workqueue: add delayed_work->wq to simplify reentrancy handling
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45
46 #include "workqueue_internal.h"
47
48 enum {
49 /*
50 * worker_pool flags
51 *
52 * A bound pool is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The pool behaves as an unbound one.
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
64 */
65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
68 POOL_FREEZING = 1 << 3, /* freeze in progress */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
77
78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
79 WORKER_CPU_INTENSIVE,
80
81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
82
83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
84
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
99 HIGHPRI_NICE_LEVEL = -20,
100 };
101
102 /*
103 * Structure fields follow one of the following exclusion rules.
104 *
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
107 *
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
111 * L: pool->lock protected. Access with pool->lock held.
112 *
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
117 *
118 * F: wq->flush_mutex protected.
119 *
120 * W: workqueue_lock protected.
121 */
122
123 /* struct worker is defined in workqueue_internal.h */
124
125 struct worker_pool {
126 spinlock_t lock; /* the pool lock */
127 unsigned int cpu; /* I: the associated cpu */
128 int id; /* I: pool ID */
129 unsigned int flags; /* X: flags */
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
133
134 /* nr_idle includes the ones off idle_list for rebinding */
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
146 struct ida worker_ida; /* L: for worker IDs */
147 } ____cacheline_aligned_in_smp;
148
149 /*
150 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
151 * work_struct->data are used for flags and thus cwqs need to be
152 * aligned at two's power of the number of flag bits.
153 */
154 struct cpu_workqueue_struct {
155 struct worker_pool *pool; /* I: the associated pool */
156 struct workqueue_struct *wq; /* I: the owning workqueue */
157 int work_color; /* L: current color */
158 int flush_color; /* L: flushing color */
159 int nr_in_flight[WORK_NR_COLORS];
160 /* L: nr of in_flight works */
161 int nr_active; /* L: nr of active works */
162 int max_active; /* L: max active works */
163 struct list_head delayed_works; /* L: delayed works */
164 };
165
166 /*
167 * Structure used to wait for workqueue flush.
168 */
169 struct wq_flusher {
170 struct list_head list; /* F: list of flushers */
171 int flush_color; /* F: flush color waiting for */
172 struct completion done; /* flush completion */
173 };
174
175 /*
176 * All cpumasks are assumed to be always set on UP and thus can't be
177 * used to determine whether there's something to be done.
178 */
179 #ifdef CONFIG_SMP
180 typedef cpumask_var_t mayday_mask_t;
181 #define mayday_test_and_set_cpu(cpu, mask) \
182 cpumask_test_and_set_cpu((cpu), (mask))
183 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
184 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
185 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
186 #define free_mayday_mask(mask) free_cpumask_var((mask))
187 #else
188 typedef unsigned long mayday_mask_t;
189 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
190 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
191 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
192 #define alloc_mayday_mask(maskp, gfp) true
193 #define free_mayday_mask(mask) do { } while (0)
194 #endif
195
196 /*
197 * The externally visible workqueue abstraction is an array of
198 * per-CPU workqueues:
199 */
200 struct workqueue_struct {
201 unsigned int flags; /* W: WQ_* flags */
202 union {
203 struct cpu_workqueue_struct __percpu *pcpu;
204 struct cpu_workqueue_struct *single;
205 unsigned long v;
206 } cpu_wq; /* I: cwq's */
207 struct list_head list; /* W: list of all workqueues */
208
209 struct mutex flush_mutex; /* protects wq flushing */
210 int work_color; /* F: current work color */
211 int flush_color; /* F: current flush color */
212 atomic_t nr_cwqs_to_flush; /* flush in progress */
213 struct wq_flusher *first_flusher; /* F: first flusher */
214 struct list_head flusher_queue; /* F: flush waiters */
215 struct list_head flusher_overflow; /* F: flush overflow list */
216
217 mayday_mask_t mayday_mask; /* cpus requesting rescue */
218 struct worker *rescuer; /* I: rescue worker */
219
220 int nr_drainers; /* W: drain in progress */
221 int saved_max_active; /* W: saved cwq max_active */
222 #ifdef CONFIG_LOCKDEP
223 struct lockdep_map lockdep_map;
224 #endif
225 char name[]; /* I: workqueue name */
226 };
227
228 struct workqueue_struct *system_wq __read_mostly;
229 EXPORT_SYMBOL_GPL(system_wq);
230 struct workqueue_struct *system_highpri_wq __read_mostly;
231 EXPORT_SYMBOL_GPL(system_highpri_wq);
232 struct workqueue_struct *system_long_wq __read_mostly;
233 EXPORT_SYMBOL_GPL(system_long_wq);
234 struct workqueue_struct *system_unbound_wq __read_mostly;
235 EXPORT_SYMBOL_GPL(system_unbound_wq);
236 struct workqueue_struct *system_freezable_wq __read_mostly;
237 EXPORT_SYMBOL_GPL(system_freezable_wq);
238
239 #define CREATE_TRACE_POINTS
240 #include <trace/events/workqueue.h>
241
242 #define for_each_std_worker_pool(pool, cpu) \
243 for ((pool) = &std_worker_pools(cpu)[0]; \
244 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
245
246 #define for_each_busy_worker(worker, i, pos, pool) \
247 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
248
249 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
250 unsigned int sw)
251 {
252 if (cpu < nr_cpu_ids) {
253 if (sw & 1) {
254 cpu = cpumask_next(cpu, mask);
255 if (cpu < nr_cpu_ids)
256 return cpu;
257 }
258 if (sw & 2)
259 return WORK_CPU_UNBOUND;
260 }
261 return WORK_CPU_END;
262 }
263
264 static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
265 struct workqueue_struct *wq)
266 {
267 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
268 }
269
270 /*
271 * CPU iterators
272 *
273 * An extra cpu number is defined using an invalid cpu number
274 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
275 * specific CPU. The following iterators are similar to for_each_*_cpu()
276 * iterators but also considers the unbound CPU.
277 *
278 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
279 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
280 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
281 * WORK_CPU_UNBOUND for unbound workqueues
282 */
283 #define for_each_wq_cpu(cpu) \
284 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
285 (cpu) < WORK_CPU_END; \
286 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
287
288 #define for_each_online_wq_cpu(cpu) \
289 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
290 (cpu) < WORK_CPU_END; \
291 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
292
293 #define for_each_cwq_cpu(cpu, wq) \
294 for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq)); \
295 (cpu) < WORK_CPU_END; \
296 (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
297
298 #ifdef CONFIG_DEBUG_OBJECTS_WORK
299
300 static struct debug_obj_descr work_debug_descr;
301
302 static void *work_debug_hint(void *addr)
303 {
304 return ((struct work_struct *) addr)->func;
305 }
306
307 /*
308 * fixup_init is called when:
309 * - an active object is initialized
310 */
311 static int work_fixup_init(void *addr, enum debug_obj_state state)
312 {
313 struct work_struct *work = addr;
314
315 switch (state) {
316 case ODEBUG_STATE_ACTIVE:
317 cancel_work_sync(work);
318 debug_object_init(work, &work_debug_descr);
319 return 1;
320 default:
321 return 0;
322 }
323 }
324
325 /*
326 * fixup_activate is called when:
327 * - an active object is activated
328 * - an unknown object is activated (might be a statically initialized object)
329 */
330 static int work_fixup_activate(void *addr, enum debug_obj_state state)
331 {
332 struct work_struct *work = addr;
333
334 switch (state) {
335
336 case ODEBUG_STATE_NOTAVAILABLE:
337 /*
338 * This is not really a fixup. The work struct was
339 * statically initialized. We just make sure that it
340 * is tracked in the object tracker.
341 */
342 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
343 debug_object_init(work, &work_debug_descr);
344 debug_object_activate(work, &work_debug_descr);
345 return 0;
346 }
347 WARN_ON_ONCE(1);
348 return 0;
349
350 case ODEBUG_STATE_ACTIVE:
351 WARN_ON(1);
352
353 default:
354 return 0;
355 }
356 }
357
358 /*
359 * fixup_free is called when:
360 * - an active object is freed
361 */
362 static int work_fixup_free(void *addr, enum debug_obj_state state)
363 {
364 struct work_struct *work = addr;
365
366 switch (state) {
367 case ODEBUG_STATE_ACTIVE:
368 cancel_work_sync(work);
369 debug_object_free(work, &work_debug_descr);
370 return 1;
371 default:
372 return 0;
373 }
374 }
375
376 static struct debug_obj_descr work_debug_descr = {
377 .name = "work_struct",
378 .debug_hint = work_debug_hint,
379 .fixup_init = work_fixup_init,
380 .fixup_activate = work_fixup_activate,
381 .fixup_free = work_fixup_free,
382 };
383
384 static inline void debug_work_activate(struct work_struct *work)
385 {
386 debug_object_activate(work, &work_debug_descr);
387 }
388
389 static inline void debug_work_deactivate(struct work_struct *work)
390 {
391 debug_object_deactivate(work, &work_debug_descr);
392 }
393
394 void __init_work(struct work_struct *work, int onstack)
395 {
396 if (onstack)
397 debug_object_init_on_stack(work, &work_debug_descr);
398 else
399 debug_object_init(work, &work_debug_descr);
400 }
401 EXPORT_SYMBOL_GPL(__init_work);
402
403 void destroy_work_on_stack(struct work_struct *work)
404 {
405 debug_object_free(work, &work_debug_descr);
406 }
407 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
408
409 #else
410 static inline void debug_work_activate(struct work_struct *work) { }
411 static inline void debug_work_deactivate(struct work_struct *work) { }
412 #endif
413
414 /* Serializes the accesses to the list of workqueues. */
415 static DEFINE_SPINLOCK(workqueue_lock);
416 static LIST_HEAD(workqueues);
417 static bool workqueue_freezing; /* W: have wqs started freezing? */
418
419 /*
420 * The CPU standard worker pools. nr_running is the only field which is
421 * expected to be used frequently by other cpus via try_to_wake_up(). Put
422 * it in a separate cacheline.
423 */
424 static DEFINE_PER_CPU(struct worker_pool [NR_STD_WORKER_POOLS],
425 cpu_std_worker_pools);
426 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t [NR_STD_WORKER_POOLS],
427 cpu_std_pool_nr_running);
428
429 /*
430 * Standard worker pools and nr_running counter for unbound CPU. The pools
431 * have POOL_DISASSOCIATED set, and all workers have WORKER_UNBOUND set.
432 */
433 static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434 static atomic_t unbound_std_pool_nr_running[NR_STD_WORKER_POOLS] = {
435 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
436 };
437
438 /* idr of all pools */
439 static DEFINE_MUTEX(worker_pool_idr_mutex);
440 static DEFINE_IDR(worker_pool_idr);
441
442 static int worker_thread(void *__worker);
443
444 static struct worker_pool *std_worker_pools(int cpu)
445 {
446 if (cpu != WORK_CPU_UNBOUND)
447 return per_cpu(cpu_std_worker_pools, cpu);
448 else
449 return unbound_std_worker_pools;
450 }
451
452 static int std_worker_pool_pri(struct worker_pool *pool)
453 {
454 return pool - std_worker_pools(pool->cpu);
455 }
456
457 /* allocate ID and assign it to @pool */
458 static int worker_pool_assign_id(struct worker_pool *pool)
459 {
460 int ret;
461
462 mutex_lock(&worker_pool_idr_mutex);
463 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
464 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
465 mutex_unlock(&worker_pool_idr_mutex);
466
467 return ret;
468 }
469
470 /*
471 * Lookup worker_pool by id. The idr currently is built during boot and
472 * never modified. Don't worry about locking for now.
473 */
474 static struct worker_pool *worker_pool_by_id(int pool_id)
475 {
476 return idr_find(&worker_pool_idr, pool_id);
477 }
478
479 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
480 {
481 struct worker_pool *pools = std_worker_pools(cpu);
482
483 return &pools[highpri];
484 }
485
486 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
487 {
488 int cpu = pool->cpu;
489 int idx = std_worker_pool_pri(pool);
490
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(cpu_std_pool_nr_running, cpu)[idx];
493 else
494 return &unbound_std_pool_nr_running[idx];
495 }
496
497 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
498 struct workqueue_struct *wq)
499 {
500 if (!(wq->flags & WQ_UNBOUND)) {
501 if (likely(cpu < nr_cpu_ids))
502 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
503 } else if (likely(cpu == WORK_CPU_UNBOUND))
504 return wq->cpu_wq.single;
505 return NULL;
506 }
507
508 static unsigned int work_color_to_flags(int color)
509 {
510 return color << WORK_STRUCT_COLOR_SHIFT;
511 }
512
513 static int get_work_color(struct work_struct *work)
514 {
515 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
516 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
517 }
518
519 static int work_next_color(int color)
520 {
521 return (color + 1) % WORK_NR_COLORS;
522 }
523
524 /*
525 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
526 * contain the pointer to the queued cwq. Once execution starts, the flag
527 * is cleared and the high bits contain OFFQ flags and pool ID.
528 *
529 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
530 * and clear_work_data() can be used to set the cwq, pool or clear
531 * work->data. These functions should only be called while the work is
532 * owned - ie. while the PENDING bit is set.
533 *
534 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
535 * corresponding to a work. Pool is available once the work has been
536 * queued anywhere after initialization until it is sync canceled. cwq is
537 * available only while the work item is queued.
538 *
539 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
540 * canceled. While being canceled, a work item may have its PENDING set
541 * but stay off timer and worklist for arbitrarily long and nobody should
542 * try to steal the PENDING bit.
543 */
544 static inline void set_work_data(struct work_struct *work, unsigned long data,
545 unsigned long flags)
546 {
547 BUG_ON(!work_pending(work));
548 atomic_long_set(&work->data, data | flags | work_static(work));
549 }
550
551 static void set_work_cwq(struct work_struct *work,
552 struct cpu_workqueue_struct *cwq,
553 unsigned long extra_flags)
554 {
555 set_work_data(work, (unsigned long)cwq,
556 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
557 }
558
559 static void set_work_pool_and_clear_pending(struct work_struct *work,
560 int pool_id)
561 {
562 /*
563 * The following wmb is paired with the implied mb in
564 * test_and_set_bit(PENDING) and ensures all updates to @work made
565 * here are visible to and precede any updates by the next PENDING
566 * owner.
567 */
568 smp_wmb();
569 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
570 }
571
572 static void clear_work_data(struct work_struct *work)
573 {
574 smp_wmb(); /* see set_work_pool_and_clear_pending() */
575 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
576 }
577
578 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
579 {
580 unsigned long data = atomic_long_read(&work->data);
581
582 if (data & WORK_STRUCT_CWQ)
583 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
584 else
585 return NULL;
586 }
587
588 /**
589 * get_work_pool - return the worker_pool a given work was associated with
590 * @work: the work item of interest
591 *
592 * Return the worker_pool @work was last associated with. %NULL if none.
593 */
594 static struct worker_pool *get_work_pool(struct work_struct *work)
595 {
596 unsigned long data = atomic_long_read(&work->data);
597 struct worker_pool *pool;
598 int pool_id;
599
600 if (data & WORK_STRUCT_CWQ)
601 return ((struct cpu_workqueue_struct *)
602 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
603
604 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
605 if (pool_id == WORK_OFFQ_POOL_NONE)
606 return NULL;
607
608 pool = worker_pool_by_id(pool_id);
609 WARN_ON_ONCE(!pool);
610 return pool;
611 }
612
613 /**
614 * get_work_pool_id - return the worker pool ID a given work is associated with
615 * @work: the work item of interest
616 *
617 * Return the worker_pool ID @work was last associated with.
618 * %WORK_OFFQ_POOL_NONE if none.
619 */
620 static int get_work_pool_id(struct work_struct *work)
621 {
622 struct worker_pool *pool = get_work_pool(work);
623
624 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
625 }
626
627 static void mark_work_canceling(struct work_struct *work)
628 {
629 unsigned long pool_id = get_work_pool_id(work);
630
631 pool_id <<= WORK_OFFQ_POOL_SHIFT;
632 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
633 }
634
635 static bool work_is_canceling(struct work_struct *work)
636 {
637 unsigned long data = atomic_long_read(&work->data);
638
639 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
640 }
641
642 /*
643 * Policy functions. These define the policies on how the global worker
644 * pools are managed. Unless noted otherwise, these functions assume that
645 * they're being called with pool->lock held.
646 */
647
648 static bool __need_more_worker(struct worker_pool *pool)
649 {
650 return !atomic_read(get_pool_nr_running(pool));
651 }
652
653 /*
654 * Need to wake up a worker? Called from anything but currently
655 * running workers.
656 *
657 * Note that, because unbound workers never contribute to nr_running, this
658 * function will always return %true for unbound pools as long as the
659 * worklist isn't empty.
660 */
661 static bool need_more_worker(struct worker_pool *pool)
662 {
663 return !list_empty(&pool->worklist) && __need_more_worker(pool);
664 }
665
666 /* Can I start working? Called from busy but !running workers. */
667 static bool may_start_working(struct worker_pool *pool)
668 {
669 return pool->nr_idle;
670 }
671
672 /* Do I need to keep working? Called from currently running workers. */
673 static bool keep_working(struct worker_pool *pool)
674 {
675 atomic_t *nr_running = get_pool_nr_running(pool);
676
677 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
678 }
679
680 /* Do we need a new worker? Called from manager. */
681 static bool need_to_create_worker(struct worker_pool *pool)
682 {
683 return need_more_worker(pool) && !may_start_working(pool);
684 }
685
686 /* Do I need to be the manager? */
687 static bool need_to_manage_workers(struct worker_pool *pool)
688 {
689 return need_to_create_worker(pool) ||
690 (pool->flags & POOL_MANAGE_WORKERS);
691 }
692
693 /* Do we have too many workers and should some go away? */
694 static bool too_many_workers(struct worker_pool *pool)
695 {
696 bool managing = pool->flags & POOL_MANAGING_WORKERS;
697 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
698 int nr_busy = pool->nr_workers - nr_idle;
699
700 /*
701 * nr_idle and idle_list may disagree if idle rebinding is in
702 * progress. Never return %true if idle_list is empty.
703 */
704 if (list_empty(&pool->idle_list))
705 return false;
706
707 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
708 }
709
710 /*
711 * Wake up functions.
712 */
713
714 /* Return the first worker. Safe with preemption disabled */
715 static struct worker *first_worker(struct worker_pool *pool)
716 {
717 if (unlikely(list_empty(&pool->idle_list)))
718 return NULL;
719
720 return list_first_entry(&pool->idle_list, struct worker, entry);
721 }
722
723 /**
724 * wake_up_worker - wake up an idle worker
725 * @pool: worker pool to wake worker from
726 *
727 * Wake up the first idle worker of @pool.
728 *
729 * CONTEXT:
730 * spin_lock_irq(pool->lock).
731 */
732 static void wake_up_worker(struct worker_pool *pool)
733 {
734 struct worker *worker = first_worker(pool);
735
736 if (likely(worker))
737 wake_up_process(worker->task);
738 }
739
740 /**
741 * wq_worker_waking_up - a worker is waking up
742 * @task: task waking up
743 * @cpu: CPU @task is waking up to
744 *
745 * This function is called during try_to_wake_up() when a worker is
746 * being awoken.
747 *
748 * CONTEXT:
749 * spin_lock_irq(rq->lock)
750 */
751 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
752 {
753 struct worker *worker = kthread_data(task);
754
755 if (!(worker->flags & WORKER_NOT_RUNNING)) {
756 WARN_ON_ONCE(worker->pool->cpu != cpu);
757 atomic_inc(get_pool_nr_running(worker->pool));
758 }
759 }
760
761 /**
762 * wq_worker_sleeping - a worker is going to sleep
763 * @task: task going to sleep
764 * @cpu: CPU in question, must be the current CPU number
765 *
766 * This function is called during schedule() when a busy worker is
767 * going to sleep. Worker on the same cpu can be woken up by
768 * returning pointer to its task.
769 *
770 * CONTEXT:
771 * spin_lock_irq(rq->lock)
772 *
773 * RETURNS:
774 * Worker task on @cpu to wake up, %NULL if none.
775 */
776 struct task_struct *wq_worker_sleeping(struct task_struct *task,
777 unsigned int cpu)
778 {
779 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
780 struct worker_pool *pool;
781 atomic_t *nr_running;
782
783 /*
784 * Rescuers, which may not have all the fields set up like normal
785 * workers, also reach here, let's not access anything before
786 * checking NOT_RUNNING.
787 */
788 if (worker->flags & WORKER_NOT_RUNNING)
789 return NULL;
790
791 pool = worker->pool;
792 nr_running = get_pool_nr_running(pool);
793
794 /* this can only happen on the local cpu */
795 BUG_ON(cpu != raw_smp_processor_id());
796
797 /*
798 * The counterpart of the following dec_and_test, implied mb,
799 * worklist not empty test sequence is in insert_work().
800 * Please read comment there.
801 *
802 * NOT_RUNNING is clear. This means that we're bound to and
803 * running on the local cpu w/ rq lock held and preemption
804 * disabled, which in turn means that none else could be
805 * manipulating idle_list, so dereferencing idle_list without pool
806 * lock is safe.
807 */
808 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
809 to_wakeup = first_worker(pool);
810 return to_wakeup ? to_wakeup->task : NULL;
811 }
812
813 /**
814 * worker_set_flags - set worker flags and adjust nr_running accordingly
815 * @worker: self
816 * @flags: flags to set
817 * @wakeup: wakeup an idle worker if necessary
818 *
819 * Set @flags in @worker->flags and adjust nr_running accordingly. If
820 * nr_running becomes zero and @wakeup is %true, an idle worker is
821 * woken up.
822 *
823 * CONTEXT:
824 * spin_lock_irq(pool->lock)
825 */
826 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
827 bool wakeup)
828 {
829 struct worker_pool *pool = worker->pool;
830
831 WARN_ON_ONCE(worker->task != current);
832
833 /*
834 * If transitioning into NOT_RUNNING, adjust nr_running and
835 * wake up an idle worker as necessary if requested by
836 * @wakeup.
837 */
838 if ((flags & WORKER_NOT_RUNNING) &&
839 !(worker->flags & WORKER_NOT_RUNNING)) {
840 atomic_t *nr_running = get_pool_nr_running(pool);
841
842 if (wakeup) {
843 if (atomic_dec_and_test(nr_running) &&
844 !list_empty(&pool->worklist))
845 wake_up_worker(pool);
846 } else
847 atomic_dec(nr_running);
848 }
849
850 worker->flags |= flags;
851 }
852
853 /**
854 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
855 * @worker: self
856 * @flags: flags to clear
857 *
858 * Clear @flags in @worker->flags and adjust nr_running accordingly.
859 *
860 * CONTEXT:
861 * spin_lock_irq(pool->lock)
862 */
863 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
864 {
865 struct worker_pool *pool = worker->pool;
866 unsigned int oflags = worker->flags;
867
868 WARN_ON_ONCE(worker->task != current);
869
870 worker->flags &= ~flags;
871
872 /*
873 * If transitioning out of NOT_RUNNING, increment nr_running. Note
874 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
875 * of multiple flags, not a single flag.
876 */
877 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
878 if (!(worker->flags & WORKER_NOT_RUNNING))
879 atomic_inc(get_pool_nr_running(pool));
880 }
881
882 /**
883 * find_worker_executing_work - find worker which is executing a work
884 * @pool: pool of interest
885 * @work: work to find worker for
886 *
887 * Find a worker which is executing @work on @pool by searching
888 * @pool->busy_hash which is keyed by the address of @work. For a worker
889 * to match, its current execution should match the address of @work and
890 * its work function. This is to avoid unwanted dependency between
891 * unrelated work executions through a work item being recycled while still
892 * being executed.
893 *
894 * This is a bit tricky. A work item may be freed once its execution
895 * starts and nothing prevents the freed area from being recycled for
896 * another work item. If the same work item address ends up being reused
897 * before the original execution finishes, workqueue will identify the
898 * recycled work item as currently executing and make it wait until the
899 * current execution finishes, introducing an unwanted dependency.
900 *
901 * This function checks the work item address, work function and workqueue
902 * to avoid false positives. Note that this isn't complete as one may
903 * construct a work function which can introduce dependency onto itself
904 * through a recycled work item. Well, if somebody wants to shoot oneself
905 * in the foot that badly, there's only so much we can do, and if such
906 * deadlock actually occurs, it should be easy to locate the culprit work
907 * function.
908 *
909 * CONTEXT:
910 * spin_lock_irq(pool->lock).
911 *
912 * RETURNS:
913 * Pointer to worker which is executing @work if found, NULL
914 * otherwise.
915 */
916 static struct worker *find_worker_executing_work(struct worker_pool *pool,
917 struct work_struct *work)
918 {
919 struct worker *worker;
920 struct hlist_node *tmp;
921
922 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
923 (unsigned long)work)
924 if (worker->current_work == work &&
925 worker->current_func == work->func)
926 return worker;
927
928 return NULL;
929 }
930
931 /**
932 * move_linked_works - move linked works to a list
933 * @work: start of series of works to be scheduled
934 * @head: target list to append @work to
935 * @nextp: out paramter for nested worklist walking
936 *
937 * Schedule linked works starting from @work to @head. Work series to
938 * be scheduled starts at @work and includes any consecutive work with
939 * WORK_STRUCT_LINKED set in its predecessor.
940 *
941 * If @nextp is not NULL, it's updated to point to the next work of
942 * the last scheduled work. This allows move_linked_works() to be
943 * nested inside outer list_for_each_entry_safe().
944 *
945 * CONTEXT:
946 * spin_lock_irq(pool->lock).
947 */
948 static void move_linked_works(struct work_struct *work, struct list_head *head,
949 struct work_struct **nextp)
950 {
951 struct work_struct *n;
952
953 /*
954 * Linked worklist will always end before the end of the list,
955 * use NULL for list head.
956 */
957 list_for_each_entry_safe_from(work, n, NULL, entry) {
958 list_move_tail(&work->entry, head);
959 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
960 break;
961 }
962
963 /*
964 * If we're already inside safe list traversal and have moved
965 * multiple works to the scheduled queue, the next position
966 * needs to be updated.
967 */
968 if (nextp)
969 *nextp = n;
970 }
971
972 static void cwq_activate_delayed_work(struct work_struct *work)
973 {
974 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
975
976 trace_workqueue_activate_work(work);
977 move_linked_works(work, &cwq->pool->worklist, NULL);
978 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
979 cwq->nr_active++;
980 }
981
982 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
983 {
984 struct work_struct *work = list_first_entry(&cwq->delayed_works,
985 struct work_struct, entry);
986
987 cwq_activate_delayed_work(work);
988 }
989
990 /**
991 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
992 * @cwq: cwq of interest
993 * @color: color of work which left the queue
994 *
995 * A work either has completed or is removed from pending queue,
996 * decrement nr_in_flight of its cwq and handle workqueue flushing.
997 *
998 * CONTEXT:
999 * spin_lock_irq(pool->lock).
1000 */
1001 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1002 {
1003 /* ignore uncolored works */
1004 if (color == WORK_NO_COLOR)
1005 return;
1006
1007 cwq->nr_in_flight[color]--;
1008
1009 cwq->nr_active--;
1010 if (!list_empty(&cwq->delayed_works)) {
1011 /* one down, submit a delayed one */
1012 if (cwq->nr_active < cwq->max_active)
1013 cwq_activate_first_delayed(cwq);
1014 }
1015
1016 /* is flush in progress and are we at the flushing tip? */
1017 if (likely(cwq->flush_color != color))
1018 return;
1019
1020 /* are there still in-flight works? */
1021 if (cwq->nr_in_flight[color])
1022 return;
1023
1024 /* this cwq is done, clear flush_color */
1025 cwq->flush_color = -1;
1026
1027 /*
1028 * If this was the last cwq, wake up the first flusher. It
1029 * will handle the rest.
1030 */
1031 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1032 complete(&cwq->wq->first_flusher->done);
1033 }
1034
1035 /**
1036 * try_to_grab_pending - steal work item from worklist and disable irq
1037 * @work: work item to steal
1038 * @is_dwork: @work is a delayed_work
1039 * @flags: place to store irq state
1040 *
1041 * Try to grab PENDING bit of @work. This function can handle @work in any
1042 * stable state - idle, on timer or on worklist. Return values are
1043 *
1044 * 1 if @work was pending and we successfully stole PENDING
1045 * 0 if @work was idle and we claimed PENDING
1046 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1047 * -ENOENT if someone else is canceling @work, this state may persist
1048 * for arbitrarily long
1049 *
1050 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1051 * interrupted while holding PENDING and @work off queue, irq must be
1052 * disabled on entry. This, combined with delayed_work->timer being
1053 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1054 *
1055 * On successful return, >= 0, irq is disabled and the caller is
1056 * responsible for releasing it using local_irq_restore(*@flags).
1057 *
1058 * This function is safe to call from any context including IRQ handler.
1059 */
1060 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1061 unsigned long *flags)
1062 {
1063 struct worker_pool *pool;
1064
1065 local_irq_save(*flags);
1066
1067 /* try to steal the timer if it exists */
1068 if (is_dwork) {
1069 struct delayed_work *dwork = to_delayed_work(work);
1070
1071 /*
1072 * dwork->timer is irqsafe. If del_timer() fails, it's
1073 * guaranteed that the timer is not queued anywhere and not
1074 * running on the local CPU.
1075 */
1076 if (likely(del_timer(&dwork->timer)))
1077 return 1;
1078 }
1079
1080 /* try to claim PENDING the normal way */
1081 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1082 return 0;
1083
1084 /*
1085 * The queueing is in progress, or it is already queued. Try to
1086 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1087 */
1088 pool = get_work_pool(work);
1089 if (!pool)
1090 goto fail;
1091
1092 spin_lock(&pool->lock);
1093 if (!list_empty(&work->entry)) {
1094 /*
1095 * This work is queued, but perhaps we locked the wrong
1096 * pool. In that case we must see the new value after
1097 * rmb(), see insert_work()->wmb().
1098 */
1099 smp_rmb();
1100 if (pool == get_work_pool(work)) {
1101 debug_work_deactivate(work);
1102
1103 /*
1104 * A delayed work item cannot be grabbed directly
1105 * because it might have linked NO_COLOR work items
1106 * which, if left on the delayed_list, will confuse
1107 * cwq->nr_active management later on and cause
1108 * stall. Make sure the work item is activated
1109 * before grabbing.
1110 */
1111 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1112 cwq_activate_delayed_work(work);
1113
1114 list_del_init(&work->entry);
1115 cwq_dec_nr_in_flight(get_work_cwq(work),
1116 get_work_color(work));
1117
1118 spin_unlock(&pool->lock);
1119 return 1;
1120 }
1121 }
1122 spin_unlock(&pool->lock);
1123 fail:
1124 local_irq_restore(*flags);
1125 if (work_is_canceling(work))
1126 return -ENOENT;
1127 cpu_relax();
1128 return -EAGAIN;
1129 }
1130
1131 /**
1132 * insert_work - insert a work into a pool
1133 * @cwq: cwq @work belongs to
1134 * @work: work to insert
1135 * @head: insertion point
1136 * @extra_flags: extra WORK_STRUCT_* flags to set
1137 *
1138 * Insert @work which belongs to @cwq after @head. @extra_flags is or'd to
1139 * work_struct flags.
1140 *
1141 * CONTEXT:
1142 * spin_lock_irq(pool->lock).
1143 */
1144 static void insert_work(struct cpu_workqueue_struct *cwq,
1145 struct work_struct *work, struct list_head *head,
1146 unsigned int extra_flags)
1147 {
1148 struct worker_pool *pool = cwq->pool;
1149
1150 /* we own @work, set data and link */
1151 set_work_cwq(work, cwq, extra_flags);
1152
1153 /*
1154 * Ensure that we get the right work->data if we see the
1155 * result of list_add() below, see try_to_grab_pending().
1156 */
1157 smp_wmb();
1158
1159 list_add_tail(&work->entry, head);
1160
1161 /*
1162 * Ensure either worker_sched_deactivated() sees the above
1163 * list_add_tail() or we see zero nr_running to avoid workers
1164 * lying around lazily while there are works to be processed.
1165 */
1166 smp_mb();
1167
1168 if (__need_more_worker(pool))
1169 wake_up_worker(pool);
1170 }
1171
1172 /*
1173 * Test whether @work is being queued from another work executing on the
1174 * same workqueue. This is rather expensive and should only be used from
1175 * cold paths.
1176 */
1177 static bool is_chained_work(struct workqueue_struct *wq)
1178 {
1179 unsigned long flags;
1180 unsigned int cpu;
1181
1182 for_each_wq_cpu(cpu) {
1183 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1184 struct worker_pool *pool = cwq->pool;
1185 struct worker *worker;
1186 struct hlist_node *pos;
1187 int i;
1188
1189 spin_lock_irqsave(&pool->lock, flags);
1190 for_each_busy_worker(worker, i, pos, pool) {
1191 if (worker->task != current)
1192 continue;
1193 spin_unlock_irqrestore(&pool->lock, flags);
1194 /*
1195 * I'm @worker, no locking necessary. See if @work
1196 * is headed to the same workqueue.
1197 */
1198 return worker->current_cwq->wq == wq;
1199 }
1200 spin_unlock_irqrestore(&pool->lock, flags);
1201 }
1202 return false;
1203 }
1204
1205 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1206 struct work_struct *work)
1207 {
1208 bool highpri = wq->flags & WQ_HIGHPRI;
1209 struct worker_pool *pool;
1210 struct cpu_workqueue_struct *cwq;
1211 struct list_head *worklist;
1212 unsigned int work_flags;
1213 unsigned int req_cpu = cpu;
1214
1215 /*
1216 * While a work item is PENDING && off queue, a task trying to
1217 * steal the PENDING will busy-loop waiting for it to either get
1218 * queued or lose PENDING. Grabbing PENDING and queueing should
1219 * happen with IRQ disabled.
1220 */
1221 WARN_ON_ONCE(!irqs_disabled());
1222
1223 debug_work_activate(work);
1224
1225 /* if dying, only works from the same workqueue are allowed */
1226 if (unlikely(wq->flags & WQ_DRAINING) &&
1227 WARN_ON_ONCE(!is_chained_work(wq)))
1228 return;
1229
1230 /* determine pool to use */
1231 if (!(wq->flags & WQ_UNBOUND)) {
1232 struct worker_pool *last_pool;
1233
1234 if (cpu == WORK_CPU_UNBOUND)
1235 cpu = raw_smp_processor_id();
1236
1237 /*
1238 * It's multi cpu. If @work was previously on a different
1239 * cpu, it might still be running there, in which case the
1240 * work needs to be queued on that cpu to guarantee
1241 * non-reentrancy.
1242 */
1243 pool = get_std_worker_pool(cpu, highpri);
1244 last_pool = get_work_pool(work);
1245
1246 if (last_pool && last_pool != pool) {
1247 struct worker *worker;
1248
1249 spin_lock(&last_pool->lock);
1250
1251 worker = find_worker_executing_work(last_pool, work);
1252
1253 if (worker && worker->current_cwq->wq == wq)
1254 pool = last_pool;
1255 else {
1256 /* meh... not running there, queue here */
1257 spin_unlock(&last_pool->lock);
1258 spin_lock(&pool->lock);
1259 }
1260 } else {
1261 spin_lock(&pool->lock);
1262 }
1263 } else {
1264 pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
1265 spin_lock(&pool->lock);
1266 }
1267
1268 /* pool determined, get cwq and queue */
1269 cwq = get_cwq(pool->cpu, wq);
1270 trace_workqueue_queue_work(req_cpu, cwq, work);
1271
1272 if (WARN_ON(!list_empty(&work->entry))) {
1273 spin_unlock(&pool->lock);
1274 return;
1275 }
1276
1277 cwq->nr_in_flight[cwq->work_color]++;
1278 work_flags = work_color_to_flags(cwq->work_color);
1279
1280 if (likely(cwq->nr_active < cwq->max_active)) {
1281 trace_workqueue_activate_work(work);
1282 cwq->nr_active++;
1283 worklist = &cwq->pool->worklist;
1284 } else {
1285 work_flags |= WORK_STRUCT_DELAYED;
1286 worklist = &cwq->delayed_works;
1287 }
1288
1289 insert_work(cwq, work, worklist, work_flags);
1290
1291 spin_unlock(&pool->lock);
1292 }
1293
1294 /**
1295 * queue_work_on - queue work on specific cpu
1296 * @cpu: CPU number to execute work on
1297 * @wq: workqueue to use
1298 * @work: work to queue
1299 *
1300 * Returns %false if @work was already on a queue, %true otherwise.
1301 *
1302 * We queue the work to a specific CPU, the caller must ensure it
1303 * can't go away.
1304 */
1305 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1306 struct work_struct *work)
1307 {
1308 bool ret = false;
1309 unsigned long flags;
1310
1311 local_irq_save(flags);
1312
1313 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1314 __queue_work(cpu, wq, work);
1315 ret = true;
1316 }
1317
1318 local_irq_restore(flags);
1319 return ret;
1320 }
1321 EXPORT_SYMBOL_GPL(queue_work_on);
1322
1323 /**
1324 * queue_work - queue work on a workqueue
1325 * @wq: workqueue to use
1326 * @work: work to queue
1327 *
1328 * Returns %false if @work was already on a queue, %true otherwise.
1329 *
1330 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1331 * it can be processed by another CPU.
1332 */
1333 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1334 {
1335 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1336 }
1337 EXPORT_SYMBOL_GPL(queue_work);
1338
1339 void delayed_work_timer_fn(unsigned long __data)
1340 {
1341 struct delayed_work *dwork = (struct delayed_work *)__data;
1342
1343 /* should have been called from irqsafe timer with irq already off */
1344 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1345 }
1346 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1347
1348 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1349 struct delayed_work *dwork, unsigned long delay)
1350 {
1351 struct timer_list *timer = &dwork->timer;
1352 struct work_struct *work = &dwork->work;
1353
1354 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1355 timer->data != (unsigned long)dwork);
1356 WARN_ON_ONCE(timer_pending(timer));
1357 WARN_ON_ONCE(!list_empty(&work->entry));
1358
1359 /*
1360 * If @delay is 0, queue @dwork->work immediately. This is for
1361 * both optimization and correctness. The earliest @timer can
1362 * expire is on the closest next tick and delayed_work users depend
1363 * on that there's no such delay when @delay is 0.
1364 */
1365 if (!delay) {
1366 __queue_work(cpu, wq, &dwork->work);
1367 return;
1368 }
1369
1370 timer_stats_timer_set_start_info(&dwork->timer);
1371
1372 dwork->wq = wq;
1373 dwork->cpu = cpu;
1374 timer->expires = jiffies + delay;
1375
1376 if (unlikely(cpu != WORK_CPU_UNBOUND))
1377 add_timer_on(timer, cpu);
1378 else
1379 add_timer(timer);
1380 }
1381
1382 /**
1383 * queue_delayed_work_on - queue work on specific CPU after delay
1384 * @cpu: CPU number to execute work on
1385 * @wq: workqueue to use
1386 * @dwork: work to queue
1387 * @delay: number of jiffies to wait before queueing
1388 *
1389 * Returns %false if @work was already on a queue, %true otherwise. If
1390 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1391 * execution.
1392 */
1393 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1394 struct delayed_work *dwork, unsigned long delay)
1395 {
1396 struct work_struct *work = &dwork->work;
1397 bool ret = false;
1398 unsigned long flags;
1399
1400 /* read the comment in __queue_work() */
1401 local_irq_save(flags);
1402
1403 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1404 __queue_delayed_work(cpu, wq, dwork, delay);
1405 ret = true;
1406 }
1407
1408 local_irq_restore(flags);
1409 return ret;
1410 }
1411 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1412
1413 /**
1414 * queue_delayed_work - queue work on a workqueue after delay
1415 * @wq: workqueue to use
1416 * @dwork: delayable work to queue
1417 * @delay: number of jiffies to wait before queueing
1418 *
1419 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1420 */
1421 bool queue_delayed_work(struct workqueue_struct *wq,
1422 struct delayed_work *dwork, unsigned long delay)
1423 {
1424 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1425 }
1426 EXPORT_SYMBOL_GPL(queue_delayed_work);
1427
1428 /**
1429 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1430 * @cpu: CPU number to execute work on
1431 * @wq: workqueue to use
1432 * @dwork: work to queue
1433 * @delay: number of jiffies to wait before queueing
1434 *
1435 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1436 * modify @dwork's timer so that it expires after @delay. If @delay is
1437 * zero, @work is guaranteed to be scheduled immediately regardless of its
1438 * current state.
1439 *
1440 * Returns %false if @dwork was idle and queued, %true if @dwork was
1441 * pending and its timer was modified.
1442 *
1443 * This function is safe to call from any context including IRQ handler.
1444 * See try_to_grab_pending() for details.
1445 */
1446 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1447 struct delayed_work *dwork, unsigned long delay)
1448 {
1449 unsigned long flags;
1450 int ret;
1451
1452 do {
1453 ret = try_to_grab_pending(&dwork->work, true, &flags);
1454 } while (unlikely(ret == -EAGAIN));
1455
1456 if (likely(ret >= 0)) {
1457 __queue_delayed_work(cpu, wq, dwork, delay);
1458 local_irq_restore(flags);
1459 }
1460
1461 /* -ENOENT from try_to_grab_pending() becomes %true */
1462 return ret;
1463 }
1464 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1465
1466 /**
1467 * mod_delayed_work - modify delay of or queue a delayed work
1468 * @wq: workqueue to use
1469 * @dwork: work to queue
1470 * @delay: number of jiffies to wait before queueing
1471 *
1472 * mod_delayed_work_on() on local CPU.
1473 */
1474 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1475 unsigned long delay)
1476 {
1477 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1478 }
1479 EXPORT_SYMBOL_GPL(mod_delayed_work);
1480
1481 /**
1482 * worker_enter_idle - enter idle state
1483 * @worker: worker which is entering idle state
1484 *
1485 * @worker is entering idle state. Update stats and idle timer if
1486 * necessary.
1487 *
1488 * LOCKING:
1489 * spin_lock_irq(pool->lock).
1490 */
1491 static void worker_enter_idle(struct worker *worker)
1492 {
1493 struct worker_pool *pool = worker->pool;
1494
1495 BUG_ON(worker->flags & WORKER_IDLE);
1496 BUG_ON(!list_empty(&worker->entry) &&
1497 (worker->hentry.next || worker->hentry.pprev));
1498
1499 /* can't use worker_set_flags(), also called from start_worker() */
1500 worker->flags |= WORKER_IDLE;
1501 pool->nr_idle++;
1502 worker->last_active = jiffies;
1503
1504 /* idle_list is LIFO */
1505 list_add(&worker->entry, &pool->idle_list);
1506
1507 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1508 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1509
1510 /*
1511 * Sanity check nr_running. Because wq_unbind_fn() releases
1512 * pool->lock between setting %WORKER_UNBOUND and zapping
1513 * nr_running, the warning may trigger spuriously. Check iff
1514 * unbind is not in progress.
1515 */
1516 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1517 pool->nr_workers == pool->nr_idle &&
1518 atomic_read(get_pool_nr_running(pool)));
1519 }
1520
1521 /**
1522 * worker_leave_idle - leave idle state
1523 * @worker: worker which is leaving idle state
1524 *
1525 * @worker is leaving idle state. Update stats.
1526 *
1527 * LOCKING:
1528 * spin_lock_irq(pool->lock).
1529 */
1530 static void worker_leave_idle(struct worker *worker)
1531 {
1532 struct worker_pool *pool = worker->pool;
1533
1534 BUG_ON(!(worker->flags & WORKER_IDLE));
1535 worker_clr_flags(worker, WORKER_IDLE);
1536 pool->nr_idle--;
1537 list_del_init(&worker->entry);
1538 }
1539
1540 /**
1541 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1542 * @worker: self
1543 *
1544 * Works which are scheduled while the cpu is online must at least be
1545 * scheduled to a worker which is bound to the cpu so that if they are
1546 * flushed from cpu callbacks while cpu is going down, they are
1547 * guaranteed to execute on the cpu.
1548 *
1549 * This function is to be used by rogue workers and rescuers to bind
1550 * themselves to the target cpu and may race with cpu going down or
1551 * coming online. kthread_bind() can't be used because it may put the
1552 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1553 * verbatim as it's best effort and blocking and pool may be
1554 * [dis]associated in the meantime.
1555 *
1556 * This function tries set_cpus_allowed() and locks pool and verifies the
1557 * binding against %POOL_DISASSOCIATED which is set during
1558 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1559 * enters idle state or fetches works without dropping lock, it can
1560 * guarantee the scheduling requirement described in the first paragraph.
1561 *
1562 * CONTEXT:
1563 * Might sleep. Called without any lock but returns with pool->lock
1564 * held.
1565 *
1566 * RETURNS:
1567 * %true if the associated pool is online (@worker is successfully
1568 * bound), %false if offline.
1569 */
1570 static bool worker_maybe_bind_and_lock(struct worker *worker)
1571 __acquires(&pool->lock)
1572 {
1573 struct worker_pool *pool = worker->pool;
1574 struct task_struct *task = worker->task;
1575
1576 while (true) {
1577 /*
1578 * The following call may fail, succeed or succeed
1579 * without actually migrating the task to the cpu if
1580 * it races with cpu hotunplug operation. Verify
1581 * against POOL_DISASSOCIATED.
1582 */
1583 if (!(pool->flags & POOL_DISASSOCIATED))
1584 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1585
1586 spin_lock_irq(&pool->lock);
1587 if (pool->flags & POOL_DISASSOCIATED)
1588 return false;
1589 if (task_cpu(task) == pool->cpu &&
1590 cpumask_equal(&current->cpus_allowed,
1591 get_cpu_mask(pool->cpu)))
1592 return true;
1593 spin_unlock_irq(&pool->lock);
1594
1595 /*
1596 * We've raced with CPU hot[un]plug. Give it a breather
1597 * and retry migration. cond_resched() is required here;
1598 * otherwise, we might deadlock against cpu_stop trying to
1599 * bring down the CPU on non-preemptive kernel.
1600 */
1601 cpu_relax();
1602 cond_resched();
1603 }
1604 }
1605
1606 /*
1607 * Rebind an idle @worker to its CPU. worker_thread() will test
1608 * list_empty(@worker->entry) before leaving idle and call this function.
1609 */
1610 static void idle_worker_rebind(struct worker *worker)
1611 {
1612 /* CPU may go down again inbetween, clear UNBOUND only on success */
1613 if (worker_maybe_bind_and_lock(worker))
1614 worker_clr_flags(worker, WORKER_UNBOUND);
1615
1616 /* rebind complete, become available again */
1617 list_add(&worker->entry, &worker->pool->idle_list);
1618 spin_unlock_irq(&worker->pool->lock);
1619 }
1620
1621 /*
1622 * Function for @worker->rebind.work used to rebind unbound busy workers to
1623 * the associated cpu which is coming back online. This is scheduled by
1624 * cpu up but can race with other cpu hotplug operations and may be
1625 * executed twice without intervening cpu down.
1626 */
1627 static void busy_worker_rebind_fn(struct work_struct *work)
1628 {
1629 struct worker *worker = container_of(work, struct worker, rebind_work);
1630
1631 if (worker_maybe_bind_and_lock(worker))
1632 worker_clr_flags(worker, WORKER_UNBOUND);
1633
1634 spin_unlock_irq(&worker->pool->lock);
1635 }
1636
1637 /**
1638 * rebind_workers - rebind all workers of a pool to the associated CPU
1639 * @pool: pool of interest
1640 *
1641 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
1642 * is different for idle and busy ones.
1643 *
1644 * Idle ones will be removed from the idle_list and woken up. They will
1645 * add themselves back after completing rebind. This ensures that the
1646 * idle_list doesn't contain any unbound workers when re-bound busy workers
1647 * try to perform local wake-ups for concurrency management.
1648 *
1649 * Busy workers can rebind after they finish their current work items.
1650 * Queueing the rebind work item at the head of the scheduled list is
1651 * enough. Note that nr_running will be properly bumped as busy workers
1652 * rebind.
1653 *
1654 * On return, all non-manager workers are scheduled for rebind - see
1655 * manage_workers() for the manager special case. Any idle worker
1656 * including the manager will not appear on @idle_list until rebind is
1657 * complete, making local wake-ups safe.
1658 */
1659 static void rebind_workers(struct worker_pool *pool)
1660 {
1661 struct worker *worker, *n;
1662 struct hlist_node *pos;
1663 int i;
1664
1665 lockdep_assert_held(&pool->assoc_mutex);
1666 lockdep_assert_held(&pool->lock);
1667
1668 /* dequeue and kick idle ones */
1669 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1670 /*
1671 * idle workers should be off @pool->idle_list until rebind
1672 * is complete to avoid receiving premature local wake-ups.
1673 */
1674 list_del_init(&worker->entry);
1675
1676 /*
1677 * worker_thread() will see the above dequeuing and call
1678 * idle_worker_rebind().
1679 */
1680 wake_up_process(worker->task);
1681 }
1682
1683 /* rebind busy workers */
1684 for_each_busy_worker(worker, i, pos, pool) {
1685 struct work_struct *rebind_work = &worker->rebind_work;
1686 struct workqueue_struct *wq;
1687
1688 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1689 work_data_bits(rebind_work)))
1690 continue;
1691
1692 debug_work_activate(rebind_work);
1693
1694 /*
1695 * wq doesn't really matter but let's keep @worker->pool
1696 * and @cwq->pool consistent for sanity.
1697 */
1698 if (std_worker_pool_pri(worker->pool))
1699 wq = system_highpri_wq;
1700 else
1701 wq = system_wq;
1702
1703 insert_work(get_cwq(pool->cpu, wq), rebind_work,
1704 worker->scheduled.next,
1705 work_color_to_flags(WORK_NO_COLOR));
1706 }
1707 }
1708
1709 static struct worker *alloc_worker(void)
1710 {
1711 struct worker *worker;
1712
1713 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1714 if (worker) {
1715 INIT_LIST_HEAD(&worker->entry);
1716 INIT_LIST_HEAD(&worker->scheduled);
1717 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1718 /* on creation a worker is in !idle && prep state */
1719 worker->flags = WORKER_PREP;
1720 }
1721 return worker;
1722 }
1723
1724 /**
1725 * create_worker - create a new workqueue worker
1726 * @pool: pool the new worker will belong to
1727 *
1728 * Create a new worker which is bound to @pool. The returned worker
1729 * can be started by calling start_worker() or destroyed using
1730 * destroy_worker().
1731 *
1732 * CONTEXT:
1733 * Might sleep. Does GFP_KERNEL allocations.
1734 *
1735 * RETURNS:
1736 * Pointer to the newly created worker.
1737 */
1738 static struct worker *create_worker(struct worker_pool *pool)
1739 {
1740 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1741 struct worker *worker = NULL;
1742 int id = -1;
1743
1744 spin_lock_irq(&pool->lock);
1745 while (ida_get_new(&pool->worker_ida, &id)) {
1746 spin_unlock_irq(&pool->lock);
1747 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1748 goto fail;
1749 spin_lock_irq(&pool->lock);
1750 }
1751 spin_unlock_irq(&pool->lock);
1752
1753 worker = alloc_worker();
1754 if (!worker)
1755 goto fail;
1756
1757 worker->pool = pool;
1758 worker->id = id;
1759
1760 if (pool->cpu != WORK_CPU_UNBOUND)
1761 worker->task = kthread_create_on_node(worker_thread,
1762 worker, cpu_to_node(pool->cpu),
1763 "kworker/%u:%d%s", pool->cpu, id, pri);
1764 else
1765 worker->task = kthread_create(worker_thread, worker,
1766 "kworker/u:%d%s", id, pri);
1767 if (IS_ERR(worker->task))
1768 goto fail;
1769
1770 if (std_worker_pool_pri(pool))
1771 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1772
1773 /*
1774 * Determine CPU binding of the new worker depending on
1775 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
1776 * flag remains stable across this function. See the comments
1777 * above the flag definition for details.
1778 *
1779 * As an unbound worker may later become a regular one if CPU comes
1780 * online, make sure every worker has %PF_THREAD_BOUND set.
1781 */
1782 if (!(pool->flags & POOL_DISASSOCIATED)) {
1783 kthread_bind(worker->task, pool->cpu);
1784 } else {
1785 worker->task->flags |= PF_THREAD_BOUND;
1786 worker->flags |= WORKER_UNBOUND;
1787 }
1788
1789 return worker;
1790 fail:
1791 if (id >= 0) {
1792 spin_lock_irq(&pool->lock);
1793 ida_remove(&pool->worker_ida, id);
1794 spin_unlock_irq(&pool->lock);
1795 }
1796 kfree(worker);
1797 return NULL;
1798 }
1799
1800 /**
1801 * start_worker - start a newly created worker
1802 * @worker: worker to start
1803 *
1804 * Make the pool aware of @worker and start it.
1805 *
1806 * CONTEXT:
1807 * spin_lock_irq(pool->lock).
1808 */
1809 static void start_worker(struct worker *worker)
1810 {
1811 worker->flags |= WORKER_STARTED;
1812 worker->pool->nr_workers++;
1813 worker_enter_idle(worker);
1814 wake_up_process(worker->task);
1815 }
1816
1817 /**
1818 * destroy_worker - destroy a workqueue worker
1819 * @worker: worker to be destroyed
1820 *
1821 * Destroy @worker and adjust @pool stats accordingly.
1822 *
1823 * CONTEXT:
1824 * spin_lock_irq(pool->lock) which is released and regrabbed.
1825 */
1826 static void destroy_worker(struct worker *worker)
1827 {
1828 struct worker_pool *pool = worker->pool;
1829 int id = worker->id;
1830
1831 /* sanity check frenzy */
1832 BUG_ON(worker->current_work);
1833 BUG_ON(!list_empty(&worker->scheduled));
1834
1835 if (worker->flags & WORKER_STARTED)
1836 pool->nr_workers--;
1837 if (worker->flags & WORKER_IDLE)
1838 pool->nr_idle--;
1839
1840 list_del_init(&worker->entry);
1841 worker->flags |= WORKER_DIE;
1842
1843 spin_unlock_irq(&pool->lock);
1844
1845 kthread_stop(worker->task);
1846 kfree(worker);
1847
1848 spin_lock_irq(&pool->lock);
1849 ida_remove(&pool->worker_ida, id);
1850 }
1851
1852 static void idle_worker_timeout(unsigned long __pool)
1853 {
1854 struct worker_pool *pool = (void *)__pool;
1855
1856 spin_lock_irq(&pool->lock);
1857
1858 if (too_many_workers(pool)) {
1859 struct worker *worker;
1860 unsigned long expires;
1861
1862 /* idle_list is kept in LIFO order, check the last one */
1863 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1864 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1865
1866 if (time_before(jiffies, expires))
1867 mod_timer(&pool->idle_timer, expires);
1868 else {
1869 /* it's been idle for too long, wake up manager */
1870 pool->flags |= POOL_MANAGE_WORKERS;
1871 wake_up_worker(pool);
1872 }
1873 }
1874
1875 spin_unlock_irq(&pool->lock);
1876 }
1877
1878 static bool send_mayday(struct work_struct *work)
1879 {
1880 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1881 struct workqueue_struct *wq = cwq->wq;
1882 unsigned int cpu;
1883
1884 if (!(wq->flags & WQ_RESCUER))
1885 return false;
1886
1887 /* mayday mayday mayday */
1888 cpu = cwq->pool->cpu;
1889 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1890 if (cpu == WORK_CPU_UNBOUND)
1891 cpu = 0;
1892 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1893 wake_up_process(wq->rescuer->task);
1894 return true;
1895 }
1896
1897 static void pool_mayday_timeout(unsigned long __pool)
1898 {
1899 struct worker_pool *pool = (void *)__pool;
1900 struct work_struct *work;
1901
1902 spin_lock_irq(&pool->lock);
1903
1904 if (need_to_create_worker(pool)) {
1905 /*
1906 * We've been trying to create a new worker but
1907 * haven't been successful. We might be hitting an
1908 * allocation deadlock. Send distress signals to
1909 * rescuers.
1910 */
1911 list_for_each_entry(work, &pool->worklist, entry)
1912 send_mayday(work);
1913 }
1914
1915 spin_unlock_irq(&pool->lock);
1916
1917 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1918 }
1919
1920 /**
1921 * maybe_create_worker - create a new worker if necessary
1922 * @pool: pool to create a new worker for
1923 *
1924 * Create a new worker for @pool if necessary. @pool is guaranteed to
1925 * have at least one idle worker on return from this function. If
1926 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1927 * sent to all rescuers with works scheduled on @pool to resolve
1928 * possible allocation deadlock.
1929 *
1930 * On return, need_to_create_worker() is guaranteed to be false and
1931 * may_start_working() true.
1932 *
1933 * LOCKING:
1934 * spin_lock_irq(pool->lock) which may be released and regrabbed
1935 * multiple times. Does GFP_KERNEL allocations. Called only from
1936 * manager.
1937 *
1938 * RETURNS:
1939 * false if no action was taken and pool->lock stayed locked, true
1940 * otherwise.
1941 */
1942 static bool maybe_create_worker(struct worker_pool *pool)
1943 __releases(&pool->lock)
1944 __acquires(&pool->lock)
1945 {
1946 if (!need_to_create_worker(pool))
1947 return false;
1948 restart:
1949 spin_unlock_irq(&pool->lock);
1950
1951 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1952 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1953
1954 while (true) {
1955 struct worker *worker;
1956
1957 worker = create_worker(pool);
1958 if (worker) {
1959 del_timer_sync(&pool->mayday_timer);
1960 spin_lock_irq(&pool->lock);
1961 start_worker(worker);
1962 BUG_ON(need_to_create_worker(pool));
1963 return true;
1964 }
1965
1966 if (!need_to_create_worker(pool))
1967 break;
1968
1969 __set_current_state(TASK_INTERRUPTIBLE);
1970 schedule_timeout(CREATE_COOLDOWN);
1971
1972 if (!need_to_create_worker(pool))
1973 break;
1974 }
1975
1976 del_timer_sync(&pool->mayday_timer);
1977 spin_lock_irq(&pool->lock);
1978 if (need_to_create_worker(pool))
1979 goto restart;
1980 return true;
1981 }
1982
1983 /**
1984 * maybe_destroy_worker - destroy workers which have been idle for a while
1985 * @pool: pool to destroy workers for
1986 *
1987 * Destroy @pool workers which have been idle for longer than
1988 * IDLE_WORKER_TIMEOUT.
1989 *
1990 * LOCKING:
1991 * spin_lock_irq(pool->lock) which may be released and regrabbed
1992 * multiple times. Called only from manager.
1993 *
1994 * RETURNS:
1995 * false if no action was taken and pool->lock stayed locked, true
1996 * otherwise.
1997 */
1998 static bool maybe_destroy_workers(struct worker_pool *pool)
1999 {
2000 bool ret = false;
2001
2002 while (too_many_workers(pool)) {
2003 struct worker *worker;
2004 unsigned long expires;
2005
2006 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2007 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2008
2009 if (time_before(jiffies, expires)) {
2010 mod_timer(&pool->idle_timer, expires);
2011 break;
2012 }
2013
2014 destroy_worker(worker);
2015 ret = true;
2016 }
2017
2018 return ret;
2019 }
2020
2021 /**
2022 * manage_workers - manage worker pool
2023 * @worker: self
2024 *
2025 * Assume the manager role and manage the worker pool @worker belongs
2026 * to. At any given time, there can be only zero or one manager per
2027 * pool. The exclusion is handled automatically by this function.
2028 *
2029 * The caller can safely start processing works on false return. On
2030 * true return, it's guaranteed that need_to_create_worker() is false
2031 * and may_start_working() is true.
2032 *
2033 * CONTEXT:
2034 * spin_lock_irq(pool->lock) which may be released and regrabbed
2035 * multiple times. Does GFP_KERNEL allocations.
2036 *
2037 * RETURNS:
2038 * spin_lock_irq(pool->lock) which may be released and regrabbed
2039 * multiple times. Does GFP_KERNEL allocations.
2040 */
2041 static bool manage_workers(struct worker *worker)
2042 {
2043 struct worker_pool *pool = worker->pool;
2044 bool ret = false;
2045
2046 if (pool->flags & POOL_MANAGING_WORKERS)
2047 return ret;
2048
2049 pool->flags |= POOL_MANAGING_WORKERS;
2050
2051 /*
2052 * To simplify both worker management and CPU hotplug, hold off
2053 * management while hotplug is in progress. CPU hotplug path can't
2054 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2055 * lead to idle worker depletion (all become busy thinking someone
2056 * else is managing) which in turn can result in deadlock under
2057 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2058 * manager against CPU hotplug.
2059 *
2060 * assoc_mutex would always be free unless CPU hotplug is in
2061 * progress. trylock first without dropping @pool->lock.
2062 */
2063 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2064 spin_unlock_irq(&pool->lock);
2065 mutex_lock(&pool->assoc_mutex);
2066 /*
2067 * CPU hotplug could have happened while we were waiting
2068 * for assoc_mutex. Hotplug itself can't handle us
2069 * because manager isn't either on idle or busy list, and
2070 * @pool's state and ours could have deviated.
2071 *
2072 * As hotplug is now excluded via assoc_mutex, we can
2073 * simply try to bind. It will succeed or fail depending
2074 * on @pool's current state. Try it and adjust
2075 * %WORKER_UNBOUND accordingly.
2076 */
2077 if (worker_maybe_bind_and_lock(worker))
2078 worker->flags &= ~WORKER_UNBOUND;
2079 else
2080 worker->flags |= WORKER_UNBOUND;
2081
2082 ret = true;
2083 }
2084
2085 pool->flags &= ~POOL_MANAGE_WORKERS;
2086
2087 /*
2088 * Destroy and then create so that may_start_working() is true
2089 * on return.
2090 */
2091 ret |= maybe_destroy_workers(pool);
2092 ret |= maybe_create_worker(pool);
2093
2094 pool->flags &= ~POOL_MANAGING_WORKERS;
2095 mutex_unlock(&pool->assoc_mutex);
2096 return ret;
2097 }
2098
2099 /**
2100 * process_one_work - process single work
2101 * @worker: self
2102 * @work: work to process
2103 *
2104 * Process @work. This function contains all the logics necessary to
2105 * process a single work including synchronization against and
2106 * interaction with other workers on the same cpu, queueing and
2107 * flushing. As long as context requirement is met, any worker can
2108 * call this function to process a work.
2109 *
2110 * CONTEXT:
2111 * spin_lock_irq(pool->lock) which is released and regrabbed.
2112 */
2113 static void process_one_work(struct worker *worker, struct work_struct *work)
2114 __releases(&pool->lock)
2115 __acquires(&pool->lock)
2116 {
2117 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2118 struct worker_pool *pool = worker->pool;
2119 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2120 int work_color;
2121 struct worker *collision;
2122 #ifdef CONFIG_LOCKDEP
2123 /*
2124 * It is permissible to free the struct work_struct from
2125 * inside the function that is called from it, this we need to
2126 * take into account for lockdep too. To avoid bogus "held
2127 * lock freed" warnings as well as problems when looking into
2128 * work->lockdep_map, make a copy and use that here.
2129 */
2130 struct lockdep_map lockdep_map;
2131
2132 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2133 #endif
2134 /*
2135 * Ensure we're on the correct CPU. DISASSOCIATED test is
2136 * necessary to avoid spurious warnings from rescuers servicing the
2137 * unbound or a disassociated pool.
2138 */
2139 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2140 !(pool->flags & POOL_DISASSOCIATED) &&
2141 raw_smp_processor_id() != pool->cpu);
2142
2143 /*
2144 * A single work shouldn't be executed concurrently by
2145 * multiple workers on a single cpu. Check whether anyone is
2146 * already processing the work. If so, defer the work to the
2147 * currently executing one.
2148 */
2149 collision = find_worker_executing_work(pool, work);
2150 if (unlikely(collision)) {
2151 move_linked_works(work, &collision->scheduled, NULL);
2152 return;
2153 }
2154
2155 /* claim and dequeue */
2156 debug_work_deactivate(work);
2157 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2158 worker->current_work = work;
2159 worker->current_func = work->func;
2160 worker->current_cwq = cwq;
2161 work_color = get_work_color(work);
2162
2163 list_del_init(&work->entry);
2164
2165 /*
2166 * CPU intensive works don't participate in concurrency
2167 * management. They're the scheduler's responsibility.
2168 */
2169 if (unlikely(cpu_intensive))
2170 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2171
2172 /*
2173 * Unbound pool isn't concurrency managed and work items should be
2174 * executed ASAP. Wake up another worker if necessary.
2175 */
2176 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2177 wake_up_worker(pool);
2178
2179 /*
2180 * Record the last pool and clear PENDING which should be the last
2181 * update to @work. Also, do this inside @pool->lock so that
2182 * PENDING and queued state changes happen together while IRQ is
2183 * disabled.
2184 */
2185 set_work_pool_and_clear_pending(work, pool->id);
2186
2187 spin_unlock_irq(&pool->lock);
2188
2189 lock_map_acquire_read(&cwq->wq->lockdep_map);
2190 lock_map_acquire(&lockdep_map);
2191 trace_workqueue_execute_start(work);
2192 worker->current_func(work);
2193 /*
2194 * While we must be careful to not use "work" after this, the trace
2195 * point will only record its address.
2196 */
2197 trace_workqueue_execute_end(work);
2198 lock_map_release(&lockdep_map);
2199 lock_map_release(&cwq->wq->lockdep_map);
2200
2201 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2202 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2203 " last function: %pf\n",
2204 current->comm, preempt_count(), task_pid_nr(current),
2205 worker->current_func);
2206 debug_show_held_locks(current);
2207 dump_stack();
2208 }
2209
2210 spin_lock_irq(&pool->lock);
2211
2212 /* clear cpu intensive status */
2213 if (unlikely(cpu_intensive))
2214 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2215
2216 /* we're done with it, release */
2217 hash_del(&worker->hentry);
2218 worker->current_work = NULL;
2219 worker->current_func = NULL;
2220 worker->current_cwq = NULL;
2221 cwq_dec_nr_in_flight(cwq, work_color);
2222 }
2223
2224 /**
2225 * process_scheduled_works - process scheduled works
2226 * @worker: self
2227 *
2228 * Process all scheduled works. Please note that the scheduled list
2229 * may change while processing a work, so this function repeatedly
2230 * fetches a work from the top and executes it.
2231 *
2232 * CONTEXT:
2233 * spin_lock_irq(pool->lock) which may be released and regrabbed
2234 * multiple times.
2235 */
2236 static void process_scheduled_works(struct worker *worker)
2237 {
2238 while (!list_empty(&worker->scheduled)) {
2239 struct work_struct *work = list_first_entry(&worker->scheduled,
2240 struct work_struct, entry);
2241 process_one_work(worker, work);
2242 }
2243 }
2244
2245 /**
2246 * worker_thread - the worker thread function
2247 * @__worker: self
2248 *
2249 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2250 * of these per each cpu. These workers process all works regardless of
2251 * their specific target workqueue. The only exception is works which
2252 * belong to workqueues with a rescuer which will be explained in
2253 * rescuer_thread().
2254 */
2255 static int worker_thread(void *__worker)
2256 {
2257 struct worker *worker = __worker;
2258 struct worker_pool *pool = worker->pool;
2259
2260 /* tell the scheduler that this is a workqueue worker */
2261 worker->task->flags |= PF_WQ_WORKER;
2262 woke_up:
2263 spin_lock_irq(&pool->lock);
2264
2265 /* we are off idle list if destruction or rebind is requested */
2266 if (unlikely(list_empty(&worker->entry))) {
2267 spin_unlock_irq(&pool->lock);
2268
2269 /* if DIE is set, destruction is requested */
2270 if (worker->flags & WORKER_DIE) {
2271 worker->task->flags &= ~PF_WQ_WORKER;
2272 return 0;
2273 }
2274
2275 /* otherwise, rebind */
2276 idle_worker_rebind(worker);
2277 goto woke_up;
2278 }
2279
2280 worker_leave_idle(worker);
2281 recheck:
2282 /* no more worker necessary? */
2283 if (!need_more_worker(pool))
2284 goto sleep;
2285
2286 /* do we need to manage? */
2287 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2288 goto recheck;
2289
2290 /*
2291 * ->scheduled list can only be filled while a worker is
2292 * preparing to process a work or actually processing it.
2293 * Make sure nobody diddled with it while I was sleeping.
2294 */
2295 BUG_ON(!list_empty(&worker->scheduled));
2296
2297 /*
2298 * When control reaches this point, we're guaranteed to have
2299 * at least one idle worker or that someone else has already
2300 * assumed the manager role.
2301 */
2302 worker_clr_flags(worker, WORKER_PREP);
2303
2304 do {
2305 struct work_struct *work =
2306 list_first_entry(&pool->worklist,
2307 struct work_struct, entry);
2308
2309 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2310 /* optimization path, not strictly necessary */
2311 process_one_work(worker, work);
2312 if (unlikely(!list_empty(&worker->scheduled)))
2313 process_scheduled_works(worker);
2314 } else {
2315 move_linked_works(work, &worker->scheduled, NULL);
2316 process_scheduled_works(worker);
2317 }
2318 } while (keep_working(pool));
2319
2320 worker_set_flags(worker, WORKER_PREP, false);
2321 sleep:
2322 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2323 goto recheck;
2324
2325 /*
2326 * pool->lock is held and there's no work to process and no need to
2327 * manage, sleep. Workers are woken up only while holding
2328 * pool->lock or from local cpu, so setting the current state
2329 * before releasing pool->lock is enough to prevent losing any
2330 * event.
2331 */
2332 worker_enter_idle(worker);
2333 __set_current_state(TASK_INTERRUPTIBLE);
2334 spin_unlock_irq(&pool->lock);
2335 schedule();
2336 goto woke_up;
2337 }
2338
2339 /**
2340 * rescuer_thread - the rescuer thread function
2341 * @__rescuer: self
2342 *
2343 * Workqueue rescuer thread function. There's one rescuer for each
2344 * workqueue which has WQ_RESCUER set.
2345 *
2346 * Regular work processing on a pool may block trying to create a new
2347 * worker which uses GFP_KERNEL allocation which has slight chance of
2348 * developing into deadlock if some works currently on the same queue
2349 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2350 * the problem rescuer solves.
2351 *
2352 * When such condition is possible, the pool summons rescuers of all
2353 * workqueues which have works queued on the pool and let them process
2354 * those works so that forward progress can be guaranteed.
2355 *
2356 * This should happen rarely.
2357 */
2358 static int rescuer_thread(void *__rescuer)
2359 {
2360 struct worker *rescuer = __rescuer;
2361 struct workqueue_struct *wq = rescuer->rescue_wq;
2362 struct list_head *scheduled = &rescuer->scheduled;
2363 bool is_unbound = wq->flags & WQ_UNBOUND;
2364 unsigned int cpu;
2365
2366 set_user_nice(current, RESCUER_NICE_LEVEL);
2367
2368 /*
2369 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2370 * doesn't participate in concurrency management.
2371 */
2372 rescuer->task->flags |= PF_WQ_WORKER;
2373 repeat:
2374 set_current_state(TASK_INTERRUPTIBLE);
2375
2376 if (kthread_should_stop()) {
2377 __set_current_state(TASK_RUNNING);
2378 rescuer->task->flags &= ~PF_WQ_WORKER;
2379 return 0;
2380 }
2381
2382 /*
2383 * See whether any cpu is asking for help. Unbounded
2384 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2385 */
2386 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2387 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2388 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2389 struct worker_pool *pool = cwq->pool;
2390 struct work_struct *work, *n;
2391
2392 __set_current_state(TASK_RUNNING);
2393 mayday_clear_cpu(cpu, wq->mayday_mask);
2394
2395 /* migrate to the target cpu if possible */
2396 rescuer->pool = pool;
2397 worker_maybe_bind_and_lock(rescuer);
2398
2399 /*
2400 * Slurp in all works issued via this workqueue and
2401 * process'em.
2402 */
2403 BUG_ON(!list_empty(&rescuer->scheduled));
2404 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2405 if (get_work_cwq(work) == cwq)
2406 move_linked_works(work, scheduled, &n);
2407
2408 process_scheduled_works(rescuer);
2409
2410 /*
2411 * Leave this pool. If keep_working() is %true, notify a
2412 * regular worker; otherwise, we end up with 0 concurrency
2413 * and stalling the execution.
2414 */
2415 if (keep_working(pool))
2416 wake_up_worker(pool);
2417
2418 spin_unlock_irq(&pool->lock);
2419 }
2420
2421 /* rescuers should never participate in concurrency management */
2422 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2423 schedule();
2424 goto repeat;
2425 }
2426
2427 struct wq_barrier {
2428 struct work_struct work;
2429 struct completion done;
2430 };
2431
2432 static void wq_barrier_func(struct work_struct *work)
2433 {
2434 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2435 complete(&barr->done);
2436 }
2437
2438 /**
2439 * insert_wq_barrier - insert a barrier work
2440 * @cwq: cwq to insert barrier into
2441 * @barr: wq_barrier to insert
2442 * @target: target work to attach @barr to
2443 * @worker: worker currently executing @target, NULL if @target is not executing
2444 *
2445 * @barr is linked to @target such that @barr is completed only after
2446 * @target finishes execution. Please note that the ordering
2447 * guarantee is observed only with respect to @target and on the local
2448 * cpu.
2449 *
2450 * Currently, a queued barrier can't be canceled. This is because
2451 * try_to_grab_pending() can't determine whether the work to be
2452 * grabbed is at the head of the queue and thus can't clear LINKED
2453 * flag of the previous work while there must be a valid next work
2454 * after a work with LINKED flag set.
2455 *
2456 * Note that when @worker is non-NULL, @target may be modified
2457 * underneath us, so we can't reliably determine cwq from @target.
2458 *
2459 * CONTEXT:
2460 * spin_lock_irq(pool->lock).
2461 */
2462 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2463 struct wq_barrier *barr,
2464 struct work_struct *target, struct worker *worker)
2465 {
2466 struct list_head *head;
2467 unsigned int linked = 0;
2468
2469 /*
2470 * debugobject calls are safe here even with pool->lock locked
2471 * as we know for sure that this will not trigger any of the
2472 * checks and call back into the fixup functions where we
2473 * might deadlock.
2474 */
2475 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2476 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2477 init_completion(&barr->done);
2478
2479 /*
2480 * If @target is currently being executed, schedule the
2481 * barrier to the worker; otherwise, put it after @target.
2482 */
2483 if (worker)
2484 head = worker->scheduled.next;
2485 else {
2486 unsigned long *bits = work_data_bits(target);
2487
2488 head = target->entry.next;
2489 /* there can already be other linked works, inherit and set */
2490 linked = *bits & WORK_STRUCT_LINKED;
2491 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2492 }
2493
2494 debug_work_activate(&barr->work);
2495 insert_work(cwq, &barr->work, head,
2496 work_color_to_flags(WORK_NO_COLOR) | linked);
2497 }
2498
2499 /**
2500 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2501 * @wq: workqueue being flushed
2502 * @flush_color: new flush color, < 0 for no-op
2503 * @work_color: new work color, < 0 for no-op
2504 *
2505 * Prepare cwqs for workqueue flushing.
2506 *
2507 * If @flush_color is non-negative, flush_color on all cwqs should be
2508 * -1. If no cwq has in-flight commands at the specified color, all
2509 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2510 * has in flight commands, its cwq->flush_color is set to
2511 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2512 * wakeup logic is armed and %true is returned.
2513 *
2514 * The caller should have initialized @wq->first_flusher prior to
2515 * calling this function with non-negative @flush_color. If
2516 * @flush_color is negative, no flush color update is done and %false
2517 * is returned.
2518 *
2519 * If @work_color is non-negative, all cwqs should have the same
2520 * work_color which is previous to @work_color and all will be
2521 * advanced to @work_color.
2522 *
2523 * CONTEXT:
2524 * mutex_lock(wq->flush_mutex).
2525 *
2526 * RETURNS:
2527 * %true if @flush_color >= 0 and there's something to flush. %false
2528 * otherwise.
2529 */
2530 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2531 int flush_color, int work_color)
2532 {
2533 bool wait = false;
2534 unsigned int cpu;
2535
2536 if (flush_color >= 0) {
2537 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2538 atomic_set(&wq->nr_cwqs_to_flush, 1);
2539 }
2540
2541 for_each_cwq_cpu(cpu, wq) {
2542 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2543 struct worker_pool *pool = cwq->pool;
2544
2545 spin_lock_irq(&pool->lock);
2546
2547 if (flush_color >= 0) {
2548 BUG_ON(cwq->flush_color != -1);
2549
2550 if (cwq->nr_in_flight[flush_color]) {
2551 cwq->flush_color = flush_color;
2552 atomic_inc(&wq->nr_cwqs_to_flush);
2553 wait = true;
2554 }
2555 }
2556
2557 if (work_color >= 0) {
2558 BUG_ON(work_color != work_next_color(cwq->work_color));
2559 cwq->work_color = work_color;
2560 }
2561
2562 spin_unlock_irq(&pool->lock);
2563 }
2564
2565 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2566 complete(&wq->first_flusher->done);
2567
2568 return wait;
2569 }
2570
2571 /**
2572 * flush_workqueue - ensure that any scheduled work has run to completion.
2573 * @wq: workqueue to flush
2574 *
2575 * Forces execution of the workqueue and blocks until its completion.
2576 * This is typically used in driver shutdown handlers.
2577 *
2578 * We sleep until all works which were queued on entry have been handled,
2579 * but we are not livelocked by new incoming ones.
2580 */
2581 void flush_workqueue(struct workqueue_struct *wq)
2582 {
2583 struct wq_flusher this_flusher = {
2584 .list = LIST_HEAD_INIT(this_flusher.list),
2585 .flush_color = -1,
2586 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2587 };
2588 int next_color;
2589
2590 lock_map_acquire(&wq->lockdep_map);
2591 lock_map_release(&wq->lockdep_map);
2592
2593 mutex_lock(&wq->flush_mutex);
2594
2595 /*
2596 * Start-to-wait phase
2597 */
2598 next_color = work_next_color(wq->work_color);
2599
2600 if (next_color != wq->flush_color) {
2601 /*
2602 * Color space is not full. The current work_color
2603 * becomes our flush_color and work_color is advanced
2604 * by one.
2605 */
2606 BUG_ON(!list_empty(&wq->flusher_overflow));
2607 this_flusher.flush_color = wq->work_color;
2608 wq->work_color = next_color;
2609
2610 if (!wq->first_flusher) {
2611 /* no flush in progress, become the first flusher */
2612 BUG_ON(wq->flush_color != this_flusher.flush_color);
2613
2614 wq->first_flusher = &this_flusher;
2615
2616 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2617 wq->work_color)) {
2618 /* nothing to flush, done */
2619 wq->flush_color = next_color;
2620 wq->first_flusher = NULL;
2621 goto out_unlock;
2622 }
2623 } else {
2624 /* wait in queue */
2625 BUG_ON(wq->flush_color == this_flusher.flush_color);
2626 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2627 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2628 }
2629 } else {
2630 /*
2631 * Oops, color space is full, wait on overflow queue.
2632 * The next flush completion will assign us
2633 * flush_color and transfer to flusher_queue.
2634 */
2635 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2636 }
2637
2638 mutex_unlock(&wq->flush_mutex);
2639
2640 wait_for_completion(&this_flusher.done);
2641
2642 /*
2643 * Wake-up-and-cascade phase
2644 *
2645 * First flushers are responsible for cascading flushes and
2646 * handling overflow. Non-first flushers can simply return.
2647 */
2648 if (wq->first_flusher != &this_flusher)
2649 return;
2650
2651 mutex_lock(&wq->flush_mutex);
2652
2653 /* we might have raced, check again with mutex held */
2654 if (wq->first_flusher != &this_flusher)
2655 goto out_unlock;
2656
2657 wq->first_flusher = NULL;
2658
2659 BUG_ON(!list_empty(&this_flusher.list));
2660 BUG_ON(wq->flush_color != this_flusher.flush_color);
2661
2662 while (true) {
2663 struct wq_flusher *next, *tmp;
2664
2665 /* complete all the flushers sharing the current flush color */
2666 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2667 if (next->flush_color != wq->flush_color)
2668 break;
2669 list_del_init(&next->list);
2670 complete(&next->done);
2671 }
2672
2673 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2674 wq->flush_color != work_next_color(wq->work_color));
2675
2676 /* this flush_color is finished, advance by one */
2677 wq->flush_color = work_next_color(wq->flush_color);
2678
2679 /* one color has been freed, handle overflow queue */
2680 if (!list_empty(&wq->flusher_overflow)) {
2681 /*
2682 * Assign the same color to all overflowed
2683 * flushers, advance work_color and append to
2684 * flusher_queue. This is the start-to-wait
2685 * phase for these overflowed flushers.
2686 */
2687 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2688 tmp->flush_color = wq->work_color;
2689
2690 wq->work_color = work_next_color(wq->work_color);
2691
2692 list_splice_tail_init(&wq->flusher_overflow,
2693 &wq->flusher_queue);
2694 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2695 }
2696
2697 if (list_empty(&wq->flusher_queue)) {
2698 BUG_ON(wq->flush_color != wq->work_color);
2699 break;
2700 }
2701
2702 /*
2703 * Need to flush more colors. Make the next flusher
2704 * the new first flusher and arm cwqs.
2705 */
2706 BUG_ON(wq->flush_color == wq->work_color);
2707 BUG_ON(wq->flush_color != next->flush_color);
2708
2709 list_del_init(&next->list);
2710 wq->first_flusher = next;
2711
2712 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2713 break;
2714
2715 /*
2716 * Meh... this color is already done, clear first
2717 * flusher and repeat cascading.
2718 */
2719 wq->first_flusher = NULL;
2720 }
2721
2722 out_unlock:
2723 mutex_unlock(&wq->flush_mutex);
2724 }
2725 EXPORT_SYMBOL_GPL(flush_workqueue);
2726
2727 /**
2728 * drain_workqueue - drain a workqueue
2729 * @wq: workqueue to drain
2730 *
2731 * Wait until the workqueue becomes empty. While draining is in progress,
2732 * only chain queueing is allowed. IOW, only currently pending or running
2733 * work items on @wq can queue further work items on it. @wq is flushed
2734 * repeatedly until it becomes empty. The number of flushing is detemined
2735 * by the depth of chaining and should be relatively short. Whine if it
2736 * takes too long.
2737 */
2738 void drain_workqueue(struct workqueue_struct *wq)
2739 {
2740 unsigned int flush_cnt = 0;
2741 unsigned int cpu;
2742
2743 /*
2744 * __queue_work() needs to test whether there are drainers, is much
2745 * hotter than drain_workqueue() and already looks at @wq->flags.
2746 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2747 */
2748 spin_lock(&workqueue_lock);
2749 if (!wq->nr_drainers++)
2750 wq->flags |= WQ_DRAINING;
2751 spin_unlock(&workqueue_lock);
2752 reflush:
2753 flush_workqueue(wq);
2754
2755 for_each_cwq_cpu(cpu, wq) {
2756 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2757 bool drained;
2758
2759 spin_lock_irq(&cwq->pool->lock);
2760 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2761 spin_unlock_irq(&cwq->pool->lock);
2762
2763 if (drained)
2764 continue;
2765
2766 if (++flush_cnt == 10 ||
2767 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2768 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2769 wq->name, flush_cnt);
2770 goto reflush;
2771 }
2772
2773 spin_lock(&workqueue_lock);
2774 if (!--wq->nr_drainers)
2775 wq->flags &= ~WQ_DRAINING;
2776 spin_unlock(&workqueue_lock);
2777 }
2778 EXPORT_SYMBOL_GPL(drain_workqueue);
2779
2780 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2781 {
2782 struct worker *worker = NULL;
2783 struct worker_pool *pool;
2784 struct cpu_workqueue_struct *cwq;
2785
2786 might_sleep();
2787 pool = get_work_pool(work);
2788 if (!pool)
2789 return false;
2790
2791 spin_lock_irq(&pool->lock);
2792 if (!list_empty(&work->entry)) {
2793 /*
2794 * See the comment near try_to_grab_pending()->smp_rmb().
2795 * If it was re-queued to a different pool under us, we
2796 * are not going to wait.
2797 */
2798 smp_rmb();
2799 cwq = get_work_cwq(work);
2800 if (unlikely(!cwq || pool != cwq->pool))
2801 goto already_gone;
2802 } else {
2803 worker = find_worker_executing_work(pool, work);
2804 if (!worker)
2805 goto already_gone;
2806 cwq = worker->current_cwq;
2807 }
2808
2809 insert_wq_barrier(cwq, barr, work, worker);
2810 spin_unlock_irq(&pool->lock);
2811
2812 /*
2813 * If @max_active is 1 or rescuer is in use, flushing another work
2814 * item on the same workqueue may lead to deadlock. Make sure the
2815 * flusher is not running on the same workqueue by verifying write
2816 * access.
2817 */
2818 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2819 lock_map_acquire(&cwq->wq->lockdep_map);
2820 else
2821 lock_map_acquire_read(&cwq->wq->lockdep_map);
2822 lock_map_release(&cwq->wq->lockdep_map);
2823
2824 return true;
2825 already_gone:
2826 spin_unlock_irq(&pool->lock);
2827 return false;
2828 }
2829
2830 /**
2831 * flush_work - wait for a work to finish executing the last queueing instance
2832 * @work: the work to flush
2833 *
2834 * Wait until @work has finished execution. @work is guaranteed to be idle
2835 * on return if it hasn't been requeued since flush started.
2836 *
2837 * RETURNS:
2838 * %true if flush_work() waited for the work to finish execution,
2839 * %false if it was already idle.
2840 */
2841 bool flush_work(struct work_struct *work)
2842 {
2843 struct wq_barrier barr;
2844
2845 lock_map_acquire(&work->lockdep_map);
2846 lock_map_release(&work->lockdep_map);
2847
2848 if (start_flush_work(work, &barr)) {
2849 wait_for_completion(&barr.done);
2850 destroy_work_on_stack(&barr.work);
2851 return true;
2852 } else {
2853 return false;
2854 }
2855 }
2856 EXPORT_SYMBOL_GPL(flush_work);
2857
2858 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2859 {
2860 unsigned long flags;
2861 int ret;
2862
2863 do {
2864 ret = try_to_grab_pending(work, is_dwork, &flags);
2865 /*
2866 * If someone else is canceling, wait for the same event it
2867 * would be waiting for before retrying.
2868 */
2869 if (unlikely(ret == -ENOENT))
2870 flush_work(work);
2871 } while (unlikely(ret < 0));
2872
2873 /* tell other tasks trying to grab @work to back off */
2874 mark_work_canceling(work);
2875 local_irq_restore(flags);
2876
2877 flush_work(work);
2878 clear_work_data(work);
2879 return ret;
2880 }
2881
2882 /**
2883 * cancel_work_sync - cancel a work and wait for it to finish
2884 * @work: the work to cancel
2885 *
2886 * Cancel @work and wait for its execution to finish. This function
2887 * can be used even if the work re-queues itself or migrates to
2888 * another workqueue. On return from this function, @work is
2889 * guaranteed to be not pending or executing on any CPU.
2890 *
2891 * cancel_work_sync(&delayed_work->work) must not be used for
2892 * delayed_work's. Use cancel_delayed_work_sync() instead.
2893 *
2894 * The caller must ensure that the workqueue on which @work was last
2895 * queued can't be destroyed before this function returns.
2896 *
2897 * RETURNS:
2898 * %true if @work was pending, %false otherwise.
2899 */
2900 bool cancel_work_sync(struct work_struct *work)
2901 {
2902 return __cancel_work_timer(work, false);
2903 }
2904 EXPORT_SYMBOL_GPL(cancel_work_sync);
2905
2906 /**
2907 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2908 * @dwork: the delayed work to flush
2909 *
2910 * Delayed timer is cancelled and the pending work is queued for
2911 * immediate execution. Like flush_work(), this function only
2912 * considers the last queueing instance of @dwork.
2913 *
2914 * RETURNS:
2915 * %true if flush_work() waited for the work to finish execution,
2916 * %false if it was already idle.
2917 */
2918 bool flush_delayed_work(struct delayed_work *dwork)
2919 {
2920 local_irq_disable();
2921 if (del_timer_sync(&dwork->timer))
2922 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2923 local_irq_enable();
2924 return flush_work(&dwork->work);
2925 }
2926 EXPORT_SYMBOL(flush_delayed_work);
2927
2928 /**
2929 * cancel_delayed_work - cancel a delayed work
2930 * @dwork: delayed_work to cancel
2931 *
2932 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2933 * and canceled; %false if wasn't pending. Note that the work callback
2934 * function may still be running on return, unless it returns %true and the
2935 * work doesn't re-arm itself. Explicitly flush or use
2936 * cancel_delayed_work_sync() to wait on it.
2937 *
2938 * This function is safe to call from any context including IRQ handler.
2939 */
2940 bool cancel_delayed_work(struct delayed_work *dwork)
2941 {
2942 unsigned long flags;
2943 int ret;
2944
2945 do {
2946 ret = try_to_grab_pending(&dwork->work, true, &flags);
2947 } while (unlikely(ret == -EAGAIN));
2948
2949 if (unlikely(ret < 0))
2950 return false;
2951
2952 set_work_pool_and_clear_pending(&dwork->work,
2953 get_work_pool_id(&dwork->work));
2954 local_irq_restore(flags);
2955 return ret;
2956 }
2957 EXPORT_SYMBOL(cancel_delayed_work);
2958
2959 /**
2960 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2961 * @dwork: the delayed work cancel
2962 *
2963 * This is cancel_work_sync() for delayed works.
2964 *
2965 * RETURNS:
2966 * %true if @dwork was pending, %false otherwise.
2967 */
2968 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2969 {
2970 return __cancel_work_timer(&dwork->work, true);
2971 }
2972 EXPORT_SYMBOL(cancel_delayed_work_sync);
2973
2974 /**
2975 * schedule_work_on - put work task on a specific cpu
2976 * @cpu: cpu to put the work task on
2977 * @work: job to be done
2978 *
2979 * This puts a job on a specific cpu
2980 */
2981 bool schedule_work_on(int cpu, struct work_struct *work)
2982 {
2983 return queue_work_on(cpu, system_wq, work);
2984 }
2985 EXPORT_SYMBOL(schedule_work_on);
2986
2987 /**
2988 * schedule_work - put work task in global workqueue
2989 * @work: job to be done
2990 *
2991 * Returns %false if @work was already on the kernel-global workqueue and
2992 * %true otherwise.
2993 *
2994 * This puts a job in the kernel-global workqueue if it was not already
2995 * queued and leaves it in the same position on the kernel-global
2996 * workqueue otherwise.
2997 */
2998 bool schedule_work(struct work_struct *work)
2999 {
3000 return queue_work(system_wq, work);
3001 }
3002 EXPORT_SYMBOL(schedule_work);
3003
3004 /**
3005 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3006 * @cpu: cpu to use
3007 * @dwork: job to be done
3008 * @delay: number of jiffies to wait
3009 *
3010 * After waiting for a given time this puts a job in the kernel-global
3011 * workqueue on the specified CPU.
3012 */
3013 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3014 unsigned long delay)
3015 {
3016 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3017 }
3018 EXPORT_SYMBOL(schedule_delayed_work_on);
3019
3020 /**
3021 * schedule_delayed_work - put work task in global workqueue after delay
3022 * @dwork: job to be done
3023 * @delay: number of jiffies to wait or 0 for immediate execution
3024 *
3025 * After waiting for a given time this puts a job in the kernel-global
3026 * workqueue.
3027 */
3028 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3029 {
3030 return queue_delayed_work(system_wq, dwork, delay);
3031 }
3032 EXPORT_SYMBOL(schedule_delayed_work);
3033
3034 /**
3035 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3036 * @func: the function to call
3037 *
3038 * schedule_on_each_cpu() executes @func on each online CPU using the
3039 * system workqueue and blocks until all CPUs have completed.
3040 * schedule_on_each_cpu() is very slow.
3041 *
3042 * RETURNS:
3043 * 0 on success, -errno on failure.
3044 */
3045 int schedule_on_each_cpu(work_func_t func)
3046 {
3047 int cpu;
3048 struct work_struct __percpu *works;
3049
3050 works = alloc_percpu(struct work_struct);
3051 if (!works)
3052 return -ENOMEM;
3053
3054 get_online_cpus();
3055
3056 for_each_online_cpu(cpu) {
3057 struct work_struct *work = per_cpu_ptr(works, cpu);
3058
3059 INIT_WORK(work, func);
3060 schedule_work_on(cpu, work);
3061 }
3062
3063 for_each_online_cpu(cpu)
3064 flush_work(per_cpu_ptr(works, cpu));
3065
3066 put_online_cpus();
3067 free_percpu(works);
3068 return 0;
3069 }
3070
3071 /**
3072 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3073 *
3074 * Forces execution of the kernel-global workqueue and blocks until its
3075 * completion.
3076 *
3077 * Think twice before calling this function! It's very easy to get into
3078 * trouble if you don't take great care. Either of the following situations
3079 * will lead to deadlock:
3080 *
3081 * One of the work items currently on the workqueue needs to acquire
3082 * a lock held by your code or its caller.
3083 *
3084 * Your code is running in the context of a work routine.
3085 *
3086 * They will be detected by lockdep when they occur, but the first might not
3087 * occur very often. It depends on what work items are on the workqueue and
3088 * what locks they need, which you have no control over.
3089 *
3090 * In most situations flushing the entire workqueue is overkill; you merely
3091 * need to know that a particular work item isn't queued and isn't running.
3092 * In such cases you should use cancel_delayed_work_sync() or
3093 * cancel_work_sync() instead.
3094 */
3095 void flush_scheduled_work(void)
3096 {
3097 flush_workqueue(system_wq);
3098 }
3099 EXPORT_SYMBOL(flush_scheduled_work);
3100
3101 /**
3102 * execute_in_process_context - reliably execute the routine with user context
3103 * @fn: the function to execute
3104 * @ew: guaranteed storage for the execute work structure (must
3105 * be available when the work executes)
3106 *
3107 * Executes the function immediately if process context is available,
3108 * otherwise schedules the function for delayed execution.
3109 *
3110 * Returns: 0 - function was executed
3111 * 1 - function was scheduled for execution
3112 */
3113 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3114 {
3115 if (!in_interrupt()) {
3116 fn(&ew->work);
3117 return 0;
3118 }
3119
3120 INIT_WORK(&ew->work, fn);
3121 schedule_work(&ew->work);
3122
3123 return 1;
3124 }
3125 EXPORT_SYMBOL_GPL(execute_in_process_context);
3126
3127 int keventd_up(void)
3128 {
3129 return system_wq != NULL;
3130 }
3131
3132 static int alloc_cwqs(struct workqueue_struct *wq)
3133 {
3134 /*
3135 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3136 * Make sure that the alignment isn't lower than that of
3137 * unsigned long long.
3138 */
3139 const size_t size = sizeof(struct cpu_workqueue_struct);
3140 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3141 __alignof__(unsigned long long));
3142
3143 if (!(wq->flags & WQ_UNBOUND))
3144 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3145 else {
3146 void *ptr;
3147
3148 /*
3149 * Allocate enough room to align cwq and put an extra
3150 * pointer at the end pointing back to the originally
3151 * allocated pointer which will be used for free.
3152 */
3153 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3154 if (ptr) {
3155 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3156 *(void **)(wq->cpu_wq.single + 1) = ptr;
3157 }
3158 }
3159
3160 /* just in case, make sure it's actually aligned */
3161 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3162 return wq->cpu_wq.v ? 0 : -ENOMEM;
3163 }
3164
3165 static void free_cwqs(struct workqueue_struct *wq)
3166 {
3167 if (!(wq->flags & WQ_UNBOUND))
3168 free_percpu(wq->cpu_wq.pcpu);
3169 else if (wq->cpu_wq.single) {
3170 /* the pointer to free is stored right after the cwq */
3171 kfree(*(void **)(wq->cpu_wq.single + 1));
3172 }
3173 }
3174
3175 static int wq_clamp_max_active(int max_active, unsigned int flags,
3176 const char *name)
3177 {
3178 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3179
3180 if (max_active < 1 || max_active > lim)
3181 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3182 max_active, name, 1, lim);
3183
3184 return clamp_val(max_active, 1, lim);
3185 }
3186
3187 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3188 unsigned int flags,
3189 int max_active,
3190 struct lock_class_key *key,
3191 const char *lock_name, ...)
3192 {
3193 va_list args, args1;
3194 struct workqueue_struct *wq;
3195 unsigned int cpu;
3196 size_t namelen;
3197
3198 /* determine namelen, allocate wq and format name */
3199 va_start(args, lock_name);
3200 va_copy(args1, args);
3201 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3202
3203 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3204 if (!wq)
3205 goto err;
3206
3207 vsnprintf(wq->name, namelen, fmt, args1);
3208 va_end(args);
3209 va_end(args1);
3210
3211 /*
3212 * Workqueues which may be used during memory reclaim should
3213 * have a rescuer to guarantee forward progress.
3214 */
3215 if (flags & WQ_MEM_RECLAIM)
3216 flags |= WQ_RESCUER;
3217
3218 max_active = max_active ?: WQ_DFL_ACTIVE;
3219 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3220
3221 /* init wq */
3222 wq->flags = flags;
3223 wq->saved_max_active = max_active;
3224 mutex_init(&wq->flush_mutex);
3225 atomic_set(&wq->nr_cwqs_to_flush, 0);
3226 INIT_LIST_HEAD(&wq->flusher_queue);
3227 INIT_LIST_HEAD(&wq->flusher_overflow);
3228
3229 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3230 INIT_LIST_HEAD(&wq->list);
3231
3232 if (alloc_cwqs(wq) < 0)
3233 goto err;
3234
3235 for_each_cwq_cpu(cpu, wq) {
3236 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3237
3238 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3239 cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3240 cwq->wq = wq;
3241 cwq->flush_color = -1;
3242 cwq->max_active = max_active;
3243 INIT_LIST_HEAD(&cwq->delayed_works);
3244 }
3245
3246 if (flags & WQ_RESCUER) {
3247 struct worker *rescuer;
3248
3249 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3250 goto err;
3251
3252 wq->rescuer = rescuer = alloc_worker();
3253 if (!rescuer)
3254 goto err;
3255
3256 rescuer->rescue_wq = wq;
3257 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3258 wq->name);
3259 if (IS_ERR(rescuer->task))
3260 goto err;
3261
3262 rescuer->task->flags |= PF_THREAD_BOUND;
3263 wake_up_process(rescuer->task);
3264 }
3265
3266 /*
3267 * workqueue_lock protects global freeze state and workqueues
3268 * list. Grab it, set max_active accordingly and add the new
3269 * workqueue to workqueues list.
3270 */
3271 spin_lock(&workqueue_lock);
3272
3273 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3274 for_each_cwq_cpu(cpu, wq)
3275 get_cwq(cpu, wq)->max_active = 0;
3276
3277 list_add(&wq->list, &workqueues);
3278
3279 spin_unlock(&workqueue_lock);
3280
3281 return wq;
3282 err:
3283 if (wq) {
3284 free_cwqs(wq);
3285 free_mayday_mask(wq->mayday_mask);
3286 kfree(wq->rescuer);
3287 kfree(wq);
3288 }
3289 return NULL;
3290 }
3291 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3292
3293 /**
3294 * destroy_workqueue - safely terminate a workqueue
3295 * @wq: target workqueue
3296 *
3297 * Safely destroy a workqueue. All work currently pending will be done first.
3298 */
3299 void destroy_workqueue(struct workqueue_struct *wq)
3300 {
3301 unsigned int cpu;
3302
3303 /* drain it before proceeding with destruction */
3304 drain_workqueue(wq);
3305
3306 /*
3307 * wq list is used to freeze wq, remove from list after
3308 * flushing is complete in case freeze races us.
3309 */
3310 spin_lock(&workqueue_lock);
3311 list_del(&wq->list);
3312 spin_unlock(&workqueue_lock);
3313
3314 /* sanity check */
3315 for_each_cwq_cpu(cpu, wq) {
3316 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3317 int i;
3318
3319 for (i = 0; i < WORK_NR_COLORS; i++)
3320 BUG_ON(cwq->nr_in_flight[i]);
3321 BUG_ON(cwq->nr_active);
3322 BUG_ON(!list_empty(&cwq->delayed_works));
3323 }
3324
3325 if (wq->flags & WQ_RESCUER) {
3326 kthread_stop(wq->rescuer->task);
3327 free_mayday_mask(wq->mayday_mask);
3328 kfree(wq->rescuer);
3329 }
3330
3331 free_cwqs(wq);
3332 kfree(wq);
3333 }
3334 EXPORT_SYMBOL_GPL(destroy_workqueue);
3335
3336 /**
3337 * cwq_set_max_active - adjust max_active of a cwq
3338 * @cwq: target cpu_workqueue_struct
3339 * @max_active: new max_active value.
3340 *
3341 * Set @cwq->max_active to @max_active and activate delayed works if
3342 * increased.
3343 *
3344 * CONTEXT:
3345 * spin_lock_irq(pool->lock).
3346 */
3347 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3348 {
3349 cwq->max_active = max_active;
3350
3351 while (!list_empty(&cwq->delayed_works) &&
3352 cwq->nr_active < cwq->max_active)
3353 cwq_activate_first_delayed(cwq);
3354 }
3355
3356 /**
3357 * workqueue_set_max_active - adjust max_active of a workqueue
3358 * @wq: target workqueue
3359 * @max_active: new max_active value.
3360 *
3361 * Set max_active of @wq to @max_active.
3362 *
3363 * CONTEXT:
3364 * Don't call from IRQ context.
3365 */
3366 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3367 {
3368 unsigned int cpu;
3369
3370 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3371
3372 spin_lock(&workqueue_lock);
3373
3374 wq->saved_max_active = max_active;
3375
3376 for_each_cwq_cpu(cpu, wq) {
3377 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3378 struct worker_pool *pool = cwq->pool;
3379
3380 spin_lock_irq(&pool->lock);
3381
3382 if (!(wq->flags & WQ_FREEZABLE) ||
3383 !(pool->flags & POOL_FREEZING))
3384 cwq_set_max_active(cwq, max_active);
3385
3386 spin_unlock_irq(&pool->lock);
3387 }
3388
3389 spin_unlock(&workqueue_lock);
3390 }
3391 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3392
3393 /**
3394 * workqueue_congested - test whether a workqueue is congested
3395 * @cpu: CPU in question
3396 * @wq: target workqueue
3397 *
3398 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3399 * no synchronization around this function and the test result is
3400 * unreliable and only useful as advisory hints or for debugging.
3401 *
3402 * RETURNS:
3403 * %true if congested, %false otherwise.
3404 */
3405 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3406 {
3407 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3408
3409 return !list_empty(&cwq->delayed_works);
3410 }
3411 EXPORT_SYMBOL_GPL(workqueue_congested);
3412
3413 /**
3414 * work_busy - test whether a work is currently pending or running
3415 * @work: the work to be tested
3416 *
3417 * Test whether @work is currently pending or running. There is no
3418 * synchronization around this function and the test result is
3419 * unreliable and only useful as advisory hints or for debugging.
3420 *
3421 * RETURNS:
3422 * OR'd bitmask of WORK_BUSY_* bits.
3423 */
3424 unsigned int work_busy(struct work_struct *work)
3425 {
3426 struct worker_pool *pool = get_work_pool(work);
3427 unsigned long flags;
3428 unsigned int ret = 0;
3429
3430 if (work_pending(work))
3431 ret |= WORK_BUSY_PENDING;
3432
3433 if (pool) {
3434 spin_lock_irqsave(&pool->lock, flags);
3435 if (find_worker_executing_work(pool, work))
3436 ret |= WORK_BUSY_RUNNING;
3437 spin_unlock_irqrestore(&pool->lock, flags);
3438 }
3439
3440 return ret;
3441 }
3442 EXPORT_SYMBOL_GPL(work_busy);
3443
3444 /*
3445 * CPU hotplug.
3446 *
3447 * There are two challenges in supporting CPU hotplug. Firstly, there
3448 * are a lot of assumptions on strong associations among work, cwq and
3449 * pool which make migrating pending and scheduled works very
3450 * difficult to implement without impacting hot paths. Secondly,
3451 * worker pools serve mix of short, long and very long running works making
3452 * blocked draining impractical.
3453 *
3454 * This is solved by allowing the pools to be disassociated from the CPU
3455 * running as an unbound one and allowing it to be reattached later if the
3456 * cpu comes back online.
3457 */
3458
3459 static void wq_unbind_fn(struct work_struct *work)
3460 {
3461 int cpu = smp_processor_id();
3462 struct worker_pool *pool;
3463 struct worker *worker;
3464 struct hlist_node *pos;
3465 int i;
3466
3467 for_each_std_worker_pool(pool, cpu) {
3468 BUG_ON(cpu != smp_processor_id());
3469
3470 mutex_lock(&pool->assoc_mutex);
3471 spin_lock_irq(&pool->lock);
3472
3473 /*
3474 * We've claimed all manager positions. Make all workers
3475 * unbound and set DISASSOCIATED. Before this, all workers
3476 * except for the ones which are still executing works from
3477 * before the last CPU down must be on the cpu. After
3478 * this, they may become diasporas.
3479 */
3480 list_for_each_entry(worker, &pool->idle_list, entry)
3481 worker->flags |= WORKER_UNBOUND;
3482
3483 for_each_busy_worker(worker, i, pos, pool)
3484 worker->flags |= WORKER_UNBOUND;
3485
3486 pool->flags |= POOL_DISASSOCIATED;
3487
3488 spin_unlock_irq(&pool->lock);
3489 mutex_unlock(&pool->assoc_mutex);
3490 }
3491
3492 /*
3493 * Call schedule() so that we cross rq->lock and thus can guarantee
3494 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3495 * as scheduler callbacks may be invoked from other cpus.
3496 */
3497 schedule();
3498
3499 /*
3500 * Sched callbacks are disabled now. Zap nr_running. After this,
3501 * nr_running stays zero and need_more_worker() and keep_working()
3502 * are always true as long as the worklist is not empty. Pools on
3503 * @cpu now behave as unbound (in terms of concurrency management)
3504 * pools which are served by workers tied to the CPU.
3505 *
3506 * On return from this function, the current worker would trigger
3507 * unbound chain execution of pending work items if other workers
3508 * didn't already.
3509 */
3510 for_each_std_worker_pool(pool, cpu)
3511 atomic_set(get_pool_nr_running(pool), 0);
3512 }
3513
3514 /*
3515 * Workqueues should be brought up before normal priority CPU notifiers.
3516 * This will be registered high priority CPU notifier.
3517 */
3518 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3519 unsigned long action,
3520 void *hcpu)
3521 {
3522 unsigned int cpu = (unsigned long)hcpu;
3523 struct worker_pool *pool;
3524
3525 switch (action & ~CPU_TASKS_FROZEN) {
3526 case CPU_UP_PREPARE:
3527 for_each_std_worker_pool(pool, cpu) {
3528 struct worker *worker;
3529
3530 if (pool->nr_workers)
3531 continue;
3532
3533 worker = create_worker(pool);
3534 if (!worker)
3535 return NOTIFY_BAD;
3536
3537 spin_lock_irq(&pool->lock);
3538 start_worker(worker);
3539 spin_unlock_irq(&pool->lock);
3540 }
3541 break;
3542
3543 case CPU_DOWN_FAILED:
3544 case CPU_ONLINE:
3545 for_each_std_worker_pool(pool, cpu) {
3546 mutex_lock(&pool->assoc_mutex);
3547 spin_lock_irq(&pool->lock);
3548
3549 pool->flags &= ~POOL_DISASSOCIATED;
3550 rebind_workers(pool);
3551
3552 spin_unlock_irq(&pool->lock);
3553 mutex_unlock(&pool->assoc_mutex);
3554 }
3555 break;
3556 }
3557 return NOTIFY_OK;
3558 }
3559
3560 /*
3561 * Workqueues should be brought down after normal priority CPU notifiers.
3562 * This will be registered as low priority CPU notifier.
3563 */
3564 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3565 unsigned long action,
3566 void *hcpu)
3567 {
3568 unsigned int cpu = (unsigned long)hcpu;
3569 struct work_struct unbind_work;
3570
3571 switch (action & ~CPU_TASKS_FROZEN) {
3572 case CPU_DOWN_PREPARE:
3573 /* unbinding should happen on the local CPU */
3574 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3575 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3576 flush_work(&unbind_work);
3577 break;
3578 }
3579 return NOTIFY_OK;
3580 }
3581
3582 #ifdef CONFIG_SMP
3583
3584 struct work_for_cpu {
3585 struct work_struct work;
3586 long (*fn)(void *);
3587 void *arg;
3588 long ret;
3589 };
3590
3591 static void work_for_cpu_fn(struct work_struct *work)
3592 {
3593 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3594
3595 wfc->ret = wfc->fn(wfc->arg);
3596 }
3597
3598 /**
3599 * work_on_cpu - run a function in user context on a particular cpu
3600 * @cpu: the cpu to run on
3601 * @fn: the function to run
3602 * @arg: the function arg
3603 *
3604 * This will return the value @fn returns.
3605 * It is up to the caller to ensure that the cpu doesn't go offline.
3606 * The caller must not hold any locks which would prevent @fn from completing.
3607 */
3608 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3609 {
3610 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3611
3612 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3613 schedule_work_on(cpu, &wfc.work);
3614 flush_work(&wfc.work);
3615 return wfc.ret;
3616 }
3617 EXPORT_SYMBOL_GPL(work_on_cpu);
3618 #endif /* CONFIG_SMP */
3619
3620 #ifdef CONFIG_FREEZER
3621
3622 /**
3623 * freeze_workqueues_begin - begin freezing workqueues
3624 *
3625 * Start freezing workqueues. After this function returns, all freezable
3626 * workqueues will queue new works to their frozen_works list instead of
3627 * pool->worklist.
3628 *
3629 * CONTEXT:
3630 * Grabs and releases workqueue_lock and pool->lock's.
3631 */
3632 void freeze_workqueues_begin(void)
3633 {
3634 unsigned int cpu;
3635
3636 spin_lock(&workqueue_lock);
3637
3638 BUG_ON(workqueue_freezing);
3639 workqueue_freezing = true;
3640
3641 for_each_wq_cpu(cpu) {
3642 struct worker_pool *pool;
3643 struct workqueue_struct *wq;
3644
3645 for_each_std_worker_pool(pool, cpu) {
3646 spin_lock_irq(&pool->lock);
3647
3648 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3649 pool->flags |= POOL_FREEZING;
3650
3651 list_for_each_entry(wq, &workqueues, list) {
3652 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3653
3654 if (cwq && cwq->pool == pool &&
3655 (wq->flags & WQ_FREEZABLE))
3656 cwq->max_active = 0;
3657 }
3658
3659 spin_unlock_irq(&pool->lock);
3660 }
3661 }
3662
3663 spin_unlock(&workqueue_lock);
3664 }
3665
3666 /**
3667 * freeze_workqueues_busy - are freezable workqueues still busy?
3668 *
3669 * Check whether freezing is complete. This function must be called
3670 * between freeze_workqueues_begin() and thaw_workqueues().
3671 *
3672 * CONTEXT:
3673 * Grabs and releases workqueue_lock.
3674 *
3675 * RETURNS:
3676 * %true if some freezable workqueues are still busy. %false if freezing
3677 * is complete.
3678 */
3679 bool freeze_workqueues_busy(void)
3680 {
3681 unsigned int cpu;
3682 bool busy = false;
3683
3684 spin_lock(&workqueue_lock);
3685
3686 BUG_ON(!workqueue_freezing);
3687
3688 for_each_wq_cpu(cpu) {
3689 struct workqueue_struct *wq;
3690 /*
3691 * nr_active is monotonically decreasing. It's safe
3692 * to peek without lock.
3693 */
3694 list_for_each_entry(wq, &workqueues, list) {
3695 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3696
3697 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3698 continue;
3699
3700 BUG_ON(cwq->nr_active < 0);
3701 if (cwq->nr_active) {
3702 busy = true;
3703 goto out_unlock;
3704 }
3705 }
3706 }
3707 out_unlock:
3708 spin_unlock(&workqueue_lock);
3709 return busy;
3710 }
3711
3712 /**
3713 * thaw_workqueues - thaw workqueues
3714 *
3715 * Thaw workqueues. Normal queueing is restored and all collected
3716 * frozen works are transferred to their respective pool worklists.
3717 *
3718 * CONTEXT:
3719 * Grabs and releases workqueue_lock and pool->lock's.
3720 */
3721 void thaw_workqueues(void)
3722 {
3723 unsigned int cpu;
3724
3725 spin_lock(&workqueue_lock);
3726
3727 if (!workqueue_freezing)
3728 goto out_unlock;
3729
3730 for_each_wq_cpu(cpu) {
3731 struct worker_pool *pool;
3732 struct workqueue_struct *wq;
3733
3734 for_each_std_worker_pool(pool, cpu) {
3735 spin_lock_irq(&pool->lock);
3736
3737 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3738 pool->flags &= ~POOL_FREEZING;
3739
3740 list_for_each_entry(wq, &workqueues, list) {
3741 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3742
3743 if (!cwq || cwq->pool != pool ||
3744 !(wq->flags & WQ_FREEZABLE))
3745 continue;
3746
3747 /* restore max_active and repopulate worklist */
3748 cwq_set_max_active(cwq, wq->saved_max_active);
3749 }
3750
3751 wake_up_worker(pool);
3752
3753 spin_unlock_irq(&pool->lock);
3754 }
3755 }
3756
3757 workqueue_freezing = false;
3758 out_unlock:
3759 spin_unlock(&workqueue_lock);
3760 }
3761 #endif /* CONFIG_FREEZER */
3762
3763 static int __init init_workqueues(void)
3764 {
3765 unsigned int cpu;
3766
3767 /* make sure we have enough bits for OFFQ pool ID */
3768 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3769 WORK_CPU_END * NR_STD_WORKER_POOLS);
3770
3771 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3772 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3773
3774 /* initialize CPU pools */
3775 for_each_wq_cpu(cpu) {
3776 struct worker_pool *pool;
3777
3778 for_each_std_worker_pool(pool, cpu) {
3779 spin_lock_init(&pool->lock);
3780 pool->cpu = cpu;
3781 pool->flags |= POOL_DISASSOCIATED;
3782 INIT_LIST_HEAD(&pool->worklist);
3783 INIT_LIST_HEAD(&pool->idle_list);
3784 hash_init(pool->busy_hash);
3785
3786 init_timer_deferrable(&pool->idle_timer);
3787 pool->idle_timer.function = idle_worker_timeout;
3788 pool->idle_timer.data = (unsigned long)pool;
3789
3790 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3791 (unsigned long)pool);
3792
3793 mutex_init(&pool->assoc_mutex);
3794 ida_init(&pool->worker_ida);
3795
3796 /* alloc pool ID */
3797 BUG_ON(worker_pool_assign_id(pool));
3798 }
3799 }
3800
3801 /* create the initial worker */
3802 for_each_online_wq_cpu(cpu) {
3803 struct worker_pool *pool;
3804
3805 for_each_std_worker_pool(pool, cpu) {
3806 struct worker *worker;
3807
3808 if (cpu != WORK_CPU_UNBOUND)
3809 pool->flags &= ~POOL_DISASSOCIATED;
3810
3811 worker = create_worker(pool);
3812 BUG_ON(!worker);
3813 spin_lock_irq(&pool->lock);
3814 start_worker(worker);
3815 spin_unlock_irq(&pool->lock);
3816 }
3817 }
3818
3819 system_wq = alloc_workqueue("events", 0, 0);
3820 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3821 system_long_wq = alloc_workqueue("events_long", 0, 0);
3822 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3823 WQ_UNBOUND_MAX_ACTIVE);
3824 system_freezable_wq = alloc_workqueue("events_freezable",
3825 WQ_FREEZABLE, 0);
3826 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3827 !system_unbound_wq || !system_freezable_wq);
3828 return 0;
3829 }
3830 early_initcall(init_workqueues);
This page took 0.159643 seconds and 6 git commands to generate.