workqueue: fix possible idle worker depletion across CPU hotplug
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
70
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_REBIND = 1 << 5, /* mom is home, come back */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79
80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
81 WORKER_CPU_INTENSIVE,
82
83 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
84
85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
86 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
87 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give -20.
101 */
102 RESCUER_NICE_LEVEL = -20,
103 HIGHPRI_NICE_LEVEL = -20,
104 };
105
106 /*
107 * Structure fields follow one of the following exclusion rules.
108 *
109 * I: Modifiable by initialization/destruction paths and read-only for
110 * everyone else.
111 *
112 * P: Preemption protected. Disabling preemption is enough and should
113 * only be modified and accessed from the local cpu.
114 *
115 * L: gcwq->lock protected. Access with gcwq->lock held.
116 *
117 * X: During normal operation, modification requires gcwq->lock and
118 * should be done only from local cpu. Either disabling preemption
119 * on local cpu or grabbing gcwq->lock is enough for read access.
120 * If GCWQ_DISASSOCIATED is set, it's identical to L.
121 *
122 * F: wq->flush_mutex protected.
123 *
124 * W: workqueue_lock protected.
125 */
126
127 struct global_cwq;
128 struct worker_pool;
129 struct idle_rebind;
130
131 /*
132 * The poor guys doing the actual heavy lifting. All on-duty workers
133 * are either serving the manager role, on idle list or on busy hash.
134 */
135 struct worker {
136 /* on idle list while idle, on busy hash table while busy */
137 union {
138 struct list_head entry; /* L: while idle */
139 struct hlist_node hentry; /* L: while busy */
140 };
141
142 struct work_struct *current_work; /* L: work being processed */
143 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
144 struct list_head scheduled; /* L: scheduled works */
145 struct task_struct *task; /* I: worker task */
146 struct worker_pool *pool; /* I: the associated pool */
147 /* 64 bytes boundary on 64bit, 32 on 32bit */
148 unsigned long last_active; /* L: last active timestamp */
149 unsigned int flags; /* X: flags */
150 int id; /* I: worker id */
151
152 /* for rebinding worker to CPU */
153 struct idle_rebind *idle_rebind; /* L: for idle worker */
154 struct work_struct rebind_work; /* L: for busy worker */
155 };
156
157 struct worker_pool {
158 struct global_cwq *gcwq; /* I: the owning gcwq */
159 unsigned int flags; /* X: flags */
160
161 struct list_head worklist; /* L: list of pending works */
162 int nr_workers; /* L: total number of workers */
163 int nr_idle; /* L: currently idle ones */
164
165 struct list_head idle_list; /* X: list of idle workers */
166 struct timer_list idle_timer; /* L: worker idle timeout */
167 struct timer_list mayday_timer; /* L: SOS timer for workers */
168
169 struct mutex manager_mutex; /* mutex manager should hold */
170 struct ida worker_ida; /* L: for worker IDs */
171 };
172
173 /*
174 * Global per-cpu workqueue. There's one and only one for each cpu
175 * and all works are queued and processed here regardless of their
176 * target workqueues.
177 */
178 struct global_cwq {
179 spinlock_t lock; /* the gcwq lock */
180 unsigned int cpu; /* I: the associated cpu */
181 unsigned int flags; /* L: GCWQ_* flags */
182
183 /* workers are chained either in busy_hash or pool idle_list */
184 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
185 /* L: hash of busy workers */
186
187 struct worker_pool pools[2]; /* normal and highpri pools */
188
189 wait_queue_head_t rebind_hold; /* rebind hold wait */
190 } ____cacheline_aligned_in_smp;
191
192 /*
193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
196 */
197 struct cpu_workqueue_struct {
198 struct worker_pool *pool; /* I: the associated pool */
199 struct workqueue_struct *wq; /* I: the owning workqueue */
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
204 int nr_active; /* L: nr of active works */
205 int max_active; /* L: max active works */
206 struct list_head delayed_works; /* L: delayed works */
207 };
208
209 /*
210 * Structure used to wait for workqueue flush.
211 */
212 struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216 };
217
218 /*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222 #ifdef CONFIG_SMP
223 typedef cpumask_var_t mayday_mask_t;
224 #define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
228 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
229 #define free_mayday_mask(mask) free_cpumask_var((mask))
230 #else
231 typedef unsigned long mayday_mask_t;
232 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235 #define alloc_mayday_mask(maskp, gfp) true
236 #define free_mayday_mask(mask) do { } while (0)
237 #endif
238
239 /*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243 struct workqueue_struct {
244 unsigned int flags; /* W: WQ_* flags */
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
250 struct list_head list; /* W: list of all workqueues */
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
261 struct worker *rescuer; /* I: rescue worker */
262
263 int nr_drainers; /* W: drain in progress */
264 int saved_max_active; /* W: saved cwq max_active */
265 #ifdef CONFIG_LOCKDEP
266 struct lockdep_map lockdep_map;
267 #endif
268 char name[]; /* I: workqueue name */
269 };
270
271 struct workqueue_struct *system_wq __read_mostly;
272 struct workqueue_struct *system_long_wq __read_mostly;
273 struct workqueue_struct *system_nrt_wq __read_mostly;
274 struct workqueue_struct *system_unbound_wq __read_mostly;
275 struct workqueue_struct *system_freezable_wq __read_mostly;
276 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
277 EXPORT_SYMBOL_GPL(system_wq);
278 EXPORT_SYMBOL_GPL(system_long_wq);
279 EXPORT_SYMBOL_GPL(system_nrt_wq);
280 EXPORT_SYMBOL_GPL(system_unbound_wq);
281 EXPORT_SYMBOL_GPL(system_freezable_wq);
282 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
283
284 #define CREATE_TRACE_POINTS
285 #include <trace/events/workqueue.h>
286
287 #define for_each_worker_pool(pool, gcwq) \
288 for ((pool) = &(gcwq)->pools[0]; \
289 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
290
291 #define for_each_busy_worker(worker, i, pos, gcwq) \
292 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
293 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
294
295 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
296 unsigned int sw)
297 {
298 if (cpu < nr_cpu_ids) {
299 if (sw & 1) {
300 cpu = cpumask_next(cpu, mask);
301 if (cpu < nr_cpu_ids)
302 return cpu;
303 }
304 if (sw & 2)
305 return WORK_CPU_UNBOUND;
306 }
307 return WORK_CPU_NONE;
308 }
309
310 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
311 struct workqueue_struct *wq)
312 {
313 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
314 }
315
316 /*
317 * CPU iterators
318 *
319 * An extra gcwq is defined for an invalid cpu number
320 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
321 * specific CPU. The following iterators are similar to
322 * for_each_*_cpu() iterators but also considers the unbound gcwq.
323 *
324 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
325 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
326 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
327 * WORK_CPU_UNBOUND for unbound workqueues
328 */
329 #define for_each_gcwq_cpu(cpu) \
330 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
331 (cpu) < WORK_CPU_NONE; \
332 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
333
334 #define for_each_online_gcwq_cpu(cpu) \
335 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
336 (cpu) < WORK_CPU_NONE; \
337 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
338
339 #define for_each_cwq_cpu(cpu, wq) \
340 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
341 (cpu) < WORK_CPU_NONE; \
342 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
343
344 #ifdef CONFIG_DEBUG_OBJECTS_WORK
345
346 static struct debug_obj_descr work_debug_descr;
347
348 static void *work_debug_hint(void *addr)
349 {
350 return ((struct work_struct *) addr)->func;
351 }
352
353 /*
354 * fixup_init is called when:
355 * - an active object is initialized
356 */
357 static int work_fixup_init(void *addr, enum debug_obj_state state)
358 {
359 struct work_struct *work = addr;
360
361 switch (state) {
362 case ODEBUG_STATE_ACTIVE:
363 cancel_work_sync(work);
364 debug_object_init(work, &work_debug_descr);
365 return 1;
366 default:
367 return 0;
368 }
369 }
370
371 /*
372 * fixup_activate is called when:
373 * - an active object is activated
374 * - an unknown object is activated (might be a statically initialized object)
375 */
376 static int work_fixup_activate(void *addr, enum debug_obj_state state)
377 {
378 struct work_struct *work = addr;
379
380 switch (state) {
381
382 case ODEBUG_STATE_NOTAVAILABLE:
383 /*
384 * This is not really a fixup. The work struct was
385 * statically initialized. We just make sure that it
386 * is tracked in the object tracker.
387 */
388 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
389 debug_object_init(work, &work_debug_descr);
390 debug_object_activate(work, &work_debug_descr);
391 return 0;
392 }
393 WARN_ON_ONCE(1);
394 return 0;
395
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
398
399 default:
400 return 0;
401 }
402 }
403
404 /*
405 * fixup_free is called when:
406 * - an active object is freed
407 */
408 static int work_fixup_free(void *addr, enum debug_obj_state state)
409 {
410 struct work_struct *work = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 cancel_work_sync(work);
415 debug_object_free(work, &work_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420 }
421
422 static struct debug_obj_descr work_debug_descr = {
423 .name = "work_struct",
424 .debug_hint = work_debug_hint,
425 .fixup_init = work_fixup_init,
426 .fixup_activate = work_fixup_activate,
427 .fixup_free = work_fixup_free,
428 };
429
430 static inline void debug_work_activate(struct work_struct *work)
431 {
432 debug_object_activate(work, &work_debug_descr);
433 }
434
435 static inline void debug_work_deactivate(struct work_struct *work)
436 {
437 debug_object_deactivate(work, &work_debug_descr);
438 }
439
440 void __init_work(struct work_struct *work, int onstack)
441 {
442 if (onstack)
443 debug_object_init_on_stack(work, &work_debug_descr);
444 else
445 debug_object_init(work, &work_debug_descr);
446 }
447 EXPORT_SYMBOL_GPL(__init_work);
448
449 void destroy_work_on_stack(struct work_struct *work)
450 {
451 debug_object_free(work, &work_debug_descr);
452 }
453 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
454
455 #else
456 static inline void debug_work_activate(struct work_struct *work) { }
457 static inline void debug_work_deactivate(struct work_struct *work) { }
458 #endif
459
460 /* Serializes the accesses to the list of workqueues. */
461 static DEFINE_SPINLOCK(workqueue_lock);
462 static LIST_HEAD(workqueues);
463 static bool workqueue_freezing; /* W: have wqs started freezing? */
464
465 /*
466 * The almighty global cpu workqueues. nr_running is the only field
467 * which is expected to be used frequently by other cpus via
468 * try_to_wake_up(). Put it in a separate cacheline.
469 */
470 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
471 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
472
473 /*
474 * Global cpu workqueue and nr_running counter for unbound gcwq. The
475 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
476 * workers have WORKER_UNBOUND set.
477 */
478 static struct global_cwq unbound_global_cwq;
479 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
480 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
481 };
482
483 static int worker_thread(void *__worker);
484
485 static int worker_pool_pri(struct worker_pool *pool)
486 {
487 return pool - pool->gcwq->pools;
488 }
489
490 static struct global_cwq *get_gcwq(unsigned int cpu)
491 {
492 if (cpu != WORK_CPU_UNBOUND)
493 return &per_cpu(global_cwq, cpu);
494 else
495 return &unbound_global_cwq;
496 }
497
498 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
499 {
500 int cpu = pool->gcwq->cpu;
501 int idx = worker_pool_pri(pool);
502
503 if (cpu != WORK_CPU_UNBOUND)
504 return &per_cpu(pool_nr_running, cpu)[idx];
505 else
506 return &unbound_pool_nr_running[idx];
507 }
508
509 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
510 struct workqueue_struct *wq)
511 {
512 if (!(wq->flags & WQ_UNBOUND)) {
513 if (likely(cpu < nr_cpu_ids))
514 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
515 } else if (likely(cpu == WORK_CPU_UNBOUND))
516 return wq->cpu_wq.single;
517 return NULL;
518 }
519
520 static unsigned int work_color_to_flags(int color)
521 {
522 return color << WORK_STRUCT_COLOR_SHIFT;
523 }
524
525 static int get_work_color(struct work_struct *work)
526 {
527 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
528 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
529 }
530
531 static int work_next_color(int color)
532 {
533 return (color + 1) % WORK_NR_COLORS;
534 }
535
536 /*
537 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
538 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
539 * cleared and the work data contains the cpu number it was last on.
540 *
541 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
542 * cwq, cpu or clear work->data. These functions should only be
543 * called while the work is owned - ie. while the PENDING bit is set.
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546 * corresponding to a work. gcwq is available once the work has been
547 * queued anywhere after initialization. cwq is available only from
548 * queueing until execution starts.
549 */
550 static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
552 {
553 BUG_ON(!work_pending(work));
554 atomic_long_set(&work->data, data | flags | work_static(work));
555 }
556
557 static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
560 {
561 set_work_data(work, (unsigned long)cwq,
562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
563 }
564
565 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
566 {
567 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
568 }
569
570 static void clear_work_data(struct work_struct *work)
571 {
572 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
573 }
574
575 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
576 {
577 unsigned long data = atomic_long_read(&work->data);
578
579 if (data & WORK_STRUCT_CWQ)
580 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
581 else
582 return NULL;
583 }
584
585 static struct global_cwq *get_work_gcwq(struct work_struct *work)
586 {
587 unsigned long data = atomic_long_read(&work->data);
588 unsigned int cpu;
589
590 if (data & WORK_STRUCT_CWQ)
591 return ((struct cpu_workqueue_struct *)
592 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
593
594 cpu = data >> WORK_STRUCT_FLAG_BITS;
595 if (cpu == WORK_CPU_NONE)
596 return NULL;
597
598 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
599 return get_gcwq(cpu);
600 }
601
602 /*
603 * Policy functions. These define the policies on how the global worker
604 * pools are managed. Unless noted otherwise, these functions assume that
605 * they're being called with gcwq->lock held.
606 */
607
608 static bool __need_more_worker(struct worker_pool *pool)
609 {
610 return !atomic_read(get_pool_nr_running(pool));
611 }
612
613 /*
614 * Need to wake up a worker? Called from anything but currently
615 * running workers.
616 *
617 * Note that, because unbound workers never contribute to nr_running, this
618 * function will always return %true for unbound gcwq as long as the
619 * worklist isn't empty.
620 */
621 static bool need_more_worker(struct worker_pool *pool)
622 {
623 return !list_empty(&pool->worklist) && __need_more_worker(pool);
624 }
625
626 /* Can I start working? Called from busy but !running workers. */
627 static bool may_start_working(struct worker_pool *pool)
628 {
629 return pool->nr_idle;
630 }
631
632 /* Do I need to keep working? Called from currently running workers. */
633 static bool keep_working(struct worker_pool *pool)
634 {
635 atomic_t *nr_running = get_pool_nr_running(pool);
636
637 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
638 }
639
640 /* Do we need a new worker? Called from manager. */
641 static bool need_to_create_worker(struct worker_pool *pool)
642 {
643 return need_more_worker(pool) && !may_start_working(pool);
644 }
645
646 /* Do I need to be the manager? */
647 static bool need_to_manage_workers(struct worker_pool *pool)
648 {
649 return need_to_create_worker(pool) ||
650 (pool->flags & POOL_MANAGE_WORKERS);
651 }
652
653 /* Do we have too many workers and should some go away? */
654 static bool too_many_workers(struct worker_pool *pool)
655 {
656 bool managing = pool->flags & POOL_MANAGING_WORKERS;
657 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
658 int nr_busy = pool->nr_workers - nr_idle;
659
660 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
661 }
662
663 /*
664 * Wake up functions.
665 */
666
667 /* Return the first worker. Safe with preemption disabled */
668 static struct worker *first_worker(struct worker_pool *pool)
669 {
670 if (unlikely(list_empty(&pool->idle_list)))
671 return NULL;
672
673 return list_first_entry(&pool->idle_list, struct worker, entry);
674 }
675
676 /**
677 * wake_up_worker - wake up an idle worker
678 * @pool: worker pool to wake worker from
679 *
680 * Wake up the first idle worker of @pool.
681 *
682 * CONTEXT:
683 * spin_lock_irq(gcwq->lock).
684 */
685 static void wake_up_worker(struct worker_pool *pool)
686 {
687 struct worker *worker = first_worker(pool);
688
689 if (likely(worker))
690 wake_up_process(worker->task);
691 }
692
693 /**
694 * wq_worker_waking_up - a worker is waking up
695 * @task: task waking up
696 * @cpu: CPU @task is waking up to
697 *
698 * This function is called during try_to_wake_up() when a worker is
699 * being awoken.
700 *
701 * CONTEXT:
702 * spin_lock_irq(rq->lock)
703 */
704 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
705 {
706 struct worker *worker = kthread_data(task);
707
708 if (!(worker->flags & WORKER_NOT_RUNNING))
709 atomic_inc(get_pool_nr_running(worker->pool));
710 }
711
712 /**
713 * wq_worker_sleeping - a worker is going to sleep
714 * @task: task going to sleep
715 * @cpu: CPU in question, must be the current CPU number
716 *
717 * This function is called during schedule() when a busy worker is
718 * going to sleep. Worker on the same cpu can be woken up by
719 * returning pointer to its task.
720 *
721 * CONTEXT:
722 * spin_lock_irq(rq->lock)
723 *
724 * RETURNS:
725 * Worker task on @cpu to wake up, %NULL if none.
726 */
727 struct task_struct *wq_worker_sleeping(struct task_struct *task,
728 unsigned int cpu)
729 {
730 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
731 struct worker_pool *pool = worker->pool;
732 atomic_t *nr_running = get_pool_nr_running(pool);
733
734 if (worker->flags & WORKER_NOT_RUNNING)
735 return NULL;
736
737 /* this can only happen on the local cpu */
738 BUG_ON(cpu != raw_smp_processor_id());
739
740 /*
741 * The counterpart of the following dec_and_test, implied mb,
742 * worklist not empty test sequence is in insert_work().
743 * Please read comment there.
744 *
745 * NOT_RUNNING is clear. This means that we're bound to and
746 * running on the local cpu w/ rq lock held and preemption
747 * disabled, which in turn means that none else could be
748 * manipulating idle_list, so dereferencing idle_list without gcwq
749 * lock is safe.
750 */
751 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
752 to_wakeup = first_worker(pool);
753 return to_wakeup ? to_wakeup->task : NULL;
754 }
755
756 /**
757 * worker_set_flags - set worker flags and adjust nr_running accordingly
758 * @worker: self
759 * @flags: flags to set
760 * @wakeup: wakeup an idle worker if necessary
761 *
762 * Set @flags in @worker->flags and adjust nr_running accordingly. If
763 * nr_running becomes zero and @wakeup is %true, an idle worker is
764 * woken up.
765 *
766 * CONTEXT:
767 * spin_lock_irq(gcwq->lock)
768 */
769 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
770 bool wakeup)
771 {
772 struct worker_pool *pool = worker->pool;
773
774 WARN_ON_ONCE(worker->task != current);
775
776 /*
777 * If transitioning into NOT_RUNNING, adjust nr_running and
778 * wake up an idle worker as necessary if requested by
779 * @wakeup.
780 */
781 if ((flags & WORKER_NOT_RUNNING) &&
782 !(worker->flags & WORKER_NOT_RUNNING)) {
783 atomic_t *nr_running = get_pool_nr_running(pool);
784
785 if (wakeup) {
786 if (atomic_dec_and_test(nr_running) &&
787 !list_empty(&pool->worklist))
788 wake_up_worker(pool);
789 } else
790 atomic_dec(nr_running);
791 }
792
793 worker->flags |= flags;
794 }
795
796 /**
797 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
798 * @worker: self
799 * @flags: flags to clear
800 *
801 * Clear @flags in @worker->flags and adjust nr_running accordingly.
802 *
803 * CONTEXT:
804 * spin_lock_irq(gcwq->lock)
805 */
806 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
807 {
808 struct worker_pool *pool = worker->pool;
809 unsigned int oflags = worker->flags;
810
811 WARN_ON_ONCE(worker->task != current);
812
813 worker->flags &= ~flags;
814
815 /*
816 * If transitioning out of NOT_RUNNING, increment nr_running. Note
817 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
818 * of multiple flags, not a single flag.
819 */
820 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
821 if (!(worker->flags & WORKER_NOT_RUNNING))
822 atomic_inc(get_pool_nr_running(pool));
823 }
824
825 /**
826 * busy_worker_head - return the busy hash head for a work
827 * @gcwq: gcwq of interest
828 * @work: work to be hashed
829 *
830 * Return hash head of @gcwq for @work.
831 *
832 * CONTEXT:
833 * spin_lock_irq(gcwq->lock).
834 *
835 * RETURNS:
836 * Pointer to the hash head.
837 */
838 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
839 struct work_struct *work)
840 {
841 const int base_shift = ilog2(sizeof(struct work_struct));
842 unsigned long v = (unsigned long)work;
843
844 /* simple shift and fold hash, do we need something better? */
845 v >>= base_shift;
846 v += v >> BUSY_WORKER_HASH_ORDER;
847 v &= BUSY_WORKER_HASH_MASK;
848
849 return &gcwq->busy_hash[v];
850 }
851
852 /**
853 * __find_worker_executing_work - find worker which is executing a work
854 * @gcwq: gcwq of interest
855 * @bwh: hash head as returned by busy_worker_head()
856 * @work: work to find worker for
857 *
858 * Find a worker which is executing @work on @gcwq. @bwh should be
859 * the hash head obtained by calling busy_worker_head() with the same
860 * work.
861 *
862 * CONTEXT:
863 * spin_lock_irq(gcwq->lock).
864 *
865 * RETURNS:
866 * Pointer to worker which is executing @work if found, NULL
867 * otherwise.
868 */
869 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
870 struct hlist_head *bwh,
871 struct work_struct *work)
872 {
873 struct worker *worker;
874 struct hlist_node *tmp;
875
876 hlist_for_each_entry(worker, tmp, bwh, hentry)
877 if (worker->current_work == work)
878 return worker;
879 return NULL;
880 }
881
882 /**
883 * find_worker_executing_work - find worker which is executing a work
884 * @gcwq: gcwq of interest
885 * @work: work to find worker for
886 *
887 * Find a worker which is executing @work on @gcwq. This function is
888 * identical to __find_worker_executing_work() except that this
889 * function calculates @bwh itself.
890 *
891 * CONTEXT:
892 * spin_lock_irq(gcwq->lock).
893 *
894 * RETURNS:
895 * Pointer to worker which is executing @work if found, NULL
896 * otherwise.
897 */
898 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
899 struct work_struct *work)
900 {
901 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
902 work);
903 }
904
905 /**
906 * insert_work - insert a work into gcwq
907 * @cwq: cwq @work belongs to
908 * @work: work to insert
909 * @head: insertion point
910 * @extra_flags: extra WORK_STRUCT_* flags to set
911 *
912 * Insert @work which belongs to @cwq into @gcwq after @head.
913 * @extra_flags is or'd to work_struct flags.
914 *
915 * CONTEXT:
916 * spin_lock_irq(gcwq->lock).
917 */
918 static void insert_work(struct cpu_workqueue_struct *cwq,
919 struct work_struct *work, struct list_head *head,
920 unsigned int extra_flags)
921 {
922 struct worker_pool *pool = cwq->pool;
923
924 /* we own @work, set data and link */
925 set_work_cwq(work, cwq, extra_flags);
926
927 /*
928 * Ensure that we get the right work->data if we see the
929 * result of list_add() below, see try_to_grab_pending().
930 */
931 smp_wmb();
932
933 list_add_tail(&work->entry, head);
934
935 /*
936 * Ensure either worker_sched_deactivated() sees the above
937 * list_add_tail() or we see zero nr_running to avoid workers
938 * lying around lazily while there are works to be processed.
939 */
940 smp_mb();
941
942 if (__need_more_worker(pool))
943 wake_up_worker(pool);
944 }
945
946 /*
947 * Test whether @work is being queued from another work executing on the
948 * same workqueue. This is rather expensive and should only be used from
949 * cold paths.
950 */
951 static bool is_chained_work(struct workqueue_struct *wq)
952 {
953 unsigned long flags;
954 unsigned int cpu;
955
956 for_each_gcwq_cpu(cpu) {
957 struct global_cwq *gcwq = get_gcwq(cpu);
958 struct worker *worker;
959 struct hlist_node *pos;
960 int i;
961
962 spin_lock_irqsave(&gcwq->lock, flags);
963 for_each_busy_worker(worker, i, pos, gcwq) {
964 if (worker->task != current)
965 continue;
966 spin_unlock_irqrestore(&gcwq->lock, flags);
967 /*
968 * I'm @worker, no locking necessary. See if @work
969 * is headed to the same workqueue.
970 */
971 return worker->current_cwq->wq == wq;
972 }
973 spin_unlock_irqrestore(&gcwq->lock, flags);
974 }
975 return false;
976 }
977
978 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
979 struct work_struct *work)
980 {
981 struct global_cwq *gcwq;
982 struct cpu_workqueue_struct *cwq;
983 struct list_head *worklist;
984 unsigned int work_flags;
985 unsigned long flags;
986
987 debug_work_activate(work);
988
989 /* if dying, only works from the same workqueue are allowed */
990 if (unlikely(wq->flags & WQ_DRAINING) &&
991 WARN_ON_ONCE(!is_chained_work(wq)))
992 return;
993
994 /* determine gcwq to use */
995 if (!(wq->flags & WQ_UNBOUND)) {
996 struct global_cwq *last_gcwq;
997
998 if (unlikely(cpu == WORK_CPU_UNBOUND))
999 cpu = raw_smp_processor_id();
1000
1001 /*
1002 * It's multi cpu. If @wq is non-reentrant and @work
1003 * was previously on a different cpu, it might still
1004 * be running there, in which case the work needs to
1005 * be queued on that cpu to guarantee non-reentrance.
1006 */
1007 gcwq = get_gcwq(cpu);
1008 if (wq->flags & WQ_NON_REENTRANT &&
1009 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1010 struct worker *worker;
1011
1012 spin_lock_irqsave(&last_gcwq->lock, flags);
1013
1014 worker = find_worker_executing_work(last_gcwq, work);
1015
1016 if (worker && worker->current_cwq->wq == wq)
1017 gcwq = last_gcwq;
1018 else {
1019 /* meh... not running there, queue here */
1020 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1021 spin_lock_irqsave(&gcwq->lock, flags);
1022 }
1023 } else
1024 spin_lock_irqsave(&gcwq->lock, flags);
1025 } else {
1026 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1027 spin_lock_irqsave(&gcwq->lock, flags);
1028 }
1029
1030 /* gcwq determined, get cwq and queue */
1031 cwq = get_cwq(gcwq->cpu, wq);
1032 trace_workqueue_queue_work(cpu, cwq, work);
1033
1034 if (WARN_ON(!list_empty(&work->entry))) {
1035 spin_unlock_irqrestore(&gcwq->lock, flags);
1036 return;
1037 }
1038
1039 cwq->nr_in_flight[cwq->work_color]++;
1040 work_flags = work_color_to_flags(cwq->work_color);
1041
1042 if (likely(cwq->nr_active < cwq->max_active)) {
1043 trace_workqueue_activate_work(work);
1044 cwq->nr_active++;
1045 worklist = &cwq->pool->worklist;
1046 } else {
1047 work_flags |= WORK_STRUCT_DELAYED;
1048 worklist = &cwq->delayed_works;
1049 }
1050
1051 insert_work(cwq, work, worklist, work_flags);
1052
1053 spin_unlock_irqrestore(&gcwq->lock, flags);
1054 }
1055
1056 /**
1057 * queue_work - queue work on a workqueue
1058 * @wq: workqueue to use
1059 * @work: work to queue
1060 *
1061 * Returns 0 if @work was already on a queue, non-zero otherwise.
1062 *
1063 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1064 * it can be processed by another CPU.
1065 */
1066 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1067 {
1068 int ret;
1069
1070 ret = queue_work_on(get_cpu(), wq, work);
1071 put_cpu();
1072
1073 return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(queue_work);
1076
1077 /**
1078 * queue_work_on - queue work on specific cpu
1079 * @cpu: CPU number to execute work on
1080 * @wq: workqueue to use
1081 * @work: work to queue
1082 *
1083 * Returns 0 if @work was already on a queue, non-zero otherwise.
1084 *
1085 * We queue the work to a specific CPU, the caller must ensure it
1086 * can't go away.
1087 */
1088 int
1089 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1090 {
1091 int ret = 0;
1092
1093 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1094 __queue_work(cpu, wq, work);
1095 ret = 1;
1096 }
1097 return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(queue_work_on);
1100
1101 static void delayed_work_timer_fn(unsigned long __data)
1102 {
1103 struct delayed_work *dwork = (struct delayed_work *)__data;
1104 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1105
1106 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1107 }
1108
1109 /**
1110 * queue_delayed_work - queue work on a workqueue after delay
1111 * @wq: workqueue to use
1112 * @dwork: delayable work to queue
1113 * @delay: number of jiffies to wait before queueing
1114 *
1115 * Returns 0 if @work was already on a queue, non-zero otherwise.
1116 */
1117 int queue_delayed_work(struct workqueue_struct *wq,
1118 struct delayed_work *dwork, unsigned long delay)
1119 {
1120 if (delay == 0)
1121 return queue_work(wq, &dwork->work);
1122
1123 return queue_delayed_work_on(-1, wq, dwork, delay);
1124 }
1125 EXPORT_SYMBOL_GPL(queue_delayed_work);
1126
1127 /**
1128 * queue_delayed_work_on - queue work on specific CPU after delay
1129 * @cpu: CPU number to execute work on
1130 * @wq: workqueue to use
1131 * @dwork: work to queue
1132 * @delay: number of jiffies to wait before queueing
1133 *
1134 * Returns 0 if @work was already on a queue, non-zero otherwise.
1135 */
1136 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1137 struct delayed_work *dwork, unsigned long delay)
1138 {
1139 int ret = 0;
1140 struct timer_list *timer = &dwork->timer;
1141 struct work_struct *work = &dwork->work;
1142
1143 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1144 unsigned int lcpu;
1145
1146 BUG_ON(timer_pending(timer));
1147 BUG_ON(!list_empty(&work->entry));
1148
1149 timer_stats_timer_set_start_info(&dwork->timer);
1150
1151 /*
1152 * This stores cwq for the moment, for the timer_fn.
1153 * Note that the work's gcwq is preserved to allow
1154 * reentrance detection for delayed works.
1155 */
1156 if (!(wq->flags & WQ_UNBOUND)) {
1157 struct global_cwq *gcwq = get_work_gcwq(work);
1158
1159 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1160 lcpu = gcwq->cpu;
1161 else
1162 lcpu = raw_smp_processor_id();
1163 } else
1164 lcpu = WORK_CPU_UNBOUND;
1165
1166 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1167
1168 timer->expires = jiffies + delay;
1169 timer->data = (unsigned long)dwork;
1170 timer->function = delayed_work_timer_fn;
1171
1172 if (unlikely(cpu >= 0))
1173 add_timer_on(timer, cpu);
1174 else
1175 add_timer(timer);
1176 ret = 1;
1177 }
1178 return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1181
1182 /**
1183 * worker_enter_idle - enter idle state
1184 * @worker: worker which is entering idle state
1185 *
1186 * @worker is entering idle state. Update stats and idle timer if
1187 * necessary.
1188 *
1189 * LOCKING:
1190 * spin_lock_irq(gcwq->lock).
1191 */
1192 static void worker_enter_idle(struct worker *worker)
1193 {
1194 struct worker_pool *pool = worker->pool;
1195 struct global_cwq *gcwq = pool->gcwq;
1196
1197 BUG_ON(worker->flags & WORKER_IDLE);
1198 BUG_ON(!list_empty(&worker->entry) &&
1199 (worker->hentry.next || worker->hentry.pprev));
1200
1201 /* can't use worker_set_flags(), also called from start_worker() */
1202 worker->flags |= WORKER_IDLE;
1203 pool->nr_idle++;
1204 worker->last_active = jiffies;
1205
1206 /* idle_list is LIFO */
1207 list_add(&worker->entry, &pool->idle_list);
1208
1209 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1210 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1211
1212 /*
1213 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1214 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1215 * nr_running, the warning may trigger spuriously. Check iff
1216 * unbind is not in progress.
1217 */
1218 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1219 pool->nr_workers == pool->nr_idle &&
1220 atomic_read(get_pool_nr_running(pool)));
1221 }
1222
1223 /**
1224 * worker_leave_idle - leave idle state
1225 * @worker: worker which is leaving idle state
1226 *
1227 * @worker is leaving idle state. Update stats.
1228 *
1229 * LOCKING:
1230 * spin_lock_irq(gcwq->lock).
1231 */
1232 static void worker_leave_idle(struct worker *worker)
1233 {
1234 struct worker_pool *pool = worker->pool;
1235
1236 BUG_ON(!(worker->flags & WORKER_IDLE));
1237 worker_clr_flags(worker, WORKER_IDLE);
1238 pool->nr_idle--;
1239 list_del_init(&worker->entry);
1240 }
1241
1242 /**
1243 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1244 * @worker: self
1245 *
1246 * Works which are scheduled while the cpu is online must at least be
1247 * scheduled to a worker which is bound to the cpu so that if they are
1248 * flushed from cpu callbacks while cpu is going down, they are
1249 * guaranteed to execute on the cpu.
1250 *
1251 * This function is to be used by rogue workers and rescuers to bind
1252 * themselves to the target cpu and may race with cpu going down or
1253 * coming online. kthread_bind() can't be used because it may put the
1254 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1255 * verbatim as it's best effort and blocking and gcwq may be
1256 * [dis]associated in the meantime.
1257 *
1258 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1259 * binding against %GCWQ_DISASSOCIATED which is set during
1260 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1261 * enters idle state or fetches works without dropping lock, it can
1262 * guarantee the scheduling requirement described in the first paragraph.
1263 *
1264 * CONTEXT:
1265 * Might sleep. Called without any lock but returns with gcwq->lock
1266 * held.
1267 *
1268 * RETURNS:
1269 * %true if the associated gcwq is online (@worker is successfully
1270 * bound), %false if offline.
1271 */
1272 static bool worker_maybe_bind_and_lock(struct worker *worker)
1273 __acquires(&gcwq->lock)
1274 {
1275 struct global_cwq *gcwq = worker->pool->gcwq;
1276 struct task_struct *task = worker->task;
1277
1278 while (true) {
1279 /*
1280 * The following call may fail, succeed or succeed
1281 * without actually migrating the task to the cpu if
1282 * it races with cpu hotunplug operation. Verify
1283 * against GCWQ_DISASSOCIATED.
1284 */
1285 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1286 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1287
1288 spin_lock_irq(&gcwq->lock);
1289 if (gcwq->flags & GCWQ_DISASSOCIATED)
1290 return false;
1291 if (task_cpu(task) == gcwq->cpu &&
1292 cpumask_equal(&current->cpus_allowed,
1293 get_cpu_mask(gcwq->cpu)))
1294 return true;
1295 spin_unlock_irq(&gcwq->lock);
1296
1297 /*
1298 * We've raced with CPU hot[un]plug. Give it a breather
1299 * and retry migration. cond_resched() is required here;
1300 * otherwise, we might deadlock against cpu_stop trying to
1301 * bring down the CPU on non-preemptive kernel.
1302 */
1303 cpu_relax();
1304 cond_resched();
1305 }
1306 }
1307
1308 struct idle_rebind {
1309 int cnt; /* # workers to be rebound */
1310 struct completion done; /* all workers rebound */
1311 };
1312
1313 /*
1314 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1315 * happen synchronously for idle workers. worker_thread() will test
1316 * %WORKER_REBIND before leaving idle and call this function.
1317 */
1318 static void idle_worker_rebind(struct worker *worker)
1319 {
1320 struct global_cwq *gcwq = worker->pool->gcwq;
1321
1322 /* CPU must be online at this point */
1323 WARN_ON(!worker_maybe_bind_and_lock(worker));
1324 if (!--worker->idle_rebind->cnt)
1325 complete(&worker->idle_rebind->done);
1326 spin_unlock_irq(&worker->pool->gcwq->lock);
1327
1328 /* we did our part, wait for rebind_workers() to finish up */
1329 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1330
1331 /*
1332 * rebind_workers() shouldn't finish until all workers passed the
1333 * above WORKER_REBIND wait. Tell it when done.
1334 */
1335 spin_lock_irq(&worker->pool->gcwq->lock);
1336 if (!--worker->idle_rebind->cnt)
1337 complete(&worker->idle_rebind->done);
1338 spin_unlock_irq(&worker->pool->gcwq->lock);
1339 }
1340
1341 /*
1342 * Function for @worker->rebind.work used to rebind unbound busy workers to
1343 * the associated cpu which is coming back online. This is scheduled by
1344 * cpu up but can race with other cpu hotplug operations and may be
1345 * executed twice without intervening cpu down.
1346 */
1347 static void busy_worker_rebind_fn(struct work_struct *work)
1348 {
1349 struct worker *worker = container_of(work, struct worker, rebind_work);
1350 struct global_cwq *gcwq = worker->pool->gcwq;
1351
1352 if (worker_maybe_bind_and_lock(worker))
1353 worker_clr_flags(worker, WORKER_REBIND);
1354
1355 spin_unlock_irq(&gcwq->lock);
1356 }
1357
1358 /**
1359 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1360 * @gcwq: gcwq of interest
1361 *
1362 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1363 * is different for idle and busy ones.
1364 *
1365 * The idle ones should be rebound synchronously and idle rebinding should
1366 * be complete before any worker starts executing work items with
1367 * concurrency management enabled; otherwise, scheduler may oops trying to
1368 * wake up non-local idle worker from wq_worker_sleeping().
1369 *
1370 * This is achieved by repeatedly requesting rebinding until all idle
1371 * workers are known to have been rebound under @gcwq->lock and holding all
1372 * idle workers from becoming busy until idle rebinding is complete.
1373 *
1374 * Once idle workers are rebound, busy workers can be rebound as they
1375 * finish executing their current work items. Queueing the rebind work at
1376 * the head of their scheduled lists is enough. Note that nr_running will
1377 * be properbly bumped as busy workers rebind.
1378 *
1379 * On return, all workers are guaranteed to either be bound or have rebind
1380 * work item scheduled.
1381 */
1382 static void rebind_workers(struct global_cwq *gcwq)
1383 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1384 {
1385 struct idle_rebind idle_rebind;
1386 struct worker_pool *pool;
1387 struct worker *worker;
1388 struct hlist_node *pos;
1389 int i;
1390
1391 lockdep_assert_held(&gcwq->lock);
1392
1393 for_each_worker_pool(pool, gcwq)
1394 lockdep_assert_held(&pool->manager_mutex);
1395
1396 /*
1397 * Rebind idle workers. Interlocked both ways. We wait for
1398 * workers to rebind via @idle_rebind.done. Workers will wait for
1399 * us to finish up by watching %WORKER_REBIND.
1400 */
1401 init_completion(&idle_rebind.done);
1402 retry:
1403 idle_rebind.cnt = 1;
1404 INIT_COMPLETION(idle_rebind.done);
1405
1406 /* set REBIND and kick idle ones, we'll wait for these later */
1407 for_each_worker_pool(pool, gcwq) {
1408 list_for_each_entry(worker, &pool->idle_list, entry) {
1409 unsigned long worker_flags = worker->flags;
1410
1411 if (worker->flags & WORKER_REBIND)
1412 continue;
1413
1414 /* morph UNBOUND to REBIND atomically */
1415 worker_flags &= ~WORKER_UNBOUND;
1416 worker_flags |= WORKER_REBIND;
1417 ACCESS_ONCE(worker->flags) = worker_flags;
1418
1419 idle_rebind.cnt++;
1420 worker->idle_rebind = &idle_rebind;
1421
1422 /* worker_thread() will call idle_worker_rebind() */
1423 wake_up_process(worker->task);
1424 }
1425 }
1426
1427 if (--idle_rebind.cnt) {
1428 spin_unlock_irq(&gcwq->lock);
1429 wait_for_completion(&idle_rebind.done);
1430 spin_lock_irq(&gcwq->lock);
1431 /* busy ones might have become idle while waiting, retry */
1432 goto retry;
1433 }
1434
1435 /* all idle workers are rebound, rebind busy workers */
1436 for_each_busy_worker(worker, i, pos, gcwq) {
1437 struct work_struct *rebind_work = &worker->rebind_work;
1438 unsigned long worker_flags = worker->flags;
1439
1440 /* morph UNBOUND to REBIND atomically */
1441 worker_flags &= ~WORKER_UNBOUND;
1442 worker_flags |= WORKER_REBIND;
1443 ACCESS_ONCE(worker->flags) = worker_flags;
1444
1445 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1446 work_data_bits(rebind_work)))
1447 continue;
1448
1449 /* wq doesn't matter, use the default one */
1450 debug_work_activate(rebind_work);
1451 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1452 worker->scheduled.next,
1453 work_color_to_flags(WORK_NO_COLOR));
1454 }
1455
1456 /*
1457 * All idle workers are rebound and waiting for %WORKER_REBIND to
1458 * be cleared inside idle_worker_rebind(). Clear and release.
1459 * Clearing %WORKER_REBIND from this foreign context is safe
1460 * because these workers are still guaranteed to be idle.
1461 *
1462 * We need to make sure all idle workers passed WORKER_REBIND wait
1463 * in idle_worker_rebind() before returning; otherwise, workers can
1464 * get stuck at the wait if hotplug cycle repeats.
1465 */
1466 idle_rebind.cnt = 1;
1467 INIT_COMPLETION(idle_rebind.done);
1468
1469 for_each_worker_pool(pool, gcwq) {
1470 list_for_each_entry(worker, &pool->idle_list, entry) {
1471 worker->flags &= ~WORKER_REBIND;
1472 idle_rebind.cnt++;
1473 }
1474 }
1475
1476 wake_up_all(&gcwq->rebind_hold);
1477
1478 if (--idle_rebind.cnt) {
1479 spin_unlock_irq(&gcwq->lock);
1480 wait_for_completion(&idle_rebind.done);
1481 spin_lock_irq(&gcwq->lock);
1482 }
1483 }
1484
1485 static struct worker *alloc_worker(void)
1486 {
1487 struct worker *worker;
1488
1489 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1490 if (worker) {
1491 INIT_LIST_HEAD(&worker->entry);
1492 INIT_LIST_HEAD(&worker->scheduled);
1493 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1494 /* on creation a worker is in !idle && prep state */
1495 worker->flags = WORKER_PREP;
1496 }
1497 return worker;
1498 }
1499
1500 /**
1501 * create_worker - create a new workqueue worker
1502 * @pool: pool the new worker will belong to
1503 *
1504 * Create a new worker which is bound to @pool. The returned worker
1505 * can be started by calling start_worker() or destroyed using
1506 * destroy_worker().
1507 *
1508 * CONTEXT:
1509 * Might sleep. Does GFP_KERNEL allocations.
1510 *
1511 * RETURNS:
1512 * Pointer to the newly created worker.
1513 */
1514 static struct worker *create_worker(struct worker_pool *pool)
1515 {
1516 struct global_cwq *gcwq = pool->gcwq;
1517 const char *pri = worker_pool_pri(pool) ? "H" : "";
1518 struct worker *worker = NULL;
1519 int id = -1;
1520
1521 spin_lock_irq(&gcwq->lock);
1522 while (ida_get_new(&pool->worker_ida, &id)) {
1523 spin_unlock_irq(&gcwq->lock);
1524 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1525 goto fail;
1526 spin_lock_irq(&gcwq->lock);
1527 }
1528 spin_unlock_irq(&gcwq->lock);
1529
1530 worker = alloc_worker();
1531 if (!worker)
1532 goto fail;
1533
1534 worker->pool = pool;
1535 worker->id = id;
1536
1537 if (gcwq->cpu != WORK_CPU_UNBOUND)
1538 worker->task = kthread_create_on_node(worker_thread,
1539 worker, cpu_to_node(gcwq->cpu),
1540 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1541 else
1542 worker->task = kthread_create(worker_thread, worker,
1543 "kworker/u:%d%s", id, pri);
1544 if (IS_ERR(worker->task))
1545 goto fail;
1546
1547 if (worker_pool_pri(pool))
1548 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1549
1550 /*
1551 * Determine CPU binding of the new worker depending on
1552 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1553 * flag remains stable across this function. See the comments
1554 * above the flag definition for details.
1555 *
1556 * As an unbound worker may later become a regular one if CPU comes
1557 * online, make sure every worker has %PF_THREAD_BOUND set.
1558 */
1559 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1560 kthread_bind(worker->task, gcwq->cpu);
1561 } else {
1562 worker->task->flags |= PF_THREAD_BOUND;
1563 worker->flags |= WORKER_UNBOUND;
1564 }
1565
1566 return worker;
1567 fail:
1568 if (id >= 0) {
1569 spin_lock_irq(&gcwq->lock);
1570 ida_remove(&pool->worker_ida, id);
1571 spin_unlock_irq(&gcwq->lock);
1572 }
1573 kfree(worker);
1574 return NULL;
1575 }
1576
1577 /**
1578 * start_worker - start a newly created worker
1579 * @worker: worker to start
1580 *
1581 * Make the gcwq aware of @worker and start it.
1582 *
1583 * CONTEXT:
1584 * spin_lock_irq(gcwq->lock).
1585 */
1586 static void start_worker(struct worker *worker)
1587 {
1588 worker->flags |= WORKER_STARTED;
1589 worker->pool->nr_workers++;
1590 worker_enter_idle(worker);
1591 wake_up_process(worker->task);
1592 }
1593
1594 /**
1595 * destroy_worker - destroy a workqueue worker
1596 * @worker: worker to be destroyed
1597 *
1598 * Destroy @worker and adjust @gcwq stats accordingly.
1599 *
1600 * CONTEXT:
1601 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1602 */
1603 static void destroy_worker(struct worker *worker)
1604 {
1605 struct worker_pool *pool = worker->pool;
1606 struct global_cwq *gcwq = pool->gcwq;
1607 int id = worker->id;
1608
1609 /* sanity check frenzy */
1610 BUG_ON(worker->current_work);
1611 BUG_ON(!list_empty(&worker->scheduled));
1612
1613 if (worker->flags & WORKER_STARTED)
1614 pool->nr_workers--;
1615 if (worker->flags & WORKER_IDLE)
1616 pool->nr_idle--;
1617
1618 list_del_init(&worker->entry);
1619 worker->flags |= WORKER_DIE;
1620
1621 spin_unlock_irq(&gcwq->lock);
1622
1623 kthread_stop(worker->task);
1624 kfree(worker);
1625
1626 spin_lock_irq(&gcwq->lock);
1627 ida_remove(&pool->worker_ida, id);
1628 }
1629
1630 static void idle_worker_timeout(unsigned long __pool)
1631 {
1632 struct worker_pool *pool = (void *)__pool;
1633 struct global_cwq *gcwq = pool->gcwq;
1634
1635 spin_lock_irq(&gcwq->lock);
1636
1637 if (too_many_workers(pool)) {
1638 struct worker *worker;
1639 unsigned long expires;
1640
1641 /* idle_list is kept in LIFO order, check the last one */
1642 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1643 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1644
1645 if (time_before(jiffies, expires))
1646 mod_timer(&pool->idle_timer, expires);
1647 else {
1648 /* it's been idle for too long, wake up manager */
1649 pool->flags |= POOL_MANAGE_WORKERS;
1650 wake_up_worker(pool);
1651 }
1652 }
1653
1654 spin_unlock_irq(&gcwq->lock);
1655 }
1656
1657 static bool send_mayday(struct work_struct *work)
1658 {
1659 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1660 struct workqueue_struct *wq = cwq->wq;
1661 unsigned int cpu;
1662
1663 if (!(wq->flags & WQ_RESCUER))
1664 return false;
1665
1666 /* mayday mayday mayday */
1667 cpu = cwq->pool->gcwq->cpu;
1668 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1669 if (cpu == WORK_CPU_UNBOUND)
1670 cpu = 0;
1671 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1672 wake_up_process(wq->rescuer->task);
1673 return true;
1674 }
1675
1676 static void gcwq_mayday_timeout(unsigned long __pool)
1677 {
1678 struct worker_pool *pool = (void *)__pool;
1679 struct global_cwq *gcwq = pool->gcwq;
1680 struct work_struct *work;
1681
1682 spin_lock_irq(&gcwq->lock);
1683
1684 if (need_to_create_worker(pool)) {
1685 /*
1686 * We've been trying to create a new worker but
1687 * haven't been successful. We might be hitting an
1688 * allocation deadlock. Send distress signals to
1689 * rescuers.
1690 */
1691 list_for_each_entry(work, &pool->worklist, entry)
1692 send_mayday(work);
1693 }
1694
1695 spin_unlock_irq(&gcwq->lock);
1696
1697 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1698 }
1699
1700 /**
1701 * maybe_create_worker - create a new worker if necessary
1702 * @pool: pool to create a new worker for
1703 *
1704 * Create a new worker for @pool if necessary. @pool is guaranteed to
1705 * have at least one idle worker on return from this function. If
1706 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1707 * sent to all rescuers with works scheduled on @pool to resolve
1708 * possible allocation deadlock.
1709 *
1710 * On return, need_to_create_worker() is guaranteed to be false and
1711 * may_start_working() true.
1712 *
1713 * LOCKING:
1714 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1715 * multiple times. Does GFP_KERNEL allocations. Called only from
1716 * manager.
1717 *
1718 * RETURNS:
1719 * false if no action was taken and gcwq->lock stayed locked, true
1720 * otherwise.
1721 */
1722 static bool maybe_create_worker(struct worker_pool *pool)
1723 __releases(&gcwq->lock)
1724 __acquires(&gcwq->lock)
1725 {
1726 struct global_cwq *gcwq = pool->gcwq;
1727
1728 if (!need_to_create_worker(pool))
1729 return false;
1730 restart:
1731 spin_unlock_irq(&gcwq->lock);
1732
1733 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1734 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1735
1736 while (true) {
1737 struct worker *worker;
1738
1739 worker = create_worker(pool);
1740 if (worker) {
1741 del_timer_sync(&pool->mayday_timer);
1742 spin_lock_irq(&gcwq->lock);
1743 start_worker(worker);
1744 BUG_ON(need_to_create_worker(pool));
1745 return true;
1746 }
1747
1748 if (!need_to_create_worker(pool))
1749 break;
1750
1751 __set_current_state(TASK_INTERRUPTIBLE);
1752 schedule_timeout(CREATE_COOLDOWN);
1753
1754 if (!need_to_create_worker(pool))
1755 break;
1756 }
1757
1758 del_timer_sync(&pool->mayday_timer);
1759 spin_lock_irq(&gcwq->lock);
1760 if (need_to_create_worker(pool))
1761 goto restart;
1762 return true;
1763 }
1764
1765 /**
1766 * maybe_destroy_worker - destroy workers which have been idle for a while
1767 * @pool: pool to destroy workers for
1768 *
1769 * Destroy @pool workers which have been idle for longer than
1770 * IDLE_WORKER_TIMEOUT.
1771 *
1772 * LOCKING:
1773 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1774 * multiple times. Called only from manager.
1775 *
1776 * RETURNS:
1777 * false if no action was taken and gcwq->lock stayed locked, true
1778 * otherwise.
1779 */
1780 static bool maybe_destroy_workers(struct worker_pool *pool)
1781 {
1782 bool ret = false;
1783
1784 while (too_many_workers(pool)) {
1785 struct worker *worker;
1786 unsigned long expires;
1787
1788 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1789 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1790
1791 if (time_before(jiffies, expires)) {
1792 mod_timer(&pool->idle_timer, expires);
1793 break;
1794 }
1795
1796 destroy_worker(worker);
1797 ret = true;
1798 }
1799
1800 return ret;
1801 }
1802
1803 /**
1804 * manage_workers - manage worker pool
1805 * @worker: self
1806 *
1807 * Assume the manager role and manage gcwq worker pool @worker belongs
1808 * to. At any given time, there can be only zero or one manager per
1809 * gcwq. The exclusion is handled automatically by this function.
1810 *
1811 * The caller can safely start processing works on false return. On
1812 * true return, it's guaranteed that need_to_create_worker() is false
1813 * and may_start_working() is true.
1814 *
1815 * CONTEXT:
1816 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1817 * multiple times. Does GFP_KERNEL allocations.
1818 *
1819 * RETURNS:
1820 * false if no action was taken and gcwq->lock stayed locked, true if
1821 * some action was taken.
1822 */
1823 static bool manage_workers(struct worker *worker)
1824 {
1825 struct worker_pool *pool = worker->pool;
1826 bool ret = false;
1827
1828 if (pool->flags & POOL_MANAGING_WORKERS)
1829 return ret;
1830
1831 pool->flags |= POOL_MANAGING_WORKERS;
1832
1833 /*
1834 * To simplify both worker management and CPU hotplug, hold off
1835 * management while hotplug is in progress. CPU hotplug path can't
1836 * grab %POOL_MANAGING_WORKERS to achieve this because that can
1837 * lead to idle worker depletion (all become busy thinking someone
1838 * else is managing) which in turn can result in deadlock under
1839 * extreme circumstances. Use @pool->manager_mutex to synchronize
1840 * manager against CPU hotplug.
1841 *
1842 * manager_mutex would always be free unless CPU hotplug is in
1843 * progress. trylock first without dropping @gcwq->lock.
1844 */
1845 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
1846 spin_unlock_irq(&pool->gcwq->lock);
1847 mutex_lock(&pool->manager_mutex);
1848 /*
1849 * CPU hotplug could have happened while we were waiting
1850 * for manager_mutex. Hotplug itself can't handle us
1851 * because manager isn't either on idle or busy list, and
1852 * @gcwq's state and ours could have deviated.
1853 *
1854 * As hotplug is now excluded via manager_mutex, we can
1855 * simply try to bind. It will succeed or fail depending
1856 * on @gcwq's current state. Try it and adjust
1857 * %WORKER_UNBOUND accordingly.
1858 */
1859 if (worker_maybe_bind_and_lock(worker))
1860 worker->flags &= ~WORKER_UNBOUND;
1861 else
1862 worker->flags |= WORKER_UNBOUND;
1863
1864 ret = true;
1865 }
1866
1867 pool->flags &= ~POOL_MANAGE_WORKERS;
1868
1869 /*
1870 * Destroy and then create so that may_start_working() is true
1871 * on return.
1872 */
1873 ret |= maybe_destroy_workers(pool);
1874 ret |= maybe_create_worker(pool);
1875
1876 pool->flags &= ~POOL_MANAGING_WORKERS;
1877 mutex_unlock(&pool->manager_mutex);
1878 return ret;
1879 }
1880
1881 /**
1882 * move_linked_works - move linked works to a list
1883 * @work: start of series of works to be scheduled
1884 * @head: target list to append @work to
1885 * @nextp: out paramter for nested worklist walking
1886 *
1887 * Schedule linked works starting from @work to @head. Work series to
1888 * be scheduled starts at @work and includes any consecutive work with
1889 * WORK_STRUCT_LINKED set in its predecessor.
1890 *
1891 * If @nextp is not NULL, it's updated to point to the next work of
1892 * the last scheduled work. This allows move_linked_works() to be
1893 * nested inside outer list_for_each_entry_safe().
1894 *
1895 * CONTEXT:
1896 * spin_lock_irq(gcwq->lock).
1897 */
1898 static void move_linked_works(struct work_struct *work, struct list_head *head,
1899 struct work_struct **nextp)
1900 {
1901 struct work_struct *n;
1902
1903 /*
1904 * Linked worklist will always end before the end of the list,
1905 * use NULL for list head.
1906 */
1907 list_for_each_entry_safe_from(work, n, NULL, entry) {
1908 list_move_tail(&work->entry, head);
1909 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1910 break;
1911 }
1912
1913 /*
1914 * If we're already inside safe list traversal and have moved
1915 * multiple works to the scheduled queue, the next position
1916 * needs to be updated.
1917 */
1918 if (nextp)
1919 *nextp = n;
1920 }
1921
1922 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1923 {
1924 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1925 struct work_struct, entry);
1926
1927 trace_workqueue_activate_work(work);
1928 move_linked_works(work, &cwq->pool->worklist, NULL);
1929 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1930 cwq->nr_active++;
1931 }
1932
1933 /**
1934 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1935 * @cwq: cwq of interest
1936 * @color: color of work which left the queue
1937 * @delayed: for a delayed work
1938 *
1939 * A work either has completed or is removed from pending queue,
1940 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1941 *
1942 * CONTEXT:
1943 * spin_lock_irq(gcwq->lock).
1944 */
1945 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1946 bool delayed)
1947 {
1948 /* ignore uncolored works */
1949 if (color == WORK_NO_COLOR)
1950 return;
1951
1952 cwq->nr_in_flight[color]--;
1953
1954 if (!delayed) {
1955 cwq->nr_active--;
1956 if (!list_empty(&cwq->delayed_works)) {
1957 /* one down, submit a delayed one */
1958 if (cwq->nr_active < cwq->max_active)
1959 cwq_activate_first_delayed(cwq);
1960 }
1961 }
1962
1963 /* is flush in progress and are we at the flushing tip? */
1964 if (likely(cwq->flush_color != color))
1965 return;
1966
1967 /* are there still in-flight works? */
1968 if (cwq->nr_in_flight[color])
1969 return;
1970
1971 /* this cwq is done, clear flush_color */
1972 cwq->flush_color = -1;
1973
1974 /*
1975 * If this was the last cwq, wake up the first flusher. It
1976 * will handle the rest.
1977 */
1978 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1979 complete(&cwq->wq->first_flusher->done);
1980 }
1981
1982 /**
1983 * process_one_work - process single work
1984 * @worker: self
1985 * @work: work to process
1986 *
1987 * Process @work. This function contains all the logics necessary to
1988 * process a single work including synchronization against and
1989 * interaction with other workers on the same cpu, queueing and
1990 * flushing. As long as context requirement is met, any worker can
1991 * call this function to process a work.
1992 *
1993 * CONTEXT:
1994 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1995 */
1996 static void process_one_work(struct worker *worker, struct work_struct *work)
1997 __releases(&gcwq->lock)
1998 __acquires(&gcwq->lock)
1999 {
2000 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2001 struct worker_pool *pool = worker->pool;
2002 struct global_cwq *gcwq = pool->gcwq;
2003 struct hlist_head *bwh = busy_worker_head(gcwq, work);
2004 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2005 work_func_t f = work->func;
2006 int work_color;
2007 struct worker *collision;
2008 #ifdef CONFIG_LOCKDEP
2009 /*
2010 * It is permissible to free the struct work_struct from
2011 * inside the function that is called from it, this we need to
2012 * take into account for lockdep too. To avoid bogus "held
2013 * lock freed" warnings as well as problems when looking into
2014 * work->lockdep_map, make a copy and use that here.
2015 */
2016 struct lockdep_map lockdep_map;
2017
2018 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2019 #endif
2020 /*
2021 * Ensure we're on the correct CPU. DISASSOCIATED test is
2022 * necessary to avoid spurious warnings from rescuers servicing the
2023 * unbound or a disassociated gcwq.
2024 */
2025 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2026 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2027 raw_smp_processor_id() != gcwq->cpu);
2028
2029 /*
2030 * A single work shouldn't be executed concurrently by
2031 * multiple workers on a single cpu. Check whether anyone is
2032 * already processing the work. If so, defer the work to the
2033 * currently executing one.
2034 */
2035 collision = __find_worker_executing_work(gcwq, bwh, work);
2036 if (unlikely(collision)) {
2037 move_linked_works(work, &collision->scheduled, NULL);
2038 return;
2039 }
2040
2041 /* claim and process */
2042 debug_work_deactivate(work);
2043 hlist_add_head(&worker->hentry, bwh);
2044 worker->current_work = work;
2045 worker->current_cwq = cwq;
2046 work_color = get_work_color(work);
2047
2048 /* record the current cpu number in the work data and dequeue */
2049 set_work_cpu(work, gcwq->cpu);
2050 list_del_init(&work->entry);
2051
2052 /*
2053 * CPU intensive works don't participate in concurrency
2054 * management. They're the scheduler's responsibility.
2055 */
2056 if (unlikely(cpu_intensive))
2057 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2058
2059 /*
2060 * Unbound gcwq isn't concurrency managed and work items should be
2061 * executed ASAP. Wake up another worker if necessary.
2062 */
2063 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2064 wake_up_worker(pool);
2065
2066 spin_unlock_irq(&gcwq->lock);
2067
2068 work_clear_pending(work);
2069 lock_map_acquire_read(&cwq->wq->lockdep_map);
2070 lock_map_acquire(&lockdep_map);
2071 trace_workqueue_execute_start(work);
2072 f(work);
2073 /*
2074 * While we must be careful to not use "work" after this, the trace
2075 * point will only record its address.
2076 */
2077 trace_workqueue_execute_end(work);
2078 lock_map_release(&lockdep_map);
2079 lock_map_release(&cwq->wq->lockdep_map);
2080
2081 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2082 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2083 "%s/0x%08x/%d\n",
2084 current->comm, preempt_count(), task_pid_nr(current));
2085 printk(KERN_ERR " last function: ");
2086 print_symbol("%s\n", (unsigned long)f);
2087 debug_show_held_locks(current);
2088 dump_stack();
2089 }
2090
2091 spin_lock_irq(&gcwq->lock);
2092
2093 /* clear cpu intensive status */
2094 if (unlikely(cpu_intensive))
2095 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2096
2097 /* we're done with it, release */
2098 hlist_del_init(&worker->hentry);
2099 worker->current_work = NULL;
2100 worker->current_cwq = NULL;
2101 cwq_dec_nr_in_flight(cwq, work_color, false);
2102 }
2103
2104 /**
2105 * process_scheduled_works - process scheduled works
2106 * @worker: self
2107 *
2108 * Process all scheduled works. Please note that the scheduled list
2109 * may change while processing a work, so this function repeatedly
2110 * fetches a work from the top and executes it.
2111 *
2112 * CONTEXT:
2113 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2114 * multiple times.
2115 */
2116 static void process_scheduled_works(struct worker *worker)
2117 {
2118 while (!list_empty(&worker->scheduled)) {
2119 struct work_struct *work = list_first_entry(&worker->scheduled,
2120 struct work_struct, entry);
2121 process_one_work(worker, work);
2122 }
2123 }
2124
2125 /**
2126 * worker_thread - the worker thread function
2127 * @__worker: self
2128 *
2129 * The gcwq worker thread function. There's a single dynamic pool of
2130 * these per each cpu. These workers process all works regardless of
2131 * their specific target workqueue. The only exception is works which
2132 * belong to workqueues with a rescuer which will be explained in
2133 * rescuer_thread().
2134 */
2135 static int worker_thread(void *__worker)
2136 {
2137 struct worker *worker = __worker;
2138 struct worker_pool *pool = worker->pool;
2139 struct global_cwq *gcwq = pool->gcwq;
2140
2141 /* tell the scheduler that this is a workqueue worker */
2142 worker->task->flags |= PF_WQ_WORKER;
2143 woke_up:
2144 spin_lock_irq(&gcwq->lock);
2145
2146 /*
2147 * DIE can be set only while idle and REBIND set while busy has
2148 * @worker->rebind_work scheduled. Checking here is enough.
2149 */
2150 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
2151 spin_unlock_irq(&gcwq->lock);
2152
2153 if (worker->flags & WORKER_DIE) {
2154 worker->task->flags &= ~PF_WQ_WORKER;
2155 return 0;
2156 }
2157
2158 idle_worker_rebind(worker);
2159 goto woke_up;
2160 }
2161
2162 worker_leave_idle(worker);
2163 recheck:
2164 /* no more worker necessary? */
2165 if (!need_more_worker(pool))
2166 goto sleep;
2167
2168 /* do we need to manage? */
2169 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2170 goto recheck;
2171
2172 /*
2173 * ->scheduled list can only be filled while a worker is
2174 * preparing to process a work or actually processing it.
2175 * Make sure nobody diddled with it while I was sleeping.
2176 */
2177 BUG_ON(!list_empty(&worker->scheduled));
2178
2179 /*
2180 * When control reaches this point, we're guaranteed to have
2181 * at least one idle worker or that someone else has already
2182 * assumed the manager role.
2183 */
2184 worker_clr_flags(worker, WORKER_PREP);
2185
2186 do {
2187 struct work_struct *work =
2188 list_first_entry(&pool->worklist,
2189 struct work_struct, entry);
2190
2191 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2192 /* optimization path, not strictly necessary */
2193 process_one_work(worker, work);
2194 if (unlikely(!list_empty(&worker->scheduled)))
2195 process_scheduled_works(worker);
2196 } else {
2197 move_linked_works(work, &worker->scheduled, NULL);
2198 process_scheduled_works(worker);
2199 }
2200 } while (keep_working(pool));
2201
2202 worker_set_flags(worker, WORKER_PREP, false);
2203 sleep:
2204 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2205 goto recheck;
2206
2207 /*
2208 * gcwq->lock is held and there's no work to process and no
2209 * need to manage, sleep. Workers are woken up only while
2210 * holding gcwq->lock or from local cpu, so setting the
2211 * current state before releasing gcwq->lock is enough to
2212 * prevent losing any event.
2213 */
2214 worker_enter_idle(worker);
2215 __set_current_state(TASK_INTERRUPTIBLE);
2216 spin_unlock_irq(&gcwq->lock);
2217 schedule();
2218 goto woke_up;
2219 }
2220
2221 /**
2222 * rescuer_thread - the rescuer thread function
2223 * @__wq: the associated workqueue
2224 *
2225 * Workqueue rescuer thread function. There's one rescuer for each
2226 * workqueue which has WQ_RESCUER set.
2227 *
2228 * Regular work processing on a gcwq may block trying to create a new
2229 * worker which uses GFP_KERNEL allocation which has slight chance of
2230 * developing into deadlock if some works currently on the same queue
2231 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2232 * the problem rescuer solves.
2233 *
2234 * When such condition is possible, the gcwq summons rescuers of all
2235 * workqueues which have works queued on the gcwq and let them process
2236 * those works so that forward progress can be guaranteed.
2237 *
2238 * This should happen rarely.
2239 */
2240 static int rescuer_thread(void *__wq)
2241 {
2242 struct workqueue_struct *wq = __wq;
2243 struct worker *rescuer = wq->rescuer;
2244 struct list_head *scheduled = &rescuer->scheduled;
2245 bool is_unbound = wq->flags & WQ_UNBOUND;
2246 unsigned int cpu;
2247
2248 set_user_nice(current, RESCUER_NICE_LEVEL);
2249 repeat:
2250 set_current_state(TASK_INTERRUPTIBLE);
2251
2252 if (kthread_should_stop())
2253 return 0;
2254
2255 /*
2256 * See whether any cpu is asking for help. Unbounded
2257 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2258 */
2259 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2260 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2261 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2262 struct worker_pool *pool = cwq->pool;
2263 struct global_cwq *gcwq = pool->gcwq;
2264 struct work_struct *work, *n;
2265
2266 __set_current_state(TASK_RUNNING);
2267 mayday_clear_cpu(cpu, wq->mayday_mask);
2268
2269 /* migrate to the target cpu if possible */
2270 rescuer->pool = pool;
2271 worker_maybe_bind_and_lock(rescuer);
2272
2273 /*
2274 * Slurp in all works issued via this workqueue and
2275 * process'em.
2276 */
2277 BUG_ON(!list_empty(&rescuer->scheduled));
2278 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2279 if (get_work_cwq(work) == cwq)
2280 move_linked_works(work, scheduled, &n);
2281
2282 process_scheduled_works(rescuer);
2283
2284 /*
2285 * Leave this gcwq. If keep_working() is %true, notify a
2286 * regular worker; otherwise, we end up with 0 concurrency
2287 * and stalling the execution.
2288 */
2289 if (keep_working(pool))
2290 wake_up_worker(pool);
2291
2292 spin_unlock_irq(&gcwq->lock);
2293 }
2294
2295 schedule();
2296 goto repeat;
2297 }
2298
2299 struct wq_barrier {
2300 struct work_struct work;
2301 struct completion done;
2302 };
2303
2304 static void wq_barrier_func(struct work_struct *work)
2305 {
2306 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2307 complete(&barr->done);
2308 }
2309
2310 /**
2311 * insert_wq_barrier - insert a barrier work
2312 * @cwq: cwq to insert barrier into
2313 * @barr: wq_barrier to insert
2314 * @target: target work to attach @barr to
2315 * @worker: worker currently executing @target, NULL if @target is not executing
2316 *
2317 * @barr is linked to @target such that @barr is completed only after
2318 * @target finishes execution. Please note that the ordering
2319 * guarantee is observed only with respect to @target and on the local
2320 * cpu.
2321 *
2322 * Currently, a queued barrier can't be canceled. This is because
2323 * try_to_grab_pending() can't determine whether the work to be
2324 * grabbed is at the head of the queue and thus can't clear LINKED
2325 * flag of the previous work while there must be a valid next work
2326 * after a work with LINKED flag set.
2327 *
2328 * Note that when @worker is non-NULL, @target may be modified
2329 * underneath us, so we can't reliably determine cwq from @target.
2330 *
2331 * CONTEXT:
2332 * spin_lock_irq(gcwq->lock).
2333 */
2334 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2335 struct wq_barrier *barr,
2336 struct work_struct *target, struct worker *worker)
2337 {
2338 struct list_head *head;
2339 unsigned int linked = 0;
2340
2341 /*
2342 * debugobject calls are safe here even with gcwq->lock locked
2343 * as we know for sure that this will not trigger any of the
2344 * checks and call back into the fixup functions where we
2345 * might deadlock.
2346 */
2347 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2348 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2349 init_completion(&barr->done);
2350
2351 /*
2352 * If @target is currently being executed, schedule the
2353 * barrier to the worker; otherwise, put it after @target.
2354 */
2355 if (worker)
2356 head = worker->scheduled.next;
2357 else {
2358 unsigned long *bits = work_data_bits(target);
2359
2360 head = target->entry.next;
2361 /* there can already be other linked works, inherit and set */
2362 linked = *bits & WORK_STRUCT_LINKED;
2363 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2364 }
2365
2366 debug_work_activate(&barr->work);
2367 insert_work(cwq, &barr->work, head,
2368 work_color_to_flags(WORK_NO_COLOR) | linked);
2369 }
2370
2371 /**
2372 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2373 * @wq: workqueue being flushed
2374 * @flush_color: new flush color, < 0 for no-op
2375 * @work_color: new work color, < 0 for no-op
2376 *
2377 * Prepare cwqs for workqueue flushing.
2378 *
2379 * If @flush_color is non-negative, flush_color on all cwqs should be
2380 * -1. If no cwq has in-flight commands at the specified color, all
2381 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2382 * has in flight commands, its cwq->flush_color is set to
2383 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2384 * wakeup logic is armed and %true is returned.
2385 *
2386 * The caller should have initialized @wq->first_flusher prior to
2387 * calling this function with non-negative @flush_color. If
2388 * @flush_color is negative, no flush color update is done and %false
2389 * is returned.
2390 *
2391 * If @work_color is non-negative, all cwqs should have the same
2392 * work_color which is previous to @work_color and all will be
2393 * advanced to @work_color.
2394 *
2395 * CONTEXT:
2396 * mutex_lock(wq->flush_mutex).
2397 *
2398 * RETURNS:
2399 * %true if @flush_color >= 0 and there's something to flush. %false
2400 * otherwise.
2401 */
2402 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2403 int flush_color, int work_color)
2404 {
2405 bool wait = false;
2406 unsigned int cpu;
2407
2408 if (flush_color >= 0) {
2409 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2410 atomic_set(&wq->nr_cwqs_to_flush, 1);
2411 }
2412
2413 for_each_cwq_cpu(cpu, wq) {
2414 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2415 struct global_cwq *gcwq = cwq->pool->gcwq;
2416
2417 spin_lock_irq(&gcwq->lock);
2418
2419 if (flush_color >= 0) {
2420 BUG_ON(cwq->flush_color != -1);
2421
2422 if (cwq->nr_in_flight[flush_color]) {
2423 cwq->flush_color = flush_color;
2424 atomic_inc(&wq->nr_cwqs_to_flush);
2425 wait = true;
2426 }
2427 }
2428
2429 if (work_color >= 0) {
2430 BUG_ON(work_color != work_next_color(cwq->work_color));
2431 cwq->work_color = work_color;
2432 }
2433
2434 spin_unlock_irq(&gcwq->lock);
2435 }
2436
2437 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2438 complete(&wq->first_flusher->done);
2439
2440 return wait;
2441 }
2442
2443 /**
2444 * flush_workqueue - ensure that any scheduled work has run to completion.
2445 * @wq: workqueue to flush
2446 *
2447 * Forces execution of the workqueue and blocks until its completion.
2448 * This is typically used in driver shutdown handlers.
2449 *
2450 * We sleep until all works which were queued on entry have been handled,
2451 * but we are not livelocked by new incoming ones.
2452 */
2453 void flush_workqueue(struct workqueue_struct *wq)
2454 {
2455 struct wq_flusher this_flusher = {
2456 .list = LIST_HEAD_INIT(this_flusher.list),
2457 .flush_color = -1,
2458 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2459 };
2460 int next_color;
2461
2462 lock_map_acquire(&wq->lockdep_map);
2463 lock_map_release(&wq->lockdep_map);
2464
2465 mutex_lock(&wq->flush_mutex);
2466
2467 /*
2468 * Start-to-wait phase
2469 */
2470 next_color = work_next_color(wq->work_color);
2471
2472 if (next_color != wq->flush_color) {
2473 /*
2474 * Color space is not full. The current work_color
2475 * becomes our flush_color and work_color is advanced
2476 * by one.
2477 */
2478 BUG_ON(!list_empty(&wq->flusher_overflow));
2479 this_flusher.flush_color = wq->work_color;
2480 wq->work_color = next_color;
2481
2482 if (!wq->first_flusher) {
2483 /* no flush in progress, become the first flusher */
2484 BUG_ON(wq->flush_color != this_flusher.flush_color);
2485
2486 wq->first_flusher = &this_flusher;
2487
2488 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2489 wq->work_color)) {
2490 /* nothing to flush, done */
2491 wq->flush_color = next_color;
2492 wq->first_flusher = NULL;
2493 goto out_unlock;
2494 }
2495 } else {
2496 /* wait in queue */
2497 BUG_ON(wq->flush_color == this_flusher.flush_color);
2498 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2499 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2500 }
2501 } else {
2502 /*
2503 * Oops, color space is full, wait on overflow queue.
2504 * The next flush completion will assign us
2505 * flush_color and transfer to flusher_queue.
2506 */
2507 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2508 }
2509
2510 mutex_unlock(&wq->flush_mutex);
2511
2512 wait_for_completion(&this_flusher.done);
2513
2514 /*
2515 * Wake-up-and-cascade phase
2516 *
2517 * First flushers are responsible for cascading flushes and
2518 * handling overflow. Non-first flushers can simply return.
2519 */
2520 if (wq->first_flusher != &this_flusher)
2521 return;
2522
2523 mutex_lock(&wq->flush_mutex);
2524
2525 /* we might have raced, check again with mutex held */
2526 if (wq->first_flusher != &this_flusher)
2527 goto out_unlock;
2528
2529 wq->first_flusher = NULL;
2530
2531 BUG_ON(!list_empty(&this_flusher.list));
2532 BUG_ON(wq->flush_color != this_flusher.flush_color);
2533
2534 while (true) {
2535 struct wq_flusher *next, *tmp;
2536
2537 /* complete all the flushers sharing the current flush color */
2538 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2539 if (next->flush_color != wq->flush_color)
2540 break;
2541 list_del_init(&next->list);
2542 complete(&next->done);
2543 }
2544
2545 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2546 wq->flush_color != work_next_color(wq->work_color));
2547
2548 /* this flush_color is finished, advance by one */
2549 wq->flush_color = work_next_color(wq->flush_color);
2550
2551 /* one color has been freed, handle overflow queue */
2552 if (!list_empty(&wq->flusher_overflow)) {
2553 /*
2554 * Assign the same color to all overflowed
2555 * flushers, advance work_color and append to
2556 * flusher_queue. This is the start-to-wait
2557 * phase for these overflowed flushers.
2558 */
2559 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2560 tmp->flush_color = wq->work_color;
2561
2562 wq->work_color = work_next_color(wq->work_color);
2563
2564 list_splice_tail_init(&wq->flusher_overflow,
2565 &wq->flusher_queue);
2566 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2567 }
2568
2569 if (list_empty(&wq->flusher_queue)) {
2570 BUG_ON(wq->flush_color != wq->work_color);
2571 break;
2572 }
2573
2574 /*
2575 * Need to flush more colors. Make the next flusher
2576 * the new first flusher and arm cwqs.
2577 */
2578 BUG_ON(wq->flush_color == wq->work_color);
2579 BUG_ON(wq->flush_color != next->flush_color);
2580
2581 list_del_init(&next->list);
2582 wq->first_flusher = next;
2583
2584 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2585 break;
2586
2587 /*
2588 * Meh... this color is already done, clear first
2589 * flusher and repeat cascading.
2590 */
2591 wq->first_flusher = NULL;
2592 }
2593
2594 out_unlock:
2595 mutex_unlock(&wq->flush_mutex);
2596 }
2597 EXPORT_SYMBOL_GPL(flush_workqueue);
2598
2599 /**
2600 * drain_workqueue - drain a workqueue
2601 * @wq: workqueue to drain
2602 *
2603 * Wait until the workqueue becomes empty. While draining is in progress,
2604 * only chain queueing is allowed. IOW, only currently pending or running
2605 * work items on @wq can queue further work items on it. @wq is flushed
2606 * repeatedly until it becomes empty. The number of flushing is detemined
2607 * by the depth of chaining and should be relatively short. Whine if it
2608 * takes too long.
2609 */
2610 void drain_workqueue(struct workqueue_struct *wq)
2611 {
2612 unsigned int flush_cnt = 0;
2613 unsigned int cpu;
2614
2615 /*
2616 * __queue_work() needs to test whether there are drainers, is much
2617 * hotter than drain_workqueue() and already looks at @wq->flags.
2618 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2619 */
2620 spin_lock(&workqueue_lock);
2621 if (!wq->nr_drainers++)
2622 wq->flags |= WQ_DRAINING;
2623 spin_unlock(&workqueue_lock);
2624 reflush:
2625 flush_workqueue(wq);
2626
2627 for_each_cwq_cpu(cpu, wq) {
2628 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2629 bool drained;
2630
2631 spin_lock_irq(&cwq->pool->gcwq->lock);
2632 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2633 spin_unlock_irq(&cwq->pool->gcwq->lock);
2634
2635 if (drained)
2636 continue;
2637
2638 if (++flush_cnt == 10 ||
2639 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2640 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2641 wq->name, flush_cnt);
2642 goto reflush;
2643 }
2644
2645 spin_lock(&workqueue_lock);
2646 if (!--wq->nr_drainers)
2647 wq->flags &= ~WQ_DRAINING;
2648 spin_unlock(&workqueue_lock);
2649 }
2650 EXPORT_SYMBOL_GPL(drain_workqueue);
2651
2652 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2653 bool wait_executing)
2654 {
2655 struct worker *worker = NULL;
2656 struct global_cwq *gcwq;
2657 struct cpu_workqueue_struct *cwq;
2658
2659 might_sleep();
2660 gcwq = get_work_gcwq(work);
2661 if (!gcwq)
2662 return false;
2663
2664 spin_lock_irq(&gcwq->lock);
2665 if (!list_empty(&work->entry)) {
2666 /*
2667 * See the comment near try_to_grab_pending()->smp_rmb().
2668 * If it was re-queued to a different gcwq under us, we
2669 * are not going to wait.
2670 */
2671 smp_rmb();
2672 cwq = get_work_cwq(work);
2673 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2674 goto already_gone;
2675 } else if (wait_executing) {
2676 worker = find_worker_executing_work(gcwq, work);
2677 if (!worker)
2678 goto already_gone;
2679 cwq = worker->current_cwq;
2680 } else
2681 goto already_gone;
2682
2683 insert_wq_barrier(cwq, barr, work, worker);
2684 spin_unlock_irq(&gcwq->lock);
2685
2686 /*
2687 * If @max_active is 1 or rescuer is in use, flushing another work
2688 * item on the same workqueue may lead to deadlock. Make sure the
2689 * flusher is not running on the same workqueue by verifying write
2690 * access.
2691 */
2692 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2693 lock_map_acquire(&cwq->wq->lockdep_map);
2694 else
2695 lock_map_acquire_read(&cwq->wq->lockdep_map);
2696 lock_map_release(&cwq->wq->lockdep_map);
2697
2698 return true;
2699 already_gone:
2700 spin_unlock_irq(&gcwq->lock);
2701 return false;
2702 }
2703
2704 /**
2705 * flush_work - wait for a work to finish executing the last queueing instance
2706 * @work: the work to flush
2707 *
2708 * Wait until @work has finished execution. This function considers
2709 * only the last queueing instance of @work. If @work has been
2710 * enqueued across different CPUs on a non-reentrant workqueue or on
2711 * multiple workqueues, @work might still be executing on return on
2712 * some of the CPUs from earlier queueing.
2713 *
2714 * If @work was queued only on a non-reentrant, ordered or unbound
2715 * workqueue, @work is guaranteed to be idle on return if it hasn't
2716 * been requeued since flush started.
2717 *
2718 * RETURNS:
2719 * %true if flush_work() waited for the work to finish execution,
2720 * %false if it was already idle.
2721 */
2722 bool flush_work(struct work_struct *work)
2723 {
2724 struct wq_barrier barr;
2725
2726 lock_map_acquire(&work->lockdep_map);
2727 lock_map_release(&work->lockdep_map);
2728
2729 if (start_flush_work(work, &barr, true)) {
2730 wait_for_completion(&barr.done);
2731 destroy_work_on_stack(&barr.work);
2732 return true;
2733 } else
2734 return false;
2735 }
2736 EXPORT_SYMBOL_GPL(flush_work);
2737
2738 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2739 {
2740 struct wq_barrier barr;
2741 struct worker *worker;
2742
2743 spin_lock_irq(&gcwq->lock);
2744
2745 worker = find_worker_executing_work(gcwq, work);
2746 if (unlikely(worker))
2747 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2748
2749 spin_unlock_irq(&gcwq->lock);
2750
2751 if (unlikely(worker)) {
2752 wait_for_completion(&barr.done);
2753 destroy_work_on_stack(&barr.work);
2754 return true;
2755 } else
2756 return false;
2757 }
2758
2759 static bool wait_on_work(struct work_struct *work)
2760 {
2761 bool ret = false;
2762 int cpu;
2763
2764 might_sleep();
2765
2766 lock_map_acquire(&work->lockdep_map);
2767 lock_map_release(&work->lockdep_map);
2768
2769 for_each_gcwq_cpu(cpu)
2770 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2771 return ret;
2772 }
2773
2774 /**
2775 * flush_work_sync - wait until a work has finished execution
2776 * @work: the work to flush
2777 *
2778 * Wait until @work has finished execution. On return, it's
2779 * guaranteed that all queueing instances of @work which happened
2780 * before this function is called are finished. In other words, if
2781 * @work hasn't been requeued since this function was called, @work is
2782 * guaranteed to be idle on return.
2783 *
2784 * RETURNS:
2785 * %true if flush_work_sync() waited for the work to finish execution,
2786 * %false if it was already idle.
2787 */
2788 bool flush_work_sync(struct work_struct *work)
2789 {
2790 struct wq_barrier barr;
2791 bool pending, waited;
2792
2793 /* we'll wait for executions separately, queue barr only if pending */
2794 pending = start_flush_work(work, &barr, false);
2795
2796 /* wait for executions to finish */
2797 waited = wait_on_work(work);
2798
2799 /* wait for the pending one */
2800 if (pending) {
2801 wait_for_completion(&barr.done);
2802 destroy_work_on_stack(&barr.work);
2803 }
2804
2805 return pending || waited;
2806 }
2807 EXPORT_SYMBOL_GPL(flush_work_sync);
2808
2809 /*
2810 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2811 * so this work can't be re-armed in any way.
2812 */
2813 static int try_to_grab_pending(struct work_struct *work)
2814 {
2815 struct global_cwq *gcwq;
2816 int ret = -1;
2817
2818 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2819 return 0;
2820
2821 /*
2822 * The queueing is in progress, or it is already queued. Try to
2823 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2824 */
2825 gcwq = get_work_gcwq(work);
2826 if (!gcwq)
2827 return ret;
2828
2829 spin_lock_irq(&gcwq->lock);
2830 if (!list_empty(&work->entry)) {
2831 /*
2832 * This work is queued, but perhaps we locked the wrong gcwq.
2833 * In that case we must see the new value after rmb(), see
2834 * insert_work()->wmb().
2835 */
2836 smp_rmb();
2837 if (gcwq == get_work_gcwq(work)) {
2838 debug_work_deactivate(work);
2839 list_del_init(&work->entry);
2840 cwq_dec_nr_in_flight(get_work_cwq(work),
2841 get_work_color(work),
2842 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2843 ret = 1;
2844 }
2845 }
2846 spin_unlock_irq(&gcwq->lock);
2847
2848 return ret;
2849 }
2850
2851 static bool __cancel_work_timer(struct work_struct *work,
2852 struct timer_list* timer)
2853 {
2854 int ret;
2855
2856 do {
2857 ret = (timer && likely(del_timer(timer)));
2858 if (!ret)
2859 ret = try_to_grab_pending(work);
2860 wait_on_work(work);
2861 } while (unlikely(ret < 0));
2862
2863 clear_work_data(work);
2864 return ret;
2865 }
2866
2867 /**
2868 * cancel_work_sync - cancel a work and wait for it to finish
2869 * @work: the work to cancel
2870 *
2871 * Cancel @work and wait for its execution to finish. This function
2872 * can be used even if the work re-queues itself or migrates to
2873 * another workqueue. On return from this function, @work is
2874 * guaranteed to be not pending or executing on any CPU.
2875 *
2876 * cancel_work_sync(&delayed_work->work) must not be used for
2877 * delayed_work's. Use cancel_delayed_work_sync() instead.
2878 *
2879 * The caller must ensure that the workqueue on which @work was last
2880 * queued can't be destroyed before this function returns.
2881 *
2882 * RETURNS:
2883 * %true if @work was pending, %false otherwise.
2884 */
2885 bool cancel_work_sync(struct work_struct *work)
2886 {
2887 return __cancel_work_timer(work, NULL);
2888 }
2889 EXPORT_SYMBOL_GPL(cancel_work_sync);
2890
2891 /**
2892 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2893 * @dwork: the delayed work to flush
2894 *
2895 * Delayed timer is cancelled and the pending work is queued for
2896 * immediate execution. Like flush_work(), this function only
2897 * considers the last queueing instance of @dwork.
2898 *
2899 * RETURNS:
2900 * %true if flush_work() waited for the work to finish execution,
2901 * %false if it was already idle.
2902 */
2903 bool flush_delayed_work(struct delayed_work *dwork)
2904 {
2905 if (del_timer_sync(&dwork->timer))
2906 __queue_work(raw_smp_processor_id(),
2907 get_work_cwq(&dwork->work)->wq, &dwork->work);
2908 return flush_work(&dwork->work);
2909 }
2910 EXPORT_SYMBOL(flush_delayed_work);
2911
2912 /**
2913 * flush_delayed_work_sync - wait for a dwork to finish
2914 * @dwork: the delayed work to flush
2915 *
2916 * Delayed timer is cancelled and the pending work is queued for
2917 * execution immediately. Other than timer handling, its behavior
2918 * is identical to flush_work_sync().
2919 *
2920 * RETURNS:
2921 * %true if flush_work_sync() waited for the work to finish execution,
2922 * %false if it was already idle.
2923 */
2924 bool flush_delayed_work_sync(struct delayed_work *dwork)
2925 {
2926 if (del_timer_sync(&dwork->timer))
2927 __queue_work(raw_smp_processor_id(),
2928 get_work_cwq(&dwork->work)->wq, &dwork->work);
2929 return flush_work_sync(&dwork->work);
2930 }
2931 EXPORT_SYMBOL(flush_delayed_work_sync);
2932
2933 /**
2934 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2935 * @dwork: the delayed work cancel
2936 *
2937 * This is cancel_work_sync() for delayed works.
2938 *
2939 * RETURNS:
2940 * %true if @dwork was pending, %false otherwise.
2941 */
2942 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2943 {
2944 return __cancel_work_timer(&dwork->work, &dwork->timer);
2945 }
2946 EXPORT_SYMBOL(cancel_delayed_work_sync);
2947
2948 /**
2949 * schedule_work - put work task in global workqueue
2950 * @work: job to be done
2951 *
2952 * Returns zero if @work was already on the kernel-global workqueue and
2953 * non-zero otherwise.
2954 *
2955 * This puts a job in the kernel-global workqueue if it was not already
2956 * queued and leaves it in the same position on the kernel-global
2957 * workqueue otherwise.
2958 */
2959 int schedule_work(struct work_struct *work)
2960 {
2961 return queue_work(system_wq, work);
2962 }
2963 EXPORT_SYMBOL(schedule_work);
2964
2965 /*
2966 * schedule_work_on - put work task on a specific cpu
2967 * @cpu: cpu to put the work task on
2968 * @work: job to be done
2969 *
2970 * This puts a job on a specific cpu
2971 */
2972 int schedule_work_on(int cpu, struct work_struct *work)
2973 {
2974 return queue_work_on(cpu, system_wq, work);
2975 }
2976 EXPORT_SYMBOL(schedule_work_on);
2977
2978 /**
2979 * schedule_delayed_work - put work task in global workqueue after delay
2980 * @dwork: job to be done
2981 * @delay: number of jiffies to wait or 0 for immediate execution
2982 *
2983 * After waiting for a given time this puts a job in the kernel-global
2984 * workqueue.
2985 */
2986 int schedule_delayed_work(struct delayed_work *dwork,
2987 unsigned long delay)
2988 {
2989 return queue_delayed_work(system_wq, dwork, delay);
2990 }
2991 EXPORT_SYMBOL(schedule_delayed_work);
2992
2993 /**
2994 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2995 * @cpu: cpu to use
2996 * @dwork: job to be done
2997 * @delay: number of jiffies to wait
2998 *
2999 * After waiting for a given time this puts a job in the kernel-global
3000 * workqueue on the specified CPU.
3001 */
3002 int schedule_delayed_work_on(int cpu,
3003 struct delayed_work *dwork, unsigned long delay)
3004 {
3005 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3006 }
3007 EXPORT_SYMBOL(schedule_delayed_work_on);
3008
3009 /**
3010 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3011 * @func: the function to call
3012 *
3013 * schedule_on_each_cpu() executes @func on each online CPU using the
3014 * system workqueue and blocks until all CPUs have completed.
3015 * schedule_on_each_cpu() is very slow.
3016 *
3017 * RETURNS:
3018 * 0 on success, -errno on failure.
3019 */
3020 int schedule_on_each_cpu(work_func_t func)
3021 {
3022 int cpu;
3023 struct work_struct __percpu *works;
3024
3025 works = alloc_percpu(struct work_struct);
3026 if (!works)
3027 return -ENOMEM;
3028
3029 get_online_cpus();
3030
3031 for_each_online_cpu(cpu) {
3032 struct work_struct *work = per_cpu_ptr(works, cpu);
3033
3034 INIT_WORK(work, func);
3035 schedule_work_on(cpu, work);
3036 }
3037
3038 for_each_online_cpu(cpu)
3039 flush_work(per_cpu_ptr(works, cpu));
3040
3041 put_online_cpus();
3042 free_percpu(works);
3043 return 0;
3044 }
3045
3046 /**
3047 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3048 *
3049 * Forces execution of the kernel-global workqueue and blocks until its
3050 * completion.
3051 *
3052 * Think twice before calling this function! It's very easy to get into
3053 * trouble if you don't take great care. Either of the following situations
3054 * will lead to deadlock:
3055 *
3056 * One of the work items currently on the workqueue needs to acquire
3057 * a lock held by your code or its caller.
3058 *
3059 * Your code is running in the context of a work routine.
3060 *
3061 * They will be detected by lockdep when they occur, but the first might not
3062 * occur very often. It depends on what work items are on the workqueue and
3063 * what locks they need, which you have no control over.
3064 *
3065 * In most situations flushing the entire workqueue is overkill; you merely
3066 * need to know that a particular work item isn't queued and isn't running.
3067 * In such cases you should use cancel_delayed_work_sync() or
3068 * cancel_work_sync() instead.
3069 */
3070 void flush_scheduled_work(void)
3071 {
3072 flush_workqueue(system_wq);
3073 }
3074 EXPORT_SYMBOL(flush_scheduled_work);
3075
3076 /**
3077 * execute_in_process_context - reliably execute the routine with user context
3078 * @fn: the function to execute
3079 * @ew: guaranteed storage for the execute work structure (must
3080 * be available when the work executes)
3081 *
3082 * Executes the function immediately if process context is available,
3083 * otherwise schedules the function for delayed execution.
3084 *
3085 * Returns: 0 - function was executed
3086 * 1 - function was scheduled for execution
3087 */
3088 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3089 {
3090 if (!in_interrupt()) {
3091 fn(&ew->work);
3092 return 0;
3093 }
3094
3095 INIT_WORK(&ew->work, fn);
3096 schedule_work(&ew->work);
3097
3098 return 1;
3099 }
3100 EXPORT_SYMBOL_GPL(execute_in_process_context);
3101
3102 int keventd_up(void)
3103 {
3104 return system_wq != NULL;
3105 }
3106
3107 static int alloc_cwqs(struct workqueue_struct *wq)
3108 {
3109 /*
3110 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3111 * Make sure that the alignment isn't lower than that of
3112 * unsigned long long.
3113 */
3114 const size_t size = sizeof(struct cpu_workqueue_struct);
3115 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3116 __alignof__(unsigned long long));
3117
3118 if (!(wq->flags & WQ_UNBOUND))
3119 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3120 else {
3121 void *ptr;
3122
3123 /*
3124 * Allocate enough room to align cwq and put an extra
3125 * pointer at the end pointing back to the originally
3126 * allocated pointer which will be used for free.
3127 */
3128 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3129 if (ptr) {
3130 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3131 *(void **)(wq->cpu_wq.single + 1) = ptr;
3132 }
3133 }
3134
3135 /* just in case, make sure it's actually aligned */
3136 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3137 return wq->cpu_wq.v ? 0 : -ENOMEM;
3138 }
3139
3140 static void free_cwqs(struct workqueue_struct *wq)
3141 {
3142 if (!(wq->flags & WQ_UNBOUND))
3143 free_percpu(wq->cpu_wq.pcpu);
3144 else if (wq->cpu_wq.single) {
3145 /* the pointer to free is stored right after the cwq */
3146 kfree(*(void **)(wq->cpu_wq.single + 1));
3147 }
3148 }
3149
3150 static int wq_clamp_max_active(int max_active, unsigned int flags,
3151 const char *name)
3152 {
3153 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3154
3155 if (max_active < 1 || max_active > lim)
3156 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3157 "is out of range, clamping between %d and %d\n",
3158 max_active, name, 1, lim);
3159
3160 return clamp_val(max_active, 1, lim);
3161 }
3162
3163 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3164 unsigned int flags,
3165 int max_active,
3166 struct lock_class_key *key,
3167 const char *lock_name, ...)
3168 {
3169 va_list args, args1;
3170 struct workqueue_struct *wq;
3171 unsigned int cpu;
3172 size_t namelen;
3173
3174 /* determine namelen, allocate wq and format name */
3175 va_start(args, lock_name);
3176 va_copy(args1, args);
3177 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3178
3179 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3180 if (!wq)
3181 goto err;
3182
3183 vsnprintf(wq->name, namelen, fmt, args1);
3184 va_end(args);
3185 va_end(args1);
3186
3187 /*
3188 * Workqueues which may be used during memory reclaim should
3189 * have a rescuer to guarantee forward progress.
3190 */
3191 if (flags & WQ_MEM_RECLAIM)
3192 flags |= WQ_RESCUER;
3193
3194 max_active = max_active ?: WQ_DFL_ACTIVE;
3195 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3196
3197 /* init wq */
3198 wq->flags = flags;
3199 wq->saved_max_active = max_active;
3200 mutex_init(&wq->flush_mutex);
3201 atomic_set(&wq->nr_cwqs_to_flush, 0);
3202 INIT_LIST_HEAD(&wq->flusher_queue);
3203 INIT_LIST_HEAD(&wq->flusher_overflow);
3204
3205 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3206 INIT_LIST_HEAD(&wq->list);
3207
3208 if (alloc_cwqs(wq) < 0)
3209 goto err;
3210
3211 for_each_cwq_cpu(cpu, wq) {
3212 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3213 struct global_cwq *gcwq = get_gcwq(cpu);
3214 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3215
3216 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3217 cwq->pool = &gcwq->pools[pool_idx];
3218 cwq->wq = wq;
3219 cwq->flush_color = -1;
3220 cwq->max_active = max_active;
3221 INIT_LIST_HEAD(&cwq->delayed_works);
3222 }
3223
3224 if (flags & WQ_RESCUER) {
3225 struct worker *rescuer;
3226
3227 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3228 goto err;
3229
3230 wq->rescuer = rescuer = alloc_worker();
3231 if (!rescuer)
3232 goto err;
3233
3234 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3235 wq->name);
3236 if (IS_ERR(rescuer->task))
3237 goto err;
3238
3239 rescuer->task->flags |= PF_THREAD_BOUND;
3240 wake_up_process(rescuer->task);
3241 }
3242
3243 /*
3244 * workqueue_lock protects global freeze state and workqueues
3245 * list. Grab it, set max_active accordingly and add the new
3246 * workqueue to workqueues list.
3247 */
3248 spin_lock(&workqueue_lock);
3249
3250 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3251 for_each_cwq_cpu(cpu, wq)
3252 get_cwq(cpu, wq)->max_active = 0;
3253
3254 list_add(&wq->list, &workqueues);
3255
3256 spin_unlock(&workqueue_lock);
3257
3258 return wq;
3259 err:
3260 if (wq) {
3261 free_cwqs(wq);
3262 free_mayday_mask(wq->mayday_mask);
3263 kfree(wq->rescuer);
3264 kfree(wq);
3265 }
3266 return NULL;
3267 }
3268 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3269
3270 /**
3271 * destroy_workqueue - safely terminate a workqueue
3272 * @wq: target workqueue
3273 *
3274 * Safely destroy a workqueue. All work currently pending will be done first.
3275 */
3276 void destroy_workqueue(struct workqueue_struct *wq)
3277 {
3278 unsigned int cpu;
3279
3280 /* drain it before proceeding with destruction */
3281 drain_workqueue(wq);
3282
3283 /*
3284 * wq list is used to freeze wq, remove from list after
3285 * flushing is complete in case freeze races us.
3286 */
3287 spin_lock(&workqueue_lock);
3288 list_del(&wq->list);
3289 spin_unlock(&workqueue_lock);
3290
3291 /* sanity check */
3292 for_each_cwq_cpu(cpu, wq) {
3293 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3294 int i;
3295
3296 for (i = 0; i < WORK_NR_COLORS; i++)
3297 BUG_ON(cwq->nr_in_flight[i]);
3298 BUG_ON(cwq->nr_active);
3299 BUG_ON(!list_empty(&cwq->delayed_works));
3300 }
3301
3302 if (wq->flags & WQ_RESCUER) {
3303 kthread_stop(wq->rescuer->task);
3304 free_mayday_mask(wq->mayday_mask);
3305 kfree(wq->rescuer);
3306 }
3307
3308 free_cwqs(wq);
3309 kfree(wq);
3310 }
3311 EXPORT_SYMBOL_GPL(destroy_workqueue);
3312
3313 /**
3314 * workqueue_set_max_active - adjust max_active of a workqueue
3315 * @wq: target workqueue
3316 * @max_active: new max_active value.
3317 *
3318 * Set max_active of @wq to @max_active.
3319 *
3320 * CONTEXT:
3321 * Don't call from IRQ context.
3322 */
3323 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3324 {
3325 unsigned int cpu;
3326
3327 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3328
3329 spin_lock(&workqueue_lock);
3330
3331 wq->saved_max_active = max_active;
3332
3333 for_each_cwq_cpu(cpu, wq) {
3334 struct global_cwq *gcwq = get_gcwq(cpu);
3335
3336 spin_lock_irq(&gcwq->lock);
3337
3338 if (!(wq->flags & WQ_FREEZABLE) ||
3339 !(gcwq->flags & GCWQ_FREEZING))
3340 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3341
3342 spin_unlock_irq(&gcwq->lock);
3343 }
3344
3345 spin_unlock(&workqueue_lock);
3346 }
3347 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3348
3349 /**
3350 * workqueue_congested - test whether a workqueue is congested
3351 * @cpu: CPU in question
3352 * @wq: target workqueue
3353 *
3354 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3355 * no synchronization around this function and the test result is
3356 * unreliable and only useful as advisory hints or for debugging.
3357 *
3358 * RETURNS:
3359 * %true if congested, %false otherwise.
3360 */
3361 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3362 {
3363 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3364
3365 return !list_empty(&cwq->delayed_works);
3366 }
3367 EXPORT_SYMBOL_GPL(workqueue_congested);
3368
3369 /**
3370 * work_cpu - return the last known associated cpu for @work
3371 * @work: the work of interest
3372 *
3373 * RETURNS:
3374 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3375 */
3376 unsigned int work_cpu(struct work_struct *work)
3377 {
3378 struct global_cwq *gcwq = get_work_gcwq(work);
3379
3380 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3381 }
3382 EXPORT_SYMBOL_GPL(work_cpu);
3383
3384 /**
3385 * work_busy - test whether a work is currently pending or running
3386 * @work: the work to be tested
3387 *
3388 * Test whether @work is currently pending or running. There is no
3389 * synchronization around this function and the test result is
3390 * unreliable and only useful as advisory hints or for debugging.
3391 * Especially for reentrant wqs, the pending state might hide the
3392 * running state.
3393 *
3394 * RETURNS:
3395 * OR'd bitmask of WORK_BUSY_* bits.
3396 */
3397 unsigned int work_busy(struct work_struct *work)
3398 {
3399 struct global_cwq *gcwq = get_work_gcwq(work);
3400 unsigned long flags;
3401 unsigned int ret = 0;
3402
3403 if (!gcwq)
3404 return false;
3405
3406 spin_lock_irqsave(&gcwq->lock, flags);
3407
3408 if (work_pending(work))
3409 ret |= WORK_BUSY_PENDING;
3410 if (find_worker_executing_work(gcwq, work))
3411 ret |= WORK_BUSY_RUNNING;
3412
3413 spin_unlock_irqrestore(&gcwq->lock, flags);
3414
3415 return ret;
3416 }
3417 EXPORT_SYMBOL_GPL(work_busy);
3418
3419 /*
3420 * CPU hotplug.
3421 *
3422 * There are two challenges in supporting CPU hotplug. Firstly, there
3423 * are a lot of assumptions on strong associations among work, cwq and
3424 * gcwq which make migrating pending and scheduled works very
3425 * difficult to implement without impacting hot paths. Secondly,
3426 * gcwqs serve mix of short, long and very long running works making
3427 * blocked draining impractical.
3428 *
3429 * This is solved by allowing a gcwq to be disassociated from the CPU
3430 * running as an unbound one and allowing it to be reattached later if the
3431 * cpu comes back online.
3432 */
3433
3434 /* claim manager positions of all pools */
3435 static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3436 {
3437 struct worker_pool *pool;
3438
3439 for_each_worker_pool(pool, gcwq)
3440 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3441 spin_lock_irq(&gcwq->lock);
3442 }
3443
3444 /* release manager positions */
3445 static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3446 {
3447 struct worker_pool *pool;
3448
3449 spin_unlock_irq(&gcwq->lock);
3450 for_each_worker_pool(pool, gcwq)
3451 mutex_unlock(&pool->manager_mutex);
3452 }
3453
3454 static void gcwq_unbind_fn(struct work_struct *work)
3455 {
3456 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3457 struct worker_pool *pool;
3458 struct worker *worker;
3459 struct hlist_node *pos;
3460 int i;
3461
3462 BUG_ON(gcwq->cpu != smp_processor_id());
3463
3464 gcwq_claim_management_and_lock(gcwq);
3465
3466 /*
3467 * We've claimed all manager positions. Make all workers unbound
3468 * and set DISASSOCIATED. Before this, all workers except for the
3469 * ones which are still executing works from before the last CPU
3470 * down must be on the cpu. After this, they may become diasporas.
3471 */
3472 for_each_worker_pool(pool, gcwq)
3473 list_for_each_entry(worker, &pool->idle_list, entry)
3474 worker->flags |= WORKER_UNBOUND;
3475
3476 for_each_busy_worker(worker, i, pos, gcwq)
3477 worker->flags |= WORKER_UNBOUND;
3478
3479 gcwq->flags |= GCWQ_DISASSOCIATED;
3480
3481 gcwq_release_management_and_unlock(gcwq);
3482
3483 /*
3484 * Call schedule() so that we cross rq->lock and thus can guarantee
3485 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3486 * as scheduler callbacks may be invoked from other cpus.
3487 */
3488 schedule();
3489
3490 /*
3491 * Sched callbacks are disabled now. Zap nr_running. After this,
3492 * nr_running stays zero and need_more_worker() and keep_working()
3493 * are always true as long as the worklist is not empty. @gcwq now
3494 * behaves as unbound (in terms of concurrency management) gcwq
3495 * which is served by workers tied to the CPU.
3496 *
3497 * On return from this function, the current worker would trigger
3498 * unbound chain execution of pending work items if other workers
3499 * didn't already.
3500 */
3501 for_each_worker_pool(pool, gcwq)
3502 atomic_set(get_pool_nr_running(pool), 0);
3503 }
3504
3505 /*
3506 * Workqueues should be brought up before normal priority CPU notifiers.
3507 * This will be registered high priority CPU notifier.
3508 */
3509 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3510 unsigned long action,
3511 void *hcpu)
3512 {
3513 unsigned int cpu = (unsigned long)hcpu;
3514 struct global_cwq *gcwq = get_gcwq(cpu);
3515 struct worker_pool *pool;
3516
3517 switch (action & ~CPU_TASKS_FROZEN) {
3518 case CPU_UP_PREPARE:
3519 for_each_worker_pool(pool, gcwq) {
3520 struct worker *worker;
3521
3522 if (pool->nr_workers)
3523 continue;
3524
3525 worker = create_worker(pool);
3526 if (!worker)
3527 return NOTIFY_BAD;
3528
3529 spin_lock_irq(&gcwq->lock);
3530 start_worker(worker);
3531 spin_unlock_irq(&gcwq->lock);
3532 }
3533 break;
3534
3535 case CPU_DOWN_FAILED:
3536 case CPU_ONLINE:
3537 gcwq_claim_management_and_lock(gcwq);
3538 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3539 rebind_workers(gcwq);
3540 gcwq_release_management_and_unlock(gcwq);
3541 break;
3542 }
3543 return NOTIFY_OK;
3544 }
3545
3546 /*
3547 * Workqueues should be brought down after normal priority CPU notifiers.
3548 * This will be registered as low priority CPU notifier.
3549 */
3550 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3551 unsigned long action,
3552 void *hcpu)
3553 {
3554 unsigned int cpu = (unsigned long)hcpu;
3555 struct work_struct unbind_work;
3556
3557 switch (action & ~CPU_TASKS_FROZEN) {
3558 case CPU_DOWN_PREPARE:
3559 /* unbinding should happen on the local CPU */
3560 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3561 schedule_work_on(cpu, &unbind_work);
3562 flush_work(&unbind_work);
3563 break;
3564 }
3565 return NOTIFY_OK;
3566 }
3567
3568 #ifdef CONFIG_SMP
3569
3570 struct work_for_cpu {
3571 struct completion completion;
3572 long (*fn)(void *);
3573 void *arg;
3574 long ret;
3575 };
3576
3577 static int do_work_for_cpu(void *_wfc)
3578 {
3579 struct work_for_cpu *wfc = _wfc;
3580 wfc->ret = wfc->fn(wfc->arg);
3581 complete(&wfc->completion);
3582 return 0;
3583 }
3584
3585 /**
3586 * work_on_cpu - run a function in user context on a particular cpu
3587 * @cpu: the cpu to run on
3588 * @fn: the function to run
3589 * @arg: the function arg
3590 *
3591 * This will return the value @fn returns.
3592 * It is up to the caller to ensure that the cpu doesn't go offline.
3593 * The caller must not hold any locks which would prevent @fn from completing.
3594 */
3595 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3596 {
3597 struct task_struct *sub_thread;
3598 struct work_for_cpu wfc = {
3599 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3600 .fn = fn,
3601 .arg = arg,
3602 };
3603
3604 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3605 if (IS_ERR(sub_thread))
3606 return PTR_ERR(sub_thread);
3607 kthread_bind(sub_thread, cpu);
3608 wake_up_process(sub_thread);
3609 wait_for_completion(&wfc.completion);
3610 return wfc.ret;
3611 }
3612 EXPORT_SYMBOL_GPL(work_on_cpu);
3613 #endif /* CONFIG_SMP */
3614
3615 #ifdef CONFIG_FREEZER
3616
3617 /**
3618 * freeze_workqueues_begin - begin freezing workqueues
3619 *
3620 * Start freezing workqueues. After this function returns, all freezable
3621 * workqueues will queue new works to their frozen_works list instead of
3622 * gcwq->worklist.
3623 *
3624 * CONTEXT:
3625 * Grabs and releases workqueue_lock and gcwq->lock's.
3626 */
3627 void freeze_workqueues_begin(void)
3628 {
3629 unsigned int cpu;
3630
3631 spin_lock(&workqueue_lock);
3632
3633 BUG_ON(workqueue_freezing);
3634 workqueue_freezing = true;
3635
3636 for_each_gcwq_cpu(cpu) {
3637 struct global_cwq *gcwq = get_gcwq(cpu);
3638 struct workqueue_struct *wq;
3639
3640 spin_lock_irq(&gcwq->lock);
3641
3642 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3643 gcwq->flags |= GCWQ_FREEZING;
3644
3645 list_for_each_entry(wq, &workqueues, list) {
3646 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3647
3648 if (cwq && wq->flags & WQ_FREEZABLE)
3649 cwq->max_active = 0;
3650 }
3651
3652 spin_unlock_irq(&gcwq->lock);
3653 }
3654
3655 spin_unlock(&workqueue_lock);
3656 }
3657
3658 /**
3659 * freeze_workqueues_busy - are freezable workqueues still busy?
3660 *
3661 * Check whether freezing is complete. This function must be called
3662 * between freeze_workqueues_begin() and thaw_workqueues().
3663 *
3664 * CONTEXT:
3665 * Grabs and releases workqueue_lock.
3666 *
3667 * RETURNS:
3668 * %true if some freezable workqueues are still busy. %false if freezing
3669 * is complete.
3670 */
3671 bool freeze_workqueues_busy(void)
3672 {
3673 unsigned int cpu;
3674 bool busy = false;
3675
3676 spin_lock(&workqueue_lock);
3677
3678 BUG_ON(!workqueue_freezing);
3679
3680 for_each_gcwq_cpu(cpu) {
3681 struct workqueue_struct *wq;
3682 /*
3683 * nr_active is monotonically decreasing. It's safe
3684 * to peek without lock.
3685 */
3686 list_for_each_entry(wq, &workqueues, list) {
3687 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3688
3689 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3690 continue;
3691
3692 BUG_ON(cwq->nr_active < 0);
3693 if (cwq->nr_active) {
3694 busy = true;
3695 goto out_unlock;
3696 }
3697 }
3698 }
3699 out_unlock:
3700 spin_unlock(&workqueue_lock);
3701 return busy;
3702 }
3703
3704 /**
3705 * thaw_workqueues - thaw workqueues
3706 *
3707 * Thaw workqueues. Normal queueing is restored and all collected
3708 * frozen works are transferred to their respective gcwq worklists.
3709 *
3710 * CONTEXT:
3711 * Grabs and releases workqueue_lock and gcwq->lock's.
3712 */
3713 void thaw_workqueues(void)
3714 {
3715 unsigned int cpu;
3716
3717 spin_lock(&workqueue_lock);
3718
3719 if (!workqueue_freezing)
3720 goto out_unlock;
3721
3722 for_each_gcwq_cpu(cpu) {
3723 struct global_cwq *gcwq = get_gcwq(cpu);
3724 struct worker_pool *pool;
3725 struct workqueue_struct *wq;
3726
3727 spin_lock_irq(&gcwq->lock);
3728
3729 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3730 gcwq->flags &= ~GCWQ_FREEZING;
3731
3732 list_for_each_entry(wq, &workqueues, list) {
3733 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3734
3735 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3736 continue;
3737
3738 /* restore max_active and repopulate worklist */
3739 cwq->max_active = wq->saved_max_active;
3740
3741 while (!list_empty(&cwq->delayed_works) &&
3742 cwq->nr_active < cwq->max_active)
3743 cwq_activate_first_delayed(cwq);
3744 }
3745
3746 for_each_worker_pool(pool, gcwq)
3747 wake_up_worker(pool);
3748
3749 spin_unlock_irq(&gcwq->lock);
3750 }
3751
3752 workqueue_freezing = false;
3753 out_unlock:
3754 spin_unlock(&workqueue_lock);
3755 }
3756 #endif /* CONFIG_FREEZER */
3757
3758 static int __init init_workqueues(void)
3759 {
3760 unsigned int cpu;
3761 int i;
3762
3763 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3764 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3765
3766 /* initialize gcwqs */
3767 for_each_gcwq_cpu(cpu) {
3768 struct global_cwq *gcwq = get_gcwq(cpu);
3769 struct worker_pool *pool;
3770
3771 spin_lock_init(&gcwq->lock);
3772 gcwq->cpu = cpu;
3773 gcwq->flags |= GCWQ_DISASSOCIATED;
3774
3775 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3776 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3777
3778 for_each_worker_pool(pool, gcwq) {
3779 pool->gcwq = gcwq;
3780 INIT_LIST_HEAD(&pool->worklist);
3781 INIT_LIST_HEAD(&pool->idle_list);
3782
3783 init_timer_deferrable(&pool->idle_timer);
3784 pool->idle_timer.function = idle_worker_timeout;
3785 pool->idle_timer.data = (unsigned long)pool;
3786
3787 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3788 (unsigned long)pool);
3789
3790 mutex_init(&pool->manager_mutex);
3791 ida_init(&pool->worker_ida);
3792 }
3793
3794 init_waitqueue_head(&gcwq->rebind_hold);
3795 }
3796
3797 /* create the initial worker */
3798 for_each_online_gcwq_cpu(cpu) {
3799 struct global_cwq *gcwq = get_gcwq(cpu);
3800 struct worker_pool *pool;
3801
3802 if (cpu != WORK_CPU_UNBOUND)
3803 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3804
3805 for_each_worker_pool(pool, gcwq) {
3806 struct worker *worker;
3807
3808 worker = create_worker(pool);
3809 BUG_ON(!worker);
3810 spin_lock_irq(&gcwq->lock);
3811 start_worker(worker);
3812 spin_unlock_irq(&gcwq->lock);
3813 }
3814 }
3815
3816 system_wq = alloc_workqueue("events", 0, 0);
3817 system_long_wq = alloc_workqueue("events_long", 0, 0);
3818 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3819 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3820 WQ_UNBOUND_MAX_ACTIVE);
3821 system_freezable_wq = alloc_workqueue("events_freezable",
3822 WQ_FREEZABLE, 0);
3823 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3824 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3825 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3826 !system_unbound_wq || !system_freezable_wq ||
3827 !system_nrt_freezable_wq);
3828 return 0;
3829 }
3830 early_initcall(init_workqueues);
This page took 0.106065 seconds and 6 git commands to generate.