workqueue: restore POOL_MANAGING_WORKERS
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
70
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_REBIND = 1 << 5, /* mom is home, come back */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79
80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
81 WORKER_CPU_INTENSIVE,
82
83 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
84
85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
86 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
87 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give -20.
101 */
102 RESCUER_NICE_LEVEL = -20,
103 HIGHPRI_NICE_LEVEL = -20,
104 };
105
106 /*
107 * Structure fields follow one of the following exclusion rules.
108 *
109 * I: Modifiable by initialization/destruction paths and read-only for
110 * everyone else.
111 *
112 * P: Preemption protected. Disabling preemption is enough and should
113 * only be modified and accessed from the local cpu.
114 *
115 * L: gcwq->lock protected. Access with gcwq->lock held.
116 *
117 * X: During normal operation, modification requires gcwq->lock and
118 * should be done only from local cpu. Either disabling preemption
119 * on local cpu or grabbing gcwq->lock is enough for read access.
120 * If GCWQ_DISASSOCIATED is set, it's identical to L.
121 *
122 * F: wq->flush_mutex protected.
123 *
124 * W: workqueue_lock protected.
125 */
126
127 struct global_cwq;
128 struct worker_pool;
129 struct idle_rebind;
130
131 /*
132 * The poor guys doing the actual heavy lifting. All on-duty workers
133 * are either serving the manager role, on idle list or on busy hash.
134 */
135 struct worker {
136 /* on idle list while idle, on busy hash table while busy */
137 union {
138 struct list_head entry; /* L: while idle */
139 struct hlist_node hentry; /* L: while busy */
140 };
141
142 struct work_struct *current_work; /* L: work being processed */
143 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
144 struct list_head scheduled; /* L: scheduled works */
145 struct task_struct *task; /* I: worker task */
146 struct worker_pool *pool; /* I: the associated pool */
147 /* 64 bytes boundary on 64bit, 32 on 32bit */
148 unsigned long last_active; /* L: last active timestamp */
149 unsigned int flags; /* X: flags */
150 int id; /* I: worker id */
151
152 /* for rebinding worker to CPU */
153 struct idle_rebind *idle_rebind; /* L: for idle worker */
154 struct work_struct rebind_work; /* L: for busy worker */
155 };
156
157 struct worker_pool {
158 struct global_cwq *gcwq; /* I: the owning gcwq */
159 unsigned int flags; /* X: flags */
160
161 struct list_head worklist; /* L: list of pending works */
162 int nr_workers; /* L: total number of workers */
163 int nr_idle; /* L: currently idle ones */
164
165 struct list_head idle_list; /* X: list of idle workers */
166 struct timer_list idle_timer; /* L: worker idle timeout */
167 struct timer_list mayday_timer; /* L: SOS timer for workers */
168
169 struct mutex manager_mutex; /* mutex manager should hold */
170 struct ida worker_ida; /* L: for worker IDs */
171 };
172
173 /*
174 * Global per-cpu workqueue. There's one and only one for each cpu
175 * and all works are queued and processed here regardless of their
176 * target workqueues.
177 */
178 struct global_cwq {
179 spinlock_t lock; /* the gcwq lock */
180 unsigned int cpu; /* I: the associated cpu */
181 unsigned int flags; /* L: GCWQ_* flags */
182
183 /* workers are chained either in busy_hash or pool idle_list */
184 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
185 /* L: hash of busy workers */
186
187 struct worker_pool pools[2]; /* normal and highpri pools */
188
189 wait_queue_head_t rebind_hold; /* rebind hold wait */
190 } ____cacheline_aligned_in_smp;
191
192 /*
193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
196 */
197 struct cpu_workqueue_struct {
198 struct worker_pool *pool; /* I: the associated pool */
199 struct workqueue_struct *wq; /* I: the owning workqueue */
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
204 int nr_active; /* L: nr of active works */
205 int max_active; /* L: max active works */
206 struct list_head delayed_works; /* L: delayed works */
207 };
208
209 /*
210 * Structure used to wait for workqueue flush.
211 */
212 struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216 };
217
218 /*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222 #ifdef CONFIG_SMP
223 typedef cpumask_var_t mayday_mask_t;
224 #define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
228 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
229 #define free_mayday_mask(mask) free_cpumask_var((mask))
230 #else
231 typedef unsigned long mayday_mask_t;
232 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235 #define alloc_mayday_mask(maskp, gfp) true
236 #define free_mayday_mask(mask) do { } while (0)
237 #endif
238
239 /*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243 struct workqueue_struct {
244 unsigned int flags; /* W: WQ_* flags */
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
250 struct list_head list; /* W: list of all workqueues */
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
261 struct worker *rescuer; /* I: rescue worker */
262
263 int nr_drainers; /* W: drain in progress */
264 int saved_max_active; /* W: saved cwq max_active */
265 #ifdef CONFIG_LOCKDEP
266 struct lockdep_map lockdep_map;
267 #endif
268 char name[]; /* I: workqueue name */
269 };
270
271 struct workqueue_struct *system_wq __read_mostly;
272 struct workqueue_struct *system_long_wq __read_mostly;
273 struct workqueue_struct *system_nrt_wq __read_mostly;
274 struct workqueue_struct *system_unbound_wq __read_mostly;
275 struct workqueue_struct *system_freezable_wq __read_mostly;
276 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
277 EXPORT_SYMBOL_GPL(system_wq);
278 EXPORT_SYMBOL_GPL(system_long_wq);
279 EXPORT_SYMBOL_GPL(system_nrt_wq);
280 EXPORT_SYMBOL_GPL(system_unbound_wq);
281 EXPORT_SYMBOL_GPL(system_freezable_wq);
282 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
283
284 #define CREATE_TRACE_POINTS
285 #include <trace/events/workqueue.h>
286
287 #define for_each_worker_pool(pool, gcwq) \
288 for ((pool) = &(gcwq)->pools[0]; \
289 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
290
291 #define for_each_busy_worker(worker, i, pos, gcwq) \
292 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
293 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
294
295 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
296 unsigned int sw)
297 {
298 if (cpu < nr_cpu_ids) {
299 if (sw & 1) {
300 cpu = cpumask_next(cpu, mask);
301 if (cpu < nr_cpu_ids)
302 return cpu;
303 }
304 if (sw & 2)
305 return WORK_CPU_UNBOUND;
306 }
307 return WORK_CPU_NONE;
308 }
309
310 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
311 struct workqueue_struct *wq)
312 {
313 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
314 }
315
316 /*
317 * CPU iterators
318 *
319 * An extra gcwq is defined for an invalid cpu number
320 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
321 * specific CPU. The following iterators are similar to
322 * for_each_*_cpu() iterators but also considers the unbound gcwq.
323 *
324 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
325 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
326 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
327 * WORK_CPU_UNBOUND for unbound workqueues
328 */
329 #define for_each_gcwq_cpu(cpu) \
330 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
331 (cpu) < WORK_CPU_NONE; \
332 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
333
334 #define for_each_online_gcwq_cpu(cpu) \
335 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
336 (cpu) < WORK_CPU_NONE; \
337 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
338
339 #define for_each_cwq_cpu(cpu, wq) \
340 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
341 (cpu) < WORK_CPU_NONE; \
342 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
343
344 #ifdef CONFIG_DEBUG_OBJECTS_WORK
345
346 static struct debug_obj_descr work_debug_descr;
347
348 static void *work_debug_hint(void *addr)
349 {
350 return ((struct work_struct *) addr)->func;
351 }
352
353 /*
354 * fixup_init is called when:
355 * - an active object is initialized
356 */
357 static int work_fixup_init(void *addr, enum debug_obj_state state)
358 {
359 struct work_struct *work = addr;
360
361 switch (state) {
362 case ODEBUG_STATE_ACTIVE:
363 cancel_work_sync(work);
364 debug_object_init(work, &work_debug_descr);
365 return 1;
366 default:
367 return 0;
368 }
369 }
370
371 /*
372 * fixup_activate is called when:
373 * - an active object is activated
374 * - an unknown object is activated (might be a statically initialized object)
375 */
376 static int work_fixup_activate(void *addr, enum debug_obj_state state)
377 {
378 struct work_struct *work = addr;
379
380 switch (state) {
381
382 case ODEBUG_STATE_NOTAVAILABLE:
383 /*
384 * This is not really a fixup. The work struct was
385 * statically initialized. We just make sure that it
386 * is tracked in the object tracker.
387 */
388 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
389 debug_object_init(work, &work_debug_descr);
390 debug_object_activate(work, &work_debug_descr);
391 return 0;
392 }
393 WARN_ON_ONCE(1);
394 return 0;
395
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
398
399 default:
400 return 0;
401 }
402 }
403
404 /*
405 * fixup_free is called when:
406 * - an active object is freed
407 */
408 static int work_fixup_free(void *addr, enum debug_obj_state state)
409 {
410 struct work_struct *work = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 cancel_work_sync(work);
415 debug_object_free(work, &work_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420 }
421
422 static struct debug_obj_descr work_debug_descr = {
423 .name = "work_struct",
424 .debug_hint = work_debug_hint,
425 .fixup_init = work_fixup_init,
426 .fixup_activate = work_fixup_activate,
427 .fixup_free = work_fixup_free,
428 };
429
430 static inline void debug_work_activate(struct work_struct *work)
431 {
432 debug_object_activate(work, &work_debug_descr);
433 }
434
435 static inline void debug_work_deactivate(struct work_struct *work)
436 {
437 debug_object_deactivate(work, &work_debug_descr);
438 }
439
440 void __init_work(struct work_struct *work, int onstack)
441 {
442 if (onstack)
443 debug_object_init_on_stack(work, &work_debug_descr);
444 else
445 debug_object_init(work, &work_debug_descr);
446 }
447 EXPORT_SYMBOL_GPL(__init_work);
448
449 void destroy_work_on_stack(struct work_struct *work)
450 {
451 debug_object_free(work, &work_debug_descr);
452 }
453 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
454
455 #else
456 static inline void debug_work_activate(struct work_struct *work) { }
457 static inline void debug_work_deactivate(struct work_struct *work) { }
458 #endif
459
460 /* Serializes the accesses to the list of workqueues. */
461 static DEFINE_SPINLOCK(workqueue_lock);
462 static LIST_HEAD(workqueues);
463 static bool workqueue_freezing; /* W: have wqs started freezing? */
464
465 /*
466 * The almighty global cpu workqueues. nr_running is the only field
467 * which is expected to be used frequently by other cpus via
468 * try_to_wake_up(). Put it in a separate cacheline.
469 */
470 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
471 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
472
473 /*
474 * Global cpu workqueue and nr_running counter for unbound gcwq. The
475 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
476 * workers have WORKER_UNBOUND set.
477 */
478 static struct global_cwq unbound_global_cwq;
479 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
480 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
481 };
482
483 static int worker_thread(void *__worker);
484
485 static int worker_pool_pri(struct worker_pool *pool)
486 {
487 return pool - pool->gcwq->pools;
488 }
489
490 static struct global_cwq *get_gcwq(unsigned int cpu)
491 {
492 if (cpu != WORK_CPU_UNBOUND)
493 return &per_cpu(global_cwq, cpu);
494 else
495 return &unbound_global_cwq;
496 }
497
498 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
499 {
500 int cpu = pool->gcwq->cpu;
501 int idx = worker_pool_pri(pool);
502
503 if (cpu != WORK_CPU_UNBOUND)
504 return &per_cpu(pool_nr_running, cpu)[idx];
505 else
506 return &unbound_pool_nr_running[idx];
507 }
508
509 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
510 struct workqueue_struct *wq)
511 {
512 if (!(wq->flags & WQ_UNBOUND)) {
513 if (likely(cpu < nr_cpu_ids))
514 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
515 } else if (likely(cpu == WORK_CPU_UNBOUND))
516 return wq->cpu_wq.single;
517 return NULL;
518 }
519
520 static unsigned int work_color_to_flags(int color)
521 {
522 return color << WORK_STRUCT_COLOR_SHIFT;
523 }
524
525 static int get_work_color(struct work_struct *work)
526 {
527 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
528 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
529 }
530
531 static int work_next_color(int color)
532 {
533 return (color + 1) % WORK_NR_COLORS;
534 }
535
536 /*
537 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
538 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
539 * cleared and the work data contains the cpu number it was last on.
540 *
541 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
542 * cwq, cpu or clear work->data. These functions should only be
543 * called while the work is owned - ie. while the PENDING bit is set.
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546 * corresponding to a work. gcwq is available once the work has been
547 * queued anywhere after initialization. cwq is available only from
548 * queueing until execution starts.
549 */
550 static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
552 {
553 BUG_ON(!work_pending(work));
554 atomic_long_set(&work->data, data | flags | work_static(work));
555 }
556
557 static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
560 {
561 set_work_data(work, (unsigned long)cwq,
562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
563 }
564
565 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
566 {
567 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
568 }
569
570 static void clear_work_data(struct work_struct *work)
571 {
572 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
573 }
574
575 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
576 {
577 unsigned long data = atomic_long_read(&work->data);
578
579 if (data & WORK_STRUCT_CWQ)
580 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
581 else
582 return NULL;
583 }
584
585 static struct global_cwq *get_work_gcwq(struct work_struct *work)
586 {
587 unsigned long data = atomic_long_read(&work->data);
588 unsigned int cpu;
589
590 if (data & WORK_STRUCT_CWQ)
591 return ((struct cpu_workqueue_struct *)
592 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
593
594 cpu = data >> WORK_STRUCT_FLAG_BITS;
595 if (cpu == WORK_CPU_NONE)
596 return NULL;
597
598 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
599 return get_gcwq(cpu);
600 }
601
602 /*
603 * Policy functions. These define the policies on how the global worker
604 * pools are managed. Unless noted otherwise, these functions assume that
605 * they're being called with gcwq->lock held.
606 */
607
608 static bool __need_more_worker(struct worker_pool *pool)
609 {
610 return !atomic_read(get_pool_nr_running(pool));
611 }
612
613 /*
614 * Need to wake up a worker? Called from anything but currently
615 * running workers.
616 *
617 * Note that, because unbound workers never contribute to nr_running, this
618 * function will always return %true for unbound gcwq as long as the
619 * worklist isn't empty.
620 */
621 static bool need_more_worker(struct worker_pool *pool)
622 {
623 return !list_empty(&pool->worklist) && __need_more_worker(pool);
624 }
625
626 /* Can I start working? Called from busy but !running workers. */
627 static bool may_start_working(struct worker_pool *pool)
628 {
629 return pool->nr_idle;
630 }
631
632 /* Do I need to keep working? Called from currently running workers. */
633 static bool keep_working(struct worker_pool *pool)
634 {
635 atomic_t *nr_running = get_pool_nr_running(pool);
636
637 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
638 }
639
640 /* Do we need a new worker? Called from manager. */
641 static bool need_to_create_worker(struct worker_pool *pool)
642 {
643 return need_more_worker(pool) && !may_start_working(pool);
644 }
645
646 /* Do I need to be the manager? */
647 static bool need_to_manage_workers(struct worker_pool *pool)
648 {
649 return need_to_create_worker(pool) ||
650 (pool->flags & POOL_MANAGE_WORKERS);
651 }
652
653 /* Do we have too many workers and should some go away? */
654 static bool too_many_workers(struct worker_pool *pool)
655 {
656 bool managing = pool->flags & POOL_MANAGING_WORKERS;
657 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
658 int nr_busy = pool->nr_workers - nr_idle;
659
660 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
661 }
662
663 /*
664 * Wake up functions.
665 */
666
667 /* Return the first worker. Safe with preemption disabled */
668 static struct worker *first_worker(struct worker_pool *pool)
669 {
670 if (unlikely(list_empty(&pool->idle_list)))
671 return NULL;
672
673 return list_first_entry(&pool->idle_list, struct worker, entry);
674 }
675
676 /**
677 * wake_up_worker - wake up an idle worker
678 * @pool: worker pool to wake worker from
679 *
680 * Wake up the first idle worker of @pool.
681 *
682 * CONTEXT:
683 * spin_lock_irq(gcwq->lock).
684 */
685 static void wake_up_worker(struct worker_pool *pool)
686 {
687 struct worker *worker = first_worker(pool);
688
689 if (likely(worker))
690 wake_up_process(worker->task);
691 }
692
693 /**
694 * wq_worker_waking_up - a worker is waking up
695 * @task: task waking up
696 * @cpu: CPU @task is waking up to
697 *
698 * This function is called during try_to_wake_up() when a worker is
699 * being awoken.
700 *
701 * CONTEXT:
702 * spin_lock_irq(rq->lock)
703 */
704 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
705 {
706 struct worker *worker = kthread_data(task);
707
708 if (!(worker->flags & WORKER_NOT_RUNNING))
709 atomic_inc(get_pool_nr_running(worker->pool));
710 }
711
712 /**
713 * wq_worker_sleeping - a worker is going to sleep
714 * @task: task going to sleep
715 * @cpu: CPU in question, must be the current CPU number
716 *
717 * This function is called during schedule() when a busy worker is
718 * going to sleep. Worker on the same cpu can be woken up by
719 * returning pointer to its task.
720 *
721 * CONTEXT:
722 * spin_lock_irq(rq->lock)
723 *
724 * RETURNS:
725 * Worker task on @cpu to wake up, %NULL if none.
726 */
727 struct task_struct *wq_worker_sleeping(struct task_struct *task,
728 unsigned int cpu)
729 {
730 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
731 struct worker_pool *pool = worker->pool;
732 atomic_t *nr_running = get_pool_nr_running(pool);
733
734 if (worker->flags & WORKER_NOT_RUNNING)
735 return NULL;
736
737 /* this can only happen on the local cpu */
738 BUG_ON(cpu != raw_smp_processor_id());
739
740 /*
741 * The counterpart of the following dec_and_test, implied mb,
742 * worklist not empty test sequence is in insert_work().
743 * Please read comment there.
744 *
745 * NOT_RUNNING is clear. This means that we're bound to and
746 * running on the local cpu w/ rq lock held and preemption
747 * disabled, which in turn means that none else could be
748 * manipulating idle_list, so dereferencing idle_list without gcwq
749 * lock is safe.
750 */
751 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
752 to_wakeup = first_worker(pool);
753 return to_wakeup ? to_wakeup->task : NULL;
754 }
755
756 /**
757 * worker_set_flags - set worker flags and adjust nr_running accordingly
758 * @worker: self
759 * @flags: flags to set
760 * @wakeup: wakeup an idle worker if necessary
761 *
762 * Set @flags in @worker->flags and adjust nr_running accordingly. If
763 * nr_running becomes zero and @wakeup is %true, an idle worker is
764 * woken up.
765 *
766 * CONTEXT:
767 * spin_lock_irq(gcwq->lock)
768 */
769 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
770 bool wakeup)
771 {
772 struct worker_pool *pool = worker->pool;
773
774 WARN_ON_ONCE(worker->task != current);
775
776 /*
777 * If transitioning into NOT_RUNNING, adjust nr_running and
778 * wake up an idle worker as necessary if requested by
779 * @wakeup.
780 */
781 if ((flags & WORKER_NOT_RUNNING) &&
782 !(worker->flags & WORKER_NOT_RUNNING)) {
783 atomic_t *nr_running = get_pool_nr_running(pool);
784
785 if (wakeup) {
786 if (atomic_dec_and_test(nr_running) &&
787 !list_empty(&pool->worklist))
788 wake_up_worker(pool);
789 } else
790 atomic_dec(nr_running);
791 }
792
793 worker->flags |= flags;
794 }
795
796 /**
797 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
798 * @worker: self
799 * @flags: flags to clear
800 *
801 * Clear @flags in @worker->flags and adjust nr_running accordingly.
802 *
803 * CONTEXT:
804 * spin_lock_irq(gcwq->lock)
805 */
806 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
807 {
808 struct worker_pool *pool = worker->pool;
809 unsigned int oflags = worker->flags;
810
811 WARN_ON_ONCE(worker->task != current);
812
813 worker->flags &= ~flags;
814
815 /*
816 * If transitioning out of NOT_RUNNING, increment nr_running. Note
817 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
818 * of multiple flags, not a single flag.
819 */
820 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
821 if (!(worker->flags & WORKER_NOT_RUNNING))
822 atomic_inc(get_pool_nr_running(pool));
823 }
824
825 /**
826 * busy_worker_head - return the busy hash head for a work
827 * @gcwq: gcwq of interest
828 * @work: work to be hashed
829 *
830 * Return hash head of @gcwq for @work.
831 *
832 * CONTEXT:
833 * spin_lock_irq(gcwq->lock).
834 *
835 * RETURNS:
836 * Pointer to the hash head.
837 */
838 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
839 struct work_struct *work)
840 {
841 const int base_shift = ilog2(sizeof(struct work_struct));
842 unsigned long v = (unsigned long)work;
843
844 /* simple shift and fold hash, do we need something better? */
845 v >>= base_shift;
846 v += v >> BUSY_WORKER_HASH_ORDER;
847 v &= BUSY_WORKER_HASH_MASK;
848
849 return &gcwq->busy_hash[v];
850 }
851
852 /**
853 * __find_worker_executing_work - find worker which is executing a work
854 * @gcwq: gcwq of interest
855 * @bwh: hash head as returned by busy_worker_head()
856 * @work: work to find worker for
857 *
858 * Find a worker which is executing @work on @gcwq. @bwh should be
859 * the hash head obtained by calling busy_worker_head() with the same
860 * work.
861 *
862 * CONTEXT:
863 * spin_lock_irq(gcwq->lock).
864 *
865 * RETURNS:
866 * Pointer to worker which is executing @work if found, NULL
867 * otherwise.
868 */
869 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
870 struct hlist_head *bwh,
871 struct work_struct *work)
872 {
873 struct worker *worker;
874 struct hlist_node *tmp;
875
876 hlist_for_each_entry(worker, tmp, bwh, hentry)
877 if (worker->current_work == work)
878 return worker;
879 return NULL;
880 }
881
882 /**
883 * find_worker_executing_work - find worker which is executing a work
884 * @gcwq: gcwq of interest
885 * @work: work to find worker for
886 *
887 * Find a worker which is executing @work on @gcwq. This function is
888 * identical to __find_worker_executing_work() except that this
889 * function calculates @bwh itself.
890 *
891 * CONTEXT:
892 * spin_lock_irq(gcwq->lock).
893 *
894 * RETURNS:
895 * Pointer to worker which is executing @work if found, NULL
896 * otherwise.
897 */
898 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
899 struct work_struct *work)
900 {
901 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
902 work);
903 }
904
905 /**
906 * insert_work - insert a work into gcwq
907 * @cwq: cwq @work belongs to
908 * @work: work to insert
909 * @head: insertion point
910 * @extra_flags: extra WORK_STRUCT_* flags to set
911 *
912 * Insert @work which belongs to @cwq into @gcwq after @head.
913 * @extra_flags is or'd to work_struct flags.
914 *
915 * CONTEXT:
916 * spin_lock_irq(gcwq->lock).
917 */
918 static void insert_work(struct cpu_workqueue_struct *cwq,
919 struct work_struct *work, struct list_head *head,
920 unsigned int extra_flags)
921 {
922 struct worker_pool *pool = cwq->pool;
923
924 /* we own @work, set data and link */
925 set_work_cwq(work, cwq, extra_flags);
926
927 /*
928 * Ensure that we get the right work->data if we see the
929 * result of list_add() below, see try_to_grab_pending().
930 */
931 smp_wmb();
932
933 list_add_tail(&work->entry, head);
934
935 /*
936 * Ensure either worker_sched_deactivated() sees the above
937 * list_add_tail() or we see zero nr_running to avoid workers
938 * lying around lazily while there are works to be processed.
939 */
940 smp_mb();
941
942 if (__need_more_worker(pool))
943 wake_up_worker(pool);
944 }
945
946 /*
947 * Test whether @work is being queued from another work executing on the
948 * same workqueue. This is rather expensive and should only be used from
949 * cold paths.
950 */
951 static bool is_chained_work(struct workqueue_struct *wq)
952 {
953 unsigned long flags;
954 unsigned int cpu;
955
956 for_each_gcwq_cpu(cpu) {
957 struct global_cwq *gcwq = get_gcwq(cpu);
958 struct worker *worker;
959 struct hlist_node *pos;
960 int i;
961
962 spin_lock_irqsave(&gcwq->lock, flags);
963 for_each_busy_worker(worker, i, pos, gcwq) {
964 if (worker->task != current)
965 continue;
966 spin_unlock_irqrestore(&gcwq->lock, flags);
967 /*
968 * I'm @worker, no locking necessary. See if @work
969 * is headed to the same workqueue.
970 */
971 return worker->current_cwq->wq == wq;
972 }
973 spin_unlock_irqrestore(&gcwq->lock, flags);
974 }
975 return false;
976 }
977
978 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
979 struct work_struct *work)
980 {
981 struct global_cwq *gcwq;
982 struct cpu_workqueue_struct *cwq;
983 struct list_head *worklist;
984 unsigned int work_flags;
985 unsigned long flags;
986
987 debug_work_activate(work);
988
989 /* if dying, only works from the same workqueue are allowed */
990 if (unlikely(wq->flags & WQ_DRAINING) &&
991 WARN_ON_ONCE(!is_chained_work(wq)))
992 return;
993
994 /* determine gcwq to use */
995 if (!(wq->flags & WQ_UNBOUND)) {
996 struct global_cwq *last_gcwq;
997
998 if (unlikely(cpu == WORK_CPU_UNBOUND))
999 cpu = raw_smp_processor_id();
1000
1001 /*
1002 * It's multi cpu. If @wq is non-reentrant and @work
1003 * was previously on a different cpu, it might still
1004 * be running there, in which case the work needs to
1005 * be queued on that cpu to guarantee non-reentrance.
1006 */
1007 gcwq = get_gcwq(cpu);
1008 if (wq->flags & WQ_NON_REENTRANT &&
1009 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1010 struct worker *worker;
1011
1012 spin_lock_irqsave(&last_gcwq->lock, flags);
1013
1014 worker = find_worker_executing_work(last_gcwq, work);
1015
1016 if (worker && worker->current_cwq->wq == wq)
1017 gcwq = last_gcwq;
1018 else {
1019 /* meh... not running there, queue here */
1020 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1021 spin_lock_irqsave(&gcwq->lock, flags);
1022 }
1023 } else
1024 spin_lock_irqsave(&gcwq->lock, flags);
1025 } else {
1026 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1027 spin_lock_irqsave(&gcwq->lock, flags);
1028 }
1029
1030 /* gcwq determined, get cwq and queue */
1031 cwq = get_cwq(gcwq->cpu, wq);
1032 trace_workqueue_queue_work(cpu, cwq, work);
1033
1034 if (WARN_ON(!list_empty(&work->entry))) {
1035 spin_unlock_irqrestore(&gcwq->lock, flags);
1036 return;
1037 }
1038
1039 cwq->nr_in_flight[cwq->work_color]++;
1040 work_flags = work_color_to_flags(cwq->work_color);
1041
1042 if (likely(cwq->nr_active < cwq->max_active)) {
1043 trace_workqueue_activate_work(work);
1044 cwq->nr_active++;
1045 worklist = &cwq->pool->worklist;
1046 } else {
1047 work_flags |= WORK_STRUCT_DELAYED;
1048 worklist = &cwq->delayed_works;
1049 }
1050
1051 insert_work(cwq, work, worklist, work_flags);
1052
1053 spin_unlock_irqrestore(&gcwq->lock, flags);
1054 }
1055
1056 /**
1057 * queue_work - queue work on a workqueue
1058 * @wq: workqueue to use
1059 * @work: work to queue
1060 *
1061 * Returns 0 if @work was already on a queue, non-zero otherwise.
1062 *
1063 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1064 * it can be processed by another CPU.
1065 */
1066 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1067 {
1068 int ret;
1069
1070 ret = queue_work_on(get_cpu(), wq, work);
1071 put_cpu();
1072
1073 return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(queue_work);
1076
1077 /**
1078 * queue_work_on - queue work on specific cpu
1079 * @cpu: CPU number to execute work on
1080 * @wq: workqueue to use
1081 * @work: work to queue
1082 *
1083 * Returns 0 if @work was already on a queue, non-zero otherwise.
1084 *
1085 * We queue the work to a specific CPU, the caller must ensure it
1086 * can't go away.
1087 */
1088 int
1089 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1090 {
1091 int ret = 0;
1092
1093 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1094 __queue_work(cpu, wq, work);
1095 ret = 1;
1096 }
1097 return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(queue_work_on);
1100
1101 static void delayed_work_timer_fn(unsigned long __data)
1102 {
1103 struct delayed_work *dwork = (struct delayed_work *)__data;
1104 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1105
1106 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1107 }
1108
1109 /**
1110 * queue_delayed_work - queue work on a workqueue after delay
1111 * @wq: workqueue to use
1112 * @dwork: delayable work to queue
1113 * @delay: number of jiffies to wait before queueing
1114 *
1115 * Returns 0 if @work was already on a queue, non-zero otherwise.
1116 */
1117 int queue_delayed_work(struct workqueue_struct *wq,
1118 struct delayed_work *dwork, unsigned long delay)
1119 {
1120 if (delay == 0)
1121 return queue_work(wq, &dwork->work);
1122
1123 return queue_delayed_work_on(-1, wq, dwork, delay);
1124 }
1125 EXPORT_SYMBOL_GPL(queue_delayed_work);
1126
1127 /**
1128 * queue_delayed_work_on - queue work on specific CPU after delay
1129 * @cpu: CPU number to execute work on
1130 * @wq: workqueue to use
1131 * @dwork: work to queue
1132 * @delay: number of jiffies to wait before queueing
1133 *
1134 * Returns 0 if @work was already on a queue, non-zero otherwise.
1135 */
1136 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1137 struct delayed_work *dwork, unsigned long delay)
1138 {
1139 int ret = 0;
1140 struct timer_list *timer = &dwork->timer;
1141 struct work_struct *work = &dwork->work;
1142
1143 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1144 unsigned int lcpu;
1145
1146 BUG_ON(timer_pending(timer));
1147 BUG_ON(!list_empty(&work->entry));
1148
1149 timer_stats_timer_set_start_info(&dwork->timer);
1150
1151 /*
1152 * This stores cwq for the moment, for the timer_fn.
1153 * Note that the work's gcwq is preserved to allow
1154 * reentrance detection for delayed works.
1155 */
1156 if (!(wq->flags & WQ_UNBOUND)) {
1157 struct global_cwq *gcwq = get_work_gcwq(work);
1158
1159 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1160 lcpu = gcwq->cpu;
1161 else
1162 lcpu = raw_smp_processor_id();
1163 } else
1164 lcpu = WORK_CPU_UNBOUND;
1165
1166 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1167
1168 timer->expires = jiffies + delay;
1169 timer->data = (unsigned long)dwork;
1170 timer->function = delayed_work_timer_fn;
1171
1172 if (unlikely(cpu >= 0))
1173 add_timer_on(timer, cpu);
1174 else
1175 add_timer(timer);
1176 ret = 1;
1177 }
1178 return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1181
1182 /**
1183 * worker_enter_idle - enter idle state
1184 * @worker: worker which is entering idle state
1185 *
1186 * @worker is entering idle state. Update stats and idle timer if
1187 * necessary.
1188 *
1189 * LOCKING:
1190 * spin_lock_irq(gcwq->lock).
1191 */
1192 static void worker_enter_idle(struct worker *worker)
1193 {
1194 struct worker_pool *pool = worker->pool;
1195 struct global_cwq *gcwq = pool->gcwq;
1196
1197 BUG_ON(worker->flags & WORKER_IDLE);
1198 BUG_ON(!list_empty(&worker->entry) &&
1199 (worker->hentry.next || worker->hentry.pprev));
1200
1201 /* can't use worker_set_flags(), also called from start_worker() */
1202 worker->flags |= WORKER_IDLE;
1203 pool->nr_idle++;
1204 worker->last_active = jiffies;
1205
1206 /* idle_list is LIFO */
1207 list_add(&worker->entry, &pool->idle_list);
1208
1209 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1210 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1211
1212 /*
1213 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1214 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1215 * nr_running, the warning may trigger spuriously. Check iff
1216 * unbind is not in progress.
1217 */
1218 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1219 pool->nr_workers == pool->nr_idle &&
1220 atomic_read(get_pool_nr_running(pool)));
1221 }
1222
1223 /**
1224 * worker_leave_idle - leave idle state
1225 * @worker: worker which is leaving idle state
1226 *
1227 * @worker is leaving idle state. Update stats.
1228 *
1229 * LOCKING:
1230 * spin_lock_irq(gcwq->lock).
1231 */
1232 static void worker_leave_idle(struct worker *worker)
1233 {
1234 struct worker_pool *pool = worker->pool;
1235
1236 BUG_ON(!(worker->flags & WORKER_IDLE));
1237 worker_clr_flags(worker, WORKER_IDLE);
1238 pool->nr_idle--;
1239 list_del_init(&worker->entry);
1240 }
1241
1242 /**
1243 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1244 * @worker: self
1245 *
1246 * Works which are scheduled while the cpu is online must at least be
1247 * scheduled to a worker which is bound to the cpu so that if they are
1248 * flushed from cpu callbacks while cpu is going down, they are
1249 * guaranteed to execute on the cpu.
1250 *
1251 * This function is to be used by rogue workers and rescuers to bind
1252 * themselves to the target cpu and may race with cpu going down or
1253 * coming online. kthread_bind() can't be used because it may put the
1254 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1255 * verbatim as it's best effort and blocking and gcwq may be
1256 * [dis]associated in the meantime.
1257 *
1258 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1259 * binding against %GCWQ_DISASSOCIATED which is set during
1260 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1261 * enters idle state or fetches works without dropping lock, it can
1262 * guarantee the scheduling requirement described in the first paragraph.
1263 *
1264 * CONTEXT:
1265 * Might sleep. Called without any lock but returns with gcwq->lock
1266 * held.
1267 *
1268 * RETURNS:
1269 * %true if the associated gcwq is online (@worker is successfully
1270 * bound), %false if offline.
1271 */
1272 static bool worker_maybe_bind_and_lock(struct worker *worker)
1273 __acquires(&gcwq->lock)
1274 {
1275 struct global_cwq *gcwq = worker->pool->gcwq;
1276 struct task_struct *task = worker->task;
1277
1278 while (true) {
1279 /*
1280 * The following call may fail, succeed or succeed
1281 * without actually migrating the task to the cpu if
1282 * it races with cpu hotunplug operation. Verify
1283 * against GCWQ_DISASSOCIATED.
1284 */
1285 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1286 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1287
1288 spin_lock_irq(&gcwq->lock);
1289 if (gcwq->flags & GCWQ_DISASSOCIATED)
1290 return false;
1291 if (task_cpu(task) == gcwq->cpu &&
1292 cpumask_equal(&current->cpus_allowed,
1293 get_cpu_mask(gcwq->cpu)))
1294 return true;
1295 spin_unlock_irq(&gcwq->lock);
1296
1297 /*
1298 * We've raced with CPU hot[un]plug. Give it a breather
1299 * and retry migration. cond_resched() is required here;
1300 * otherwise, we might deadlock against cpu_stop trying to
1301 * bring down the CPU on non-preemptive kernel.
1302 */
1303 cpu_relax();
1304 cond_resched();
1305 }
1306 }
1307
1308 struct idle_rebind {
1309 int cnt; /* # workers to be rebound */
1310 struct completion done; /* all workers rebound */
1311 };
1312
1313 /*
1314 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1315 * happen synchronously for idle workers. worker_thread() will test
1316 * %WORKER_REBIND before leaving idle and call this function.
1317 */
1318 static void idle_worker_rebind(struct worker *worker)
1319 {
1320 struct global_cwq *gcwq = worker->pool->gcwq;
1321
1322 /* CPU must be online at this point */
1323 WARN_ON(!worker_maybe_bind_and_lock(worker));
1324 if (!--worker->idle_rebind->cnt)
1325 complete(&worker->idle_rebind->done);
1326 spin_unlock_irq(&worker->pool->gcwq->lock);
1327
1328 /* we did our part, wait for rebind_workers() to finish up */
1329 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1330
1331 /*
1332 * rebind_workers() shouldn't finish until all workers passed the
1333 * above WORKER_REBIND wait. Tell it when done.
1334 */
1335 spin_lock_irq(&worker->pool->gcwq->lock);
1336 if (!--worker->idle_rebind->cnt)
1337 complete(&worker->idle_rebind->done);
1338 spin_unlock_irq(&worker->pool->gcwq->lock);
1339 }
1340
1341 /*
1342 * Function for @worker->rebind.work used to rebind unbound busy workers to
1343 * the associated cpu which is coming back online. This is scheduled by
1344 * cpu up but can race with other cpu hotplug operations and may be
1345 * executed twice without intervening cpu down.
1346 */
1347 static void busy_worker_rebind_fn(struct work_struct *work)
1348 {
1349 struct worker *worker = container_of(work, struct worker, rebind_work);
1350 struct global_cwq *gcwq = worker->pool->gcwq;
1351
1352 if (worker_maybe_bind_and_lock(worker))
1353 worker_clr_flags(worker, WORKER_REBIND);
1354
1355 spin_unlock_irq(&gcwq->lock);
1356 }
1357
1358 /**
1359 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1360 * @gcwq: gcwq of interest
1361 *
1362 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1363 * is different for idle and busy ones.
1364 *
1365 * The idle ones should be rebound synchronously and idle rebinding should
1366 * be complete before any worker starts executing work items with
1367 * concurrency management enabled; otherwise, scheduler may oops trying to
1368 * wake up non-local idle worker from wq_worker_sleeping().
1369 *
1370 * This is achieved by repeatedly requesting rebinding until all idle
1371 * workers are known to have been rebound under @gcwq->lock and holding all
1372 * idle workers from becoming busy until idle rebinding is complete.
1373 *
1374 * Once idle workers are rebound, busy workers can be rebound as they
1375 * finish executing their current work items. Queueing the rebind work at
1376 * the head of their scheduled lists is enough. Note that nr_running will
1377 * be properbly bumped as busy workers rebind.
1378 *
1379 * On return, all workers are guaranteed to either be bound or have rebind
1380 * work item scheduled.
1381 */
1382 static void rebind_workers(struct global_cwq *gcwq)
1383 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1384 {
1385 struct idle_rebind idle_rebind;
1386 struct worker_pool *pool;
1387 struct worker *worker;
1388 struct hlist_node *pos;
1389 int i;
1390
1391 lockdep_assert_held(&gcwq->lock);
1392
1393 for_each_worker_pool(pool, gcwq)
1394 lockdep_assert_held(&pool->manager_mutex);
1395
1396 /*
1397 * Rebind idle workers. Interlocked both ways. We wait for
1398 * workers to rebind via @idle_rebind.done. Workers will wait for
1399 * us to finish up by watching %WORKER_REBIND.
1400 */
1401 init_completion(&idle_rebind.done);
1402 retry:
1403 idle_rebind.cnt = 1;
1404 INIT_COMPLETION(idle_rebind.done);
1405
1406 /* set REBIND and kick idle ones, we'll wait for these later */
1407 for_each_worker_pool(pool, gcwq) {
1408 list_for_each_entry(worker, &pool->idle_list, entry) {
1409 unsigned long worker_flags = worker->flags;
1410
1411 if (worker->flags & WORKER_REBIND)
1412 continue;
1413
1414 /* morph UNBOUND to REBIND atomically */
1415 worker_flags &= ~WORKER_UNBOUND;
1416 worker_flags |= WORKER_REBIND;
1417 ACCESS_ONCE(worker->flags) = worker_flags;
1418
1419 idle_rebind.cnt++;
1420 worker->idle_rebind = &idle_rebind;
1421
1422 /* worker_thread() will call idle_worker_rebind() */
1423 wake_up_process(worker->task);
1424 }
1425 }
1426
1427 if (--idle_rebind.cnt) {
1428 spin_unlock_irq(&gcwq->lock);
1429 wait_for_completion(&idle_rebind.done);
1430 spin_lock_irq(&gcwq->lock);
1431 /* busy ones might have become idle while waiting, retry */
1432 goto retry;
1433 }
1434
1435 /* all idle workers are rebound, rebind busy workers */
1436 for_each_busy_worker(worker, i, pos, gcwq) {
1437 struct work_struct *rebind_work = &worker->rebind_work;
1438 unsigned long worker_flags = worker->flags;
1439
1440 /* morph UNBOUND to REBIND atomically */
1441 worker_flags &= ~WORKER_UNBOUND;
1442 worker_flags |= WORKER_REBIND;
1443 ACCESS_ONCE(worker->flags) = worker_flags;
1444
1445 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1446 work_data_bits(rebind_work)))
1447 continue;
1448
1449 /* wq doesn't matter, use the default one */
1450 debug_work_activate(rebind_work);
1451 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1452 worker->scheduled.next,
1453 work_color_to_flags(WORK_NO_COLOR));
1454 }
1455
1456 /*
1457 * All idle workers are rebound and waiting for %WORKER_REBIND to
1458 * be cleared inside idle_worker_rebind(). Clear and release.
1459 * Clearing %WORKER_REBIND from this foreign context is safe
1460 * because these workers are still guaranteed to be idle.
1461 *
1462 * We need to make sure all idle workers passed WORKER_REBIND wait
1463 * in idle_worker_rebind() before returning; otherwise, workers can
1464 * get stuck at the wait if hotplug cycle repeats.
1465 */
1466 idle_rebind.cnt = 1;
1467 INIT_COMPLETION(idle_rebind.done);
1468
1469 for_each_worker_pool(pool, gcwq) {
1470 list_for_each_entry(worker, &pool->idle_list, entry) {
1471 worker->flags &= ~WORKER_REBIND;
1472 idle_rebind.cnt++;
1473 }
1474 }
1475
1476 wake_up_all(&gcwq->rebind_hold);
1477
1478 if (--idle_rebind.cnt) {
1479 spin_unlock_irq(&gcwq->lock);
1480 wait_for_completion(&idle_rebind.done);
1481 spin_lock_irq(&gcwq->lock);
1482 }
1483 }
1484
1485 static struct worker *alloc_worker(void)
1486 {
1487 struct worker *worker;
1488
1489 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1490 if (worker) {
1491 INIT_LIST_HEAD(&worker->entry);
1492 INIT_LIST_HEAD(&worker->scheduled);
1493 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1494 /* on creation a worker is in !idle && prep state */
1495 worker->flags = WORKER_PREP;
1496 }
1497 return worker;
1498 }
1499
1500 /**
1501 * create_worker - create a new workqueue worker
1502 * @pool: pool the new worker will belong to
1503 *
1504 * Create a new worker which is bound to @pool. The returned worker
1505 * can be started by calling start_worker() or destroyed using
1506 * destroy_worker().
1507 *
1508 * CONTEXT:
1509 * Might sleep. Does GFP_KERNEL allocations.
1510 *
1511 * RETURNS:
1512 * Pointer to the newly created worker.
1513 */
1514 static struct worker *create_worker(struct worker_pool *pool)
1515 {
1516 struct global_cwq *gcwq = pool->gcwq;
1517 const char *pri = worker_pool_pri(pool) ? "H" : "";
1518 struct worker *worker = NULL;
1519 int id = -1;
1520
1521 spin_lock_irq(&gcwq->lock);
1522 while (ida_get_new(&pool->worker_ida, &id)) {
1523 spin_unlock_irq(&gcwq->lock);
1524 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1525 goto fail;
1526 spin_lock_irq(&gcwq->lock);
1527 }
1528 spin_unlock_irq(&gcwq->lock);
1529
1530 worker = alloc_worker();
1531 if (!worker)
1532 goto fail;
1533
1534 worker->pool = pool;
1535 worker->id = id;
1536
1537 if (gcwq->cpu != WORK_CPU_UNBOUND)
1538 worker->task = kthread_create_on_node(worker_thread,
1539 worker, cpu_to_node(gcwq->cpu),
1540 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1541 else
1542 worker->task = kthread_create(worker_thread, worker,
1543 "kworker/u:%d%s", id, pri);
1544 if (IS_ERR(worker->task))
1545 goto fail;
1546
1547 if (worker_pool_pri(pool))
1548 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1549
1550 /*
1551 * Determine CPU binding of the new worker depending on
1552 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1553 * flag remains stable across this function. See the comments
1554 * above the flag definition for details.
1555 *
1556 * As an unbound worker may later become a regular one if CPU comes
1557 * online, make sure every worker has %PF_THREAD_BOUND set.
1558 */
1559 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1560 kthread_bind(worker->task, gcwq->cpu);
1561 } else {
1562 worker->task->flags |= PF_THREAD_BOUND;
1563 worker->flags |= WORKER_UNBOUND;
1564 }
1565
1566 return worker;
1567 fail:
1568 if (id >= 0) {
1569 spin_lock_irq(&gcwq->lock);
1570 ida_remove(&pool->worker_ida, id);
1571 spin_unlock_irq(&gcwq->lock);
1572 }
1573 kfree(worker);
1574 return NULL;
1575 }
1576
1577 /**
1578 * start_worker - start a newly created worker
1579 * @worker: worker to start
1580 *
1581 * Make the gcwq aware of @worker and start it.
1582 *
1583 * CONTEXT:
1584 * spin_lock_irq(gcwq->lock).
1585 */
1586 static void start_worker(struct worker *worker)
1587 {
1588 worker->flags |= WORKER_STARTED;
1589 worker->pool->nr_workers++;
1590 worker_enter_idle(worker);
1591 wake_up_process(worker->task);
1592 }
1593
1594 /**
1595 * destroy_worker - destroy a workqueue worker
1596 * @worker: worker to be destroyed
1597 *
1598 * Destroy @worker and adjust @gcwq stats accordingly.
1599 *
1600 * CONTEXT:
1601 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1602 */
1603 static void destroy_worker(struct worker *worker)
1604 {
1605 struct worker_pool *pool = worker->pool;
1606 struct global_cwq *gcwq = pool->gcwq;
1607 int id = worker->id;
1608
1609 /* sanity check frenzy */
1610 BUG_ON(worker->current_work);
1611 BUG_ON(!list_empty(&worker->scheduled));
1612
1613 if (worker->flags & WORKER_STARTED)
1614 pool->nr_workers--;
1615 if (worker->flags & WORKER_IDLE)
1616 pool->nr_idle--;
1617
1618 list_del_init(&worker->entry);
1619 worker->flags |= WORKER_DIE;
1620
1621 spin_unlock_irq(&gcwq->lock);
1622
1623 kthread_stop(worker->task);
1624 kfree(worker);
1625
1626 spin_lock_irq(&gcwq->lock);
1627 ida_remove(&pool->worker_ida, id);
1628 }
1629
1630 static void idle_worker_timeout(unsigned long __pool)
1631 {
1632 struct worker_pool *pool = (void *)__pool;
1633 struct global_cwq *gcwq = pool->gcwq;
1634
1635 spin_lock_irq(&gcwq->lock);
1636
1637 if (too_many_workers(pool)) {
1638 struct worker *worker;
1639 unsigned long expires;
1640
1641 /* idle_list is kept in LIFO order, check the last one */
1642 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1643 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1644
1645 if (time_before(jiffies, expires))
1646 mod_timer(&pool->idle_timer, expires);
1647 else {
1648 /* it's been idle for too long, wake up manager */
1649 pool->flags |= POOL_MANAGE_WORKERS;
1650 wake_up_worker(pool);
1651 }
1652 }
1653
1654 spin_unlock_irq(&gcwq->lock);
1655 }
1656
1657 static bool send_mayday(struct work_struct *work)
1658 {
1659 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1660 struct workqueue_struct *wq = cwq->wq;
1661 unsigned int cpu;
1662
1663 if (!(wq->flags & WQ_RESCUER))
1664 return false;
1665
1666 /* mayday mayday mayday */
1667 cpu = cwq->pool->gcwq->cpu;
1668 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1669 if (cpu == WORK_CPU_UNBOUND)
1670 cpu = 0;
1671 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1672 wake_up_process(wq->rescuer->task);
1673 return true;
1674 }
1675
1676 static void gcwq_mayday_timeout(unsigned long __pool)
1677 {
1678 struct worker_pool *pool = (void *)__pool;
1679 struct global_cwq *gcwq = pool->gcwq;
1680 struct work_struct *work;
1681
1682 spin_lock_irq(&gcwq->lock);
1683
1684 if (need_to_create_worker(pool)) {
1685 /*
1686 * We've been trying to create a new worker but
1687 * haven't been successful. We might be hitting an
1688 * allocation deadlock. Send distress signals to
1689 * rescuers.
1690 */
1691 list_for_each_entry(work, &pool->worklist, entry)
1692 send_mayday(work);
1693 }
1694
1695 spin_unlock_irq(&gcwq->lock);
1696
1697 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1698 }
1699
1700 /**
1701 * maybe_create_worker - create a new worker if necessary
1702 * @pool: pool to create a new worker for
1703 *
1704 * Create a new worker for @pool if necessary. @pool is guaranteed to
1705 * have at least one idle worker on return from this function. If
1706 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1707 * sent to all rescuers with works scheduled on @pool to resolve
1708 * possible allocation deadlock.
1709 *
1710 * On return, need_to_create_worker() is guaranteed to be false and
1711 * may_start_working() true.
1712 *
1713 * LOCKING:
1714 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1715 * multiple times. Does GFP_KERNEL allocations. Called only from
1716 * manager.
1717 *
1718 * RETURNS:
1719 * false if no action was taken and gcwq->lock stayed locked, true
1720 * otherwise.
1721 */
1722 static bool maybe_create_worker(struct worker_pool *pool)
1723 __releases(&gcwq->lock)
1724 __acquires(&gcwq->lock)
1725 {
1726 struct global_cwq *gcwq = pool->gcwq;
1727
1728 if (!need_to_create_worker(pool))
1729 return false;
1730 restart:
1731 spin_unlock_irq(&gcwq->lock);
1732
1733 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1734 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1735
1736 while (true) {
1737 struct worker *worker;
1738
1739 worker = create_worker(pool);
1740 if (worker) {
1741 del_timer_sync(&pool->mayday_timer);
1742 spin_lock_irq(&gcwq->lock);
1743 start_worker(worker);
1744 BUG_ON(need_to_create_worker(pool));
1745 return true;
1746 }
1747
1748 if (!need_to_create_worker(pool))
1749 break;
1750
1751 __set_current_state(TASK_INTERRUPTIBLE);
1752 schedule_timeout(CREATE_COOLDOWN);
1753
1754 if (!need_to_create_worker(pool))
1755 break;
1756 }
1757
1758 del_timer_sync(&pool->mayday_timer);
1759 spin_lock_irq(&gcwq->lock);
1760 if (need_to_create_worker(pool))
1761 goto restart;
1762 return true;
1763 }
1764
1765 /**
1766 * maybe_destroy_worker - destroy workers which have been idle for a while
1767 * @pool: pool to destroy workers for
1768 *
1769 * Destroy @pool workers which have been idle for longer than
1770 * IDLE_WORKER_TIMEOUT.
1771 *
1772 * LOCKING:
1773 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1774 * multiple times. Called only from manager.
1775 *
1776 * RETURNS:
1777 * false if no action was taken and gcwq->lock stayed locked, true
1778 * otherwise.
1779 */
1780 static bool maybe_destroy_workers(struct worker_pool *pool)
1781 {
1782 bool ret = false;
1783
1784 while (too_many_workers(pool)) {
1785 struct worker *worker;
1786 unsigned long expires;
1787
1788 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1789 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1790
1791 if (time_before(jiffies, expires)) {
1792 mod_timer(&pool->idle_timer, expires);
1793 break;
1794 }
1795
1796 destroy_worker(worker);
1797 ret = true;
1798 }
1799
1800 return ret;
1801 }
1802
1803 /**
1804 * manage_workers - manage worker pool
1805 * @worker: self
1806 *
1807 * Assume the manager role and manage gcwq worker pool @worker belongs
1808 * to. At any given time, there can be only zero or one manager per
1809 * gcwq. The exclusion is handled automatically by this function.
1810 *
1811 * The caller can safely start processing works on false return. On
1812 * true return, it's guaranteed that need_to_create_worker() is false
1813 * and may_start_working() is true.
1814 *
1815 * CONTEXT:
1816 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1817 * multiple times. Does GFP_KERNEL allocations.
1818 *
1819 * RETURNS:
1820 * false if no action was taken and gcwq->lock stayed locked, true if
1821 * some action was taken.
1822 */
1823 static bool manage_workers(struct worker *worker)
1824 {
1825 struct worker_pool *pool = worker->pool;
1826 bool ret = false;
1827
1828 if (!mutex_trylock(&pool->manager_mutex))
1829 return ret;
1830
1831 pool->flags |= POOL_MANAGING_WORKERS;
1832 pool->flags &= ~POOL_MANAGE_WORKERS;
1833
1834 /*
1835 * Destroy and then create so that may_start_working() is true
1836 * on return.
1837 */
1838 ret |= maybe_destroy_workers(pool);
1839 ret |= maybe_create_worker(pool);
1840
1841 pool->flags &= ~POOL_MANAGING_WORKERS;
1842 mutex_unlock(&pool->manager_mutex);
1843 return ret;
1844 }
1845
1846 /**
1847 * move_linked_works - move linked works to a list
1848 * @work: start of series of works to be scheduled
1849 * @head: target list to append @work to
1850 * @nextp: out paramter for nested worklist walking
1851 *
1852 * Schedule linked works starting from @work to @head. Work series to
1853 * be scheduled starts at @work and includes any consecutive work with
1854 * WORK_STRUCT_LINKED set in its predecessor.
1855 *
1856 * If @nextp is not NULL, it's updated to point to the next work of
1857 * the last scheduled work. This allows move_linked_works() to be
1858 * nested inside outer list_for_each_entry_safe().
1859 *
1860 * CONTEXT:
1861 * spin_lock_irq(gcwq->lock).
1862 */
1863 static void move_linked_works(struct work_struct *work, struct list_head *head,
1864 struct work_struct **nextp)
1865 {
1866 struct work_struct *n;
1867
1868 /*
1869 * Linked worklist will always end before the end of the list,
1870 * use NULL for list head.
1871 */
1872 list_for_each_entry_safe_from(work, n, NULL, entry) {
1873 list_move_tail(&work->entry, head);
1874 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1875 break;
1876 }
1877
1878 /*
1879 * If we're already inside safe list traversal and have moved
1880 * multiple works to the scheduled queue, the next position
1881 * needs to be updated.
1882 */
1883 if (nextp)
1884 *nextp = n;
1885 }
1886
1887 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1888 {
1889 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1890 struct work_struct, entry);
1891
1892 trace_workqueue_activate_work(work);
1893 move_linked_works(work, &cwq->pool->worklist, NULL);
1894 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1895 cwq->nr_active++;
1896 }
1897
1898 /**
1899 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1900 * @cwq: cwq of interest
1901 * @color: color of work which left the queue
1902 * @delayed: for a delayed work
1903 *
1904 * A work either has completed or is removed from pending queue,
1905 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1906 *
1907 * CONTEXT:
1908 * spin_lock_irq(gcwq->lock).
1909 */
1910 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1911 bool delayed)
1912 {
1913 /* ignore uncolored works */
1914 if (color == WORK_NO_COLOR)
1915 return;
1916
1917 cwq->nr_in_flight[color]--;
1918
1919 if (!delayed) {
1920 cwq->nr_active--;
1921 if (!list_empty(&cwq->delayed_works)) {
1922 /* one down, submit a delayed one */
1923 if (cwq->nr_active < cwq->max_active)
1924 cwq_activate_first_delayed(cwq);
1925 }
1926 }
1927
1928 /* is flush in progress and are we at the flushing tip? */
1929 if (likely(cwq->flush_color != color))
1930 return;
1931
1932 /* are there still in-flight works? */
1933 if (cwq->nr_in_flight[color])
1934 return;
1935
1936 /* this cwq is done, clear flush_color */
1937 cwq->flush_color = -1;
1938
1939 /*
1940 * If this was the last cwq, wake up the first flusher. It
1941 * will handle the rest.
1942 */
1943 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1944 complete(&cwq->wq->first_flusher->done);
1945 }
1946
1947 /**
1948 * process_one_work - process single work
1949 * @worker: self
1950 * @work: work to process
1951 *
1952 * Process @work. This function contains all the logics necessary to
1953 * process a single work including synchronization against and
1954 * interaction with other workers on the same cpu, queueing and
1955 * flushing. As long as context requirement is met, any worker can
1956 * call this function to process a work.
1957 *
1958 * CONTEXT:
1959 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1960 */
1961 static void process_one_work(struct worker *worker, struct work_struct *work)
1962 __releases(&gcwq->lock)
1963 __acquires(&gcwq->lock)
1964 {
1965 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1966 struct worker_pool *pool = worker->pool;
1967 struct global_cwq *gcwq = pool->gcwq;
1968 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1969 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1970 work_func_t f = work->func;
1971 int work_color;
1972 struct worker *collision;
1973 #ifdef CONFIG_LOCKDEP
1974 /*
1975 * It is permissible to free the struct work_struct from
1976 * inside the function that is called from it, this we need to
1977 * take into account for lockdep too. To avoid bogus "held
1978 * lock freed" warnings as well as problems when looking into
1979 * work->lockdep_map, make a copy and use that here.
1980 */
1981 struct lockdep_map lockdep_map;
1982
1983 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1984 #endif
1985 /*
1986 * Ensure we're on the correct CPU. DISASSOCIATED test is
1987 * necessary to avoid spurious warnings from rescuers servicing the
1988 * unbound or a disassociated gcwq.
1989 */
1990 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
1991 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
1992 raw_smp_processor_id() != gcwq->cpu);
1993
1994 /*
1995 * A single work shouldn't be executed concurrently by
1996 * multiple workers on a single cpu. Check whether anyone is
1997 * already processing the work. If so, defer the work to the
1998 * currently executing one.
1999 */
2000 collision = __find_worker_executing_work(gcwq, bwh, work);
2001 if (unlikely(collision)) {
2002 move_linked_works(work, &collision->scheduled, NULL);
2003 return;
2004 }
2005
2006 /* claim and process */
2007 debug_work_deactivate(work);
2008 hlist_add_head(&worker->hentry, bwh);
2009 worker->current_work = work;
2010 worker->current_cwq = cwq;
2011 work_color = get_work_color(work);
2012
2013 /* record the current cpu number in the work data and dequeue */
2014 set_work_cpu(work, gcwq->cpu);
2015 list_del_init(&work->entry);
2016
2017 /*
2018 * CPU intensive works don't participate in concurrency
2019 * management. They're the scheduler's responsibility.
2020 */
2021 if (unlikely(cpu_intensive))
2022 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2023
2024 /*
2025 * Unbound gcwq isn't concurrency managed and work items should be
2026 * executed ASAP. Wake up another worker if necessary.
2027 */
2028 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2029 wake_up_worker(pool);
2030
2031 spin_unlock_irq(&gcwq->lock);
2032
2033 work_clear_pending(work);
2034 lock_map_acquire_read(&cwq->wq->lockdep_map);
2035 lock_map_acquire(&lockdep_map);
2036 trace_workqueue_execute_start(work);
2037 f(work);
2038 /*
2039 * While we must be careful to not use "work" after this, the trace
2040 * point will only record its address.
2041 */
2042 trace_workqueue_execute_end(work);
2043 lock_map_release(&lockdep_map);
2044 lock_map_release(&cwq->wq->lockdep_map);
2045
2046 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2047 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2048 "%s/0x%08x/%d\n",
2049 current->comm, preempt_count(), task_pid_nr(current));
2050 printk(KERN_ERR " last function: ");
2051 print_symbol("%s\n", (unsigned long)f);
2052 debug_show_held_locks(current);
2053 dump_stack();
2054 }
2055
2056 spin_lock_irq(&gcwq->lock);
2057
2058 /* clear cpu intensive status */
2059 if (unlikely(cpu_intensive))
2060 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2061
2062 /* we're done with it, release */
2063 hlist_del_init(&worker->hentry);
2064 worker->current_work = NULL;
2065 worker->current_cwq = NULL;
2066 cwq_dec_nr_in_flight(cwq, work_color, false);
2067 }
2068
2069 /**
2070 * process_scheduled_works - process scheduled works
2071 * @worker: self
2072 *
2073 * Process all scheduled works. Please note that the scheduled list
2074 * may change while processing a work, so this function repeatedly
2075 * fetches a work from the top and executes it.
2076 *
2077 * CONTEXT:
2078 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2079 * multiple times.
2080 */
2081 static void process_scheduled_works(struct worker *worker)
2082 {
2083 while (!list_empty(&worker->scheduled)) {
2084 struct work_struct *work = list_first_entry(&worker->scheduled,
2085 struct work_struct, entry);
2086 process_one_work(worker, work);
2087 }
2088 }
2089
2090 /**
2091 * worker_thread - the worker thread function
2092 * @__worker: self
2093 *
2094 * The gcwq worker thread function. There's a single dynamic pool of
2095 * these per each cpu. These workers process all works regardless of
2096 * their specific target workqueue. The only exception is works which
2097 * belong to workqueues with a rescuer which will be explained in
2098 * rescuer_thread().
2099 */
2100 static int worker_thread(void *__worker)
2101 {
2102 struct worker *worker = __worker;
2103 struct worker_pool *pool = worker->pool;
2104 struct global_cwq *gcwq = pool->gcwq;
2105
2106 /* tell the scheduler that this is a workqueue worker */
2107 worker->task->flags |= PF_WQ_WORKER;
2108 woke_up:
2109 spin_lock_irq(&gcwq->lock);
2110
2111 /*
2112 * DIE can be set only while idle and REBIND set while busy has
2113 * @worker->rebind_work scheduled. Checking here is enough.
2114 */
2115 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
2116 spin_unlock_irq(&gcwq->lock);
2117
2118 if (worker->flags & WORKER_DIE) {
2119 worker->task->flags &= ~PF_WQ_WORKER;
2120 return 0;
2121 }
2122
2123 idle_worker_rebind(worker);
2124 goto woke_up;
2125 }
2126
2127 worker_leave_idle(worker);
2128 recheck:
2129 /* no more worker necessary? */
2130 if (!need_more_worker(pool))
2131 goto sleep;
2132
2133 /* do we need to manage? */
2134 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2135 goto recheck;
2136
2137 /*
2138 * ->scheduled list can only be filled while a worker is
2139 * preparing to process a work or actually processing it.
2140 * Make sure nobody diddled with it while I was sleeping.
2141 */
2142 BUG_ON(!list_empty(&worker->scheduled));
2143
2144 /*
2145 * When control reaches this point, we're guaranteed to have
2146 * at least one idle worker or that someone else has already
2147 * assumed the manager role.
2148 */
2149 worker_clr_flags(worker, WORKER_PREP);
2150
2151 do {
2152 struct work_struct *work =
2153 list_first_entry(&pool->worklist,
2154 struct work_struct, entry);
2155
2156 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2157 /* optimization path, not strictly necessary */
2158 process_one_work(worker, work);
2159 if (unlikely(!list_empty(&worker->scheduled)))
2160 process_scheduled_works(worker);
2161 } else {
2162 move_linked_works(work, &worker->scheduled, NULL);
2163 process_scheduled_works(worker);
2164 }
2165 } while (keep_working(pool));
2166
2167 worker_set_flags(worker, WORKER_PREP, false);
2168 sleep:
2169 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2170 goto recheck;
2171
2172 /*
2173 * gcwq->lock is held and there's no work to process and no
2174 * need to manage, sleep. Workers are woken up only while
2175 * holding gcwq->lock or from local cpu, so setting the
2176 * current state before releasing gcwq->lock is enough to
2177 * prevent losing any event.
2178 */
2179 worker_enter_idle(worker);
2180 __set_current_state(TASK_INTERRUPTIBLE);
2181 spin_unlock_irq(&gcwq->lock);
2182 schedule();
2183 goto woke_up;
2184 }
2185
2186 /**
2187 * rescuer_thread - the rescuer thread function
2188 * @__wq: the associated workqueue
2189 *
2190 * Workqueue rescuer thread function. There's one rescuer for each
2191 * workqueue which has WQ_RESCUER set.
2192 *
2193 * Regular work processing on a gcwq may block trying to create a new
2194 * worker which uses GFP_KERNEL allocation which has slight chance of
2195 * developing into deadlock if some works currently on the same queue
2196 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2197 * the problem rescuer solves.
2198 *
2199 * When such condition is possible, the gcwq summons rescuers of all
2200 * workqueues which have works queued on the gcwq and let them process
2201 * those works so that forward progress can be guaranteed.
2202 *
2203 * This should happen rarely.
2204 */
2205 static int rescuer_thread(void *__wq)
2206 {
2207 struct workqueue_struct *wq = __wq;
2208 struct worker *rescuer = wq->rescuer;
2209 struct list_head *scheduled = &rescuer->scheduled;
2210 bool is_unbound = wq->flags & WQ_UNBOUND;
2211 unsigned int cpu;
2212
2213 set_user_nice(current, RESCUER_NICE_LEVEL);
2214 repeat:
2215 set_current_state(TASK_INTERRUPTIBLE);
2216
2217 if (kthread_should_stop())
2218 return 0;
2219
2220 /*
2221 * See whether any cpu is asking for help. Unbounded
2222 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2223 */
2224 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2225 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2226 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2227 struct worker_pool *pool = cwq->pool;
2228 struct global_cwq *gcwq = pool->gcwq;
2229 struct work_struct *work, *n;
2230
2231 __set_current_state(TASK_RUNNING);
2232 mayday_clear_cpu(cpu, wq->mayday_mask);
2233
2234 /* migrate to the target cpu if possible */
2235 rescuer->pool = pool;
2236 worker_maybe_bind_and_lock(rescuer);
2237
2238 /*
2239 * Slurp in all works issued via this workqueue and
2240 * process'em.
2241 */
2242 BUG_ON(!list_empty(&rescuer->scheduled));
2243 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2244 if (get_work_cwq(work) == cwq)
2245 move_linked_works(work, scheduled, &n);
2246
2247 process_scheduled_works(rescuer);
2248
2249 /*
2250 * Leave this gcwq. If keep_working() is %true, notify a
2251 * regular worker; otherwise, we end up with 0 concurrency
2252 * and stalling the execution.
2253 */
2254 if (keep_working(pool))
2255 wake_up_worker(pool);
2256
2257 spin_unlock_irq(&gcwq->lock);
2258 }
2259
2260 schedule();
2261 goto repeat;
2262 }
2263
2264 struct wq_barrier {
2265 struct work_struct work;
2266 struct completion done;
2267 };
2268
2269 static void wq_barrier_func(struct work_struct *work)
2270 {
2271 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2272 complete(&barr->done);
2273 }
2274
2275 /**
2276 * insert_wq_barrier - insert a barrier work
2277 * @cwq: cwq to insert barrier into
2278 * @barr: wq_barrier to insert
2279 * @target: target work to attach @barr to
2280 * @worker: worker currently executing @target, NULL if @target is not executing
2281 *
2282 * @barr is linked to @target such that @barr is completed only after
2283 * @target finishes execution. Please note that the ordering
2284 * guarantee is observed only with respect to @target and on the local
2285 * cpu.
2286 *
2287 * Currently, a queued barrier can't be canceled. This is because
2288 * try_to_grab_pending() can't determine whether the work to be
2289 * grabbed is at the head of the queue and thus can't clear LINKED
2290 * flag of the previous work while there must be a valid next work
2291 * after a work with LINKED flag set.
2292 *
2293 * Note that when @worker is non-NULL, @target may be modified
2294 * underneath us, so we can't reliably determine cwq from @target.
2295 *
2296 * CONTEXT:
2297 * spin_lock_irq(gcwq->lock).
2298 */
2299 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2300 struct wq_barrier *barr,
2301 struct work_struct *target, struct worker *worker)
2302 {
2303 struct list_head *head;
2304 unsigned int linked = 0;
2305
2306 /*
2307 * debugobject calls are safe here even with gcwq->lock locked
2308 * as we know for sure that this will not trigger any of the
2309 * checks and call back into the fixup functions where we
2310 * might deadlock.
2311 */
2312 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2313 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2314 init_completion(&barr->done);
2315
2316 /*
2317 * If @target is currently being executed, schedule the
2318 * barrier to the worker; otherwise, put it after @target.
2319 */
2320 if (worker)
2321 head = worker->scheduled.next;
2322 else {
2323 unsigned long *bits = work_data_bits(target);
2324
2325 head = target->entry.next;
2326 /* there can already be other linked works, inherit and set */
2327 linked = *bits & WORK_STRUCT_LINKED;
2328 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2329 }
2330
2331 debug_work_activate(&barr->work);
2332 insert_work(cwq, &barr->work, head,
2333 work_color_to_flags(WORK_NO_COLOR) | linked);
2334 }
2335
2336 /**
2337 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2338 * @wq: workqueue being flushed
2339 * @flush_color: new flush color, < 0 for no-op
2340 * @work_color: new work color, < 0 for no-op
2341 *
2342 * Prepare cwqs for workqueue flushing.
2343 *
2344 * If @flush_color is non-negative, flush_color on all cwqs should be
2345 * -1. If no cwq has in-flight commands at the specified color, all
2346 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2347 * has in flight commands, its cwq->flush_color is set to
2348 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2349 * wakeup logic is armed and %true is returned.
2350 *
2351 * The caller should have initialized @wq->first_flusher prior to
2352 * calling this function with non-negative @flush_color. If
2353 * @flush_color is negative, no flush color update is done and %false
2354 * is returned.
2355 *
2356 * If @work_color is non-negative, all cwqs should have the same
2357 * work_color which is previous to @work_color and all will be
2358 * advanced to @work_color.
2359 *
2360 * CONTEXT:
2361 * mutex_lock(wq->flush_mutex).
2362 *
2363 * RETURNS:
2364 * %true if @flush_color >= 0 and there's something to flush. %false
2365 * otherwise.
2366 */
2367 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2368 int flush_color, int work_color)
2369 {
2370 bool wait = false;
2371 unsigned int cpu;
2372
2373 if (flush_color >= 0) {
2374 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2375 atomic_set(&wq->nr_cwqs_to_flush, 1);
2376 }
2377
2378 for_each_cwq_cpu(cpu, wq) {
2379 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2380 struct global_cwq *gcwq = cwq->pool->gcwq;
2381
2382 spin_lock_irq(&gcwq->lock);
2383
2384 if (flush_color >= 0) {
2385 BUG_ON(cwq->flush_color != -1);
2386
2387 if (cwq->nr_in_flight[flush_color]) {
2388 cwq->flush_color = flush_color;
2389 atomic_inc(&wq->nr_cwqs_to_flush);
2390 wait = true;
2391 }
2392 }
2393
2394 if (work_color >= 0) {
2395 BUG_ON(work_color != work_next_color(cwq->work_color));
2396 cwq->work_color = work_color;
2397 }
2398
2399 spin_unlock_irq(&gcwq->lock);
2400 }
2401
2402 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2403 complete(&wq->first_flusher->done);
2404
2405 return wait;
2406 }
2407
2408 /**
2409 * flush_workqueue - ensure that any scheduled work has run to completion.
2410 * @wq: workqueue to flush
2411 *
2412 * Forces execution of the workqueue and blocks until its completion.
2413 * This is typically used in driver shutdown handlers.
2414 *
2415 * We sleep until all works which were queued on entry have been handled,
2416 * but we are not livelocked by new incoming ones.
2417 */
2418 void flush_workqueue(struct workqueue_struct *wq)
2419 {
2420 struct wq_flusher this_flusher = {
2421 .list = LIST_HEAD_INIT(this_flusher.list),
2422 .flush_color = -1,
2423 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2424 };
2425 int next_color;
2426
2427 lock_map_acquire(&wq->lockdep_map);
2428 lock_map_release(&wq->lockdep_map);
2429
2430 mutex_lock(&wq->flush_mutex);
2431
2432 /*
2433 * Start-to-wait phase
2434 */
2435 next_color = work_next_color(wq->work_color);
2436
2437 if (next_color != wq->flush_color) {
2438 /*
2439 * Color space is not full. The current work_color
2440 * becomes our flush_color and work_color is advanced
2441 * by one.
2442 */
2443 BUG_ON(!list_empty(&wq->flusher_overflow));
2444 this_flusher.flush_color = wq->work_color;
2445 wq->work_color = next_color;
2446
2447 if (!wq->first_flusher) {
2448 /* no flush in progress, become the first flusher */
2449 BUG_ON(wq->flush_color != this_flusher.flush_color);
2450
2451 wq->first_flusher = &this_flusher;
2452
2453 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2454 wq->work_color)) {
2455 /* nothing to flush, done */
2456 wq->flush_color = next_color;
2457 wq->first_flusher = NULL;
2458 goto out_unlock;
2459 }
2460 } else {
2461 /* wait in queue */
2462 BUG_ON(wq->flush_color == this_flusher.flush_color);
2463 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2464 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2465 }
2466 } else {
2467 /*
2468 * Oops, color space is full, wait on overflow queue.
2469 * The next flush completion will assign us
2470 * flush_color and transfer to flusher_queue.
2471 */
2472 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2473 }
2474
2475 mutex_unlock(&wq->flush_mutex);
2476
2477 wait_for_completion(&this_flusher.done);
2478
2479 /*
2480 * Wake-up-and-cascade phase
2481 *
2482 * First flushers are responsible for cascading flushes and
2483 * handling overflow. Non-first flushers can simply return.
2484 */
2485 if (wq->first_flusher != &this_flusher)
2486 return;
2487
2488 mutex_lock(&wq->flush_mutex);
2489
2490 /* we might have raced, check again with mutex held */
2491 if (wq->first_flusher != &this_flusher)
2492 goto out_unlock;
2493
2494 wq->first_flusher = NULL;
2495
2496 BUG_ON(!list_empty(&this_flusher.list));
2497 BUG_ON(wq->flush_color != this_flusher.flush_color);
2498
2499 while (true) {
2500 struct wq_flusher *next, *tmp;
2501
2502 /* complete all the flushers sharing the current flush color */
2503 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2504 if (next->flush_color != wq->flush_color)
2505 break;
2506 list_del_init(&next->list);
2507 complete(&next->done);
2508 }
2509
2510 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2511 wq->flush_color != work_next_color(wq->work_color));
2512
2513 /* this flush_color is finished, advance by one */
2514 wq->flush_color = work_next_color(wq->flush_color);
2515
2516 /* one color has been freed, handle overflow queue */
2517 if (!list_empty(&wq->flusher_overflow)) {
2518 /*
2519 * Assign the same color to all overflowed
2520 * flushers, advance work_color and append to
2521 * flusher_queue. This is the start-to-wait
2522 * phase for these overflowed flushers.
2523 */
2524 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2525 tmp->flush_color = wq->work_color;
2526
2527 wq->work_color = work_next_color(wq->work_color);
2528
2529 list_splice_tail_init(&wq->flusher_overflow,
2530 &wq->flusher_queue);
2531 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2532 }
2533
2534 if (list_empty(&wq->flusher_queue)) {
2535 BUG_ON(wq->flush_color != wq->work_color);
2536 break;
2537 }
2538
2539 /*
2540 * Need to flush more colors. Make the next flusher
2541 * the new first flusher and arm cwqs.
2542 */
2543 BUG_ON(wq->flush_color == wq->work_color);
2544 BUG_ON(wq->flush_color != next->flush_color);
2545
2546 list_del_init(&next->list);
2547 wq->first_flusher = next;
2548
2549 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2550 break;
2551
2552 /*
2553 * Meh... this color is already done, clear first
2554 * flusher and repeat cascading.
2555 */
2556 wq->first_flusher = NULL;
2557 }
2558
2559 out_unlock:
2560 mutex_unlock(&wq->flush_mutex);
2561 }
2562 EXPORT_SYMBOL_GPL(flush_workqueue);
2563
2564 /**
2565 * drain_workqueue - drain a workqueue
2566 * @wq: workqueue to drain
2567 *
2568 * Wait until the workqueue becomes empty. While draining is in progress,
2569 * only chain queueing is allowed. IOW, only currently pending or running
2570 * work items on @wq can queue further work items on it. @wq is flushed
2571 * repeatedly until it becomes empty. The number of flushing is detemined
2572 * by the depth of chaining and should be relatively short. Whine if it
2573 * takes too long.
2574 */
2575 void drain_workqueue(struct workqueue_struct *wq)
2576 {
2577 unsigned int flush_cnt = 0;
2578 unsigned int cpu;
2579
2580 /*
2581 * __queue_work() needs to test whether there are drainers, is much
2582 * hotter than drain_workqueue() and already looks at @wq->flags.
2583 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2584 */
2585 spin_lock(&workqueue_lock);
2586 if (!wq->nr_drainers++)
2587 wq->flags |= WQ_DRAINING;
2588 spin_unlock(&workqueue_lock);
2589 reflush:
2590 flush_workqueue(wq);
2591
2592 for_each_cwq_cpu(cpu, wq) {
2593 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2594 bool drained;
2595
2596 spin_lock_irq(&cwq->pool->gcwq->lock);
2597 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2598 spin_unlock_irq(&cwq->pool->gcwq->lock);
2599
2600 if (drained)
2601 continue;
2602
2603 if (++flush_cnt == 10 ||
2604 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2605 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2606 wq->name, flush_cnt);
2607 goto reflush;
2608 }
2609
2610 spin_lock(&workqueue_lock);
2611 if (!--wq->nr_drainers)
2612 wq->flags &= ~WQ_DRAINING;
2613 spin_unlock(&workqueue_lock);
2614 }
2615 EXPORT_SYMBOL_GPL(drain_workqueue);
2616
2617 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2618 bool wait_executing)
2619 {
2620 struct worker *worker = NULL;
2621 struct global_cwq *gcwq;
2622 struct cpu_workqueue_struct *cwq;
2623
2624 might_sleep();
2625 gcwq = get_work_gcwq(work);
2626 if (!gcwq)
2627 return false;
2628
2629 spin_lock_irq(&gcwq->lock);
2630 if (!list_empty(&work->entry)) {
2631 /*
2632 * See the comment near try_to_grab_pending()->smp_rmb().
2633 * If it was re-queued to a different gcwq under us, we
2634 * are not going to wait.
2635 */
2636 smp_rmb();
2637 cwq = get_work_cwq(work);
2638 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2639 goto already_gone;
2640 } else if (wait_executing) {
2641 worker = find_worker_executing_work(gcwq, work);
2642 if (!worker)
2643 goto already_gone;
2644 cwq = worker->current_cwq;
2645 } else
2646 goto already_gone;
2647
2648 insert_wq_barrier(cwq, barr, work, worker);
2649 spin_unlock_irq(&gcwq->lock);
2650
2651 /*
2652 * If @max_active is 1 or rescuer is in use, flushing another work
2653 * item on the same workqueue may lead to deadlock. Make sure the
2654 * flusher is not running on the same workqueue by verifying write
2655 * access.
2656 */
2657 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2658 lock_map_acquire(&cwq->wq->lockdep_map);
2659 else
2660 lock_map_acquire_read(&cwq->wq->lockdep_map);
2661 lock_map_release(&cwq->wq->lockdep_map);
2662
2663 return true;
2664 already_gone:
2665 spin_unlock_irq(&gcwq->lock);
2666 return false;
2667 }
2668
2669 /**
2670 * flush_work - wait for a work to finish executing the last queueing instance
2671 * @work: the work to flush
2672 *
2673 * Wait until @work has finished execution. This function considers
2674 * only the last queueing instance of @work. If @work has been
2675 * enqueued across different CPUs on a non-reentrant workqueue or on
2676 * multiple workqueues, @work might still be executing on return on
2677 * some of the CPUs from earlier queueing.
2678 *
2679 * If @work was queued only on a non-reentrant, ordered or unbound
2680 * workqueue, @work is guaranteed to be idle on return if it hasn't
2681 * been requeued since flush started.
2682 *
2683 * RETURNS:
2684 * %true if flush_work() waited for the work to finish execution,
2685 * %false if it was already idle.
2686 */
2687 bool flush_work(struct work_struct *work)
2688 {
2689 struct wq_barrier barr;
2690
2691 lock_map_acquire(&work->lockdep_map);
2692 lock_map_release(&work->lockdep_map);
2693
2694 if (start_flush_work(work, &barr, true)) {
2695 wait_for_completion(&barr.done);
2696 destroy_work_on_stack(&barr.work);
2697 return true;
2698 } else
2699 return false;
2700 }
2701 EXPORT_SYMBOL_GPL(flush_work);
2702
2703 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2704 {
2705 struct wq_barrier barr;
2706 struct worker *worker;
2707
2708 spin_lock_irq(&gcwq->lock);
2709
2710 worker = find_worker_executing_work(gcwq, work);
2711 if (unlikely(worker))
2712 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2713
2714 spin_unlock_irq(&gcwq->lock);
2715
2716 if (unlikely(worker)) {
2717 wait_for_completion(&barr.done);
2718 destroy_work_on_stack(&barr.work);
2719 return true;
2720 } else
2721 return false;
2722 }
2723
2724 static bool wait_on_work(struct work_struct *work)
2725 {
2726 bool ret = false;
2727 int cpu;
2728
2729 might_sleep();
2730
2731 lock_map_acquire(&work->lockdep_map);
2732 lock_map_release(&work->lockdep_map);
2733
2734 for_each_gcwq_cpu(cpu)
2735 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2736 return ret;
2737 }
2738
2739 /**
2740 * flush_work_sync - wait until a work has finished execution
2741 * @work: the work to flush
2742 *
2743 * Wait until @work has finished execution. On return, it's
2744 * guaranteed that all queueing instances of @work which happened
2745 * before this function is called are finished. In other words, if
2746 * @work hasn't been requeued since this function was called, @work is
2747 * guaranteed to be idle on return.
2748 *
2749 * RETURNS:
2750 * %true if flush_work_sync() waited for the work to finish execution,
2751 * %false if it was already idle.
2752 */
2753 bool flush_work_sync(struct work_struct *work)
2754 {
2755 struct wq_barrier barr;
2756 bool pending, waited;
2757
2758 /* we'll wait for executions separately, queue barr only if pending */
2759 pending = start_flush_work(work, &barr, false);
2760
2761 /* wait for executions to finish */
2762 waited = wait_on_work(work);
2763
2764 /* wait for the pending one */
2765 if (pending) {
2766 wait_for_completion(&barr.done);
2767 destroy_work_on_stack(&barr.work);
2768 }
2769
2770 return pending || waited;
2771 }
2772 EXPORT_SYMBOL_GPL(flush_work_sync);
2773
2774 /*
2775 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2776 * so this work can't be re-armed in any way.
2777 */
2778 static int try_to_grab_pending(struct work_struct *work)
2779 {
2780 struct global_cwq *gcwq;
2781 int ret = -1;
2782
2783 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2784 return 0;
2785
2786 /*
2787 * The queueing is in progress, or it is already queued. Try to
2788 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2789 */
2790 gcwq = get_work_gcwq(work);
2791 if (!gcwq)
2792 return ret;
2793
2794 spin_lock_irq(&gcwq->lock);
2795 if (!list_empty(&work->entry)) {
2796 /*
2797 * This work is queued, but perhaps we locked the wrong gcwq.
2798 * In that case we must see the new value after rmb(), see
2799 * insert_work()->wmb().
2800 */
2801 smp_rmb();
2802 if (gcwq == get_work_gcwq(work)) {
2803 debug_work_deactivate(work);
2804 list_del_init(&work->entry);
2805 cwq_dec_nr_in_flight(get_work_cwq(work),
2806 get_work_color(work),
2807 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2808 ret = 1;
2809 }
2810 }
2811 spin_unlock_irq(&gcwq->lock);
2812
2813 return ret;
2814 }
2815
2816 static bool __cancel_work_timer(struct work_struct *work,
2817 struct timer_list* timer)
2818 {
2819 int ret;
2820
2821 do {
2822 ret = (timer && likely(del_timer(timer)));
2823 if (!ret)
2824 ret = try_to_grab_pending(work);
2825 wait_on_work(work);
2826 } while (unlikely(ret < 0));
2827
2828 clear_work_data(work);
2829 return ret;
2830 }
2831
2832 /**
2833 * cancel_work_sync - cancel a work and wait for it to finish
2834 * @work: the work to cancel
2835 *
2836 * Cancel @work and wait for its execution to finish. This function
2837 * can be used even if the work re-queues itself or migrates to
2838 * another workqueue. On return from this function, @work is
2839 * guaranteed to be not pending or executing on any CPU.
2840 *
2841 * cancel_work_sync(&delayed_work->work) must not be used for
2842 * delayed_work's. Use cancel_delayed_work_sync() instead.
2843 *
2844 * The caller must ensure that the workqueue on which @work was last
2845 * queued can't be destroyed before this function returns.
2846 *
2847 * RETURNS:
2848 * %true if @work was pending, %false otherwise.
2849 */
2850 bool cancel_work_sync(struct work_struct *work)
2851 {
2852 return __cancel_work_timer(work, NULL);
2853 }
2854 EXPORT_SYMBOL_GPL(cancel_work_sync);
2855
2856 /**
2857 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2858 * @dwork: the delayed work to flush
2859 *
2860 * Delayed timer is cancelled and the pending work is queued for
2861 * immediate execution. Like flush_work(), this function only
2862 * considers the last queueing instance of @dwork.
2863 *
2864 * RETURNS:
2865 * %true if flush_work() waited for the work to finish execution,
2866 * %false if it was already idle.
2867 */
2868 bool flush_delayed_work(struct delayed_work *dwork)
2869 {
2870 if (del_timer_sync(&dwork->timer))
2871 __queue_work(raw_smp_processor_id(),
2872 get_work_cwq(&dwork->work)->wq, &dwork->work);
2873 return flush_work(&dwork->work);
2874 }
2875 EXPORT_SYMBOL(flush_delayed_work);
2876
2877 /**
2878 * flush_delayed_work_sync - wait for a dwork to finish
2879 * @dwork: the delayed work to flush
2880 *
2881 * Delayed timer is cancelled and the pending work is queued for
2882 * execution immediately. Other than timer handling, its behavior
2883 * is identical to flush_work_sync().
2884 *
2885 * RETURNS:
2886 * %true if flush_work_sync() waited for the work to finish execution,
2887 * %false if it was already idle.
2888 */
2889 bool flush_delayed_work_sync(struct delayed_work *dwork)
2890 {
2891 if (del_timer_sync(&dwork->timer))
2892 __queue_work(raw_smp_processor_id(),
2893 get_work_cwq(&dwork->work)->wq, &dwork->work);
2894 return flush_work_sync(&dwork->work);
2895 }
2896 EXPORT_SYMBOL(flush_delayed_work_sync);
2897
2898 /**
2899 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2900 * @dwork: the delayed work cancel
2901 *
2902 * This is cancel_work_sync() for delayed works.
2903 *
2904 * RETURNS:
2905 * %true if @dwork was pending, %false otherwise.
2906 */
2907 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2908 {
2909 return __cancel_work_timer(&dwork->work, &dwork->timer);
2910 }
2911 EXPORT_SYMBOL(cancel_delayed_work_sync);
2912
2913 /**
2914 * schedule_work - put work task in global workqueue
2915 * @work: job to be done
2916 *
2917 * Returns zero if @work was already on the kernel-global workqueue and
2918 * non-zero otherwise.
2919 *
2920 * This puts a job in the kernel-global workqueue if it was not already
2921 * queued and leaves it in the same position on the kernel-global
2922 * workqueue otherwise.
2923 */
2924 int schedule_work(struct work_struct *work)
2925 {
2926 return queue_work(system_wq, work);
2927 }
2928 EXPORT_SYMBOL(schedule_work);
2929
2930 /*
2931 * schedule_work_on - put work task on a specific cpu
2932 * @cpu: cpu to put the work task on
2933 * @work: job to be done
2934 *
2935 * This puts a job on a specific cpu
2936 */
2937 int schedule_work_on(int cpu, struct work_struct *work)
2938 {
2939 return queue_work_on(cpu, system_wq, work);
2940 }
2941 EXPORT_SYMBOL(schedule_work_on);
2942
2943 /**
2944 * schedule_delayed_work - put work task in global workqueue after delay
2945 * @dwork: job to be done
2946 * @delay: number of jiffies to wait or 0 for immediate execution
2947 *
2948 * After waiting for a given time this puts a job in the kernel-global
2949 * workqueue.
2950 */
2951 int schedule_delayed_work(struct delayed_work *dwork,
2952 unsigned long delay)
2953 {
2954 return queue_delayed_work(system_wq, dwork, delay);
2955 }
2956 EXPORT_SYMBOL(schedule_delayed_work);
2957
2958 /**
2959 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2960 * @cpu: cpu to use
2961 * @dwork: job to be done
2962 * @delay: number of jiffies to wait
2963 *
2964 * After waiting for a given time this puts a job in the kernel-global
2965 * workqueue on the specified CPU.
2966 */
2967 int schedule_delayed_work_on(int cpu,
2968 struct delayed_work *dwork, unsigned long delay)
2969 {
2970 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2971 }
2972 EXPORT_SYMBOL(schedule_delayed_work_on);
2973
2974 /**
2975 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2976 * @func: the function to call
2977 *
2978 * schedule_on_each_cpu() executes @func on each online CPU using the
2979 * system workqueue and blocks until all CPUs have completed.
2980 * schedule_on_each_cpu() is very slow.
2981 *
2982 * RETURNS:
2983 * 0 on success, -errno on failure.
2984 */
2985 int schedule_on_each_cpu(work_func_t func)
2986 {
2987 int cpu;
2988 struct work_struct __percpu *works;
2989
2990 works = alloc_percpu(struct work_struct);
2991 if (!works)
2992 return -ENOMEM;
2993
2994 get_online_cpus();
2995
2996 for_each_online_cpu(cpu) {
2997 struct work_struct *work = per_cpu_ptr(works, cpu);
2998
2999 INIT_WORK(work, func);
3000 schedule_work_on(cpu, work);
3001 }
3002
3003 for_each_online_cpu(cpu)
3004 flush_work(per_cpu_ptr(works, cpu));
3005
3006 put_online_cpus();
3007 free_percpu(works);
3008 return 0;
3009 }
3010
3011 /**
3012 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3013 *
3014 * Forces execution of the kernel-global workqueue and blocks until its
3015 * completion.
3016 *
3017 * Think twice before calling this function! It's very easy to get into
3018 * trouble if you don't take great care. Either of the following situations
3019 * will lead to deadlock:
3020 *
3021 * One of the work items currently on the workqueue needs to acquire
3022 * a lock held by your code or its caller.
3023 *
3024 * Your code is running in the context of a work routine.
3025 *
3026 * They will be detected by lockdep when they occur, but the first might not
3027 * occur very often. It depends on what work items are on the workqueue and
3028 * what locks they need, which you have no control over.
3029 *
3030 * In most situations flushing the entire workqueue is overkill; you merely
3031 * need to know that a particular work item isn't queued and isn't running.
3032 * In such cases you should use cancel_delayed_work_sync() or
3033 * cancel_work_sync() instead.
3034 */
3035 void flush_scheduled_work(void)
3036 {
3037 flush_workqueue(system_wq);
3038 }
3039 EXPORT_SYMBOL(flush_scheduled_work);
3040
3041 /**
3042 * execute_in_process_context - reliably execute the routine with user context
3043 * @fn: the function to execute
3044 * @ew: guaranteed storage for the execute work structure (must
3045 * be available when the work executes)
3046 *
3047 * Executes the function immediately if process context is available,
3048 * otherwise schedules the function for delayed execution.
3049 *
3050 * Returns: 0 - function was executed
3051 * 1 - function was scheduled for execution
3052 */
3053 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3054 {
3055 if (!in_interrupt()) {
3056 fn(&ew->work);
3057 return 0;
3058 }
3059
3060 INIT_WORK(&ew->work, fn);
3061 schedule_work(&ew->work);
3062
3063 return 1;
3064 }
3065 EXPORT_SYMBOL_GPL(execute_in_process_context);
3066
3067 int keventd_up(void)
3068 {
3069 return system_wq != NULL;
3070 }
3071
3072 static int alloc_cwqs(struct workqueue_struct *wq)
3073 {
3074 /*
3075 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3076 * Make sure that the alignment isn't lower than that of
3077 * unsigned long long.
3078 */
3079 const size_t size = sizeof(struct cpu_workqueue_struct);
3080 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3081 __alignof__(unsigned long long));
3082
3083 if (!(wq->flags & WQ_UNBOUND))
3084 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3085 else {
3086 void *ptr;
3087
3088 /*
3089 * Allocate enough room to align cwq and put an extra
3090 * pointer at the end pointing back to the originally
3091 * allocated pointer which will be used for free.
3092 */
3093 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3094 if (ptr) {
3095 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3096 *(void **)(wq->cpu_wq.single + 1) = ptr;
3097 }
3098 }
3099
3100 /* just in case, make sure it's actually aligned */
3101 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3102 return wq->cpu_wq.v ? 0 : -ENOMEM;
3103 }
3104
3105 static void free_cwqs(struct workqueue_struct *wq)
3106 {
3107 if (!(wq->flags & WQ_UNBOUND))
3108 free_percpu(wq->cpu_wq.pcpu);
3109 else if (wq->cpu_wq.single) {
3110 /* the pointer to free is stored right after the cwq */
3111 kfree(*(void **)(wq->cpu_wq.single + 1));
3112 }
3113 }
3114
3115 static int wq_clamp_max_active(int max_active, unsigned int flags,
3116 const char *name)
3117 {
3118 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3119
3120 if (max_active < 1 || max_active > lim)
3121 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3122 "is out of range, clamping between %d and %d\n",
3123 max_active, name, 1, lim);
3124
3125 return clamp_val(max_active, 1, lim);
3126 }
3127
3128 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3129 unsigned int flags,
3130 int max_active,
3131 struct lock_class_key *key,
3132 const char *lock_name, ...)
3133 {
3134 va_list args, args1;
3135 struct workqueue_struct *wq;
3136 unsigned int cpu;
3137 size_t namelen;
3138
3139 /* determine namelen, allocate wq and format name */
3140 va_start(args, lock_name);
3141 va_copy(args1, args);
3142 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3143
3144 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3145 if (!wq)
3146 goto err;
3147
3148 vsnprintf(wq->name, namelen, fmt, args1);
3149 va_end(args);
3150 va_end(args1);
3151
3152 /*
3153 * Workqueues which may be used during memory reclaim should
3154 * have a rescuer to guarantee forward progress.
3155 */
3156 if (flags & WQ_MEM_RECLAIM)
3157 flags |= WQ_RESCUER;
3158
3159 max_active = max_active ?: WQ_DFL_ACTIVE;
3160 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3161
3162 /* init wq */
3163 wq->flags = flags;
3164 wq->saved_max_active = max_active;
3165 mutex_init(&wq->flush_mutex);
3166 atomic_set(&wq->nr_cwqs_to_flush, 0);
3167 INIT_LIST_HEAD(&wq->flusher_queue);
3168 INIT_LIST_HEAD(&wq->flusher_overflow);
3169
3170 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3171 INIT_LIST_HEAD(&wq->list);
3172
3173 if (alloc_cwqs(wq) < 0)
3174 goto err;
3175
3176 for_each_cwq_cpu(cpu, wq) {
3177 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3178 struct global_cwq *gcwq = get_gcwq(cpu);
3179 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3180
3181 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3182 cwq->pool = &gcwq->pools[pool_idx];
3183 cwq->wq = wq;
3184 cwq->flush_color = -1;
3185 cwq->max_active = max_active;
3186 INIT_LIST_HEAD(&cwq->delayed_works);
3187 }
3188
3189 if (flags & WQ_RESCUER) {
3190 struct worker *rescuer;
3191
3192 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3193 goto err;
3194
3195 wq->rescuer = rescuer = alloc_worker();
3196 if (!rescuer)
3197 goto err;
3198
3199 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3200 wq->name);
3201 if (IS_ERR(rescuer->task))
3202 goto err;
3203
3204 rescuer->task->flags |= PF_THREAD_BOUND;
3205 wake_up_process(rescuer->task);
3206 }
3207
3208 /*
3209 * workqueue_lock protects global freeze state and workqueues
3210 * list. Grab it, set max_active accordingly and add the new
3211 * workqueue to workqueues list.
3212 */
3213 spin_lock(&workqueue_lock);
3214
3215 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3216 for_each_cwq_cpu(cpu, wq)
3217 get_cwq(cpu, wq)->max_active = 0;
3218
3219 list_add(&wq->list, &workqueues);
3220
3221 spin_unlock(&workqueue_lock);
3222
3223 return wq;
3224 err:
3225 if (wq) {
3226 free_cwqs(wq);
3227 free_mayday_mask(wq->mayday_mask);
3228 kfree(wq->rescuer);
3229 kfree(wq);
3230 }
3231 return NULL;
3232 }
3233 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3234
3235 /**
3236 * destroy_workqueue - safely terminate a workqueue
3237 * @wq: target workqueue
3238 *
3239 * Safely destroy a workqueue. All work currently pending will be done first.
3240 */
3241 void destroy_workqueue(struct workqueue_struct *wq)
3242 {
3243 unsigned int cpu;
3244
3245 /* drain it before proceeding with destruction */
3246 drain_workqueue(wq);
3247
3248 /*
3249 * wq list is used to freeze wq, remove from list after
3250 * flushing is complete in case freeze races us.
3251 */
3252 spin_lock(&workqueue_lock);
3253 list_del(&wq->list);
3254 spin_unlock(&workqueue_lock);
3255
3256 /* sanity check */
3257 for_each_cwq_cpu(cpu, wq) {
3258 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3259 int i;
3260
3261 for (i = 0; i < WORK_NR_COLORS; i++)
3262 BUG_ON(cwq->nr_in_flight[i]);
3263 BUG_ON(cwq->nr_active);
3264 BUG_ON(!list_empty(&cwq->delayed_works));
3265 }
3266
3267 if (wq->flags & WQ_RESCUER) {
3268 kthread_stop(wq->rescuer->task);
3269 free_mayday_mask(wq->mayday_mask);
3270 kfree(wq->rescuer);
3271 }
3272
3273 free_cwqs(wq);
3274 kfree(wq);
3275 }
3276 EXPORT_SYMBOL_GPL(destroy_workqueue);
3277
3278 /**
3279 * workqueue_set_max_active - adjust max_active of a workqueue
3280 * @wq: target workqueue
3281 * @max_active: new max_active value.
3282 *
3283 * Set max_active of @wq to @max_active.
3284 *
3285 * CONTEXT:
3286 * Don't call from IRQ context.
3287 */
3288 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3289 {
3290 unsigned int cpu;
3291
3292 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3293
3294 spin_lock(&workqueue_lock);
3295
3296 wq->saved_max_active = max_active;
3297
3298 for_each_cwq_cpu(cpu, wq) {
3299 struct global_cwq *gcwq = get_gcwq(cpu);
3300
3301 spin_lock_irq(&gcwq->lock);
3302
3303 if (!(wq->flags & WQ_FREEZABLE) ||
3304 !(gcwq->flags & GCWQ_FREEZING))
3305 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3306
3307 spin_unlock_irq(&gcwq->lock);
3308 }
3309
3310 spin_unlock(&workqueue_lock);
3311 }
3312 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3313
3314 /**
3315 * workqueue_congested - test whether a workqueue is congested
3316 * @cpu: CPU in question
3317 * @wq: target workqueue
3318 *
3319 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3320 * no synchronization around this function and the test result is
3321 * unreliable and only useful as advisory hints or for debugging.
3322 *
3323 * RETURNS:
3324 * %true if congested, %false otherwise.
3325 */
3326 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3327 {
3328 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3329
3330 return !list_empty(&cwq->delayed_works);
3331 }
3332 EXPORT_SYMBOL_GPL(workqueue_congested);
3333
3334 /**
3335 * work_cpu - return the last known associated cpu for @work
3336 * @work: the work of interest
3337 *
3338 * RETURNS:
3339 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3340 */
3341 unsigned int work_cpu(struct work_struct *work)
3342 {
3343 struct global_cwq *gcwq = get_work_gcwq(work);
3344
3345 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3346 }
3347 EXPORT_SYMBOL_GPL(work_cpu);
3348
3349 /**
3350 * work_busy - test whether a work is currently pending or running
3351 * @work: the work to be tested
3352 *
3353 * Test whether @work is currently pending or running. There is no
3354 * synchronization around this function and the test result is
3355 * unreliable and only useful as advisory hints or for debugging.
3356 * Especially for reentrant wqs, the pending state might hide the
3357 * running state.
3358 *
3359 * RETURNS:
3360 * OR'd bitmask of WORK_BUSY_* bits.
3361 */
3362 unsigned int work_busy(struct work_struct *work)
3363 {
3364 struct global_cwq *gcwq = get_work_gcwq(work);
3365 unsigned long flags;
3366 unsigned int ret = 0;
3367
3368 if (!gcwq)
3369 return false;
3370
3371 spin_lock_irqsave(&gcwq->lock, flags);
3372
3373 if (work_pending(work))
3374 ret |= WORK_BUSY_PENDING;
3375 if (find_worker_executing_work(gcwq, work))
3376 ret |= WORK_BUSY_RUNNING;
3377
3378 spin_unlock_irqrestore(&gcwq->lock, flags);
3379
3380 return ret;
3381 }
3382 EXPORT_SYMBOL_GPL(work_busy);
3383
3384 /*
3385 * CPU hotplug.
3386 *
3387 * There are two challenges in supporting CPU hotplug. Firstly, there
3388 * are a lot of assumptions on strong associations among work, cwq and
3389 * gcwq which make migrating pending and scheduled works very
3390 * difficult to implement without impacting hot paths. Secondly,
3391 * gcwqs serve mix of short, long and very long running works making
3392 * blocked draining impractical.
3393 *
3394 * This is solved by allowing a gcwq to be disassociated from the CPU
3395 * running as an unbound one and allowing it to be reattached later if the
3396 * cpu comes back online.
3397 */
3398
3399 /* claim manager positions of all pools */
3400 static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3401 {
3402 struct worker_pool *pool;
3403
3404 for_each_worker_pool(pool, gcwq)
3405 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3406 spin_lock_irq(&gcwq->lock);
3407 }
3408
3409 /* release manager positions */
3410 static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3411 {
3412 struct worker_pool *pool;
3413
3414 spin_unlock_irq(&gcwq->lock);
3415 for_each_worker_pool(pool, gcwq)
3416 mutex_unlock(&pool->manager_mutex);
3417 }
3418
3419 static void gcwq_unbind_fn(struct work_struct *work)
3420 {
3421 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3422 struct worker_pool *pool;
3423 struct worker *worker;
3424 struct hlist_node *pos;
3425 int i;
3426
3427 BUG_ON(gcwq->cpu != smp_processor_id());
3428
3429 gcwq_claim_management_and_lock(gcwq);
3430
3431 /*
3432 * We've claimed all manager positions. Make all workers unbound
3433 * and set DISASSOCIATED. Before this, all workers except for the
3434 * ones which are still executing works from before the last CPU
3435 * down must be on the cpu. After this, they may become diasporas.
3436 */
3437 for_each_worker_pool(pool, gcwq)
3438 list_for_each_entry(worker, &pool->idle_list, entry)
3439 worker->flags |= WORKER_UNBOUND;
3440
3441 for_each_busy_worker(worker, i, pos, gcwq)
3442 worker->flags |= WORKER_UNBOUND;
3443
3444 gcwq->flags |= GCWQ_DISASSOCIATED;
3445
3446 gcwq_release_management_and_unlock(gcwq);
3447
3448 /*
3449 * Call schedule() so that we cross rq->lock and thus can guarantee
3450 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3451 * as scheduler callbacks may be invoked from other cpus.
3452 */
3453 schedule();
3454
3455 /*
3456 * Sched callbacks are disabled now. Zap nr_running. After this,
3457 * nr_running stays zero and need_more_worker() and keep_working()
3458 * are always true as long as the worklist is not empty. @gcwq now
3459 * behaves as unbound (in terms of concurrency management) gcwq
3460 * which is served by workers tied to the CPU.
3461 *
3462 * On return from this function, the current worker would trigger
3463 * unbound chain execution of pending work items if other workers
3464 * didn't already.
3465 */
3466 for_each_worker_pool(pool, gcwq)
3467 atomic_set(get_pool_nr_running(pool), 0);
3468 }
3469
3470 /*
3471 * Workqueues should be brought up before normal priority CPU notifiers.
3472 * This will be registered high priority CPU notifier.
3473 */
3474 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3475 unsigned long action,
3476 void *hcpu)
3477 {
3478 unsigned int cpu = (unsigned long)hcpu;
3479 struct global_cwq *gcwq = get_gcwq(cpu);
3480 struct worker_pool *pool;
3481
3482 switch (action & ~CPU_TASKS_FROZEN) {
3483 case CPU_UP_PREPARE:
3484 for_each_worker_pool(pool, gcwq) {
3485 struct worker *worker;
3486
3487 if (pool->nr_workers)
3488 continue;
3489
3490 worker = create_worker(pool);
3491 if (!worker)
3492 return NOTIFY_BAD;
3493
3494 spin_lock_irq(&gcwq->lock);
3495 start_worker(worker);
3496 spin_unlock_irq(&gcwq->lock);
3497 }
3498 break;
3499
3500 case CPU_DOWN_FAILED:
3501 case CPU_ONLINE:
3502 gcwq_claim_management_and_lock(gcwq);
3503 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3504 rebind_workers(gcwq);
3505 gcwq_release_management_and_unlock(gcwq);
3506 break;
3507 }
3508 return NOTIFY_OK;
3509 }
3510
3511 /*
3512 * Workqueues should be brought down after normal priority CPU notifiers.
3513 * This will be registered as low priority CPU notifier.
3514 */
3515 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3516 unsigned long action,
3517 void *hcpu)
3518 {
3519 unsigned int cpu = (unsigned long)hcpu;
3520 struct work_struct unbind_work;
3521
3522 switch (action & ~CPU_TASKS_FROZEN) {
3523 case CPU_DOWN_PREPARE:
3524 /* unbinding should happen on the local CPU */
3525 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3526 schedule_work_on(cpu, &unbind_work);
3527 flush_work(&unbind_work);
3528 break;
3529 }
3530 return NOTIFY_OK;
3531 }
3532
3533 #ifdef CONFIG_SMP
3534
3535 struct work_for_cpu {
3536 struct completion completion;
3537 long (*fn)(void *);
3538 void *arg;
3539 long ret;
3540 };
3541
3542 static int do_work_for_cpu(void *_wfc)
3543 {
3544 struct work_for_cpu *wfc = _wfc;
3545 wfc->ret = wfc->fn(wfc->arg);
3546 complete(&wfc->completion);
3547 return 0;
3548 }
3549
3550 /**
3551 * work_on_cpu - run a function in user context on a particular cpu
3552 * @cpu: the cpu to run on
3553 * @fn: the function to run
3554 * @arg: the function arg
3555 *
3556 * This will return the value @fn returns.
3557 * It is up to the caller to ensure that the cpu doesn't go offline.
3558 * The caller must not hold any locks which would prevent @fn from completing.
3559 */
3560 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3561 {
3562 struct task_struct *sub_thread;
3563 struct work_for_cpu wfc = {
3564 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3565 .fn = fn,
3566 .arg = arg,
3567 };
3568
3569 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3570 if (IS_ERR(sub_thread))
3571 return PTR_ERR(sub_thread);
3572 kthread_bind(sub_thread, cpu);
3573 wake_up_process(sub_thread);
3574 wait_for_completion(&wfc.completion);
3575 return wfc.ret;
3576 }
3577 EXPORT_SYMBOL_GPL(work_on_cpu);
3578 #endif /* CONFIG_SMP */
3579
3580 #ifdef CONFIG_FREEZER
3581
3582 /**
3583 * freeze_workqueues_begin - begin freezing workqueues
3584 *
3585 * Start freezing workqueues. After this function returns, all freezable
3586 * workqueues will queue new works to their frozen_works list instead of
3587 * gcwq->worklist.
3588 *
3589 * CONTEXT:
3590 * Grabs and releases workqueue_lock and gcwq->lock's.
3591 */
3592 void freeze_workqueues_begin(void)
3593 {
3594 unsigned int cpu;
3595
3596 spin_lock(&workqueue_lock);
3597
3598 BUG_ON(workqueue_freezing);
3599 workqueue_freezing = true;
3600
3601 for_each_gcwq_cpu(cpu) {
3602 struct global_cwq *gcwq = get_gcwq(cpu);
3603 struct workqueue_struct *wq;
3604
3605 spin_lock_irq(&gcwq->lock);
3606
3607 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3608 gcwq->flags |= GCWQ_FREEZING;
3609
3610 list_for_each_entry(wq, &workqueues, list) {
3611 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3612
3613 if (cwq && wq->flags & WQ_FREEZABLE)
3614 cwq->max_active = 0;
3615 }
3616
3617 spin_unlock_irq(&gcwq->lock);
3618 }
3619
3620 spin_unlock(&workqueue_lock);
3621 }
3622
3623 /**
3624 * freeze_workqueues_busy - are freezable workqueues still busy?
3625 *
3626 * Check whether freezing is complete. This function must be called
3627 * between freeze_workqueues_begin() and thaw_workqueues().
3628 *
3629 * CONTEXT:
3630 * Grabs and releases workqueue_lock.
3631 *
3632 * RETURNS:
3633 * %true if some freezable workqueues are still busy. %false if freezing
3634 * is complete.
3635 */
3636 bool freeze_workqueues_busy(void)
3637 {
3638 unsigned int cpu;
3639 bool busy = false;
3640
3641 spin_lock(&workqueue_lock);
3642
3643 BUG_ON(!workqueue_freezing);
3644
3645 for_each_gcwq_cpu(cpu) {
3646 struct workqueue_struct *wq;
3647 /*
3648 * nr_active is monotonically decreasing. It's safe
3649 * to peek without lock.
3650 */
3651 list_for_each_entry(wq, &workqueues, list) {
3652 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3653
3654 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3655 continue;
3656
3657 BUG_ON(cwq->nr_active < 0);
3658 if (cwq->nr_active) {
3659 busy = true;
3660 goto out_unlock;
3661 }
3662 }
3663 }
3664 out_unlock:
3665 spin_unlock(&workqueue_lock);
3666 return busy;
3667 }
3668
3669 /**
3670 * thaw_workqueues - thaw workqueues
3671 *
3672 * Thaw workqueues. Normal queueing is restored and all collected
3673 * frozen works are transferred to their respective gcwq worklists.
3674 *
3675 * CONTEXT:
3676 * Grabs and releases workqueue_lock and gcwq->lock's.
3677 */
3678 void thaw_workqueues(void)
3679 {
3680 unsigned int cpu;
3681
3682 spin_lock(&workqueue_lock);
3683
3684 if (!workqueue_freezing)
3685 goto out_unlock;
3686
3687 for_each_gcwq_cpu(cpu) {
3688 struct global_cwq *gcwq = get_gcwq(cpu);
3689 struct worker_pool *pool;
3690 struct workqueue_struct *wq;
3691
3692 spin_lock_irq(&gcwq->lock);
3693
3694 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3695 gcwq->flags &= ~GCWQ_FREEZING;
3696
3697 list_for_each_entry(wq, &workqueues, list) {
3698 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3699
3700 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3701 continue;
3702
3703 /* restore max_active and repopulate worklist */
3704 cwq->max_active = wq->saved_max_active;
3705
3706 while (!list_empty(&cwq->delayed_works) &&
3707 cwq->nr_active < cwq->max_active)
3708 cwq_activate_first_delayed(cwq);
3709 }
3710
3711 for_each_worker_pool(pool, gcwq)
3712 wake_up_worker(pool);
3713
3714 spin_unlock_irq(&gcwq->lock);
3715 }
3716
3717 workqueue_freezing = false;
3718 out_unlock:
3719 spin_unlock(&workqueue_lock);
3720 }
3721 #endif /* CONFIG_FREEZER */
3722
3723 static int __init init_workqueues(void)
3724 {
3725 unsigned int cpu;
3726 int i;
3727
3728 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3729 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3730
3731 /* initialize gcwqs */
3732 for_each_gcwq_cpu(cpu) {
3733 struct global_cwq *gcwq = get_gcwq(cpu);
3734 struct worker_pool *pool;
3735
3736 spin_lock_init(&gcwq->lock);
3737 gcwq->cpu = cpu;
3738 gcwq->flags |= GCWQ_DISASSOCIATED;
3739
3740 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3741 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3742
3743 for_each_worker_pool(pool, gcwq) {
3744 pool->gcwq = gcwq;
3745 INIT_LIST_HEAD(&pool->worklist);
3746 INIT_LIST_HEAD(&pool->idle_list);
3747
3748 init_timer_deferrable(&pool->idle_timer);
3749 pool->idle_timer.function = idle_worker_timeout;
3750 pool->idle_timer.data = (unsigned long)pool;
3751
3752 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3753 (unsigned long)pool);
3754
3755 mutex_init(&pool->manager_mutex);
3756 ida_init(&pool->worker_ida);
3757 }
3758
3759 init_waitqueue_head(&gcwq->rebind_hold);
3760 }
3761
3762 /* create the initial worker */
3763 for_each_online_gcwq_cpu(cpu) {
3764 struct global_cwq *gcwq = get_gcwq(cpu);
3765 struct worker_pool *pool;
3766
3767 if (cpu != WORK_CPU_UNBOUND)
3768 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3769
3770 for_each_worker_pool(pool, gcwq) {
3771 struct worker *worker;
3772
3773 worker = create_worker(pool);
3774 BUG_ON(!worker);
3775 spin_lock_irq(&gcwq->lock);
3776 start_worker(worker);
3777 spin_unlock_irq(&gcwq->lock);
3778 }
3779 }
3780
3781 system_wq = alloc_workqueue("events", 0, 0);
3782 system_long_wq = alloc_workqueue("events_long", 0, 0);
3783 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3784 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3785 WQ_UNBOUND_MAX_ACTIVE);
3786 system_freezable_wq = alloc_workqueue("events_freezable",
3787 WQ_FREEZABLE, 0);
3788 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3789 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3790 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3791 !system_unbound_wq || !system_freezable_wq ||
3792 !system_nrt_freezable_wq);
3793 return 0;
3794 }
3795 early_initcall(init_workqueues);
This page took 0.102447 seconds and 6 git commands to generate.