Merge branch 'master' into for-3.9-async
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45
46 #include "workqueue_internal.h"
47
48 enum {
49 /*
50 * global_cwq flags
51 *
52 * A bound gcwq is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The gcwq behaves as an unbound one.
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
62 * assoc_mutex of all pools on the gcwq to avoid changing binding
63 * state while create_worker() is in progress.
64 */
65 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
66 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
67
68 /* pool flags */
69 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
70 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
71
72 /* worker flags */
73 WORKER_STARTED = 1 << 0, /* started */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79
80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
81 WORKER_CPU_INTENSIVE,
82
83 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
84
85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
86
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
101 HIGHPRI_NICE_LEVEL = -20,
102 };
103
104 /*
105 * Structure fields follow one of the following exclusion rules.
106 *
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
109 *
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
113 * L: gcwq->lock protected. Access with gcwq->lock held.
114 *
115 * X: During normal operation, modification requires gcwq->lock and
116 * should be done only from local cpu. Either disabling preemption
117 * on local cpu or grabbing gcwq->lock is enough for read access.
118 * If GCWQ_DISASSOCIATED is set, it's identical to L.
119 *
120 * F: wq->flush_mutex protected.
121 *
122 * W: workqueue_lock protected.
123 */
124
125 /* struct worker is defined in workqueue_internal.h */
126
127 struct worker_pool {
128 struct global_cwq *gcwq; /* I: the owning gcwq */
129 unsigned int flags; /* X: flags */
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
133
134 /* nr_idle includes the ones off idle_list for rebinding */
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
141 struct mutex assoc_mutex; /* protect GCWQ_DISASSOCIATED */
142 struct ida worker_ida; /* L: for worker IDs */
143 };
144
145 /*
146 * Global per-cpu workqueue. There's one and only one for each cpu
147 * and all works are queued and processed here regardless of their
148 * target workqueues.
149 */
150 struct global_cwq {
151 spinlock_t lock; /* the gcwq lock */
152 unsigned int cpu; /* I: the associated cpu */
153 unsigned int flags; /* L: GCWQ_* flags */
154
155 /* workers are chained either in busy_hash or pool idle_list */
156 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
157 /* L: hash of busy workers */
158
159 struct worker_pool pools[NR_WORKER_POOLS];
160 /* normal and highpri pools */
161 } ____cacheline_aligned_in_smp;
162
163 /*
164 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
165 * work_struct->data are used for flags and thus cwqs need to be
166 * aligned at two's power of the number of flag bits.
167 */
168 struct cpu_workqueue_struct {
169 struct worker_pool *pool; /* I: the associated pool */
170 struct workqueue_struct *wq; /* I: the owning workqueue */
171 int work_color; /* L: current color */
172 int flush_color; /* L: flushing color */
173 int nr_in_flight[WORK_NR_COLORS];
174 /* L: nr of in_flight works */
175 int nr_active; /* L: nr of active works */
176 int max_active; /* L: max active works */
177 struct list_head delayed_works; /* L: delayed works */
178 };
179
180 /*
181 * Structure used to wait for workqueue flush.
182 */
183 struct wq_flusher {
184 struct list_head list; /* F: list of flushers */
185 int flush_color; /* F: flush color waiting for */
186 struct completion done; /* flush completion */
187 };
188
189 /*
190 * All cpumasks are assumed to be always set on UP and thus can't be
191 * used to determine whether there's something to be done.
192 */
193 #ifdef CONFIG_SMP
194 typedef cpumask_var_t mayday_mask_t;
195 #define mayday_test_and_set_cpu(cpu, mask) \
196 cpumask_test_and_set_cpu((cpu), (mask))
197 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
198 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
199 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
200 #define free_mayday_mask(mask) free_cpumask_var((mask))
201 #else
202 typedef unsigned long mayday_mask_t;
203 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
204 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
205 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
206 #define alloc_mayday_mask(maskp, gfp) true
207 #define free_mayday_mask(mask) do { } while (0)
208 #endif
209
210 /*
211 * The externally visible workqueue abstraction is an array of
212 * per-CPU workqueues:
213 */
214 struct workqueue_struct {
215 unsigned int flags; /* W: WQ_* flags */
216 union {
217 struct cpu_workqueue_struct __percpu *pcpu;
218 struct cpu_workqueue_struct *single;
219 unsigned long v;
220 } cpu_wq; /* I: cwq's */
221 struct list_head list; /* W: list of all workqueues */
222
223 struct mutex flush_mutex; /* protects wq flushing */
224 int work_color; /* F: current work color */
225 int flush_color; /* F: current flush color */
226 atomic_t nr_cwqs_to_flush; /* flush in progress */
227 struct wq_flusher *first_flusher; /* F: first flusher */
228 struct list_head flusher_queue; /* F: flush waiters */
229 struct list_head flusher_overflow; /* F: flush overflow list */
230
231 mayday_mask_t mayday_mask; /* cpus requesting rescue */
232 struct worker *rescuer; /* I: rescue worker */
233
234 int nr_drainers; /* W: drain in progress */
235 int saved_max_active; /* W: saved cwq max_active */
236 #ifdef CONFIG_LOCKDEP
237 struct lockdep_map lockdep_map;
238 #endif
239 char name[]; /* I: workqueue name */
240 };
241
242 struct workqueue_struct *system_wq __read_mostly;
243 EXPORT_SYMBOL_GPL(system_wq);
244 struct workqueue_struct *system_highpri_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_highpri_wq);
246 struct workqueue_struct *system_long_wq __read_mostly;
247 EXPORT_SYMBOL_GPL(system_long_wq);
248 struct workqueue_struct *system_unbound_wq __read_mostly;
249 EXPORT_SYMBOL_GPL(system_unbound_wq);
250 struct workqueue_struct *system_freezable_wq __read_mostly;
251 EXPORT_SYMBOL_GPL(system_freezable_wq);
252
253 #define CREATE_TRACE_POINTS
254 #include <trace/events/workqueue.h>
255
256 #define for_each_worker_pool(pool, gcwq) \
257 for ((pool) = &(gcwq)->pools[0]; \
258 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
259
260 #define for_each_busy_worker(worker, i, pos, gcwq) \
261 hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
262
263 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
264 unsigned int sw)
265 {
266 if (cpu < nr_cpu_ids) {
267 if (sw & 1) {
268 cpu = cpumask_next(cpu, mask);
269 if (cpu < nr_cpu_ids)
270 return cpu;
271 }
272 if (sw & 2)
273 return WORK_CPU_UNBOUND;
274 }
275 return WORK_CPU_NONE;
276 }
277
278 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
279 struct workqueue_struct *wq)
280 {
281 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
282 }
283
284 /*
285 * CPU iterators
286 *
287 * An extra gcwq is defined for an invalid cpu number
288 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
289 * specific CPU. The following iterators are similar to
290 * for_each_*_cpu() iterators but also considers the unbound gcwq.
291 *
292 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
293 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
294 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
295 * WORK_CPU_UNBOUND for unbound workqueues
296 */
297 #define for_each_gcwq_cpu(cpu) \
298 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
299 (cpu) < WORK_CPU_NONE; \
300 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
301
302 #define for_each_online_gcwq_cpu(cpu) \
303 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
304 (cpu) < WORK_CPU_NONE; \
305 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
306
307 #define for_each_cwq_cpu(cpu, wq) \
308 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
309 (cpu) < WORK_CPU_NONE; \
310 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
311
312 #ifdef CONFIG_DEBUG_OBJECTS_WORK
313
314 static struct debug_obj_descr work_debug_descr;
315
316 static void *work_debug_hint(void *addr)
317 {
318 return ((struct work_struct *) addr)->func;
319 }
320
321 /*
322 * fixup_init is called when:
323 * - an active object is initialized
324 */
325 static int work_fixup_init(void *addr, enum debug_obj_state state)
326 {
327 struct work_struct *work = addr;
328
329 switch (state) {
330 case ODEBUG_STATE_ACTIVE:
331 cancel_work_sync(work);
332 debug_object_init(work, &work_debug_descr);
333 return 1;
334 default:
335 return 0;
336 }
337 }
338
339 /*
340 * fixup_activate is called when:
341 * - an active object is activated
342 * - an unknown object is activated (might be a statically initialized object)
343 */
344 static int work_fixup_activate(void *addr, enum debug_obj_state state)
345 {
346 struct work_struct *work = addr;
347
348 switch (state) {
349
350 case ODEBUG_STATE_NOTAVAILABLE:
351 /*
352 * This is not really a fixup. The work struct was
353 * statically initialized. We just make sure that it
354 * is tracked in the object tracker.
355 */
356 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
357 debug_object_init(work, &work_debug_descr);
358 debug_object_activate(work, &work_debug_descr);
359 return 0;
360 }
361 WARN_ON_ONCE(1);
362 return 0;
363
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
366
367 default:
368 return 0;
369 }
370 }
371
372 /*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
376 static int work_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 struct work_struct *work = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 cancel_work_sync(work);
383 debug_object_free(work, &work_debug_descr);
384 return 1;
385 default:
386 return 0;
387 }
388 }
389
390 static struct debug_obj_descr work_debug_descr = {
391 .name = "work_struct",
392 .debug_hint = work_debug_hint,
393 .fixup_init = work_fixup_init,
394 .fixup_activate = work_fixup_activate,
395 .fixup_free = work_fixup_free,
396 };
397
398 static inline void debug_work_activate(struct work_struct *work)
399 {
400 debug_object_activate(work, &work_debug_descr);
401 }
402
403 static inline void debug_work_deactivate(struct work_struct *work)
404 {
405 debug_object_deactivate(work, &work_debug_descr);
406 }
407
408 void __init_work(struct work_struct *work, int onstack)
409 {
410 if (onstack)
411 debug_object_init_on_stack(work, &work_debug_descr);
412 else
413 debug_object_init(work, &work_debug_descr);
414 }
415 EXPORT_SYMBOL_GPL(__init_work);
416
417 void destroy_work_on_stack(struct work_struct *work)
418 {
419 debug_object_free(work, &work_debug_descr);
420 }
421 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
422
423 #else
424 static inline void debug_work_activate(struct work_struct *work) { }
425 static inline void debug_work_deactivate(struct work_struct *work) { }
426 #endif
427
428 /* Serializes the accesses to the list of workqueues. */
429 static DEFINE_SPINLOCK(workqueue_lock);
430 static LIST_HEAD(workqueues);
431 static bool workqueue_freezing; /* W: have wqs started freezing? */
432
433 /*
434 * The almighty global cpu workqueues. nr_running is the only field
435 * which is expected to be used frequently by other cpus via
436 * try_to_wake_up(). Put it in a separate cacheline.
437 */
438 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
439 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
440
441 /*
442 * Global cpu workqueue and nr_running counter for unbound gcwq. The
443 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
444 * workers have WORKER_UNBOUND set.
445 */
446 static struct global_cwq unbound_global_cwq;
447 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
448 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
449 };
450
451 static int worker_thread(void *__worker);
452
453 static int worker_pool_pri(struct worker_pool *pool)
454 {
455 return pool - pool->gcwq->pools;
456 }
457
458 static struct global_cwq *get_gcwq(unsigned int cpu)
459 {
460 if (cpu != WORK_CPU_UNBOUND)
461 return &per_cpu(global_cwq, cpu);
462 else
463 return &unbound_global_cwq;
464 }
465
466 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
467 {
468 int cpu = pool->gcwq->cpu;
469 int idx = worker_pool_pri(pool);
470
471 if (cpu != WORK_CPU_UNBOUND)
472 return &per_cpu(pool_nr_running, cpu)[idx];
473 else
474 return &unbound_pool_nr_running[idx];
475 }
476
477 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
478 struct workqueue_struct *wq)
479 {
480 if (!(wq->flags & WQ_UNBOUND)) {
481 if (likely(cpu < nr_cpu_ids))
482 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
483 } else if (likely(cpu == WORK_CPU_UNBOUND))
484 return wq->cpu_wq.single;
485 return NULL;
486 }
487
488 static unsigned int work_color_to_flags(int color)
489 {
490 return color << WORK_STRUCT_COLOR_SHIFT;
491 }
492
493 static int get_work_color(struct work_struct *work)
494 {
495 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
496 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
497 }
498
499 static int work_next_color(int color)
500 {
501 return (color + 1) % WORK_NR_COLORS;
502 }
503
504 /*
505 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
506 * contain the pointer to the queued cwq. Once execution starts, the flag
507 * is cleared and the high bits contain OFFQ flags and CPU number.
508 *
509 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
510 * and clear_work_data() can be used to set the cwq, cpu or clear
511 * work->data. These functions should only be called while the work is
512 * owned - ie. while the PENDING bit is set.
513 *
514 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
515 * a work. gcwq is available once the work has been queued anywhere after
516 * initialization until it is sync canceled. cwq is available only while
517 * the work item is queued.
518 *
519 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
520 * canceled. While being canceled, a work item may have its PENDING set
521 * but stay off timer and worklist for arbitrarily long and nobody should
522 * try to steal the PENDING bit.
523 */
524 static inline void set_work_data(struct work_struct *work, unsigned long data,
525 unsigned long flags)
526 {
527 BUG_ON(!work_pending(work));
528 atomic_long_set(&work->data, data | flags | work_static(work));
529 }
530
531 static void set_work_cwq(struct work_struct *work,
532 struct cpu_workqueue_struct *cwq,
533 unsigned long extra_flags)
534 {
535 set_work_data(work, (unsigned long)cwq,
536 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
537 }
538
539 static void set_work_cpu_and_clear_pending(struct work_struct *work,
540 unsigned int cpu)
541 {
542 /*
543 * The following wmb is paired with the implied mb in
544 * test_and_set_bit(PENDING) and ensures all updates to @work made
545 * here are visible to and precede any updates by the next PENDING
546 * owner.
547 */
548 smp_wmb();
549 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
550 }
551
552 static void clear_work_data(struct work_struct *work)
553 {
554 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
555 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
556 }
557
558 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
559 {
560 unsigned long data = atomic_long_read(&work->data);
561
562 if (data & WORK_STRUCT_CWQ)
563 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
564 else
565 return NULL;
566 }
567
568 static struct global_cwq *get_work_gcwq(struct work_struct *work)
569 {
570 unsigned long data = atomic_long_read(&work->data);
571 unsigned int cpu;
572
573 if (data & WORK_STRUCT_CWQ)
574 return ((struct cpu_workqueue_struct *)
575 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
576
577 cpu = data >> WORK_OFFQ_CPU_SHIFT;
578 if (cpu == WORK_CPU_NONE)
579 return NULL;
580
581 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
582 return get_gcwq(cpu);
583 }
584
585 static void mark_work_canceling(struct work_struct *work)
586 {
587 struct global_cwq *gcwq = get_work_gcwq(work);
588 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
589
590 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
591 WORK_STRUCT_PENDING);
592 }
593
594 static bool work_is_canceling(struct work_struct *work)
595 {
596 unsigned long data = atomic_long_read(&work->data);
597
598 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
599 }
600
601 /*
602 * Policy functions. These define the policies on how the global worker
603 * pools are managed. Unless noted otherwise, these functions assume that
604 * they're being called with gcwq->lock held.
605 */
606
607 static bool __need_more_worker(struct worker_pool *pool)
608 {
609 return !atomic_read(get_pool_nr_running(pool));
610 }
611
612 /*
613 * Need to wake up a worker? Called from anything but currently
614 * running workers.
615 *
616 * Note that, because unbound workers never contribute to nr_running, this
617 * function will always return %true for unbound gcwq as long as the
618 * worklist isn't empty.
619 */
620 static bool need_more_worker(struct worker_pool *pool)
621 {
622 return !list_empty(&pool->worklist) && __need_more_worker(pool);
623 }
624
625 /* Can I start working? Called from busy but !running workers. */
626 static bool may_start_working(struct worker_pool *pool)
627 {
628 return pool->nr_idle;
629 }
630
631 /* Do I need to keep working? Called from currently running workers. */
632 static bool keep_working(struct worker_pool *pool)
633 {
634 atomic_t *nr_running = get_pool_nr_running(pool);
635
636 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
637 }
638
639 /* Do we need a new worker? Called from manager. */
640 static bool need_to_create_worker(struct worker_pool *pool)
641 {
642 return need_more_worker(pool) && !may_start_working(pool);
643 }
644
645 /* Do I need to be the manager? */
646 static bool need_to_manage_workers(struct worker_pool *pool)
647 {
648 return need_to_create_worker(pool) ||
649 (pool->flags & POOL_MANAGE_WORKERS);
650 }
651
652 /* Do we have too many workers and should some go away? */
653 static bool too_many_workers(struct worker_pool *pool)
654 {
655 bool managing = pool->flags & POOL_MANAGING_WORKERS;
656 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
657 int nr_busy = pool->nr_workers - nr_idle;
658
659 /*
660 * nr_idle and idle_list may disagree if idle rebinding is in
661 * progress. Never return %true if idle_list is empty.
662 */
663 if (list_empty(&pool->idle_list))
664 return false;
665
666 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
667 }
668
669 /*
670 * Wake up functions.
671 */
672
673 /* Return the first worker. Safe with preemption disabled */
674 static struct worker *first_worker(struct worker_pool *pool)
675 {
676 if (unlikely(list_empty(&pool->idle_list)))
677 return NULL;
678
679 return list_first_entry(&pool->idle_list, struct worker, entry);
680 }
681
682 /**
683 * wake_up_worker - wake up an idle worker
684 * @pool: worker pool to wake worker from
685 *
686 * Wake up the first idle worker of @pool.
687 *
688 * CONTEXT:
689 * spin_lock_irq(gcwq->lock).
690 */
691 static void wake_up_worker(struct worker_pool *pool)
692 {
693 struct worker *worker = first_worker(pool);
694
695 if (likely(worker))
696 wake_up_process(worker->task);
697 }
698
699 /**
700 * wq_worker_waking_up - a worker is waking up
701 * @task: task waking up
702 * @cpu: CPU @task is waking up to
703 *
704 * This function is called during try_to_wake_up() when a worker is
705 * being awoken.
706 *
707 * CONTEXT:
708 * spin_lock_irq(rq->lock)
709 */
710 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
711 {
712 struct worker *worker = kthread_data(task);
713
714 if (!(worker->flags & WORKER_NOT_RUNNING)) {
715 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
716 atomic_inc(get_pool_nr_running(worker->pool));
717 }
718 }
719
720 /**
721 * wq_worker_sleeping - a worker is going to sleep
722 * @task: task going to sleep
723 * @cpu: CPU in question, must be the current CPU number
724 *
725 * This function is called during schedule() when a busy worker is
726 * going to sleep. Worker on the same cpu can be woken up by
727 * returning pointer to its task.
728 *
729 * CONTEXT:
730 * spin_lock_irq(rq->lock)
731 *
732 * RETURNS:
733 * Worker task on @cpu to wake up, %NULL if none.
734 */
735 struct task_struct *wq_worker_sleeping(struct task_struct *task,
736 unsigned int cpu)
737 {
738 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
739 struct worker_pool *pool;
740 atomic_t *nr_running;
741
742 /*
743 * Rescuers, which may not have all the fields set up like normal
744 * workers, also reach here, let's not access anything before
745 * checking NOT_RUNNING.
746 */
747 if (worker->flags & WORKER_NOT_RUNNING)
748 return NULL;
749
750 pool = worker->pool;
751 nr_running = get_pool_nr_running(pool);
752
753 /* this can only happen on the local cpu */
754 BUG_ON(cpu != raw_smp_processor_id());
755
756 /*
757 * The counterpart of the following dec_and_test, implied mb,
758 * worklist not empty test sequence is in insert_work().
759 * Please read comment there.
760 *
761 * NOT_RUNNING is clear. This means that we're bound to and
762 * running on the local cpu w/ rq lock held and preemption
763 * disabled, which in turn means that none else could be
764 * manipulating idle_list, so dereferencing idle_list without gcwq
765 * lock is safe.
766 */
767 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
768 to_wakeup = first_worker(pool);
769 return to_wakeup ? to_wakeup->task : NULL;
770 }
771
772 /**
773 * worker_set_flags - set worker flags and adjust nr_running accordingly
774 * @worker: self
775 * @flags: flags to set
776 * @wakeup: wakeup an idle worker if necessary
777 *
778 * Set @flags in @worker->flags and adjust nr_running accordingly. If
779 * nr_running becomes zero and @wakeup is %true, an idle worker is
780 * woken up.
781 *
782 * CONTEXT:
783 * spin_lock_irq(gcwq->lock)
784 */
785 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
786 bool wakeup)
787 {
788 struct worker_pool *pool = worker->pool;
789
790 WARN_ON_ONCE(worker->task != current);
791
792 /*
793 * If transitioning into NOT_RUNNING, adjust nr_running and
794 * wake up an idle worker as necessary if requested by
795 * @wakeup.
796 */
797 if ((flags & WORKER_NOT_RUNNING) &&
798 !(worker->flags & WORKER_NOT_RUNNING)) {
799 atomic_t *nr_running = get_pool_nr_running(pool);
800
801 if (wakeup) {
802 if (atomic_dec_and_test(nr_running) &&
803 !list_empty(&pool->worklist))
804 wake_up_worker(pool);
805 } else
806 atomic_dec(nr_running);
807 }
808
809 worker->flags |= flags;
810 }
811
812 /**
813 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
814 * @worker: self
815 * @flags: flags to clear
816 *
817 * Clear @flags in @worker->flags and adjust nr_running accordingly.
818 *
819 * CONTEXT:
820 * spin_lock_irq(gcwq->lock)
821 */
822 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
823 {
824 struct worker_pool *pool = worker->pool;
825 unsigned int oflags = worker->flags;
826
827 WARN_ON_ONCE(worker->task != current);
828
829 worker->flags &= ~flags;
830
831 /*
832 * If transitioning out of NOT_RUNNING, increment nr_running. Note
833 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
834 * of multiple flags, not a single flag.
835 */
836 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
837 if (!(worker->flags & WORKER_NOT_RUNNING))
838 atomic_inc(get_pool_nr_running(pool));
839 }
840
841 /**
842 * find_worker_executing_work - find worker which is executing a work
843 * @gcwq: gcwq of interest
844 * @work: work to find worker for
845 *
846 * Find a worker which is executing @work on @gcwq by searching
847 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
848 * to match, its current execution should match the address of @work and
849 * its work function. This is to avoid unwanted dependency between
850 * unrelated work executions through a work item being recycled while still
851 * being executed.
852 *
853 * This is a bit tricky. A work item may be freed once its execution
854 * starts and nothing prevents the freed area from being recycled for
855 * another work item. If the same work item address ends up being reused
856 * before the original execution finishes, workqueue will identify the
857 * recycled work item as currently executing and make it wait until the
858 * current execution finishes, introducing an unwanted dependency.
859 *
860 * This function checks the work item address, work function and workqueue
861 * to avoid false positives. Note that this isn't complete as one may
862 * construct a work function which can introduce dependency onto itself
863 * through a recycled work item. Well, if somebody wants to shoot oneself
864 * in the foot that badly, there's only so much we can do, and if such
865 * deadlock actually occurs, it should be easy to locate the culprit work
866 * function.
867 *
868 * CONTEXT:
869 * spin_lock_irq(gcwq->lock).
870 *
871 * RETURNS:
872 * Pointer to worker which is executing @work if found, NULL
873 * otherwise.
874 */
875 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
876 struct work_struct *work)
877 {
878 struct worker *worker;
879 struct hlist_node *tmp;
880
881 hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
882 (unsigned long)work)
883 if (worker->current_work == work &&
884 worker->current_func == work->func)
885 return worker;
886
887 return NULL;
888 }
889
890 /**
891 * move_linked_works - move linked works to a list
892 * @work: start of series of works to be scheduled
893 * @head: target list to append @work to
894 * @nextp: out paramter for nested worklist walking
895 *
896 * Schedule linked works starting from @work to @head. Work series to
897 * be scheduled starts at @work and includes any consecutive work with
898 * WORK_STRUCT_LINKED set in its predecessor.
899 *
900 * If @nextp is not NULL, it's updated to point to the next work of
901 * the last scheduled work. This allows move_linked_works() to be
902 * nested inside outer list_for_each_entry_safe().
903 *
904 * CONTEXT:
905 * spin_lock_irq(gcwq->lock).
906 */
907 static void move_linked_works(struct work_struct *work, struct list_head *head,
908 struct work_struct **nextp)
909 {
910 struct work_struct *n;
911
912 /*
913 * Linked worklist will always end before the end of the list,
914 * use NULL for list head.
915 */
916 list_for_each_entry_safe_from(work, n, NULL, entry) {
917 list_move_tail(&work->entry, head);
918 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
919 break;
920 }
921
922 /*
923 * If we're already inside safe list traversal and have moved
924 * multiple works to the scheduled queue, the next position
925 * needs to be updated.
926 */
927 if (nextp)
928 *nextp = n;
929 }
930
931 static void cwq_activate_delayed_work(struct work_struct *work)
932 {
933 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
934
935 trace_workqueue_activate_work(work);
936 move_linked_works(work, &cwq->pool->worklist, NULL);
937 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
938 cwq->nr_active++;
939 }
940
941 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
942 {
943 struct work_struct *work = list_first_entry(&cwq->delayed_works,
944 struct work_struct, entry);
945
946 cwq_activate_delayed_work(work);
947 }
948
949 /**
950 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
951 * @cwq: cwq of interest
952 * @color: color of work which left the queue
953 *
954 * A work either has completed or is removed from pending queue,
955 * decrement nr_in_flight of its cwq and handle workqueue flushing.
956 *
957 * CONTEXT:
958 * spin_lock_irq(gcwq->lock).
959 */
960 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
961 {
962 /* ignore uncolored works */
963 if (color == WORK_NO_COLOR)
964 return;
965
966 cwq->nr_in_flight[color]--;
967
968 cwq->nr_active--;
969 if (!list_empty(&cwq->delayed_works)) {
970 /* one down, submit a delayed one */
971 if (cwq->nr_active < cwq->max_active)
972 cwq_activate_first_delayed(cwq);
973 }
974
975 /* is flush in progress and are we at the flushing tip? */
976 if (likely(cwq->flush_color != color))
977 return;
978
979 /* are there still in-flight works? */
980 if (cwq->nr_in_flight[color])
981 return;
982
983 /* this cwq is done, clear flush_color */
984 cwq->flush_color = -1;
985
986 /*
987 * If this was the last cwq, wake up the first flusher. It
988 * will handle the rest.
989 */
990 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
991 complete(&cwq->wq->first_flusher->done);
992 }
993
994 /**
995 * try_to_grab_pending - steal work item from worklist and disable irq
996 * @work: work item to steal
997 * @is_dwork: @work is a delayed_work
998 * @flags: place to store irq state
999 *
1000 * Try to grab PENDING bit of @work. This function can handle @work in any
1001 * stable state - idle, on timer or on worklist. Return values are
1002 *
1003 * 1 if @work was pending and we successfully stole PENDING
1004 * 0 if @work was idle and we claimed PENDING
1005 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1006 * -ENOENT if someone else is canceling @work, this state may persist
1007 * for arbitrarily long
1008 *
1009 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1010 * interrupted while holding PENDING and @work off queue, irq must be
1011 * disabled on entry. This, combined with delayed_work->timer being
1012 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1013 *
1014 * On successful return, >= 0, irq is disabled and the caller is
1015 * responsible for releasing it using local_irq_restore(*@flags).
1016 *
1017 * This function is safe to call from any context including IRQ handler.
1018 */
1019 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1020 unsigned long *flags)
1021 {
1022 struct global_cwq *gcwq;
1023
1024 local_irq_save(*flags);
1025
1026 /* try to steal the timer if it exists */
1027 if (is_dwork) {
1028 struct delayed_work *dwork = to_delayed_work(work);
1029
1030 /*
1031 * dwork->timer is irqsafe. If del_timer() fails, it's
1032 * guaranteed that the timer is not queued anywhere and not
1033 * running on the local CPU.
1034 */
1035 if (likely(del_timer(&dwork->timer)))
1036 return 1;
1037 }
1038
1039 /* try to claim PENDING the normal way */
1040 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1041 return 0;
1042
1043 /*
1044 * The queueing is in progress, or it is already queued. Try to
1045 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1046 */
1047 gcwq = get_work_gcwq(work);
1048 if (!gcwq)
1049 goto fail;
1050
1051 spin_lock(&gcwq->lock);
1052 if (!list_empty(&work->entry)) {
1053 /*
1054 * This work is queued, but perhaps we locked the wrong gcwq.
1055 * In that case we must see the new value after rmb(), see
1056 * insert_work()->wmb().
1057 */
1058 smp_rmb();
1059 if (gcwq == get_work_gcwq(work)) {
1060 debug_work_deactivate(work);
1061
1062 /*
1063 * A delayed work item cannot be grabbed directly
1064 * because it might have linked NO_COLOR work items
1065 * which, if left on the delayed_list, will confuse
1066 * cwq->nr_active management later on and cause
1067 * stall. Make sure the work item is activated
1068 * before grabbing.
1069 */
1070 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1071 cwq_activate_delayed_work(work);
1072
1073 list_del_init(&work->entry);
1074 cwq_dec_nr_in_flight(get_work_cwq(work),
1075 get_work_color(work));
1076
1077 spin_unlock(&gcwq->lock);
1078 return 1;
1079 }
1080 }
1081 spin_unlock(&gcwq->lock);
1082 fail:
1083 local_irq_restore(*flags);
1084 if (work_is_canceling(work))
1085 return -ENOENT;
1086 cpu_relax();
1087 return -EAGAIN;
1088 }
1089
1090 /**
1091 * insert_work - insert a work into gcwq
1092 * @cwq: cwq @work belongs to
1093 * @work: work to insert
1094 * @head: insertion point
1095 * @extra_flags: extra WORK_STRUCT_* flags to set
1096 *
1097 * Insert @work which belongs to @cwq into @gcwq after @head.
1098 * @extra_flags is or'd to work_struct flags.
1099 *
1100 * CONTEXT:
1101 * spin_lock_irq(gcwq->lock).
1102 */
1103 static void insert_work(struct cpu_workqueue_struct *cwq,
1104 struct work_struct *work, struct list_head *head,
1105 unsigned int extra_flags)
1106 {
1107 struct worker_pool *pool = cwq->pool;
1108
1109 /* we own @work, set data and link */
1110 set_work_cwq(work, cwq, extra_flags);
1111
1112 /*
1113 * Ensure that we get the right work->data if we see the
1114 * result of list_add() below, see try_to_grab_pending().
1115 */
1116 smp_wmb();
1117
1118 list_add_tail(&work->entry, head);
1119
1120 /*
1121 * Ensure either worker_sched_deactivated() sees the above
1122 * list_add_tail() or we see zero nr_running to avoid workers
1123 * lying around lazily while there are works to be processed.
1124 */
1125 smp_mb();
1126
1127 if (__need_more_worker(pool))
1128 wake_up_worker(pool);
1129 }
1130
1131 /*
1132 * Test whether @work is being queued from another work executing on the
1133 * same workqueue. This is rather expensive and should only be used from
1134 * cold paths.
1135 */
1136 static bool is_chained_work(struct workqueue_struct *wq)
1137 {
1138 unsigned long flags;
1139 unsigned int cpu;
1140
1141 for_each_gcwq_cpu(cpu) {
1142 struct global_cwq *gcwq = get_gcwq(cpu);
1143 struct worker *worker;
1144 struct hlist_node *pos;
1145 int i;
1146
1147 spin_lock_irqsave(&gcwq->lock, flags);
1148 for_each_busy_worker(worker, i, pos, gcwq) {
1149 if (worker->task != current)
1150 continue;
1151 spin_unlock_irqrestore(&gcwq->lock, flags);
1152 /*
1153 * I'm @worker, no locking necessary. See if @work
1154 * is headed to the same workqueue.
1155 */
1156 return worker->current_cwq->wq == wq;
1157 }
1158 spin_unlock_irqrestore(&gcwq->lock, flags);
1159 }
1160 return false;
1161 }
1162
1163 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1164 struct work_struct *work)
1165 {
1166 struct global_cwq *gcwq;
1167 struct cpu_workqueue_struct *cwq;
1168 struct list_head *worklist;
1169 unsigned int work_flags;
1170 unsigned int req_cpu = cpu;
1171
1172 /*
1173 * While a work item is PENDING && off queue, a task trying to
1174 * steal the PENDING will busy-loop waiting for it to either get
1175 * queued or lose PENDING. Grabbing PENDING and queueing should
1176 * happen with IRQ disabled.
1177 */
1178 WARN_ON_ONCE(!irqs_disabled());
1179
1180 debug_work_activate(work);
1181
1182 /* if dying, only works from the same workqueue are allowed */
1183 if (unlikely(wq->flags & WQ_DRAINING) &&
1184 WARN_ON_ONCE(!is_chained_work(wq)))
1185 return;
1186
1187 /* determine gcwq to use */
1188 if (!(wq->flags & WQ_UNBOUND)) {
1189 struct global_cwq *last_gcwq;
1190
1191 if (cpu == WORK_CPU_UNBOUND)
1192 cpu = raw_smp_processor_id();
1193
1194 /*
1195 * It's multi cpu. If @work was previously on a different
1196 * cpu, it might still be running there, in which case the
1197 * work needs to be queued on that cpu to guarantee
1198 * non-reentrancy.
1199 */
1200 gcwq = get_gcwq(cpu);
1201 last_gcwq = get_work_gcwq(work);
1202
1203 if (last_gcwq && last_gcwq != gcwq) {
1204 struct worker *worker;
1205
1206 spin_lock(&last_gcwq->lock);
1207
1208 worker = find_worker_executing_work(last_gcwq, work);
1209
1210 if (worker && worker->current_cwq->wq == wq)
1211 gcwq = last_gcwq;
1212 else {
1213 /* meh... not running there, queue here */
1214 spin_unlock(&last_gcwq->lock);
1215 spin_lock(&gcwq->lock);
1216 }
1217 } else {
1218 spin_lock(&gcwq->lock);
1219 }
1220 } else {
1221 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1222 spin_lock(&gcwq->lock);
1223 }
1224
1225 /* gcwq determined, get cwq and queue */
1226 cwq = get_cwq(gcwq->cpu, wq);
1227 trace_workqueue_queue_work(req_cpu, cwq, work);
1228
1229 if (WARN_ON(!list_empty(&work->entry))) {
1230 spin_unlock(&gcwq->lock);
1231 return;
1232 }
1233
1234 cwq->nr_in_flight[cwq->work_color]++;
1235 work_flags = work_color_to_flags(cwq->work_color);
1236
1237 if (likely(cwq->nr_active < cwq->max_active)) {
1238 trace_workqueue_activate_work(work);
1239 cwq->nr_active++;
1240 worklist = &cwq->pool->worklist;
1241 } else {
1242 work_flags |= WORK_STRUCT_DELAYED;
1243 worklist = &cwq->delayed_works;
1244 }
1245
1246 insert_work(cwq, work, worklist, work_flags);
1247
1248 spin_unlock(&gcwq->lock);
1249 }
1250
1251 /**
1252 * queue_work_on - queue work on specific cpu
1253 * @cpu: CPU number to execute work on
1254 * @wq: workqueue to use
1255 * @work: work to queue
1256 *
1257 * Returns %false if @work was already on a queue, %true otherwise.
1258 *
1259 * We queue the work to a specific CPU, the caller must ensure it
1260 * can't go away.
1261 */
1262 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1263 struct work_struct *work)
1264 {
1265 bool ret = false;
1266 unsigned long flags;
1267
1268 local_irq_save(flags);
1269
1270 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1271 __queue_work(cpu, wq, work);
1272 ret = true;
1273 }
1274
1275 local_irq_restore(flags);
1276 return ret;
1277 }
1278 EXPORT_SYMBOL_GPL(queue_work_on);
1279
1280 /**
1281 * queue_work - queue work on a workqueue
1282 * @wq: workqueue to use
1283 * @work: work to queue
1284 *
1285 * Returns %false if @work was already on a queue, %true otherwise.
1286 *
1287 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1288 * it can be processed by another CPU.
1289 */
1290 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1291 {
1292 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1293 }
1294 EXPORT_SYMBOL_GPL(queue_work);
1295
1296 void delayed_work_timer_fn(unsigned long __data)
1297 {
1298 struct delayed_work *dwork = (struct delayed_work *)__data;
1299 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1300
1301 /* should have been called from irqsafe timer with irq already off */
1302 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1303 }
1304 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1305
1306 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1307 struct delayed_work *dwork, unsigned long delay)
1308 {
1309 struct timer_list *timer = &dwork->timer;
1310 struct work_struct *work = &dwork->work;
1311 unsigned int lcpu;
1312
1313 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1314 timer->data != (unsigned long)dwork);
1315 WARN_ON_ONCE(timer_pending(timer));
1316 WARN_ON_ONCE(!list_empty(&work->entry));
1317
1318 /*
1319 * If @delay is 0, queue @dwork->work immediately. This is for
1320 * both optimization and correctness. The earliest @timer can
1321 * expire is on the closest next tick and delayed_work users depend
1322 * on that there's no such delay when @delay is 0.
1323 */
1324 if (!delay) {
1325 __queue_work(cpu, wq, &dwork->work);
1326 return;
1327 }
1328
1329 timer_stats_timer_set_start_info(&dwork->timer);
1330
1331 /*
1332 * This stores cwq for the moment, for the timer_fn. Note that the
1333 * work's gcwq is preserved to allow reentrance detection for
1334 * delayed works.
1335 */
1336 if (!(wq->flags & WQ_UNBOUND)) {
1337 struct global_cwq *gcwq = get_work_gcwq(work);
1338
1339 /*
1340 * If we cannot get the last gcwq from @work directly,
1341 * select the last CPU such that it avoids unnecessarily
1342 * triggering non-reentrancy check in __queue_work().
1343 */
1344 lcpu = cpu;
1345 if (gcwq)
1346 lcpu = gcwq->cpu;
1347 if (lcpu == WORK_CPU_UNBOUND)
1348 lcpu = raw_smp_processor_id();
1349 } else {
1350 lcpu = WORK_CPU_UNBOUND;
1351 }
1352
1353 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1354
1355 dwork->cpu = cpu;
1356 timer->expires = jiffies + delay;
1357
1358 if (unlikely(cpu != WORK_CPU_UNBOUND))
1359 add_timer_on(timer, cpu);
1360 else
1361 add_timer(timer);
1362 }
1363
1364 /**
1365 * queue_delayed_work_on - queue work on specific CPU after delay
1366 * @cpu: CPU number to execute work on
1367 * @wq: workqueue to use
1368 * @dwork: work to queue
1369 * @delay: number of jiffies to wait before queueing
1370 *
1371 * Returns %false if @work was already on a queue, %true otherwise. If
1372 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1373 * execution.
1374 */
1375 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1376 struct delayed_work *dwork, unsigned long delay)
1377 {
1378 struct work_struct *work = &dwork->work;
1379 bool ret = false;
1380 unsigned long flags;
1381
1382 /* read the comment in __queue_work() */
1383 local_irq_save(flags);
1384
1385 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1386 __queue_delayed_work(cpu, wq, dwork, delay);
1387 ret = true;
1388 }
1389
1390 local_irq_restore(flags);
1391 return ret;
1392 }
1393 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1394
1395 /**
1396 * queue_delayed_work - queue work on a workqueue after delay
1397 * @wq: workqueue to use
1398 * @dwork: delayable work to queue
1399 * @delay: number of jiffies to wait before queueing
1400 *
1401 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1402 */
1403 bool queue_delayed_work(struct workqueue_struct *wq,
1404 struct delayed_work *dwork, unsigned long delay)
1405 {
1406 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1407 }
1408 EXPORT_SYMBOL_GPL(queue_delayed_work);
1409
1410 /**
1411 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1412 * @cpu: CPU number to execute work on
1413 * @wq: workqueue to use
1414 * @dwork: work to queue
1415 * @delay: number of jiffies to wait before queueing
1416 *
1417 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1418 * modify @dwork's timer so that it expires after @delay. If @delay is
1419 * zero, @work is guaranteed to be scheduled immediately regardless of its
1420 * current state.
1421 *
1422 * Returns %false if @dwork was idle and queued, %true if @dwork was
1423 * pending and its timer was modified.
1424 *
1425 * This function is safe to call from any context including IRQ handler.
1426 * See try_to_grab_pending() for details.
1427 */
1428 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1429 struct delayed_work *dwork, unsigned long delay)
1430 {
1431 unsigned long flags;
1432 int ret;
1433
1434 do {
1435 ret = try_to_grab_pending(&dwork->work, true, &flags);
1436 } while (unlikely(ret == -EAGAIN));
1437
1438 if (likely(ret >= 0)) {
1439 __queue_delayed_work(cpu, wq, dwork, delay);
1440 local_irq_restore(flags);
1441 }
1442
1443 /* -ENOENT from try_to_grab_pending() becomes %true */
1444 return ret;
1445 }
1446 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1447
1448 /**
1449 * mod_delayed_work - modify delay of or queue a delayed work
1450 * @wq: workqueue to use
1451 * @dwork: work to queue
1452 * @delay: number of jiffies to wait before queueing
1453 *
1454 * mod_delayed_work_on() on local CPU.
1455 */
1456 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1457 unsigned long delay)
1458 {
1459 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1460 }
1461 EXPORT_SYMBOL_GPL(mod_delayed_work);
1462
1463 /**
1464 * worker_enter_idle - enter idle state
1465 * @worker: worker which is entering idle state
1466 *
1467 * @worker is entering idle state. Update stats and idle timer if
1468 * necessary.
1469 *
1470 * LOCKING:
1471 * spin_lock_irq(gcwq->lock).
1472 */
1473 static void worker_enter_idle(struct worker *worker)
1474 {
1475 struct worker_pool *pool = worker->pool;
1476 struct global_cwq *gcwq = pool->gcwq;
1477
1478 BUG_ON(worker->flags & WORKER_IDLE);
1479 BUG_ON(!list_empty(&worker->entry) &&
1480 (worker->hentry.next || worker->hentry.pprev));
1481
1482 /* can't use worker_set_flags(), also called from start_worker() */
1483 worker->flags |= WORKER_IDLE;
1484 pool->nr_idle++;
1485 worker->last_active = jiffies;
1486
1487 /* idle_list is LIFO */
1488 list_add(&worker->entry, &pool->idle_list);
1489
1490 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1491 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1492
1493 /*
1494 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1495 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1496 * nr_running, the warning may trigger spuriously. Check iff
1497 * unbind is not in progress.
1498 */
1499 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1500 pool->nr_workers == pool->nr_idle &&
1501 atomic_read(get_pool_nr_running(pool)));
1502 }
1503
1504 /**
1505 * worker_leave_idle - leave idle state
1506 * @worker: worker which is leaving idle state
1507 *
1508 * @worker is leaving idle state. Update stats.
1509 *
1510 * LOCKING:
1511 * spin_lock_irq(gcwq->lock).
1512 */
1513 static void worker_leave_idle(struct worker *worker)
1514 {
1515 struct worker_pool *pool = worker->pool;
1516
1517 BUG_ON(!(worker->flags & WORKER_IDLE));
1518 worker_clr_flags(worker, WORKER_IDLE);
1519 pool->nr_idle--;
1520 list_del_init(&worker->entry);
1521 }
1522
1523 /**
1524 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1525 * @worker: self
1526 *
1527 * Works which are scheduled while the cpu is online must at least be
1528 * scheduled to a worker which is bound to the cpu so that if they are
1529 * flushed from cpu callbacks while cpu is going down, they are
1530 * guaranteed to execute on the cpu.
1531 *
1532 * This function is to be used by rogue workers and rescuers to bind
1533 * themselves to the target cpu and may race with cpu going down or
1534 * coming online. kthread_bind() can't be used because it may put the
1535 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1536 * verbatim as it's best effort and blocking and gcwq may be
1537 * [dis]associated in the meantime.
1538 *
1539 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1540 * binding against %GCWQ_DISASSOCIATED which is set during
1541 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1542 * enters idle state or fetches works without dropping lock, it can
1543 * guarantee the scheduling requirement described in the first paragraph.
1544 *
1545 * CONTEXT:
1546 * Might sleep. Called without any lock but returns with gcwq->lock
1547 * held.
1548 *
1549 * RETURNS:
1550 * %true if the associated gcwq is online (@worker is successfully
1551 * bound), %false if offline.
1552 */
1553 static bool worker_maybe_bind_and_lock(struct worker *worker)
1554 __acquires(&gcwq->lock)
1555 {
1556 struct global_cwq *gcwq = worker->pool->gcwq;
1557 struct task_struct *task = worker->task;
1558
1559 while (true) {
1560 /*
1561 * The following call may fail, succeed or succeed
1562 * without actually migrating the task to the cpu if
1563 * it races with cpu hotunplug operation. Verify
1564 * against GCWQ_DISASSOCIATED.
1565 */
1566 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1567 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1568
1569 spin_lock_irq(&gcwq->lock);
1570 if (gcwq->flags & GCWQ_DISASSOCIATED)
1571 return false;
1572 if (task_cpu(task) == gcwq->cpu &&
1573 cpumask_equal(&current->cpus_allowed,
1574 get_cpu_mask(gcwq->cpu)))
1575 return true;
1576 spin_unlock_irq(&gcwq->lock);
1577
1578 /*
1579 * We've raced with CPU hot[un]plug. Give it a breather
1580 * and retry migration. cond_resched() is required here;
1581 * otherwise, we might deadlock against cpu_stop trying to
1582 * bring down the CPU on non-preemptive kernel.
1583 */
1584 cpu_relax();
1585 cond_resched();
1586 }
1587 }
1588
1589 /*
1590 * Rebind an idle @worker to its CPU. worker_thread() will test
1591 * list_empty(@worker->entry) before leaving idle and call this function.
1592 */
1593 static void idle_worker_rebind(struct worker *worker)
1594 {
1595 struct global_cwq *gcwq = worker->pool->gcwq;
1596
1597 /* CPU may go down again inbetween, clear UNBOUND only on success */
1598 if (worker_maybe_bind_and_lock(worker))
1599 worker_clr_flags(worker, WORKER_UNBOUND);
1600
1601 /* rebind complete, become available again */
1602 list_add(&worker->entry, &worker->pool->idle_list);
1603 spin_unlock_irq(&gcwq->lock);
1604 }
1605
1606 /*
1607 * Function for @worker->rebind.work used to rebind unbound busy workers to
1608 * the associated cpu which is coming back online. This is scheduled by
1609 * cpu up but can race with other cpu hotplug operations and may be
1610 * executed twice without intervening cpu down.
1611 */
1612 static void busy_worker_rebind_fn(struct work_struct *work)
1613 {
1614 struct worker *worker = container_of(work, struct worker, rebind_work);
1615 struct global_cwq *gcwq = worker->pool->gcwq;
1616
1617 if (worker_maybe_bind_and_lock(worker))
1618 worker_clr_flags(worker, WORKER_UNBOUND);
1619
1620 spin_unlock_irq(&gcwq->lock);
1621 }
1622
1623 /**
1624 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1625 * @gcwq: gcwq of interest
1626 *
1627 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1628 * is different for idle and busy ones.
1629 *
1630 * Idle ones will be removed from the idle_list and woken up. They will
1631 * add themselves back after completing rebind. This ensures that the
1632 * idle_list doesn't contain any unbound workers when re-bound busy workers
1633 * try to perform local wake-ups for concurrency management.
1634 *
1635 * Busy workers can rebind after they finish their current work items.
1636 * Queueing the rebind work item at the head of the scheduled list is
1637 * enough. Note that nr_running will be properly bumped as busy workers
1638 * rebind.
1639 *
1640 * On return, all non-manager workers are scheduled for rebind - see
1641 * manage_workers() for the manager special case. Any idle worker
1642 * including the manager will not appear on @idle_list until rebind is
1643 * complete, making local wake-ups safe.
1644 */
1645 static void rebind_workers(struct global_cwq *gcwq)
1646 {
1647 struct worker_pool *pool;
1648 struct worker *worker, *n;
1649 struct hlist_node *pos;
1650 int i;
1651
1652 lockdep_assert_held(&gcwq->lock);
1653
1654 for_each_worker_pool(pool, gcwq)
1655 lockdep_assert_held(&pool->assoc_mutex);
1656
1657 /* dequeue and kick idle ones */
1658 for_each_worker_pool(pool, gcwq) {
1659 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1660 /*
1661 * idle workers should be off @pool->idle_list
1662 * until rebind is complete to avoid receiving
1663 * premature local wake-ups.
1664 */
1665 list_del_init(&worker->entry);
1666
1667 /*
1668 * worker_thread() will see the above dequeuing
1669 * and call idle_worker_rebind().
1670 */
1671 wake_up_process(worker->task);
1672 }
1673 }
1674
1675 /* rebind busy workers */
1676 for_each_busy_worker(worker, i, pos, gcwq) {
1677 struct work_struct *rebind_work = &worker->rebind_work;
1678 struct workqueue_struct *wq;
1679
1680 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1681 work_data_bits(rebind_work)))
1682 continue;
1683
1684 debug_work_activate(rebind_work);
1685
1686 /*
1687 * wq doesn't really matter but let's keep @worker->pool
1688 * and @cwq->pool consistent for sanity.
1689 */
1690 if (worker_pool_pri(worker->pool))
1691 wq = system_highpri_wq;
1692 else
1693 wq = system_wq;
1694
1695 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1696 worker->scheduled.next,
1697 work_color_to_flags(WORK_NO_COLOR));
1698 }
1699 }
1700
1701 static struct worker *alloc_worker(void)
1702 {
1703 struct worker *worker;
1704
1705 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1706 if (worker) {
1707 INIT_LIST_HEAD(&worker->entry);
1708 INIT_LIST_HEAD(&worker->scheduled);
1709 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1710 /* on creation a worker is in !idle && prep state */
1711 worker->flags = WORKER_PREP;
1712 }
1713 return worker;
1714 }
1715
1716 /**
1717 * create_worker - create a new workqueue worker
1718 * @pool: pool the new worker will belong to
1719 *
1720 * Create a new worker which is bound to @pool. The returned worker
1721 * can be started by calling start_worker() or destroyed using
1722 * destroy_worker().
1723 *
1724 * CONTEXT:
1725 * Might sleep. Does GFP_KERNEL allocations.
1726 *
1727 * RETURNS:
1728 * Pointer to the newly created worker.
1729 */
1730 static struct worker *create_worker(struct worker_pool *pool)
1731 {
1732 struct global_cwq *gcwq = pool->gcwq;
1733 const char *pri = worker_pool_pri(pool) ? "H" : "";
1734 struct worker *worker = NULL;
1735 int id = -1;
1736
1737 spin_lock_irq(&gcwq->lock);
1738 while (ida_get_new(&pool->worker_ida, &id)) {
1739 spin_unlock_irq(&gcwq->lock);
1740 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1741 goto fail;
1742 spin_lock_irq(&gcwq->lock);
1743 }
1744 spin_unlock_irq(&gcwq->lock);
1745
1746 worker = alloc_worker();
1747 if (!worker)
1748 goto fail;
1749
1750 worker->pool = pool;
1751 worker->id = id;
1752
1753 if (gcwq->cpu != WORK_CPU_UNBOUND)
1754 worker->task = kthread_create_on_node(worker_thread,
1755 worker, cpu_to_node(gcwq->cpu),
1756 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1757 else
1758 worker->task = kthread_create(worker_thread, worker,
1759 "kworker/u:%d%s", id, pri);
1760 if (IS_ERR(worker->task))
1761 goto fail;
1762
1763 if (worker_pool_pri(pool))
1764 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1765
1766 /*
1767 * Determine CPU binding of the new worker depending on
1768 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1769 * flag remains stable across this function. See the comments
1770 * above the flag definition for details.
1771 *
1772 * As an unbound worker may later become a regular one if CPU comes
1773 * online, make sure every worker has %PF_THREAD_BOUND set.
1774 */
1775 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1776 kthread_bind(worker->task, gcwq->cpu);
1777 } else {
1778 worker->task->flags |= PF_THREAD_BOUND;
1779 worker->flags |= WORKER_UNBOUND;
1780 }
1781
1782 return worker;
1783 fail:
1784 if (id >= 0) {
1785 spin_lock_irq(&gcwq->lock);
1786 ida_remove(&pool->worker_ida, id);
1787 spin_unlock_irq(&gcwq->lock);
1788 }
1789 kfree(worker);
1790 return NULL;
1791 }
1792
1793 /**
1794 * start_worker - start a newly created worker
1795 * @worker: worker to start
1796 *
1797 * Make the gcwq aware of @worker and start it.
1798 *
1799 * CONTEXT:
1800 * spin_lock_irq(gcwq->lock).
1801 */
1802 static void start_worker(struct worker *worker)
1803 {
1804 worker->flags |= WORKER_STARTED;
1805 worker->pool->nr_workers++;
1806 worker_enter_idle(worker);
1807 wake_up_process(worker->task);
1808 }
1809
1810 /**
1811 * destroy_worker - destroy a workqueue worker
1812 * @worker: worker to be destroyed
1813 *
1814 * Destroy @worker and adjust @gcwq stats accordingly.
1815 *
1816 * CONTEXT:
1817 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1818 */
1819 static void destroy_worker(struct worker *worker)
1820 {
1821 struct worker_pool *pool = worker->pool;
1822 struct global_cwq *gcwq = pool->gcwq;
1823 int id = worker->id;
1824
1825 /* sanity check frenzy */
1826 BUG_ON(worker->current_work);
1827 BUG_ON(!list_empty(&worker->scheduled));
1828
1829 if (worker->flags & WORKER_STARTED)
1830 pool->nr_workers--;
1831 if (worker->flags & WORKER_IDLE)
1832 pool->nr_idle--;
1833
1834 list_del_init(&worker->entry);
1835 worker->flags |= WORKER_DIE;
1836
1837 spin_unlock_irq(&gcwq->lock);
1838
1839 kthread_stop(worker->task);
1840 kfree(worker);
1841
1842 spin_lock_irq(&gcwq->lock);
1843 ida_remove(&pool->worker_ida, id);
1844 }
1845
1846 static void idle_worker_timeout(unsigned long __pool)
1847 {
1848 struct worker_pool *pool = (void *)__pool;
1849 struct global_cwq *gcwq = pool->gcwq;
1850
1851 spin_lock_irq(&gcwq->lock);
1852
1853 if (too_many_workers(pool)) {
1854 struct worker *worker;
1855 unsigned long expires;
1856
1857 /* idle_list is kept in LIFO order, check the last one */
1858 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1859 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1860
1861 if (time_before(jiffies, expires))
1862 mod_timer(&pool->idle_timer, expires);
1863 else {
1864 /* it's been idle for too long, wake up manager */
1865 pool->flags |= POOL_MANAGE_WORKERS;
1866 wake_up_worker(pool);
1867 }
1868 }
1869
1870 spin_unlock_irq(&gcwq->lock);
1871 }
1872
1873 static bool send_mayday(struct work_struct *work)
1874 {
1875 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1876 struct workqueue_struct *wq = cwq->wq;
1877 unsigned int cpu;
1878
1879 if (!(wq->flags & WQ_RESCUER))
1880 return false;
1881
1882 /* mayday mayday mayday */
1883 cpu = cwq->pool->gcwq->cpu;
1884 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1885 if (cpu == WORK_CPU_UNBOUND)
1886 cpu = 0;
1887 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1888 wake_up_process(wq->rescuer->task);
1889 return true;
1890 }
1891
1892 static void gcwq_mayday_timeout(unsigned long __pool)
1893 {
1894 struct worker_pool *pool = (void *)__pool;
1895 struct global_cwq *gcwq = pool->gcwq;
1896 struct work_struct *work;
1897
1898 spin_lock_irq(&gcwq->lock);
1899
1900 if (need_to_create_worker(pool)) {
1901 /*
1902 * We've been trying to create a new worker but
1903 * haven't been successful. We might be hitting an
1904 * allocation deadlock. Send distress signals to
1905 * rescuers.
1906 */
1907 list_for_each_entry(work, &pool->worklist, entry)
1908 send_mayday(work);
1909 }
1910
1911 spin_unlock_irq(&gcwq->lock);
1912
1913 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1914 }
1915
1916 /**
1917 * maybe_create_worker - create a new worker if necessary
1918 * @pool: pool to create a new worker for
1919 *
1920 * Create a new worker for @pool if necessary. @pool is guaranteed to
1921 * have at least one idle worker on return from this function. If
1922 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1923 * sent to all rescuers with works scheduled on @pool to resolve
1924 * possible allocation deadlock.
1925 *
1926 * On return, need_to_create_worker() is guaranteed to be false and
1927 * may_start_working() true.
1928 *
1929 * LOCKING:
1930 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1931 * multiple times. Does GFP_KERNEL allocations. Called only from
1932 * manager.
1933 *
1934 * RETURNS:
1935 * false if no action was taken and gcwq->lock stayed locked, true
1936 * otherwise.
1937 */
1938 static bool maybe_create_worker(struct worker_pool *pool)
1939 __releases(&gcwq->lock)
1940 __acquires(&gcwq->lock)
1941 {
1942 struct global_cwq *gcwq = pool->gcwq;
1943
1944 if (!need_to_create_worker(pool))
1945 return false;
1946 restart:
1947 spin_unlock_irq(&gcwq->lock);
1948
1949 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1950 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1951
1952 while (true) {
1953 struct worker *worker;
1954
1955 worker = create_worker(pool);
1956 if (worker) {
1957 del_timer_sync(&pool->mayday_timer);
1958 spin_lock_irq(&gcwq->lock);
1959 start_worker(worker);
1960 BUG_ON(need_to_create_worker(pool));
1961 return true;
1962 }
1963
1964 if (!need_to_create_worker(pool))
1965 break;
1966
1967 __set_current_state(TASK_INTERRUPTIBLE);
1968 schedule_timeout(CREATE_COOLDOWN);
1969
1970 if (!need_to_create_worker(pool))
1971 break;
1972 }
1973
1974 del_timer_sync(&pool->mayday_timer);
1975 spin_lock_irq(&gcwq->lock);
1976 if (need_to_create_worker(pool))
1977 goto restart;
1978 return true;
1979 }
1980
1981 /**
1982 * maybe_destroy_worker - destroy workers which have been idle for a while
1983 * @pool: pool to destroy workers for
1984 *
1985 * Destroy @pool workers which have been idle for longer than
1986 * IDLE_WORKER_TIMEOUT.
1987 *
1988 * LOCKING:
1989 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1990 * multiple times. Called only from manager.
1991 *
1992 * RETURNS:
1993 * false if no action was taken and gcwq->lock stayed locked, true
1994 * otherwise.
1995 */
1996 static bool maybe_destroy_workers(struct worker_pool *pool)
1997 {
1998 bool ret = false;
1999
2000 while (too_many_workers(pool)) {
2001 struct worker *worker;
2002 unsigned long expires;
2003
2004 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006
2007 if (time_before(jiffies, expires)) {
2008 mod_timer(&pool->idle_timer, expires);
2009 break;
2010 }
2011
2012 destroy_worker(worker);
2013 ret = true;
2014 }
2015
2016 return ret;
2017 }
2018
2019 /**
2020 * manage_workers - manage worker pool
2021 * @worker: self
2022 *
2023 * Assume the manager role and manage gcwq worker pool @worker belongs
2024 * to. At any given time, there can be only zero or one manager per
2025 * gcwq. The exclusion is handled automatically by this function.
2026 *
2027 * The caller can safely start processing works on false return. On
2028 * true return, it's guaranteed that need_to_create_worker() is false
2029 * and may_start_working() is true.
2030 *
2031 * CONTEXT:
2032 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2033 * multiple times. Does GFP_KERNEL allocations.
2034 *
2035 * RETURNS:
2036 * false if no action was taken and gcwq->lock stayed locked, true if
2037 * some action was taken.
2038 */
2039 static bool manage_workers(struct worker *worker)
2040 {
2041 struct worker_pool *pool = worker->pool;
2042 bool ret = false;
2043
2044 if (pool->flags & POOL_MANAGING_WORKERS)
2045 return ret;
2046
2047 pool->flags |= POOL_MANAGING_WORKERS;
2048
2049 /*
2050 * To simplify both worker management and CPU hotplug, hold off
2051 * management while hotplug is in progress. CPU hotplug path can't
2052 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2053 * lead to idle worker depletion (all become busy thinking someone
2054 * else is managing) which in turn can result in deadlock under
2055 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2056 * manager against CPU hotplug.
2057 *
2058 * assoc_mutex would always be free unless CPU hotplug is in
2059 * progress. trylock first without dropping @gcwq->lock.
2060 */
2061 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2062 spin_unlock_irq(&pool->gcwq->lock);
2063 mutex_lock(&pool->assoc_mutex);
2064 /*
2065 * CPU hotplug could have happened while we were waiting
2066 * for assoc_mutex. Hotplug itself can't handle us
2067 * because manager isn't either on idle or busy list, and
2068 * @gcwq's state and ours could have deviated.
2069 *
2070 * As hotplug is now excluded via assoc_mutex, we can
2071 * simply try to bind. It will succeed or fail depending
2072 * on @gcwq's current state. Try it and adjust
2073 * %WORKER_UNBOUND accordingly.
2074 */
2075 if (worker_maybe_bind_and_lock(worker))
2076 worker->flags &= ~WORKER_UNBOUND;
2077 else
2078 worker->flags |= WORKER_UNBOUND;
2079
2080 ret = true;
2081 }
2082
2083 pool->flags &= ~POOL_MANAGE_WORKERS;
2084
2085 /*
2086 * Destroy and then create so that may_start_working() is true
2087 * on return.
2088 */
2089 ret |= maybe_destroy_workers(pool);
2090 ret |= maybe_create_worker(pool);
2091
2092 pool->flags &= ~POOL_MANAGING_WORKERS;
2093 mutex_unlock(&pool->assoc_mutex);
2094 return ret;
2095 }
2096
2097 /**
2098 * process_one_work - process single work
2099 * @worker: self
2100 * @work: work to process
2101 *
2102 * Process @work. This function contains all the logics necessary to
2103 * process a single work including synchronization against and
2104 * interaction with other workers on the same cpu, queueing and
2105 * flushing. As long as context requirement is met, any worker can
2106 * call this function to process a work.
2107 *
2108 * CONTEXT:
2109 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2110 */
2111 static void process_one_work(struct worker *worker, struct work_struct *work)
2112 __releases(&gcwq->lock)
2113 __acquires(&gcwq->lock)
2114 {
2115 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2116 struct worker_pool *pool = worker->pool;
2117 struct global_cwq *gcwq = pool->gcwq;
2118 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2119 int work_color;
2120 struct worker *collision;
2121 #ifdef CONFIG_LOCKDEP
2122 /*
2123 * It is permissible to free the struct work_struct from
2124 * inside the function that is called from it, this we need to
2125 * take into account for lockdep too. To avoid bogus "held
2126 * lock freed" warnings as well as problems when looking into
2127 * work->lockdep_map, make a copy and use that here.
2128 */
2129 struct lockdep_map lockdep_map;
2130
2131 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2132 #endif
2133 /*
2134 * Ensure we're on the correct CPU. DISASSOCIATED test is
2135 * necessary to avoid spurious warnings from rescuers servicing the
2136 * unbound or a disassociated gcwq.
2137 */
2138 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2139 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2140 raw_smp_processor_id() != gcwq->cpu);
2141
2142 /*
2143 * A single work shouldn't be executed concurrently by
2144 * multiple workers on a single cpu. Check whether anyone is
2145 * already processing the work. If so, defer the work to the
2146 * currently executing one.
2147 */
2148 collision = find_worker_executing_work(gcwq, work);
2149 if (unlikely(collision)) {
2150 move_linked_works(work, &collision->scheduled, NULL);
2151 return;
2152 }
2153
2154 /* claim and dequeue */
2155 debug_work_deactivate(work);
2156 hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
2157 worker->current_work = work;
2158 worker->current_func = work->func;
2159 worker->current_cwq = cwq;
2160 work_color = get_work_color(work);
2161
2162 list_del_init(&work->entry);
2163
2164 /*
2165 * CPU intensive works don't participate in concurrency
2166 * management. They're the scheduler's responsibility.
2167 */
2168 if (unlikely(cpu_intensive))
2169 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2170
2171 /*
2172 * Unbound gcwq isn't concurrency managed and work items should be
2173 * executed ASAP. Wake up another worker if necessary.
2174 */
2175 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2176 wake_up_worker(pool);
2177
2178 /*
2179 * Record the last CPU and clear PENDING which should be the last
2180 * update to @work. Also, do this inside @gcwq->lock so that
2181 * PENDING and queued state changes happen together while IRQ is
2182 * disabled.
2183 */
2184 set_work_cpu_and_clear_pending(work, gcwq->cpu);
2185
2186 spin_unlock_irq(&gcwq->lock);
2187
2188 lock_map_acquire_read(&cwq->wq->lockdep_map);
2189 lock_map_acquire(&lockdep_map);
2190 trace_workqueue_execute_start(work);
2191 worker->current_func(work);
2192 /*
2193 * While we must be careful to not use "work" after this, the trace
2194 * point will only record its address.
2195 */
2196 trace_workqueue_execute_end(work);
2197 lock_map_release(&lockdep_map);
2198 lock_map_release(&cwq->wq->lockdep_map);
2199
2200 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2201 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2202 " last function: %pf\n",
2203 current->comm, preempt_count(), task_pid_nr(current),
2204 worker->current_func);
2205 debug_show_held_locks(current);
2206 dump_stack();
2207 }
2208
2209 spin_lock_irq(&gcwq->lock);
2210
2211 /* clear cpu intensive status */
2212 if (unlikely(cpu_intensive))
2213 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2214
2215 /* we're done with it, release */
2216 hash_del(&worker->hentry);
2217 worker->current_work = NULL;
2218 worker->current_func = NULL;
2219 worker->current_cwq = NULL;
2220 cwq_dec_nr_in_flight(cwq, work_color);
2221 }
2222
2223 /**
2224 * process_scheduled_works - process scheduled works
2225 * @worker: self
2226 *
2227 * Process all scheduled works. Please note that the scheduled list
2228 * may change while processing a work, so this function repeatedly
2229 * fetches a work from the top and executes it.
2230 *
2231 * CONTEXT:
2232 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2233 * multiple times.
2234 */
2235 static void process_scheduled_works(struct worker *worker)
2236 {
2237 while (!list_empty(&worker->scheduled)) {
2238 struct work_struct *work = list_first_entry(&worker->scheduled,
2239 struct work_struct, entry);
2240 process_one_work(worker, work);
2241 }
2242 }
2243
2244 /**
2245 * worker_thread - the worker thread function
2246 * @__worker: self
2247 *
2248 * The gcwq worker thread function. There's a single dynamic pool of
2249 * these per each cpu. These workers process all works regardless of
2250 * their specific target workqueue. The only exception is works which
2251 * belong to workqueues with a rescuer which will be explained in
2252 * rescuer_thread().
2253 */
2254 static int worker_thread(void *__worker)
2255 {
2256 struct worker *worker = __worker;
2257 struct worker_pool *pool = worker->pool;
2258 struct global_cwq *gcwq = pool->gcwq;
2259
2260 /* tell the scheduler that this is a workqueue worker */
2261 worker->task->flags |= PF_WQ_WORKER;
2262 woke_up:
2263 spin_lock_irq(&gcwq->lock);
2264
2265 /* we are off idle list if destruction or rebind is requested */
2266 if (unlikely(list_empty(&worker->entry))) {
2267 spin_unlock_irq(&gcwq->lock);
2268
2269 /* if DIE is set, destruction is requested */
2270 if (worker->flags & WORKER_DIE) {
2271 worker->task->flags &= ~PF_WQ_WORKER;
2272 return 0;
2273 }
2274
2275 /* otherwise, rebind */
2276 idle_worker_rebind(worker);
2277 goto woke_up;
2278 }
2279
2280 worker_leave_idle(worker);
2281 recheck:
2282 /* no more worker necessary? */
2283 if (!need_more_worker(pool))
2284 goto sleep;
2285
2286 /* do we need to manage? */
2287 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2288 goto recheck;
2289
2290 /*
2291 * ->scheduled list can only be filled while a worker is
2292 * preparing to process a work or actually processing it.
2293 * Make sure nobody diddled with it while I was sleeping.
2294 */
2295 BUG_ON(!list_empty(&worker->scheduled));
2296
2297 /*
2298 * When control reaches this point, we're guaranteed to have
2299 * at least one idle worker or that someone else has already
2300 * assumed the manager role.
2301 */
2302 worker_clr_flags(worker, WORKER_PREP);
2303
2304 do {
2305 struct work_struct *work =
2306 list_first_entry(&pool->worklist,
2307 struct work_struct, entry);
2308
2309 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2310 /* optimization path, not strictly necessary */
2311 process_one_work(worker, work);
2312 if (unlikely(!list_empty(&worker->scheduled)))
2313 process_scheduled_works(worker);
2314 } else {
2315 move_linked_works(work, &worker->scheduled, NULL);
2316 process_scheduled_works(worker);
2317 }
2318 } while (keep_working(pool));
2319
2320 worker_set_flags(worker, WORKER_PREP, false);
2321 sleep:
2322 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2323 goto recheck;
2324
2325 /*
2326 * gcwq->lock is held and there's no work to process and no
2327 * need to manage, sleep. Workers are woken up only while
2328 * holding gcwq->lock or from local cpu, so setting the
2329 * current state before releasing gcwq->lock is enough to
2330 * prevent losing any event.
2331 */
2332 worker_enter_idle(worker);
2333 __set_current_state(TASK_INTERRUPTIBLE);
2334 spin_unlock_irq(&gcwq->lock);
2335 schedule();
2336 goto woke_up;
2337 }
2338
2339 /**
2340 * rescuer_thread - the rescuer thread function
2341 * @__rescuer: self
2342 *
2343 * Workqueue rescuer thread function. There's one rescuer for each
2344 * workqueue which has WQ_RESCUER set.
2345 *
2346 * Regular work processing on a gcwq may block trying to create a new
2347 * worker which uses GFP_KERNEL allocation which has slight chance of
2348 * developing into deadlock if some works currently on the same queue
2349 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2350 * the problem rescuer solves.
2351 *
2352 * When such condition is possible, the gcwq summons rescuers of all
2353 * workqueues which have works queued on the gcwq and let them process
2354 * those works so that forward progress can be guaranteed.
2355 *
2356 * This should happen rarely.
2357 */
2358 static int rescuer_thread(void *__rescuer)
2359 {
2360 struct worker *rescuer = __rescuer;
2361 struct workqueue_struct *wq = rescuer->rescue_wq;
2362 struct list_head *scheduled = &rescuer->scheduled;
2363 bool is_unbound = wq->flags & WQ_UNBOUND;
2364 unsigned int cpu;
2365
2366 set_user_nice(current, RESCUER_NICE_LEVEL);
2367
2368 /*
2369 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2370 * doesn't participate in concurrency management.
2371 */
2372 rescuer->task->flags |= PF_WQ_WORKER;
2373 repeat:
2374 set_current_state(TASK_INTERRUPTIBLE);
2375
2376 if (kthread_should_stop()) {
2377 __set_current_state(TASK_RUNNING);
2378 rescuer->task->flags &= ~PF_WQ_WORKER;
2379 return 0;
2380 }
2381
2382 /*
2383 * See whether any cpu is asking for help. Unbounded
2384 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2385 */
2386 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2387 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2388 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2389 struct worker_pool *pool = cwq->pool;
2390 struct global_cwq *gcwq = pool->gcwq;
2391 struct work_struct *work, *n;
2392
2393 __set_current_state(TASK_RUNNING);
2394 mayday_clear_cpu(cpu, wq->mayday_mask);
2395
2396 /* migrate to the target cpu if possible */
2397 rescuer->pool = pool;
2398 worker_maybe_bind_and_lock(rescuer);
2399
2400 /*
2401 * Slurp in all works issued via this workqueue and
2402 * process'em.
2403 */
2404 BUG_ON(!list_empty(&rescuer->scheduled));
2405 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2406 if (get_work_cwq(work) == cwq)
2407 move_linked_works(work, scheduled, &n);
2408
2409 process_scheduled_works(rescuer);
2410
2411 /*
2412 * Leave this gcwq. If keep_working() is %true, notify a
2413 * regular worker; otherwise, we end up with 0 concurrency
2414 * and stalling the execution.
2415 */
2416 if (keep_working(pool))
2417 wake_up_worker(pool);
2418
2419 spin_unlock_irq(&gcwq->lock);
2420 }
2421
2422 /* rescuers should never participate in concurrency management */
2423 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2424 schedule();
2425 goto repeat;
2426 }
2427
2428 struct wq_barrier {
2429 struct work_struct work;
2430 struct completion done;
2431 };
2432
2433 static void wq_barrier_func(struct work_struct *work)
2434 {
2435 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2436 complete(&barr->done);
2437 }
2438
2439 /**
2440 * insert_wq_barrier - insert a barrier work
2441 * @cwq: cwq to insert barrier into
2442 * @barr: wq_barrier to insert
2443 * @target: target work to attach @barr to
2444 * @worker: worker currently executing @target, NULL if @target is not executing
2445 *
2446 * @barr is linked to @target such that @barr is completed only after
2447 * @target finishes execution. Please note that the ordering
2448 * guarantee is observed only with respect to @target and on the local
2449 * cpu.
2450 *
2451 * Currently, a queued barrier can't be canceled. This is because
2452 * try_to_grab_pending() can't determine whether the work to be
2453 * grabbed is at the head of the queue and thus can't clear LINKED
2454 * flag of the previous work while there must be a valid next work
2455 * after a work with LINKED flag set.
2456 *
2457 * Note that when @worker is non-NULL, @target may be modified
2458 * underneath us, so we can't reliably determine cwq from @target.
2459 *
2460 * CONTEXT:
2461 * spin_lock_irq(gcwq->lock).
2462 */
2463 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2464 struct wq_barrier *barr,
2465 struct work_struct *target, struct worker *worker)
2466 {
2467 struct list_head *head;
2468 unsigned int linked = 0;
2469
2470 /*
2471 * debugobject calls are safe here even with gcwq->lock locked
2472 * as we know for sure that this will not trigger any of the
2473 * checks and call back into the fixup functions where we
2474 * might deadlock.
2475 */
2476 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2477 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2478 init_completion(&barr->done);
2479
2480 /*
2481 * If @target is currently being executed, schedule the
2482 * barrier to the worker; otherwise, put it after @target.
2483 */
2484 if (worker)
2485 head = worker->scheduled.next;
2486 else {
2487 unsigned long *bits = work_data_bits(target);
2488
2489 head = target->entry.next;
2490 /* there can already be other linked works, inherit and set */
2491 linked = *bits & WORK_STRUCT_LINKED;
2492 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2493 }
2494
2495 debug_work_activate(&barr->work);
2496 insert_work(cwq, &barr->work, head,
2497 work_color_to_flags(WORK_NO_COLOR) | linked);
2498 }
2499
2500 /**
2501 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2502 * @wq: workqueue being flushed
2503 * @flush_color: new flush color, < 0 for no-op
2504 * @work_color: new work color, < 0 for no-op
2505 *
2506 * Prepare cwqs for workqueue flushing.
2507 *
2508 * If @flush_color is non-negative, flush_color on all cwqs should be
2509 * -1. If no cwq has in-flight commands at the specified color, all
2510 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2511 * has in flight commands, its cwq->flush_color is set to
2512 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2513 * wakeup logic is armed and %true is returned.
2514 *
2515 * The caller should have initialized @wq->first_flusher prior to
2516 * calling this function with non-negative @flush_color. If
2517 * @flush_color is negative, no flush color update is done and %false
2518 * is returned.
2519 *
2520 * If @work_color is non-negative, all cwqs should have the same
2521 * work_color which is previous to @work_color and all will be
2522 * advanced to @work_color.
2523 *
2524 * CONTEXT:
2525 * mutex_lock(wq->flush_mutex).
2526 *
2527 * RETURNS:
2528 * %true if @flush_color >= 0 and there's something to flush. %false
2529 * otherwise.
2530 */
2531 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2532 int flush_color, int work_color)
2533 {
2534 bool wait = false;
2535 unsigned int cpu;
2536
2537 if (flush_color >= 0) {
2538 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2539 atomic_set(&wq->nr_cwqs_to_flush, 1);
2540 }
2541
2542 for_each_cwq_cpu(cpu, wq) {
2543 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2544 struct global_cwq *gcwq = cwq->pool->gcwq;
2545
2546 spin_lock_irq(&gcwq->lock);
2547
2548 if (flush_color >= 0) {
2549 BUG_ON(cwq->flush_color != -1);
2550
2551 if (cwq->nr_in_flight[flush_color]) {
2552 cwq->flush_color = flush_color;
2553 atomic_inc(&wq->nr_cwqs_to_flush);
2554 wait = true;
2555 }
2556 }
2557
2558 if (work_color >= 0) {
2559 BUG_ON(work_color != work_next_color(cwq->work_color));
2560 cwq->work_color = work_color;
2561 }
2562
2563 spin_unlock_irq(&gcwq->lock);
2564 }
2565
2566 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2567 complete(&wq->first_flusher->done);
2568
2569 return wait;
2570 }
2571
2572 /**
2573 * flush_workqueue - ensure that any scheduled work has run to completion.
2574 * @wq: workqueue to flush
2575 *
2576 * Forces execution of the workqueue and blocks until its completion.
2577 * This is typically used in driver shutdown handlers.
2578 *
2579 * We sleep until all works which were queued on entry have been handled,
2580 * but we are not livelocked by new incoming ones.
2581 */
2582 void flush_workqueue(struct workqueue_struct *wq)
2583 {
2584 struct wq_flusher this_flusher = {
2585 .list = LIST_HEAD_INIT(this_flusher.list),
2586 .flush_color = -1,
2587 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2588 };
2589 int next_color;
2590
2591 lock_map_acquire(&wq->lockdep_map);
2592 lock_map_release(&wq->lockdep_map);
2593
2594 mutex_lock(&wq->flush_mutex);
2595
2596 /*
2597 * Start-to-wait phase
2598 */
2599 next_color = work_next_color(wq->work_color);
2600
2601 if (next_color != wq->flush_color) {
2602 /*
2603 * Color space is not full. The current work_color
2604 * becomes our flush_color and work_color is advanced
2605 * by one.
2606 */
2607 BUG_ON(!list_empty(&wq->flusher_overflow));
2608 this_flusher.flush_color = wq->work_color;
2609 wq->work_color = next_color;
2610
2611 if (!wq->first_flusher) {
2612 /* no flush in progress, become the first flusher */
2613 BUG_ON(wq->flush_color != this_flusher.flush_color);
2614
2615 wq->first_flusher = &this_flusher;
2616
2617 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2618 wq->work_color)) {
2619 /* nothing to flush, done */
2620 wq->flush_color = next_color;
2621 wq->first_flusher = NULL;
2622 goto out_unlock;
2623 }
2624 } else {
2625 /* wait in queue */
2626 BUG_ON(wq->flush_color == this_flusher.flush_color);
2627 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2628 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2629 }
2630 } else {
2631 /*
2632 * Oops, color space is full, wait on overflow queue.
2633 * The next flush completion will assign us
2634 * flush_color and transfer to flusher_queue.
2635 */
2636 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2637 }
2638
2639 mutex_unlock(&wq->flush_mutex);
2640
2641 wait_for_completion(&this_flusher.done);
2642
2643 /*
2644 * Wake-up-and-cascade phase
2645 *
2646 * First flushers are responsible for cascading flushes and
2647 * handling overflow. Non-first flushers can simply return.
2648 */
2649 if (wq->first_flusher != &this_flusher)
2650 return;
2651
2652 mutex_lock(&wq->flush_mutex);
2653
2654 /* we might have raced, check again with mutex held */
2655 if (wq->first_flusher != &this_flusher)
2656 goto out_unlock;
2657
2658 wq->first_flusher = NULL;
2659
2660 BUG_ON(!list_empty(&this_flusher.list));
2661 BUG_ON(wq->flush_color != this_flusher.flush_color);
2662
2663 while (true) {
2664 struct wq_flusher *next, *tmp;
2665
2666 /* complete all the flushers sharing the current flush color */
2667 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2668 if (next->flush_color != wq->flush_color)
2669 break;
2670 list_del_init(&next->list);
2671 complete(&next->done);
2672 }
2673
2674 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2675 wq->flush_color != work_next_color(wq->work_color));
2676
2677 /* this flush_color is finished, advance by one */
2678 wq->flush_color = work_next_color(wq->flush_color);
2679
2680 /* one color has been freed, handle overflow queue */
2681 if (!list_empty(&wq->flusher_overflow)) {
2682 /*
2683 * Assign the same color to all overflowed
2684 * flushers, advance work_color and append to
2685 * flusher_queue. This is the start-to-wait
2686 * phase for these overflowed flushers.
2687 */
2688 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2689 tmp->flush_color = wq->work_color;
2690
2691 wq->work_color = work_next_color(wq->work_color);
2692
2693 list_splice_tail_init(&wq->flusher_overflow,
2694 &wq->flusher_queue);
2695 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2696 }
2697
2698 if (list_empty(&wq->flusher_queue)) {
2699 BUG_ON(wq->flush_color != wq->work_color);
2700 break;
2701 }
2702
2703 /*
2704 * Need to flush more colors. Make the next flusher
2705 * the new first flusher and arm cwqs.
2706 */
2707 BUG_ON(wq->flush_color == wq->work_color);
2708 BUG_ON(wq->flush_color != next->flush_color);
2709
2710 list_del_init(&next->list);
2711 wq->first_flusher = next;
2712
2713 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2714 break;
2715
2716 /*
2717 * Meh... this color is already done, clear first
2718 * flusher and repeat cascading.
2719 */
2720 wq->first_flusher = NULL;
2721 }
2722
2723 out_unlock:
2724 mutex_unlock(&wq->flush_mutex);
2725 }
2726 EXPORT_SYMBOL_GPL(flush_workqueue);
2727
2728 /**
2729 * drain_workqueue - drain a workqueue
2730 * @wq: workqueue to drain
2731 *
2732 * Wait until the workqueue becomes empty. While draining is in progress,
2733 * only chain queueing is allowed. IOW, only currently pending or running
2734 * work items on @wq can queue further work items on it. @wq is flushed
2735 * repeatedly until it becomes empty. The number of flushing is detemined
2736 * by the depth of chaining and should be relatively short. Whine if it
2737 * takes too long.
2738 */
2739 void drain_workqueue(struct workqueue_struct *wq)
2740 {
2741 unsigned int flush_cnt = 0;
2742 unsigned int cpu;
2743
2744 /*
2745 * __queue_work() needs to test whether there are drainers, is much
2746 * hotter than drain_workqueue() and already looks at @wq->flags.
2747 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2748 */
2749 spin_lock(&workqueue_lock);
2750 if (!wq->nr_drainers++)
2751 wq->flags |= WQ_DRAINING;
2752 spin_unlock(&workqueue_lock);
2753 reflush:
2754 flush_workqueue(wq);
2755
2756 for_each_cwq_cpu(cpu, wq) {
2757 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2758 bool drained;
2759
2760 spin_lock_irq(&cwq->pool->gcwq->lock);
2761 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2762 spin_unlock_irq(&cwq->pool->gcwq->lock);
2763
2764 if (drained)
2765 continue;
2766
2767 if (++flush_cnt == 10 ||
2768 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2769 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2770 wq->name, flush_cnt);
2771 goto reflush;
2772 }
2773
2774 spin_lock(&workqueue_lock);
2775 if (!--wq->nr_drainers)
2776 wq->flags &= ~WQ_DRAINING;
2777 spin_unlock(&workqueue_lock);
2778 }
2779 EXPORT_SYMBOL_GPL(drain_workqueue);
2780
2781 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2782 {
2783 struct worker *worker = NULL;
2784 struct global_cwq *gcwq;
2785 struct cpu_workqueue_struct *cwq;
2786
2787 might_sleep();
2788 gcwq = get_work_gcwq(work);
2789 if (!gcwq)
2790 return false;
2791
2792 spin_lock_irq(&gcwq->lock);
2793 if (!list_empty(&work->entry)) {
2794 /*
2795 * See the comment near try_to_grab_pending()->smp_rmb().
2796 * If it was re-queued to a different gcwq under us, we
2797 * are not going to wait.
2798 */
2799 smp_rmb();
2800 cwq = get_work_cwq(work);
2801 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2802 goto already_gone;
2803 } else {
2804 worker = find_worker_executing_work(gcwq, work);
2805 if (!worker)
2806 goto already_gone;
2807 cwq = worker->current_cwq;
2808 }
2809
2810 insert_wq_barrier(cwq, barr, work, worker);
2811 spin_unlock_irq(&gcwq->lock);
2812
2813 /*
2814 * If @max_active is 1 or rescuer is in use, flushing another work
2815 * item on the same workqueue may lead to deadlock. Make sure the
2816 * flusher is not running on the same workqueue by verifying write
2817 * access.
2818 */
2819 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2820 lock_map_acquire(&cwq->wq->lockdep_map);
2821 else
2822 lock_map_acquire_read(&cwq->wq->lockdep_map);
2823 lock_map_release(&cwq->wq->lockdep_map);
2824
2825 return true;
2826 already_gone:
2827 spin_unlock_irq(&gcwq->lock);
2828 return false;
2829 }
2830
2831 /**
2832 * flush_work - wait for a work to finish executing the last queueing instance
2833 * @work: the work to flush
2834 *
2835 * Wait until @work has finished execution. @work is guaranteed to be idle
2836 * on return if it hasn't been requeued since flush started.
2837 *
2838 * RETURNS:
2839 * %true if flush_work() waited for the work to finish execution,
2840 * %false if it was already idle.
2841 */
2842 bool flush_work(struct work_struct *work)
2843 {
2844 struct wq_barrier barr;
2845
2846 lock_map_acquire(&work->lockdep_map);
2847 lock_map_release(&work->lockdep_map);
2848
2849 if (start_flush_work(work, &barr)) {
2850 wait_for_completion(&barr.done);
2851 destroy_work_on_stack(&barr.work);
2852 return true;
2853 } else {
2854 return false;
2855 }
2856 }
2857 EXPORT_SYMBOL_GPL(flush_work);
2858
2859 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2860 {
2861 unsigned long flags;
2862 int ret;
2863
2864 do {
2865 ret = try_to_grab_pending(work, is_dwork, &flags);
2866 /*
2867 * If someone else is canceling, wait for the same event it
2868 * would be waiting for before retrying.
2869 */
2870 if (unlikely(ret == -ENOENT))
2871 flush_work(work);
2872 } while (unlikely(ret < 0));
2873
2874 /* tell other tasks trying to grab @work to back off */
2875 mark_work_canceling(work);
2876 local_irq_restore(flags);
2877
2878 flush_work(work);
2879 clear_work_data(work);
2880 return ret;
2881 }
2882
2883 /**
2884 * cancel_work_sync - cancel a work and wait for it to finish
2885 * @work: the work to cancel
2886 *
2887 * Cancel @work and wait for its execution to finish. This function
2888 * can be used even if the work re-queues itself or migrates to
2889 * another workqueue. On return from this function, @work is
2890 * guaranteed to be not pending or executing on any CPU.
2891 *
2892 * cancel_work_sync(&delayed_work->work) must not be used for
2893 * delayed_work's. Use cancel_delayed_work_sync() instead.
2894 *
2895 * The caller must ensure that the workqueue on which @work was last
2896 * queued can't be destroyed before this function returns.
2897 *
2898 * RETURNS:
2899 * %true if @work was pending, %false otherwise.
2900 */
2901 bool cancel_work_sync(struct work_struct *work)
2902 {
2903 return __cancel_work_timer(work, false);
2904 }
2905 EXPORT_SYMBOL_GPL(cancel_work_sync);
2906
2907 /**
2908 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2909 * @dwork: the delayed work to flush
2910 *
2911 * Delayed timer is cancelled and the pending work is queued for
2912 * immediate execution. Like flush_work(), this function only
2913 * considers the last queueing instance of @dwork.
2914 *
2915 * RETURNS:
2916 * %true if flush_work() waited for the work to finish execution,
2917 * %false if it was already idle.
2918 */
2919 bool flush_delayed_work(struct delayed_work *dwork)
2920 {
2921 local_irq_disable();
2922 if (del_timer_sync(&dwork->timer))
2923 __queue_work(dwork->cpu,
2924 get_work_cwq(&dwork->work)->wq, &dwork->work);
2925 local_irq_enable();
2926 return flush_work(&dwork->work);
2927 }
2928 EXPORT_SYMBOL(flush_delayed_work);
2929
2930 /**
2931 * cancel_delayed_work - cancel a delayed work
2932 * @dwork: delayed_work to cancel
2933 *
2934 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2935 * and canceled; %false if wasn't pending. Note that the work callback
2936 * function may still be running on return, unless it returns %true and the
2937 * work doesn't re-arm itself. Explicitly flush or use
2938 * cancel_delayed_work_sync() to wait on it.
2939 *
2940 * This function is safe to call from any context including IRQ handler.
2941 */
2942 bool cancel_delayed_work(struct delayed_work *dwork)
2943 {
2944 unsigned long flags;
2945 int ret;
2946
2947 do {
2948 ret = try_to_grab_pending(&dwork->work, true, &flags);
2949 } while (unlikely(ret == -EAGAIN));
2950
2951 if (unlikely(ret < 0))
2952 return false;
2953
2954 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2955 local_irq_restore(flags);
2956 return ret;
2957 }
2958 EXPORT_SYMBOL(cancel_delayed_work);
2959
2960 /**
2961 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2962 * @dwork: the delayed work cancel
2963 *
2964 * This is cancel_work_sync() for delayed works.
2965 *
2966 * RETURNS:
2967 * %true if @dwork was pending, %false otherwise.
2968 */
2969 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2970 {
2971 return __cancel_work_timer(&dwork->work, true);
2972 }
2973 EXPORT_SYMBOL(cancel_delayed_work_sync);
2974
2975 /**
2976 * schedule_work_on - put work task on a specific cpu
2977 * @cpu: cpu to put the work task on
2978 * @work: job to be done
2979 *
2980 * This puts a job on a specific cpu
2981 */
2982 bool schedule_work_on(int cpu, struct work_struct *work)
2983 {
2984 return queue_work_on(cpu, system_wq, work);
2985 }
2986 EXPORT_SYMBOL(schedule_work_on);
2987
2988 /**
2989 * schedule_work - put work task in global workqueue
2990 * @work: job to be done
2991 *
2992 * Returns %false if @work was already on the kernel-global workqueue and
2993 * %true otherwise.
2994 *
2995 * This puts a job in the kernel-global workqueue if it was not already
2996 * queued and leaves it in the same position on the kernel-global
2997 * workqueue otherwise.
2998 */
2999 bool schedule_work(struct work_struct *work)
3000 {
3001 return queue_work(system_wq, work);
3002 }
3003 EXPORT_SYMBOL(schedule_work);
3004
3005 /**
3006 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3007 * @cpu: cpu to use
3008 * @dwork: job to be done
3009 * @delay: number of jiffies to wait
3010 *
3011 * After waiting for a given time this puts a job in the kernel-global
3012 * workqueue on the specified CPU.
3013 */
3014 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3015 unsigned long delay)
3016 {
3017 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3018 }
3019 EXPORT_SYMBOL(schedule_delayed_work_on);
3020
3021 /**
3022 * schedule_delayed_work - put work task in global workqueue after delay
3023 * @dwork: job to be done
3024 * @delay: number of jiffies to wait or 0 for immediate execution
3025 *
3026 * After waiting for a given time this puts a job in the kernel-global
3027 * workqueue.
3028 */
3029 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3030 {
3031 return queue_delayed_work(system_wq, dwork, delay);
3032 }
3033 EXPORT_SYMBOL(schedule_delayed_work);
3034
3035 /**
3036 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3037 * @func: the function to call
3038 *
3039 * schedule_on_each_cpu() executes @func on each online CPU using the
3040 * system workqueue and blocks until all CPUs have completed.
3041 * schedule_on_each_cpu() is very slow.
3042 *
3043 * RETURNS:
3044 * 0 on success, -errno on failure.
3045 */
3046 int schedule_on_each_cpu(work_func_t func)
3047 {
3048 int cpu;
3049 struct work_struct __percpu *works;
3050
3051 works = alloc_percpu(struct work_struct);
3052 if (!works)
3053 return -ENOMEM;
3054
3055 get_online_cpus();
3056
3057 for_each_online_cpu(cpu) {
3058 struct work_struct *work = per_cpu_ptr(works, cpu);
3059
3060 INIT_WORK(work, func);
3061 schedule_work_on(cpu, work);
3062 }
3063
3064 for_each_online_cpu(cpu)
3065 flush_work(per_cpu_ptr(works, cpu));
3066
3067 put_online_cpus();
3068 free_percpu(works);
3069 return 0;
3070 }
3071
3072 /**
3073 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3074 *
3075 * Forces execution of the kernel-global workqueue and blocks until its
3076 * completion.
3077 *
3078 * Think twice before calling this function! It's very easy to get into
3079 * trouble if you don't take great care. Either of the following situations
3080 * will lead to deadlock:
3081 *
3082 * One of the work items currently on the workqueue needs to acquire
3083 * a lock held by your code or its caller.
3084 *
3085 * Your code is running in the context of a work routine.
3086 *
3087 * They will be detected by lockdep when they occur, but the first might not
3088 * occur very often. It depends on what work items are on the workqueue and
3089 * what locks they need, which you have no control over.
3090 *
3091 * In most situations flushing the entire workqueue is overkill; you merely
3092 * need to know that a particular work item isn't queued and isn't running.
3093 * In such cases you should use cancel_delayed_work_sync() or
3094 * cancel_work_sync() instead.
3095 */
3096 void flush_scheduled_work(void)
3097 {
3098 flush_workqueue(system_wq);
3099 }
3100 EXPORT_SYMBOL(flush_scheduled_work);
3101
3102 /**
3103 * execute_in_process_context - reliably execute the routine with user context
3104 * @fn: the function to execute
3105 * @ew: guaranteed storage for the execute work structure (must
3106 * be available when the work executes)
3107 *
3108 * Executes the function immediately if process context is available,
3109 * otherwise schedules the function for delayed execution.
3110 *
3111 * Returns: 0 - function was executed
3112 * 1 - function was scheduled for execution
3113 */
3114 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3115 {
3116 if (!in_interrupt()) {
3117 fn(&ew->work);
3118 return 0;
3119 }
3120
3121 INIT_WORK(&ew->work, fn);
3122 schedule_work(&ew->work);
3123
3124 return 1;
3125 }
3126 EXPORT_SYMBOL_GPL(execute_in_process_context);
3127
3128 int keventd_up(void)
3129 {
3130 return system_wq != NULL;
3131 }
3132
3133 static int alloc_cwqs(struct workqueue_struct *wq)
3134 {
3135 /*
3136 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3137 * Make sure that the alignment isn't lower than that of
3138 * unsigned long long.
3139 */
3140 const size_t size = sizeof(struct cpu_workqueue_struct);
3141 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3142 __alignof__(unsigned long long));
3143
3144 if (!(wq->flags & WQ_UNBOUND))
3145 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3146 else {
3147 void *ptr;
3148
3149 /*
3150 * Allocate enough room to align cwq and put an extra
3151 * pointer at the end pointing back to the originally
3152 * allocated pointer which will be used for free.
3153 */
3154 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3155 if (ptr) {
3156 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3157 *(void **)(wq->cpu_wq.single + 1) = ptr;
3158 }
3159 }
3160
3161 /* just in case, make sure it's actually aligned */
3162 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3163 return wq->cpu_wq.v ? 0 : -ENOMEM;
3164 }
3165
3166 static void free_cwqs(struct workqueue_struct *wq)
3167 {
3168 if (!(wq->flags & WQ_UNBOUND))
3169 free_percpu(wq->cpu_wq.pcpu);
3170 else if (wq->cpu_wq.single) {
3171 /* the pointer to free is stored right after the cwq */
3172 kfree(*(void **)(wq->cpu_wq.single + 1));
3173 }
3174 }
3175
3176 static int wq_clamp_max_active(int max_active, unsigned int flags,
3177 const char *name)
3178 {
3179 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3180
3181 if (max_active < 1 || max_active > lim)
3182 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3183 max_active, name, 1, lim);
3184
3185 return clamp_val(max_active, 1, lim);
3186 }
3187
3188 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3189 unsigned int flags,
3190 int max_active,
3191 struct lock_class_key *key,
3192 const char *lock_name, ...)
3193 {
3194 va_list args, args1;
3195 struct workqueue_struct *wq;
3196 unsigned int cpu;
3197 size_t namelen;
3198
3199 /* determine namelen, allocate wq and format name */
3200 va_start(args, lock_name);
3201 va_copy(args1, args);
3202 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3203
3204 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3205 if (!wq)
3206 goto err;
3207
3208 vsnprintf(wq->name, namelen, fmt, args1);
3209 va_end(args);
3210 va_end(args1);
3211
3212 /*
3213 * Workqueues which may be used during memory reclaim should
3214 * have a rescuer to guarantee forward progress.
3215 */
3216 if (flags & WQ_MEM_RECLAIM)
3217 flags |= WQ_RESCUER;
3218
3219 max_active = max_active ?: WQ_DFL_ACTIVE;
3220 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3221
3222 /* init wq */
3223 wq->flags = flags;
3224 wq->saved_max_active = max_active;
3225 mutex_init(&wq->flush_mutex);
3226 atomic_set(&wq->nr_cwqs_to_flush, 0);
3227 INIT_LIST_HEAD(&wq->flusher_queue);
3228 INIT_LIST_HEAD(&wq->flusher_overflow);
3229
3230 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3231 INIT_LIST_HEAD(&wq->list);
3232
3233 if (alloc_cwqs(wq) < 0)
3234 goto err;
3235
3236 for_each_cwq_cpu(cpu, wq) {
3237 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3238 struct global_cwq *gcwq = get_gcwq(cpu);
3239 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3240
3241 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3242 cwq->pool = &gcwq->pools[pool_idx];
3243 cwq->wq = wq;
3244 cwq->flush_color = -1;
3245 cwq->max_active = max_active;
3246 INIT_LIST_HEAD(&cwq->delayed_works);
3247 }
3248
3249 if (flags & WQ_RESCUER) {
3250 struct worker *rescuer;
3251
3252 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3253 goto err;
3254
3255 wq->rescuer = rescuer = alloc_worker();
3256 if (!rescuer)
3257 goto err;
3258
3259 rescuer->rescue_wq = wq;
3260 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3261 wq->name);
3262 if (IS_ERR(rescuer->task))
3263 goto err;
3264
3265 rescuer->task->flags |= PF_THREAD_BOUND;
3266 wake_up_process(rescuer->task);
3267 }
3268
3269 /*
3270 * workqueue_lock protects global freeze state and workqueues
3271 * list. Grab it, set max_active accordingly and add the new
3272 * workqueue to workqueues list.
3273 */
3274 spin_lock(&workqueue_lock);
3275
3276 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3277 for_each_cwq_cpu(cpu, wq)
3278 get_cwq(cpu, wq)->max_active = 0;
3279
3280 list_add(&wq->list, &workqueues);
3281
3282 spin_unlock(&workqueue_lock);
3283
3284 return wq;
3285 err:
3286 if (wq) {
3287 free_cwqs(wq);
3288 free_mayday_mask(wq->mayday_mask);
3289 kfree(wq->rescuer);
3290 kfree(wq);
3291 }
3292 return NULL;
3293 }
3294 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3295
3296 /**
3297 * destroy_workqueue - safely terminate a workqueue
3298 * @wq: target workqueue
3299 *
3300 * Safely destroy a workqueue. All work currently pending will be done first.
3301 */
3302 void destroy_workqueue(struct workqueue_struct *wq)
3303 {
3304 unsigned int cpu;
3305
3306 /* drain it before proceeding with destruction */
3307 drain_workqueue(wq);
3308
3309 /*
3310 * wq list is used to freeze wq, remove from list after
3311 * flushing is complete in case freeze races us.
3312 */
3313 spin_lock(&workqueue_lock);
3314 list_del(&wq->list);
3315 spin_unlock(&workqueue_lock);
3316
3317 /* sanity check */
3318 for_each_cwq_cpu(cpu, wq) {
3319 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3320 int i;
3321
3322 for (i = 0; i < WORK_NR_COLORS; i++)
3323 BUG_ON(cwq->nr_in_flight[i]);
3324 BUG_ON(cwq->nr_active);
3325 BUG_ON(!list_empty(&cwq->delayed_works));
3326 }
3327
3328 if (wq->flags & WQ_RESCUER) {
3329 kthread_stop(wq->rescuer->task);
3330 free_mayday_mask(wq->mayday_mask);
3331 kfree(wq->rescuer);
3332 }
3333
3334 free_cwqs(wq);
3335 kfree(wq);
3336 }
3337 EXPORT_SYMBOL_GPL(destroy_workqueue);
3338
3339 /**
3340 * cwq_set_max_active - adjust max_active of a cwq
3341 * @cwq: target cpu_workqueue_struct
3342 * @max_active: new max_active value.
3343 *
3344 * Set @cwq->max_active to @max_active and activate delayed works if
3345 * increased.
3346 *
3347 * CONTEXT:
3348 * spin_lock_irq(gcwq->lock).
3349 */
3350 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3351 {
3352 cwq->max_active = max_active;
3353
3354 while (!list_empty(&cwq->delayed_works) &&
3355 cwq->nr_active < cwq->max_active)
3356 cwq_activate_first_delayed(cwq);
3357 }
3358
3359 /**
3360 * workqueue_set_max_active - adjust max_active of a workqueue
3361 * @wq: target workqueue
3362 * @max_active: new max_active value.
3363 *
3364 * Set max_active of @wq to @max_active.
3365 *
3366 * CONTEXT:
3367 * Don't call from IRQ context.
3368 */
3369 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3370 {
3371 unsigned int cpu;
3372
3373 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3374
3375 spin_lock(&workqueue_lock);
3376
3377 wq->saved_max_active = max_active;
3378
3379 for_each_cwq_cpu(cpu, wq) {
3380 struct global_cwq *gcwq = get_gcwq(cpu);
3381
3382 spin_lock_irq(&gcwq->lock);
3383
3384 if (!(wq->flags & WQ_FREEZABLE) ||
3385 !(gcwq->flags & GCWQ_FREEZING))
3386 cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3387
3388 spin_unlock_irq(&gcwq->lock);
3389 }
3390
3391 spin_unlock(&workqueue_lock);
3392 }
3393 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3394
3395 /**
3396 * workqueue_congested - test whether a workqueue is congested
3397 * @cpu: CPU in question
3398 * @wq: target workqueue
3399 *
3400 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3401 * no synchronization around this function and the test result is
3402 * unreliable and only useful as advisory hints or for debugging.
3403 *
3404 * RETURNS:
3405 * %true if congested, %false otherwise.
3406 */
3407 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3408 {
3409 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3410
3411 return !list_empty(&cwq->delayed_works);
3412 }
3413 EXPORT_SYMBOL_GPL(workqueue_congested);
3414
3415 /**
3416 * work_cpu - return the last known associated cpu for @work
3417 * @work: the work of interest
3418 *
3419 * RETURNS:
3420 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3421 */
3422 unsigned int work_cpu(struct work_struct *work)
3423 {
3424 struct global_cwq *gcwq = get_work_gcwq(work);
3425
3426 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3427 }
3428 EXPORT_SYMBOL_GPL(work_cpu);
3429
3430 /**
3431 * work_busy - test whether a work is currently pending or running
3432 * @work: the work to be tested
3433 *
3434 * Test whether @work is currently pending or running. There is no
3435 * synchronization around this function and the test result is
3436 * unreliable and only useful as advisory hints or for debugging.
3437 * Especially for reentrant wqs, the pending state might hide the
3438 * running state.
3439 *
3440 * RETURNS:
3441 * OR'd bitmask of WORK_BUSY_* bits.
3442 */
3443 unsigned int work_busy(struct work_struct *work)
3444 {
3445 struct global_cwq *gcwq = get_work_gcwq(work);
3446 unsigned long flags;
3447 unsigned int ret = 0;
3448
3449 if (!gcwq)
3450 return 0;
3451
3452 spin_lock_irqsave(&gcwq->lock, flags);
3453
3454 if (work_pending(work))
3455 ret |= WORK_BUSY_PENDING;
3456 if (find_worker_executing_work(gcwq, work))
3457 ret |= WORK_BUSY_RUNNING;
3458
3459 spin_unlock_irqrestore(&gcwq->lock, flags);
3460
3461 return ret;
3462 }
3463 EXPORT_SYMBOL_GPL(work_busy);
3464
3465 /*
3466 * CPU hotplug.
3467 *
3468 * There are two challenges in supporting CPU hotplug. Firstly, there
3469 * are a lot of assumptions on strong associations among work, cwq and
3470 * gcwq which make migrating pending and scheduled works very
3471 * difficult to implement without impacting hot paths. Secondly,
3472 * gcwqs serve mix of short, long and very long running works making
3473 * blocked draining impractical.
3474 *
3475 * This is solved by allowing a gcwq to be disassociated from the CPU
3476 * running as an unbound one and allowing it to be reattached later if the
3477 * cpu comes back online.
3478 */
3479
3480 /* claim manager positions of all pools */
3481 static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3482 {
3483 struct worker_pool *pool;
3484
3485 for_each_worker_pool(pool, gcwq)
3486 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
3487 spin_lock_irq(&gcwq->lock);
3488 }
3489
3490 /* release manager positions */
3491 static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3492 {
3493 struct worker_pool *pool;
3494
3495 spin_unlock_irq(&gcwq->lock);
3496 for_each_worker_pool(pool, gcwq)
3497 mutex_unlock(&pool->assoc_mutex);
3498 }
3499
3500 static void gcwq_unbind_fn(struct work_struct *work)
3501 {
3502 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3503 struct worker_pool *pool;
3504 struct worker *worker;
3505 struct hlist_node *pos;
3506 int i;
3507
3508 BUG_ON(gcwq->cpu != smp_processor_id());
3509
3510 gcwq_claim_assoc_and_lock(gcwq);
3511
3512 /*
3513 * We've claimed all manager positions. Make all workers unbound
3514 * and set DISASSOCIATED. Before this, all workers except for the
3515 * ones which are still executing works from before the last CPU
3516 * down must be on the cpu. After this, they may become diasporas.
3517 */
3518 for_each_worker_pool(pool, gcwq)
3519 list_for_each_entry(worker, &pool->idle_list, entry)
3520 worker->flags |= WORKER_UNBOUND;
3521
3522 for_each_busy_worker(worker, i, pos, gcwq)
3523 worker->flags |= WORKER_UNBOUND;
3524
3525 gcwq->flags |= GCWQ_DISASSOCIATED;
3526
3527 gcwq_release_assoc_and_unlock(gcwq);
3528
3529 /*
3530 * Call schedule() so that we cross rq->lock and thus can guarantee
3531 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3532 * as scheduler callbacks may be invoked from other cpus.
3533 */
3534 schedule();
3535
3536 /*
3537 * Sched callbacks are disabled now. Zap nr_running. After this,
3538 * nr_running stays zero and need_more_worker() and keep_working()
3539 * are always true as long as the worklist is not empty. @gcwq now
3540 * behaves as unbound (in terms of concurrency management) gcwq
3541 * which is served by workers tied to the CPU.
3542 *
3543 * On return from this function, the current worker would trigger
3544 * unbound chain execution of pending work items if other workers
3545 * didn't already.
3546 */
3547 for_each_worker_pool(pool, gcwq)
3548 atomic_set(get_pool_nr_running(pool), 0);
3549 }
3550
3551 /*
3552 * Workqueues should be brought up before normal priority CPU notifiers.
3553 * This will be registered high priority CPU notifier.
3554 */
3555 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3556 unsigned long action,
3557 void *hcpu)
3558 {
3559 unsigned int cpu = (unsigned long)hcpu;
3560 struct global_cwq *gcwq = get_gcwq(cpu);
3561 struct worker_pool *pool;
3562
3563 switch (action & ~CPU_TASKS_FROZEN) {
3564 case CPU_UP_PREPARE:
3565 for_each_worker_pool(pool, gcwq) {
3566 struct worker *worker;
3567
3568 if (pool->nr_workers)
3569 continue;
3570
3571 worker = create_worker(pool);
3572 if (!worker)
3573 return NOTIFY_BAD;
3574
3575 spin_lock_irq(&gcwq->lock);
3576 start_worker(worker);
3577 spin_unlock_irq(&gcwq->lock);
3578 }
3579 break;
3580
3581 case CPU_DOWN_FAILED:
3582 case CPU_ONLINE:
3583 gcwq_claim_assoc_and_lock(gcwq);
3584 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3585 rebind_workers(gcwq);
3586 gcwq_release_assoc_and_unlock(gcwq);
3587 break;
3588 }
3589 return NOTIFY_OK;
3590 }
3591
3592 /*
3593 * Workqueues should be brought down after normal priority CPU notifiers.
3594 * This will be registered as low priority CPU notifier.
3595 */
3596 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3597 unsigned long action,
3598 void *hcpu)
3599 {
3600 unsigned int cpu = (unsigned long)hcpu;
3601 struct work_struct unbind_work;
3602
3603 switch (action & ~CPU_TASKS_FROZEN) {
3604 case CPU_DOWN_PREPARE:
3605 /* unbinding should happen on the local CPU */
3606 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3607 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3608 flush_work(&unbind_work);
3609 break;
3610 }
3611 return NOTIFY_OK;
3612 }
3613
3614 #ifdef CONFIG_SMP
3615
3616 struct work_for_cpu {
3617 struct work_struct work;
3618 long (*fn)(void *);
3619 void *arg;
3620 long ret;
3621 };
3622
3623 static void work_for_cpu_fn(struct work_struct *work)
3624 {
3625 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3626
3627 wfc->ret = wfc->fn(wfc->arg);
3628 }
3629
3630 /**
3631 * work_on_cpu - run a function in user context on a particular cpu
3632 * @cpu: the cpu to run on
3633 * @fn: the function to run
3634 * @arg: the function arg
3635 *
3636 * This will return the value @fn returns.
3637 * It is up to the caller to ensure that the cpu doesn't go offline.
3638 * The caller must not hold any locks which would prevent @fn from completing.
3639 */
3640 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3641 {
3642 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3643
3644 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3645 schedule_work_on(cpu, &wfc.work);
3646 flush_work(&wfc.work);
3647 return wfc.ret;
3648 }
3649 EXPORT_SYMBOL_GPL(work_on_cpu);
3650 #endif /* CONFIG_SMP */
3651
3652 #ifdef CONFIG_FREEZER
3653
3654 /**
3655 * freeze_workqueues_begin - begin freezing workqueues
3656 *
3657 * Start freezing workqueues. After this function returns, all freezable
3658 * workqueues will queue new works to their frozen_works list instead of
3659 * gcwq->worklist.
3660 *
3661 * CONTEXT:
3662 * Grabs and releases workqueue_lock and gcwq->lock's.
3663 */
3664 void freeze_workqueues_begin(void)
3665 {
3666 unsigned int cpu;
3667
3668 spin_lock(&workqueue_lock);
3669
3670 BUG_ON(workqueue_freezing);
3671 workqueue_freezing = true;
3672
3673 for_each_gcwq_cpu(cpu) {
3674 struct global_cwq *gcwq = get_gcwq(cpu);
3675 struct workqueue_struct *wq;
3676
3677 spin_lock_irq(&gcwq->lock);
3678
3679 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3680 gcwq->flags |= GCWQ_FREEZING;
3681
3682 list_for_each_entry(wq, &workqueues, list) {
3683 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3684
3685 if (cwq && wq->flags & WQ_FREEZABLE)
3686 cwq->max_active = 0;
3687 }
3688
3689 spin_unlock_irq(&gcwq->lock);
3690 }
3691
3692 spin_unlock(&workqueue_lock);
3693 }
3694
3695 /**
3696 * freeze_workqueues_busy - are freezable workqueues still busy?
3697 *
3698 * Check whether freezing is complete. This function must be called
3699 * between freeze_workqueues_begin() and thaw_workqueues().
3700 *
3701 * CONTEXT:
3702 * Grabs and releases workqueue_lock.
3703 *
3704 * RETURNS:
3705 * %true if some freezable workqueues are still busy. %false if freezing
3706 * is complete.
3707 */
3708 bool freeze_workqueues_busy(void)
3709 {
3710 unsigned int cpu;
3711 bool busy = false;
3712
3713 spin_lock(&workqueue_lock);
3714
3715 BUG_ON(!workqueue_freezing);
3716
3717 for_each_gcwq_cpu(cpu) {
3718 struct workqueue_struct *wq;
3719 /*
3720 * nr_active is monotonically decreasing. It's safe
3721 * to peek without lock.
3722 */
3723 list_for_each_entry(wq, &workqueues, list) {
3724 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3725
3726 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3727 continue;
3728
3729 BUG_ON(cwq->nr_active < 0);
3730 if (cwq->nr_active) {
3731 busy = true;
3732 goto out_unlock;
3733 }
3734 }
3735 }
3736 out_unlock:
3737 spin_unlock(&workqueue_lock);
3738 return busy;
3739 }
3740
3741 /**
3742 * thaw_workqueues - thaw workqueues
3743 *
3744 * Thaw workqueues. Normal queueing is restored and all collected
3745 * frozen works are transferred to their respective gcwq worklists.
3746 *
3747 * CONTEXT:
3748 * Grabs and releases workqueue_lock and gcwq->lock's.
3749 */
3750 void thaw_workqueues(void)
3751 {
3752 unsigned int cpu;
3753
3754 spin_lock(&workqueue_lock);
3755
3756 if (!workqueue_freezing)
3757 goto out_unlock;
3758
3759 for_each_gcwq_cpu(cpu) {
3760 struct global_cwq *gcwq = get_gcwq(cpu);
3761 struct worker_pool *pool;
3762 struct workqueue_struct *wq;
3763
3764 spin_lock_irq(&gcwq->lock);
3765
3766 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3767 gcwq->flags &= ~GCWQ_FREEZING;
3768
3769 list_for_each_entry(wq, &workqueues, list) {
3770 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3771
3772 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3773 continue;
3774
3775 /* restore max_active and repopulate worklist */
3776 cwq_set_max_active(cwq, wq->saved_max_active);
3777 }
3778
3779 for_each_worker_pool(pool, gcwq)
3780 wake_up_worker(pool);
3781
3782 spin_unlock_irq(&gcwq->lock);
3783 }
3784
3785 workqueue_freezing = false;
3786 out_unlock:
3787 spin_unlock(&workqueue_lock);
3788 }
3789 #endif /* CONFIG_FREEZER */
3790
3791 static int __init init_workqueues(void)
3792 {
3793 unsigned int cpu;
3794
3795 /* make sure we have enough bits for OFFQ CPU number */
3796 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3797 WORK_CPU_LAST);
3798
3799 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3800 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3801
3802 /* initialize gcwqs */
3803 for_each_gcwq_cpu(cpu) {
3804 struct global_cwq *gcwq = get_gcwq(cpu);
3805 struct worker_pool *pool;
3806
3807 spin_lock_init(&gcwq->lock);
3808 gcwq->cpu = cpu;
3809 gcwq->flags |= GCWQ_DISASSOCIATED;
3810
3811 hash_init(gcwq->busy_hash);
3812
3813 for_each_worker_pool(pool, gcwq) {
3814 pool->gcwq = gcwq;
3815 INIT_LIST_HEAD(&pool->worklist);
3816 INIT_LIST_HEAD(&pool->idle_list);
3817
3818 init_timer_deferrable(&pool->idle_timer);
3819 pool->idle_timer.function = idle_worker_timeout;
3820 pool->idle_timer.data = (unsigned long)pool;
3821
3822 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3823 (unsigned long)pool);
3824
3825 mutex_init(&pool->assoc_mutex);
3826 ida_init(&pool->worker_ida);
3827 }
3828 }
3829
3830 /* create the initial worker */
3831 for_each_online_gcwq_cpu(cpu) {
3832 struct global_cwq *gcwq = get_gcwq(cpu);
3833 struct worker_pool *pool;
3834
3835 if (cpu != WORK_CPU_UNBOUND)
3836 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3837
3838 for_each_worker_pool(pool, gcwq) {
3839 struct worker *worker;
3840
3841 worker = create_worker(pool);
3842 BUG_ON(!worker);
3843 spin_lock_irq(&gcwq->lock);
3844 start_worker(worker);
3845 spin_unlock_irq(&gcwq->lock);
3846 }
3847 }
3848
3849 system_wq = alloc_workqueue("events", 0, 0);
3850 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3851 system_long_wq = alloc_workqueue("events_long", 0, 0);
3852 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3853 WQ_UNBOUND_MAX_ACTIVE);
3854 system_freezable_wq = alloc_workqueue("events_freezable",
3855 WQ_FREEZABLE, 0);
3856 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3857 !system_unbound_wq || !system_freezable_wq);
3858 return 0;
3859 }
3860 early_initcall(init_workqueues);
This page took 0.104777 seconds and 6 git commands to generate.