK_OFFQ_POOL_NONE if none.
628 */
629 static int get_work_pool_id(struct work_struct *work)
630 {
631 struct worker_pool *pool = get_work_pool(work);
632
633 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
634 }
635
636 static void mark_work_canceling(struct work_struct *work)
637 {
638 unsigned long pool_id = get_work_pool_id(work);
639
640 pool_id <<= WORK_OFFQ_POOL_SHIFT;
641 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
642 }
643
644 static bool work_is_canceling(struct work_struct *work)
645 {
646 unsigned long data = atomic_long_read(&work->data);
647
648 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
649 }
650
651 /*
652 * Policy functions. These define the policies on how the global worker
653 * pools are managed. Unless noted otherwise, these functions assume that
654 * they're being called with pool->lock held.
655 */
656
657 static bool __need_more_worker(struct worker_pool *pool)
658 {
659 return !atomic_read(get_pool_nr_running(pool));
660 }
661
662 /*
663 * Need to wake up a worker? Called from anything but currently
664 * running workers.
665 *
666 * Note that, because unbound workers never contribute to nr_running, this
667 * function will always return %true for unbound gcwq as long as the
668 * worklist isn't empty.
669 */
670 static bool need_more_worker(struct worker_pool *pool)
671 {
672 return !list_empty(&pool->worklist) && __need_more_worker(pool);
673 }
674
675 /* Can I start working? Called from busy but !running workers. */
676 static bool may_start_working(struct worker_pool *pool)
677 {
678 return pool->nr_idle;
679 }
680
681 /* Do I need to keep working? Called from currently running workers. */
682 static bool keep_working(struct worker_pool *pool)
683 {
684 atomic_t *nr_running = get_pool_nr_running(pool);
685
686 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
687 }
688
689 /* Do we need a new worker? Called from manager. */
690 static bool need_to_create_worker(struct worker_pool *pool)
691 {
692 return need_more_worker(pool) && !may_start_working(pool);
693 }
694
695 /* Do I need to be the manager? */
696 static bool need_to_manage_workers(struct worker_pool *pool)
697 {
698 return need_to_create_worker(pool) ||
699 (pool->flags & POOL_MANAGE_WORKERS);
700 }
701
702 /* Do we have too many workers and should some go away? */
703 static bool too_many_workers(struct worker_pool *pool)
704 {
705 bool managing = pool->flags & POOL_MANAGING_WORKERS;
706 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
707 int nr_busy = pool->nr_workers - nr_idle;
708
709 /*
710 * nr_idle and idle_list may disagree if idle rebinding is in
711 * progress. Never return %true if idle_list is empty.
712 */
713 if (list_empty(&pool->idle_list))
714 return false;
715
716 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
717 }
718
719 /*
720 * Wake up functions.
721 */
722
723 /* Return the first worker. Safe with preemption disabled */
724 static struct worker *first_worker(struct worker_pool *pool)
725 {
726 if (unlikely(list_empty(&pool->idle_list)))
727 return NULL;
728
729 return list_first_entry(&pool->idle_list, struct worker, entry);
730 }
731
732 /**
733 * wake_up_worker - wake up an idle worker
734 * @pool: worker pool to wake worker from
735 *
736 * Wake up the first idle worker of @pool.
737 *
738 * CONTEXT:
739 * spin_lock_irq(pool->lock).
740 */
741 static void wake_up_worker(struct worker_pool *pool)
742 {
743 struct worker *worker = first_worker(pool);
744
745 if (likely(worker))
746 wake_up_process(worker->task);
747 }
748
749 /**
750 * wq_worker_waking_up - a worker is waking up
751 * @task: task waking up
752 * @cpu: CPU @task is waking up to
753 *
754 * This function is called during try_to_wake_up() when a worker is
755 * being awoken.
756 *
757 * CONTEXT:
758 * spin_lock_irq(rq->lock)
759 */
760 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
761 {
762 struct worker *worker = kthread_data(task);
763
764 if (!(worker->flags & WORKER_NOT_RUNNING)) {
765 WARN_ON_ONCE(worker->pool->cpu != cpu);
766 atomic_inc(get_pool_nr_running(worker->pool));
767 }
768 }
769
770 /**
771 * wq_worker_sleeping - a worker is going to sleep
772 * @task: task going to sleep
773 * @cpu: CPU in question, must be the current CPU number
774 *
775 * This function is called during schedule() when a busy worker is
776 * going to sleep. Worker on the same cpu can be woken up by
777 * returning pointer to its task.
778 *
779 * CONTEXT:
780 * spin_lock_irq(rq->lock)
781 *
782 * RETURNS:
783 * Worker task on @cpu to wake up, %NULL if none.
784 */
785 struct task_struct *wq_worker_sleeping(struct task_struct *task,
786 unsigned int cpu)
787 {
788 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
789 struct worker_pool *pool;
790 atomic_t *nr_running;
791
792 /*
793 * Rescuers, which may not have all the fields set up like normal
794 * workers, also reach here, let's not access anything before
795 * checking NOT_RUNNING.
796 */
797 if (worker->flags & WORKER_NOT_RUNNING)
798 return NULL;
799
800 pool = worker->pool;
801 nr_running = get_pool_nr_running(pool);
802
803 /* this can only happen on the local cpu */
804 BUG_ON(cpu != raw_smp_processor_id());
805
806 /*
807 * The counterpart of the following dec_and_test, implied mb,
808 * worklist not empty test sequence is in insert_work().
809 * Please read comment there.
810 *
811 * NOT_RUNNING is clear. This means that we're bound to and
812 * running on the local cpu w/ rq lock held and preemption
813 * disabled, which in turn means that none else could be
814 * manipulating idle_list, so dereferencing idle_list without pool
815 * lock is safe.
816 */
817 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
818 to_wakeup = first_worker(pool);
819 return to_wakeup ? to_wakeup->task : NULL;
820 }
821
822 /**
823 * worker_set_flags - set worker flags and adjust nr_running accordingly
824 * @worker: self
825 * @flags: flags to set
826 * @wakeup: wakeup an idle worker if necessary
827 *
828 * Set @flags in @worker->flags and adjust nr_running accordingly. If
829 * nr_running becomes zero and @wakeup is %true, an idle worker is
830 * woken up.
831 *
832 * CONTEXT:
833 * spin_lock_irq(pool->lock)
834 */
835 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
836 bool wakeup)
837 {
838 struct worker_pool *pool = worker->pool;
839
840 WARN_ON_ONCE(worker->task != current);
841
842 /*
843 * If transitioning into NOT_RUNNING, adjust nr_running and
844 * wake up an idle worker as necessary if requested by
845 * @wakeup.
846 */
847 if ((flags & WORKER_NOT_RUNNING) &&
848 !(worker->flags & WORKER_NOT_RUNNING)) {
849 atomic_t *nr_running = get_pool_nr_running(pool);
850
851 if (wakeup) {
852 if (atomic_dec_and_test(nr_running) &&
853 !list_empty(&pool->worklist))
854 wake_up_worker(pool);
855 } else
856 atomic_dec(nr_running);
857 }
858
859 worker->flags |= flags;
860 }
861
862 /**
863 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
864 * @worker: self
865 * @flags: flags to clear
866 *
867 * Clear @flags in @worker->flags and adjust nr_running accordingly.
868 *
869 * CONTEXT:
870 * spin_lock_irq(pool->lock)
871 */
872 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
873 {
874 struct worker_pool *pool = worker->pool;
875 unsigned int oflags = worker->flags;
876
877 WARN_ON_ONCE(worker->task != current);
878
879 worker->flags &= ~flags;
880
881 /*
882 * If transitioning out of NOT_RUNNING, increment nr_running. Note
883 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
884 * of multiple flags, not a single flag.
885 */
886 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
887 if (!(worker->flags & WORKER_NOT_RUNNING))
888 atomic_inc(get_pool_nr_running(pool));
889 }
890
891 /**
892 * find_worker_executing_work - find worker which is executing a work
893 * @pool: pool of interest
894 * @work: work to find worker for
895 *
896 * Find a worker which is executing @work on @pool by searching
897 * @pool->busy_hash which is keyed by the address of @work. For a worker
898 * to match, its current execution should match the address of @work and
899 * its work function. This is to avoid unwanted dependency between
900 * unrelated work executions through a work item being recycled while still
901 * being executed.
902 *
903 * This is a bit tricky. A work item may be freed once its execution
904 * starts and nothing prevents the freed area from being recycled for
905 * another work item. If the same work item address ends up being reused
906 * before the original execution finishes, workqueue will identify the
907 * recycled work item as currently executing and make it wait until the
908 * current execution finishes, introducing an unwanted dependency.
909 *
910 * This function checks the work item address, work function and workqueue
911 * to avoid false positives. Note that this isn't complete as one may
912 * construct a work function which can introduce dependency onto itself
913 * through a recycled work item. Well, if somebody wants to shoot oneself
914 * in the foot that badly, there's only so much we can do, and if such
915 * deadlock actually occurs, it should be easy to locate the culprit work
916 * function.
917 *
918 * CONTEXT:
919 * spin_lock_irq(pool->lock).
920 *
921 * RETURNS:
922 * Pointer to worker which is executing @work if found, NULL
923 * otherwise.
924 */
925 static struct worker *find_worker_executing_work(struct worker_pool *pool,
926 struct work_struct *work)
927 {
928 struct worker *worker;
929 struct hlist_node *tmp;
930
931 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
932 (unsigned long)work)
933 if (worker->current_work == work &&
934 worker->current_func == work->func)
935 return worker;
936
937 return NULL;
938 }
939
940 /**
941 * move_linked_works - move linked works to a list
942 * @work: start of series of works to be scheduled
943 * @head: target list to append @work to
944 * @nextp: out paramter for nested worklist walking
945 *
946 * Schedule linked works starting from @work to @head. Work series to
947 * be scheduled starts at @work and includes any consecutive work with
948 * WORK_STRUCT_LINKED set in its predecessor.
949 *
950 * If @nextp is not NULL, it's updated to point to the next work of
951 * the last scheduled work. This allows move_linked_works() to be
952 * nested inside outer list_for_each_entry_safe().
953 *
954 * CONTEXT:
955 * spin_lock_irq(pool->lock).
956 */
957 static void move_linked_works(struct work_struct *work, struct list_head *head,
958 struct work_struct **nextp)
959 {
960 struct work_struct *n;
961
962 /*
963 * Linked worklist will always end before the end of the list,
964 * use NULL for list head.
965 */
966 list_for_each_entry_safe_from(work, n, NULL, entry) {
967 list_move_tail(&work->entry, head);
968 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
969 break;
970 }
971
972 /*
973 * If we're already inside safe list traversal and have moved
974 * multiple works to the scheduled queue, the next position
975 * needs to be updated.
976 */
977 if (nextp)
978 *nextp = n;
979 }
980
981 static void cwq_activate_delayed_work(struct work_struct *work)
982 {
983 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
984
985 trace_workqueue_activate_work(work);
986 move_linked_works(work, &cwq->pool->worklist, NULL);
987 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
988 cwq->nr_active++;
989 }
990
991 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
992 {
993 struct work_struct *work = list_first_entry(&cwq->delayed_works,
994 struct work_struct, entry);
995
996 cwq_activate_delayed_work(work);
997 }
998
999 /**
1000 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1001 * @cwq: cwq of interest
1002 * @color: color of work which left the queue
1003 *
1004 * A work either has completed or is removed from pending queue,
1005 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1006 *
1007 * CONTEXT:
1008 * spin_lock_irq(pool->lock).
1009 */
1010 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1011 {
1012 /* ignore uncolored works */
1013 if (color == WORK_NO_COLOR)
1014 return;
1015
1016 cwq->nr_in_flight[color]--;
1017
1018 cwq->nr_active--;
1019 if (!list_empty(&cwq->delayed_works)) {
1020 /* one down, submit a delayed one */
1021 if (cwq->nr_active < cwq->max_active)
1022 cwq_activate_first_delayed(cwq);
1023 }
1024
1025 /* is flush in progress and are we at the flushing tip? */
1026 if (likely(cwq->flush_color != color))
1027 return;
1028
1029 /* are there still in-flight works? */
1030 if (cwq->nr_in_flight[color])
1031 return;
1032
1033 /* this cwq is done, clear flush_color */
1034 cwq->flush_color = -1;
1035
1036 /*
1037 * If this was the last cwq, wake up the first flusher. It
1038 * will handle the rest.
1039 */
1040 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1041 complete(&cwq->wq->first_flusher->done);
1042 }
1043
1044 /**
1045 * try_to_grab_pending - steal work item from worklist and disable irq
1046 * @work: work item to steal
1047 * @is_dwork: @work is a delayed_work
1048 * @flags: place to store irq state
1049 *
1050 * Try to grab PENDING bit of @work. This function can handle @work in any
1051 * stable state - idle, on timer or on worklist. Return values are
1052 *
1053 * 1 if @work was pending and we successfully stole PENDING
1054 * 0 if @work was idle and we claimed PENDING
1055 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1056 * -ENOENT if someone else is canceling @work, this state may persist
1057 * for arbitrarily long
1058 *
1059 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1060 * interrupted while holding PENDING and @work off queue, irq must be
1061 * disabled on entry. This, combined with delayed_work->timer being
1062 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1063 *
1064 * On successful return, >= 0, irq is disabled and the caller is
1065 * responsible for releasing it using local_irq_restore(*@flags).
1066 *
1067 * This function is safe to call from any context including IRQ handler.
1068 */
1069 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1070 unsigned long *flags)
1071 {
1072 struct worker_pool *pool;
1073
1074 local_irq_save(*flags);
1075
1076 /* try to steal the timer if it exists */
1077 if (is_dwork) {
1078 struct delayed_work *dwork = to_delayed_work(work);
1079
1080 /*
1081 * dwork->timer is irqsafe. If del_timer() fails, it's
1082 * guaranteed that the timer is not queued anywhere and not
1083 * running on the local CPU.
1084 */
1085 if (likely(del_timer(&dwork->timer)))
1086 return 1;
1087 }
1088
1089 /* try to claim PENDING the normal way */
1090 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1091 return 0;
1092
1093 /*
1094 * The queueing is in progress, or it is already queued. Try to
1095 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1096 */
1097 pool = get_work_pool(work);
1098 if (!pool)
1099 goto fail;
1100
1101 spin_lock(&pool->lock);
1102 if (!list_empty(&work->entry)) {
1103 /*
1104 * This work is queued, but perhaps we locked the wrong
1105 * pool. In that case we must see the new value after
1106 * rmb(), see insert_work()->wmb().
1107 */
1108 smp_rmb();
1109 if (pool == get_work_pool(work)) {
1110 debug_work_deactivate(work);
1111
1112 /*
1113 * A delayed work item cannot be grabbed directly
1114 * because it might have linked NO_COLOR work items
1115 * which, if left on the delayed_list, will confuse
1116 * cwq->nr_active management later on and cause
1117 * stall. Make sure the work item is activated
1118 * before grabbing.
1119 */
1120 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1121 cwq_activate_delayed_work(work);
1122
1123 list_del_init(&work->entry);
1124 cwq_dec_nr_in_flight(get_work_cwq(work),
1125 get_work_color(work));
1126
1127 spin_unlock(&pool->lock);
1128 return 1;
1129 }
1130 }
1131 spin_unlock(&pool->lock);
1132 fail:
1133 local_irq_restore(*flags);
1134 if (work_is_canceling(work))
1135 return -ENOENT;
1136 cpu_relax();
1137 return -EAGAIN;
1138 }
1139
1140 /**
1141 * insert_work - insert a work into gcwq
1142 * @cwq: cwq @work belongs to
1143 * @work: work to insert
1144 * @head: insertion point
1145 * @extra_flags: extra WORK_STRUCT_* flags to set
1146 *
1147 * Insert @work which belongs to @cwq into @gcwq after @head.
1148 * @extra_flags is or'd to work_struct flags.
1149 *
1150 * CONTEXT:
1151 * spin_lock_irq(pool->lock).
1152 */
1153 static void insert_work(struct cpu_workqueue_struct *cwq,
1154 struct work_struct *work, struct list_head *head,
1155 unsigned int extra_flags)
1156 {
1157 struct worker_pool *pool = cwq->pool;
1158
1159 /* we own @work, set data and link */
1160 set_work_cwq(work, cwq, extra_flags);
1161
1162 /*
1163 * Ensure that we get the right work->data if we see the
1164 * result of list_add() below, see try_to_grab_pending().
1165 */
1166 smp_wmb();
1167
1168 list_add_tail(&work->entry, head);
1169
1170 /*
1171 * Ensure either worker_sched_deactivated() sees the above
1172 * list_add_tail() or we see zero nr_running to avoid workers
1173 * lying around lazily while there are works to be processed.
1174 */
1175 smp_mb();
1176
1177 if (__need_more_worker(pool))
1178 wake_up_worker(pool);
1179 }
1180
1181 /*
1182 * Test whether @work is being queued from another work executing on the
1183 * same workqueue. This is rather expensive and should only be used from
1184 * cold paths.
1185 */
1186 static bool is_chained_work(struct workqueue_struct *wq)
1187 {
1188 unsigned long flags;
1189 unsigned int cpu;
1190
1191 for_each_gcwq_cpu(cpu) {
1192 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1193 struct worker_pool *pool = cwq->pool;
1194 struct worker *worker;
1195 struct hlist_node *pos;
1196 int i;
1197
1198 spin_lock_irqsave(&pool->lock, flags);
1199 for_each_busy_worker(worker, i, pos, pool) {
1200 if (worker->task != current)
1201 continue;
1202 spin_unlock_irqrestore(&pool->lock, flags);
1203 /*
1204 * I'm @worker, no locking necessary. See if @work
1205 * is headed to the same workqueue.
1206 */
1207 return worker->current_cwq->wq == wq;
1208 }
1209 spin_unlock_irqrestore(&pool->lock, flags);
1210 }
1211 return false;
1212 }
1213
1214 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1215 struct work_struct *work)
1216 {
1217 bool highpri = wq->flags & WQ_HIGHPRI;
1218 struct worker_pool *pool;
1219 struct cpu_workqueue_struct *cwq;
1220 struct list_head *worklist;
1221 unsigned int work_flags;
1222 unsigned int req_cpu = cpu;
1223
1224 /*
1225 * While a work item is PENDING && off queue, a task trying to
1226 * steal the PENDING will busy-loop waiting for it to either get
1227 * queued or lose PENDING. Grabbing PENDING and queueing should
1228 * happen with IRQ disabled.
1229 */
1230 WARN_ON_ONCE(!irqs_disabled());
1231
1232 debug_work_activate(work);
1233
1234 /* if dying, only works from the same workqueue are allowed */
1235 if (unlikely(wq->flags & WQ_DRAINING) &&
1236 WARN_ON_ONCE(!is_chained_work(wq)))
1237 return;
1238
1239 /* determine pool to use */
1240 if (!(wq->flags & WQ_UNBOUND)) {
1241 struct worker_pool *last_pool;
1242
1243 if (cpu == WORK_CPU_UNBOUND)
1244 cpu = raw_smp_processor_id();
1245
1246 /*
1247 * It's multi cpu. If @work was previously on a different
1248 * cpu, it might still be running there, in which case the
1249 * work needs to be queued on that cpu to guarantee
1250 * non-reentrancy.
1251 */
1252 pool = get_std_worker_pool(cpu, highpri);
1253 last_pool = get_work_pool(work);
1254
1255 if (last_pool && last_pool != pool) {
1256 struct worker *worker;
1257
1258 spin_lock(&last_pool->lock);
1259
1260 worker = find_worker_executing_work(last_pool, work);
1261
1262 if (worker && worker->current_cwq->wq == wq)
1263 pool = last_pool;
1264 else {
1265 /* meh... not running there, queue here */
1266 spin_unlock(&last_pool->lock);
1267 spin_lock(&pool->lock);
1268 }
1269 } else {
1270 spin_lock(&pool->lock);
1271 }
1272 } else {
1273 pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
1274 spin_lock(&pool->lock);
1275 }
1276
1277 /* pool determined, get cwq and queue */
1278 cwq = get_cwq(pool->cpu, wq);
1279 trace_workqueue_queue_work(req_cpu, cwq, work);
1280
1281 if (WARN_ON(!list_empty(&work->entry))) {
1282 spin_unlock(&pool->lock);
1283 return;
1284 }
1285
1286 cwq->nr_in_flight[cwq->work_color]++;
1287 work_flags = work_color_to_flags(cwq->work_color);
1288
1289 if (likely(cwq->nr_active < cwq->max_active)) {
1290 trace_workqueue_activate_work(work);
1291 cwq->nr_active++;
1292 worklist = &cwq->pool->worklist;
1293 } else {
1294 work_flags |= WORK_STRUCT_DELAYED;
1295 worklist = &cwq->delayed_works;
1296 }
1297
1298 insert_work(cwq, work, worklist, work_flags);
1299
1300 spin_unlock(&pool->lock);
1301 }
1302
1303 /**
1304 * queue_work_on - queue work on specific cpu
1305 * @cpu: CPU number to execute work on
1306 * @wq: workqueue to use
1307 * @work: work to queue
1308 *
1309 * Returns %false if @work was already on a queue, %true otherwise.
1310 *
1311 * We queue the work to a specific CPU, the caller must ensure it
1312 * can't go away.
1313 */
1314 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1315 struct work_struct *work)
1316 {
1317 bool ret = false;
1318 unsigned long flags;
1319
1320 local_irq_save(flags);
1321
1322 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1323 __queue_work(cpu, wq, work);
1324 ret = true;
1325 }
1326
1327 local_irq_restore(flags);
1328 return ret;
1329 }
1330 EXPORT_SYMBOL_GPL(queue_work_on);
1331
1332 /**
1333 * queue_work - queue work on a workqueue
1334 * @wq: workqueue to use
1335 * @work: work to queue
1336 *
1337 * Returns %false if @work was already on a queue, %true otherwise.
1338 *
1339 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1340 * it can be processed by another CPU.
1341 */
1342 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1343 {
1344 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1345 }
1346 EXPORT_SYMBOL_GPL(queue_work);
1347
1348 void delayed_work_timer_fn(unsigned long __data)
1349 {
1350 struct delayed_work *dwork = (struct delayed_work *)__data;
1351 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1352
1353 /* should have been called from irqsafe timer with irq already off */
1354 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1355 }
1356 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1357
1358 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1359 struct delayed_work *dwork, unsigned long delay)
1360 {
1361 struct timer_list *timer = &dwork->timer;
1362 struct work_struct *work = &dwork->work;
1363 unsigned int lcpu;
1364
1365 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1366 timer->data != (unsigned long)dwork);
1367 WARN_ON_ONCE(timer_pending(timer));
1368 WARN_ON_ONCE(!list_empty(&work->entry));
1369
1370 /*
1371 * If @delay is 0, queue @dwork->work immediately. This is for
1372 * both optimization and correctness. The earliest @timer can
1373 * expire is on the closest next tick and delayed_work users depend
1374 * on that there's no such delay when @delay is 0.
1375 */
1376 if (!delay) {
1377 __queue_work(cpu, wq, &dwork->work);
1378 return;
1379 }
1380
1381 timer_stats_timer_set_start_info(&dwork->timer);
1382
1383 /*
1384 * This stores cwq for the moment, for the timer_fn. Note that the
1385 * work's pool is preserved to allow reentrance detection for
1386 * delayed works.
1387 */
1388 if (!(wq->flags & WQ_UNBOUND)) {
1389 struct worker_pool *pool = get_work_pool(work);
1390
1391 /*
1392 * If we cannot get the last pool from @work directly,
1393 * select the last CPU such that it avoids unnecessarily
1394 * triggering non-reentrancy check in __queue_work().
1395 */
1396 lcpu = cpu;
1397 if (pool)
1398 lcpu = pool->cpu;
1399 if (lcpu == WORK_CPU_UNBOUND)
1400 lcpu = raw_smp_processor_id();
1401 } else {
1402 lcpu = WORK_CPU_UNBOUND;
1403 }
1404
1405 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1406
1407 dwork->cpu = cpu;
1408 timer->expires = jiffies + delay;
1409
1410 if (unlikely(cpu != WORK_CPU_UNBOUND))
1411 add_timer_on(timer, cpu);
1412 else
1413 add_timer(timer);
1414 }
1415
1416 /**
1417 * queue_delayed_work_on - queue work on specific CPU after delay
1418 * @cpu: CPU number to execute work on
1419 * @wq: workqueue to use
1420 * @dwork: work to queue
1421 * @delay: number of jiffies to wait before queueing
1422 *
1423 * Returns %false if @work was already on a queue, %true otherwise. If
1424 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1425 * execution.
1426 */
1427 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1428 struct delayed_work *dwork, unsigned long delay)
1429 {
1430 struct work_struct *work = &dwork->work;
1431 bool ret = false;
1432 unsigned long flags;
1433
1434 /* read the comment in __queue_work() */
1435 local_irq_save(flags);
1436
1437 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1438 __queue_delayed_work(cpu, wq, dwork, delay);
1439 ret = true;
1440 }
1441
1442 local_irq_restore(flags);
1443 return ret;
1444 }
1445 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1446
1447 /**
1448 * queue_delayed_work - queue work on a workqueue after delay
1449 * @wq: workqueue to use
1450 * @dwork: delayable work to queue
1451 * @delay: number of jiffies to wait before queueing
1452 *
1453 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1454 */
1455 bool queue_delayed_work(struct workqueue_struct *wq,
1456 struct delayed_work *dwork, unsigned long delay)
1457 {
1458 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1459 }
1460 EXPORT_SYMBOL_GPL(queue_delayed_work);
1461
1462 /**
1463 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1464 * @cpu: CPU number to execute work on
1465 * @wq: workqueue to use
1466 * @dwork: work to queue
1467 * @delay: number of jiffies to wait before queueing
1468 *
1469 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1470 * modify @dwork's timer so that it expires after @delay. If @delay is
1471 * zero, @work is guaranteed to be scheduled immediately regardless of its
1472 * current state.
1473 *
1474 * Returns %false if @dwork was idle and queued, %true if @dwork was
1475 * pending and its timer was modified.
1476 *
1477 * This function is safe to call from any context including IRQ handler.
1478 * See try_to_grab_pending() for details.
1479 */
1480 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1481 struct delayed_work *dwork, unsigned long delay)
1482 {
1483 unsigned long flags;
1484 int ret;
1485
1486 do {
1487 ret = try_to_grab_pending(&dwork->work, true, &flags);
1488 } while (unlikely(ret == -EAGAIN));
1489
1490 if (likely(ret >= 0)) {
1491 __queue_delayed_work(cpu, wq, dwork, delay);
1492 local_irq_restore(flags);
1493 }
1494
1495 /* -ENOENT from try_to_grab_pending() becomes %true */
1496 return ret;
1497 }
1498 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1499
1500 /**
1501 * mod_delayed_work - modify delay of or queue a delayed work
1502 * @wq: workqueue to use
1503 * @dwork: work to queue
1504 * @delay: number of jiffies to wait before queueing
1505 *
1506 * mod_delayed_work_on() on local CPU.
1507 */
1508 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1509 unsigned long delay)
1510 {
1511 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1512 }
1513 EXPORT_SYMBOL_GPL(mod_delayed_work);
1514
1515 /**
1516 * worker_enter_idle - enter idle state
1517 * @worker: worker which is entering idle state
1518 *
1519 * @worker is entering idle state. Update stats and idle timer if
1520 * necessary.
1521 *
1522 * LOCKING:
1523 * spin_lock_irq(pool->lock).
1524 */
1525 static void worker_enter_idle(struct worker *worker)
1526 {
1527 struct worker_pool *pool = worker->pool;
1528
1529 BUG_ON(worker->flags & WORKER_IDLE);
1530 BUG_ON(!list_empty(&worker->entry) &&
1531 (worker->hentry.next || worker->hentry.pprev));
1532
1533 /* can't use worker_set_flags(), also called from start_worker() */
1534 worker->flags |= WORKER_IDLE;
1535 pool->nr_idle++;
1536 worker->last_active = jiffies;
1537
1538 /* idle_list is LIFO */
1539 list_add(&worker->entry, &pool->idle_list);
1540
1541 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1542 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1543
1544 /*
1545 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1546 * pool->lock between setting %WORKER_UNBOUND and zapping
1547 * nr_running, the warning may trigger spuriously. Check iff
1548 * unbind is not in progress.
1549 */
1550 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1551 pool->nr_workers == pool->nr_idle &&
1552 atomic_read(get_pool_nr_running(pool)));
1553 }
1554
1555 /**
1556 * worker_leave_idle - leave idle state
1557 * @worker: worker which is leaving idle state
1558 *
1559 * @worker is leaving idle state. Update stats.
1560 *
1561 * LOCKING:
1562 * spin_lock_irq(pool->lock).
1563 */
1564 static void worker_leave_idle(struct worker *worker)
1565 {
1566 struct worker_pool *pool = worker->pool;
1567
1568 BUG_ON(!(worker->flags & WORKER_IDLE));
1569 worker_clr_flags(worker, WORKER_IDLE);
1570 pool->nr_idle--;
1571 list_del_init(&worker->entry);
1572 }
1573
1574 /**
1575 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1576 * @worker: self
1577 *
1578 * Works which are scheduled while the cpu is online must at least be
1579 * scheduled to a worker which is bound to the cpu so that if they are
1580 * flushed from cpu callbacks while cpu is going down, they are
1581 * guaranteed to execute on the cpu.
1582 *
1583 * This function is to be used by rogue workers and rescuers to bind
1584 * themselves to the target cpu and may race with cpu going down or
1585 * coming online. kthread_bind() can't be used because it may put the
1586 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1587 * verbatim as it's best effort and blocking and gcwq may be
1588 * [dis]associated in the meantime.
1589 *
1590 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1591 * binding against %POOL_DISASSOCIATED which is set during
1592 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1593 * enters idle state or fetches works without dropping lock, it can
1594 * guarantee the scheduling requirement described in the first paragraph.
1595 *
1596 * CONTEXT:
1597 * Might sleep. Called without any lock but returns with pool->lock
1598 * held.
1599 *
1600 * RETURNS:
1601 * %true if the associated gcwq is online (@worker is successfully
1602 * bound), %false if offline.
1603 */
1604 static bool worker_maybe_bind_and_lock(struct worker *worker)
1605 __acquires(&pool->lock)
1606 {
1607 struct worker_pool *pool = worker->pool;
1608 struct task_struct *task = worker->task;
1609
1610 while (true) {
1611 /*
1612 * The following call may fail, succeed or succeed
1613 * without actually migrating the task to the cpu if
1614 * it races with cpu hotunplug operation. Verify
1615 * against POOL_DISASSOCIATED.
1616 */
1617 if (!(pool->flags & POOL_DISASSOCIATED))
1618 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1619
1620 spin_lock_irq(&pool->lock);
1621 if (pool->flags & POOL_DISASSOCIATED)
1622 return false;
1623 if (task_cpu(task) == pool->cpu &&
1624 cpumask_equal(&current->cpus_allowed,
1625 get_cpu_mask(pool->cpu)))
1626 return true;
1627 spin_unlock_irq(&pool->lock);
1628
1629 /*
1630 * We've raced with CPU hot[un]plug. Give it a breather
1631 * and retry migration. cond_resched() is required here;
1632 * otherwise, we might deadlock against cpu_stop trying to
1633 * bring down the CPU on non-preemptive kernel.
1634 */
1635 cpu_relax();
1636 cond_resched();
1637 }
1638 }
1639
1640 /*
1641 * Rebind an idle @worker to its CPU. worker_thread() will test
1642 * list_empty(@worker->entry) before leaving idle and call this function.
1643 */
1644 static void idle_worker_rebind(struct worker *worker)
1645 {
1646 /* CPU may go down again inbetween, clear UNBOUND only on success */
1647 if (worker_maybe_bind_and_lock(worker))
1648 worker_clr_flags(worker, WORKER_UNBOUND);
1649
1650 /* rebind complete, become available again */
1651 list_add(&worker->entry, &worker->pool->idle_list);
1652 spin_unlock_irq(&worker->pool->lock);
1653 }
1654
1655 /*
1656 * Function for @worker->rebind.work used to rebind unbound busy workers to
1657 * the associated cpu which is coming back online. This is scheduled by
1658 * cpu up but can race with other cpu hotplug operations and may be
1659 * executed twice without intervening cpu down.
1660 */
1661 static void busy_worker_rebind_fn(struct work_struct *work)
1662 {
1663 struct worker *worker = container_of(work, struct worker, rebind_work);
1664
1665 if (worker_maybe_bind_and_lock(worker))
1666 worker_clr_flags(worker, WORKER_UNBOUND);
1667
1668 spin_unlock_irq(&worker->pool->lock);
1669 }
1670
1671 /**
1672 * rebind_workers - rebind all workers of a pool to the associated CPU
1673 * @pool: pool of interest
1674 *
1675 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
1676 * is different for idle and busy ones.
1677 *
1678 * Idle ones will be removed from the idle_list and woken up. They will
1679 * add themselves back after completing rebind. This ensures that the
1680 * idle_list doesn't contain any unbound workers when re-bound busy workers
1681 * try to perform local wake-ups for concurrency management.
1682 *
1683 * Busy workers can rebind after they finish their current work items.
1684 * Queueing the rebind work item at the head of the scheduled list is
1685 * enough. Note that nr_running will be properly bumped as busy workers
1686 * rebind.
1687 *
1688 * On return, all non-manager workers are scheduled for rebind - see
1689 * manage_workers() for the manager special case. Any idle worker
1690 * including the manager will not appear on @idle_list until rebind is
1691 * complete, making local wake-ups safe.
1692 */
1693 static void rebind_workers(struct worker_pool *pool)
1694 {
1695 struct worker *worker, *n;
1696 struct hlist_node *pos;
1697 int i;
1698
1699 lockdep_assert_held(&pool->assoc_mutex);
1700 lockdep_assert_held(&pool->lock);
1701
1702 /* dequeue and kick idle ones */
1703 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1704 /*
1705 * idle workers should be off @pool->idle_list until rebind
1706 * is complete to avoid receiving premature local wake-ups.
1707 */
1708 list_del_init(&worker->entry);
1709
1710 /*
1711 * worker_thread() will see the above dequeuing and call
1712 * idle_worker_rebind().
1713 */
1714 wake_up_process(worker->task);
1715 }
1716
1717 /* rebind busy workers */
1718 for_each_busy_worker(worker, i, pos, pool) {
1719 struct work_struct *rebind_work = &worker->rebind_work;
1720 struct workqueue_struct *wq;
1721
1722 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1723 work_data_bits(rebind_work)))
1724 continue;
1725
1726 debug_work_activate(rebind_work);
1727
1728 /*
1729 * wq doesn't really matter but let's keep @worker->pool
1730 * and @cwq->pool consistent for sanity.
1731 */
1732 if (std_worker_pool_pri(worker->pool))
1733 wq = system_highpri_wq;
1734 else
1735 wq = system_wq;
1736
1737 insert_work(get_cwq(pool->cpu, wq), rebind_work,
1738 worker->scheduled.next,
1739 work_color_to_flags(WORK_NO_COLOR));
1740 }
1741 }
1742
1743 static struct worker *alloc_worker(void)
1744 {
1745 struct worker *worker;
1746
1747 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1748 if (worker) {
1749 INIT_LIST_HEAD(&worker->entry);
1750 INIT_LIST_HEAD(&worker->scheduled);
1751 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1752 /* on creation a worker is in !idle && prep state */
1753 worker->flags = WORKER_PREP;
1754 }
1755 return worker;
1756 }
1757
1758 /**
1759 * create_worker - create a new workqueue worker
1760 * @pool: pool the new worker will belong to
1761 *
1762 * Create a new worker which is bound to @pool. The returned worker
1763 * can be started by calling start_worker() or destroyed using
1764 * destroy_worker().
1765 *
1766 * CONTEXT:
1767 * Might sleep. Does GFP_KERNEL allocations.
1768 *
1769 * RETURNS:
1770 * Pointer to the newly created worker.
1771 */
1772 static struct worker *create_worker(struct worker_pool *pool)
1773 {
1774 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1775 struct worker *worker = NULL;
1776 int id = -1;
1777
1778 spin_lock_irq(&pool->lock);
1779 while (ida_get_new(&pool->worker_ida, &id)) {
1780 spin_unlock_irq(&pool->lock);
1781 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1782 goto fail;
1783 spin_lock_irq(&pool->lock);
1784 }
1785 spin_unlock_irq(&pool->lock);
1786
1787 worker = alloc_worker();
1788 if (!worker)
1789 goto fail;
1790
1791 worker->pool = pool;
1792 worker->id = id;
1793
1794 if (pool->cpu != WORK_CPU_UNBOUND)
1795 worker->task = kthread_create_on_node(worker_thread,
1796 worker, cpu_to_node(pool->cpu),
1797 "kworker/%u:%d%s", pool->cpu, id, pri);
1798 else
1799 worker->task = kthread_create(worker_thread, worker,
1800 "kworker/u:%d%s", id, pri);
1801 if (IS_ERR(worker->task))
1802 goto fail;
1803
1804 if (std_worker_pool_pri(pool))
1805 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1806
1807 /*
1808 * Determine CPU binding of the new worker depending on
1809 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
1810 * flag remains stable across this function. See the comments
1811 * above the flag definition for details.
1812 *
1813 * As an unbound worker may later become a regular one if CPU comes
1814 * online, make sure every worker has %PF_THREAD_BOUND set.
1815 */
1816 if (!(pool->flags & POOL_DISASSOCIATED)) {
1817 kthread_bind(worker->task, pool->cpu);
1818 } else {
1819 worker->task->flags |= PF_THREAD_BOUND;
1820 worker->flags |= WORKER_UNBOUND;
1821 }
1822
1823 return worker;
1824 fail:
1825 if (id >= 0) {
1826 spin_lock_irq(&pool->lock);
1827 ida_remove(&pool->worker_ida, id);
1828 spin_unlock_irq(&pool->lock);
1829 }
1830 kfree(worker);
1831 return NULL;
1832 }
1833
1834 /**
1835 * start_worker - start a newly created worker
1836 * @worker: worker to start
1837 *
1838 * Make the gcwq aware of @worker and start it.
1839 *
1840 * CONTEXT:
1841 * spin_lock_irq(pool->lock).
1842 */
1843 static void start_worker(struct worker *worker)
1844 {
1845 worker->flags |= WORKER_STARTED;
1846 worker->pool->nr_workers++;
1847 worker_enter_idle(worker);
1848 wake_up_process(worker->task);
1849 }
1850
1851 /**
1852 * destroy_worker - destroy a workqueue worker
1853 * @worker: worker to be destroyed
1854 *
1855 * Destroy @worker and adjust @gcwq stats accordingly.
1856 *
1857 * CONTEXT:
1858 * spin_lock_irq(pool->lock) which is released and regrabbed.
1859 */
1860 static void destroy_worker(struct worker *worker)
1861 {
1862 struct worker_pool *pool = worker->pool;
1863 int id = worker->id;
1864
1865 /* sanity check frenzy */
1866 BUG_ON(worker->current_work);
1867 BUG_ON(!list_empty(&worker->scheduled));
1868
1869 if (worker->flags & WORKER_STARTED)
1870 pool->nr_workers--;
1871 if (worker->flags & WORKER_IDLE)
1872 pool->nr_idle--;
1873
1874 list_del_init(&worker->entry);
1875 worker->flags |= WORKER_DIE;
1876
1877 spin_unlock_irq(&pool->lock);
1878
1879 kthread_stop(worker->task);
1880 kfree(worker);
1881
1882 spin_lock_irq(&pool->lock);
1883 ida_remove(&pool->worker_ida, id);
1884 }
1885
1886 static void idle_worker_timeout(unsigned long __pool)
1887 {
1888 struct worker_pool *pool = (void *)__pool;
1889
1890 spin_lock_irq(&pool->lock);
1891
1892 if (too_many_workers(pool)) {
1893 struct worker *worker;
1894 unsigned long expires;
1895
1896 /* idle_list is kept in LIFO order, check the last one */
1897 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1898 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1899
1900 if (time_before(jiffies, expires))
1901 mod_timer(&pool->idle_timer, expires);
1902 else {
1903 /* it's been idle for too long, wake up manager */
1904 pool->flags |= POOL_MANAGE_WORKERS;
1905 wake_up_worker(pool);
1906 }
1907 }
1908
1909 spin_unlock_irq(&pool->lock);
1910 }
1911
1912 static bool send_mayday(struct work_struct *work)
1913 {
1914 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1915 struct workqueue_struct *wq = cwq->wq;
1916 unsigned int cpu;
1917
1918 if (!(wq->flags & WQ_RESCUER))
1919 return false;
1920
1921 /* mayday mayday mayday */
1922 cpu = cwq->pool->cpu;
1923 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1924 if (cpu == WORK_CPU_UNBOUND)
1925 cpu = 0;
1926 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1927 wake_up_process(wq->rescuer->task);
1928 return true;
1929 }
1930
1931 static void gcwq_mayday_timeout(unsigned long __pool)
1932 {
1933 struct worker_pool *pool = (void *)__pool;
1934 struct work_struct *work;
1935
1936 spin_lock_irq(&pool->lock);
1937
1938 if (need_to_create_worker(pool)) {
1939 /*
1940 * We've been trying to create a new worker but
1941 * haven't been successful. We might be hitting an
1942 * allocation deadlock. Send distress signals to
1943 * rescuers.
1944 */
1945 list_for_each_entry(work, &pool->worklist, entry)
1946 send_mayday(work);
1947 }
1948
1949 spin_unlock_irq(&pool->lock);
1950
1951 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1952 }
1953
1954 /**
1955 * maybe_create_worker - create a new worker if necessary
1956 * @pool: pool to create a new worker for
1957 *
1958 * Create a new worker for @pool if necessary. @pool is guaranteed to
1959 * have at least one idle worker on return from this function. If
1960 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1961 * sent to all rescuers with works scheduled on @pool to resolve
1962 * possible allocation deadlock.
1963 *
1964 * On return, need_to_create_worker() is guaranteed to be false and
1965 * may_start_working() true.
1966 *
1967 * LOCKING:
1968 * spin_lock_irq(pool->lock) which may be released and regrabbed
1969 * multiple times. Does GFP_KERNEL allocations. Called only from
1970 * manager.
1971 *
1972 * RETURNS:
1973 * false if no action was taken and pool->lock stayed locked, true
1974 * otherwise.
1975 */
1976 static bool maybe_create_worker(struct worker_pool *pool)
1977 __releases(&pool->lock)
1978 __acquires(&pool->lock)
1979 {
1980 if (!need_to_create_worker(pool))
1981 return false;
1982 restart:
1983 spin_unlock_irq(&pool->lock);
1984
1985 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1986 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1987
1988 while (true) {
1989 struct worker *worker;
1990
1991 worker = create_worker(pool);
1992 if (worker) {
1993 del_timer_sync(&pool->mayday_timer);
1994 spin_lock_irq(&pool->lock);
1995 start_worker(worker);
1996 BUG_ON(need_to_create_worker(pool));
1997 return true;
1998 }
1999
2000 if (!need_to_create_worker(pool))
2001 break;
2002
2003 __set_current_state(TASK_INTERRUPTIBLE);
2004 schedule_timeout(CREATE_COOLDOWN);
2005
2006 if (!need_to_create_worker(pool))
2007 break;
2008 }
2009
2010 del_timer_sync(&pool->mayday_timer);
2011 spin_lock_irq(&pool->lock);
2012 if (need_to_create_worker(pool))
2013 goto restart;
2014 return true;
2015 }
2016
2017 /**
2018 * maybe_destroy_worker - destroy workers which have been idle for a while
2019 * @pool: pool to destroy workers for
2020 *
2021 * Destroy @pool workers which have been idle for longer than
2022 * IDLE_WORKER_TIMEOUT.
2023 *
2024 * LOCKING:
2025 * spin_lock_irq(pool->lock) which may be released and regrabbed
2026 * multiple times. Called only from manager.
2027 *
2028 * RETURNS:
2029 * false if no action was taken and pool->lock stayed locked, true
2030 * otherwise.
2031 */
2032 static bool maybe_destroy_workers(struct worker_pool *pool)
2033 {
2034 bool ret = false;
2035
2036 while (too_many_workers(pool)) {
2037 struct worker *worker;
2038 unsigned long expires;
2039
2040 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2041 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2042
2043 if (time_before(jiffies, expires)) {
2044 mod_timer(&pool->idle_timer, expires);
2045 break;
2046 }
2047
2048 destroy_worker(worker);
2049 ret = true;
2050 }
2051
2052 return ret;
2053 }
2054
2055 /**
2056 * manage_workers - manage worker pool
2057 * @worker: self
2058 *
2059 * Assume the manager role and manage gcwq worker pool @worker belongs
2060 * to. At any given time, there can be only zero or one manager per
2061 * gcwq. The exclusion is handled automatically by this function.
2062 *
2063 * The caller can safely start processing works on false return. On
2064 * true return, it's guaranteed that need_to_create_worker() is false
2065 * and may_start_working() is true.
2066 *
2067 * CONTEXT:
2068 * spin_lock_irq(pool->lock) which may be released and regrabbed
2069 * multiple times. Does GFP_KERNEL allocations.
2070 *
2071 * RETURNS:
2072 * spin_lock_irq(pool->lock) which may be released and regrabbed
2073 * multiple times. Does GFP_KERNEL allocations.
2074 */
2075 static bool manage_workers(struct worker *worker)
2076 {
2077 struct worker_pool *pool = worker->pool;
2078 bool ret = false;
2079
2080 if (pool->flags & POOL_MANAGING_WORKERS)
2081 return ret;
2082
2083 pool->flags |= POOL_MANAGING_WORKERS;
2084
2085 /*
2086 * To simplify both worker management and CPU hotplug, hold off
2087 * management while hotplug is in progress. CPU hotplug path can't
2088 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2089 * lead to idle worker depletion (all become busy thinking someone
2090 * else is managing) which in turn can result in deadlock under
2091 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2092 * manager against CPU hotplug.
2093 *
2094 * assoc_mutex would always be free unless CPU hotplug is in
2095 * progress. trylock first without dropping @pool->lock.
2096 */
2097 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2098 spin_unlock_irq(&pool->lock);
2099 mutex_lock(&pool->assoc_mutex);
2100 /*
2101 * CPU hotplug could have happened while we were waiting
2102 * for assoc_mutex. Hotplug itself can't handle us
2103 * because manager isn't either on idle or busy list, and
2104 * @gcwq's state and ours could have deviated.
2105 *
2106 * As hotplug is now excluded via assoc_mutex, we can
2107 * simply try to bind. It will succeed or fail depending
2108 * on @gcwq's current state. Try it and adjust
2109 * %WORKER_UNBOUND accordingly.
2110 */
2111 if (worker_maybe_bind_and_lock(worker))
2112 worker->flags &= ~WORKER_UNBOUND;
2113 else
2114 worker->flags |= WORKER_UNBOUND;
2115
2116 ret = true;
2117 }
2118
2119 pool->flags &= ~POOL_MANAGE_WORKERS;
2120
2121 /*
2122 * Destroy and then create so that may_start_working() is true
2123 * on return.
2124 */
2125 ret |= maybe_destroy_workers(pool);
2126 ret |= maybe_create_worker(pool);
2127
2128 pool->flags &= ~POOL_MANAGING_WORKERS;
2129 mutex_unlock(&pool->assoc_mutex);
2130 return ret;
2131 }
2132
2133 /**
2134 * process_one_work - process single work
2135 * @worker: self
2136 * @work: work to process
2137 *
2138 * Process @work. This function contains all the logics necessary to
2139 * process a single work including synchronization against and
2140 * interaction with other workers on the same cpu, queueing and
2141 * flushing. As long as context requirement is met, any worker can
2142 * call this function to process a work.
2143 *
2144 * CONTEXT:
2145 * spin_lock_irq(pool->lock) which is released and regrabbed.
2146 */
2147 static void process_one_work(struct worker *worker, struct work_struct *work)
2148 __releases(&pool->lock)
2149 __acquires(&pool->lock)
2150 {
2151 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2152 struct worker_pool *pool = worker->pool;
2153 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2154 int work_color;
2155 struct worker *collision;
2156 #ifdef CONFIG_LOCKDEP
2157 /*
2158 * It is permissible to free the struct work_struct from
2159 * inside the function that is called from it, this we need to
2160 * take into account for lockdep too. To avoid bogus "held
2161 * lock freed" warnings as well as problems when looking into
2162 * work->lockdep_map, make a copy and use that here.
2163 */
2164 struct lockdep_map lockdep_map;
2165
2166 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2167 #endif
2168 /*
2169 * Ensure we're on the correct CPU. DISASSOCIATED test is
2170 * necessary to avoid spurious warnings from rescuers servicing the
2171 * unbound or a disassociated pool.
2172 */
2173 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2174 !(pool->flags & POOL_DISASSOCIATED) &&
2175 raw_smp_processor_id() != pool->cpu);
2176
2177 /*
2178 * A single work shouldn't be executed concurrently by
2179 * multiple workers on a single cpu. Check whether anyone is
2180 * already processing the work. If so, defer the work to the
2181 * currently executing one.
2182 */
2183 collision = find_worker_executing_work(pool, work);
2184 if (unlikely(collision)) {
2185 move_linked_works(work, &collision->scheduled, NULL);
2186 return;
2187 }
2188
2189 /* claim and dequeue */
2190 debug_work_deactivate(work);
2191 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2192 worker->current_work = work;
2193 worker->current_func = work->func;
2194 worker->current_cwq = cwq;
2195 work_color = get_work_color(work);
2196
2197 list_del_init(&work->entry);
2198
2199 /*
2200 * CPU intensive works don't participate in concurrency
2201 * management. They're the scheduler's responsibility.
2202 */
2203 if (unlikely(cpu_intensive))
2204 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2205
2206 /*
2207 * Unbound pool isn't concurrency managed and work items should be
2208 * executed ASAP. Wake up another worker if necessary.
2209 */
2210 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2211 wake_up_worker(pool);
2212
2213 /*
2214 * Record the last pool and clear PENDING which should be the last
2215 * update to @work. Also, do this inside @pool->lock so that
2216 * PENDING and queued state changes happen together while IRQ is
2217 * disabled.
2218 */
2219 set_work_pool_and_clear_pending(work, pool->id);
2220
2221 spin_unlock_irq(&pool->lock);
2222
2223 lock_map_acquire_read(&cwq->wq->lockdep_map);
2224 lock_map_acquire(&lockdep_map);
2225 trace_workqueue_execute_start(work);
2226 worker->current_func(work);
2227 /*
2228 * While we must be careful to not use "work" after this, the trace
2229 * point will only record its address.
2230 */
2231 trace_workqueue_execute_end(work);
2232 lock_map_release(&lockdep_map);
2233 lock_map_release(&cwq->wq->lockdep_map);
2234
2235 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2236 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2237 " last function: %pf\n",
2238 current->comm, preempt_count(), task_pid_nr(current),
2239 worker->current_func);
2240 debug_show_held_locks(current);
2241 dump_stack();
2242 }
2243
2244 spin_lock_irq(&pool->lock);
2245
2246 /* clear cpu intensive status */
2247 if (unlikely(cpu_intensive))
2248 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2249
2250 /* we're done with it, release */
2251 hash_del(&worker->hentry);
2252 worker->current_work = NULL;
2253 worker->current_func = NULL;
2254 worker->current_cwq = NULL;
2255 cwq_dec_nr_in_flight(cwq, work_color);
2256 }
2257
2258 /**
2259 * process_scheduled_works - process scheduled works
2260 * @worker: self
2261 *
2262 * Process all scheduled works. Please note that the scheduled list
2263 * may change while processing a work, so this function repeatedly
2264 * fetches a work from the top and executes it.
2265 *
2266 * CONTEXT:
2267 * spin_lock_irq(pool->lock) which may be released and regrabbed
2268 * multiple times.
2269 */
2270 static void process_scheduled_works(struct worker *worker)
2271 {
2272 while (!list_empty(&worker->scheduled)) {
2273 struct work_struct *work = list_first_entry(&worker->scheduled,
2274 struct work_struct, entry);
2275 process_one_work(worker, work);
2276 }
2277 }
2278
2279 /**
2280 * worker_thread - the worker thread function
2281 * @__worker: self
2282 *
2283 * The gcwq worker thread function. There's a single dynamic pool of
2284 * these per each cpu. These workers process all works regardless of
2285 * their specific target workqueue. The only exception is works which
2286 * belong to workqueues with a rescuer which will be explained in
2287 * rescuer_thread().
2288 */
2289 static int worker_thread(void *__worker)
2290 {
2291 struct worker *worker = __worker;
2292 struct worker_pool *pool = worker->pool;
2293
2294 /* tell the scheduler that this is a workqueue worker */
2295 worker->task->flags |= PF_WQ_WORKER;
2296 woke_up:
2297 spin_lock_irq(&pool->lock);
2298
2299 /* we are off idle list if destruction or rebind is requested */
2300 if (unlikely(list_empty(&worker->entry))) {
2301 spin_unlock_irq(&pool->lock);
2302
2303 /* if DIE is set, destruction is requested */
2304 if (worker->flags & WORKER_DIE) {
2305 worker->task->flags &= ~PF_WQ_WORKER;
2306 return 0;
2307 }
2308
2309 /* otherwise, rebind */
2310 idle_worker_rebind(worker);
2311 goto woke_up;
2312 }
2313
2314 worker_leave_idle(worker);
2315 recheck:
2316 /* no more worker necessary? */
2317 if (!need_more_worker(pool))
2318 goto sleep;
2319
2320 /* do we need to manage? */
2321 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2322 goto recheck;
2323
2324 /*
2325 * ->scheduled list can only be filled while a worker is
2326 * preparing to process a work or actually processing it.
2327 * Make sure nobody diddled with it while I was sleeping.
2328 */
2329 BUG_ON(!list_empty(&worker->scheduled));
2330
2331 /*
2332 * When control reaches this point, we're guaranteed to have
2333 * at least one idle worker or that someone else has already
2334 * assumed the manager role.
2335 */
2336 worker_clr_flags(worker, WORKER_PREP);
2337
2338 do {
2339 struct work_struct *work =
2340 list_first_entry(&pool->worklist,
2341 struct work_struct, entry);
2342
2343 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2344 /* optimization path, not strictly necessary */
2345 process_one_work(worker, work);
2346 if (unlikely(!list_empty(&worker->scheduled)))
2347 process_scheduled_works(worker);
2348 } else {
2349 move_linked_works(work, &worker->scheduled, NULL);
2350 process_scheduled_works(worker);
2351 }
2352 } while (keep_working(pool));
2353
2354 worker_set_flags(worker, WORKER_PREP, false);
2355 sleep:
2356 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2357 goto recheck;
2358
2359 /*
2360 * pool->lock is held and there's no work to process and no need to
2361 * manage, sleep. Workers are woken up only while holding
2362 * pool->lock or from local cpu, so setting the current state
2363 * before releasing pool->lock is enough to prevent losing any
2364 * event.
2365 */
2366 worker_enter_idle(worker);
2367 __set_current_state(TASK_INTERRUPTIBLE);
2368 spin_unlock_irq(&pool->lock);
2369 schedule();
2370 goto woke_up;
2371 }
2372
2373 /**
2374 * rescuer_thread - the rescuer thread function
2375 * @__rescuer: self
2376 *
2377 * Workqueue rescuer thread function. There's one rescuer for each
2378 * workqueue which has WQ_RESCUER set.
2379 *
2380 * Regular work processing on a gcwq may block trying to create a new
2381 * worker which uses GFP_KERNEL allocation which has slight chance of
2382 * developing into deadlock if some works currently on the same queue
2383 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2384 * the problem rescuer solves.
2385 *
2386 * When such condition is possible, the gcwq summons rescuers of all
2387 * workqueues which have works queued on the gcwq and let them process
2388 * those works so that forward progress can be guaranteed.
2389 *
2390 * This should happen rarely.
2391 */
2392 static int rescuer_thread(void *__rescuer)
2393 {
2394 struct worker *rescuer = __rescuer;
2395 struct workqueue_struct *wq = rescuer->rescue_wq;
2396 struct list_head *scheduled = &rescuer->scheduled;
2397 bool is_unbound = wq->flags & WQ_UNBOUND;
2398 unsigned int cpu;
2399
2400 set_user_nice(current, RESCUER_NICE_LEVEL);
2401
2402 /*
2403 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2404 * doesn't participate in concurrency management.
2405 */
2406 rescuer->task->flags |= PF_WQ_WORKER;
2407 repeat:
2408 set_current_state(TASK_INTERRUPTIBLE);
2409
2410 if (kthread_should_stop()) {
2411 __set_current_state(TASK_RUNNING);
2412 rescuer->task->flags &= ~PF_WQ_WORKER;
2413 return 0;
2414 }
2415
2416 /*
2417 * See whether any cpu is asking for help. Unbounded
2418 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2419 */
2420 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2421 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2422 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2423 struct worker_pool *pool = cwq->pool;
2424 struct work_struct *work, *n;
2425
2426 __set_current_state(TASK_RUNNING);
2427 mayday_clear_cpu(cpu, wq->mayday_mask);
2428
2429 /* migrate to the target cpu if possible */
2430 rescuer->pool = pool;
2431 worker_maybe_bind_and_lock(rescuer);
2432
2433 /*
2434 * Slurp in all works issued via this workqueue and
2435 * process'em.
2436 */
2437 BUG_ON(!list_empty(&rescuer->scheduled));
2438 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2439 if (get_work_cwq(work) == cwq)
2440 move_linked_works(work, scheduled, &n);
2441
2442 process_scheduled_works(rescuer);
2443
2444 /*
2445 * Leave this pool. If keep_working() is %true, notify a
2446 * regular worker; otherwise, we end up with 0 concurrency
2447 * and stalling the execution.
2448 */
2449 if (keep_working(pool))
2450 wake_up_worker(pool);
2451
2452 spin_unlock_irq(&pool->lock);
2453 }
2454
2455 /* rescuers should never participate in concurrency management */
2456 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2457 schedule();
2458 goto repeat;
2459 }
2460
2461 struct wq_barrier {
2462 struct work_struct work;
2463 struct completion done;
2464 };
2465
2466 static void wq_barrier_func(struct work_struct *work)
2467 {
2468 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2469 complete(&barr->done);
2470 }
2471
2472 /**
2473 * insert_wq_barrier - insert a barrier work
2474 * @cwq: cwq to insert barrier into
2475 * @barr: wq_barrier to insert
2476 * @target: target work to attach @barr to
2477 * @worker: worker currently executing @target, NULL if @target is not executing
2478 *
2479 * @barr is linked to @target such that @barr is completed only after
2480 * @target finishes execution. Please note that the ordering
2481 * guarantee is observed only with respect to @target and on the local
2482 * cpu.
2483 *
2484 * Currently, a queued barrier can't be canceled. This is because
2485 * try_to_grab_pending() can't determine whether the work to be
2486 * grabbed is at the head of the queue and thus can't clear LINKED
2487 * flag of the previous work while there must be a valid next work
2488 * after a work with LINKED flag set.
2489 *
2490 * Note that when @worker is non-NULL, @target may be modified
2491 * underneath us, so we can't reliably determine cwq from @target.
2492 *
2493 * CONTEXT:
2494 * spin_lock_irq(pool->lock).
2495 */
2496 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2497 struct wq_barrier *barr,
2498 struct work_struct *target, struct worker *worker)
2499 {
2500 struct list_head *head;
2501 unsigned int linked = 0;
2502
2503 /*
2504 * debugobject calls are safe here even with pool->lock locked
2505 * as we know for sure that this will not trigger any of the
2506 * checks and call back into the fixup functions where we
2507 * might deadlock.
2508 */
2509 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2510 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2511 init_completion(&barr->done);
2512
2513 /*
2514 * If @target is currently being executed, schedule the
2515 * barrier to the worker; otherwise, put it after @target.
2516 */
2517 if (worker)
2518 head = worker->scheduled.next;
2519 else {
2520 unsigned long *bits = work_data_bits(target);
2521
2522 head = target->entry.next;
2523 /* there can already be other linked works, inherit and set */
2524 linked = *bits & WORK_STRUCT_LINKED;
2525 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2526 }
2527
2528 debug_work_activate(&barr->work);
2529 insert_work(cwq, &barr->work, head,
2530 work_color_to_flags(WORK_NO_COLOR) | linked);
2531 }
2532
2533 /**
2534 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2535 * @wq: workqueue being flushed
2536 * @flush_color: new flush color, < 0 for no-op
2537 * @work_color: new work color, < 0 for no-op
2538 *
2539 * Prepare cwqs for workqueue flushing.
2540 *
2541 * If @flush_color is non-negative, flush_color on all cwqs should be
2542 * -1. If no cwq has in-flight commands at the specified color, all
2543 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2544 * has in flight commands, its cwq->flush_color is set to
2545 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2546 * wakeup logic is armed and %true is returned.
2547 *
2548 * The caller should have initialized @wq->first_flusher prior to
2549 * calling this function with non-negative @flush_color. If
2550 * @flush_color is negative, no flush color update is done and %false
2551 * is returned.
2552 *
2553 * If @work_color is non-negative, all cwqs should have the same
2554 * work_color which is previous to @work_color and all will be
2555 * advanced to @work_color.
2556 *
2557 * CONTEXT:
2558 * mutex_lock(wq->flush_mutex).
2559 *
2560 * RETURNS:
2561 * %true if @flush_color >= 0 and there's something to flush. %false
2562 * otherwise.
2563 */
2564 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2565 int flush_color, int work_color)
2566 {
2567 bool wait = false;
2568 unsigned int cpu;
2569
2570 if (flush_color >= 0) {
2571 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2572 atomic_set(&wq->nr_cwqs_to_flush, 1);
2573 }
2574
2575 for_each_cwq_cpu(cpu, wq) {
2576 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2577 struct worker_pool *pool = cwq->pool;
2578
2579 spin_lock_irq(&pool->lock);
2580
2581 if (flush_color >= 0) {
2582 BUG_ON(cwq->flush_color != -1);
2583
2584 if (cwq->nr_in_flight[flush_color]) {
2585 cwq->flush_color = flush_color;
2586 atomic_inc(&wq->nr_cwqs_to_flush);
2587 wait = true;
2588 }
2589 }
2590
2591 if (work_color >= 0) {
2592 BUG_ON(work_color != work_next_color(cwq->work_color));
2593 cwq->work_color = work_color;
2594 }
2595
2596 spin_unlock_irq(&pool->lock);
2597 }
2598
2599 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2600 complete(&wq->first_flusher->done);
2601
2602 return wait;
2603 }
2604
2605 /**
2606 * flush_workqueue - ensure that any scheduled work has run to completion.
2607 * @wq: workqueue to flush
2608 *
2609 * Forces execution of the workqueue and blocks until its completion.
2610 * This is typically used in driver shutdown handlers.
2611 *
2612 * We sleep until all works which were queued on entry have been handled,
2613 * but we are not livelocked by new incoming ones.
2614 */
2615 void flush_workqueue(struct workqueue_struct *wq)
2616 {
2617 struct wq_flusher this_flusher = {
2618 .list = LIST_HEAD_INIT(this_flusher.list),
2619 .flush_color = -1,
2620 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2621 };
2622 int next_color;
2623
2624 lock_map_acquire(&wq->lockdep_map);
2625 lock_map_release(&wq->lockdep_map);
2626
2627 mutex_lock(&wq->flush_mutex);
2628
2629 /*
2630 * Start-to-wait phase
2631 */
2632 next_color = work_next_color(wq->work_color);
2633
2634 if (next_color != wq->flush_color) {
2635 /*
2636 * Color space is not full. The current work_color
2637 * becomes our flush_color and work_color is advanced
2638 * by one.
2639 */
2640 BUG_ON(!list_empty(&wq->flusher_overflow));
2641 this_flusher.flush_color = wq->work_color;
2642 wq->work_color = next_color;
2643
2644 if (!wq->first_flusher) {
2645 /* no flush in progress, become the first flusher */
2646 BUG_ON(wq->flush_color != this_flusher.flush_color);
2647
2648 wq->first_flusher = &this_flusher;
2649
2650 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2651 wq->work_color)) {
2652 /* nothing to flush, done */
2653 wq->flush_color = next_color;
2654 wq->first_flusher = NULL;
2655 goto out_unlock;
2656 }
2657 } else {
2658 /* wait in queue */
2659 BUG_ON(wq->flush_color == this_flusher.flush_color);
2660 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2661 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2662 }
2663 } else {
2664 /*
2665 * Oops, color space is full, wait on overflow queue.
2666 * The next flush completion will assign us
2667 * flush_color and transfer to flusher_queue.
2668 */
2669 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2670 }
2671
2672 mutex_unlock(&wq->flush_mutex);
2673
2674 wait_for_completion(&this_flusher.done);
2675
2676 /*
2677 * Wake-up-and-cascade phase
2678 *
2679 * First flushers are responsible for cascading flushes and
2680 * handling overflow. Non-first flushers can simply return.
2681 */
2682 if (wq->first_flusher != &this_flusher)
2683 return;
2684
2685 mutex_lock(&wq->flush_mutex);
2686
2687 /* we might have raced, check again with mutex held */
2688 if (wq->first_flusher != &this_flusher)
2689 goto out_unlock;
2690
2691 wq->first_flusher = NULL;
2692
2693 BUG_ON(!list_empty(&this_flusher.list));
2694 BUG_ON(wq->flush_color != this_flusher.flush_color);
2695
2696 while (true) {
2697 struct wq_flusher *next, *tmp;
2698
2699 /* complete all the flushers sharing the current flush color */
2700 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2701 if (next->flush_color != wq->flush_color)
2702 break;
2703 list_del_init(&next->list);
2704 complete(&next->done);
2705 }
2706
2707 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2708 wq->flush_color != work_next_color(wq->work_color));
2709
2710 /* this flush_color is finished, advance by one */
2711 wq->flush_color = work_next_color(wq->flush_color);
2712
2713 /* one color has been freed, handle overflow queue */
2714 if (!list_empty(&wq->flusher_overflow)) {
2715 /*
2716 * Assign the same color to all overflowed
2717 * flushers, advance work_color and append to
2718 * flusher_queue. This is the start-to-wait
2719 * phase for these overflowed flushers.
2720 */
2721 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2722 tmp->flush_color = wq->work_color;
2723
2724 wq->work_color = work_next_color(wq->work_color);
2725
2726 list_splice_tail_init(&wq->flusher_overflow,
2727 &wq->flusher_queue);
2728 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2729 }
2730
2731 if (list_empty(&wq->flusher_queue)) {
2732 BUG_ON(wq->flush_color != wq->work_color);
2733 break;
2734 }
2735
2736 /*
2737 * Need to flush more colors. Make the next flusher
2738 * the new first flusher and arm cwqs.
2739 */
2740 BUG_ON(wq->flush_color == wq->work_color);
2741 BUG_ON(wq->flush_color != next->flush_color);
2742
2743 list_del_init(&next->list);
2744 wq->first_flusher = next;
2745
2746 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2747 break;
2748
2749 /*
2750 * Meh... this color is already done, clear first
2751 * flusher and repeat cascading.
2752 */
2753 wq->first_flusher = NULL;
2754 }
2755
2756 out_unlock:
2757 mutex_unlock(&wq->flush_mutex);
2758 }
2759 EXPORT_SYMBOL_GPL(flush_workqueue);
2760
2761 /**
2762 * drain_workqueue - drain a workqueue
2763 * @wq: workqueue to drain
2764 *
2765 * Wait until the workqueue becomes empty. While draining is in progress,
2766 * only chain queueing is allowed. IOW, only currently pending or running
2767 * work items on @wq can queue further work items on it. @wq is flushed
2768 * repeatedly until it becomes empty. The number of flushing is detemined
2769 * by the depth of chaining and should be relatively short. Whine if it
2770 * takes too long.
2771 */
2772 void drain_workqueue(struct workqueue_struct *wq)
2773 {
2774 unsigned int flush_cnt = 0;
2775 unsigned int cpu;
2776
2777 /*
2778 * __queue_work() needs to test whether there are drainers, is much
2779 * hotter than drain_workqueue() and already looks at @wq->flags.
2780 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2781 */
2782 spin_lock(&workqueue_lock);
2783 if (!wq->nr_drainers++)
2784 wq->flags |= WQ_DRAINING;
2785 spin_unlock(&workqueue_lock);
2786 reflush:
2787 flush_workqueue(wq);
2788
2789 for_each_cwq_cpu(cpu, wq) {
2790 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2791 bool drained;
2792
2793 spin_lock_irq(&cwq->pool->lock);
2794 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2795 spin_unlock_irq(&cwq->pool->lock);
2796
2797 if (drained)
2798 continue;
2799
2800 if (++flush_cnt == 10 ||
2801 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2802 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2803 wq->name, flush_cnt);
2804 goto reflush;
2805 }
2806
2807 spin_lock(&workqueue_lock);
2808 if (!--wq->nr_drainers)
2809 wq->flags &= ~WQ_DRAINING;
2810 spin_unlock(&workqueue_lock);
2811 }
2812 EXPORT_SYMBOL_GPL(drain_workqueue);
2813
2814 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2815 {
2816 struct worker *worker = NULL;
2817 struct worker_pool *pool;
2818 struct cpu_workqueue_struct *cwq;
2819
2820 might_sleep();
2821 pool = get_work_pool(work);
2822 if (!pool)
2823 return false;
2824
2825 spin_lock_irq(&pool->lock);
2826 if (!list_empty(&work->entry)) {
2827 /*
2828 * See the comment near try_to_grab_pending()->smp_rmb().
2829 * If it was re-queued to a different pool under us, we
2830 * are not going to wait.
2831 */
2832 smp_rmb();
2833 cwq = get_work_cwq(work);
2834 if (unlikely(!cwq || pool != cwq->pool))
2835 goto already_gone;
2836 } else {
2837 worker = find_worker_executing_work(pool, work);
2838 if (!worker)
2839 goto already_gone;
2840 cwq = worker->current_cwq;
2841 }
2842
2843 insert_wq_barrier(cwq, barr, work, worker);
2844 spin_unlock_irq(&pool->lock);
2845
2846 /*
2847 * If @max_active is 1 or rescuer is in use, flushing another work
2848 * item on the same workqueue may lead to deadlock. Make sure the
2849 * flusher is not running on the same workqueue by verifying write
2850 * access.
2851 */
2852 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2853 lock_map_acquire(&cwq->wq->lockdep_map);
2854 else
2855 lock_map_acquire_read(&cwq->wq->lockdep_map);
2856 lock_map_release(&cwq->wq->lockdep_map);
2857
2858 return true;
2859 already_gone:
2860 spin_unlock_irq(&pool->lock);
2861 return false;
2862 }
2863
2864 /**
2865 * flush_work - wait for a work to finish executing the last queueing instance
2866 * @work: the work to flush
2867 *
2868 * Wait until @work has finished execution. @work is guaranteed to be idle
2869 * on return if it hasn't been requeued since flush started.
2870 *
2871 * RETURNS:
2872 * %true if flush_work() waited for the work to finish execution,
2873 * %false if it was already idle.
2874 */
2875 bool flush_work(struct work_struct *work)
2876 {
2877 struct wq_barrier barr;
2878
2879 lock_map_acquire(&work->lockdep_map);
2880 lock_map_release(&work->lockdep_map);
2881
2882 if (start_flush_work(work, &barr)) {
2883 wait_for_completion(&barr.done);
2884 destroy_work_on_stack(&barr.work);
2885 return true;
2886 } else {
2887 return false;
2888 }
2889 }
2890 EXPORT_SYMBOL_GPL(flush_work);
2891
2892 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2893 {
2894 unsigned long flags;
2895 int ret;
2896
2897 do {
2898 ret = try_to_grab_pending(work, is_dwork, &flags);
2899 /*
2900 * If someone else is canceling, wait for the same event it
2901 * would be waiting for before retrying.
2902 */
2903 if (unlikely(ret == -ENOENT))
2904 flush_work(work);
2905 } while (unlikely(ret < 0));
2906
2907 /* tell other tasks trying to grab @work to back off */
2908 mark_work_canceling(work);
2909 local_irq_restore(flags);
2910
2911 flush_work(work);
2912 clear_work_data(work);
2913 return ret;
2914 }
2915
2916 /**
2917 * cancel_work_sync - cancel a work and wait for it to finish
2918 * @work: the work to cancel
2919 *
2920 * Cancel @work and wait for its execution to finish. This function
2921 * can be used even if the work re-queues itself or migrates to
2922 * another workqueue. On return from this function, @work is
2923 * guaranteed to be not pending or executing on any CPU.
2924 *
2925 * cancel_work_sync(&delayed_work->work) must not be used for
2926 * delayed_work's. Use cancel_delayed_work_sync() instead.
2927 *
2928 * The caller must ensure that the workqueue on which @work was last
2929 * queued can't be destroyed before this function returns.
2930 *
2931 * RETURNS:
2932 * %true if @work was pending, %false otherwise.
2933 */
2934 bool cancel_work_sync(struct work_struct *work)
2935 {
2936 return __cancel_work_timer(work, false);
2937 }
2938 EXPORT_SYMBOL_GPL(cancel_work_sync);
2939
2940 /**
2941 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2942 * @dwork: the delayed work to flush
2943 *
2944 * Delayed timer is cancelled and the pending work is queued for
2945 * immediate execution. Like flush_work(), this function only
2946 * considers the last queueing instance of @dwork.
2947 *
2948 * RETURNS:
2949 * %true if flush_work() waited for the work to finish execution,
2950 * %false if it was already idle.
2951 */
2952 bool flush_delayed_work(struct delayed_work *dwork)
2953 {
2954 local_irq_disable();
2955 if (del_timer_sync(&dwork->timer))
2956 __queue_work(dwork->cpu,
2957 get_work_cwq(&dwork->work)->wq, &dwork->work);
2958 local_irq_enable();
2959 return flush_work(&dwork->work);
2960 }
2961 EXPORT_SYMBOL(flush_delayed_work);
2962
2963 /**
2964 * cancel_delayed_work - cancel a delayed work
2965 * @dwork: delayed_work to cancel
2966 *
2967 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2968 * and canceled; %false if wasn't pending. Note that the work callback
2969 * function may still be running on return, unless it returns %true and the
2970 * work doesn't re-arm itself. Explicitly flush or use
2971 * cancel_delayed_work_sync() to wait on it.
2972 *
2973 * This function is safe to call from any context including IRQ handler.
2974 */
2975 bool cancel_delayed_work(struct delayed_work *dwork)
2976 {
2977 unsigned long flags;
2978 int ret;
2979
2980 do {
2981 ret = try_to_grab_pending(&dwork->work, true, &flags);
2982 } while (unlikely(ret == -EAGAIN));
2983
2984 if (unlikely(ret < 0))
2985 return false;
2986
2987 set_work_pool_and_clear_pending(&dwork->work,
2988 get_work_pool_id(&dwork->work));
2989 local_irq_restore(flags);
2990 return ret;
2991 }
2992 EXPORT_SYMBOL(cancel_delayed_work);
2993
2994 /**
2995 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2996 * @dwork: the delayed work cancel
2997 *
2998 * This is cancel_work_sync() for delayed works.
2999 *
3000 * RETURNS:
3001 * %true if @dwork was pending, %false otherwise.
3002 */
3003 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3004 {
3005 return __cancel_work_timer(&dwork->work, true);
3006 }
3007 EXPORT_SYMBOL(cancel_delayed_work_sync);
3008
3009 /**
3010 * schedule_work_on - put work task on a specific cpu
3011 * @cpu: cpu to put the work task on
3012 * @work: job to be done
3013 *
3014 * This puts a job on a specific cpu
3015 */
3016 bool schedule_work_on(int cpu, struct work_struct *work)
3017 {
3018 return queue_work_on(cpu, system_wq, work);
3019 }
3020 EXPORT_SYMBOL(schedule_work_on);
3021
3022 /**
3023 * schedule_work - put work task in global workqueue
3024 * @work: job to be done
3025 *
3026 * Returns %false if @work was already on the kernel-global workqueue and
3027 * %true otherwise.
3028 *
3029 * This puts a job in the kernel-global workqueue if it was not already
3030 * queued and leaves it in the same position on the kernel-global
3031 * workqueue otherwise.
3032 */
3033 bool schedule_work(struct work_struct *work)
3034 {
3035 return queue_work(system_wq, work);
3036 }
3037 EXPORT_SYMBOL(schedule_work);
3038
3039 /**
3040 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3041 * @cpu: cpu to use
3042 * @dwork: job to be done
3043 * @delay: number of jiffies to wait
3044 *
3045 * After waiting for a given time this puts a job in the kernel-global
3046 * workqueue on the specified CPU.
3047 */
3048 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3049 unsigned long delay)
3050 {
3051 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3052 }
3053 EXPORT_SYMBOL(schedule_delayed_work_on);
3054
3055 /**
3056 * schedule_delayed_work - put work task in global workqueue after delay
3057 * @dwork: job to be done
3058 * @delay: number of jiffies to wait or 0 for immediate execution
3059 *
3060 * After waiting for a given time this puts a job in the kernel-global
3061 * workqueue.
3062 */
3063 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3064 {
3065 return queue_delayed_work(system_wq, dwork, delay);
3066 }
3067 EXPORT_SYMBOL(schedule_delayed_work);
3068
3069 /**
3070 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3071 * @func: the function to call
3072 *
3073 * schedule_on_each_cpu() executes @func on each online CPU using the
3074 * system workqueue and blocks until all CPUs have completed.
3075 * schedule_on_each_cpu() is very slow.
3076 *
3077 * RETURNS:
3078 * 0 on success, -errno on failure.
3079 */
3080 int schedule_on_each_cpu(work_func_t func)
3081 {
3082 int cpu;
3083 struct work_struct __percpu *works;
3084
3085 works = alloc_percpu(struct work_struct);
3086 if (!works)
3087 return -ENOMEM;
3088
3089 get_online_cpus();
3090
3091 for_each_online_cpu(cpu) {
3092 struct work_struct *work = per_cpu_ptr(works, cpu);
3093
3094 INIT_WORK(work, func);
3095 schedule_work_on(cpu, work);
3096 }
3097
3098 for_each_online_cpu(cpu)
3099 flush_work(per_cpu_ptr(works, cpu));
3100
3101 put_online_cpus();
3102 free_percpu(works);
3103 return 0;
3104 }
3105
3106 /**
3107 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3108 *
3109 * Forces execution of the kernel-global workqueue and blocks until its
3110 * completion.
3111 *
3112 * Think twice before calling this function! It's very easy to get into
3113 * trouble if you don't take great care. Either of the following situations
3114 * will lead to deadlock:
3115 *
3116 * One of the work items currently on the workqueue needs to acquire
3117 * a lock held by your code or its caller.
3118 *
3119 * Your code is running in the context of a work routine.
3120 *
3121 * They will be detected by lockdep when they occur, but the first might not
3122 * occur very often. It depends on what work items are on the workqueue and
3123 * what locks they need, which you have no control over.
3124 *
3125 * In most situations flushing the entire workqueue is overkill; you merely
3126 * need to know that a particular work item isn't queued and isn't running.
3127 * In such cases you should use cancel_delayed_work_sync() or
3128 * cancel_work_sync() instead.
3129 */
3130 void flush_scheduled_work(void)
3131 {
3132 flush_workqueue(system_wq);
3133 }
3134 EXPORT_SYMBOL(flush_scheduled_work);
3135
3136 /**
3137 * execute_in_process_context - reliably execute the routine with user context
3138 * @fn: the function to execute
3139 * @ew: guaranteed storage for the execute work structure (must
3140 * be available when the work executes)
3141 *
3142 * Executes the function immediately if process context is available,
3143 * otherwise schedules the function for delayed execution.
3144 *
3145 * Returns: 0 - function was executed
3146 * 1 - function was scheduled for execution
3147 */
3148 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3149 {
3150 if (!in_interrupt()) {
3151 fn(&ew->work);
3152 return 0;
3153 }
3154
3155 INIT_WORK(&ew->work, fn);
3156 schedule_work(&ew->work);
3157
3158 return 1;
3159 }
3160 EXPORT_SYMBOL_GPL(execute_in_process_context);
3161
3162 int keventd_up(void)
3163 {
3164 return system_wq != NULL;
3165 }
3166
3167 static int alloc_cwqs(struct workqueue_struct *wq)
3168 {
3169 /*
3170 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3171 * Make sure that the alignment isn't lower than that of
3172 * unsigned long long.
3173 */
3174 const size_t size = sizeof(struct cpu_workqueue_struct);
3175 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3176 __alignof__(unsigned long long));
3177
3178 if (!(wq->flags & WQ_UNBOUND))
3179 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3180 else {
3181 void *ptr;
3182
3183 /*
3184 * Allocate enough room to align cwq and put an extra
3185 * pointer at the end pointing back to the originally
3186 * allocated pointer which will be used for free.
3187 */
3188 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3189 if (ptr) {
3190 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3191 *(void **)(wq->cpu_wq.single + 1) = ptr;
3192 }
3193 }
3194
3195 /* just in case, make sure it's actually aligned */
3196 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3197 return wq->cpu_wq.v ? 0 : -ENOMEM;
3198 }
3199
3200 static void free_cwqs(struct workqueue_struct *wq)
3201 {
3202 if (!(wq->flags & WQ_UNBOUND))
3203 free_percpu(wq->cpu_wq.pcpu);
3204 else if (wq->cpu_wq.single) {
3205 /* the pointer to free is stored right after the cwq */
3206 kfree(*(void **)(wq->cpu_wq.single + 1));
3207 }
3208 }
3209
3210 static int wq_clamp_max_active(int max_active, unsigned int flags,
3211 const char *name)
3212 {
3213 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3214
3215 if (max_active < 1 || max_active > lim)
3216 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3217 max_active, name, 1, lim);
3218
3219 return clamp_val(max_active, 1, lim);
3220 }
3221
3222 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3223 unsigned int flags,
3224 int max_active,
3225 struct lock_class_key *key,
3226 const char *lock_name, ...)
3227 {
3228 va_list args, args1;
3229 struct workqueue_struct *wq;
3230 unsigned int cpu;
3231 size_t namelen;
3232
3233 /* determine namelen, allocate wq and format name */
3234 va_start(args, lock_name);
3235 va_copy(args1, args);
3236 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3237
3238 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3239 if (!wq)
3240 goto err;
3241
3242 vsnprintf(wq->name, namelen, fmt, args1);
3243 va_end(args);
3244 va_end(args1);
3245
3246 /*
3247 * Workqueues which may be used during memory reclaim should
3248 * have a rescuer to guarantee forward progress.
3249 */
3250 if (flags & WQ_MEM_RECLAIM)
3251 flags |= WQ_RESCUER;
3252
3253 max_active = max_active ?: WQ_DFL_ACTIVE;
3254 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3255
3256 /* init wq */
3257 wq->flags = flags;
3258 wq->saved_max_active = max_active;
3259 mutex_init(&wq->flush_mutex);
3260 atomic_set(&wq->nr_cwqs_to_flush, 0);
3261 INIT_LIST_HEAD(&wq->flusher_queue);
3262 INIT_LIST_HEAD(&wq->flusher_overflow);
3263
3264 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3265 INIT_LIST_HEAD(&wq->list);
3266
3267 if (alloc_cwqs(wq) < 0)
3268 goto err;
3269
3270 for_each_cwq_cpu(cpu, wq) {
3271 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3272 struct global_cwq *gcwq = get_gcwq(cpu);
3273 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3274
3275 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3276 cwq->pool = &gcwq->pools[pool_idx];
3277 cwq->wq = wq;
3278 cwq->flush_color = -1;
3279 cwq->max_active = max_active;
3280 INIT_LIST_HEAD(&cwq->delayed_works);
3281 }
3282
3283 if (flags & WQ_RESCUER) {
3284 struct worker *rescuer;
3285
3286 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3287 goto err;
3288
3289 wq->rescuer = rescuer = alloc_worker();
3290 if (!rescuer)
3291 goto err;
3292
3293 rescuer->rescue_wq = wq;
3294 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3295 wq->name);
3296 if (IS_ERR(rescuer->task))
3297 goto err;
3298
3299 rescuer->task->flags |= PF_THREAD_BOUND;
3300 wake_up_process(rescuer->task);
3301 }
3302
3303 /*
3304 * workqueue_lock protects global freeze state and workqueues
3305 * list. Grab it, set max_active accordingly and add the new
3306 * workqueue to workqueues list.
3307 */
3308 spin_lock(&workqueue_lock);
3309
3310 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3311 for_each_cwq_cpu(cpu, wq)
3312 get_cwq(cpu, wq)->max_active = 0;
3313
3314 list_add(&wq->list, &workqueues);
3315
3316 spin_unlock(&workqueue_lock);
3317
3318 return wq;
3319 err:
3320 if (wq) {
3321 free_cwqs(wq);
3322 free_mayday_mask(wq->mayday_mask);
3323 kfree(wq->rescuer);
3324 kfree(wq);
3325 }
3326 return NULL;
3327 }
3328 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3329
3330 /**
3331 * destroy_workqueue - safely terminate a workqueue
3332 * @wq: target workqueue
3333 *
3334 * Safely destroy a workqueue. All work currently pending will be done first.
3335 */
3336 void destroy_workqueue(struct workqueue_struct *wq)
3337 {
3338 unsigned int cpu;
3339
3340 /* drain it before proceeding with destruction */
3341 drain_workqueue(wq);
3342
3343 /*
3344 * wq list is used to freeze wq, remove from list after
3345 * flushing is complete in case freeze races us.
3346 */
3347 spin_lock(&workqueue_lock);
3348 list_del(&wq->list);
3349 spin_unlock(&workqueue_lock);
3350
3351 /* sanity check */
3352 for_each_cwq_cpu(cpu, wq) {
3353 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3354 int i;
3355
3356 for (i = 0; i < WORK_NR_COLORS; i++)
3357 BUG_ON(cwq->nr_in_flight[i]);
3358 BUG_ON(cwq->nr_active);
3359 BUG_ON(!list_empty(&cwq->delayed_works));
3360 }
3361
3362 if (wq->flags & WQ_RESCUER) {
3363 kthread_stop(wq->rescuer->task);
3364 free_mayday_mask(wq->mayday_mask);
3365 kfree(wq->rescuer);
3366 }
3367
3368 free_cwqs(wq);
3369 kfree(wq);
3370 }
3371 EXPORT_SYMBOL_GPL(destroy_workqueue);
3372
3373 /**
3374 * cwq_set_max_active - adjust max_active of a cwq
3375 * @cwq: target cpu_workqueue_struct
3376 * @max_active: new max_active value.
3377 *
3378 * Set @cwq->max_active to @max_active and activate delayed works if
3379 * increased.
3380 *
3381 * CONTEXT:
3382 * spin_lock_irq(pool->lock).
3383 */
3384 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3385 {
3386 cwq->max_active = max_active;
3387
3388 while (!list_empty(&cwq->delayed_works) &&
3389 cwq->nr_active < cwq->max_active)
3390 cwq_activate_first_delayed(cwq);
3391 }
3392
3393 /**
3394 * workqueue_set_max_active - adjust max_active of a workqueue
3395 * @wq: target workqueue
3396 * @max_active: new max_active value.
3397 *
3398 * Set max_active of @wq to @max_active.
3399 *
3400 * CONTEXT:
3401 * Don't call from IRQ context.
3402 */
3403 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3404 {
3405 unsigned int cpu;
3406
3407 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3408
3409 spin_lock(&workqueue_lock);
3410
3411 wq->saved_max_active = max_active;
3412
3413 for_each_cwq_cpu(cpu, wq) {
3414 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3415 struct worker_pool *pool = cwq->pool;
3416
3417 spin_lock_irq(&pool->lock);
3418
3419 if (!(wq->flags & WQ_FREEZABLE) ||
3420 !(pool->flags & POOL_FREEZING))
3421 cwq_set_max_active(cwq, max_active);
3422
3423 spin_unlock_irq(&pool->lock);
3424 }
3425
3426 spin_unlock(&workqueue_lock);
3427 }
3428 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3429
3430 /**
3431 * workqueue_congested - test whether a workqueue is congested
3432 * @cpu: CPU in question
3433 * @wq: target workqueue
3434 *
3435 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3436 * no synchronization around this function and the test result is
3437 * unreliable and only useful as advisory hints or for debugging.
3438 *
3439 * RETURNS:
3440 * %true if congested, %false otherwise.
3441 */
3442 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3443 {
3444 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3445
3446 return !list_empty(&cwq->delayed_works);
3447 }
3448 EXPORT_SYMBOL_GPL(workqueue_congested);
3449
3450 /**
3451 * work_busy - test whether a work is currently pending or running
3452 * @work: the work to be tested
3453 *
3454 * Test whether @work is currently pending or running. There is no
3455 * synchronization around this function and the test result is
3456 * unreliable and only useful as advisory hints or for debugging.
3457 * Especially for reentrant wqs, the pending state might hide the
3458 * running state.
3459 *
3460 * RETURNS:
3461 * OR'd bitmask of WORK_BUSY_* bits.
3462 */
3463 unsigned int work_busy(struct work_struct *work)
3464 {
3465 struct worker_pool *pool = get_work_pool(work);
3466 unsigned long flags;
3467 unsigned int ret = 0;
3468
3469 if (!pool)
3470 return 0;
3471
3472 spin_lock_irqsave(&pool->lock, flags);
3473
3474 if (work_pending(work))
3475 ret |= WORK_BUSY_PENDING;
3476 if (find_worker_executing_work(pool, work))
3477 ret |= WORK_BUSY_RUNNING;
3478
3479 spin_unlock_irqrestore(&pool->lock, flags);
3480
3481 return ret;
3482 }
3483 EXPORT_SYMBOL_GPL(work_busy);
3484
3485 /*
3486 * CPU hotplug.
3487 *
3488 * There are two challenges in supporting CPU hotplug. Firstly, there
3489 * are a lot of assumptions on strong associations among work, cwq and
3490 * gcwq which make migrating pending and scheduled works very
3491 * difficult to implement without impacting hot paths. Secondly,
3492 * worker pools serve mix of short, long and very long running works making
3493 * blocked draining impractical.
3494 *
3495 * This is solved by allowing the pools to be disassociated from the CPU
3496 * running as an unbound one and allowing it to be reattached later if the
3497 * cpu comes back online.
3498 */
3499
3500 static void gcwq_unbind_fn(struct work_struct *work)
3501 {
3502 int cpu = smp_processor_id();
3503 struct worker_pool *pool;
3504 struct worker *worker;
3505 struct hlist_node *pos;
3506 int i;
3507
3508 for_each_std_worker_pool(pool, cpu) {
3509 BUG_ON(cpu != smp_processor_id());
3510
3511 mutex_lock(&pool->assoc_mutex);
3512 spin_lock_irq(&pool->lock);
3513
3514 /*
3515 * We've claimed all manager positions. Make all workers
3516 * unbound and set DISASSOCIATED. Before this, all workers
3517 * except for the ones which are still executing works from
3518 * before the last CPU down must be on the cpu. After
3519 * this, they may become diasporas.
3520 */
3521 list_for_each_entry(worker, &pool->idle_list, entry)
3522 worker->flags |= WORKER_UNBOUND;
3523
3524 for_each_busy_worker(worker, i, pos, pool)
3525 worker->flags |= WORKER_UNBOUND;
3526
3527 pool->flags |= POOL_DISASSOCIATED;
3528
3529 spin_unlock_irq(&pool->lock);
3530 mutex_unlock(&pool->assoc_mutex);
3531 }
3532
3533 /*
3534 * Call schedule() so that we cross rq->lock and thus can guarantee
3535 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3536 * as scheduler callbacks may be invoked from other cpus.
3537 */
3538 schedule();
3539
3540 /*
3541 * Sched callbacks are disabled now. Zap nr_running. After this,
3542 * nr_running stays zero and need_more_worker() and keep_working()
3543 * are always true as long as the worklist is not empty. Pools on
3544 * @cpu now behave as unbound (in terms of concurrency management)
3545 * pools which are served by workers tied to the CPU.
3546 *
3547 * On return from this function, the current worker would trigger
3548 * unbound chain execution of pending work items if other workers
3549 * didn't already.
3550 */
3551 for_each_std_worker_pool(pool, cpu)
3552 atomic_set(get_pool_nr_running(pool), 0);
3553 }
3554
3555 /*
3556 * Workqueues should be brought up before normal priority CPU notifiers.
3557 * This will be registered high priority CPU notifier.
3558 */
3559 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3560 unsigned long action,
3561 void *hcpu)
3562 {
3563 unsigned int cpu = (unsigned long)hcpu;
3564 struct worker_pool *pool;
3565
3566 switch (action & ~CPU_TASKS_FROZEN) {
3567 case CPU_UP_PREPARE:
3568 for_each_std_worker_pool(pool, cpu) {
3569 struct worker *worker;
3570
3571 if (pool->nr_workers)
3572 continue;
3573
3574 worker = create_worker(pool);
3575 if (!worker)
3576 return NOTIFY_BAD;
3577
3578 spin_lock_irq(&pool->lock);
3579 start_worker(worker);
3580 spin_unlock_irq(&pool->lock);
3581 }
3582 break;
3583
3584 case CPU_DOWN_FAILED:
3585 case CPU_ONLINE:
3586 for_each_std_worker_pool(pool, cpu) {
3587 mutex_lock(&pool->assoc_mutex);
3588 spin_lock_irq(&pool->lock);
3589
3590 pool->flags &= ~POOL_DISASSOCIATED;
3591 rebind_workers(pool);
3592
3593 spin_unlock_irq(&pool->lock);
3594 mutex_unlock(&pool->assoc_mutex);
3595 }
3596 break;
3597 }
3598 return NOTIFY_OK;
3599 }
3600
3601 /*
3602 * Workqueues should be brought down after normal priority CPU notifiers.
3603 * This will be registered as low priority CPU notifier.
3604 */
3605 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3606 unsigned long action,
3607 void *hcpu)
3608 {
3609 unsigned int cpu = (unsigned long)hcpu;
3610 struct work_struct unbind_work;
3611
3612 switch (action & ~CPU_TASKS_FROZEN) {
3613 case CPU_DOWN_PREPARE:
3614 /* unbinding should happen on the local CPU */
3615 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3616 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3617 flush_work(&unbind_work);
3618 break;
3619 }
3620 return NOTIFY_OK;
3621 }
3622
3623 #ifdef CONFIG_SMP
3624
3625 struct work_for_cpu {
3626 struct work_struct work;
3627 long (*fn)(void *);
3628 void *arg;
3629 long ret;
3630 };
3631
3632 static void work_for_cpu_fn(struct work_struct *work)
3633 {
3634 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3635
3636 wfc->ret = wfc->fn(wfc->arg);
3637 }
3638
3639 /**
3640 * work_on_cpu - run a function in user context on a particular cpu
3641 * @cpu: the cpu to run on
3642 * @fn: the function to run
3643 * @arg: the function arg
3644 *
3645 * This will return the value @fn returns.
3646 * It is up to the caller to ensure that the cpu doesn't go offline.
3647 * The caller must not hold any locks which would prevent @fn from completing.
3648 */
3649 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3650 {
3651 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3652
3653 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3654 schedule_work_on(cpu, &wfc.work);
3655 flush_work(&wfc.work);
3656 return wfc.ret;
3657 }
3658 EXPORT_SYMBOL_GPL(work_on_cpu);
3659 #endif /* CONFIG_SMP */
3660
3661 #ifdef CONFIG_FREEZER
3662
3663 /**
3664 * freeze_workqueues_begin - begin freezing workqueues
3665 *
3666 * Start freezing workqueues. After this function returns, all freezable
3667 * workqueues will queue new works to their frozen_works list instead of
3668 * gcwq->worklist.
3669 *
3670 * CONTEXT:
3671 * Grabs and releases workqueue_lock and pool->lock's.
3672 */
3673 void freeze_workqueues_begin(void)
3674 {
3675 unsigned int cpu;
3676
3677 spin_lock(&workqueue_lock);
3678
3679 BUG_ON(workqueue_freezing);
3680 workqueue_freezing = true;
3681
3682 for_each_gcwq_cpu(cpu) {
3683 struct worker_pool *pool;
3684 struct workqueue_struct *wq;
3685
3686 for_each_std_worker_pool(pool, cpu) {
3687 spin_lock_irq(&pool->lock);
3688
3689 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3690 pool->flags |= POOL_FREEZING;
3691
3692 list_for_each_entry(wq, &workqueues, list) {
3693 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3694
3695 if (cwq && cwq->pool == pool &&
3696 (wq->flags & WQ_FREEZABLE))
3697 cwq->max_active = 0;
3698 }
3699
3700 spin_unlock_irq(&pool->lock);
3701 }
3702 }
3703
3704 spin_unlock(&workqueue_lock);
3705 }
3706
3707 /**
3708 * freeze_workqueues_busy - are freezable workqueues still busy?
3709 *
3710 * Check whether freezing is complete. This function must be called
3711 * between freeze_workqueues_begin() and thaw_workqueues().
3712 *
3713 * CONTEXT:
3714 * Grabs and releases workqueue_lock.
3715 *
3716 * RETURNS:
3717 * %true if some freezable workqueues are still busy. %false if freezing
3718 * is complete.
3719 */
3720 bool freeze_workqueues_busy(void)
3721 {
3722 unsigned int cpu;
3723 bool busy = false;
3724
3725 spin_lock(&workqueue_lock);
3726
3727 BUG_ON(!workqueue_freezing);
3728
3729 for_each_gcwq_cpu(cpu) {
3730 struct workqueue_struct *wq;
3731 /*
3732 * nr_active is monotonically decreasing. It's safe
3733 * to peek without lock.
3734 */
3735 list_for_each_entry(wq, &workqueues, list) {
3736 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3737
3738 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3739 continue;
3740
3741 BUG_ON(cwq->nr_active < 0);
3742 if (cwq->nr_active) {
3743 busy = true;
3744 goto out_unlock;
3745 }
3746 }
3747 }
3748 out_unlock:
3749 spin_unlock(&workqueue_lock);
3750 return busy;
3751 }
3752
3753 /**
3754 * thaw_workqueues - thaw workqueues
3755 *
3756 * Thaw workqueues. Normal queueing is restored and all collected
3757 * frozen works are transferred to their respective gcwq worklists.
3758 *
3759 * CONTEXT:
3760 * Grabs and releases workqueue_lock and pool->lock's.
3761 */
3762 void thaw_workqueues(void)
3763 {
3764 unsigned int cpu;
3765
3766 spin_lock(&workqueue_lock);
3767
3768 if (!workqueue_freezing)
3769 goto out_unlock;
3770
3771 for_each_gcwq_cpu(cpu) {
3772 struct worker_pool *pool;
3773 struct workqueue_struct *wq;
3774
3775 for_each_std_worker_pool(pool, cpu) {
3776 spin_lock_irq(&pool->lock);
3777
3778 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3779 pool->flags &= ~POOL_FREEZING;
3780
3781 list_for_each_entry(wq, &workqueues, list) {
3782 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3783
3784 if (!cwq || cwq->pool != pool ||
3785 !(wq->flags & WQ_FREEZABLE))
3786 continue;
3787
3788 /* restore max_active and repopulate worklist */
3789 cwq_set_max_active(cwq, wq->saved_max_active);
3790 }
3791
3792 wake_up_worker(pool);
3793
3794 spin_unlock_irq(&pool->lock);
3795 }
3796 }
3797
3798 workqueue_freezing = false;
3799 out_unlock:
3800 spin_unlock(&workqueue_lock);
3801 }
3802 #endif /* CONFIG_FREEZER */
3803
3804 static int __init init_workqueues(void)
3805 {
3806 unsigned int cpu;
3807
3808 /* make sure we have enough bits for OFFQ pool ID */
3809 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3810 WORK_CPU_LAST * NR_STD_WORKER_POOLS);
3811
3812 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3813 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3814
3815 /* initialize gcwqs */
3816 for_each_gcwq_cpu(cpu) {
3817 struct worker_pool *pool;
3818
3819 for_each_std_worker_pool(pool, cpu) {
3820 spin_lock_init(&pool->lock);
3821 pool->cpu = cpu;
3822 pool->flags |= POOL_DISASSOCIATED;
3823 INIT_LIST_HEAD(&pool->worklist);
3824 INIT_LIST_HEAD(&pool->idle_list);
3825 hash_init(pool->busy_hash);
3826
3827 init_timer_deferrable(&pool->idle_timer);
3828 pool->idle_timer.function = idle_worker_timeout;
3829 pool->idle_timer.data = (unsigned long)pool;
3830
3831 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3832 (unsigned long)pool);
3833
3834 mutex_init(&pool->assoc_mutex);
3835 ida_init(&pool->worker_ida);
3836
3837 /* alloc pool ID */
3838 BUG_ON(worker_pool_assign_id(pool));
3839 }
3840 }
3841
3842 /* create the initial worker */
3843 for_each_online_gcwq_cpu(cpu) {
3844 struct worker_pool *pool;
3845
3846 for_each_std_worker_pool(pool, cpu) {
3847 struct worker *worker;
3848
3849 if (cpu != WORK_CPU_UNBOUND)
3850 pool->flags &= ~POOL_DISASSOCIATED;
3851
3852 worker = create_worker(pool);
3853 BUG_ON(!worker);
3854 spin_lock_irq(&pool->lock);
3855 start_worker(worker);
3856 spin_unlock_irq(&pool->lock);
3857 }
3858 }
3859
3860 system_wq = alloc_workqueue("events", 0, 0);
3861 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3862 system_long_wq = alloc_workqueue("events_long", 0, 0);
3863 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3864 WQ_UNBOUND_MAX_ACTIVE);
3865 system_freezable_wq = alloc_workqueue("events_freezable",
3866 WQ_FREEZABLE, 0);
3867 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3868 !system_unbound_wq || !system_freezable_wq);
3869 return 0;
3870 }
3871 early_initcall(init_workqueues);
This page took 0.23396 seconds and 6 git commands to generate.