ld: Add _bfd_elf_link_hide_sym_by_version
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2018 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "filenames.h"
25 #include "safe-ctype.h"
26 #include "obstack.h"
27 #include "bfdlink.h"
28
29 #include "ld.h"
30 #include "ldmain.h"
31 #include "ldexp.h"
32 #include "ldlang.h"
33 #include <ldgram.h>
34 #include "ldlex.h"
35 #include "ldmisc.h"
36 #include "ldctor.h"
37 #include "ldfile.h"
38 #include "ldemul.h"
39 #include "fnmatch.h"
40 #include "demangle.h"
41 #include "hashtab.h"
42 #include "elf-bfd.h"
43 #ifdef ENABLE_PLUGINS
44 #include "plugin.h"
45 #endif /* ENABLE_PLUGINS */
46
47 #ifndef offsetof
48 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
49 #endif
50
51 /* Convert between addresses in bytes and sizes in octets.
52 For currently supported targets, octets_per_byte is always a power
53 of two, so we can use shifts. */
54 #define TO_ADDR(X) ((X) >> opb_shift)
55 #define TO_SIZE(X) ((X) << opb_shift)
56
57 /* Local variables. */
58 static struct obstack stat_obstack;
59 static struct obstack map_obstack;
60
61 #define obstack_chunk_alloc xmalloc
62 #define obstack_chunk_free free
63 static const char *entry_symbol_default = "start";
64 static bfd_boolean map_head_is_link_order = FALSE;
65 static lang_output_section_statement_type *default_common_section;
66 static bfd_boolean map_option_f;
67 static bfd_vma print_dot;
68 static lang_input_statement_type *first_file;
69 static const char *current_target;
70 static lang_statement_list_type statement_list;
71 static lang_statement_list_type *stat_save[10];
72 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
73 static struct unique_sections *unique_section_list;
74 static struct asneeded_minfo *asneeded_list_head;
75 static unsigned int opb_shift = 0;
76
77 /* Forward declarations. */
78 static void exp_init_os (etree_type *);
79 static lang_input_statement_type *lookup_name (const char *);
80 static void insert_undefined (const char *);
81 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
82 static void print_statement (lang_statement_union_type *,
83 lang_output_section_statement_type *);
84 static void print_statement_list (lang_statement_union_type *,
85 lang_output_section_statement_type *);
86 static void print_statements (void);
87 static void print_input_section (asection *, bfd_boolean);
88 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
89 static void lang_record_phdrs (void);
90 static void lang_do_version_exports_section (void);
91 static void lang_finalize_version_expr_head
92 (struct bfd_elf_version_expr_head *);
93 static void lang_do_memory_regions (void);
94
95 /* Exported variables. */
96 const char *output_target;
97 lang_output_section_statement_type *abs_output_section;
98 lang_statement_list_type lang_output_section_statement;
99 lang_statement_list_type *stat_ptr = &statement_list;
100 lang_statement_list_type file_chain = { NULL, NULL };
101 lang_statement_list_type input_file_chain;
102 struct bfd_sym_chain entry_symbol = { NULL, NULL };
103 const char *entry_section = ".text";
104 struct lang_input_statement_flags input_flags;
105 bfd_boolean entry_from_cmdline;
106 bfd_boolean undef_from_cmdline;
107 bfd_boolean lang_has_input_file = FALSE;
108 bfd_boolean had_output_filename = FALSE;
109 bfd_boolean lang_float_flag = FALSE;
110 bfd_boolean delete_output_file_on_failure = FALSE;
111 struct lang_phdr *lang_phdr_list;
112 struct lang_nocrossrefs *nocrossref_list;
113 struct asneeded_minfo **asneeded_list_tail;
114
115 /* Functions that traverse the linker script and might evaluate
116 DEFINED() need to increment this at the start of the traversal. */
117 int lang_statement_iteration = 0;
118
119 /* Return TRUE if the PATTERN argument is a wildcard pattern.
120 Although backslashes are treated specially if a pattern contains
121 wildcards, we do not consider the mere presence of a backslash to
122 be enough to cause the pattern to be treated as a wildcard.
123 That lets us handle DOS filenames more naturally. */
124 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
125
126 #define new_stat(x, y) \
127 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
128
129 #define outside_section_address(q) \
130 ((q)->output_offset + (q)->output_section->vma)
131
132 #define outside_symbol_address(q) \
133 ((q)->value + outside_section_address (q->section))
134
135 #define SECTION_NAME_MAP_LENGTH (16)
136
137 void *
138 stat_alloc (size_t size)
139 {
140 return obstack_alloc (&stat_obstack, size);
141 }
142
143 static int
144 name_match (const char *pattern, const char *name)
145 {
146 if (wildcardp (pattern))
147 return fnmatch (pattern, name, 0);
148 return strcmp (pattern, name);
149 }
150
151 /* If PATTERN is of the form archive:file, return a pointer to the
152 separator. If not, return NULL. */
153
154 static char *
155 archive_path (const char *pattern)
156 {
157 char *p = NULL;
158
159 if (link_info.path_separator == 0)
160 return p;
161
162 p = strchr (pattern, link_info.path_separator);
163 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
164 if (p == NULL || link_info.path_separator != ':')
165 return p;
166
167 /* Assume a match on the second char is part of drive specifier,
168 as in "c:\silly.dos". */
169 if (p == pattern + 1 && ISALPHA (*pattern))
170 p = strchr (p + 1, link_info.path_separator);
171 #endif
172 return p;
173 }
174
175 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
176 return whether F matches FILE_SPEC. */
177
178 static bfd_boolean
179 input_statement_is_archive_path (const char *file_spec, char *sep,
180 lang_input_statement_type *f)
181 {
182 bfd_boolean match = FALSE;
183
184 if ((*(sep + 1) == 0
185 || name_match (sep + 1, f->filename) == 0)
186 && ((sep != file_spec)
187 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
188 {
189 match = TRUE;
190
191 if (sep != file_spec)
192 {
193 const char *aname = f->the_bfd->my_archive->filename;
194 *sep = 0;
195 match = name_match (file_spec, aname) == 0;
196 *sep = link_info.path_separator;
197 }
198 }
199 return match;
200 }
201
202 static bfd_boolean
203 unique_section_p (const asection *sec,
204 const lang_output_section_statement_type *os)
205 {
206 struct unique_sections *unam;
207 const char *secnam;
208
209 if (!link_info.resolve_section_groups
210 && sec->owner != NULL
211 && bfd_is_group_section (sec->owner, sec))
212 return !(os != NULL
213 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
214
215 secnam = sec->name;
216 for (unam = unique_section_list; unam; unam = unam->next)
217 if (name_match (unam->name, secnam) == 0)
218 return TRUE;
219
220 return FALSE;
221 }
222
223 /* Generic traversal routines for finding matching sections. */
224
225 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
226 false. */
227
228 static bfd_boolean
229 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
230 lang_input_statement_type *file)
231 {
232 struct name_list *list_tmp;
233
234 for (list_tmp = exclude_list;
235 list_tmp;
236 list_tmp = list_tmp->next)
237 {
238 char *p = archive_path (list_tmp->name);
239
240 if (p != NULL)
241 {
242 if (input_statement_is_archive_path (list_tmp->name, p, file))
243 return TRUE;
244 }
245
246 else if (name_match (list_tmp->name, file->filename) == 0)
247 return TRUE;
248
249 /* FIXME: Perhaps remove the following at some stage? Matching
250 unadorned archives like this was never documented and has
251 been superceded by the archive:path syntax. */
252 else if (file->the_bfd != NULL
253 && file->the_bfd->my_archive != NULL
254 && name_match (list_tmp->name,
255 file->the_bfd->my_archive->filename) == 0)
256 return TRUE;
257 }
258
259 return FALSE;
260 }
261
262 /* Try processing a section against a wildcard. This just calls
263 the callback unless the filename exclusion list is present
264 and excludes the file. It's hardly ever present so this
265 function is very fast. */
266
267 static void
268 walk_wild_consider_section (lang_wild_statement_type *ptr,
269 lang_input_statement_type *file,
270 asection *s,
271 struct wildcard_list *sec,
272 callback_t callback,
273 void *data)
274 {
275 /* Don't process sections from files which were excluded. */
276 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
277 return;
278
279 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
280 }
281
282 /* Lowest common denominator routine that can handle everything correctly,
283 but slowly. */
284
285 static void
286 walk_wild_section_general (lang_wild_statement_type *ptr,
287 lang_input_statement_type *file,
288 callback_t callback,
289 void *data)
290 {
291 asection *s;
292 struct wildcard_list *sec;
293
294 for (s = file->the_bfd->sections; s != NULL; s = s->next)
295 {
296 sec = ptr->section_list;
297 if (sec == NULL)
298 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
299
300 while (sec != NULL)
301 {
302 bfd_boolean skip = FALSE;
303
304 if (sec->spec.name != NULL)
305 {
306 const char *sname = bfd_get_section_name (file->the_bfd, s);
307
308 skip = name_match (sec->spec.name, sname) != 0;
309 }
310
311 if (!skip)
312 walk_wild_consider_section (ptr, file, s, sec, callback, data);
313
314 sec = sec->next;
315 }
316 }
317 }
318
319 /* Routines to find a single section given its name. If there's more
320 than one section with that name, we report that. */
321
322 typedef struct
323 {
324 asection *found_section;
325 bfd_boolean multiple_sections_found;
326 } section_iterator_callback_data;
327
328 static bfd_boolean
329 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
330 {
331 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
332
333 if (d->found_section != NULL)
334 {
335 d->multiple_sections_found = TRUE;
336 return TRUE;
337 }
338
339 d->found_section = s;
340 return FALSE;
341 }
342
343 static asection *
344 find_section (lang_input_statement_type *file,
345 struct wildcard_list *sec,
346 bfd_boolean *multiple_sections_found)
347 {
348 section_iterator_callback_data cb_data = { NULL, FALSE };
349
350 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
351 section_iterator_callback, &cb_data);
352 *multiple_sections_found = cb_data.multiple_sections_found;
353 return cb_data.found_section;
354 }
355
356 /* Code for handling simple wildcards without going through fnmatch,
357 which can be expensive because of charset translations etc. */
358
359 /* A simple wild is a literal string followed by a single '*',
360 where the literal part is at least 4 characters long. */
361
362 static bfd_boolean
363 is_simple_wild (const char *name)
364 {
365 size_t len = strcspn (name, "*?[");
366 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
367 }
368
369 static bfd_boolean
370 match_simple_wild (const char *pattern, const char *name)
371 {
372 /* The first four characters of the pattern are guaranteed valid
373 non-wildcard characters. So we can go faster. */
374 if (pattern[0] != name[0] || pattern[1] != name[1]
375 || pattern[2] != name[2] || pattern[3] != name[3])
376 return FALSE;
377
378 pattern += 4;
379 name += 4;
380 while (*pattern != '*')
381 if (*name++ != *pattern++)
382 return FALSE;
383
384 return TRUE;
385 }
386
387 /* Return the numerical value of the init_priority attribute from
388 section name NAME. */
389
390 static unsigned long
391 get_init_priority (const char *name)
392 {
393 char *end;
394 unsigned long init_priority;
395
396 /* GCC uses the following section names for the init_priority
397 attribute with numerical values 101 and 65535 inclusive. A
398 lower value means a higher priority.
399
400 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
401 decimal numerical value of the init_priority attribute.
402 The order of execution in .init_array is forward and
403 .fini_array is backward.
404 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
405 decimal numerical value of the init_priority attribute.
406 The order of execution in .ctors is backward and .dtors
407 is forward.
408 */
409 if (strncmp (name, ".init_array.", 12) == 0
410 || strncmp (name, ".fini_array.", 12) == 0)
411 {
412 init_priority = strtoul (name + 12, &end, 10);
413 return *end ? 0 : init_priority;
414 }
415 else if (strncmp (name, ".ctors.", 7) == 0
416 || strncmp (name, ".dtors.", 7) == 0)
417 {
418 init_priority = strtoul (name + 7, &end, 10);
419 return *end ? 0 : 65535 - init_priority;
420 }
421
422 return 0;
423 }
424
425 /* Compare sections ASEC and BSEC according to SORT. */
426
427 static int
428 compare_section (sort_type sort, asection *asec, asection *bsec)
429 {
430 int ret;
431 unsigned long ainit_priority, binit_priority;
432
433 switch (sort)
434 {
435 default:
436 abort ();
437
438 case by_init_priority:
439 ainit_priority
440 = get_init_priority (bfd_get_section_name (asec->owner, asec));
441 binit_priority
442 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
443 if (ainit_priority == 0 || binit_priority == 0)
444 goto sort_by_name;
445 ret = ainit_priority - binit_priority;
446 if (ret)
447 break;
448 else
449 goto sort_by_name;
450
451 case by_alignment_name:
452 ret = (bfd_section_alignment (bsec->owner, bsec)
453 - bfd_section_alignment (asec->owner, asec));
454 if (ret)
455 break;
456 /* Fall through. */
457
458 case by_name:
459 sort_by_name:
460 ret = strcmp (bfd_get_section_name (asec->owner, asec),
461 bfd_get_section_name (bsec->owner, bsec));
462 break;
463
464 case by_name_alignment:
465 ret = strcmp (bfd_get_section_name (asec->owner, asec),
466 bfd_get_section_name (bsec->owner, bsec));
467 if (ret)
468 break;
469 /* Fall through. */
470
471 case by_alignment:
472 ret = (bfd_section_alignment (bsec->owner, bsec)
473 - bfd_section_alignment (asec->owner, asec));
474 break;
475 }
476
477 return ret;
478 }
479
480 /* Build a Binary Search Tree to sort sections, unlike insertion sort
481 used in wild_sort(). BST is considerably faster if the number of
482 of sections are large. */
483
484 static lang_section_bst_type **
485 wild_sort_fast (lang_wild_statement_type *wild,
486 struct wildcard_list *sec,
487 lang_input_statement_type *file ATTRIBUTE_UNUSED,
488 asection *section)
489 {
490 lang_section_bst_type **tree;
491
492 tree = &wild->tree;
493 if (!wild->filenames_sorted
494 && (sec == NULL || sec->spec.sorted == none))
495 {
496 /* Append at the right end of tree. */
497 while (*tree)
498 tree = &((*tree)->right);
499 return tree;
500 }
501
502 while (*tree)
503 {
504 /* Find the correct node to append this section. */
505 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
506 tree = &((*tree)->left);
507 else
508 tree = &((*tree)->right);
509 }
510
511 return tree;
512 }
513
514 /* Use wild_sort_fast to build a BST to sort sections. */
515
516 static void
517 output_section_callback_fast (lang_wild_statement_type *ptr,
518 struct wildcard_list *sec,
519 asection *section,
520 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
521 lang_input_statement_type *file,
522 void *output)
523 {
524 lang_section_bst_type *node;
525 lang_section_bst_type **tree;
526 lang_output_section_statement_type *os;
527
528 os = (lang_output_section_statement_type *) output;
529
530 if (unique_section_p (section, os))
531 return;
532
533 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
534 node->left = 0;
535 node->right = 0;
536 node->section = section;
537
538 tree = wild_sort_fast (ptr, sec, file, section);
539 if (tree != NULL)
540 *tree = node;
541 }
542
543 /* Convert a sorted sections' BST back to list form. */
544
545 static void
546 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
547 lang_section_bst_type *tree,
548 void *output)
549 {
550 if (tree->left)
551 output_section_callback_tree_to_list (ptr, tree->left, output);
552
553 lang_add_section (&ptr->children, tree->section, NULL,
554 (lang_output_section_statement_type *) output);
555
556 if (tree->right)
557 output_section_callback_tree_to_list (ptr, tree->right, output);
558
559 free (tree);
560 }
561
562 /* Specialized, optimized routines for handling different kinds of
563 wildcards */
564
565 static void
566 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
567 lang_input_statement_type *file,
568 callback_t callback,
569 void *data)
570 {
571 /* We can just do a hash lookup for the section with the right name.
572 But if that lookup discovers more than one section with the name
573 (should be rare), we fall back to the general algorithm because
574 we would otherwise have to sort the sections to make sure they
575 get processed in the bfd's order. */
576 bfd_boolean multiple_sections_found;
577 struct wildcard_list *sec0 = ptr->handler_data[0];
578 asection *s0 = find_section (file, sec0, &multiple_sections_found);
579
580 if (multiple_sections_found)
581 walk_wild_section_general (ptr, file, callback, data);
582 else if (s0)
583 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
584 }
585
586 static void
587 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
588 lang_input_statement_type *file,
589 callback_t callback,
590 void *data)
591 {
592 asection *s;
593 struct wildcard_list *wildsec0 = ptr->handler_data[0];
594
595 for (s = file->the_bfd->sections; s != NULL; s = s->next)
596 {
597 const char *sname = bfd_get_section_name (file->the_bfd, s);
598 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
599
600 if (!skip)
601 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
602 }
603 }
604
605 static void
606 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
607 lang_input_statement_type *file,
608 callback_t callback,
609 void *data)
610 {
611 asection *s;
612 struct wildcard_list *sec0 = ptr->handler_data[0];
613 struct wildcard_list *wildsec1 = ptr->handler_data[1];
614 bfd_boolean multiple_sections_found;
615 asection *s0 = find_section (file, sec0, &multiple_sections_found);
616
617 if (multiple_sections_found)
618 {
619 walk_wild_section_general (ptr, file, callback, data);
620 return;
621 }
622
623 /* Note that if the section was not found, s0 is NULL and
624 we'll simply never succeed the s == s0 test below. */
625 for (s = file->the_bfd->sections; s != NULL; s = s->next)
626 {
627 /* Recall that in this code path, a section cannot satisfy more
628 than one spec, so if s == s0 then it cannot match
629 wildspec1. */
630 if (s == s0)
631 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
632 else
633 {
634 const char *sname = bfd_get_section_name (file->the_bfd, s);
635 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
636
637 if (!skip)
638 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
639 data);
640 }
641 }
642 }
643
644 static void
645 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
646 lang_input_statement_type *file,
647 callback_t callback,
648 void *data)
649 {
650 asection *s;
651 struct wildcard_list *sec0 = ptr->handler_data[0];
652 struct wildcard_list *wildsec1 = ptr->handler_data[1];
653 struct wildcard_list *wildsec2 = ptr->handler_data[2];
654 bfd_boolean multiple_sections_found;
655 asection *s0 = find_section (file, sec0, &multiple_sections_found);
656
657 if (multiple_sections_found)
658 {
659 walk_wild_section_general (ptr, file, callback, data);
660 return;
661 }
662
663 for (s = file->the_bfd->sections; s != NULL; s = s->next)
664 {
665 if (s == s0)
666 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
667 else
668 {
669 const char *sname = bfd_get_section_name (file->the_bfd, s);
670 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
671
672 if (!skip)
673 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
674 else
675 {
676 skip = !match_simple_wild (wildsec2->spec.name, sname);
677 if (!skip)
678 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
679 data);
680 }
681 }
682 }
683 }
684
685 static void
686 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
687 lang_input_statement_type *file,
688 callback_t callback,
689 void *data)
690 {
691 asection *s;
692 struct wildcard_list *sec0 = ptr->handler_data[0];
693 struct wildcard_list *sec1 = ptr->handler_data[1];
694 struct wildcard_list *wildsec2 = ptr->handler_data[2];
695 struct wildcard_list *wildsec3 = ptr->handler_data[3];
696 bfd_boolean multiple_sections_found;
697 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
698
699 if (multiple_sections_found)
700 {
701 walk_wild_section_general (ptr, file, callback, data);
702 return;
703 }
704
705 s1 = find_section (file, sec1, &multiple_sections_found);
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 if (s == s1)
718 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
719 else
720 {
721 const char *sname = bfd_get_section_name (file->the_bfd, s);
722 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
723 sname);
724
725 if (!skip)
726 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
727 data);
728 else
729 {
730 skip = !match_simple_wild (wildsec3->spec.name, sname);
731 if (!skip)
732 walk_wild_consider_section (ptr, file, s, wildsec3,
733 callback, data);
734 }
735 }
736 }
737 }
738
739 static void
740 walk_wild_section (lang_wild_statement_type *ptr,
741 lang_input_statement_type *file,
742 callback_t callback,
743 void *data)
744 {
745 if (file->flags.just_syms)
746 return;
747
748 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
749 }
750
751 /* Returns TRUE when name1 is a wildcard spec that might match
752 something name2 can match. We're conservative: we return FALSE
753 only if the prefixes of name1 and name2 are different up to the
754 first wildcard character. */
755
756 static bfd_boolean
757 wild_spec_can_overlap (const char *name1, const char *name2)
758 {
759 size_t prefix1_len = strcspn (name1, "?*[");
760 size_t prefix2_len = strcspn (name2, "?*[");
761 size_t min_prefix_len;
762
763 /* Note that if there is no wildcard character, then we treat the
764 terminating 0 as part of the prefix. Thus ".text" won't match
765 ".text." or ".text.*", for example. */
766 if (name1[prefix1_len] == '\0')
767 prefix1_len++;
768 if (name2[prefix2_len] == '\0')
769 prefix2_len++;
770
771 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
772
773 return memcmp (name1, name2, min_prefix_len) == 0;
774 }
775
776 /* Select specialized code to handle various kinds of wildcard
777 statements. */
778
779 static void
780 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
781 {
782 int sec_count = 0;
783 int wild_name_count = 0;
784 struct wildcard_list *sec;
785 int signature;
786 int data_counter;
787
788 ptr->walk_wild_section_handler = walk_wild_section_general;
789 ptr->handler_data[0] = NULL;
790 ptr->handler_data[1] = NULL;
791 ptr->handler_data[2] = NULL;
792 ptr->handler_data[3] = NULL;
793 ptr->tree = NULL;
794
795 /* Count how many wildcard_specs there are, and how many of those
796 actually use wildcards in the name. Also, bail out if any of the
797 wildcard names are NULL. (Can this actually happen?
798 walk_wild_section used to test for it.) And bail out if any
799 of the wildcards are more complex than a simple string
800 ending in a single '*'. */
801 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
802 {
803 ++sec_count;
804 if (sec->spec.name == NULL)
805 return;
806 if (wildcardp (sec->spec.name))
807 {
808 ++wild_name_count;
809 if (!is_simple_wild (sec->spec.name))
810 return;
811 }
812 }
813
814 /* The zero-spec case would be easy to optimize but it doesn't
815 happen in practice. Likewise, more than 4 specs doesn't
816 happen in practice. */
817 if (sec_count == 0 || sec_count > 4)
818 return;
819
820 /* Check that no two specs can match the same section. */
821 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
822 {
823 struct wildcard_list *sec2;
824 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
825 {
826 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
827 return;
828 }
829 }
830
831 signature = (sec_count << 8) + wild_name_count;
832 switch (signature)
833 {
834 case 0x0100:
835 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
836 break;
837 case 0x0101:
838 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
839 break;
840 case 0x0201:
841 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
842 break;
843 case 0x0302:
844 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
845 break;
846 case 0x0402:
847 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
848 break;
849 default:
850 return;
851 }
852
853 /* Now fill the data array with pointers to the specs, first the
854 specs with non-wildcard names, then the specs with wildcard
855 names. It's OK to process the specs in different order from the
856 given order, because we've already determined that no section
857 will match more than one spec. */
858 data_counter = 0;
859 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
860 if (!wildcardp (sec->spec.name))
861 ptr->handler_data[data_counter++] = sec;
862 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
863 if (wildcardp (sec->spec.name))
864 ptr->handler_data[data_counter++] = sec;
865 }
866
867 /* Handle a wild statement for a single file F. */
868
869 static void
870 walk_wild_file (lang_wild_statement_type *s,
871 lang_input_statement_type *f,
872 callback_t callback,
873 void *data)
874 {
875 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
876 return;
877
878 if (f->the_bfd == NULL
879 || !bfd_check_format (f->the_bfd, bfd_archive))
880 walk_wild_section (s, f, callback, data);
881 else
882 {
883 bfd *member;
884
885 /* This is an archive file. We must map each member of the
886 archive separately. */
887 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
888 while (member != NULL)
889 {
890 /* When lookup_name is called, it will call the add_symbols
891 entry point for the archive. For each element of the
892 archive which is included, BFD will call ldlang_add_file,
893 which will set the usrdata field of the member to the
894 lang_input_statement. */
895 if (member->usrdata != NULL)
896 {
897 walk_wild_section (s,
898 (lang_input_statement_type *) member->usrdata,
899 callback, data);
900 }
901
902 member = bfd_openr_next_archived_file (f->the_bfd, member);
903 }
904 }
905 }
906
907 static void
908 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
909 {
910 const char *file_spec = s->filename;
911 char *p;
912
913 if (file_spec == NULL)
914 {
915 /* Perform the iteration over all files in the list. */
916 LANG_FOR_EACH_INPUT_STATEMENT (f)
917 {
918 walk_wild_file (s, f, callback, data);
919 }
920 }
921 else if ((p = archive_path (file_spec)) != NULL)
922 {
923 LANG_FOR_EACH_INPUT_STATEMENT (f)
924 {
925 if (input_statement_is_archive_path (file_spec, p, f))
926 walk_wild_file (s, f, callback, data);
927 }
928 }
929 else if (wildcardp (file_spec))
930 {
931 LANG_FOR_EACH_INPUT_STATEMENT (f)
932 {
933 if (fnmatch (file_spec, f->filename, 0) == 0)
934 walk_wild_file (s, f, callback, data);
935 }
936 }
937 else
938 {
939 lang_input_statement_type *f;
940
941 /* Perform the iteration over a single file. */
942 f = lookup_name (file_spec);
943 if (f)
944 walk_wild_file (s, f, callback, data);
945 }
946 }
947
948 /* lang_for_each_statement walks the parse tree and calls the provided
949 function for each node, except those inside output section statements
950 with constraint set to -1. */
951
952 void
953 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
954 lang_statement_union_type *s)
955 {
956 for (; s != NULL; s = s->header.next)
957 {
958 func (s);
959
960 switch (s->header.type)
961 {
962 case lang_constructors_statement_enum:
963 lang_for_each_statement_worker (func, constructor_list.head);
964 break;
965 case lang_output_section_statement_enum:
966 if (s->output_section_statement.constraint != -1)
967 lang_for_each_statement_worker
968 (func, s->output_section_statement.children.head);
969 break;
970 case lang_wild_statement_enum:
971 lang_for_each_statement_worker (func,
972 s->wild_statement.children.head);
973 break;
974 case lang_group_statement_enum:
975 lang_for_each_statement_worker (func,
976 s->group_statement.children.head);
977 break;
978 case lang_data_statement_enum:
979 case lang_reloc_statement_enum:
980 case lang_object_symbols_statement_enum:
981 case lang_output_statement_enum:
982 case lang_target_statement_enum:
983 case lang_input_section_enum:
984 case lang_input_statement_enum:
985 case lang_assignment_statement_enum:
986 case lang_padding_statement_enum:
987 case lang_address_statement_enum:
988 case lang_fill_statement_enum:
989 case lang_insert_statement_enum:
990 break;
991 default:
992 FAIL ();
993 break;
994 }
995 }
996 }
997
998 void
999 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1000 {
1001 lang_for_each_statement_worker (func, statement_list.head);
1002 }
1003
1004 /*----------------------------------------------------------------------*/
1005
1006 void
1007 lang_list_init (lang_statement_list_type *list)
1008 {
1009 list->head = NULL;
1010 list->tail = &list->head;
1011 }
1012
1013 void
1014 push_stat_ptr (lang_statement_list_type *new_ptr)
1015 {
1016 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1017 abort ();
1018 *stat_save_ptr++ = stat_ptr;
1019 stat_ptr = new_ptr;
1020 }
1021
1022 void
1023 pop_stat_ptr (void)
1024 {
1025 if (stat_save_ptr <= stat_save)
1026 abort ();
1027 stat_ptr = *--stat_save_ptr;
1028 }
1029
1030 /* Build a new statement node for the parse tree. */
1031
1032 static lang_statement_union_type *
1033 new_statement (enum statement_enum type,
1034 size_t size,
1035 lang_statement_list_type *list)
1036 {
1037 lang_statement_union_type *new_stmt;
1038
1039 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1040 new_stmt->header.type = type;
1041 new_stmt->header.next = NULL;
1042 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1043 return new_stmt;
1044 }
1045
1046 /* Build a new input file node for the language. There are several
1047 ways in which we treat an input file, eg, we only look at symbols,
1048 or prefix it with a -l etc.
1049
1050 We can be supplied with requests for input files more than once;
1051 they may, for example be split over several lines like foo.o(.text)
1052 foo.o(.data) etc, so when asked for a file we check that we haven't
1053 got it already so we don't duplicate the bfd. */
1054
1055 static lang_input_statement_type *
1056 new_afile (const char *name,
1057 lang_input_file_enum_type file_type,
1058 const char *target,
1059 bfd_boolean add_to_list)
1060 {
1061 lang_input_statement_type *p;
1062
1063 lang_has_input_file = TRUE;
1064
1065 if (add_to_list)
1066 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1067 else
1068 {
1069 p = (lang_input_statement_type *)
1070 stat_alloc (sizeof (lang_input_statement_type));
1071 p->header.type = lang_input_statement_enum;
1072 p->header.next = NULL;
1073 }
1074
1075 memset (&p->the_bfd, 0,
1076 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1077 p->target = target;
1078 p->flags.dynamic = input_flags.dynamic;
1079 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1080 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1081 p->flags.whole_archive = input_flags.whole_archive;
1082 p->flags.sysrooted = input_flags.sysrooted;
1083
1084 switch (file_type)
1085 {
1086 case lang_input_file_is_symbols_only_enum:
1087 p->filename = name;
1088 p->local_sym_name = name;
1089 p->flags.real = TRUE;
1090 p->flags.just_syms = TRUE;
1091 break;
1092 case lang_input_file_is_fake_enum:
1093 p->filename = name;
1094 p->local_sym_name = name;
1095 break;
1096 case lang_input_file_is_l_enum:
1097 if (name[0] == ':' && name[1] != '\0')
1098 {
1099 p->filename = name + 1;
1100 p->flags.full_name_provided = TRUE;
1101 }
1102 else
1103 p->filename = name;
1104 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1105 p->flags.maybe_archive = TRUE;
1106 p->flags.real = TRUE;
1107 p->flags.search_dirs = TRUE;
1108 break;
1109 case lang_input_file_is_marker_enum:
1110 p->filename = name;
1111 p->local_sym_name = name;
1112 p->flags.search_dirs = TRUE;
1113 break;
1114 case lang_input_file_is_search_file_enum:
1115 p->filename = name;
1116 p->local_sym_name = name;
1117 p->flags.real = TRUE;
1118 p->flags.search_dirs = TRUE;
1119 break;
1120 case lang_input_file_is_file_enum:
1121 p->filename = name;
1122 p->local_sym_name = name;
1123 p->flags.real = TRUE;
1124 break;
1125 default:
1126 FAIL ();
1127 }
1128
1129 lang_statement_append (&input_file_chain,
1130 (lang_statement_union_type *) p,
1131 &p->next_real_file);
1132 return p;
1133 }
1134
1135 lang_input_statement_type *
1136 lang_add_input_file (const char *name,
1137 lang_input_file_enum_type file_type,
1138 const char *target)
1139 {
1140 if (name != NULL
1141 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1142 {
1143 lang_input_statement_type *ret;
1144 char *sysrooted_name
1145 = concat (ld_sysroot,
1146 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1147 (const char *) NULL);
1148
1149 /* We've now forcibly prepended the sysroot, making the input
1150 file independent of the context. Therefore, temporarily
1151 force a non-sysrooted context for this statement, so it won't
1152 get the sysroot prepended again when opened. (N.B. if it's a
1153 script, any child nodes with input files starting with "/"
1154 will be handled as "sysrooted" as they'll be found to be
1155 within the sysroot subdirectory.) */
1156 unsigned int outer_sysrooted = input_flags.sysrooted;
1157 input_flags.sysrooted = 0;
1158 ret = new_afile (sysrooted_name, file_type, target, TRUE);
1159 input_flags.sysrooted = outer_sysrooted;
1160 return ret;
1161 }
1162
1163 return new_afile (name, file_type, target, TRUE);
1164 }
1165
1166 struct out_section_hash_entry
1167 {
1168 struct bfd_hash_entry root;
1169 lang_statement_union_type s;
1170 };
1171
1172 /* The hash table. */
1173
1174 static struct bfd_hash_table output_section_statement_table;
1175
1176 /* Support routines for the hash table used by lang_output_section_find,
1177 initialize the table, fill in an entry and remove the table. */
1178
1179 static struct bfd_hash_entry *
1180 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1181 struct bfd_hash_table *table,
1182 const char *string)
1183 {
1184 lang_output_section_statement_type **nextp;
1185 struct out_section_hash_entry *ret;
1186
1187 if (entry == NULL)
1188 {
1189 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1190 sizeof (*ret));
1191 if (entry == NULL)
1192 return entry;
1193 }
1194
1195 entry = bfd_hash_newfunc (entry, table, string);
1196 if (entry == NULL)
1197 return entry;
1198
1199 ret = (struct out_section_hash_entry *) entry;
1200 memset (&ret->s, 0, sizeof (ret->s));
1201 ret->s.header.type = lang_output_section_statement_enum;
1202 ret->s.output_section_statement.subsection_alignment = -1;
1203 ret->s.output_section_statement.section_alignment = -1;
1204 ret->s.output_section_statement.block_value = 1;
1205 lang_list_init (&ret->s.output_section_statement.children);
1206 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1207
1208 /* For every output section statement added to the list, except the
1209 first one, lang_output_section_statement.tail points to the "next"
1210 field of the last element of the list. */
1211 if (lang_output_section_statement.head != NULL)
1212 ret->s.output_section_statement.prev
1213 = ((lang_output_section_statement_type *)
1214 ((char *) lang_output_section_statement.tail
1215 - offsetof (lang_output_section_statement_type, next)));
1216
1217 /* GCC's strict aliasing rules prevent us from just casting the
1218 address, so we store the pointer in a variable and cast that
1219 instead. */
1220 nextp = &ret->s.output_section_statement.next;
1221 lang_statement_append (&lang_output_section_statement,
1222 &ret->s,
1223 (lang_statement_union_type **) nextp);
1224 return &ret->root;
1225 }
1226
1227 static void
1228 output_section_statement_table_init (void)
1229 {
1230 if (!bfd_hash_table_init_n (&output_section_statement_table,
1231 output_section_statement_newfunc,
1232 sizeof (struct out_section_hash_entry),
1233 61))
1234 einfo (_("%F%P: can not create hash table: %E\n"));
1235 }
1236
1237 static void
1238 output_section_statement_table_free (void)
1239 {
1240 bfd_hash_table_free (&output_section_statement_table);
1241 }
1242
1243 /* Build enough state so that the parser can build its tree. */
1244
1245 void
1246 lang_init (void)
1247 {
1248 obstack_begin (&stat_obstack, 1000);
1249
1250 stat_ptr = &statement_list;
1251
1252 output_section_statement_table_init ();
1253
1254 lang_list_init (stat_ptr);
1255
1256 lang_list_init (&input_file_chain);
1257 lang_list_init (&lang_output_section_statement);
1258 lang_list_init (&file_chain);
1259 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1260 NULL);
1261 abs_output_section =
1262 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1263
1264 abs_output_section->bfd_section = bfd_abs_section_ptr;
1265
1266 asneeded_list_head = NULL;
1267 asneeded_list_tail = &asneeded_list_head;
1268 }
1269
1270 void
1271 lang_finish (void)
1272 {
1273 output_section_statement_table_free ();
1274 }
1275
1276 /*----------------------------------------------------------------------
1277 A region is an area of memory declared with the
1278 MEMORY { name:org=exp, len=exp ... }
1279 syntax.
1280
1281 We maintain a list of all the regions here.
1282
1283 If no regions are specified in the script, then the default is used
1284 which is created when looked up to be the entire data space.
1285
1286 If create is true we are creating a region inside a MEMORY block.
1287 In this case it is probably an error to create a region that has
1288 already been created. If we are not inside a MEMORY block it is
1289 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1290 and so we issue a warning.
1291
1292 Each region has at least one name. The first name is either
1293 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1294 alias names to an existing region within a script with
1295 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1296 region. */
1297
1298 static lang_memory_region_type *lang_memory_region_list;
1299 static lang_memory_region_type **lang_memory_region_list_tail
1300 = &lang_memory_region_list;
1301
1302 lang_memory_region_type *
1303 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1304 {
1305 lang_memory_region_name *n;
1306 lang_memory_region_type *r;
1307 lang_memory_region_type *new_region;
1308
1309 /* NAME is NULL for LMA memspecs if no region was specified. */
1310 if (name == NULL)
1311 return NULL;
1312
1313 for (r = lang_memory_region_list; r != NULL; r = r->next)
1314 for (n = &r->name_list; n != NULL; n = n->next)
1315 if (strcmp (n->name, name) == 0)
1316 {
1317 if (create)
1318 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1319 NULL, name);
1320 return r;
1321 }
1322
1323 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1324 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1325 NULL, name);
1326
1327 new_region = (lang_memory_region_type *)
1328 stat_alloc (sizeof (lang_memory_region_type));
1329
1330 new_region->name_list.name = xstrdup (name);
1331 new_region->name_list.next = NULL;
1332 new_region->next = NULL;
1333 new_region->origin_exp = NULL;
1334 new_region->origin = 0;
1335 new_region->length_exp = NULL;
1336 new_region->length = ~(bfd_size_type) 0;
1337 new_region->current = 0;
1338 new_region->last_os = NULL;
1339 new_region->flags = 0;
1340 new_region->not_flags = 0;
1341 new_region->had_full_message = FALSE;
1342
1343 *lang_memory_region_list_tail = new_region;
1344 lang_memory_region_list_tail = &new_region->next;
1345
1346 return new_region;
1347 }
1348
1349 void
1350 lang_memory_region_alias (const char *alias, const char *region_name)
1351 {
1352 lang_memory_region_name *n;
1353 lang_memory_region_type *r;
1354 lang_memory_region_type *region;
1355
1356 /* The default region must be unique. This ensures that it is not necessary
1357 to iterate through the name list if someone wants the check if a region is
1358 the default memory region. */
1359 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1360 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1361 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1362
1363 /* Look for the target region and check if the alias is not already
1364 in use. */
1365 region = NULL;
1366 for (r = lang_memory_region_list; r != NULL; r = r->next)
1367 for (n = &r->name_list; n != NULL; n = n->next)
1368 {
1369 if (region == NULL && strcmp (n->name, region_name) == 0)
1370 region = r;
1371 if (strcmp (n->name, alias) == 0)
1372 einfo (_("%F%P:%pS: error: redefinition of memory region "
1373 "alias `%s'\n"),
1374 NULL, alias);
1375 }
1376
1377 /* Check if the target region exists. */
1378 if (region == NULL)
1379 einfo (_("%F%P:%pS: error: memory region `%s' "
1380 "for alias `%s' does not exist\n"),
1381 NULL, region_name, alias);
1382
1383 /* Add alias to region name list. */
1384 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1385 n->name = xstrdup (alias);
1386 n->next = region->name_list.next;
1387 region->name_list.next = n;
1388 }
1389
1390 static lang_memory_region_type *
1391 lang_memory_default (asection *section)
1392 {
1393 lang_memory_region_type *p;
1394
1395 flagword sec_flags = section->flags;
1396
1397 /* Override SEC_DATA to mean a writable section. */
1398 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1399 sec_flags |= SEC_DATA;
1400
1401 for (p = lang_memory_region_list; p != NULL; p = p->next)
1402 {
1403 if ((p->flags & sec_flags) != 0
1404 && (p->not_flags & sec_flags) == 0)
1405 {
1406 return p;
1407 }
1408 }
1409 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1410 }
1411
1412 /* Get the output section statement directly from the userdata. */
1413
1414 lang_output_section_statement_type *
1415 lang_output_section_get (const asection *output_section)
1416 {
1417 return get_userdata (output_section);
1418 }
1419
1420 /* Find or create an output_section_statement with the given NAME.
1421 If CONSTRAINT is non-zero match one with that constraint, otherwise
1422 match any non-negative constraint. If CREATE, always make a
1423 new output_section_statement for SPECIAL CONSTRAINT. */
1424
1425 lang_output_section_statement_type *
1426 lang_output_section_statement_lookup (const char *name,
1427 int constraint,
1428 bfd_boolean create)
1429 {
1430 struct out_section_hash_entry *entry;
1431
1432 entry = ((struct out_section_hash_entry *)
1433 bfd_hash_lookup (&output_section_statement_table, name,
1434 create, FALSE));
1435 if (entry == NULL)
1436 {
1437 if (create)
1438 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1439 return NULL;
1440 }
1441
1442 if (entry->s.output_section_statement.name != NULL)
1443 {
1444 /* We have a section of this name, but it might not have the correct
1445 constraint. */
1446 struct out_section_hash_entry *last_ent;
1447
1448 name = entry->s.output_section_statement.name;
1449 if (create && constraint == SPECIAL)
1450 /* Not traversing to the end reverses the order of the second
1451 and subsequent SPECIAL sections in the hash table chain,
1452 but that shouldn't matter. */
1453 last_ent = entry;
1454 else
1455 do
1456 {
1457 if (constraint == entry->s.output_section_statement.constraint
1458 || (constraint == 0
1459 && entry->s.output_section_statement.constraint >= 0))
1460 return &entry->s.output_section_statement;
1461 last_ent = entry;
1462 entry = (struct out_section_hash_entry *) entry->root.next;
1463 }
1464 while (entry != NULL
1465 && name == entry->s.output_section_statement.name);
1466
1467 if (!create)
1468 return NULL;
1469
1470 entry
1471 = ((struct out_section_hash_entry *)
1472 output_section_statement_newfunc (NULL,
1473 &output_section_statement_table,
1474 name));
1475 if (entry == NULL)
1476 {
1477 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1478 return NULL;
1479 }
1480 entry->root = last_ent->root;
1481 last_ent->root.next = &entry->root;
1482 }
1483
1484 entry->s.output_section_statement.name = name;
1485 entry->s.output_section_statement.constraint = constraint;
1486 return &entry->s.output_section_statement;
1487 }
1488
1489 /* Find the next output_section_statement with the same name as OS.
1490 If CONSTRAINT is non-zero, find one with that constraint otherwise
1491 match any non-negative constraint. */
1492
1493 lang_output_section_statement_type *
1494 next_matching_output_section_statement (lang_output_section_statement_type *os,
1495 int constraint)
1496 {
1497 /* All output_section_statements are actually part of a
1498 struct out_section_hash_entry. */
1499 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1500 ((char *) os
1501 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1502 const char *name = os->name;
1503
1504 ASSERT (name == entry->root.string);
1505 do
1506 {
1507 entry = (struct out_section_hash_entry *) entry->root.next;
1508 if (entry == NULL
1509 || name != entry->s.output_section_statement.name)
1510 return NULL;
1511 }
1512 while (constraint != entry->s.output_section_statement.constraint
1513 && (constraint != 0
1514 || entry->s.output_section_statement.constraint < 0));
1515
1516 return &entry->s.output_section_statement;
1517 }
1518
1519 /* A variant of lang_output_section_find used by place_orphan.
1520 Returns the output statement that should precede a new output
1521 statement for SEC. If an exact match is found on certain flags,
1522 sets *EXACT too. */
1523
1524 lang_output_section_statement_type *
1525 lang_output_section_find_by_flags (const asection *sec,
1526 flagword sec_flags,
1527 lang_output_section_statement_type **exact,
1528 lang_match_sec_type_func match_type)
1529 {
1530 lang_output_section_statement_type *first, *look, *found;
1531 flagword look_flags, differ;
1532
1533 /* We know the first statement on this list is *ABS*. May as well
1534 skip it. */
1535 first = &lang_output_section_statement.head->output_section_statement;
1536 first = first->next;
1537
1538 /* First try for an exact match. */
1539 found = NULL;
1540 for (look = first; look; look = look->next)
1541 {
1542 look_flags = look->flags;
1543 if (look->bfd_section != NULL)
1544 {
1545 look_flags = look->bfd_section->flags;
1546 if (match_type && !match_type (link_info.output_bfd,
1547 look->bfd_section,
1548 sec->owner, sec))
1549 continue;
1550 }
1551 differ = look_flags ^ sec_flags;
1552 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1553 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1554 found = look;
1555 }
1556 if (found != NULL)
1557 {
1558 if (exact != NULL)
1559 *exact = found;
1560 return found;
1561 }
1562
1563 if ((sec_flags & SEC_CODE) != 0
1564 && (sec_flags & SEC_ALLOC) != 0)
1565 {
1566 /* Try for a rw code section. */
1567 for (look = first; look; look = look->next)
1568 {
1569 look_flags = look->flags;
1570 if (look->bfd_section != NULL)
1571 {
1572 look_flags = look->bfd_section->flags;
1573 if (match_type && !match_type (link_info.output_bfd,
1574 look->bfd_section,
1575 sec->owner, sec))
1576 continue;
1577 }
1578 differ = look_flags ^ sec_flags;
1579 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1580 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1581 found = look;
1582 }
1583 }
1584 else if ((sec_flags & SEC_READONLY) != 0
1585 && (sec_flags & SEC_ALLOC) != 0)
1586 {
1587 /* .rodata can go after .text, .sdata2 after .rodata. */
1588 for (look = first; look; look = look->next)
1589 {
1590 look_flags = look->flags;
1591 if (look->bfd_section != NULL)
1592 {
1593 look_flags = look->bfd_section->flags;
1594 if (match_type && !match_type (link_info.output_bfd,
1595 look->bfd_section,
1596 sec->owner, sec))
1597 continue;
1598 }
1599 differ = look_flags ^ sec_flags;
1600 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1601 | SEC_READONLY | SEC_SMALL_DATA))
1602 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1603 | SEC_READONLY))
1604 && !(look_flags & SEC_SMALL_DATA)))
1605 found = look;
1606 }
1607 }
1608 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1612 as if it were a loaded section, and don't use match_type. */
1613 bfd_boolean seen_thread_local = FALSE;
1614
1615 match_type = NULL;
1616 for (look = first; look; look = look->next)
1617 {
1618 look_flags = look->flags;
1619 if (look->bfd_section != NULL)
1620 look_flags = look->bfd_section->flags;
1621
1622 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1623 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1624 {
1625 /* .tdata and .tbss must be adjacent and in that order. */
1626 if (!(look_flags & SEC_LOAD)
1627 && (sec_flags & SEC_LOAD))
1628 /* ..so if we're at a .tbss section and we're placing
1629 a .tdata section stop looking and return the
1630 previous section. */
1631 break;
1632 found = look;
1633 seen_thread_local = TRUE;
1634 }
1635 else if (seen_thread_local)
1636 break;
1637 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1638 found = look;
1639 }
1640 }
1641 else if ((sec_flags & SEC_SMALL_DATA) != 0
1642 && (sec_flags & SEC_ALLOC) != 0)
1643 {
1644 /* .sdata goes after .data, .sbss after .sdata. */
1645 for (look = first; look; look = look->next)
1646 {
1647 look_flags = look->flags;
1648 if (look->bfd_section != NULL)
1649 {
1650 look_flags = look->bfd_section->flags;
1651 if (match_type && !match_type (link_info.output_bfd,
1652 look->bfd_section,
1653 sec->owner, sec))
1654 continue;
1655 }
1656 differ = look_flags ^ sec_flags;
1657 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1658 | SEC_THREAD_LOCAL))
1659 || ((look_flags & SEC_SMALL_DATA)
1660 && !(sec_flags & SEC_HAS_CONTENTS)))
1661 found = look;
1662 }
1663 }
1664 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1665 && (sec_flags & SEC_ALLOC) != 0)
1666 {
1667 /* .data goes after .rodata. */
1668 for (look = first; look; look = look->next)
1669 {
1670 look_flags = look->flags;
1671 if (look->bfd_section != NULL)
1672 {
1673 look_flags = look->bfd_section->flags;
1674 if (match_type && !match_type (link_info.output_bfd,
1675 look->bfd_section,
1676 sec->owner, sec))
1677 continue;
1678 }
1679 differ = look_flags ^ sec_flags;
1680 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1681 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1682 found = look;
1683 }
1684 }
1685 else if ((sec_flags & SEC_ALLOC) != 0)
1686 {
1687 /* .bss goes after any other alloc section. */
1688 for (look = first; look; look = look->next)
1689 {
1690 look_flags = look->flags;
1691 if (look->bfd_section != NULL)
1692 {
1693 look_flags = look->bfd_section->flags;
1694 if (match_type && !match_type (link_info.output_bfd,
1695 look->bfd_section,
1696 sec->owner, sec))
1697 continue;
1698 }
1699 differ = look_flags ^ sec_flags;
1700 if (!(differ & SEC_ALLOC))
1701 found = look;
1702 }
1703 }
1704 else
1705 {
1706 /* non-alloc go last. */
1707 for (look = first; look; look = look->next)
1708 {
1709 look_flags = look->flags;
1710 if (look->bfd_section != NULL)
1711 look_flags = look->bfd_section->flags;
1712 differ = look_flags ^ sec_flags;
1713 if (!(differ & SEC_DEBUGGING))
1714 found = look;
1715 }
1716 return found;
1717 }
1718
1719 if (found || !match_type)
1720 return found;
1721
1722 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1723 }
1724
1725 /* Find the last output section before given output statement.
1726 Used by place_orphan. */
1727
1728 static asection *
1729 output_prev_sec_find (lang_output_section_statement_type *os)
1730 {
1731 lang_output_section_statement_type *lookup;
1732
1733 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1734 {
1735 if (lookup->constraint < 0)
1736 continue;
1737
1738 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1739 return lookup->bfd_section;
1740 }
1741
1742 return NULL;
1743 }
1744
1745 /* Look for a suitable place for a new output section statement. The
1746 idea is to skip over anything that might be inside a SECTIONS {}
1747 statement in a script, before we find another output section
1748 statement. Assignments to "dot" before an output section statement
1749 are assumed to belong to it, except in two cases; The first
1750 assignment to dot, and assignments before non-alloc sections.
1751 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1752 similar assignments that set the initial address, or we might
1753 insert non-alloc note sections among assignments setting end of
1754 image symbols. */
1755
1756 static lang_statement_union_type **
1757 insert_os_after (lang_output_section_statement_type *after)
1758 {
1759 lang_statement_union_type **where;
1760 lang_statement_union_type **assign = NULL;
1761 bfd_boolean ignore_first;
1762
1763 ignore_first
1764 = after == &lang_output_section_statement.head->output_section_statement;
1765
1766 for (where = &after->header.next;
1767 *where != NULL;
1768 where = &(*where)->header.next)
1769 {
1770 switch ((*where)->header.type)
1771 {
1772 case lang_assignment_statement_enum:
1773 if (assign == NULL)
1774 {
1775 lang_assignment_statement_type *ass;
1776
1777 ass = &(*where)->assignment_statement;
1778 if (ass->exp->type.node_class != etree_assert
1779 && ass->exp->assign.dst[0] == '.'
1780 && ass->exp->assign.dst[1] == 0
1781 && !ignore_first)
1782 assign = where;
1783 }
1784 ignore_first = FALSE;
1785 continue;
1786 case lang_wild_statement_enum:
1787 case lang_input_section_enum:
1788 case lang_object_symbols_statement_enum:
1789 case lang_fill_statement_enum:
1790 case lang_data_statement_enum:
1791 case lang_reloc_statement_enum:
1792 case lang_padding_statement_enum:
1793 case lang_constructors_statement_enum:
1794 assign = NULL;
1795 continue;
1796 case lang_output_section_statement_enum:
1797 if (assign != NULL)
1798 {
1799 asection *s = (*where)->output_section_statement.bfd_section;
1800
1801 if (s == NULL
1802 || s->map_head.s == NULL
1803 || (s->flags & SEC_ALLOC) != 0)
1804 where = assign;
1805 }
1806 break;
1807 case lang_input_statement_enum:
1808 case lang_address_statement_enum:
1809 case lang_target_statement_enum:
1810 case lang_output_statement_enum:
1811 case lang_group_statement_enum:
1812 case lang_insert_statement_enum:
1813 continue;
1814 }
1815 break;
1816 }
1817
1818 return where;
1819 }
1820
1821 lang_output_section_statement_type *
1822 lang_insert_orphan (asection *s,
1823 const char *secname,
1824 int constraint,
1825 lang_output_section_statement_type *after,
1826 struct orphan_save *place,
1827 etree_type *address,
1828 lang_statement_list_type *add_child)
1829 {
1830 lang_statement_list_type add;
1831 lang_output_section_statement_type *os;
1832 lang_output_section_statement_type **os_tail;
1833
1834 /* If we have found an appropriate place for the output section
1835 statements for this orphan, add them to our own private list,
1836 inserting them later into the global statement list. */
1837 if (after != NULL)
1838 {
1839 lang_list_init (&add);
1840 push_stat_ptr (&add);
1841 }
1842
1843 if (bfd_link_relocatable (&link_info)
1844 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1845 address = exp_intop (0);
1846
1847 os_tail = ((lang_output_section_statement_type **)
1848 lang_output_section_statement.tail);
1849 os = lang_enter_output_section_statement (secname, address, normal_section,
1850 NULL, NULL, NULL, constraint, 0);
1851
1852 if (add_child == NULL)
1853 add_child = &os->children;
1854 lang_add_section (add_child, s, NULL, os);
1855
1856 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1857 {
1858 const char *region = (after->region
1859 ? after->region->name_list.name
1860 : DEFAULT_MEMORY_REGION);
1861 const char *lma_region = (after->lma_region
1862 ? after->lma_region->name_list.name
1863 : NULL);
1864 lang_leave_output_section_statement (NULL, region, after->phdrs,
1865 lma_region);
1866 }
1867 else
1868 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1869 NULL);
1870
1871 /* Restore the global list pointer. */
1872 if (after != NULL)
1873 pop_stat_ptr ();
1874
1875 if (after != NULL && os->bfd_section != NULL)
1876 {
1877 asection *snew, *as;
1878
1879 snew = os->bfd_section;
1880
1881 /* Shuffle the bfd section list to make the output file look
1882 neater. This is really only cosmetic. */
1883 if (place->section == NULL
1884 && after != (&lang_output_section_statement.head
1885 ->output_section_statement))
1886 {
1887 asection *bfd_section = after->bfd_section;
1888
1889 /* If the output statement hasn't been used to place any input
1890 sections (and thus doesn't have an output bfd_section),
1891 look for the closest prior output statement having an
1892 output section. */
1893 if (bfd_section == NULL)
1894 bfd_section = output_prev_sec_find (after);
1895
1896 if (bfd_section != NULL && bfd_section != snew)
1897 place->section = &bfd_section->next;
1898 }
1899
1900 if (place->section == NULL)
1901 place->section = &link_info.output_bfd->sections;
1902
1903 as = *place->section;
1904
1905 if (!as)
1906 {
1907 /* Put the section at the end of the list. */
1908
1909 /* Unlink the section. */
1910 bfd_section_list_remove (link_info.output_bfd, snew);
1911
1912 /* Now tack it back on in the right place. */
1913 bfd_section_list_append (link_info.output_bfd, snew);
1914 }
1915 else if (as != snew && as->prev != snew)
1916 {
1917 /* Unlink the section. */
1918 bfd_section_list_remove (link_info.output_bfd, snew);
1919
1920 /* Now tack it back on in the right place. */
1921 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1922 }
1923
1924 /* Save the end of this list. Further ophans of this type will
1925 follow the one we've just added. */
1926 place->section = &snew->next;
1927
1928 /* The following is non-cosmetic. We try to put the output
1929 statements in some sort of reasonable order here, because they
1930 determine the final load addresses of the orphan sections.
1931 In addition, placing output statements in the wrong order may
1932 require extra segments. For instance, given a typical
1933 situation of all read-only sections placed in one segment and
1934 following that a segment containing all the read-write
1935 sections, we wouldn't want to place an orphan read/write
1936 section before or amongst the read-only ones. */
1937 if (add.head != NULL)
1938 {
1939 lang_output_section_statement_type *newly_added_os;
1940
1941 if (place->stmt == NULL)
1942 {
1943 lang_statement_union_type **where = insert_os_after (after);
1944
1945 *add.tail = *where;
1946 *where = add.head;
1947
1948 place->os_tail = &after->next;
1949 }
1950 else
1951 {
1952 /* Put it after the last orphan statement we added. */
1953 *add.tail = *place->stmt;
1954 *place->stmt = add.head;
1955 }
1956
1957 /* Fix the global list pointer if we happened to tack our
1958 new list at the tail. */
1959 if (*stat_ptr->tail == add.head)
1960 stat_ptr->tail = add.tail;
1961
1962 /* Save the end of this list. */
1963 place->stmt = add.tail;
1964
1965 /* Do the same for the list of output section statements. */
1966 newly_added_os = *os_tail;
1967 *os_tail = NULL;
1968 newly_added_os->prev = (lang_output_section_statement_type *)
1969 ((char *) place->os_tail
1970 - offsetof (lang_output_section_statement_type, next));
1971 newly_added_os->next = *place->os_tail;
1972 if (newly_added_os->next != NULL)
1973 newly_added_os->next->prev = newly_added_os;
1974 *place->os_tail = newly_added_os;
1975 place->os_tail = &newly_added_os->next;
1976
1977 /* Fixing the global list pointer here is a little different.
1978 We added to the list in lang_enter_output_section_statement,
1979 trimmed off the new output_section_statment above when
1980 assigning *os_tail = NULL, but possibly added it back in
1981 the same place when assigning *place->os_tail. */
1982 if (*os_tail == NULL)
1983 lang_output_section_statement.tail
1984 = (lang_statement_union_type **) os_tail;
1985 }
1986 }
1987 return os;
1988 }
1989
1990 static void
1991 lang_print_asneeded (void)
1992 {
1993 struct asneeded_minfo *m;
1994
1995 if (asneeded_list_head == NULL)
1996 return;
1997
1998 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
1999
2000 for (m = asneeded_list_head; m != NULL; m = m->next)
2001 {
2002 size_t len;
2003
2004 minfo ("%s", m->soname);
2005 len = strlen (m->soname);
2006
2007 if (len >= 29)
2008 {
2009 print_nl ();
2010 len = 0;
2011 }
2012 while (len < 30)
2013 {
2014 print_space ();
2015 ++len;
2016 }
2017
2018 if (m->ref != NULL)
2019 minfo ("%pB ", m->ref);
2020 minfo ("(%pT)\n", m->name);
2021 }
2022 }
2023
2024 static void
2025 lang_map_flags (flagword flag)
2026 {
2027 if (flag & SEC_ALLOC)
2028 minfo ("a");
2029
2030 if (flag & SEC_CODE)
2031 minfo ("x");
2032
2033 if (flag & SEC_READONLY)
2034 minfo ("r");
2035
2036 if (flag & SEC_DATA)
2037 minfo ("w");
2038
2039 if (flag & SEC_LOAD)
2040 minfo ("l");
2041 }
2042
2043 void
2044 lang_map (void)
2045 {
2046 lang_memory_region_type *m;
2047 bfd_boolean dis_header_printed = FALSE;
2048
2049 LANG_FOR_EACH_INPUT_STATEMENT (file)
2050 {
2051 asection *s;
2052
2053 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2054 || file->flags.just_syms)
2055 continue;
2056
2057 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2058 if ((s->output_section == NULL
2059 || s->output_section->owner != link_info.output_bfd)
2060 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2061 {
2062 if (!dis_header_printed)
2063 {
2064 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2065 dis_header_printed = TRUE;
2066 }
2067
2068 print_input_section (s, TRUE);
2069 }
2070 }
2071
2072 minfo (_("\nMemory Configuration\n\n"));
2073 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2074 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2075
2076 for (m = lang_memory_region_list; m != NULL; m = m->next)
2077 {
2078 char buf[100];
2079 int len;
2080
2081 fprintf (config.map_file, "%-16s ", m->name_list.name);
2082
2083 sprintf_vma (buf, m->origin);
2084 minfo ("0x%s ", buf);
2085 len = strlen (buf);
2086 while (len < 16)
2087 {
2088 print_space ();
2089 ++len;
2090 }
2091
2092 minfo ("0x%V", m->length);
2093 if (m->flags || m->not_flags)
2094 {
2095 #ifndef BFD64
2096 minfo (" ");
2097 #endif
2098 if (m->flags)
2099 {
2100 print_space ();
2101 lang_map_flags (m->flags);
2102 }
2103
2104 if (m->not_flags)
2105 {
2106 minfo (" !");
2107 lang_map_flags (m->not_flags);
2108 }
2109 }
2110
2111 print_nl ();
2112 }
2113
2114 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2115
2116 if (!link_info.reduce_memory_overheads)
2117 {
2118 obstack_begin (&map_obstack, 1000);
2119 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2120 }
2121 lang_statement_iteration++;
2122 print_statements ();
2123
2124 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2125 config.map_file);
2126 }
2127
2128 static bfd_boolean
2129 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2130 void *info ATTRIBUTE_UNUSED)
2131 {
2132 if ((hash_entry->type == bfd_link_hash_defined
2133 || hash_entry->type == bfd_link_hash_defweak)
2134 && hash_entry->u.def.section->owner != link_info.output_bfd
2135 && hash_entry->u.def.section->owner != NULL)
2136 {
2137 input_section_userdata_type *ud;
2138 struct map_symbol_def *def;
2139
2140 ud = ((input_section_userdata_type *)
2141 get_userdata (hash_entry->u.def.section));
2142 if (!ud)
2143 {
2144 ud = (input_section_userdata_type *) stat_alloc (sizeof (*ud));
2145 get_userdata (hash_entry->u.def.section) = ud;
2146 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2147 ud->map_symbol_def_count = 0;
2148 }
2149 else if (!ud->map_symbol_def_tail)
2150 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2151
2152 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2153 def->entry = hash_entry;
2154 *(ud->map_symbol_def_tail) = def;
2155 ud->map_symbol_def_tail = &def->next;
2156 ud->map_symbol_def_count++;
2157 }
2158 return TRUE;
2159 }
2160
2161 /* Initialize an output section. */
2162
2163 static void
2164 init_os (lang_output_section_statement_type *s, flagword flags)
2165 {
2166 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2167 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2168
2169 if (s->constraint != SPECIAL)
2170 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2171 if (s->bfd_section == NULL)
2172 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2173 s->name, flags);
2174 if (s->bfd_section == NULL)
2175 {
2176 einfo (_("%F%P: output format %s cannot represent section"
2177 " called %s: %E\n"),
2178 link_info.output_bfd->xvec->name, s->name);
2179 }
2180 s->bfd_section->output_section = s->bfd_section;
2181 s->bfd_section->output_offset = 0;
2182
2183 /* Set the userdata of the output section to the output section
2184 statement to avoid lookup. */
2185 get_userdata (s->bfd_section) = s;
2186
2187 /* If there is a base address, make sure that any sections it might
2188 mention are initialized. */
2189 if (s->addr_tree != NULL)
2190 exp_init_os (s->addr_tree);
2191
2192 if (s->load_base != NULL)
2193 exp_init_os (s->load_base);
2194
2195 /* If supplied an alignment, set it. */
2196 if (s->section_alignment != -1)
2197 s->bfd_section->alignment_power = s->section_alignment;
2198 }
2199
2200 /* Make sure that all output sections mentioned in an expression are
2201 initialized. */
2202
2203 static void
2204 exp_init_os (etree_type *exp)
2205 {
2206 switch (exp->type.node_class)
2207 {
2208 case etree_assign:
2209 case etree_provide:
2210 case etree_provided:
2211 exp_init_os (exp->assign.src);
2212 break;
2213
2214 case etree_binary:
2215 exp_init_os (exp->binary.lhs);
2216 exp_init_os (exp->binary.rhs);
2217 break;
2218
2219 case etree_trinary:
2220 exp_init_os (exp->trinary.cond);
2221 exp_init_os (exp->trinary.lhs);
2222 exp_init_os (exp->trinary.rhs);
2223 break;
2224
2225 case etree_assert:
2226 exp_init_os (exp->assert_s.child);
2227 break;
2228
2229 case etree_unary:
2230 exp_init_os (exp->unary.child);
2231 break;
2232
2233 case etree_name:
2234 switch (exp->type.node_code)
2235 {
2236 case ADDR:
2237 case LOADADDR:
2238 case SIZEOF:
2239 {
2240 lang_output_section_statement_type *os;
2241
2242 os = lang_output_section_find (exp->name.name);
2243 if (os != NULL && os->bfd_section == NULL)
2244 init_os (os, 0);
2245 }
2246 }
2247 break;
2248
2249 default:
2250 break;
2251 }
2252 }
2253 \f
2254 static void
2255 section_already_linked (bfd *abfd, asection *sec, void *data)
2256 {
2257 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2258
2259 /* If we are only reading symbols from this object, then we want to
2260 discard all sections. */
2261 if (entry->flags.just_syms)
2262 {
2263 bfd_link_just_syms (abfd, sec, &link_info);
2264 return;
2265 }
2266
2267 /* Deal with SHF_EXCLUDE ELF sections. */
2268 if (!bfd_link_relocatable (&link_info)
2269 && (abfd->flags & BFD_PLUGIN) == 0
2270 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2271 sec->output_section = bfd_abs_section_ptr;
2272
2273 if (!(abfd->flags & DYNAMIC))
2274 bfd_section_already_linked (abfd, sec, &link_info);
2275 }
2276 \f
2277
2278 /* Returns true if SECTION is one we know will be discarded based on its
2279 section flags, otherwise returns false. */
2280
2281 static bfd_boolean
2282 lang_discard_section_p (asection *section)
2283 {
2284 bfd_boolean discard;
2285 flagword flags = section->flags;
2286
2287 /* Discard sections marked with SEC_EXCLUDE. */
2288 discard = (flags & SEC_EXCLUDE) != 0;
2289
2290 /* Discard the group descriptor sections when we're finally placing the
2291 sections from within the group. */
2292 if ((flags & SEC_GROUP) != 0
2293 && link_info.resolve_section_groups)
2294 discard = TRUE;
2295
2296 /* Discard debugging sections if we are stripping debugging
2297 information. */
2298 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2299 && (flags & SEC_DEBUGGING) != 0)
2300 discard = TRUE;
2301
2302 return discard;
2303 }
2304
2305 /* The wild routines.
2306
2307 These expand statements like *(.text) and foo.o to a list of
2308 explicit actions, like foo.o(.text), bar.o(.text) and
2309 foo.o(.text, .data). */
2310
2311 /* Add SECTION to the output section OUTPUT. Do this by creating a
2312 lang_input_section statement which is placed at PTR. */
2313
2314 void
2315 lang_add_section (lang_statement_list_type *ptr,
2316 asection *section,
2317 struct flag_info *sflag_info,
2318 lang_output_section_statement_type *output)
2319 {
2320 flagword flags = section->flags;
2321
2322 bfd_boolean discard;
2323 lang_input_section_type *new_section;
2324 bfd *abfd = link_info.output_bfd;
2325
2326 /* Is this section one we know should be discarded? */
2327 discard = lang_discard_section_p (section);
2328
2329 /* Discard input sections which are assigned to a section named
2330 DISCARD_SECTION_NAME. */
2331 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2332 discard = TRUE;
2333
2334 if (discard)
2335 {
2336 if (section->output_section == NULL)
2337 {
2338 /* This prevents future calls from assigning this section. */
2339 section->output_section = bfd_abs_section_ptr;
2340 }
2341 return;
2342 }
2343
2344 if (sflag_info)
2345 {
2346 bfd_boolean keep;
2347
2348 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2349 if (!keep)
2350 return;
2351 }
2352
2353 if (section->output_section != NULL)
2354 return;
2355
2356 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2357 to an output section, because we want to be able to include a
2358 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2359 section (I don't know why we want to do this, but we do).
2360 build_link_order in ldwrite.c handles this case by turning
2361 the embedded SEC_NEVER_LOAD section into a fill. */
2362 flags &= ~ SEC_NEVER_LOAD;
2363
2364 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2365 already been processed. One reason to do this is that on pe
2366 format targets, .text$foo sections go into .text and it's odd
2367 to see .text with SEC_LINK_ONCE set. */
2368 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2369 {
2370 if (link_info.resolve_section_groups)
2371 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2372 else
2373 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2374 }
2375 else if (!bfd_link_relocatable (&link_info))
2376 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2377
2378 switch (output->sectype)
2379 {
2380 case normal_section:
2381 case overlay_section:
2382 break;
2383 case noalloc_section:
2384 flags &= ~SEC_ALLOC;
2385 break;
2386 case noload_section:
2387 flags &= ~SEC_LOAD;
2388 flags |= SEC_NEVER_LOAD;
2389 /* Unfortunately GNU ld has managed to evolve two different
2390 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2391 alloc, no contents section. All others get a noload, noalloc
2392 section. */
2393 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2394 flags &= ~SEC_HAS_CONTENTS;
2395 else
2396 flags &= ~SEC_ALLOC;
2397 break;
2398 }
2399
2400 if (output->bfd_section == NULL)
2401 init_os (output, flags);
2402
2403 /* If SEC_READONLY is not set in the input section, then clear
2404 it from the output section. */
2405 output->bfd_section->flags &= flags | ~SEC_READONLY;
2406
2407 if (output->bfd_section->linker_has_input)
2408 {
2409 /* Only set SEC_READONLY flag on the first input section. */
2410 flags &= ~ SEC_READONLY;
2411
2412 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2413 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2414 != (flags & (SEC_MERGE | SEC_STRINGS))
2415 || ((flags & SEC_MERGE) != 0
2416 && output->bfd_section->entsize != section->entsize))
2417 {
2418 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2419 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2420 }
2421 }
2422 output->bfd_section->flags |= flags;
2423
2424 if (!output->bfd_section->linker_has_input)
2425 {
2426 output->bfd_section->linker_has_input = 1;
2427 /* This must happen after flags have been updated. The output
2428 section may have been created before we saw its first input
2429 section, eg. for a data statement. */
2430 bfd_init_private_section_data (section->owner, section,
2431 link_info.output_bfd,
2432 output->bfd_section,
2433 &link_info);
2434 if ((flags & SEC_MERGE) != 0)
2435 output->bfd_section->entsize = section->entsize;
2436 }
2437
2438 if ((flags & SEC_TIC54X_BLOCK) != 0
2439 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2440 {
2441 /* FIXME: This value should really be obtained from the bfd... */
2442 output->block_value = 128;
2443 }
2444
2445 if (section->alignment_power > output->bfd_section->alignment_power)
2446 output->bfd_section->alignment_power = section->alignment_power;
2447
2448 section->output_section = output->bfd_section;
2449
2450 if (!map_head_is_link_order)
2451 {
2452 asection *s = output->bfd_section->map_tail.s;
2453 output->bfd_section->map_tail.s = section;
2454 section->map_head.s = NULL;
2455 section->map_tail.s = s;
2456 if (s != NULL)
2457 s->map_head.s = section;
2458 else
2459 output->bfd_section->map_head.s = section;
2460 }
2461
2462 /* Add a section reference to the list. */
2463 new_section = new_stat (lang_input_section, ptr);
2464 new_section->section = section;
2465 }
2466
2467 /* Handle wildcard sorting. This returns the lang_input_section which
2468 should follow the one we are going to create for SECTION and FILE,
2469 based on the sorting requirements of WILD. It returns NULL if the
2470 new section should just go at the end of the current list. */
2471
2472 static lang_statement_union_type *
2473 wild_sort (lang_wild_statement_type *wild,
2474 struct wildcard_list *sec,
2475 lang_input_statement_type *file,
2476 asection *section)
2477 {
2478 lang_statement_union_type *l;
2479
2480 if (!wild->filenames_sorted
2481 && (sec == NULL || sec->spec.sorted == none))
2482 return NULL;
2483
2484 for (l = wild->children.head; l != NULL; l = l->header.next)
2485 {
2486 lang_input_section_type *ls;
2487
2488 if (l->header.type != lang_input_section_enum)
2489 continue;
2490 ls = &l->input_section;
2491
2492 /* Sorting by filename takes precedence over sorting by section
2493 name. */
2494
2495 if (wild->filenames_sorted)
2496 {
2497 const char *fn, *ln;
2498 bfd_boolean fa, la;
2499 int i;
2500
2501 /* The PE support for the .idata section as generated by
2502 dlltool assumes that files will be sorted by the name of
2503 the archive and then the name of the file within the
2504 archive. */
2505
2506 if (file->the_bfd != NULL
2507 && file->the_bfd->my_archive != NULL)
2508 {
2509 fn = bfd_get_filename (file->the_bfd->my_archive);
2510 fa = TRUE;
2511 }
2512 else
2513 {
2514 fn = file->filename;
2515 fa = FALSE;
2516 }
2517
2518 if (ls->section->owner->my_archive != NULL)
2519 {
2520 ln = bfd_get_filename (ls->section->owner->my_archive);
2521 la = TRUE;
2522 }
2523 else
2524 {
2525 ln = ls->section->owner->filename;
2526 la = FALSE;
2527 }
2528
2529 i = filename_cmp (fn, ln);
2530 if (i > 0)
2531 continue;
2532 else if (i < 0)
2533 break;
2534
2535 if (fa || la)
2536 {
2537 if (fa)
2538 fn = file->filename;
2539 if (la)
2540 ln = ls->section->owner->filename;
2541
2542 i = filename_cmp (fn, ln);
2543 if (i > 0)
2544 continue;
2545 else if (i < 0)
2546 break;
2547 }
2548 }
2549
2550 /* Here either the files are not sorted by name, or we are
2551 looking at the sections for this file. */
2552
2553 if (sec != NULL
2554 && sec->spec.sorted != none
2555 && sec->spec.sorted != by_none)
2556 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2557 break;
2558 }
2559
2560 return l;
2561 }
2562
2563 /* Expand a wild statement for a particular FILE. SECTION may be
2564 NULL, in which case it is a wild card. */
2565
2566 static void
2567 output_section_callback (lang_wild_statement_type *ptr,
2568 struct wildcard_list *sec,
2569 asection *section,
2570 struct flag_info *sflag_info,
2571 lang_input_statement_type *file,
2572 void *output)
2573 {
2574 lang_statement_union_type *before;
2575 lang_output_section_statement_type *os;
2576
2577 os = (lang_output_section_statement_type *) output;
2578
2579 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2580 if (unique_section_p (section, os))
2581 return;
2582
2583 before = wild_sort (ptr, sec, file, section);
2584
2585 /* Here BEFORE points to the lang_input_section which
2586 should follow the one we are about to add. If BEFORE
2587 is NULL, then the section should just go at the end
2588 of the current list. */
2589
2590 if (before == NULL)
2591 lang_add_section (&ptr->children, section, sflag_info, os);
2592 else
2593 {
2594 lang_statement_list_type list;
2595 lang_statement_union_type **pp;
2596
2597 lang_list_init (&list);
2598 lang_add_section (&list, section, sflag_info, os);
2599
2600 /* If we are discarding the section, LIST.HEAD will
2601 be NULL. */
2602 if (list.head != NULL)
2603 {
2604 ASSERT (list.head->header.next == NULL);
2605
2606 for (pp = &ptr->children.head;
2607 *pp != before;
2608 pp = &(*pp)->header.next)
2609 ASSERT (*pp != NULL);
2610
2611 list.head->header.next = *pp;
2612 *pp = list.head;
2613 }
2614 }
2615 }
2616
2617 /* Check if all sections in a wild statement for a particular FILE
2618 are readonly. */
2619
2620 static void
2621 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2622 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2623 asection *section,
2624 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2625 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2626 void *output)
2627 {
2628 lang_output_section_statement_type *os;
2629
2630 os = (lang_output_section_statement_type *) output;
2631
2632 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2633 if (unique_section_p (section, os))
2634 return;
2635
2636 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2637 os->all_input_readonly = FALSE;
2638 }
2639
2640 /* This is passed a file name which must have been seen already and
2641 added to the statement tree. We will see if it has been opened
2642 already and had its symbols read. If not then we'll read it. */
2643
2644 static lang_input_statement_type *
2645 lookup_name (const char *name)
2646 {
2647 lang_input_statement_type *search;
2648
2649 for (search = (lang_input_statement_type *) input_file_chain.head;
2650 search != NULL;
2651 search = (lang_input_statement_type *) search->next_real_file)
2652 {
2653 /* Use the local_sym_name as the name of the file that has
2654 already been loaded as filename might have been transformed
2655 via the search directory lookup mechanism. */
2656 const char *filename = search->local_sym_name;
2657
2658 if (filename != NULL
2659 && filename_cmp (filename, name) == 0)
2660 break;
2661 }
2662
2663 if (search == NULL)
2664 search = new_afile (name, lang_input_file_is_search_file_enum,
2665 default_target, FALSE);
2666
2667 /* If we have already added this file, or this file is not real
2668 don't add this file. */
2669 if (search->flags.loaded || !search->flags.real)
2670 return search;
2671
2672 if (!load_symbols (search, NULL))
2673 return NULL;
2674
2675 return search;
2676 }
2677
2678 /* Save LIST as a list of libraries whose symbols should not be exported. */
2679
2680 struct excluded_lib
2681 {
2682 char *name;
2683 struct excluded_lib *next;
2684 };
2685 static struct excluded_lib *excluded_libs;
2686
2687 void
2688 add_excluded_libs (const char *list)
2689 {
2690 const char *p = list, *end;
2691
2692 while (*p != '\0')
2693 {
2694 struct excluded_lib *entry;
2695 end = strpbrk (p, ",:");
2696 if (end == NULL)
2697 end = p + strlen (p);
2698 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2699 entry->next = excluded_libs;
2700 entry->name = (char *) xmalloc (end - p + 1);
2701 memcpy (entry->name, p, end - p);
2702 entry->name[end - p] = '\0';
2703 excluded_libs = entry;
2704 if (*end == '\0')
2705 break;
2706 p = end + 1;
2707 }
2708 }
2709
2710 static void
2711 check_excluded_libs (bfd *abfd)
2712 {
2713 struct excluded_lib *lib = excluded_libs;
2714
2715 while (lib)
2716 {
2717 int len = strlen (lib->name);
2718 const char *filename = lbasename (abfd->filename);
2719
2720 if (strcmp (lib->name, "ALL") == 0)
2721 {
2722 abfd->no_export = TRUE;
2723 return;
2724 }
2725
2726 if (filename_ncmp (lib->name, filename, len) == 0
2727 && (filename[len] == '\0'
2728 || (filename[len] == '.' && filename[len + 1] == 'a'
2729 && filename[len + 2] == '\0')))
2730 {
2731 abfd->no_export = TRUE;
2732 return;
2733 }
2734
2735 lib = lib->next;
2736 }
2737 }
2738
2739 /* Get the symbols for an input file. */
2740
2741 bfd_boolean
2742 load_symbols (lang_input_statement_type *entry,
2743 lang_statement_list_type *place)
2744 {
2745 char **matching;
2746
2747 if (entry->flags.loaded)
2748 return TRUE;
2749
2750 ldfile_open_file (entry);
2751
2752 /* Do not process further if the file was missing. */
2753 if (entry->flags.missing_file)
2754 return TRUE;
2755
2756 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2757 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2758 {
2759 bfd_error_type err;
2760 struct lang_input_statement_flags save_flags;
2761 extern FILE *yyin;
2762
2763 err = bfd_get_error ();
2764
2765 /* See if the emulation has some special knowledge. */
2766 if (ldemul_unrecognized_file (entry))
2767 return TRUE;
2768
2769 if (err == bfd_error_file_ambiguously_recognized)
2770 {
2771 char **p;
2772
2773 einfo (_("%P: %pB: file not recognized: %E;"
2774 " matching formats:"), entry->the_bfd);
2775 for (p = matching; *p != NULL; p++)
2776 einfo (" %s", *p);
2777 einfo ("%F\n");
2778 }
2779 else if (err != bfd_error_file_not_recognized
2780 || place == NULL)
2781 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
2782
2783 bfd_close (entry->the_bfd);
2784 entry->the_bfd = NULL;
2785
2786 /* Try to interpret the file as a linker script. */
2787 save_flags = input_flags;
2788 ldfile_open_command_file (entry->filename);
2789
2790 push_stat_ptr (place);
2791 input_flags.add_DT_NEEDED_for_regular
2792 = entry->flags.add_DT_NEEDED_for_regular;
2793 input_flags.add_DT_NEEDED_for_dynamic
2794 = entry->flags.add_DT_NEEDED_for_dynamic;
2795 input_flags.whole_archive = entry->flags.whole_archive;
2796 input_flags.dynamic = entry->flags.dynamic;
2797
2798 ldfile_assumed_script = TRUE;
2799 parser_input = input_script;
2800 yyparse ();
2801 ldfile_assumed_script = FALSE;
2802
2803 /* missing_file is sticky. sysrooted will already have been
2804 restored when seeing EOF in yyparse, but no harm to restore
2805 again. */
2806 save_flags.missing_file |= input_flags.missing_file;
2807 input_flags = save_flags;
2808 pop_stat_ptr ();
2809 fclose (yyin);
2810 yyin = NULL;
2811 entry->flags.loaded = TRUE;
2812
2813 return TRUE;
2814 }
2815
2816 if (ldemul_recognized_file (entry))
2817 return TRUE;
2818
2819 /* We don't call ldlang_add_file for an archive. Instead, the
2820 add_symbols entry point will call ldlang_add_file, via the
2821 add_archive_element callback, for each element of the archive
2822 which is used. */
2823 switch (bfd_get_format (entry->the_bfd))
2824 {
2825 default:
2826 break;
2827
2828 case bfd_object:
2829 if (!entry->flags.reload)
2830 ldlang_add_file (entry);
2831 if (trace_files || verbose)
2832 info_msg ("%pI\n", entry);
2833 break;
2834
2835 case bfd_archive:
2836 check_excluded_libs (entry->the_bfd);
2837
2838 entry->the_bfd->usrdata = entry;
2839 if (entry->flags.whole_archive)
2840 {
2841 bfd *member = NULL;
2842 bfd_boolean loaded = TRUE;
2843
2844 for (;;)
2845 {
2846 bfd *subsbfd;
2847 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2848
2849 if (member == NULL)
2850 break;
2851
2852 if (!bfd_check_format (member, bfd_object))
2853 {
2854 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
2855 entry->the_bfd, member);
2856 loaded = FALSE;
2857 }
2858
2859 subsbfd = member;
2860 if (!(*link_info.callbacks
2861 ->add_archive_element) (&link_info, member,
2862 "--whole-archive", &subsbfd))
2863 abort ();
2864
2865 /* Potentially, the add_archive_element hook may have set a
2866 substitute BFD for us. */
2867 if (!bfd_link_add_symbols (subsbfd, &link_info))
2868 {
2869 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
2870 loaded = FALSE;
2871 }
2872 }
2873
2874 entry->flags.loaded = loaded;
2875 return loaded;
2876 }
2877 break;
2878 }
2879
2880 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2881 entry->flags.loaded = TRUE;
2882 else
2883 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
2884
2885 return entry->flags.loaded;
2886 }
2887
2888 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2889 may be NULL, indicating that it is a wildcard. Separate
2890 lang_input_section statements are created for each part of the
2891 expansion; they are added after the wild statement S. OUTPUT is
2892 the output section. */
2893
2894 static void
2895 wild (lang_wild_statement_type *s,
2896 const char *target ATTRIBUTE_UNUSED,
2897 lang_output_section_statement_type *output)
2898 {
2899 struct wildcard_list *sec;
2900
2901 if (s->handler_data[0]
2902 && s->handler_data[0]->spec.sorted == by_name
2903 && !s->filenames_sorted)
2904 {
2905 lang_section_bst_type *tree;
2906
2907 walk_wild (s, output_section_callback_fast, output);
2908
2909 tree = s->tree;
2910 if (tree)
2911 {
2912 output_section_callback_tree_to_list (s, tree, output);
2913 s->tree = NULL;
2914 }
2915 }
2916 else
2917 walk_wild (s, output_section_callback, output);
2918
2919 if (default_common_section == NULL)
2920 for (sec = s->section_list; sec != NULL; sec = sec->next)
2921 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2922 {
2923 /* Remember the section that common is going to in case we
2924 later get something which doesn't know where to put it. */
2925 default_common_section = output;
2926 break;
2927 }
2928 }
2929
2930 /* Return TRUE iff target is the sought target. */
2931
2932 static int
2933 get_target (const bfd_target *target, void *data)
2934 {
2935 const char *sought = (const char *) data;
2936
2937 return strcmp (target->name, sought) == 0;
2938 }
2939
2940 /* Like strcpy() but convert to lower case as well. */
2941
2942 static void
2943 stricpy (char *dest, char *src)
2944 {
2945 char c;
2946
2947 while ((c = *src++) != 0)
2948 *dest++ = TOLOWER (c);
2949
2950 *dest = 0;
2951 }
2952
2953 /* Remove the first occurrence of needle (if any) in haystack
2954 from haystack. */
2955
2956 static void
2957 strcut (char *haystack, char *needle)
2958 {
2959 haystack = strstr (haystack, needle);
2960
2961 if (haystack)
2962 {
2963 char *src;
2964
2965 for (src = haystack + strlen (needle); *src;)
2966 *haystack++ = *src++;
2967
2968 *haystack = 0;
2969 }
2970 }
2971
2972 /* Compare two target format name strings.
2973 Return a value indicating how "similar" they are. */
2974
2975 static int
2976 name_compare (char *first, char *second)
2977 {
2978 char *copy1;
2979 char *copy2;
2980 int result;
2981
2982 copy1 = (char *) xmalloc (strlen (first) + 1);
2983 copy2 = (char *) xmalloc (strlen (second) + 1);
2984
2985 /* Convert the names to lower case. */
2986 stricpy (copy1, first);
2987 stricpy (copy2, second);
2988
2989 /* Remove size and endian strings from the name. */
2990 strcut (copy1, "big");
2991 strcut (copy1, "little");
2992 strcut (copy2, "big");
2993 strcut (copy2, "little");
2994
2995 /* Return a value based on how many characters match,
2996 starting from the beginning. If both strings are
2997 the same then return 10 * their length. */
2998 for (result = 0; copy1[result] == copy2[result]; result++)
2999 if (copy1[result] == 0)
3000 {
3001 result *= 10;
3002 break;
3003 }
3004
3005 free (copy1);
3006 free (copy2);
3007
3008 return result;
3009 }
3010
3011 /* Set by closest_target_match() below. */
3012 static const bfd_target *winner;
3013
3014 /* Scan all the valid bfd targets looking for one that has the endianness
3015 requirement that was specified on the command line, and is the nearest
3016 match to the original output target. */
3017
3018 static int
3019 closest_target_match (const bfd_target *target, void *data)
3020 {
3021 const bfd_target *original = (const bfd_target *) data;
3022
3023 if (command_line.endian == ENDIAN_BIG
3024 && target->byteorder != BFD_ENDIAN_BIG)
3025 return 0;
3026
3027 if (command_line.endian == ENDIAN_LITTLE
3028 && target->byteorder != BFD_ENDIAN_LITTLE)
3029 return 0;
3030
3031 /* Must be the same flavour. */
3032 if (target->flavour != original->flavour)
3033 return 0;
3034
3035 /* Ignore generic big and little endian elf vectors. */
3036 if (strcmp (target->name, "elf32-big") == 0
3037 || strcmp (target->name, "elf64-big") == 0
3038 || strcmp (target->name, "elf32-little") == 0
3039 || strcmp (target->name, "elf64-little") == 0)
3040 return 0;
3041
3042 /* If we have not found a potential winner yet, then record this one. */
3043 if (winner == NULL)
3044 {
3045 winner = target;
3046 return 0;
3047 }
3048
3049 /* Oh dear, we now have two potential candidates for a successful match.
3050 Compare their names and choose the better one. */
3051 if (name_compare (target->name, original->name)
3052 > name_compare (winner->name, original->name))
3053 winner = target;
3054
3055 /* Keep on searching until wqe have checked them all. */
3056 return 0;
3057 }
3058
3059 /* Return the BFD target format of the first input file. */
3060
3061 static char *
3062 get_first_input_target (void)
3063 {
3064 char *target = NULL;
3065
3066 LANG_FOR_EACH_INPUT_STATEMENT (s)
3067 {
3068 if (s->header.type == lang_input_statement_enum
3069 && s->flags.real)
3070 {
3071 ldfile_open_file (s);
3072
3073 if (s->the_bfd != NULL
3074 && bfd_check_format (s->the_bfd, bfd_object))
3075 {
3076 target = bfd_get_target (s->the_bfd);
3077
3078 if (target != NULL)
3079 break;
3080 }
3081 }
3082 }
3083
3084 return target;
3085 }
3086
3087 const char *
3088 lang_get_output_target (void)
3089 {
3090 const char *target;
3091
3092 /* Has the user told us which output format to use? */
3093 if (output_target != NULL)
3094 return output_target;
3095
3096 /* No - has the current target been set to something other than
3097 the default? */
3098 if (current_target != default_target && current_target != NULL)
3099 return current_target;
3100
3101 /* No - can we determine the format of the first input file? */
3102 target = get_first_input_target ();
3103 if (target != NULL)
3104 return target;
3105
3106 /* Failed - use the default output target. */
3107 return default_target;
3108 }
3109
3110 /* Open the output file. */
3111
3112 static void
3113 open_output (const char *name)
3114 {
3115 output_target = lang_get_output_target ();
3116
3117 /* Has the user requested a particular endianness on the command
3118 line? */
3119 if (command_line.endian != ENDIAN_UNSET)
3120 {
3121 /* Get the chosen target. */
3122 const bfd_target *target
3123 = bfd_iterate_over_targets (get_target, (void *) output_target);
3124
3125 /* If the target is not supported, we cannot do anything. */
3126 if (target != NULL)
3127 {
3128 enum bfd_endian desired_endian;
3129
3130 if (command_line.endian == ENDIAN_BIG)
3131 desired_endian = BFD_ENDIAN_BIG;
3132 else
3133 desired_endian = BFD_ENDIAN_LITTLE;
3134
3135 /* See if the target has the wrong endianness. This should
3136 not happen if the linker script has provided big and
3137 little endian alternatives, but some scrips don't do
3138 this. */
3139 if (target->byteorder != desired_endian)
3140 {
3141 /* If it does, then see if the target provides
3142 an alternative with the correct endianness. */
3143 if (target->alternative_target != NULL
3144 && (target->alternative_target->byteorder == desired_endian))
3145 output_target = target->alternative_target->name;
3146 else
3147 {
3148 /* Try to find a target as similar as possible to
3149 the default target, but which has the desired
3150 endian characteristic. */
3151 bfd_iterate_over_targets (closest_target_match,
3152 (void *) target);
3153
3154 /* Oh dear - we could not find any targets that
3155 satisfy our requirements. */
3156 if (winner == NULL)
3157 einfo (_("%P: warning: could not find any targets"
3158 " that match endianness requirement\n"));
3159 else
3160 output_target = winner->name;
3161 }
3162 }
3163 }
3164 }
3165
3166 link_info.output_bfd = bfd_openw (name, output_target);
3167
3168 if (link_info.output_bfd == NULL)
3169 {
3170 if (bfd_get_error () == bfd_error_invalid_target)
3171 einfo (_("%F%P: target %s not found\n"), output_target);
3172
3173 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3174 }
3175
3176 delete_output_file_on_failure = TRUE;
3177
3178 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3179 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3180 if (!bfd_set_arch_mach (link_info.output_bfd,
3181 ldfile_output_architecture,
3182 ldfile_output_machine))
3183 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3184
3185 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3186 if (link_info.hash == NULL)
3187 einfo (_("%F%P: can not create hash table: %E\n"));
3188
3189 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3190 }
3191
3192 static void
3193 ldlang_open_output (lang_statement_union_type *statement)
3194 {
3195 switch (statement->header.type)
3196 {
3197 case lang_output_statement_enum:
3198 ASSERT (link_info.output_bfd == NULL);
3199 open_output (statement->output_statement.name);
3200 ldemul_set_output_arch ();
3201 if (config.magic_demand_paged
3202 && !bfd_link_relocatable (&link_info))
3203 link_info.output_bfd->flags |= D_PAGED;
3204 else
3205 link_info.output_bfd->flags &= ~D_PAGED;
3206 if (config.text_read_only)
3207 link_info.output_bfd->flags |= WP_TEXT;
3208 else
3209 link_info.output_bfd->flags &= ~WP_TEXT;
3210 if (link_info.traditional_format)
3211 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3212 else
3213 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3214 break;
3215
3216 case lang_target_statement_enum:
3217 current_target = statement->target_statement.target;
3218 break;
3219 default:
3220 break;
3221 }
3222 }
3223
3224 static void
3225 init_opb (void)
3226 {
3227 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3228 ldfile_output_machine);
3229 opb_shift = 0;
3230 if (x > 1)
3231 while ((x & 1) == 0)
3232 {
3233 x >>= 1;
3234 ++opb_shift;
3235 }
3236 ASSERT (x == 1);
3237 }
3238
3239 /* Open all the input files. */
3240
3241 enum open_bfd_mode
3242 {
3243 OPEN_BFD_NORMAL = 0,
3244 OPEN_BFD_FORCE = 1,
3245 OPEN_BFD_RESCAN = 2
3246 };
3247 #ifdef ENABLE_PLUGINS
3248 static lang_input_statement_type *plugin_insert = NULL;
3249 #endif
3250
3251 static void
3252 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3253 {
3254 for (; s != NULL; s = s->header.next)
3255 {
3256 switch (s->header.type)
3257 {
3258 case lang_constructors_statement_enum:
3259 open_input_bfds (constructor_list.head, mode);
3260 break;
3261 case lang_output_section_statement_enum:
3262 open_input_bfds (s->output_section_statement.children.head, mode);
3263 break;
3264 case lang_wild_statement_enum:
3265 /* Maybe we should load the file's symbols. */
3266 if ((mode & OPEN_BFD_RESCAN) == 0
3267 && s->wild_statement.filename
3268 && !wildcardp (s->wild_statement.filename)
3269 && !archive_path (s->wild_statement.filename))
3270 lookup_name (s->wild_statement.filename);
3271 open_input_bfds (s->wild_statement.children.head, mode);
3272 break;
3273 case lang_group_statement_enum:
3274 {
3275 struct bfd_link_hash_entry *undefs;
3276
3277 /* We must continually search the entries in the group
3278 until no new symbols are added to the list of undefined
3279 symbols. */
3280
3281 do
3282 {
3283 undefs = link_info.hash->undefs_tail;
3284 open_input_bfds (s->group_statement.children.head,
3285 mode | OPEN_BFD_FORCE);
3286 }
3287 while (undefs != link_info.hash->undefs_tail);
3288 }
3289 break;
3290 case lang_target_statement_enum:
3291 current_target = s->target_statement.target;
3292 break;
3293 case lang_input_statement_enum:
3294 if (s->input_statement.flags.real)
3295 {
3296 lang_statement_union_type **os_tail;
3297 lang_statement_list_type add;
3298 bfd *abfd;
3299
3300 s->input_statement.target = current_target;
3301
3302 /* If we are being called from within a group, and this
3303 is an archive which has already been searched, then
3304 force it to be researched unless the whole archive
3305 has been loaded already. Do the same for a rescan.
3306 Likewise reload --as-needed shared libs. */
3307 if (mode != OPEN_BFD_NORMAL
3308 #ifdef ENABLE_PLUGINS
3309 && ((mode & OPEN_BFD_RESCAN) == 0
3310 || plugin_insert == NULL)
3311 #endif
3312 && s->input_statement.flags.loaded
3313 && (abfd = s->input_statement.the_bfd) != NULL
3314 && ((bfd_get_format (abfd) == bfd_archive
3315 && !s->input_statement.flags.whole_archive)
3316 || (bfd_get_format (abfd) == bfd_object
3317 && ((abfd->flags) & DYNAMIC) != 0
3318 && s->input_statement.flags.add_DT_NEEDED_for_regular
3319 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3320 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3321 {
3322 s->input_statement.flags.loaded = FALSE;
3323 s->input_statement.flags.reload = TRUE;
3324 }
3325
3326 os_tail = lang_output_section_statement.tail;
3327 lang_list_init (&add);
3328
3329 if (!load_symbols (&s->input_statement, &add))
3330 config.make_executable = FALSE;
3331
3332 if (add.head != NULL)
3333 {
3334 /* If this was a script with output sections then
3335 tack any added statements on to the end of the
3336 list. This avoids having to reorder the output
3337 section statement list. Very likely the user
3338 forgot -T, and whatever we do here will not meet
3339 naive user expectations. */
3340 if (os_tail != lang_output_section_statement.tail)
3341 {
3342 einfo (_("%P: warning: %s contains output sections;"
3343 " did you forget -T?\n"),
3344 s->input_statement.filename);
3345 *stat_ptr->tail = add.head;
3346 stat_ptr->tail = add.tail;
3347 }
3348 else
3349 {
3350 *add.tail = s->header.next;
3351 s->header.next = add.head;
3352 }
3353 }
3354 }
3355 #ifdef ENABLE_PLUGINS
3356 /* If we have found the point at which a plugin added new
3357 files, clear plugin_insert to enable archive rescan. */
3358 if (&s->input_statement == plugin_insert)
3359 plugin_insert = NULL;
3360 #endif
3361 break;
3362 case lang_assignment_statement_enum:
3363 if (s->assignment_statement.exp->type.node_class != etree_assert)
3364 exp_fold_tree_no_dot (s->assignment_statement.exp);
3365 break;
3366 default:
3367 break;
3368 }
3369 }
3370
3371 /* Exit if any of the files were missing. */
3372 if (input_flags.missing_file)
3373 einfo ("%F");
3374 }
3375
3376 /* Add the supplied name to the symbol table as an undefined reference.
3377 This is a two step process as the symbol table doesn't even exist at
3378 the time the ld command line is processed. First we put the name
3379 on a list, then, once the output file has been opened, transfer the
3380 name to the symbol table. */
3381
3382 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3383
3384 #define ldlang_undef_chain_list_head entry_symbol.next
3385
3386 void
3387 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3388 {
3389 ldlang_undef_chain_list_type *new_undef;
3390
3391 undef_from_cmdline = undef_from_cmdline || cmdline;
3392 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3393 new_undef->next = ldlang_undef_chain_list_head;
3394 ldlang_undef_chain_list_head = new_undef;
3395
3396 new_undef->name = xstrdup (name);
3397
3398 if (link_info.output_bfd != NULL)
3399 insert_undefined (new_undef->name);
3400 }
3401
3402 /* Insert NAME as undefined in the symbol table. */
3403
3404 static void
3405 insert_undefined (const char *name)
3406 {
3407 struct bfd_link_hash_entry *h;
3408
3409 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3410 if (h == NULL)
3411 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3412 if (h->type == bfd_link_hash_new)
3413 {
3414 h->type = bfd_link_hash_undefined;
3415 h->u.undef.abfd = NULL;
3416 if (is_elf_hash_table (link_info.hash))
3417 ((struct elf_link_hash_entry *) h)->mark = 1;
3418 bfd_link_add_undef (link_info.hash, h);
3419 }
3420 }
3421
3422 /* Run through the list of undefineds created above and place them
3423 into the linker hash table as undefined symbols belonging to the
3424 script file. */
3425
3426 static void
3427 lang_place_undefineds (void)
3428 {
3429 ldlang_undef_chain_list_type *ptr;
3430
3431 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3432 insert_undefined (ptr->name);
3433 }
3434
3435 /* Structure used to build the list of symbols that the user has required
3436 be defined. */
3437
3438 struct require_defined_symbol
3439 {
3440 const char *name;
3441 struct require_defined_symbol *next;
3442 };
3443
3444 /* The list of symbols that the user has required be defined. */
3445
3446 static struct require_defined_symbol *require_defined_symbol_list;
3447
3448 /* Add a new symbol NAME to the list of symbols that are required to be
3449 defined. */
3450
3451 void
3452 ldlang_add_require_defined (const char *const name)
3453 {
3454 struct require_defined_symbol *ptr;
3455
3456 ldlang_add_undef (name, TRUE);
3457 ptr = (struct require_defined_symbol *) stat_alloc (sizeof (*ptr));
3458 ptr->next = require_defined_symbol_list;
3459 ptr->name = strdup (name);
3460 require_defined_symbol_list = ptr;
3461 }
3462
3463 /* Check that all symbols the user required to be defined, are defined,
3464 raise an error if we find a symbol that is not defined. */
3465
3466 static void
3467 ldlang_check_require_defined_symbols (void)
3468 {
3469 struct require_defined_symbol *ptr;
3470
3471 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3472 {
3473 struct bfd_link_hash_entry *h;
3474
3475 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3476 FALSE, FALSE, TRUE);
3477 if (h == NULL
3478 || (h->type != bfd_link_hash_defined
3479 && h->type != bfd_link_hash_defweak))
3480 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
3481 }
3482 }
3483
3484 /* Check for all readonly or some readwrite sections. */
3485
3486 static void
3487 check_input_sections
3488 (lang_statement_union_type *s,
3489 lang_output_section_statement_type *output_section_statement)
3490 {
3491 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3492 {
3493 switch (s->header.type)
3494 {
3495 case lang_wild_statement_enum:
3496 walk_wild (&s->wild_statement, check_section_callback,
3497 output_section_statement);
3498 if (!output_section_statement->all_input_readonly)
3499 return;
3500 break;
3501 case lang_constructors_statement_enum:
3502 check_input_sections (constructor_list.head,
3503 output_section_statement);
3504 if (!output_section_statement->all_input_readonly)
3505 return;
3506 break;
3507 case lang_group_statement_enum:
3508 check_input_sections (s->group_statement.children.head,
3509 output_section_statement);
3510 if (!output_section_statement->all_input_readonly)
3511 return;
3512 break;
3513 default:
3514 break;
3515 }
3516 }
3517 }
3518
3519 /* Update wildcard statements if needed. */
3520
3521 static void
3522 update_wild_statements (lang_statement_union_type *s)
3523 {
3524 struct wildcard_list *sec;
3525
3526 switch (sort_section)
3527 {
3528 default:
3529 FAIL ();
3530
3531 case none:
3532 break;
3533
3534 case by_name:
3535 case by_alignment:
3536 for (; s != NULL; s = s->header.next)
3537 {
3538 switch (s->header.type)
3539 {
3540 default:
3541 break;
3542
3543 case lang_wild_statement_enum:
3544 for (sec = s->wild_statement.section_list; sec != NULL;
3545 sec = sec->next)
3546 {
3547 switch (sec->spec.sorted)
3548 {
3549 case none:
3550 sec->spec.sorted = sort_section;
3551 break;
3552 case by_name:
3553 if (sort_section == by_alignment)
3554 sec->spec.sorted = by_name_alignment;
3555 break;
3556 case by_alignment:
3557 if (sort_section == by_name)
3558 sec->spec.sorted = by_alignment_name;
3559 break;
3560 default:
3561 break;
3562 }
3563 }
3564 break;
3565
3566 case lang_constructors_statement_enum:
3567 update_wild_statements (constructor_list.head);
3568 break;
3569
3570 case lang_output_section_statement_enum:
3571 /* Don't sort .init/.fini sections. */
3572 if (strcmp (s->output_section_statement.name, ".init") != 0
3573 && strcmp (s->output_section_statement.name, ".fini") != 0)
3574 update_wild_statements
3575 (s->output_section_statement.children.head);
3576 break;
3577
3578 case lang_group_statement_enum:
3579 update_wild_statements (s->group_statement.children.head);
3580 break;
3581 }
3582 }
3583 break;
3584 }
3585 }
3586
3587 /* Open input files and attach to output sections. */
3588
3589 static void
3590 map_input_to_output_sections
3591 (lang_statement_union_type *s, const char *target,
3592 lang_output_section_statement_type *os)
3593 {
3594 for (; s != NULL; s = s->header.next)
3595 {
3596 lang_output_section_statement_type *tos;
3597 flagword flags;
3598
3599 switch (s->header.type)
3600 {
3601 case lang_wild_statement_enum:
3602 wild (&s->wild_statement, target, os);
3603 break;
3604 case lang_constructors_statement_enum:
3605 map_input_to_output_sections (constructor_list.head,
3606 target,
3607 os);
3608 break;
3609 case lang_output_section_statement_enum:
3610 tos = &s->output_section_statement;
3611 if (tos->constraint != 0)
3612 {
3613 if (tos->constraint != ONLY_IF_RW
3614 && tos->constraint != ONLY_IF_RO)
3615 break;
3616 tos->all_input_readonly = TRUE;
3617 check_input_sections (tos->children.head, tos);
3618 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3619 {
3620 tos->constraint = -1;
3621 break;
3622 }
3623 }
3624 map_input_to_output_sections (tos->children.head,
3625 target,
3626 tos);
3627 break;
3628 case lang_output_statement_enum:
3629 break;
3630 case lang_target_statement_enum:
3631 target = s->target_statement.target;
3632 break;
3633 case lang_group_statement_enum:
3634 map_input_to_output_sections (s->group_statement.children.head,
3635 target,
3636 os);
3637 break;
3638 case lang_data_statement_enum:
3639 /* Make sure that any sections mentioned in the expression
3640 are initialized. */
3641 exp_init_os (s->data_statement.exp);
3642 /* The output section gets CONTENTS, ALLOC and LOAD, but
3643 these may be overridden by the script. */
3644 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3645 switch (os->sectype)
3646 {
3647 case normal_section:
3648 case overlay_section:
3649 break;
3650 case noalloc_section:
3651 flags = SEC_HAS_CONTENTS;
3652 break;
3653 case noload_section:
3654 if (bfd_get_flavour (link_info.output_bfd)
3655 == bfd_target_elf_flavour)
3656 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3657 else
3658 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3659 break;
3660 }
3661 if (os->bfd_section == NULL)
3662 init_os (os, flags);
3663 else
3664 os->bfd_section->flags |= flags;
3665 break;
3666 case lang_input_section_enum:
3667 break;
3668 case lang_fill_statement_enum:
3669 case lang_object_symbols_statement_enum:
3670 case lang_reloc_statement_enum:
3671 case lang_padding_statement_enum:
3672 case lang_input_statement_enum:
3673 if (os != NULL && os->bfd_section == NULL)
3674 init_os (os, 0);
3675 break;
3676 case lang_assignment_statement_enum:
3677 if (os != NULL && os->bfd_section == NULL)
3678 init_os (os, 0);
3679
3680 /* Make sure that any sections mentioned in the assignment
3681 are initialized. */
3682 exp_init_os (s->assignment_statement.exp);
3683 break;
3684 case lang_address_statement_enum:
3685 /* Mark the specified section with the supplied address.
3686 If this section was actually a segment marker, then the
3687 directive is ignored if the linker script explicitly
3688 processed the segment marker. Originally, the linker
3689 treated segment directives (like -Ttext on the
3690 command-line) as section directives. We honor the
3691 section directive semantics for backwards compatibility;
3692 linker scripts that do not specifically check for
3693 SEGMENT_START automatically get the old semantics. */
3694 if (!s->address_statement.segment
3695 || !s->address_statement.segment->used)
3696 {
3697 const char *name = s->address_statement.section_name;
3698
3699 /* Create the output section statement here so that
3700 orphans with a set address will be placed after other
3701 script sections. If we let the orphan placement code
3702 place them in amongst other sections then the address
3703 will affect following script sections, which is
3704 likely to surprise naive users. */
3705 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3706 tos->addr_tree = s->address_statement.address;
3707 if (tos->bfd_section == NULL)
3708 init_os (tos, 0);
3709 }
3710 break;
3711 case lang_insert_statement_enum:
3712 break;
3713 }
3714 }
3715 }
3716
3717 /* An insert statement snips out all the linker statements from the
3718 start of the list and places them after the output section
3719 statement specified by the insert. This operation is complicated
3720 by the fact that we keep a doubly linked list of output section
3721 statements as well as the singly linked list of all statements. */
3722
3723 static void
3724 process_insert_statements (void)
3725 {
3726 lang_statement_union_type **s;
3727 lang_output_section_statement_type *first_os = NULL;
3728 lang_output_section_statement_type *last_os = NULL;
3729 lang_output_section_statement_type *os;
3730
3731 /* "start of list" is actually the statement immediately after
3732 the special abs_section output statement, so that it isn't
3733 reordered. */
3734 s = &lang_output_section_statement.head;
3735 while (*(s = &(*s)->header.next) != NULL)
3736 {
3737 if ((*s)->header.type == lang_output_section_statement_enum)
3738 {
3739 /* Keep pointers to the first and last output section
3740 statement in the sequence we may be about to move. */
3741 os = &(*s)->output_section_statement;
3742
3743 ASSERT (last_os == NULL || last_os->next == os);
3744 last_os = os;
3745
3746 /* Set constraint negative so that lang_output_section_find
3747 won't match this output section statement. At this
3748 stage in linking constraint has values in the range
3749 [-1, ONLY_IN_RW]. */
3750 last_os->constraint = -2 - last_os->constraint;
3751 if (first_os == NULL)
3752 first_os = last_os;
3753 }
3754 else if ((*s)->header.type == lang_insert_statement_enum)
3755 {
3756 lang_insert_statement_type *i = &(*s)->insert_statement;
3757 lang_output_section_statement_type *where;
3758 lang_statement_union_type **ptr;
3759 lang_statement_union_type *first;
3760
3761 where = lang_output_section_find (i->where);
3762 if (where != NULL && i->is_before)
3763 {
3764 do
3765 where = where->prev;
3766 while (where != NULL && where->constraint < 0);
3767 }
3768 if (where == NULL)
3769 {
3770 einfo (_("%F%P: %s not found for insert\n"), i->where);
3771 return;
3772 }
3773
3774 /* Deal with reordering the output section statement list. */
3775 if (last_os != NULL)
3776 {
3777 asection *first_sec, *last_sec;
3778 struct lang_output_section_statement_struct **next;
3779
3780 /* Snip out the output sections we are moving. */
3781 first_os->prev->next = last_os->next;
3782 if (last_os->next == NULL)
3783 {
3784 next = &first_os->prev->next;
3785 lang_output_section_statement.tail
3786 = (lang_statement_union_type **) next;
3787 }
3788 else
3789 last_os->next->prev = first_os->prev;
3790 /* Add them in at the new position. */
3791 last_os->next = where->next;
3792 if (where->next == NULL)
3793 {
3794 next = &last_os->next;
3795 lang_output_section_statement.tail
3796 = (lang_statement_union_type **) next;
3797 }
3798 else
3799 where->next->prev = last_os;
3800 first_os->prev = where;
3801 where->next = first_os;
3802
3803 /* Move the bfd sections in the same way. */
3804 first_sec = NULL;
3805 last_sec = NULL;
3806 for (os = first_os; os != NULL; os = os->next)
3807 {
3808 os->constraint = -2 - os->constraint;
3809 if (os->bfd_section != NULL
3810 && os->bfd_section->owner != NULL)
3811 {
3812 last_sec = os->bfd_section;
3813 if (first_sec == NULL)
3814 first_sec = last_sec;
3815 }
3816 if (os == last_os)
3817 break;
3818 }
3819 if (last_sec != NULL)
3820 {
3821 asection *sec = where->bfd_section;
3822 if (sec == NULL)
3823 sec = output_prev_sec_find (where);
3824
3825 /* The place we want to insert must come after the
3826 sections we are moving. So if we find no
3827 section or if the section is the same as our
3828 last section, then no move is needed. */
3829 if (sec != NULL && sec != last_sec)
3830 {
3831 /* Trim them off. */
3832 if (first_sec->prev != NULL)
3833 first_sec->prev->next = last_sec->next;
3834 else
3835 link_info.output_bfd->sections = last_sec->next;
3836 if (last_sec->next != NULL)
3837 last_sec->next->prev = first_sec->prev;
3838 else
3839 link_info.output_bfd->section_last = first_sec->prev;
3840 /* Add back. */
3841 last_sec->next = sec->next;
3842 if (sec->next != NULL)
3843 sec->next->prev = last_sec;
3844 else
3845 link_info.output_bfd->section_last = last_sec;
3846 first_sec->prev = sec;
3847 sec->next = first_sec;
3848 }
3849 }
3850
3851 first_os = NULL;
3852 last_os = NULL;
3853 }
3854
3855 ptr = insert_os_after (where);
3856 /* Snip everything after the abs_section output statement we
3857 know is at the start of the list, up to and including
3858 the insert statement we are currently processing. */
3859 first = lang_output_section_statement.head->header.next;
3860 lang_output_section_statement.head->header.next = (*s)->header.next;
3861 /* Add them back where they belong. */
3862 *s = *ptr;
3863 if (*s == NULL)
3864 statement_list.tail = s;
3865 *ptr = first;
3866 s = &lang_output_section_statement.head;
3867 }
3868 }
3869
3870 /* Undo constraint twiddling. */
3871 for (os = first_os; os != NULL; os = os->next)
3872 {
3873 os->constraint = -2 - os->constraint;
3874 if (os == last_os)
3875 break;
3876 }
3877 }
3878
3879 /* An output section might have been removed after its statement was
3880 added. For example, ldemul_before_allocation can remove dynamic
3881 sections if they turn out to be not needed. Clean them up here. */
3882
3883 void
3884 strip_excluded_output_sections (void)
3885 {
3886 lang_output_section_statement_type *os;
3887
3888 /* Run lang_size_sections (if not already done). */
3889 if (expld.phase != lang_mark_phase_enum)
3890 {
3891 expld.phase = lang_mark_phase_enum;
3892 expld.dataseg.phase = exp_seg_none;
3893 one_lang_size_sections_pass (NULL, FALSE);
3894 lang_reset_memory_regions ();
3895 }
3896
3897 for (os = &lang_output_section_statement.head->output_section_statement;
3898 os != NULL;
3899 os = os->next)
3900 {
3901 asection *output_section;
3902 bfd_boolean exclude;
3903
3904 if (os->constraint < 0)
3905 continue;
3906
3907 output_section = os->bfd_section;
3908 if (output_section == NULL)
3909 continue;
3910
3911 exclude = (output_section->rawsize == 0
3912 && (output_section->flags & SEC_KEEP) == 0
3913 && !bfd_section_removed_from_list (link_info.output_bfd,
3914 output_section));
3915
3916 /* Some sections have not yet been sized, notably .gnu.version,
3917 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3918 input sections, so don't drop output sections that have such
3919 input sections unless they are also marked SEC_EXCLUDE. */
3920 if (exclude && output_section->map_head.s != NULL)
3921 {
3922 asection *s;
3923
3924 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3925 if ((s->flags & SEC_EXCLUDE) == 0
3926 && ((s->flags & SEC_LINKER_CREATED) != 0
3927 || link_info.emitrelocations))
3928 {
3929 exclude = FALSE;
3930 break;
3931 }
3932 }
3933
3934 if (exclude)
3935 {
3936 /* We don't set bfd_section to NULL since bfd_section of the
3937 removed output section statement may still be used. */
3938 if (!os->update_dot)
3939 os->ignored = TRUE;
3940 output_section->flags |= SEC_EXCLUDE;
3941 bfd_section_list_remove (link_info.output_bfd, output_section);
3942 link_info.output_bfd->section_count--;
3943 }
3944 }
3945 }
3946
3947 /* Called from ldwrite to clear out asection.map_head and
3948 asection.map_tail for use as link_orders in ldwrite. */
3949
3950 void
3951 lang_clear_os_map (void)
3952 {
3953 lang_output_section_statement_type *os;
3954
3955 if (map_head_is_link_order)
3956 return;
3957
3958 for (os = &lang_output_section_statement.head->output_section_statement;
3959 os != NULL;
3960 os = os->next)
3961 {
3962 asection *output_section;
3963
3964 if (os->constraint < 0)
3965 continue;
3966
3967 output_section = os->bfd_section;
3968 if (output_section == NULL)
3969 continue;
3970
3971 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3972 output_section->map_head.link_order = NULL;
3973 output_section->map_tail.link_order = NULL;
3974 }
3975
3976 /* Stop future calls to lang_add_section from messing with map_head
3977 and map_tail link_order fields. */
3978 map_head_is_link_order = TRUE;
3979 }
3980
3981 static void
3982 print_output_section_statement
3983 (lang_output_section_statement_type *output_section_statement)
3984 {
3985 asection *section = output_section_statement->bfd_section;
3986 int len;
3987
3988 if (output_section_statement != abs_output_section)
3989 {
3990 minfo ("\n%s", output_section_statement->name);
3991
3992 if (section != NULL)
3993 {
3994 print_dot = section->vma;
3995
3996 len = strlen (output_section_statement->name);
3997 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3998 {
3999 print_nl ();
4000 len = 0;
4001 }
4002 while (len < SECTION_NAME_MAP_LENGTH)
4003 {
4004 print_space ();
4005 ++len;
4006 }
4007
4008 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4009
4010 if (section->vma != section->lma)
4011 minfo (_(" load address 0x%V"), section->lma);
4012
4013 if (output_section_statement->update_dot_tree != NULL)
4014 exp_fold_tree (output_section_statement->update_dot_tree,
4015 bfd_abs_section_ptr, &print_dot);
4016 }
4017
4018 print_nl ();
4019 }
4020
4021 print_statement_list (output_section_statement->children.head,
4022 output_section_statement);
4023 }
4024
4025 static void
4026 print_assignment (lang_assignment_statement_type *assignment,
4027 lang_output_section_statement_type *output_section)
4028 {
4029 unsigned int i;
4030 bfd_boolean is_dot;
4031 etree_type *tree;
4032 asection *osec;
4033
4034 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4035 print_space ();
4036
4037 if (assignment->exp->type.node_class == etree_assert)
4038 {
4039 is_dot = FALSE;
4040 tree = assignment->exp->assert_s.child;
4041 }
4042 else
4043 {
4044 const char *dst = assignment->exp->assign.dst;
4045
4046 is_dot = (dst[0] == '.' && dst[1] == 0);
4047 if (!is_dot)
4048 expld.assign_name = dst;
4049 tree = assignment->exp->assign.src;
4050 }
4051
4052 osec = output_section->bfd_section;
4053 if (osec == NULL)
4054 osec = bfd_abs_section_ptr;
4055
4056 if (assignment->exp->type.node_class != etree_provide)
4057 exp_fold_tree (tree, osec, &print_dot);
4058 else
4059 expld.result.valid_p = FALSE;
4060
4061 if (expld.result.valid_p)
4062 {
4063 bfd_vma value;
4064
4065 if (assignment->exp->type.node_class == etree_assert
4066 || is_dot
4067 || expld.assign_name != NULL)
4068 {
4069 value = expld.result.value;
4070
4071 if (expld.result.section != NULL)
4072 value += expld.result.section->vma;
4073
4074 minfo ("0x%V", value);
4075 if (is_dot)
4076 print_dot = value;
4077 }
4078 else
4079 {
4080 struct bfd_link_hash_entry *h;
4081
4082 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4083 FALSE, FALSE, TRUE);
4084 if (h)
4085 {
4086 value = h->u.def.value;
4087 value += h->u.def.section->output_section->vma;
4088 value += h->u.def.section->output_offset;
4089
4090 minfo ("[0x%V]", value);
4091 }
4092 else
4093 minfo ("[unresolved]");
4094 }
4095 }
4096 else
4097 {
4098 if (assignment->exp->type.node_class == etree_provide)
4099 minfo ("[!provide]");
4100 else
4101 minfo ("*undef* ");
4102 #ifdef BFD64
4103 minfo (" ");
4104 #endif
4105 }
4106 expld.assign_name = NULL;
4107
4108 minfo (" ");
4109 exp_print_tree (assignment->exp);
4110 print_nl ();
4111 }
4112
4113 static void
4114 print_input_statement (lang_input_statement_type *statm)
4115 {
4116 if (statm->filename != NULL
4117 && (statm->the_bfd == NULL
4118 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4119 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4120 }
4121
4122 /* Print all symbols defined in a particular section. This is called
4123 via bfd_link_hash_traverse, or by print_all_symbols. */
4124
4125 static bfd_boolean
4126 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4127 {
4128 asection *sec = (asection *) ptr;
4129
4130 if ((hash_entry->type == bfd_link_hash_defined
4131 || hash_entry->type == bfd_link_hash_defweak)
4132 && sec == hash_entry->u.def.section)
4133 {
4134 int i;
4135
4136 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4137 print_space ();
4138 minfo ("0x%V ",
4139 (hash_entry->u.def.value
4140 + hash_entry->u.def.section->output_offset
4141 + hash_entry->u.def.section->output_section->vma));
4142
4143 minfo (" %pT\n", hash_entry->root.string);
4144 }
4145
4146 return TRUE;
4147 }
4148
4149 static int
4150 hash_entry_addr_cmp (const void *a, const void *b)
4151 {
4152 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4153 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4154
4155 if (l->u.def.value < r->u.def.value)
4156 return -1;
4157 else if (l->u.def.value > r->u.def.value)
4158 return 1;
4159 else
4160 return 0;
4161 }
4162
4163 static void
4164 print_all_symbols (asection *sec)
4165 {
4166 input_section_userdata_type *ud
4167 = (input_section_userdata_type *) get_userdata (sec);
4168 struct map_symbol_def *def;
4169 struct bfd_link_hash_entry **entries;
4170 unsigned int i;
4171
4172 if (!ud)
4173 return;
4174
4175 *ud->map_symbol_def_tail = 0;
4176
4177 /* Sort the symbols by address. */
4178 entries = (struct bfd_link_hash_entry **)
4179 obstack_alloc (&map_obstack,
4180 ud->map_symbol_def_count * sizeof (*entries));
4181
4182 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4183 entries[i] = def->entry;
4184
4185 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4186 hash_entry_addr_cmp);
4187
4188 /* Print the symbols. */
4189 for (i = 0; i < ud->map_symbol_def_count; i++)
4190 print_one_symbol (entries[i], sec);
4191
4192 obstack_free (&map_obstack, entries);
4193 }
4194
4195 /* Print information about an input section to the map file. */
4196
4197 static void
4198 print_input_section (asection *i, bfd_boolean is_discarded)
4199 {
4200 bfd_size_type size = i->size;
4201 int len;
4202 bfd_vma addr;
4203
4204 init_opb ();
4205
4206 print_space ();
4207 minfo ("%s", i->name);
4208
4209 len = 1 + strlen (i->name);
4210 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4211 {
4212 print_nl ();
4213 len = 0;
4214 }
4215 while (len < SECTION_NAME_MAP_LENGTH)
4216 {
4217 print_space ();
4218 ++len;
4219 }
4220
4221 if (i->output_section != NULL
4222 && i->output_section->owner == link_info.output_bfd)
4223 addr = i->output_section->vma + i->output_offset;
4224 else
4225 {
4226 addr = print_dot;
4227 if (!is_discarded)
4228 size = 0;
4229 }
4230
4231 minfo ("0x%V %W %pB\n", addr, size, i->owner);
4232
4233 if (size != i->rawsize && i->rawsize != 0)
4234 {
4235 len = SECTION_NAME_MAP_LENGTH + 3;
4236 #ifdef BFD64
4237 len += 16;
4238 #else
4239 len += 8;
4240 #endif
4241 while (len > 0)
4242 {
4243 print_space ();
4244 --len;
4245 }
4246
4247 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4248 }
4249
4250 if (i->output_section != NULL
4251 && i->output_section->owner == link_info.output_bfd)
4252 {
4253 if (link_info.reduce_memory_overheads)
4254 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4255 else
4256 print_all_symbols (i);
4257
4258 /* Update print_dot, but make sure that we do not move it
4259 backwards - this could happen if we have overlays and a
4260 later overlay is shorter than an earier one. */
4261 if (addr + TO_ADDR (size) > print_dot)
4262 print_dot = addr + TO_ADDR (size);
4263 }
4264 }
4265
4266 static void
4267 print_fill_statement (lang_fill_statement_type *fill)
4268 {
4269 size_t size;
4270 unsigned char *p;
4271 fputs (" FILL mask 0x", config.map_file);
4272 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4273 fprintf (config.map_file, "%02x", *p);
4274 fputs ("\n", config.map_file);
4275 }
4276
4277 static void
4278 print_data_statement (lang_data_statement_type *data)
4279 {
4280 int i;
4281 bfd_vma addr;
4282 bfd_size_type size;
4283 const char *name;
4284
4285 init_opb ();
4286 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4287 print_space ();
4288
4289 addr = data->output_offset;
4290 if (data->output_section != NULL)
4291 addr += data->output_section->vma;
4292
4293 switch (data->type)
4294 {
4295 default:
4296 abort ();
4297 case BYTE:
4298 size = BYTE_SIZE;
4299 name = "BYTE";
4300 break;
4301 case SHORT:
4302 size = SHORT_SIZE;
4303 name = "SHORT";
4304 break;
4305 case LONG:
4306 size = LONG_SIZE;
4307 name = "LONG";
4308 break;
4309 case QUAD:
4310 size = QUAD_SIZE;
4311 name = "QUAD";
4312 break;
4313 case SQUAD:
4314 size = QUAD_SIZE;
4315 name = "SQUAD";
4316 break;
4317 }
4318
4319 if (size < TO_SIZE ((unsigned) 1))
4320 size = TO_SIZE ((unsigned) 1);
4321 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4322
4323 if (data->exp->type.node_class != etree_value)
4324 {
4325 print_space ();
4326 exp_print_tree (data->exp);
4327 }
4328
4329 print_nl ();
4330
4331 print_dot = addr + TO_ADDR (size);
4332 }
4333
4334 /* Print an address statement. These are generated by options like
4335 -Ttext. */
4336
4337 static void
4338 print_address_statement (lang_address_statement_type *address)
4339 {
4340 minfo (_("Address of section %s set to "), address->section_name);
4341 exp_print_tree (address->address);
4342 print_nl ();
4343 }
4344
4345 /* Print a reloc statement. */
4346
4347 static void
4348 print_reloc_statement (lang_reloc_statement_type *reloc)
4349 {
4350 int i;
4351 bfd_vma addr;
4352 bfd_size_type size;
4353
4354 init_opb ();
4355 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4356 print_space ();
4357
4358 addr = reloc->output_offset;
4359 if (reloc->output_section != NULL)
4360 addr += reloc->output_section->vma;
4361
4362 size = bfd_get_reloc_size (reloc->howto);
4363
4364 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4365
4366 if (reloc->name != NULL)
4367 minfo ("%s+", reloc->name);
4368 else
4369 minfo ("%s+", reloc->section->name);
4370
4371 exp_print_tree (reloc->addend_exp);
4372
4373 print_nl ();
4374
4375 print_dot = addr + TO_ADDR (size);
4376 }
4377
4378 static void
4379 print_padding_statement (lang_padding_statement_type *s)
4380 {
4381 int len;
4382 bfd_vma addr;
4383
4384 init_opb ();
4385 minfo (" *fill*");
4386
4387 len = sizeof " *fill*" - 1;
4388 while (len < SECTION_NAME_MAP_LENGTH)
4389 {
4390 print_space ();
4391 ++len;
4392 }
4393
4394 addr = s->output_offset;
4395 if (s->output_section != NULL)
4396 addr += s->output_section->vma;
4397 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4398
4399 if (s->fill->size != 0)
4400 {
4401 size_t size;
4402 unsigned char *p;
4403 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4404 fprintf (config.map_file, "%02x", *p);
4405 }
4406
4407 print_nl ();
4408
4409 print_dot = addr + TO_ADDR (s->size);
4410 }
4411
4412 static void
4413 print_wild_statement (lang_wild_statement_type *w,
4414 lang_output_section_statement_type *os)
4415 {
4416 struct wildcard_list *sec;
4417
4418 print_space ();
4419
4420 if (w->exclude_name_list)
4421 {
4422 name_list *tmp;
4423 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4424 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4425 minfo (" %s", tmp->name);
4426 minfo (") ");
4427 }
4428
4429 if (w->filenames_sorted)
4430 minfo ("SORT_BY_NAME(");
4431 if (w->filename != NULL)
4432 minfo ("%s", w->filename);
4433 else
4434 minfo ("*");
4435 if (w->filenames_sorted)
4436 minfo (")");
4437
4438 minfo ("(");
4439 for (sec = w->section_list; sec; sec = sec->next)
4440 {
4441 int closing_paren = 0;
4442
4443 switch (sec->spec.sorted)
4444 {
4445 case none:
4446 break;
4447
4448 case by_name:
4449 minfo ("SORT_BY_NAME(");
4450 closing_paren = 1;
4451 break;
4452
4453 case by_alignment:
4454 minfo ("SORT_BY_ALIGNMENT(");
4455 closing_paren = 1;
4456 break;
4457
4458 case by_name_alignment:
4459 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
4460 closing_paren = 2;
4461 break;
4462
4463 case by_alignment_name:
4464 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
4465 closing_paren = 2;
4466 break;
4467
4468 case by_none:
4469 minfo ("SORT_NONE(");
4470 closing_paren = 1;
4471 break;
4472
4473 case by_init_priority:
4474 minfo ("SORT_BY_INIT_PRIORITY(");
4475 closing_paren = 1;
4476 break;
4477 }
4478
4479 if (sec->spec.exclude_name_list != NULL)
4480 {
4481 name_list *tmp;
4482 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4483 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4484 minfo (" %s", tmp->name);
4485 minfo (") ");
4486 }
4487 if (sec->spec.name != NULL)
4488 minfo ("%s", sec->spec.name);
4489 else
4490 minfo ("*");
4491 for (;closing_paren > 0; closing_paren--)
4492 minfo (")");
4493 if (sec->next)
4494 minfo (" ");
4495 }
4496 minfo (")");
4497
4498 print_nl ();
4499
4500 print_statement_list (w->children.head, os);
4501 }
4502
4503 /* Print a group statement. */
4504
4505 static void
4506 print_group (lang_group_statement_type *s,
4507 lang_output_section_statement_type *os)
4508 {
4509 fprintf (config.map_file, "START GROUP\n");
4510 print_statement_list (s->children.head, os);
4511 fprintf (config.map_file, "END GROUP\n");
4512 }
4513
4514 /* Print the list of statements in S.
4515 This can be called for any statement type. */
4516
4517 static void
4518 print_statement_list (lang_statement_union_type *s,
4519 lang_output_section_statement_type *os)
4520 {
4521 while (s != NULL)
4522 {
4523 print_statement (s, os);
4524 s = s->header.next;
4525 }
4526 }
4527
4528 /* Print the first statement in statement list S.
4529 This can be called for any statement type. */
4530
4531 static void
4532 print_statement (lang_statement_union_type *s,
4533 lang_output_section_statement_type *os)
4534 {
4535 switch (s->header.type)
4536 {
4537 default:
4538 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4539 FAIL ();
4540 break;
4541 case lang_constructors_statement_enum:
4542 if (constructor_list.head != NULL)
4543 {
4544 if (constructors_sorted)
4545 minfo (" SORT (CONSTRUCTORS)\n");
4546 else
4547 minfo (" CONSTRUCTORS\n");
4548 print_statement_list (constructor_list.head, os);
4549 }
4550 break;
4551 case lang_wild_statement_enum:
4552 print_wild_statement (&s->wild_statement, os);
4553 break;
4554 case lang_address_statement_enum:
4555 print_address_statement (&s->address_statement);
4556 break;
4557 case lang_object_symbols_statement_enum:
4558 minfo (" CREATE_OBJECT_SYMBOLS\n");
4559 break;
4560 case lang_fill_statement_enum:
4561 print_fill_statement (&s->fill_statement);
4562 break;
4563 case lang_data_statement_enum:
4564 print_data_statement (&s->data_statement);
4565 break;
4566 case lang_reloc_statement_enum:
4567 print_reloc_statement (&s->reloc_statement);
4568 break;
4569 case lang_input_section_enum:
4570 print_input_section (s->input_section.section, FALSE);
4571 break;
4572 case lang_padding_statement_enum:
4573 print_padding_statement (&s->padding_statement);
4574 break;
4575 case lang_output_section_statement_enum:
4576 print_output_section_statement (&s->output_section_statement);
4577 break;
4578 case lang_assignment_statement_enum:
4579 print_assignment (&s->assignment_statement, os);
4580 break;
4581 case lang_target_statement_enum:
4582 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4583 break;
4584 case lang_output_statement_enum:
4585 minfo ("OUTPUT(%s", s->output_statement.name);
4586 if (output_target != NULL)
4587 minfo (" %s", output_target);
4588 minfo (")\n");
4589 break;
4590 case lang_input_statement_enum:
4591 print_input_statement (&s->input_statement);
4592 break;
4593 case lang_group_statement_enum:
4594 print_group (&s->group_statement, os);
4595 break;
4596 case lang_insert_statement_enum:
4597 minfo ("INSERT %s %s\n",
4598 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4599 s->insert_statement.where);
4600 break;
4601 }
4602 }
4603
4604 static void
4605 print_statements (void)
4606 {
4607 print_statement_list (statement_list.head, abs_output_section);
4608 }
4609
4610 /* Print the first N statements in statement list S to STDERR.
4611 If N == 0, nothing is printed.
4612 If N < 0, the entire list is printed.
4613 Intended to be called from GDB. */
4614
4615 void
4616 dprint_statement (lang_statement_union_type *s, int n)
4617 {
4618 FILE *map_save = config.map_file;
4619
4620 config.map_file = stderr;
4621
4622 if (n < 0)
4623 print_statement_list (s, abs_output_section);
4624 else
4625 {
4626 while (s && --n >= 0)
4627 {
4628 print_statement (s, abs_output_section);
4629 s = s->header.next;
4630 }
4631 }
4632
4633 config.map_file = map_save;
4634 }
4635
4636 static void
4637 insert_pad (lang_statement_union_type **ptr,
4638 fill_type *fill,
4639 bfd_size_type alignment_needed,
4640 asection *output_section,
4641 bfd_vma dot)
4642 {
4643 static fill_type zero_fill;
4644 lang_statement_union_type *pad = NULL;
4645
4646 if (ptr != &statement_list.head)
4647 pad = ((lang_statement_union_type *)
4648 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4649 if (pad != NULL
4650 && pad->header.type == lang_padding_statement_enum
4651 && pad->padding_statement.output_section == output_section)
4652 {
4653 /* Use the existing pad statement. */
4654 }
4655 else if ((pad = *ptr) != NULL
4656 && pad->header.type == lang_padding_statement_enum
4657 && pad->padding_statement.output_section == output_section)
4658 {
4659 /* Use the existing pad statement. */
4660 }
4661 else
4662 {
4663 /* Make a new padding statement, linked into existing chain. */
4664 pad = (lang_statement_union_type *)
4665 stat_alloc (sizeof (lang_padding_statement_type));
4666 pad->header.next = *ptr;
4667 *ptr = pad;
4668 pad->header.type = lang_padding_statement_enum;
4669 pad->padding_statement.output_section = output_section;
4670 if (fill == NULL)
4671 fill = &zero_fill;
4672 pad->padding_statement.fill = fill;
4673 }
4674 pad->padding_statement.output_offset = dot - output_section->vma;
4675 pad->padding_statement.size = alignment_needed;
4676 if (!(output_section->flags & SEC_FIXED_SIZE))
4677 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
4678 - output_section->vma);
4679 }
4680
4681 /* Work out how much this section will move the dot point. */
4682
4683 static bfd_vma
4684 size_input_section
4685 (lang_statement_union_type **this_ptr,
4686 lang_output_section_statement_type *output_section_statement,
4687 fill_type *fill,
4688 bfd_vma dot)
4689 {
4690 lang_input_section_type *is = &((*this_ptr)->input_section);
4691 asection *i = is->section;
4692 asection *o = output_section_statement->bfd_section;
4693
4694 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4695 i->output_offset = i->vma - o->vma;
4696 else if (((i->flags & SEC_EXCLUDE) != 0)
4697 || output_section_statement->ignored)
4698 i->output_offset = dot - o->vma;
4699 else
4700 {
4701 bfd_size_type alignment_needed;
4702
4703 /* Align this section first to the input sections requirement,
4704 then to the output section's requirement. If this alignment
4705 is greater than any seen before, then record it too. Perform
4706 the alignment by inserting a magic 'padding' statement. */
4707
4708 if (output_section_statement->subsection_alignment != -1)
4709 i->alignment_power = output_section_statement->subsection_alignment;
4710
4711 if (o->alignment_power < i->alignment_power)
4712 o->alignment_power = i->alignment_power;
4713
4714 alignment_needed = align_power (dot, i->alignment_power) - dot;
4715
4716 if (alignment_needed != 0)
4717 {
4718 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4719 dot += alignment_needed;
4720 }
4721
4722 /* Remember where in the output section this input section goes. */
4723 i->output_offset = dot - o->vma;
4724
4725 /* Mark how big the output section must be to contain this now. */
4726 dot += TO_ADDR (i->size);
4727 if (!(o->flags & SEC_FIXED_SIZE))
4728 o->size = TO_SIZE (dot - o->vma);
4729 }
4730
4731 return dot;
4732 }
4733
4734 struct check_sec
4735 {
4736 asection *sec;
4737 bfd_boolean warned;
4738 };
4739
4740 static int
4741 sort_sections_by_lma (const void *arg1, const void *arg2)
4742 {
4743 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4744 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4745
4746 if (sec1->lma < sec2->lma)
4747 return -1;
4748 else if (sec1->lma > sec2->lma)
4749 return 1;
4750 else if (sec1->id < sec2->id)
4751 return -1;
4752 else if (sec1->id > sec2->id)
4753 return 1;
4754
4755 return 0;
4756 }
4757
4758 static int
4759 sort_sections_by_vma (const void *arg1, const void *arg2)
4760 {
4761 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4762 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4763
4764 if (sec1->vma < sec2->vma)
4765 return -1;
4766 else if (sec1->vma > sec2->vma)
4767 return 1;
4768 else if (sec1->id < sec2->id)
4769 return -1;
4770 else if (sec1->id > sec2->id)
4771 return 1;
4772
4773 return 0;
4774 }
4775
4776 #define IS_TBSS(s) \
4777 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
4778
4779 #define IGNORE_SECTION(s) \
4780 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
4781
4782 /* Check to see if any allocated sections overlap with other allocated
4783 sections. This can happen if a linker script specifies the output
4784 section addresses of the two sections. Also check whether any memory
4785 region has overflowed. */
4786
4787 static void
4788 lang_check_section_addresses (void)
4789 {
4790 asection *s, *p;
4791 struct check_sec *sections;
4792 size_t i, count;
4793 bfd_vma addr_mask;
4794 bfd_vma s_start;
4795 bfd_vma s_end;
4796 bfd_vma p_start = 0;
4797 bfd_vma p_end = 0;
4798 lang_memory_region_type *m;
4799 bfd_boolean overlays;
4800
4801 /* Detect address space overflow on allocated sections. */
4802 addr_mask = ((bfd_vma) 1 <<
4803 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
4804 addr_mask = (addr_mask << 1) + 1;
4805 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4806 if ((s->flags & SEC_ALLOC) != 0)
4807 {
4808 s_end = (s->vma + s->size) & addr_mask;
4809 if (s_end != 0 && s_end < (s->vma & addr_mask))
4810 einfo (_("%X%P: section %s VMA wraps around address space\n"),
4811 s->name);
4812 else
4813 {
4814 s_end = (s->lma + s->size) & addr_mask;
4815 if (s_end != 0 && s_end < (s->lma & addr_mask))
4816 einfo (_("%X%P: section %s LMA wraps around address space\n"),
4817 s->name);
4818 }
4819 }
4820
4821 if (bfd_count_sections (link_info.output_bfd) <= 1)
4822 return;
4823
4824 count = bfd_count_sections (link_info.output_bfd);
4825 sections = XNEWVEC (struct check_sec, count);
4826
4827 /* Scan all sections in the output list. */
4828 count = 0;
4829 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4830 {
4831 if (IGNORE_SECTION (s)
4832 || s->size == 0)
4833 continue;
4834
4835 sections[count].sec = s;
4836 sections[count].warned = FALSE;
4837 count++;
4838 }
4839
4840 if (count <= 1)
4841 {
4842 free (sections);
4843 return;
4844 }
4845
4846 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
4847
4848 /* First check section LMAs. There should be no overlap of LMAs on
4849 loadable sections, even with overlays. */
4850 for (p = NULL, i = 0; i < count; i++)
4851 {
4852 s = sections[i].sec;
4853 if ((s->flags & SEC_LOAD) != 0)
4854 {
4855 s_start = s->lma;
4856 s_end = s_start + TO_ADDR (s->size) - 1;
4857
4858 /* Look for an overlap. We have sorted sections by lma, so
4859 we know that s_start >= p_start. Besides the obvious
4860 case of overlap when the current section starts before
4861 the previous one ends, we also must have overlap if the
4862 previous section wraps around the address space. */
4863 if (p != NULL
4864 && (s_start <= p_end
4865 || p_end < p_start))
4866 {
4867 einfo (_("%X%P: section %s LMA [%V,%V]"
4868 " overlaps section %s LMA [%V,%V]\n"),
4869 s->name, s_start, s_end, p->name, p_start, p_end);
4870 sections[i].warned = TRUE;
4871 }
4872 p = s;
4873 p_start = s_start;
4874 p_end = s_end;
4875 }
4876 }
4877
4878 /* If any non-zero size allocated section (excluding tbss) starts at
4879 exactly the same VMA as another such section, then we have
4880 overlays. Overlays generated by the OVERLAY keyword will have
4881 this property. It is possible to intentionally generate overlays
4882 that fail this test, but it would be unusual. */
4883 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
4884 overlays = FALSE;
4885 p_start = sections[0].sec->vma;
4886 for (i = 1; i < count; i++)
4887 {
4888 s_start = sections[i].sec->vma;
4889 if (p_start == s_start)
4890 {
4891 overlays = TRUE;
4892 break;
4893 }
4894 p_start = s_start;
4895 }
4896
4897 /* Now check section VMAs if no overlays were detected. */
4898 if (!overlays)
4899 {
4900 for (p = NULL, i = 0; i < count; i++)
4901 {
4902 s = sections[i].sec;
4903 s_start = s->vma;
4904 s_end = s_start + TO_ADDR (s->size) - 1;
4905
4906 if (p != NULL
4907 && !sections[i].warned
4908 && (s_start <= p_end
4909 || p_end < p_start))
4910 einfo (_("%X%P: section %s VMA [%V,%V]"
4911 " overlaps section %s VMA [%V,%V]\n"),
4912 s->name, s_start, s_end, p->name, p_start, p_end);
4913 p = s;
4914 p_start = s_start;
4915 p_end = s_end;
4916 }
4917 }
4918
4919 free (sections);
4920
4921 /* If any memory region has overflowed, report by how much.
4922 We do not issue this diagnostic for regions that had sections
4923 explicitly placed outside their bounds; os_region_check's
4924 diagnostics are adequate for that case.
4925
4926 FIXME: It is conceivable that m->current - (m->origin + m->length)
4927 might overflow a 32-bit integer. There is, alas, no way to print
4928 a bfd_vma quantity in decimal. */
4929 for (m = lang_memory_region_list; m; m = m->next)
4930 if (m->had_full_message)
4931 {
4932 unsigned long over = m->current - (m->origin + m->length);
4933 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
4934 "%X%P: region `%s' overflowed by %lu bytes\n",
4935 over),
4936 m->name_list.name, over);
4937 }
4938 }
4939
4940 /* Make sure the new address is within the region. We explicitly permit the
4941 current address to be at the exact end of the region when the address is
4942 non-zero, in case the region is at the end of addressable memory and the
4943 calculation wraps around. */
4944
4945 static void
4946 os_region_check (lang_output_section_statement_type *os,
4947 lang_memory_region_type *region,
4948 etree_type *tree,
4949 bfd_vma rbase)
4950 {
4951 if ((region->current < region->origin
4952 || (region->current - region->origin > region->length))
4953 && ((region->current != region->origin + region->length)
4954 || rbase == 0))
4955 {
4956 if (tree != NULL)
4957 {
4958 einfo (_("%X%P: address 0x%v of %pB section `%s'"
4959 " is not within region `%s'\n"),
4960 region->current,
4961 os->bfd_section->owner,
4962 os->bfd_section->name,
4963 region->name_list.name);
4964 }
4965 else if (!region->had_full_message)
4966 {
4967 region->had_full_message = TRUE;
4968
4969 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
4970 os->bfd_section->owner,
4971 os->bfd_section->name,
4972 region->name_list.name);
4973 }
4974 }
4975 }
4976
4977 static void
4978 ldlang_check_relro_region (lang_statement_union_type *s,
4979 seg_align_type *seg)
4980 {
4981 if (seg->relro == exp_seg_relro_start)
4982 {
4983 if (!seg->relro_start_stat)
4984 seg->relro_start_stat = s;
4985 else
4986 {
4987 ASSERT (seg->relro_start_stat == s);
4988 }
4989 }
4990 else if (seg->relro == exp_seg_relro_end)
4991 {
4992 if (!seg->relro_end_stat)
4993 seg->relro_end_stat = s;
4994 else
4995 {
4996 ASSERT (seg->relro_end_stat == s);
4997 }
4998 }
4999 }
5000
5001 /* Set the sizes for all the output sections. */
5002
5003 static bfd_vma
5004 lang_size_sections_1
5005 (lang_statement_union_type **prev,
5006 lang_output_section_statement_type *output_section_statement,
5007 fill_type *fill,
5008 bfd_vma dot,
5009 bfd_boolean *relax,
5010 bfd_boolean check_regions)
5011 {
5012 lang_statement_union_type *s;
5013
5014 /* Size up the sections from their constituent parts. */
5015 for (s = *prev; s != NULL; s = s->header.next)
5016 {
5017 switch (s->header.type)
5018 {
5019 case lang_output_section_statement_enum:
5020 {
5021 bfd_vma newdot, after, dotdelta;
5022 lang_output_section_statement_type *os;
5023 lang_memory_region_type *r;
5024 int section_alignment = 0;
5025
5026 os = &s->output_section_statement;
5027 if (os->constraint == -1)
5028 break;
5029
5030 /* FIXME: We shouldn't need to zero section vmas for ld -r
5031 here, in lang_insert_orphan, or in the default linker scripts.
5032 This is covering for coff backend linker bugs. See PR6945. */
5033 if (os->addr_tree == NULL
5034 && bfd_link_relocatable (&link_info)
5035 && (bfd_get_flavour (link_info.output_bfd)
5036 == bfd_target_coff_flavour))
5037 os->addr_tree = exp_intop (0);
5038 if (os->addr_tree != NULL)
5039 {
5040 os->processed_vma = FALSE;
5041 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5042
5043 if (expld.result.valid_p)
5044 {
5045 dot = expld.result.value;
5046 if (expld.result.section != NULL)
5047 dot += expld.result.section->vma;
5048 }
5049 else if (expld.phase != lang_mark_phase_enum)
5050 einfo (_("%F%P:%pS: non constant or forward reference"
5051 " address expression for section %s\n"),
5052 os->addr_tree, os->name);
5053 }
5054
5055 if (os->bfd_section == NULL)
5056 /* This section was removed or never actually created. */
5057 break;
5058
5059 /* If this is a COFF shared library section, use the size and
5060 address from the input section. FIXME: This is COFF
5061 specific; it would be cleaner if there were some other way
5062 to do this, but nothing simple comes to mind. */
5063 if (((bfd_get_flavour (link_info.output_bfd)
5064 == bfd_target_ecoff_flavour)
5065 || (bfd_get_flavour (link_info.output_bfd)
5066 == bfd_target_coff_flavour))
5067 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5068 {
5069 asection *input;
5070
5071 if (os->children.head == NULL
5072 || os->children.head->header.next != NULL
5073 || (os->children.head->header.type
5074 != lang_input_section_enum))
5075 einfo (_("%X%P: internal error on COFF shared library"
5076 " section %s\n"), os->name);
5077
5078 input = os->children.head->input_section.section;
5079 bfd_set_section_vma (os->bfd_section->owner,
5080 os->bfd_section,
5081 bfd_section_vma (input->owner, input));
5082 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5083 os->bfd_section->size = input->size;
5084 break;
5085 }
5086
5087 newdot = dot;
5088 dotdelta = 0;
5089 if (bfd_is_abs_section (os->bfd_section))
5090 {
5091 /* No matter what happens, an abs section starts at zero. */
5092 ASSERT (os->bfd_section->vma == 0);
5093 }
5094 else
5095 {
5096 if (os->addr_tree == NULL)
5097 {
5098 /* No address specified for this section, get one
5099 from the region specification. */
5100 if (os->region == NULL
5101 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5102 && os->region->name_list.name[0] == '*'
5103 && strcmp (os->region->name_list.name,
5104 DEFAULT_MEMORY_REGION) == 0))
5105 {
5106 os->region = lang_memory_default (os->bfd_section);
5107 }
5108
5109 /* If a loadable section is using the default memory
5110 region, and some non default memory regions were
5111 defined, issue an error message. */
5112 if (!os->ignored
5113 && !IGNORE_SECTION (os->bfd_section)
5114 && !bfd_link_relocatable (&link_info)
5115 && check_regions
5116 && strcmp (os->region->name_list.name,
5117 DEFAULT_MEMORY_REGION) == 0
5118 && lang_memory_region_list != NULL
5119 && (strcmp (lang_memory_region_list->name_list.name,
5120 DEFAULT_MEMORY_REGION) != 0
5121 || lang_memory_region_list->next != NULL)
5122 && expld.phase != lang_mark_phase_enum)
5123 {
5124 /* By default this is an error rather than just a
5125 warning because if we allocate the section to the
5126 default memory region we can end up creating an
5127 excessively large binary, or even seg faulting when
5128 attempting to perform a negative seek. See
5129 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5130 for an example of this. This behaviour can be
5131 overridden by the using the --no-check-sections
5132 switch. */
5133 if (command_line.check_section_addresses)
5134 einfo (_("%F%P: error: no memory region specified"
5135 " for loadable section `%s'\n"),
5136 bfd_get_section_name (link_info.output_bfd,
5137 os->bfd_section));
5138 else
5139 einfo (_("%P: warning: no memory region specified"
5140 " for loadable section `%s'\n"),
5141 bfd_get_section_name (link_info.output_bfd,
5142 os->bfd_section));
5143 }
5144
5145 newdot = os->region->current;
5146 section_alignment = os->bfd_section->alignment_power;
5147 }
5148 else
5149 section_alignment = os->section_alignment;
5150
5151 /* Align to what the section needs. */
5152 if (section_alignment > 0)
5153 {
5154 bfd_vma savedot = newdot;
5155 newdot = align_power (newdot, section_alignment);
5156
5157 dotdelta = newdot - savedot;
5158 if (dotdelta != 0
5159 && (config.warn_section_align
5160 || os->addr_tree != NULL)
5161 && expld.phase != lang_mark_phase_enum)
5162 einfo (ngettext ("%P: warning: changing start of "
5163 "section %s by %lu byte\n",
5164 "%P: warning: changing start of "
5165 "section %s by %lu bytes\n",
5166 (unsigned long) dotdelta),
5167 os->name, (unsigned long) dotdelta);
5168 }
5169
5170 bfd_set_section_vma (0, os->bfd_section, newdot);
5171
5172 os->bfd_section->output_offset = 0;
5173 }
5174
5175 lang_size_sections_1 (&os->children.head, os,
5176 os->fill, newdot, relax, check_regions);
5177
5178 os->processed_vma = TRUE;
5179
5180 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5181 /* Except for some special linker created sections,
5182 no output section should change from zero size
5183 after strip_excluded_output_sections. A non-zero
5184 size on an ignored section indicates that some
5185 input section was not sized early enough. */
5186 ASSERT (os->bfd_section->size == 0);
5187 else
5188 {
5189 dot = os->bfd_section->vma;
5190
5191 /* Put the section within the requested block size, or
5192 align at the block boundary. */
5193 after = ((dot
5194 + TO_ADDR (os->bfd_section->size)
5195 + os->block_value - 1)
5196 & - (bfd_vma) os->block_value);
5197
5198 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5199 os->bfd_section->size = TO_SIZE (after
5200 - os->bfd_section->vma);
5201 }
5202
5203 /* Set section lma. */
5204 r = os->region;
5205 if (r == NULL)
5206 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5207
5208 if (os->load_base)
5209 {
5210 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5211 os->bfd_section->lma = lma;
5212 }
5213 else if (os->lma_region != NULL)
5214 {
5215 bfd_vma lma = os->lma_region->current;
5216
5217 if (os->align_lma_with_input)
5218 lma += dotdelta;
5219 else
5220 {
5221 /* When LMA_REGION is the same as REGION, align the LMA
5222 as we did for the VMA, possibly including alignment
5223 from the bfd section. If a different region, then
5224 only align according to the value in the output
5225 statement. */
5226 if (os->lma_region != os->region)
5227 section_alignment = os->section_alignment;
5228 if (section_alignment > 0)
5229 lma = align_power (lma, section_alignment);
5230 }
5231 os->bfd_section->lma = lma;
5232 }
5233 else if (r->last_os != NULL
5234 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5235 {
5236 bfd_vma lma;
5237 asection *last;
5238
5239 last = r->last_os->output_section_statement.bfd_section;
5240
5241 /* A backwards move of dot should be accompanied by
5242 an explicit assignment to the section LMA (ie.
5243 os->load_base set) because backwards moves can
5244 create overlapping LMAs. */
5245 if (dot < last->vma
5246 && os->bfd_section->size != 0
5247 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5248 {
5249 /* If dot moved backwards then leave lma equal to
5250 vma. This is the old default lma, which might
5251 just happen to work when the backwards move is
5252 sufficiently large. Nag if this changes anything,
5253 so people can fix their linker scripts. */
5254
5255 if (last->vma != last->lma)
5256 einfo (_("%P: warning: dot moved backwards "
5257 "before `%s'\n"), os->name);
5258 }
5259 else
5260 {
5261 /* If this is an overlay, set the current lma to that
5262 at the end of the previous section. */
5263 if (os->sectype == overlay_section)
5264 lma = last->lma + TO_ADDR (last->size);
5265
5266 /* Otherwise, keep the same lma to vma relationship
5267 as the previous section. */
5268 else
5269 lma = dot + last->lma - last->vma;
5270
5271 if (section_alignment > 0)
5272 lma = align_power (lma, section_alignment);
5273 os->bfd_section->lma = lma;
5274 }
5275 }
5276 os->processed_lma = TRUE;
5277
5278 /* Keep track of normal sections using the default
5279 lma region. We use this to set the lma for
5280 following sections. Overlays or other linker
5281 script assignment to lma might mean that the
5282 default lma == vma is incorrect.
5283 To avoid warnings about dot moving backwards when using
5284 -Ttext, don't start tracking sections until we find one
5285 of non-zero size or with lma set differently to vma.
5286 Do this tracking before we short-cut the loop so that we
5287 track changes for the case where the section size is zero,
5288 but the lma is set differently to the vma. This is
5289 important, if an orphan section is placed after an
5290 otherwise empty output section that has an explicit lma
5291 set, we want that lma reflected in the orphans lma. */
5292 if (!IGNORE_SECTION (os->bfd_section)
5293 && (os->bfd_section->size != 0
5294 || (r->last_os == NULL
5295 && os->bfd_section->vma != os->bfd_section->lma)
5296 || (r->last_os != NULL
5297 && dot >= (r->last_os->output_section_statement
5298 .bfd_section->vma)))
5299 && os->lma_region == NULL
5300 && !bfd_link_relocatable (&link_info))
5301 r->last_os = s;
5302
5303 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5304 break;
5305
5306 /* .tbss sections effectively have zero size. */
5307 if (!IS_TBSS (os->bfd_section)
5308 || bfd_link_relocatable (&link_info))
5309 dotdelta = TO_ADDR (os->bfd_section->size);
5310 else
5311 dotdelta = 0;
5312 dot += dotdelta;
5313
5314 if (os->update_dot_tree != 0)
5315 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5316
5317 /* Update dot in the region ?
5318 We only do this if the section is going to be allocated,
5319 since unallocated sections do not contribute to the region's
5320 overall size in memory. */
5321 if (os->region != NULL
5322 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5323 {
5324 os->region->current = dot;
5325
5326 if (check_regions)
5327 /* Make sure the new address is within the region. */
5328 os_region_check (os, os->region, os->addr_tree,
5329 os->bfd_section->vma);
5330
5331 if (os->lma_region != NULL && os->lma_region != os->region
5332 && ((os->bfd_section->flags & SEC_LOAD)
5333 || os->align_lma_with_input))
5334 {
5335 os->lma_region->current = os->bfd_section->lma + dotdelta;
5336
5337 if (check_regions)
5338 os_region_check (os, os->lma_region, NULL,
5339 os->bfd_section->lma);
5340 }
5341 }
5342 }
5343 break;
5344
5345 case lang_constructors_statement_enum:
5346 dot = lang_size_sections_1 (&constructor_list.head,
5347 output_section_statement,
5348 fill, dot, relax, check_regions);
5349 break;
5350
5351 case lang_data_statement_enum:
5352 {
5353 unsigned int size = 0;
5354
5355 s->data_statement.output_offset =
5356 dot - output_section_statement->bfd_section->vma;
5357 s->data_statement.output_section =
5358 output_section_statement->bfd_section;
5359
5360 /* We might refer to provided symbols in the expression, and
5361 need to mark them as needed. */
5362 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5363
5364 switch (s->data_statement.type)
5365 {
5366 default:
5367 abort ();
5368 case QUAD:
5369 case SQUAD:
5370 size = QUAD_SIZE;
5371 break;
5372 case LONG:
5373 size = LONG_SIZE;
5374 break;
5375 case SHORT:
5376 size = SHORT_SIZE;
5377 break;
5378 case BYTE:
5379 size = BYTE_SIZE;
5380 break;
5381 }
5382 if (size < TO_SIZE ((unsigned) 1))
5383 size = TO_SIZE ((unsigned) 1);
5384 dot += TO_ADDR (size);
5385 if (!(output_section_statement->bfd_section->flags
5386 & SEC_FIXED_SIZE))
5387 output_section_statement->bfd_section->size
5388 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5389
5390 }
5391 break;
5392
5393 case lang_reloc_statement_enum:
5394 {
5395 int size;
5396
5397 s->reloc_statement.output_offset =
5398 dot - output_section_statement->bfd_section->vma;
5399 s->reloc_statement.output_section =
5400 output_section_statement->bfd_section;
5401 size = bfd_get_reloc_size (s->reloc_statement.howto);
5402 dot += TO_ADDR (size);
5403 if (!(output_section_statement->bfd_section->flags
5404 & SEC_FIXED_SIZE))
5405 output_section_statement->bfd_section->size
5406 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5407 }
5408 break;
5409
5410 case lang_wild_statement_enum:
5411 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5412 output_section_statement,
5413 fill, dot, relax, check_regions);
5414 break;
5415
5416 case lang_object_symbols_statement_enum:
5417 link_info.create_object_symbols_section =
5418 output_section_statement->bfd_section;
5419 break;
5420
5421 case lang_output_statement_enum:
5422 case lang_target_statement_enum:
5423 break;
5424
5425 case lang_input_section_enum:
5426 {
5427 asection *i;
5428
5429 i = s->input_section.section;
5430 if (relax)
5431 {
5432 bfd_boolean again;
5433
5434 if (!bfd_relax_section (i->owner, i, &link_info, &again))
5435 einfo (_("%F%P: can't relax section: %E\n"));
5436 if (again)
5437 *relax = TRUE;
5438 }
5439 dot = size_input_section (prev, output_section_statement,
5440 fill, dot);
5441 }
5442 break;
5443
5444 case lang_input_statement_enum:
5445 break;
5446
5447 case lang_fill_statement_enum:
5448 s->fill_statement.output_section =
5449 output_section_statement->bfd_section;
5450
5451 fill = s->fill_statement.fill;
5452 break;
5453
5454 case lang_assignment_statement_enum:
5455 {
5456 bfd_vma newdot = dot;
5457 etree_type *tree = s->assignment_statement.exp;
5458
5459 expld.dataseg.relro = exp_seg_relro_none;
5460
5461 exp_fold_tree (tree,
5462 output_section_statement->bfd_section,
5463 &newdot);
5464
5465 ldlang_check_relro_region (s, &expld.dataseg);
5466
5467 expld.dataseg.relro = exp_seg_relro_none;
5468
5469 /* This symbol may be relative to this section. */
5470 if ((tree->type.node_class == etree_provided
5471 || tree->type.node_class == etree_assign)
5472 && (tree->assign.dst [0] != '.'
5473 || tree->assign.dst [1] != '\0'))
5474 output_section_statement->update_dot = 1;
5475
5476 if (!output_section_statement->ignored)
5477 {
5478 if (output_section_statement == abs_output_section)
5479 {
5480 /* If we don't have an output section, then just adjust
5481 the default memory address. */
5482 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5483 FALSE)->current = newdot;
5484 }
5485 else if (newdot != dot)
5486 {
5487 /* Insert a pad after this statement. We can't
5488 put the pad before when relaxing, in case the
5489 assignment references dot. */
5490 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5491 output_section_statement->bfd_section, dot);
5492
5493 /* Don't neuter the pad below when relaxing. */
5494 s = s->header.next;
5495
5496 /* If dot is advanced, this implies that the section
5497 should have space allocated to it, unless the
5498 user has explicitly stated that the section
5499 should not be allocated. */
5500 if (output_section_statement->sectype != noalloc_section
5501 && (output_section_statement->sectype != noload_section
5502 || (bfd_get_flavour (link_info.output_bfd)
5503 == bfd_target_elf_flavour)))
5504 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5505 }
5506 dot = newdot;
5507 }
5508 }
5509 break;
5510
5511 case lang_padding_statement_enum:
5512 /* If this is the first time lang_size_sections is called,
5513 we won't have any padding statements. If this is the
5514 second or later passes when relaxing, we should allow
5515 padding to shrink. If padding is needed on this pass, it
5516 will be added back in. */
5517 s->padding_statement.size = 0;
5518
5519 /* Make sure output_offset is valid. If relaxation shrinks
5520 the section and this pad isn't needed, it's possible to
5521 have output_offset larger than the final size of the
5522 section. bfd_set_section_contents will complain even for
5523 a pad size of zero. */
5524 s->padding_statement.output_offset
5525 = dot - output_section_statement->bfd_section->vma;
5526 break;
5527
5528 case lang_group_statement_enum:
5529 dot = lang_size_sections_1 (&s->group_statement.children.head,
5530 output_section_statement,
5531 fill, dot, relax, check_regions);
5532 break;
5533
5534 case lang_insert_statement_enum:
5535 break;
5536
5537 /* We can only get here when relaxing is turned on. */
5538 case lang_address_statement_enum:
5539 break;
5540
5541 default:
5542 FAIL ();
5543 break;
5544 }
5545 prev = &s->header.next;
5546 }
5547 return dot;
5548 }
5549
5550 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5551 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5552 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5553 segments. We are allowed an opportunity to override this decision. */
5554
5555 bfd_boolean
5556 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5557 bfd *abfd ATTRIBUTE_UNUSED,
5558 asection *current_section,
5559 asection *previous_section,
5560 bfd_boolean new_segment)
5561 {
5562 lang_output_section_statement_type *cur;
5563 lang_output_section_statement_type *prev;
5564
5565 /* The checks below are only necessary when the BFD library has decided
5566 that the two sections ought to be placed into the same segment. */
5567 if (new_segment)
5568 return TRUE;
5569
5570 /* Paranoia checks. */
5571 if (current_section == NULL || previous_section == NULL)
5572 return new_segment;
5573
5574 /* If this flag is set, the target never wants code and non-code
5575 sections comingled in the same segment. */
5576 if (config.separate_code
5577 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
5578 return TRUE;
5579
5580 /* Find the memory regions associated with the two sections.
5581 We call lang_output_section_find() here rather than scanning the list
5582 of output sections looking for a matching section pointer because if
5583 we have a large number of sections then a hash lookup is faster. */
5584 cur = lang_output_section_find (current_section->name);
5585 prev = lang_output_section_find (previous_section->name);
5586
5587 /* More paranoia. */
5588 if (cur == NULL || prev == NULL)
5589 return new_segment;
5590
5591 /* If the regions are different then force the sections to live in
5592 different segments. See the email thread starting at the following
5593 URL for the reasons why this is necessary:
5594 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5595 return cur->region != prev->region;
5596 }
5597
5598 void
5599 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5600 {
5601 lang_statement_iteration++;
5602 lang_size_sections_1 (&statement_list.head, abs_output_section,
5603 0, 0, relax, check_regions);
5604 }
5605
5606 static bfd_boolean
5607 lang_size_segment (seg_align_type *seg)
5608 {
5609 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
5610 a page could be saved in the data segment. */
5611 bfd_vma first, last;
5612
5613 first = -seg->base & (seg->pagesize - 1);
5614 last = seg->end & (seg->pagesize - 1);
5615 if (first && last
5616 && ((seg->base & ~(seg->pagesize - 1))
5617 != (seg->end & ~(seg->pagesize - 1)))
5618 && first + last <= seg->pagesize)
5619 {
5620 seg->phase = exp_seg_adjust;
5621 return TRUE;
5622 }
5623
5624 seg->phase = exp_seg_done;
5625 return FALSE;
5626 }
5627
5628 static bfd_vma
5629 lang_size_relro_segment_1 (seg_align_type *seg)
5630 {
5631 bfd_vma relro_end, desired_end;
5632 asection *sec;
5633
5634 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
5635 relro_end = ((seg->relro_end + seg->pagesize - 1)
5636 & ~(seg->pagesize - 1));
5637
5638 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
5639 desired_end = relro_end - seg->relro_offset;
5640
5641 /* For sections in the relro segment.. */
5642 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
5643 if ((sec->flags & SEC_ALLOC) != 0
5644 && sec->vma >= seg->base
5645 && sec->vma < seg->relro_end - seg->relro_offset)
5646 {
5647 /* Where do we want to put this section so that it ends as
5648 desired? */
5649 bfd_vma start, end, bump;
5650
5651 end = start = sec->vma;
5652 if (!IS_TBSS (sec))
5653 end += TO_ADDR (sec->size);
5654 bump = desired_end - end;
5655 /* We'd like to increase START by BUMP, but we must heed
5656 alignment so the increase might be less than optimum. */
5657 start += bump;
5658 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
5659 /* This is now the desired end for the previous section. */
5660 desired_end = start;
5661 }
5662
5663 seg->phase = exp_seg_relro_adjust;
5664 ASSERT (desired_end >= seg->base);
5665 seg->base = desired_end;
5666 return relro_end;
5667 }
5668
5669 static bfd_boolean
5670 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
5671 {
5672 bfd_boolean do_reset = FALSE;
5673 bfd_boolean do_data_relro;
5674 bfd_vma data_initial_base, data_relro_end;
5675
5676 if (link_info.relro && expld.dataseg.relro_end)
5677 {
5678 do_data_relro = TRUE;
5679 data_initial_base = expld.dataseg.base;
5680 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
5681 }
5682 else
5683 {
5684 do_data_relro = FALSE;
5685 data_initial_base = data_relro_end = 0;
5686 }
5687
5688 if (do_data_relro)
5689 {
5690 lang_reset_memory_regions ();
5691 one_lang_size_sections_pass (relax, check_regions);
5692
5693 /* Assignments to dot, or to output section address in a user
5694 script have increased padding over the original. Revert. */
5695 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
5696 {
5697 expld.dataseg.base = data_initial_base;;
5698 do_reset = TRUE;
5699 }
5700 }
5701
5702 if (!do_data_relro && lang_size_segment (&expld.dataseg))
5703 do_reset = TRUE;
5704
5705 return do_reset;
5706 }
5707
5708 void
5709 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5710 {
5711 expld.phase = lang_allocating_phase_enum;
5712 expld.dataseg.phase = exp_seg_none;
5713
5714 one_lang_size_sections_pass (relax, check_regions);
5715
5716 if (expld.dataseg.phase != exp_seg_end_seen)
5717 expld.dataseg.phase = exp_seg_done;
5718
5719 if (expld.dataseg.phase == exp_seg_end_seen)
5720 {
5721 bfd_boolean do_reset
5722 = lang_size_relro_segment (relax, check_regions);
5723
5724 if (do_reset)
5725 {
5726 lang_reset_memory_regions ();
5727 one_lang_size_sections_pass (relax, check_regions);
5728 }
5729
5730 if (link_info.relro && expld.dataseg.relro_end)
5731 {
5732 link_info.relro_start = expld.dataseg.base;
5733 link_info.relro_end = expld.dataseg.relro_end;
5734 }
5735 }
5736 }
5737
5738 static lang_output_section_statement_type *current_section;
5739 static lang_assignment_statement_type *current_assign;
5740 static bfd_boolean prefer_next_section;
5741
5742 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5743
5744 static bfd_vma
5745 lang_do_assignments_1 (lang_statement_union_type *s,
5746 lang_output_section_statement_type *current_os,
5747 fill_type *fill,
5748 bfd_vma dot,
5749 bfd_boolean *found_end)
5750 {
5751 for (; s != NULL; s = s->header.next)
5752 {
5753 switch (s->header.type)
5754 {
5755 case lang_constructors_statement_enum:
5756 dot = lang_do_assignments_1 (constructor_list.head,
5757 current_os, fill, dot, found_end);
5758 break;
5759
5760 case lang_output_section_statement_enum:
5761 {
5762 lang_output_section_statement_type *os;
5763 bfd_vma newdot;
5764
5765 os = &(s->output_section_statement);
5766 os->after_end = *found_end;
5767 if (os->bfd_section != NULL && !os->ignored)
5768 {
5769 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
5770 {
5771 current_section = os;
5772 prefer_next_section = FALSE;
5773 }
5774 dot = os->bfd_section->vma;
5775 }
5776 newdot = lang_do_assignments_1 (os->children.head,
5777 os, os->fill, dot, found_end);
5778 if (!os->ignored)
5779 {
5780 if (os->bfd_section != NULL)
5781 {
5782 /* .tbss sections effectively have zero size. */
5783 if (!IS_TBSS (os->bfd_section)
5784 || bfd_link_relocatable (&link_info))
5785 dot += TO_ADDR (os->bfd_section->size);
5786
5787 if (os->update_dot_tree != NULL)
5788 exp_fold_tree (os->update_dot_tree,
5789 bfd_abs_section_ptr, &dot);
5790 }
5791 else
5792 dot = newdot;
5793 }
5794 }
5795 break;
5796
5797 case lang_wild_statement_enum:
5798
5799 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5800 current_os, fill, dot, found_end);
5801 break;
5802
5803 case lang_object_symbols_statement_enum:
5804 case lang_output_statement_enum:
5805 case lang_target_statement_enum:
5806 break;
5807
5808 case lang_data_statement_enum:
5809 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5810 if (expld.result.valid_p)
5811 {
5812 s->data_statement.value = expld.result.value;
5813 if (expld.result.section != NULL)
5814 s->data_statement.value += expld.result.section->vma;
5815 }
5816 else if (expld.phase == lang_final_phase_enum)
5817 einfo (_("%F%P: invalid data statement\n"));
5818 {
5819 unsigned int size;
5820 switch (s->data_statement.type)
5821 {
5822 default:
5823 abort ();
5824 case QUAD:
5825 case SQUAD:
5826 size = QUAD_SIZE;
5827 break;
5828 case LONG:
5829 size = LONG_SIZE;
5830 break;
5831 case SHORT:
5832 size = SHORT_SIZE;
5833 break;
5834 case BYTE:
5835 size = BYTE_SIZE;
5836 break;
5837 }
5838 if (size < TO_SIZE ((unsigned) 1))
5839 size = TO_SIZE ((unsigned) 1);
5840 dot += TO_ADDR (size);
5841 }
5842 break;
5843
5844 case lang_reloc_statement_enum:
5845 exp_fold_tree (s->reloc_statement.addend_exp,
5846 bfd_abs_section_ptr, &dot);
5847 if (expld.result.valid_p)
5848 s->reloc_statement.addend_value = expld.result.value;
5849 else if (expld.phase == lang_final_phase_enum)
5850 einfo (_("%F%P: invalid reloc statement\n"));
5851 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5852 break;
5853
5854 case lang_input_section_enum:
5855 {
5856 asection *in = s->input_section.section;
5857
5858 if ((in->flags & SEC_EXCLUDE) == 0)
5859 dot += TO_ADDR (in->size);
5860 }
5861 break;
5862
5863 case lang_input_statement_enum:
5864 break;
5865
5866 case lang_fill_statement_enum:
5867 fill = s->fill_statement.fill;
5868 break;
5869
5870 case lang_assignment_statement_enum:
5871 current_assign = &s->assignment_statement;
5872 if (current_assign->exp->type.node_class != etree_assert)
5873 {
5874 const char *p = current_assign->exp->assign.dst;
5875
5876 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
5877 prefer_next_section = TRUE;
5878
5879 while (*p == '_')
5880 ++p;
5881 if (strcmp (p, "end") == 0)
5882 *found_end = TRUE;
5883 }
5884 exp_fold_tree (s->assignment_statement.exp,
5885 (current_os->bfd_section != NULL
5886 ? current_os->bfd_section : bfd_und_section_ptr),
5887 &dot);
5888 break;
5889
5890 case lang_padding_statement_enum:
5891 dot += TO_ADDR (s->padding_statement.size);
5892 break;
5893
5894 case lang_group_statement_enum:
5895 dot = lang_do_assignments_1 (s->group_statement.children.head,
5896 current_os, fill, dot, found_end);
5897 break;
5898
5899 case lang_insert_statement_enum:
5900 break;
5901
5902 case lang_address_statement_enum:
5903 break;
5904
5905 default:
5906 FAIL ();
5907 break;
5908 }
5909 }
5910 return dot;
5911 }
5912
5913 void
5914 lang_do_assignments (lang_phase_type phase)
5915 {
5916 bfd_boolean found_end = FALSE;
5917
5918 current_section = NULL;
5919 prefer_next_section = FALSE;
5920 expld.phase = phase;
5921 lang_statement_iteration++;
5922 lang_do_assignments_1 (statement_list.head,
5923 abs_output_section, NULL, 0, &found_end);
5924 }
5925
5926 /* For an assignment statement outside of an output section statement,
5927 choose the best of neighbouring output sections to use for values
5928 of "dot". */
5929
5930 asection *
5931 section_for_dot (void)
5932 {
5933 asection *s;
5934
5935 /* Assignments belong to the previous output section, unless there
5936 has been an assignment to "dot", in which case following
5937 assignments belong to the next output section. (The assumption
5938 is that an assignment to "dot" is setting up the address for the
5939 next output section.) Except that past the assignment to "_end"
5940 we always associate with the previous section. This exception is
5941 for targets like SH that define an alloc .stack or other
5942 weirdness after non-alloc sections. */
5943 if (current_section == NULL || prefer_next_section)
5944 {
5945 lang_statement_union_type *stmt;
5946 lang_output_section_statement_type *os;
5947
5948 for (stmt = (lang_statement_union_type *) current_assign;
5949 stmt != NULL;
5950 stmt = stmt->header.next)
5951 if (stmt->header.type == lang_output_section_statement_enum)
5952 break;
5953
5954 os = &stmt->output_section_statement;
5955 while (os != NULL
5956 && !os->after_end
5957 && (os->bfd_section == NULL
5958 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
5959 || bfd_section_removed_from_list (link_info.output_bfd,
5960 os->bfd_section)))
5961 os = os->next;
5962
5963 if (current_section == NULL || os == NULL || !os->after_end)
5964 {
5965 if (os != NULL)
5966 s = os->bfd_section;
5967 else
5968 s = link_info.output_bfd->section_last;
5969 while (s != NULL
5970 && ((s->flags & SEC_ALLOC) == 0
5971 || (s->flags & SEC_THREAD_LOCAL) != 0))
5972 s = s->prev;
5973 if (s != NULL)
5974 return s;
5975
5976 return bfd_abs_section_ptr;
5977 }
5978 }
5979
5980 s = current_section->bfd_section;
5981
5982 /* The section may have been stripped. */
5983 while (s != NULL
5984 && ((s->flags & SEC_EXCLUDE) != 0
5985 || (s->flags & SEC_ALLOC) == 0
5986 || (s->flags & SEC_THREAD_LOCAL) != 0
5987 || bfd_section_removed_from_list (link_info.output_bfd, s)))
5988 s = s->prev;
5989 if (s == NULL)
5990 s = link_info.output_bfd->sections;
5991 while (s != NULL
5992 && ((s->flags & SEC_ALLOC) == 0
5993 || (s->flags & SEC_THREAD_LOCAL) != 0))
5994 s = s->next;
5995 if (s != NULL)
5996 return s;
5997
5998 return bfd_abs_section_ptr;
5999 }
6000
6001 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6002
6003 static struct bfd_link_hash_entry **start_stop_syms;
6004 static size_t start_stop_count = 0;
6005 static size_t start_stop_alloc = 0;
6006
6007 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6008 to start_stop_syms. */
6009
6010 static void
6011 lang_define_start_stop (const char *symbol, asection *sec)
6012 {
6013 struct bfd_link_hash_entry *h;
6014
6015 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6016 if (h != NULL)
6017 {
6018 if (start_stop_count == start_stop_alloc)
6019 {
6020 start_stop_alloc = 2 * start_stop_alloc + 10;
6021 start_stop_syms
6022 = xrealloc (start_stop_syms,
6023 start_stop_alloc * sizeof (*start_stop_syms));
6024 }
6025 start_stop_syms[start_stop_count++] = h;
6026 }
6027 }
6028
6029 /* Check for input sections whose names match references to
6030 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6031 preliminary definitions. */
6032
6033 static void
6034 lang_init_start_stop (void)
6035 {
6036 bfd *abfd;
6037 asection *s;
6038 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6039
6040 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6041 for (s = abfd->sections; s != NULL; s = s->next)
6042 {
6043 const char *ps;
6044 const char *secname = s->name;
6045
6046 for (ps = secname; *ps != '\0'; ps++)
6047 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6048 break;
6049 if (*ps == '\0')
6050 {
6051 char *symbol = (char *) xmalloc (10 + strlen (secname));
6052
6053 symbol[0] = leading_char;
6054 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6055 lang_define_start_stop (symbol, s);
6056
6057 symbol[1] = leading_char;
6058 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6059 lang_define_start_stop (symbol + 1, s);
6060
6061 free (symbol);
6062 }
6063 }
6064 }
6065
6066 /* Iterate over start_stop_syms. */
6067
6068 static void
6069 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6070 {
6071 size_t i;
6072
6073 for (i = 0; i < start_stop_count; ++i)
6074 func (start_stop_syms[i]);
6075 }
6076
6077 /* __start and __stop symbols are only supposed to be defined by the
6078 linker for orphan sections, but we now extend that to sections that
6079 map to an output section of the same name. The symbols were
6080 defined early for --gc-sections, before we mapped input to output
6081 sections, so undo those that don't satisfy this rule. */
6082
6083 static void
6084 undef_start_stop (struct bfd_link_hash_entry *h)
6085 {
6086 if (h->ldscript_def)
6087 return;
6088
6089 if (h->u.def.section->output_section == NULL
6090 || h->u.def.section->output_section->owner != link_info.output_bfd
6091 || strcmp (h->u.def.section->name,
6092 h->u.def.section->output_section->name) != 0)
6093 {
6094 h->type = bfd_link_hash_undefined;
6095 h->u.undef.abfd = NULL;
6096 }
6097 }
6098
6099 static void
6100 lang_undef_start_stop (void)
6101 {
6102 foreach_start_stop (undef_start_stop);
6103 }
6104
6105 /* Check for output sections whose names match references to
6106 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6107 preliminary definitions. */
6108
6109 static void
6110 lang_init_startof_sizeof (void)
6111 {
6112 asection *s;
6113
6114 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6115 {
6116 const char *secname = s->name;
6117 char *symbol = (char *) xmalloc (10 + strlen (secname));
6118
6119 sprintf (symbol, ".startof.%s", secname);
6120 lang_define_start_stop (symbol, s);
6121
6122 memcpy (symbol + 1, ".size", 5);
6123 lang_define_start_stop (symbol + 1, s);
6124 free (symbol);
6125 }
6126 }
6127
6128 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6129
6130 static void
6131 set_start_stop (struct bfd_link_hash_entry *h)
6132 {
6133 if (h->ldscript_def
6134 || h->type != bfd_link_hash_defined)
6135 return;
6136
6137 if (h->root.string[0] == '.')
6138 {
6139 /* .startof. or .sizeof. symbol.
6140 .startof. already has final value. */
6141 if (h->root.string[2] == 'i')
6142 {
6143 /* .sizeof. */
6144 h->u.def.value = TO_ADDR (h->u.def.section->size);
6145 h->u.def.section = bfd_abs_section_ptr;
6146 }
6147 }
6148 else
6149 {
6150 /* __start or __stop symbol. */
6151 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6152
6153 h->u.def.section = h->u.def.section->output_section;
6154 if (h->root.string[4 + has_lead] == 'o')
6155 {
6156 /* __stop_ */
6157 h->u.def.value = TO_ADDR (h->u.def.section->size);
6158 }
6159 }
6160 }
6161
6162 static void
6163 lang_finalize_start_stop (void)
6164 {
6165 foreach_start_stop (set_start_stop);
6166 }
6167
6168 static void
6169 lang_end (void)
6170 {
6171 struct bfd_link_hash_entry *h;
6172 bfd_boolean warn;
6173
6174 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6175 || bfd_link_dll (&link_info))
6176 warn = entry_from_cmdline;
6177 else
6178 warn = TRUE;
6179
6180 /* Force the user to specify a root when generating a relocatable with
6181 --gc-sections. */
6182 if (link_info.gc_sections && bfd_link_relocatable (&link_info)
6183 && !(entry_from_cmdline || undef_from_cmdline))
6184 einfo (_("%F%P: gc-sections requires either an entry or "
6185 "an undefined symbol\n"));
6186
6187 if (entry_symbol.name == NULL)
6188 {
6189 /* No entry has been specified. Look for the default entry, but
6190 don't warn if we don't find it. */
6191 entry_symbol.name = entry_symbol_default;
6192 warn = FALSE;
6193 }
6194
6195 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6196 FALSE, FALSE, TRUE);
6197 if (h != NULL
6198 && (h->type == bfd_link_hash_defined
6199 || h->type == bfd_link_hash_defweak)
6200 && h->u.def.section->output_section != NULL)
6201 {
6202 bfd_vma val;
6203
6204 val = (h->u.def.value
6205 + bfd_get_section_vma (link_info.output_bfd,
6206 h->u.def.section->output_section)
6207 + h->u.def.section->output_offset);
6208 if (!bfd_set_start_address (link_info.output_bfd, val))
6209 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6210 }
6211 else
6212 {
6213 bfd_vma val;
6214 const char *send;
6215
6216 /* We couldn't find the entry symbol. Try parsing it as a
6217 number. */
6218 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6219 if (*send == '\0')
6220 {
6221 if (!bfd_set_start_address (link_info.output_bfd, val))
6222 einfo (_("%F%P: can't set start address\n"));
6223 }
6224 else
6225 {
6226 asection *ts;
6227
6228 /* Can't find the entry symbol, and it's not a number. Use
6229 the first address in the text section. */
6230 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6231 if (ts != NULL)
6232 {
6233 if (warn)
6234 einfo (_("%P: warning: cannot find entry symbol %s;"
6235 " defaulting to %V\n"),
6236 entry_symbol.name,
6237 bfd_get_section_vma (link_info.output_bfd, ts));
6238 if (!(bfd_set_start_address
6239 (link_info.output_bfd,
6240 bfd_get_section_vma (link_info.output_bfd, ts))))
6241 einfo (_("%F%P: can't set start address\n"));
6242 }
6243 else
6244 {
6245 if (warn)
6246 einfo (_("%P: warning: cannot find entry symbol %s;"
6247 " not setting start address\n"),
6248 entry_symbol.name);
6249 }
6250 }
6251 }
6252 }
6253
6254 /* This is a small function used when we want to ignore errors from
6255 BFD. */
6256
6257 static void
6258 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6259 va_list ap ATTRIBUTE_UNUSED)
6260 {
6261 /* Don't do anything. */
6262 }
6263
6264 /* Check that the architecture of all the input files is compatible
6265 with the output file. Also call the backend to let it do any
6266 other checking that is needed. */
6267
6268 static void
6269 lang_check (void)
6270 {
6271 lang_statement_union_type *file;
6272 bfd *input_bfd;
6273 const bfd_arch_info_type *compatible;
6274
6275 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
6276 {
6277 #ifdef ENABLE_PLUGINS
6278 /* Don't check format of files claimed by plugin. */
6279 if (file->input_statement.flags.claimed)
6280 continue;
6281 #endif /* ENABLE_PLUGINS */
6282 input_bfd = file->input_statement.the_bfd;
6283 compatible
6284 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6285 command_line.accept_unknown_input_arch);
6286
6287 /* In general it is not possible to perform a relocatable
6288 link between differing object formats when the input
6289 file has relocations, because the relocations in the
6290 input format may not have equivalent representations in
6291 the output format (and besides BFD does not translate
6292 relocs for other link purposes than a final link). */
6293 if ((bfd_link_relocatable (&link_info)
6294 || link_info.emitrelocations)
6295 && (compatible == NULL
6296 || (bfd_get_flavour (input_bfd)
6297 != bfd_get_flavour (link_info.output_bfd)))
6298 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6299 {
6300 einfo (_("%F%P: relocatable linking with relocations from"
6301 " format %s (%pB) to format %s (%pB) is not supported\n"),
6302 bfd_get_target (input_bfd), input_bfd,
6303 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6304 /* einfo with %F exits. */
6305 }
6306
6307 if (compatible == NULL)
6308 {
6309 if (command_line.warn_mismatch)
6310 einfo (_("%X%P: %s architecture of input file `%pB'"
6311 " is incompatible with %s output\n"),
6312 bfd_printable_name (input_bfd), input_bfd,
6313 bfd_printable_name (link_info.output_bfd));
6314 }
6315 else if (bfd_count_sections (input_bfd))
6316 {
6317 /* If the input bfd has no contents, it shouldn't set the
6318 private data of the output bfd. */
6319
6320 bfd_error_handler_type pfn = NULL;
6321
6322 /* If we aren't supposed to warn about mismatched input
6323 files, temporarily set the BFD error handler to a
6324 function which will do nothing. We still want to call
6325 bfd_merge_private_bfd_data, since it may set up
6326 information which is needed in the output file. */
6327 if (!command_line.warn_mismatch)
6328 pfn = bfd_set_error_handler (ignore_bfd_errors);
6329 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6330 {
6331 if (command_line.warn_mismatch)
6332 einfo (_("%X%P: failed to merge target specific data"
6333 " of file %pB\n"), input_bfd);
6334 }
6335 if (!command_line.warn_mismatch)
6336 bfd_set_error_handler (pfn);
6337 }
6338 }
6339 }
6340
6341 /* Look through all the global common symbols and attach them to the
6342 correct section. The -sort-common command line switch may be used
6343 to roughly sort the entries by alignment. */
6344
6345 static void
6346 lang_common (void)
6347 {
6348 if (link_info.inhibit_common_definition)
6349 return;
6350 if (bfd_link_relocatable (&link_info)
6351 && !command_line.force_common_definition)
6352 return;
6353
6354 if (!config.sort_common)
6355 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6356 else
6357 {
6358 unsigned int power;
6359
6360 if (config.sort_common == sort_descending)
6361 {
6362 for (power = 4; power > 0; power--)
6363 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6364
6365 power = 0;
6366 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6367 }
6368 else
6369 {
6370 for (power = 0; power <= 4; power++)
6371 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6372
6373 power = (unsigned int) -1;
6374 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6375 }
6376 }
6377 }
6378
6379 /* Place one common symbol in the correct section. */
6380
6381 static bfd_boolean
6382 lang_one_common (struct bfd_link_hash_entry *h, void *info)
6383 {
6384 unsigned int power_of_two;
6385 bfd_vma size;
6386 asection *section;
6387
6388 if (h->type != bfd_link_hash_common)
6389 return TRUE;
6390
6391 size = h->u.c.size;
6392 power_of_two = h->u.c.p->alignment_power;
6393
6394 if (config.sort_common == sort_descending
6395 && power_of_two < *(unsigned int *) info)
6396 return TRUE;
6397 else if (config.sort_common == sort_ascending
6398 && power_of_two > *(unsigned int *) info)
6399 return TRUE;
6400
6401 section = h->u.c.p->section;
6402 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
6403 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
6404 h->root.string);
6405
6406 if (config.map_file != NULL)
6407 {
6408 static bfd_boolean header_printed;
6409 int len;
6410 char *name;
6411 char buf[50];
6412
6413 if (!header_printed)
6414 {
6415 minfo (_("\nAllocating common symbols\n"));
6416 minfo (_("Common symbol size file\n\n"));
6417 header_printed = TRUE;
6418 }
6419
6420 name = bfd_demangle (link_info.output_bfd, h->root.string,
6421 DMGL_ANSI | DMGL_PARAMS);
6422 if (name == NULL)
6423 {
6424 minfo ("%s", h->root.string);
6425 len = strlen (h->root.string);
6426 }
6427 else
6428 {
6429 minfo ("%s", name);
6430 len = strlen (name);
6431 free (name);
6432 }
6433
6434 if (len >= 19)
6435 {
6436 print_nl ();
6437 len = 0;
6438 }
6439 while (len < 20)
6440 {
6441 print_space ();
6442 ++len;
6443 }
6444
6445 minfo ("0x");
6446 if (size <= 0xffffffff)
6447 sprintf (buf, "%lx", (unsigned long) size);
6448 else
6449 sprintf_vma (buf, size);
6450 minfo ("%s", buf);
6451 len = strlen (buf);
6452
6453 while (len < 16)
6454 {
6455 print_space ();
6456 ++len;
6457 }
6458
6459 minfo ("%pB\n", section->owner);
6460 }
6461
6462 return TRUE;
6463 }
6464
6465 /* Handle a single orphan section S, placing the orphan into an appropriate
6466 output section. The effects of the --orphan-handling command line
6467 option are handled here. */
6468
6469 static void
6470 ldlang_place_orphan (asection *s)
6471 {
6472 if (config.orphan_handling == orphan_handling_discard)
6473 {
6474 lang_output_section_statement_type *os;
6475 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
6476 TRUE);
6477 if (os->addr_tree == NULL
6478 && (bfd_link_relocatable (&link_info)
6479 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6480 os->addr_tree = exp_intop (0);
6481 lang_add_section (&os->children, s, NULL, os);
6482 }
6483 else
6484 {
6485 lang_output_section_statement_type *os;
6486 const char *name = s->name;
6487 int constraint = 0;
6488
6489 if (config.orphan_handling == orphan_handling_error)
6490 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
6491 s, s->owner);
6492
6493 if (config.unique_orphan_sections || unique_section_p (s, NULL))
6494 constraint = SPECIAL;
6495
6496 os = ldemul_place_orphan (s, name, constraint);
6497 if (os == NULL)
6498 {
6499 os = lang_output_section_statement_lookup (name, constraint, TRUE);
6500 if (os->addr_tree == NULL
6501 && (bfd_link_relocatable (&link_info)
6502 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6503 os->addr_tree = exp_intop (0);
6504 lang_add_section (&os->children, s, NULL, os);
6505 }
6506
6507 if (config.orphan_handling == orphan_handling_warn)
6508 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
6509 "placed in section `%s'\n"),
6510 s, s->owner, os->name);
6511 }
6512 }
6513
6514 /* Run through the input files and ensure that every input section has
6515 somewhere to go. If one is found without a destination then create
6516 an input request and place it into the statement tree. */
6517
6518 static void
6519 lang_place_orphans (void)
6520 {
6521 LANG_FOR_EACH_INPUT_STATEMENT (file)
6522 {
6523 asection *s;
6524
6525 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6526 {
6527 if (s->output_section == NULL)
6528 {
6529 /* This section of the file is not attached, root
6530 around for a sensible place for it to go. */
6531
6532 if (file->flags.just_syms)
6533 bfd_link_just_syms (file->the_bfd, s, &link_info);
6534 else if (lang_discard_section_p (s))
6535 s->output_section = bfd_abs_section_ptr;
6536 else if (strcmp (s->name, "COMMON") == 0)
6537 {
6538 /* This is a lonely common section which must have
6539 come from an archive. We attach to the section
6540 with the wildcard. */
6541 if (!bfd_link_relocatable (&link_info)
6542 || command_line.force_common_definition)
6543 {
6544 if (default_common_section == NULL)
6545 default_common_section
6546 = lang_output_section_statement_lookup (".bss", 0,
6547 TRUE);
6548 lang_add_section (&default_common_section->children, s,
6549 NULL, default_common_section);
6550 }
6551 }
6552 else
6553 ldlang_place_orphan (s);
6554 }
6555 }
6556 }
6557 }
6558
6559 void
6560 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6561 {
6562 flagword *ptr_flags;
6563
6564 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6565
6566 while (*flags)
6567 {
6568 switch (*flags)
6569 {
6570 /* PR 17900: An exclamation mark in the attributes reverses
6571 the sense of any of the attributes that follow. */
6572 case '!':
6573 invert = !invert;
6574 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6575 break;
6576
6577 case 'A': case 'a':
6578 *ptr_flags |= SEC_ALLOC;
6579 break;
6580
6581 case 'R': case 'r':
6582 *ptr_flags |= SEC_READONLY;
6583 break;
6584
6585 case 'W': case 'w':
6586 *ptr_flags |= SEC_DATA;
6587 break;
6588
6589 case 'X': case 'x':
6590 *ptr_flags |= SEC_CODE;
6591 break;
6592
6593 case 'L': case 'l':
6594 case 'I': case 'i':
6595 *ptr_flags |= SEC_LOAD;
6596 break;
6597
6598 default:
6599 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
6600 *flags, *flags);
6601 break;
6602 }
6603 flags++;
6604 }
6605 }
6606
6607 /* Call a function on each input file. This function will be called
6608 on an archive, but not on the elements. */
6609
6610 void
6611 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6612 {
6613 lang_input_statement_type *f;
6614
6615 for (f = &input_file_chain.head->input_statement;
6616 f != NULL;
6617 f = &f->next_real_file->input_statement)
6618 func (f);
6619 }
6620
6621 /* Call a function on each file. The function will be called on all
6622 the elements of an archive which are included in the link, but will
6623 not be called on the archive file itself. */
6624
6625 void
6626 lang_for_each_file (void (*func) (lang_input_statement_type *))
6627 {
6628 LANG_FOR_EACH_INPUT_STATEMENT (f)
6629 {
6630 func (f);
6631 }
6632 }
6633
6634 void
6635 ldlang_add_file (lang_input_statement_type *entry)
6636 {
6637 lang_statement_append (&file_chain,
6638 (lang_statement_union_type *) entry,
6639 &entry->next);
6640
6641 /* The BFD linker needs to have a list of all input BFDs involved in
6642 a link. */
6643 ASSERT (entry->the_bfd->link.next == NULL);
6644 ASSERT (entry->the_bfd != link_info.output_bfd);
6645
6646 *link_info.input_bfds_tail = entry->the_bfd;
6647 link_info.input_bfds_tail = &entry->the_bfd->link.next;
6648 entry->the_bfd->usrdata = entry;
6649 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6650
6651 /* Look through the sections and check for any which should not be
6652 included in the link. We need to do this now, so that we can
6653 notice when the backend linker tries to report multiple
6654 definition errors for symbols which are in sections we aren't
6655 going to link. FIXME: It might be better to entirely ignore
6656 symbols which are defined in sections which are going to be
6657 discarded. This would require modifying the backend linker for
6658 each backend which might set the SEC_LINK_ONCE flag. If we do
6659 this, we should probably handle SEC_EXCLUDE in the same way. */
6660
6661 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6662 }
6663
6664 void
6665 lang_add_output (const char *name, int from_script)
6666 {
6667 /* Make -o on command line override OUTPUT in script. */
6668 if (!had_output_filename || !from_script)
6669 {
6670 output_filename = name;
6671 had_output_filename = TRUE;
6672 }
6673 }
6674
6675 static int
6676 topower (int x)
6677 {
6678 unsigned int i = 1;
6679 int l;
6680
6681 if (x < 0)
6682 return -1;
6683
6684 for (l = 0; l < 32; l++)
6685 {
6686 if (i >= (unsigned int) x)
6687 return l;
6688 i <<= 1;
6689 }
6690
6691 return 0;
6692 }
6693
6694 lang_output_section_statement_type *
6695 lang_enter_output_section_statement (const char *output_section_statement_name,
6696 etree_type *address_exp,
6697 enum section_type sectype,
6698 etree_type *align,
6699 etree_type *subalign,
6700 etree_type *ebase,
6701 int constraint,
6702 int align_with_input)
6703 {
6704 lang_output_section_statement_type *os;
6705
6706 os = lang_output_section_statement_lookup (output_section_statement_name,
6707 constraint, TRUE);
6708 current_section = os;
6709
6710 if (os->addr_tree == NULL)
6711 {
6712 os->addr_tree = address_exp;
6713 }
6714 os->sectype = sectype;
6715 if (sectype != noload_section)
6716 os->flags = SEC_NO_FLAGS;
6717 else
6718 os->flags = SEC_NEVER_LOAD;
6719 os->block_value = 1;
6720
6721 /* Make next things chain into subchain of this. */
6722 push_stat_ptr (&os->children);
6723
6724 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
6725 if (os->align_lma_with_input && align != NULL)
6726 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
6727 NULL);
6728
6729 os->subsection_alignment =
6730 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6731 os->section_alignment =
6732 topower (exp_get_value_int (align, -1, "section alignment"));
6733
6734 os->load_base = ebase;
6735 return os;
6736 }
6737
6738 void
6739 lang_final (void)
6740 {
6741 lang_output_statement_type *new_stmt;
6742
6743 new_stmt = new_stat (lang_output_statement, stat_ptr);
6744 new_stmt->name = output_filename;
6745 }
6746
6747 /* Reset the current counters in the regions. */
6748
6749 void
6750 lang_reset_memory_regions (void)
6751 {
6752 lang_memory_region_type *p = lang_memory_region_list;
6753 asection *o;
6754 lang_output_section_statement_type *os;
6755
6756 for (p = lang_memory_region_list; p != NULL; p = p->next)
6757 {
6758 p->current = p->origin;
6759 p->last_os = NULL;
6760 }
6761
6762 for (os = &lang_output_section_statement.head->output_section_statement;
6763 os != NULL;
6764 os = os->next)
6765 {
6766 os->processed_vma = FALSE;
6767 os->processed_lma = FALSE;
6768 }
6769
6770 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6771 {
6772 /* Save the last size for possible use by bfd_relax_section. */
6773 o->rawsize = o->size;
6774 if (!(o->flags & SEC_FIXED_SIZE))
6775 o->size = 0;
6776 }
6777 }
6778
6779 /* Worker for lang_gc_sections_1. */
6780
6781 static void
6782 gc_section_callback (lang_wild_statement_type *ptr,
6783 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6784 asection *section,
6785 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6786 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6787 void *data ATTRIBUTE_UNUSED)
6788 {
6789 /* If the wild pattern was marked KEEP, the member sections
6790 should be as well. */
6791 if (ptr->keep_sections)
6792 section->flags |= SEC_KEEP;
6793 }
6794
6795 /* Iterate over sections marking them against GC. */
6796
6797 static void
6798 lang_gc_sections_1 (lang_statement_union_type *s)
6799 {
6800 for (; s != NULL; s = s->header.next)
6801 {
6802 switch (s->header.type)
6803 {
6804 case lang_wild_statement_enum:
6805 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6806 break;
6807 case lang_constructors_statement_enum:
6808 lang_gc_sections_1 (constructor_list.head);
6809 break;
6810 case lang_output_section_statement_enum:
6811 lang_gc_sections_1 (s->output_section_statement.children.head);
6812 break;
6813 case lang_group_statement_enum:
6814 lang_gc_sections_1 (s->group_statement.children.head);
6815 break;
6816 default:
6817 break;
6818 }
6819 }
6820 }
6821
6822 static void
6823 lang_gc_sections (void)
6824 {
6825 /* Keep all sections so marked in the link script. */
6826 lang_gc_sections_1 (statement_list.head);
6827
6828 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6829 the special case of debug info. (See bfd/stabs.c)
6830 Twiddle the flag here, to simplify later linker code. */
6831 if (bfd_link_relocatable (&link_info))
6832 {
6833 LANG_FOR_EACH_INPUT_STATEMENT (f)
6834 {
6835 asection *sec;
6836 #ifdef ENABLE_PLUGINS
6837 if (f->flags.claimed)
6838 continue;
6839 #endif
6840 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6841 if ((sec->flags & SEC_DEBUGGING) == 0)
6842 sec->flags &= ~SEC_EXCLUDE;
6843 }
6844 }
6845
6846 if (link_info.gc_sections)
6847 bfd_gc_sections (link_info.output_bfd, &link_info);
6848 }
6849
6850 /* Worker for lang_find_relro_sections_1. */
6851
6852 static void
6853 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6854 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6855 asection *section,
6856 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6857 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6858 void *data)
6859 {
6860 /* Discarded, excluded and ignored sections effectively have zero
6861 size. */
6862 if (section->output_section != NULL
6863 && section->output_section->owner == link_info.output_bfd
6864 && (section->output_section->flags & SEC_EXCLUDE) == 0
6865 && !IGNORE_SECTION (section)
6866 && section->size != 0)
6867 {
6868 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6869 *has_relro_section = TRUE;
6870 }
6871 }
6872
6873 /* Iterate over sections for relro sections. */
6874
6875 static void
6876 lang_find_relro_sections_1 (lang_statement_union_type *s,
6877 seg_align_type *seg,
6878 bfd_boolean *has_relro_section)
6879 {
6880 if (*has_relro_section)
6881 return;
6882
6883 for (; s != NULL; s = s->header.next)
6884 {
6885 if (s == seg->relro_end_stat)
6886 break;
6887
6888 switch (s->header.type)
6889 {
6890 case lang_wild_statement_enum:
6891 walk_wild (&s->wild_statement,
6892 find_relro_section_callback,
6893 has_relro_section);
6894 break;
6895 case lang_constructors_statement_enum:
6896 lang_find_relro_sections_1 (constructor_list.head,
6897 seg, has_relro_section);
6898 break;
6899 case lang_output_section_statement_enum:
6900 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6901 seg, has_relro_section);
6902 break;
6903 case lang_group_statement_enum:
6904 lang_find_relro_sections_1 (s->group_statement.children.head,
6905 seg, has_relro_section);
6906 break;
6907 default:
6908 break;
6909 }
6910 }
6911 }
6912
6913 static void
6914 lang_find_relro_sections (void)
6915 {
6916 bfd_boolean has_relro_section = FALSE;
6917
6918 /* Check all sections in the link script. */
6919
6920 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6921 &expld.dataseg, &has_relro_section);
6922
6923 if (!has_relro_section)
6924 link_info.relro = FALSE;
6925 }
6926
6927 /* Relax all sections until bfd_relax_section gives up. */
6928
6929 void
6930 lang_relax_sections (bfd_boolean need_layout)
6931 {
6932 if (RELAXATION_ENABLED)
6933 {
6934 /* We may need more than one relaxation pass. */
6935 int i = link_info.relax_pass;
6936
6937 /* The backend can use it to determine the current pass. */
6938 link_info.relax_pass = 0;
6939
6940 while (i--)
6941 {
6942 /* Keep relaxing until bfd_relax_section gives up. */
6943 bfd_boolean relax_again;
6944
6945 link_info.relax_trip = -1;
6946 do
6947 {
6948 link_info.relax_trip++;
6949
6950 /* Note: pe-dll.c does something like this also. If you find
6951 you need to change this code, you probably need to change
6952 pe-dll.c also. DJ */
6953
6954 /* Do all the assignments with our current guesses as to
6955 section sizes. */
6956 lang_do_assignments (lang_assigning_phase_enum);
6957
6958 /* We must do this after lang_do_assignments, because it uses
6959 size. */
6960 lang_reset_memory_regions ();
6961
6962 /* Perform another relax pass - this time we know where the
6963 globals are, so can make a better guess. */
6964 relax_again = FALSE;
6965 lang_size_sections (&relax_again, FALSE);
6966 }
6967 while (relax_again);
6968
6969 link_info.relax_pass++;
6970 }
6971 need_layout = TRUE;
6972 }
6973
6974 if (need_layout)
6975 {
6976 /* Final extra sizing to report errors. */
6977 lang_do_assignments (lang_assigning_phase_enum);
6978 lang_reset_memory_regions ();
6979 lang_size_sections (NULL, TRUE);
6980 }
6981 }
6982
6983 #ifdef ENABLE_PLUGINS
6984 /* Find the insert point for the plugin's replacement files. We
6985 place them after the first claimed real object file, or if the
6986 first claimed object is an archive member, after the last real
6987 object file immediately preceding the archive. In the event
6988 no objects have been claimed at all, we return the first dummy
6989 object file on the list as the insert point; that works, but
6990 the callee must be careful when relinking the file_chain as it
6991 is not actually on that chain, only the statement_list and the
6992 input_file list; in that case, the replacement files must be
6993 inserted at the head of the file_chain. */
6994
6995 static lang_input_statement_type *
6996 find_replacements_insert_point (void)
6997 {
6998 lang_input_statement_type *claim1, *lastobject;
6999 lastobject = &input_file_chain.head->input_statement;
7000 for (claim1 = &file_chain.head->input_statement;
7001 claim1 != NULL;
7002 claim1 = &claim1->next->input_statement)
7003 {
7004 if (claim1->flags.claimed)
7005 return claim1->flags.claim_archive ? lastobject : claim1;
7006 /* Update lastobject if this is a real object file. */
7007 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7008 lastobject = claim1;
7009 }
7010 /* No files were claimed by the plugin. Choose the last object
7011 file found on the list (maybe the first, dummy entry) as the
7012 insert point. */
7013 return lastobject;
7014 }
7015
7016 /* Find where to insert ADD, an archive element or shared library
7017 added during a rescan. */
7018
7019 static lang_statement_union_type **
7020 find_rescan_insertion (lang_input_statement_type *add)
7021 {
7022 bfd *add_bfd = add->the_bfd;
7023 lang_input_statement_type *f;
7024 lang_input_statement_type *last_loaded = NULL;
7025 lang_input_statement_type *before = NULL;
7026 lang_statement_union_type **iter = NULL;
7027
7028 if (add_bfd->my_archive != NULL)
7029 add_bfd = add_bfd->my_archive;
7030
7031 /* First look through the input file chain, to find an object file
7032 before the one we've rescanned. Normal object files always
7033 appear on both the input file chain and the file chain, so this
7034 lets us get quickly to somewhere near the correct place on the
7035 file chain if it is full of archive elements. Archives don't
7036 appear on the file chain, but if an element has been extracted
7037 then their input_statement->next points at it. */
7038 for (f = &input_file_chain.head->input_statement;
7039 f != NULL;
7040 f = &f->next_real_file->input_statement)
7041 {
7042 if (f->the_bfd == add_bfd)
7043 {
7044 before = last_loaded;
7045 if (f->next != NULL)
7046 return &f->next->input_statement.next;
7047 }
7048 if (f->the_bfd != NULL && f->next != NULL)
7049 last_loaded = f;
7050 }
7051
7052 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7053 *iter != NULL;
7054 iter = &(*iter)->input_statement.next)
7055 if (!(*iter)->input_statement.flags.claim_archive
7056 && (*iter)->input_statement.the_bfd->my_archive == NULL)
7057 break;
7058
7059 return iter;
7060 }
7061
7062 /* Insert SRCLIST into DESTLIST after given element by chaining
7063 on FIELD as the next-pointer. (Counterintuitively does not need
7064 a pointer to the actual after-node itself, just its chain field.) */
7065
7066 static void
7067 lang_list_insert_after (lang_statement_list_type *destlist,
7068 lang_statement_list_type *srclist,
7069 lang_statement_union_type **field)
7070 {
7071 *(srclist->tail) = *field;
7072 *field = srclist->head;
7073 if (destlist->tail == field)
7074 destlist->tail = srclist->tail;
7075 }
7076
7077 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7078 was taken as a copy of it and leave them in ORIGLIST. */
7079
7080 static void
7081 lang_list_remove_tail (lang_statement_list_type *destlist,
7082 lang_statement_list_type *origlist)
7083 {
7084 union lang_statement_union **savetail;
7085 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7086 ASSERT (origlist->head == destlist->head);
7087 savetail = origlist->tail;
7088 origlist->head = *(savetail);
7089 origlist->tail = destlist->tail;
7090 destlist->tail = savetail;
7091 *savetail = NULL;
7092 }
7093 #endif /* ENABLE_PLUGINS */
7094
7095 /* Add NAME to the list of garbage collection entry points. */
7096
7097 void
7098 lang_add_gc_name (const char *name)
7099 {
7100 struct bfd_sym_chain *sym;
7101
7102 if (name == NULL)
7103 return;
7104
7105 sym = (struct bfd_sym_chain *) stat_alloc (sizeof (*sym));
7106
7107 sym->next = link_info.gc_sym_list;
7108 sym->name = name;
7109 link_info.gc_sym_list = sym;
7110 }
7111
7112 /* Check relocations. */
7113
7114 static void
7115 lang_check_relocs (void)
7116 {
7117 if (link_info.check_relocs_after_open_input)
7118 {
7119 bfd *abfd;
7120
7121 for (abfd = link_info.input_bfds;
7122 abfd != (bfd *) NULL; abfd = abfd->link.next)
7123 if (!bfd_link_check_relocs (abfd, &link_info))
7124 {
7125 /* No object output, fail return. */
7126 config.make_executable = FALSE;
7127 /* Note: we do not abort the loop, but rather
7128 continue the scan in case there are other
7129 bad relocations to report. */
7130 }
7131 }
7132 }
7133
7134 /* Look through all output sections looking for places where we can
7135 propagate forward the lma region. */
7136
7137 static void
7138 lang_propagate_lma_regions (void)
7139 {
7140 lang_output_section_statement_type *os;
7141
7142 for (os = &lang_output_section_statement.head->output_section_statement;
7143 os != NULL;
7144 os = os->next)
7145 {
7146 if (os->prev != NULL
7147 && os->lma_region == NULL
7148 && os->load_base == NULL
7149 && os->addr_tree == NULL
7150 && os->region == os->prev->region)
7151 os->lma_region = os->prev->lma_region;
7152 }
7153 }
7154
7155 void
7156 lang_process (void)
7157 {
7158 /* Finalize dynamic list. */
7159 if (link_info.dynamic_list)
7160 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7161
7162 current_target = default_target;
7163
7164 /* Open the output file. */
7165 lang_for_each_statement (ldlang_open_output);
7166 init_opb ();
7167
7168 ldemul_create_output_section_statements ();
7169
7170 /* Add to the hash table all undefineds on the command line. */
7171 lang_place_undefineds ();
7172
7173 if (!bfd_section_already_linked_table_init ())
7174 einfo (_("%F%P: can not create hash table: %E\n"));
7175
7176 /* Create a bfd for each input file. */
7177 current_target = default_target;
7178 lang_statement_iteration++;
7179 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7180
7181 #ifdef ENABLE_PLUGINS
7182 if (link_info.lto_plugin_active)
7183 {
7184 lang_statement_list_type added;
7185 lang_statement_list_type files, inputfiles;
7186
7187 /* Now all files are read, let the plugin(s) decide if there
7188 are any more to be added to the link before we call the
7189 emulation's after_open hook. We create a private list of
7190 input statements for this purpose, which we will eventually
7191 insert into the global statement list after the first claimed
7192 file. */
7193 added = *stat_ptr;
7194 /* We need to manipulate all three chains in synchrony. */
7195 files = file_chain;
7196 inputfiles = input_file_chain;
7197 if (plugin_call_all_symbols_read ())
7198 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7199 plugin_error_plugin ());
7200 /* Open any newly added files, updating the file chains. */
7201 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7202 /* Restore the global list pointer now they have all been added. */
7203 lang_list_remove_tail (stat_ptr, &added);
7204 /* And detach the fresh ends of the file lists. */
7205 lang_list_remove_tail (&file_chain, &files);
7206 lang_list_remove_tail (&input_file_chain, &inputfiles);
7207 /* Were any new files added? */
7208 if (added.head != NULL)
7209 {
7210 /* If so, we will insert them into the statement list immediately
7211 after the first input file that was claimed by the plugin. */
7212 plugin_insert = find_replacements_insert_point ();
7213 /* If a plugin adds input files without having claimed any, we
7214 don't really have a good idea where to place them. Just putting
7215 them at the start or end of the list is liable to leave them
7216 outside the crtbegin...crtend range. */
7217 ASSERT (plugin_insert != NULL);
7218 /* Splice the new statement list into the old one. */
7219 lang_list_insert_after (stat_ptr, &added,
7220 &plugin_insert->header.next);
7221 /* Likewise for the file chains. */
7222 lang_list_insert_after (&input_file_chain, &inputfiles,
7223 &plugin_insert->next_real_file);
7224 /* We must be careful when relinking file_chain; we may need to
7225 insert the new files at the head of the list if the insert
7226 point chosen is the dummy first input file. */
7227 if (plugin_insert->filename)
7228 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
7229 else
7230 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7231
7232 /* Rescan archives in case new undefined symbols have appeared. */
7233 files = file_chain;
7234 lang_statement_iteration++;
7235 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
7236 lang_list_remove_tail (&file_chain, &files);
7237 while (files.head != NULL)
7238 {
7239 lang_statement_union_type **insert;
7240 lang_statement_union_type **iter, *temp;
7241 bfd *my_arch;
7242
7243 insert = find_rescan_insertion (&files.head->input_statement);
7244 /* All elements from an archive can be added at once. */
7245 iter = &files.head->input_statement.next;
7246 my_arch = files.head->input_statement.the_bfd->my_archive;
7247 if (my_arch != NULL)
7248 for (; *iter != NULL; iter = &(*iter)->input_statement.next)
7249 if ((*iter)->input_statement.the_bfd->my_archive != my_arch)
7250 break;
7251 temp = *insert;
7252 *insert = files.head;
7253 files.head = *iter;
7254 *iter = temp;
7255 if (my_arch != NULL)
7256 {
7257 lang_input_statement_type *parent = my_arch->usrdata;
7258 if (parent != NULL)
7259 parent->next = (lang_statement_union_type *)
7260 ((char *) iter
7261 - offsetof (lang_input_statement_type, next));
7262 }
7263 }
7264 }
7265 }
7266 #endif /* ENABLE_PLUGINS */
7267
7268 /* Make sure that nobody has tried to add a symbol to this list
7269 before now. */
7270 ASSERT (link_info.gc_sym_list == NULL);
7271
7272 link_info.gc_sym_list = &entry_symbol;
7273
7274 if (entry_symbol.name == NULL)
7275 {
7276 link_info.gc_sym_list = ldlang_undef_chain_list_head;
7277
7278 /* entry_symbol is normally initialied by a ENTRY definition in the
7279 linker script or the -e command line option. But if neither of
7280 these have been used, the target specific backend may still have
7281 provided an entry symbol via a call to lang_default_entry().
7282 Unfortunately this value will not be processed until lang_end()
7283 is called, long after this function has finished. So detect this
7284 case here and add the target's entry symbol to the list of starting
7285 points for garbage collection resolution. */
7286 lang_add_gc_name (entry_symbol_default);
7287 }
7288
7289 lang_add_gc_name (link_info.init_function);
7290 lang_add_gc_name (link_info.fini_function);
7291
7292 ldemul_after_open ();
7293 if (config.map_file != NULL)
7294 lang_print_asneeded ();
7295
7296 bfd_section_already_linked_table_free ();
7297
7298 /* Make sure that we're not mixing architectures. We call this
7299 after all the input files have been opened, but before we do any
7300 other processing, so that any operations merge_private_bfd_data
7301 does on the output file will be known during the rest of the
7302 link. */
7303 lang_check ();
7304
7305 /* Handle .exports instead of a version script if we're told to do so. */
7306 if (command_line.version_exports_section)
7307 lang_do_version_exports_section ();
7308
7309 /* Build all sets based on the information gathered from the input
7310 files. */
7311 ldctor_build_sets ();
7312
7313 /* Give initial values for __start and __stop symbols, so that ELF
7314 gc_sections will keep sections referenced by these symbols. Must
7315 be done before lang_do_assignments below. */
7316 if (config.build_constructors)
7317 lang_init_start_stop ();
7318
7319 /* PR 13683: We must rerun the assignments prior to running garbage
7320 collection in order to make sure that all symbol aliases are resolved. */
7321 lang_do_assignments (lang_mark_phase_enum);
7322
7323 lang_do_memory_regions();
7324 expld.phase = lang_first_phase_enum;
7325
7326 /* Size up the common data. */
7327 lang_common ();
7328
7329 /* Remove unreferenced sections if asked to. */
7330 lang_gc_sections ();
7331
7332 /* Check relocations. */
7333 lang_check_relocs ();
7334
7335 ldemul_after_check_relocs ();
7336
7337 /* Update wild statements. */
7338 update_wild_statements (statement_list.head);
7339
7340 /* Run through the contours of the script and attach input sections
7341 to the correct output sections. */
7342 lang_statement_iteration++;
7343 map_input_to_output_sections (statement_list.head, NULL, NULL);
7344
7345 process_insert_statements ();
7346
7347 /* Find any sections not attached explicitly and handle them. */
7348 lang_place_orphans ();
7349
7350 if (!bfd_link_relocatable (&link_info))
7351 {
7352 asection *found;
7353
7354 /* Merge SEC_MERGE sections. This has to be done after GC of
7355 sections, so that GCed sections are not merged, but before
7356 assigning dynamic symbols, since removing whole input sections
7357 is hard then. */
7358 bfd_merge_sections (link_info.output_bfd, &link_info);
7359
7360 /* Look for a text section and set the readonly attribute in it. */
7361 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
7362
7363 if (found != NULL)
7364 {
7365 if (config.text_read_only)
7366 found->flags |= SEC_READONLY;
7367 else
7368 found->flags &= ~SEC_READONLY;
7369 }
7370 }
7371
7372 /* Copy forward lma regions for output sections in same lma region. */
7373 lang_propagate_lma_regions ();
7374
7375 /* Defining __start/__stop symbols early for --gc-sections to work
7376 around a glibc build problem can result in these symbols being
7377 defined when they should not be. Fix them now. */
7378 if (config.build_constructors)
7379 lang_undef_start_stop ();
7380
7381 /* Define .startof./.sizeof. symbols with preliminary values before
7382 dynamic symbols are created. */
7383 if (!bfd_link_relocatable (&link_info))
7384 lang_init_startof_sizeof ();
7385
7386 /* Do anything special before sizing sections. This is where ELF
7387 and other back-ends size dynamic sections. */
7388 ldemul_before_allocation ();
7389
7390 /* We must record the program headers before we try to fix the
7391 section positions, since they will affect SIZEOF_HEADERS. */
7392 lang_record_phdrs ();
7393
7394 /* Check relro sections. */
7395 if (link_info.relro && !bfd_link_relocatable (&link_info))
7396 lang_find_relro_sections ();
7397
7398 /* Size up the sections. */
7399 lang_size_sections (NULL, !RELAXATION_ENABLED);
7400
7401 /* See if anything special should be done now we know how big
7402 everything is. This is where relaxation is done. */
7403 ldemul_after_allocation ();
7404
7405 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
7406 lang_finalize_start_stop ();
7407
7408 /* Do all the assignments, now that we know the final resting places
7409 of all the symbols. */
7410 lang_do_assignments (lang_final_phase_enum);
7411
7412 ldemul_finish ();
7413
7414 /* Convert absolute symbols to section relative. */
7415 ldexp_finalize_syms ();
7416
7417 /* Make sure that the section addresses make sense. */
7418 if (command_line.check_section_addresses)
7419 lang_check_section_addresses ();
7420
7421 /* Check any required symbols are known. */
7422 ldlang_check_require_defined_symbols ();
7423
7424 lang_end ();
7425 }
7426
7427 /* EXPORTED TO YACC */
7428
7429 void
7430 lang_add_wild (struct wildcard_spec *filespec,
7431 struct wildcard_list *section_list,
7432 bfd_boolean keep_sections)
7433 {
7434 struct wildcard_list *curr, *next;
7435 lang_wild_statement_type *new_stmt;
7436
7437 /* Reverse the list as the parser puts it back to front. */
7438 for (curr = section_list, section_list = NULL;
7439 curr != NULL;
7440 section_list = curr, curr = next)
7441 {
7442 next = curr->next;
7443 curr->next = section_list;
7444 }
7445
7446 if (filespec != NULL && filespec->name != NULL)
7447 {
7448 if (strcmp (filespec->name, "*") == 0)
7449 filespec->name = NULL;
7450 else if (!wildcardp (filespec->name))
7451 lang_has_input_file = TRUE;
7452 }
7453
7454 new_stmt = new_stat (lang_wild_statement, stat_ptr);
7455 new_stmt->filename = NULL;
7456 new_stmt->filenames_sorted = FALSE;
7457 new_stmt->section_flag_list = NULL;
7458 new_stmt->exclude_name_list = NULL;
7459 if (filespec != NULL)
7460 {
7461 new_stmt->filename = filespec->name;
7462 new_stmt->filenames_sorted = filespec->sorted == by_name;
7463 new_stmt->section_flag_list = filespec->section_flag_list;
7464 new_stmt->exclude_name_list = filespec->exclude_name_list;
7465 }
7466 new_stmt->section_list = section_list;
7467 new_stmt->keep_sections = keep_sections;
7468 lang_list_init (&new_stmt->children);
7469 analyze_walk_wild_section_handler (new_stmt);
7470 }
7471
7472 void
7473 lang_section_start (const char *name, etree_type *address,
7474 const segment_type *segment)
7475 {
7476 lang_address_statement_type *ad;
7477
7478 ad = new_stat (lang_address_statement, stat_ptr);
7479 ad->section_name = name;
7480 ad->address = address;
7481 ad->segment = segment;
7482 }
7483
7484 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
7485 because of a -e argument on the command line, or zero if this is
7486 called by ENTRY in a linker script. Command line arguments take
7487 precedence. */
7488
7489 void
7490 lang_add_entry (const char *name, bfd_boolean cmdline)
7491 {
7492 if (entry_symbol.name == NULL
7493 || cmdline
7494 || !entry_from_cmdline)
7495 {
7496 entry_symbol.name = name;
7497 entry_from_cmdline = cmdline;
7498 }
7499 }
7500
7501 /* Set the default start symbol to NAME. .em files should use this,
7502 not lang_add_entry, to override the use of "start" if neither the
7503 linker script nor the command line specifies an entry point. NAME
7504 must be permanently allocated. */
7505 void
7506 lang_default_entry (const char *name)
7507 {
7508 entry_symbol_default = name;
7509 }
7510
7511 void
7512 lang_add_target (const char *name)
7513 {
7514 lang_target_statement_type *new_stmt;
7515
7516 new_stmt = new_stat (lang_target_statement, stat_ptr);
7517 new_stmt->target = name;
7518 }
7519
7520 void
7521 lang_add_map (const char *name)
7522 {
7523 while (*name)
7524 {
7525 switch (*name)
7526 {
7527 case 'F':
7528 map_option_f = TRUE;
7529 break;
7530 }
7531 name++;
7532 }
7533 }
7534
7535 void
7536 lang_add_fill (fill_type *fill)
7537 {
7538 lang_fill_statement_type *new_stmt;
7539
7540 new_stmt = new_stat (lang_fill_statement, stat_ptr);
7541 new_stmt->fill = fill;
7542 }
7543
7544 void
7545 lang_add_data (int type, union etree_union *exp)
7546 {
7547 lang_data_statement_type *new_stmt;
7548
7549 new_stmt = new_stat (lang_data_statement, stat_ptr);
7550 new_stmt->exp = exp;
7551 new_stmt->type = type;
7552 }
7553
7554 /* Create a new reloc statement. RELOC is the BFD relocation type to
7555 generate. HOWTO is the corresponding howto structure (we could
7556 look this up, but the caller has already done so). SECTION is the
7557 section to generate a reloc against, or NAME is the name of the
7558 symbol to generate a reloc against. Exactly one of SECTION and
7559 NAME must be NULL. ADDEND is an expression for the addend. */
7560
7561 void
7562 lang_add_reloc (bfd_reloc_code_real_type reloc,
7563 reloc_howto_type *howto,
7564 asection *section,
7565 const char *name,
7566 union etree_union *addend)
7567 {
7568 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
7569
7570 p->reloc = reloc;
7571 p->howto = howto;
7572 p->section = section;
7573 p->name = name;
7574 p->addend_exp = addend;
7575
7576 p->addend_value = 0;
7577 p->output_section = NULL;
7578 p->output_offset = 0;
7579 }
7580
7581 lang_assignment_statement_type *
7582 lang_add_assignment (etree_type *exp)
7583 {
7584 lang_assignment_statement_type *new_stmt;
7585
7586 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
7587 new_stmt->exp = exp;
7588 return new_stmt;
7589 }
7590
7591 void
7592 lang_add_attribute (enum statement_enum attribute)
7593 {
7594 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
7595 }
7596
7597 void
7598 lang_startup (const char *name)
7599 {
7600 if (first_file->filename != NULL)
7601 {
7602 einfo (_("%F%P: multiple STARTUP files\n"));
7603 }
7604 first_file->filename = name;
7605 first_file->local_sym_name = name;
7606 first_file->flags.real = TRUE;
7607 }
7608
7609 void
7610 lang_float (bfd_boolean maybe)
7611 {
7612 lang_float_flag = maybe;
7613 }
7614
7615
7616 /* Work out the load- and run-time regions from a script statement, and
7617 store them in *LMA_REGION and *REGION respectively.
7618
7619 MEMSPEC is the name of the run-time region, or the value of
7620 DEFAULT_MEMORY_REGION if the statement didn't specify one.
7621 LMA_MEMSPEC is the name of the load-time region, or null if the
7622 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
7623 had an explicit load address.
7624
7625 It is an error to specify both a load region and a load address. */
7626
7627 static void
7628 lang_get_regions (lang_memory_region_type **region,
7629 lang_memory_region_type **lma_region,
7630 const char *memspec,
7631 const char *lma_memspec,
7632 bfd_boolean have_lma,
7633 bfd_boolean have_vma)
7634 {
7635 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
7636
7637 /* If no runtime region or VMA has been specified, but the load region
7638 has been specified, then use the load region for the runtime region
7639 as well. */
7640 if (lma_memspec != NULL
7641 && !have_vma
7642 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
7643 *region = *lma_region;
7644 else
7645 *region = lang_memory_region_lookup (memspec, FALSE);
7646
7647 if (have_lma && lma_memspec != 0)
7648 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
7649 NULL);
7650 }
7651
7652 void
7653 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
7654 lang_output_section_phdr_list *phdrs,
7655 const char *lma_memspec)
7656 {
7657 lang_get_regions (&current_section->region,
7658 &current_section->lma_region,
7659 memspec, lma_memspec,
7660 current_section->load_base != NULL,
7661 current_section->addr_tree != NULL);
7662
7663 current_section->fill = fill;
7664 current_section->phdrs = phdrs;
7665 pop_stat_ptr ();
7666 }
7667
7668 void
7669 lang_statement_append (lang_statement_list_type *list,
7670 lang_statement_union_type *element,
7671 lang_statement_union_type **field)
7672 {
7673 *(list->tail) = element;
7674 list->tail = field;
7675 }
7676
7677 /* Set the output format type. -oformat overrides scripts. */
7678
7679 void
7680 lang_add_output_format (const char *format,
7681 const char *big,
7682 const char *little,
7683 int from_script)
7684 {
7685 if (output_target == NULL || !from_script)
7686 {
7687 if (command_line.endian == ENDIAN_BIG
7688 && big != NULL)
7689 format = big;
7690 else if (command_line.endian == ENDIAN_LITTLE
7691 && little != NULL)
7692 format = little;
7693
7694 output_target = format;
7695 }
7696 }
7697
7698 void
7699 lang_add_insert (const char *where, int is_before)
7700 {
7701 lang_insert_statement_type *new_stmt;
7702
7703 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7704 new_stmt->where = where;
7705 new_stmt->is_before = is_before;
7706 saved_script_handle = previous_script_handle;
7707 }
7708
7709 /* Enter a group. This creates a new lang_group_statement, and sets
7710 stat_ptr to build new statements within the group. */
7711
7712 void
7713 lang_enter_group (void)
7714 {
7715 lang_group_statement_type *g;
7716
7717 g = new_stat (lang_group_statement, stat_ptr);
7718 lang_list_init (&g->children);
7719 push_stat_ptr (&g->children);
7720 }
7721
7722 /* Leave a group. This just resets stat_ptr to start writing to the
7723 regular list of statements again. Note that this will not work if
7724 groups can occur inside anything else which can adjust stat_ptr,
7725 but currently they can't. */
7726
7727 void
7728 lang_leave_group (void)
7729 {
7730 pop_stat_ptr ();
7731 }
7732
7733 /* Add a new program header. This is called for each entry in a PHDRS
7734 command in a linker script. */
7735
7736 void
7737 lang_new_phdr (const char *name,
7738 etree_type *type,
7739 bfd_boolean filehdr,
7740 bfd_boolean phdrs,
7741 etree_type *at,
7742 etree_type *flags)
7743 {
7744 struct lang_phdr *n, **pp;
7745 bfd_boolean hdrs;
7746
7747 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7748 n->next = NULL;
7749 n->name = name;
7750 n->type = exp_get_value_int (type, 0, "program header type");
7751 n->filehdr = filehdr;
7752 n->phdrs = phdrs;
7753 n->at = at;
7754 n->flags = flags;
7755
7756 hdrs = n->type == 1 && (phdrs || filehdr);
7757
7758 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7759 if (hdrs
7760 && (*pp)->type == 1
7761 && !((*pp)->filehdr || (*pp)->phdrs))
7762 {
7763 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
7764 " when prior PT_LOAD headers lack them\n"), NULL);
7765 hdrs = FALSE;
7766 }
7767
7768 *pp = n;
7769 }
7770
7771 /* Record the program header information in the output BFD. FIXME: We
7772 should not be calling an ELF specific function here. */
7773
7774 static void
7775 lang_record_phdrs (void)
7776 {
7777 unsigned int alc;
7778 asection **secs;
7779 lang_output_section_phdr_list *last;
7780 struct lang_phdr *l;
7781 lang_output_section_statement_type *os;
7782
7783 alc = 10;
7784 secs = (asection **) xmalloc (alc * sizeof (asection *));
7785 last = NULL;
7786
7787 for (l = lang_phdr_list; l != NULL; l = l->next)
7788 {
7789 unsigned int c;
7790 flagword flags;
7791 bfd_vma at;
7792
7793 c = 0;
7794 for (os = &lang_output_section_statement.head->output_section_statement;
7795 os != NULL;
7796 os = os->next)
7797 {
7798 lang_output_section_phdr_list *pl;
7799
7800 if (os->constraint < 0)
7801 continue;
7802
7803 pl = os->phdrs;
7804 if (pl != NULL)
7805 last = pl;
7806 else
7807 {
7808 if (os->sectype == noload_section
7809 || os->bfd_section == NULL
7810 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7811 continue;
7812
7813 /* Don't add orphans to PT_INTERP header. */
7814 if (l->type == 3)
7815 continue;
7816
7817 if (last == NULL)
7818 {
7819 lang_output_section_statement_type *tmp_os;
7820
7821 /* If we have not run across a section with a program
7822 header assigned to it yet, then scan forwards to find
7823 one. This prevents inconsistencies in the linker's
7824 behaviour when a script has specified just a single
7825 header and there are sections in that script which are
7826 not assigned to it, and which occur before the first
7827 use of that header. See here for more details:
7828 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7829 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7830 if (tmp_os->phdrs)
7831 {
7832 last = tmp_os->phdrs;
7833 break;
7834 }
7835 if (last == NULL)
7836 einfo (_("%F%P: no sections assigned to phdrs\n"));
7837 }
7838 pl = last;
7839 }
7840
7841 if (os->bfd_section == NULL)
7842 continue;
7843
7844 for (; pl != NULL; pl = pl->next)
7845 {
7846 if (strcmp (pl->name, l->name) == 0)
7847 {
7848 if (c >= alc)
7849 {
7850 alc *= 2;
7851 secs = (asection **) xrealloc (secs,
7852 alc * sizeof (asection *));
7853 }
7854 secs[c] = os->bfd_section;
7855 ++c;
7856 pl->used = TRUE;
7857 }
7858 }
7859 }
7860
7861 if (l->flags == NULL)
7862 flags = 0;
7863 else
7864 flags = exp_get_vma (l->flags, 0, "phdr flags");
7865
7866 if (l->at == NULL)
7867 at = 0;
7868 else
7869 at = exp_get_vma (l->at, 0, "phdr load address");
7870
7871 if (!bfd_record_phdr (link_info.output_bfd, l->type,
7872 l->flags != NULL, flags, l->at != NULL,
7873 at, l->filehdr, l->phdrs, c, secs))
7874 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7875 }
7876
7877 free (secs);
7878
7879 /* Make sure all the phdr assignments succeeded. */
7880 for (os = &lang_output_section_statement.head->output_section_statement;
7881 os != NULL;
7882 os = os->next)
7883 {
7884 lang_output_section_phdr_list *pl;
7885
7886 if (os->constraint < 0
7887 || os->bfd_section == NULL)
7888 continue;
7889
7890 for (pl = os->phdrs;
7891 pl != NULL;
7892 pl = pl->next)
7893 if (!pl->used && strcmp (pl->name, "NONE") != 0)
7894 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7895 os->name, pl->name);
7896 }
7897 }
7898
7899 /* Record a list of sections which may not be cross referenced. */
7900
7901 void
7902 lang_add_nocrossref (lang_nocrossref_type *l)
7903 {
7904 struct lang_nocrossrefs *n;
7905
7906 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7907 n->next = nocrossref_list;
7908 n->list = l;
7909 n->onlyfirst = FALSE;
7910 nocrossref_list = n;
7911
7912 /* Set notice_all so that we get informed about all symbols. */
7913 link_info.notice_all = TRUE;
7914 }
7915
7916 /* Record a section that cannot be referenced from a list of sections. */
7917
7918 void
7919 lang_add_nocrossref_to (lang_nocrossref_type *l)
7920 {
7921 lang_add_nocrossref (l);
7922 nocrossref_list->onlyfirst = TRUE;
7923 }
7924 \f
7925 /* Overlay handling. We handle overlays with some static variables. */
7926
7927 /* The overlay virtual address. */
7928 static etree_type *overlay_vma;
7929 /* And subsection alignment. */
7930 static etree_type *overlay_subalign;
7931
7932 /* An expression for the maximum section size seen so far. */
7933 static etree_type *overlay_max;
7934
7935 /* A list of all the sections in this overlay. */
7936
7937 struct overlay_list {
7938 struct overlay_list *next;
7939 lang_output_section_statement_type *os;
7940 };
7941
7942 static struct overlay_list *overlay_list;
7943
7944 /* Start handling an overlay. */
7945
7946 void
7947 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7948 {
7949 /* The grammar should prevent nested overlays from occurring. */
7950 ASSERT (overlay_vma == NULL
7951 && overlay_subalign == NULL
7952 && overlay_max == NULL);
7953
7954 overlay_vma = vma_expr;
7955 overlay_subalign = subalign;
7956 }
7957
7958 /* Start a section in an overlay. We handle this by calling
7959 lang_enter_output_section_statement with the correct VMA.
7960 lang_leave_overlay sets up the LMA and memory regions. */
7961
7962 void
7963 lang_enter_overlay_section (const char *name)
7964 {
7965 struct overlay_list *n;
7966 etree_type *size;
7967
7968 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7969 0, overlay_subalign, 0, 0, 0);
7970
7971 /* If this is the first section, then base the VMA of future
7972 sections on this one. This will work correctly even if `.' is
7973 used in the addresses. */
7974 if (overlay_list == NULL)
7975 overlay_vma = exp_nameop (ADDR, name);
7976
7977 /* Remember the section. */
7978 n = (struct overlay_list *) xmalloc (sizeof *n);
7979 n->os = current_section;
7980 n->next = overlay_list;
7981 overlay_list = n;
7982
7983 size = exp_nameop (SIZEOF, name);
7984
7985 /* Arrange to work out the maximum section end address. */
7986 if (overlay_max == NULL)
7987 overlay_max = size;
7988 else
7989 overlay_max = exp_binop (MAX_K, overlay_max, size);
7990 }
7991
7992 /* Finish a section in an overlay. There isn't any special to do
7993 here. */
7994
7995 void
7996 lang_leave_overlay_section (fill_type *fill,
7997 lang_output_section_phdr_list *phdrs)
7998 {
7999 const char *name;
8000 char *clean, *s2;
8001 const char *s1;
8002 char *buf;
8003
8004 name = current_section->name;
8005
8006 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8007 region and that no load-time region has been specified. It doesn't
8008 really matter what we say here, since lang_leave_overlay will
8009 override it. */
8010 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8011
8012 /* Define the magic symbols. */
8013
8014 clean = (char *) xmalloc (strlen (name) + 1);
8015 s2 = clean;
8016 for (s1 = name; *s1 != '\0'; s1++)
8017 if (ISALNUM (*s1) || *s1 == '_')
8018 *s2++ = *s1;
8019 *s2 = '\0';
8020
8021 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8022 sprintf (buf, "__load_start_%s", clean);
8023 lang_add_assignment (exp_provide (buf,
8024 exp_nameop (LOADADDR, name),
8025 FALSE));
8026
8027 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8028 sprintf (buf, "__load_stop_%s", clean);
8029 lang_add_assignment (exp_provide (buf,
8030 exp_binop ('+',
8031 exp_nameop (LOADADDR, name),
8032 exp_nameop (SIZEOF, name)),
8033 FALSE));
8034
8035 free (clean);
8036 }
8037
8038 /* Finish an overlay. If there are any overlay wide settings, this
8039 looks through all the sections in the overlay and sets them. */
8040
8041 void
8042 lang_leave_overlay (etree_type *lma_expr,
8043 int nocrossrefs,
8044 fill_type *fill,
8045 const char *memspec,
8046 lang_output_section_phdr_list *phdrs,
8047 const char *lma_memspec)
8048 {
8049 lang_memory_region_type *region;
8050 lang_memory_region_type *lma_region;
8051 struct overlay_list *l;
8052 lang_nocrossref_type *nocrossref;
8053
8054 lang_get_regions (&region, &lma_region,
8055 memspec, lma_memspec,
8056 lma_expr != NULL, FALSE);
8057
8058 nocrossref = NULL;
8059
8060 /* After setting the size of the last section, set '.' to end of the
8061 overlay region. */
8062 if (overlay_list != NULL)
8063 {
8064 overlay_list->os->update_dot = 1;
8065 overlay_list->os->update_dot_tree
8066 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8067 }
8068
8069 l = overlay_list;
8070 while (l != NULL)
8071 {
8072 struct overlay_list *next;
8073
8074 if (fill != NULL && l->os->fill == NULL)
8075 l->os->fill = fill;
8076
8077 l->os->region = region;
8078 l->os->lma_region = lma_region;
8079
8080 /* The first section has the load address specified in the
8081 OVERLAY statement. The rest are worked out from that.
8082 The base address is not needed (and should be null) if
8083 an LMA region was specified. */
8084 if (l->next == 0)
8085 {
8086 l->os->load_base = lma_expr;
8087 l->os->sectype = normal_section;
8088 }
8089 if (phdrs != NULL && l->os->phdrs == NULL)
8090 l->os->phdrs = phdrs;
8091
8092 if (nocrossrefs)
8093 {
8094 lang_nocrossref_type *nc;
8095
8096 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8097 nc->name = l->os->name;
8098 nc->next = nocrossref;
8099 nocrossref = nc;
8100 }
8101
8102 next = l->next;
8103 free (l);
8104 l = next;
8105 }
8106
8107 if (nocrossref != NULL)
8108 lang_add_nocrossref (nocrossref);
8109
8110 overlay_vma = NULL;
8111 overlay_list = NULL;
8112 overlay_max = NULL;
8113 overlay_subalign = NULL;
8114 }
8115 \f
8116 /* Version handling. This is only useful for ELF. */
8117
8118 /* If PREV is NULL, return first version pattern matching particular symbol.
8119 If PREV is non-NULL, return first version pattern matching particular
8120 symbol after PREV (previously returned by lang_vers_match). */
8121
8122 static struct bfd_elf_version_expr *
8123 lang_vers_match (struct bfd_elf_version_expr_head *head,
8124 struct bfd_elf_version_expr *prev,
8125 const char *sym)
8126 {
8127 const char *c_sym;
8128 const char *cxx_sym = sym;
8129 const char *java_sym = sym;
8130 struct bfd_elf_version_expr *expr = NULL;
8131 enum demangling_styles curr_style;
8132
8133 curr_style = CURRENT_DEMANGLING_STYLE;
8134 cplus_demangle_set_style (no_demangling);
8135 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8136 if (!c_sym)
8137 c_sym = sym;
8138 cplus_demangle_set_style (curr_style);
8139
8140 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8141 {
8142 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8143 DMGL_PARAMS | DMGL_ANSI);
8144 if (!cxx_sym)
8145 cxx_sym = sym;
8146 }
8147 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8148 {
8149 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8150 if (!java_sym)
8151 java_sym = sym;
8152 }
8153
8154 if (head->htab && (prev == NULL || prev->literal))
8155 {
8156 struct bfd_elf_version_expr e;
8157
8158 switch (prev ? prev->mask : 0)
8159 {
8160 case 0:
8161 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8162 {
8163 e.pattern = c_sym;
8164 expr = (struct bfd_elf_version_expr *)
8165 htab_find ((htab_t) head->htab, &e);
8166 while (expr && strcmp (expr->pattern, c_sym) == 0)
8167 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8168 goto out_ret;
8169 else
8170 expr = expr->next;
8171 }
8172 /* Fallthrough */
8173 case BFD_ELF_VERSION_C_TYPE:
8174 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8175 {
8176 e.pattern = cxx_sym;
8177 expr = (struct bfd_elf_version_expr *)
8178 htab_find ((htab_t) head->htab, &e);
8179 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8180 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8181 goto out_ret;
8182 else
8183 expr = expr->next;
8184 }
8185 /* Fallthrough */
8186 case BFD_ELF_VERSION_CXX_TYPE:
8187 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8188 {
8189 e.pattern = java_sym;
8190 expr = (struct bfd_elf_version_expr *)
8191 htab_find ((htab_t) head->htab, &e);
8192 while (expr && strcmp (expr->pattern, java_sym) == 0)
8193 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8194 goto out_ret;
8195 else
8196 expr = expr->next;
8197 }
8198 /* Fallthrough */
8199 default:
8200 break;
8201 }
8202 }
8203
8204 /* Finally, try the wildcards. */
8205 if (prev == NULL || prev->literal)
8206 expr = head->remaining;
8207 else
8208 expr = prev->next;
8209 for (; expr; expr = expr->next)
8210 {
8211 const char *s;
8212
8213 if (!expr->pattern)
8214 continue;
8215
8216 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8217 break;
8218
8219 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8220 s = java_sym;
8221 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8222 s = cxx_sym;
8223 else
8224 s = c_sym;
8225 if (fnmatch (expr->pattern, s, 0) == 0)
8226 break;
8227 }
8228
8229 out_ret:
8230 if (c_sym != sym)
8231 free ((char *) c_sym);
8232 if (cxx_sym != sym)
8233 free ((char *) cxx_sym);
8234 if (java_sym != sym)
8235 free ((char *) java_sym);
8236 return expr;
8237 }
8238
8239 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
8240 return a pointer to the symbol name with any backslash quotes removed. */
8241
8242 static const char *
8243 realsymbol (const char *pattern)
8244 {
8245 const char *p;
8246 bfd_boolean changed = FALSE, backslash = FALSE;
8247 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
8248
8249 for (p = pattern, s = symbol; *p != '\0'; ++p)
8250 {
8251 /* It is a glob pattern only if there is no preceding
8252 backslash. */
8253 if (backslash)
8254 {
8255 /* Remove the preceding backslash. */
8256 *(s - 1) = *p;
8257 backslash = FALSE;
8258 changed = TRUE;
8259 }
8260 else
8261 {
8262 if (*p == '?' || *p == '*' || *p == '[')
8263 {
8264 free (symbol);
8265 return NULL;
8266 }
8267
8268 *s++ = *p;
8269 backslash = *p == '\\';
8270 }
8271 }
8272
8273 if (changed)
8274 {
8275 *s = '\0';
8276 return symbol;
8277 }
8278 else
8279 {
8280 free (symbol);
8281 return pattern;
8282 }
8283 }
8284
8285 /* This is called for each variable name or match expression. NEW_NAME is
8286 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
8287 pattern to be matched against symbol names. */
8288
8289 struct bfd_elf_version_expr *
8290 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
8291 const char *new_name,
8292 const char *lang,
8293 bfd_boolean literal_p)
8294 {
8295 struct bfd_elf_version_expr *ret;
8296
8297 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
8298 ret->next = orig;
8299 ret->symver = 0;
8300 ret->script = 0;
8301 ret->literal = TRUE;
8302 ret->pattern = literal_p ? new_name : realsymbol (new_name);
8303 if (ret->pattern == NULL)
8304 {
8305 ret->pattern = new_name;
8306 ret->literal = FALSE;
8307 }
8308
8309 if (lang == NULL || strcasecmp (lang, "C") == 0)
8310 ret->mask = BFD_ELF_VERSION_C_TYPE;
8311 else if (strcasecmp (lang, "C++") == 0)
8312 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
8313 else if (strcasecmp (lang, "Java") == 0)
8314 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
8315 else
8316 {
8317 einfo (_("%X%P: unknown language `%s' in version information\n"),
8318 lang);
8319 ret->mask = BFD_ELF_VERSION_C_TYPE;
8320 }
8321
8322 return ldemul_new_vers_pattern (ret);
8323 }
8324
8325 /* This is called for each set of variable names and match
8326 expressions. */
8327
8328 struct bfd_elf_version_tree *
8329 lang_new_vers_node (struct bfd_elf_version_expr *globals,
8330 struct bfd_elf_version_expr *locals)
8331 {
8332 struct bfd_elf_version_tree *ret;
8333
8334 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
8335 ret->globals.list = globals;
8336 ret->locals.list = locals;
8337 ret->match = lang_vers_match;
8338 ret->name_indx = (unsigned int) -1;
8339 return ret;
8340 }
8341
8342 /* This static variable keeps track of version indices. */
8343
8344 static int version_index;
8345
8346 static hashval_t
8347 version_expr_head_hash (const void *p)
8348 {
8349 const struct bfd_elf_version_expr *e =
8350 (const struct bfd_elf_version_expr *) p;
8351
8352 return htab_hash_string (e->pattern);
8353 }
8354
8355 static int
8356 version_expr_head_eq (const void *p1, const void *p2)
8357 {
8358 const struct bfd_elf_version_expr *e1 =
8359 (const struct bfd_elf_version_expr *) p1;
8360 const struct bfd_elf_version_expr *e2 =
8361 (const struct bfd_elf_version_expr *) p2;
8362
8363 return strcmp (e1->pattern, e2->pattern) == 0;
8364 }
8365
8366 static void
8367 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
8368 {
8369 size_t count = 0;
8370 struct bfd_elf_version_expr *e, *next;
8371 struct bfd_elf_version_expr **list_loc, **remaining_loc;
8372
8373 for (e = head->list; e; e = e->next)
8374 {
8375 if (e->literal)
8376 count++;
8377 head->mask |= e->mask;
8378 }
8379
8380 if (count)
8381 {
8382 head->htab = htab_create (count * 2, version_expr_head_hash,
8383 version_expr_head_eq, NULL);
8384 list_loc = &head->list;
8385 remaining_loc = &head->remaining;
8386 for (e = head->list; e; e = next)
8387 {
8388 next = e->next;
8389 if (!e->literal)
8390 {
8391 *remaining_loc = e;
8392 remaining_loc = &e->next;
8393 }
8394 else
8395 {
8396 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
8397
8398 if (*loc)
8399 {
8400 struct bfd_elf_version_expr *e1, *last;
8401
8402 e1 = (struct bfd_elf_version_expr *) *loc;
8403 last = NULL;
8404 do
8405 {
8406 if (e1->mask == e->mask)
8407 {
8408 last = NULL;
8409 break;
8410 }
8411 last = e1;
8412 e1 = e1->next;
8413 }
8414 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
8415
8416 if (last == NULL)
8417 {
8418 /* This is a duplicate. */
8419 /* FIXME: Memory leak. Sometimes pattern is not
8420 xmalloced alone, but in larger chunk of memory. */
8421 /* free (e->pattern); */
8422 free (e);
8423 }
8424 else
8425 {
8426 e->next = last->next;
8427 last->next = e;
8428 }
8429 }
8430 else
8431 {
8432 *loc = e;
8433 *list_loc = e;
8434 list_loc = &e->next;
8435 }
8436 }
8437 }
8438 *remaining_loc = NULL;
8439 *list_loc = head->remaining;
8440 }
8441 else
8442 head->remaining = head->list;
8443 }
8444
8445 /* This is called when we know the name and dependencies of the
8446 version. */
8447
8448 void
8449 lang_register_vers_node (const char *name,
8450 struct bfd_elf_version_tree *version,
8451 struct bfd_elf_version_deps *deps)
8452 {
8453 struct bfd_elf_version_tree *t, **pp;
8454 struct bfd_elf_version_expr *e1;
8455
8456 if (name == NULL)
8457 name = "";
8458
8459 if (link_info.version_info != NULL
8460 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
8461 {
8462 einfo (_("%X%P: anonymous version tag cannot be combined"
8463 " with other version tags\n"));
8464 free (version);
8465 return;
8466 }
8467
8468 /* Make sure this node has a unique name. */
8469 for (t = link_info.version_info; t != NULL; t = t->next)
8470 if (strcmp (t->name, name) == 0)
8471 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
8472
8473 lang_finalize_version_expr_head (&version->globals);
8474 lang_finalize_version_expr_head (&version->locals);
8475
8476 /* Check the global and local match names, and make sure there
8477 aren't any duplicates. */
8478
8479 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
8480 {
8481 for (t = link_info.version_info; t != NULL; t = t->next)
8482 {
8483 struct bfd_elf_version_expr *e2;
8484
8485 if (t->locals.htab && e1->literal)
8486 {
8487 e2 = (struct bfd_elf_version_expr *)
8488 htab_find ((htab_t) t->locals.htab, e1);
8489 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8490 {
8491 if (e1->mask == e2->mask)
8492 einfo (_("%X%P: duplicate expression `%s'"
8493 " in version information\n"), e1->pattern);
8494 e2 = e2->next;
8495 }
8496 }
8497 else if (!e1->literal)
8498 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
8499 if (strcmp (e1->pattern, e2->pattern) == 0
8500 && e1->mask == e2->mask)
8501 einfo (_("%X%P: duplicate expression `%s'"
8502 " in version information\n"), e1->pattern);
8503 }
8504 }
8505
8506 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
8507 {
8508 for (t = link_info.version_info; t != NULL; t = t->next)
8509 {
8510 struct bfd_elf_version_expr *e2;
8511
8512 if (t->globals.htab && e1->literal)
8513 {
8514 e2 = (struct bfd_elf_version_expr *)
8515 htab_find ((htab_t) t->globals.htab, e1);
8516 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8517 {
8518 if (e1->mask == e2->mask)
8519 einfo (_("%X%P: duplicate expression `%s'"
8520 " in version information\n"),
8521 e1->pattern);
8522 e2 = e2->next;
8523 }
8524 }
8525 else if (!e1->literal)
8526 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
8527 if (strcmp (e1->pattern, e2->pattern) == 0
8528 && e1->mask == e2->mask)
8529 einfo (_("%X%P: duplicate expression `%s'"
8530 " in version information\n"), e1->pattern);
8531 }
8532 }
8533
8534 version->deps = deps;
8535 version->name = name;
8536 if (name[0] != '\0')
8537 {
8538 ++version_index;
8539 version->vernum = version_index;
8540 }
8541 else
8542 version->vernum = 0;
8543
8544 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
8545 ;
8546 *pp = version;
8547 }
8548
8549 /* This is called when we see a version dependency. */
8550
8551 struct bfd_elf_version_deps *
8552 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
8553 {
8554 struct bfd_elf_version_deps *ret;
8555 struct bfd_elf_version_tree *t;
8556
8557 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
8558 ret->next = list;
8559
8560 for (t = link_info.version_info; t != NULL; t = t->next)
8561 {
8562 if (strcmp (t->name, name) == 0)
8563 {
8564 ret->version_needed = t;
8565 return ret;
8566 }
8567 }
8568
8569 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
8570
8571 ret->version_needed = NULL;
8572 return ret;
8573 }
8574
8575 static void
8576 lang_do_version_exports_section (void)
8577 {
8578 struct bfd_elf_version_expr *greg = NULL, *lreg;
8579
8580 LANG_FOR_EACH_INPUT_STATEMENT (is)
8581 {
8582 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
8583 char *contents, *p;
8584 bfd_size_type len;
8585
8586 if (sec == NULL)
8587 continue;
8588
8589 len = sec->size;
8590 contents = (char *) xmalloc (len);
8591 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
8592 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
8593
8594 p = contents;
8595 while (p < contents + len)
8596 {
8597 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
8598 p = strchr (p, '\0') + 1;
8599 }
8600
8601 /* Do not free the contents, as we used them creating the regex. */
8602
8603 /* Do not include this section in the link. */
8604 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
8605 }
8606
8607 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
8608 lang_register_vers_node (command_line.version_exports_section,
8609 lang_new_vers_node (greg, lreg), NULL);
8610 }
8611
8612 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
8613
8614 static void
8615 lang_do_memory_regions (void)
8616 {
8617 lang_memory_region_type *r = lang_memory_region_list;
8618
8619 for (; r != NULL; r = r->next)
8620 {
8621 if (r->origin_exp)
8622 {
8623 exp_fold_tree_no_dot (r->origin_exp);
8624 if (expld.result.valid_p)
8625 {
8626 r->origin = expld.result.value;
8627 r->current = r->origin;
8628 }
8629 else
8630 einfo (_("%F%P: invalid origin for memory region %s\n"),
8631 r->name_list.name);
8632 }
8633 if (r->length_exp)
8634 {
8635 exp_fold_tree_no_dot (r->length_exp);
8636 if (expld.result.valid_p)
8637 r->length = expld.result.value;
8638 else
8639 einfo (_("%F%P: invalid length for memory region %s\n"),
8640 r->name_list.name);
8641 }
8642 }
8643 }
8644
8645 void
8646 lang_add_unique (const char *name)
8647 {
8648 struct unique_sections *ent;
8649
8650 for (ent = unique_section_list; ent; ent = ent->next)
8651 if (strcmp (ent->name, name) == 0)
8652 return;
8653
8654 ent = (struct unique_sections *) xmalloc (sizeof *ent);
8655 ent->name = xstrdup (name);
8656 ent->next = unique_section_list;
8657 unique_section_list = ent;
8658 }
8659
8660 /* Append the list of dynamic symbols to the existing one. */
8661
8662 void
8663 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
8664 {
8665 if (link_info.dynamic_list)
8666 {
8667 struct bfd_elf_version_expr *tail;
8668 for (tail = dynamic; tail->next != NULL; tail = tail->next)
8669 ;
8670 tail->next = link_info.dynamic_list->head.list;
8671 link_info.dynamic_list->head.list = dynamic;
8672 }
8673 else
8674 {
8675 struct bfd_elf_dynamic_list *d;
8676
8677 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
8678 d->head.list = dynamic;
8679 d->match = lang_vers_match;
8680 link_info.dynamic_list = d;
8681 }
8682 }
8683
8684 /* Append the list of C++ typeinfo dynamic symbols to the existing
8685 one. */
8686
8687 void
8688 lang_append_dynamic_list_cpp_typeinfo (void)
8689 {
8690 const char *symbols[] =
8691 {
8692 "typeinfo name for*",
8693 "typeinfo for*"
8694 };
8695 struct bfd_elf_version_expr *dynamic = NULL;
8696 unsigned int i;
8697
8698 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8699 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8700 FALSE);
8701
8702 lang_append_dynamic_list (dynamic);
8703 }
8704
8705 /* Append the list of C++ operator new and delete dynamic symbols to the
8706 existing one. */
8707
8708 void
8709 lang_append_dynamic_list_cpp_new (void)
8710 {
8711 const char *symbols[] =
8712 {
8713 "operator new*",
8714 "operator delete*"
8715 };
8716 struct bfd_elf_version_expr *dynamic = NULL;
8717 unsigned int i;
8718
8719 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8720 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8721 FALSE);
8722
8723 lang_append_dynamic_list (dynamic);
8724 }
8725
8726 /* Scan a space and/or comma separated string of features. */
8727
8728 void
8729 lang_ld_feature (char *str)
8730 {
8731 char *p, *q;
8732
8733 p = str;
8734 while (*p)
8735 {
8736 char sep;
8737 while (*p == ',' || ISSPACE (*p))
8738 ++p;
8739 if (!*p)
8740 break;
8741 q = p + 1;
8742 while (*q && *q != ',' && !ISSPACE (*q))
8743 ++q;
8744 sep = *q;
8745 *q = 0;
8746 if (strcasecmp (p, "SANE_EXPR") == 0)
8747 config.sane_expr = TRUE;
8748 else
8749 einfo (_("%X%P: unknown feature `%s'\n"), p);
8750 *q = sep;
8751 p = q;
8752 }
8753 }
8754
8755 /* Pretty print memory amount. */
8756
8757 static void
8758 lang_print_memory_size (bfd_vma sz)
8759 {
8760 if ((sz & 0x3fffffff) == 0)
8761 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
8762 else if ((sz & 0xfffff) == 0)
8763 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
8764 else if ((sz & 0x3ff) == 0)
8765 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
8766 else
8767 printf (" %10" BFD_VMA_FMT "u B", sz);
8768 }
8769
8770 /* Implement --print-memory-usage: disply per region memory usage. */
8771
8772 void
8773 lang_print_memory_usage (void)
8774 {
8775 lang_memory_region_type *r;
8776
8777 printf ("Memory region Used Size Region Size %%age Used\n");
8778 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
8779 {
8780 bfd_vma used_length = r->current - r->origin;
8781 double percent;
8782
8783 printf ("%16s: ",r->name_list.name);
8784 lang_print_memory_size (used_length);
8785 lang_print_memory_size ((bfd_vma) r->length);
8786
8787 percent = used_length * 100.0 / r->length;
8788
8789 printf (" %6.2f%%\n", percent);
8790 }
8791 }
This page took 0.256024 seconds and 4 git commands to generate.