65d8bbdfb6d01c338fe710bb5130d74d2c4c4cac
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "filenames.h"
27 #include "safe-ctype.h"
28 #include "obstack.h"
29 #include "bfdlink.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "libbfd.h"
45 #ifdef ENABLE_PLUGINS
46 #include "plugin.h"
47 #endif /* ENABLE_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Locals variables. */
54 static struct obstack stat_obstack;
55 static struct obstack map_obstack;
56
57 #define obstack_chunk_alloc xmalloc
58 #define obstack_chunk_free free
59 static const char *entry_symbol_default = "start";
60 static bfd_boolean placed_commons = FALSE;
61 static bfd_boolean stripped_excluded_sections = FALSE;
62 static lang_output_section_statement_type *default_common_section;
63 static bfd_boolean map_option_f;
64 static bfd_vma print_dot;
65 static lang_input_statement_type *first_file;
66 static const char *current_target;
67 static lang_statement_list_type statement_list;
68 static struct bfd_hash_table lang_definedness_table;
69 static lang_statement_list_type *stat_save[10];
70 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
71 static struct unique_sections *unique_section_list;
72
73 /* Forward declarations. */
74 static void exp_init_os (etree_type *);
75 static void init_map_userdata (bfd *, asection *, void *);
76 static lang_input_statement_type *lookup_name (const char *);
77 static struct bfd_hash_entry *lang_definedness_newfunc
78 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
79 static void insert_undefined (const char *);
80 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
81 static void print_statement (lang_statement_union_type *,
82 lang_output_section_statement_type *);
83 static void print_statement_list (lang_statement_union_type *,
84 lang_output_section_statement_type *);
85 static void print_statements (void);
86 static void print_input_section (asection *, bfd_boolean);
87 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
88 static void lang_record_phdrs (void);
89 static void lang_do_version_exports_section (void);
90 static void lang_finalize_version_expr_head
91 (struct bfd_elf_version_expr_head *);
92
93 /* Exported variables. */
94 const char *output_target;
95 lang_output_section_statement_type *abs_output_section;
96 lang_statement_list_type lang_output_section_statement;
97 lang_statement_list_type *stat_ptr = &statement_list;
98 lang_statement_list_type file_chain = { NULL, NULL };
99 lang_statement_list_type input_file_chain;
100 struct bfd_sym_chain entry_symbol = { NULL, NULL };
101 const char *entry_section = ".text";
102 struct lang_input_statement_flags input_flags;
103 bfd_boolean entry_from_cmdline;
104 bfd_boolean undef_from_cmdline;
105 bfd_boolean lang_has_input_file = FALSE;
106 bfd_boolean had_output_filename = FALSE;
107 bfd_boolean lang_float_flag = FALSE;
108 bfd_boolean delete_output_file_on_failure = FALSE;
109 struct lang_phdr *lang_phdr_list;
110 struct lang_nocrossrefs *nocrossref_list;
111
112 /* Functions that traverse the linker script and might evaluate
113 DEFINED() need to increment this. */
114 int lang_statement_iteration = 0;
115
116 etree_type *base; /* Relocation base - or null */
117
118 /* Return TRUE if the PATTERN argument is a wildcard pattern.
119 Although backslashes are treated specially if a pattern contains
120 wildcards, we do not consider the mere presence of a backslash to
121 be enough to cause the pattern to be treated as a wildcard.
122 That lets us handle DOS filenames more naturally. */
123 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
124
125 #define new_stat(x, y) \
126 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
127
128 #define outside_section_address(q) \
129 ((q)->output_offset + (q)->output_section->vma)
130
131 #define outside_symbol_address(q) \
132 ((q)->value + outside_section_address (q->section))
133
134 #define SECTION_NAME_MAP_LENGTH (16)
135
136 void *
137 stat_alloc (size_t size)
138 {
139 return obstack_alloc (&stat_obstack, size);
140 }
141
142 static int
143 name_match (const char *pattern, const char *name)
144 {
145 if (wildcardp (pattern))
146 return fnmatch (pattern, name, 0);
147 return strcmp (pattern, name);
148 }
149
150 /* If PATTERN is of the form archive:file, return a pointer to the
151 separator. If not, return NULL. */
152
153 static char *
154 archive_path (const char *pattern)
155 {
156 char *p = NULL;
157
158 if (link_info.path_separator == 0)
159 return p;
160
161 p = strchr (pattern, link_info.path_separator);
162 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
163 if (p == NULL || link_info.path_separator != ':')
164 return p;
165
166 /* Assume a match on the second char is part of drive specifier,
167 as in "c:\silly.dos". */
168 if (p == pattern + 1 && ISALPHA (*pattern))
169 p = strchr (p + 1, link_info.path_separator);
170 #endif
171 return p;
172 }
173
174 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
175 return whether F matches FILE_SPEC. */
176
177 static bfd_boolean
178 input_statement_is_archive_path (const char *file_spec, char *sep,
179 lang_input_statement_type *f)
180 {
181 bfd_boolean match = FALSE;
182
183 if ((*(sep + 1) == 0
184 || name_match (sep + 1, f->filename) == 0)
185 && ((sep != file_spec)
186 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
187 {
188 match = TRUE;
189
190 if (sep != file_spec)
191 {
192 const char *aname = f->the_bfd->my_archive->filename;
193 *sep = 0;
194 match = name_match (file_spec, aname) == 0;
195 *sep = link_info.path_separator;
196 }
197 }
198 return match;
199 }
200
201 static bfd_boolean
202 unique_section_p (const asection *sec,
203 const lang_output_section_statement_type *os)
204 {
205 struct unique_sections *unam;
206 const char *secnam;
207
208 if (link_info.relocatable
209 && sec->owner != NULL
210 && bfd_is_group_section (sec->owner, sec))
211 return !(os != NULL
212 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
213
214 secnam = sec->name;
215 for (unam = unique_section_list; unam; unam = unam->next)
216 if (name_match (unam->name, secnam) == 0)
217 return TRUE;
218
219 return FALSE;
220 }
221
222 /* Generic traversal routines for finding matching sections. */
223
224 /* Try processing a section against a wildcard. This just calls
225 the callback unless the filename exclusion list is present
226 and excludes the file. It's hardly ever present so this
227 function is very fast. */
228
229 static void
230 walk_wild_consider_section (lang_wild_statement_type *ptr,
231 lang_input_statement_type *file,
232 asection *s,
233 struct wildcard_list *sec,
234 callback_t callback,
235 void *data)
236 {
237 struct name_list *list_tmp;
238
239 /* Don't process sections from files which were excluded. */
240 for (list_tmp = sec->spec.exclude_name_list;
241 list_tmp;
242 list_tmp = list_tmp->next)
243 {
244 char *p = archive_path (list_tmp->name);
245
246 if (p != NULL)
247 {
248 if (input_statement_is_archive_path (list_tmp->name, p, file))
249 return;
250 }
251
252 else if (name_match (list_tmp->name, file->filename) == 0)
253 return;
254
255 /* FIXME: Perhaps remove the following at some stage? Matching
256 unadorned archives like this was never documented and has
257 been superceded by the archive:path syntax. */
258 else if (file->the_bfd != NULL
259 && file->the_bfd->my_archive != NULL
260 && name_match (list_tmp->name,
261 file->the_bfd->my_archive->filename) == 0)
262 return;
263 }
264
265 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
266 }
267
268 /* Lowest common denominator routine that can handle everything correctly,
269 but slowly. */
270
271 static void
272 walk_wild_section_general (lang_wild_statement_type *ptr,
273 lang_input_statement_type *file,
274 callback_t callback,
275 void *data)
276 {
277 asection *s;
278 struct wildcard_list *sec;
279
280 for (s = file->the_bfd->sections; s != NULL; s = s->next)
281 {
282 sec = ptr->section_list;
283 if (sec == NULL)
284 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
285
286 while (sec != NULL)
287 {
288 bfd_boolean skip = FALSE;
289
290 if (sec->spec.name != NULL)
291 {
292 const char *sname = bfd_get_section_name (file->the_bfd, s);
293
294 skip = name_match (sec->spec.name, sname) != 0;
295 }
296
297 if (!skip)
298 walk_wild_consider_section (ptr, file, s, sec, callback, data);
299
300 sec = sec->next;
301 }
302 }
303 }
304
305 /* Routines to find a single section given its name. If there's more
306 than one section with that name, we report that. */
307
308 typedef struct
309 {
310 asection *found_section;
311 bfd_boolean multiple_sections_found;
312 } section_iterator_callback_data;
313
314 static bfd_boolean
315 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
316 {
317 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
318
319 if (d->found_section != NULL)
320 {
321 d->multiple_sections_found = TRUE;
322 return TRUE;
323 }
324
325 d->found_section = s;
326 return FALSE;
327 }
328
329 static asection *
330 find_section (lang_input_statement_type *file,
331 struct wildcard_list *sec,
332 bfd_boolean *multiple_sections_found)
333 {
334 section_iterator_callback_data cb_data = { NULL, FALSE };
335
336 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
337 section_iterator_callback, &cb_data);
338 *multiple_sections_found = cb_data.multiple_sections_found;
339 return cb_data.found_section;
340 }
341
342 /* Code for handling simple wildcards without going through fnmatch,
343 which can be expensive because of charset translations etc. */
344
345 /* A simple wild is a literal string followed by a single '*',
346 where the literal part is at least 4 characters long. */
347
348 static bfd_boolean
349 is_simple_wild (const char *name)
350 {
351 size_t len = strcspn (name, "*?[");
352 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
353 }
354
355 static bfd_boolean
356 match_simple_wild (const char *pattern, const char *name)
357 {
358 /* The first four characters of the pattern are guaranteed valid
359 non-wildcard characters. So we can go faster. */
360 if (pattern[0] != name[0] || pattern[1] != name[1]
361 || pattern[2] != name[2] || pattern[3] != name[3])
362 return FALSE;
363
364 pattern += 4;
365 name += 4;
366 while (*pattern != '*')
367 if (*name++ != *pattern++)
368 return FALSE;
369
370 return TRUE;
371 }
372
373 /* Return the numerical value of the init_priority attribute from
374 section name NAME. */
375
376 static unsigned long
377 get_init_priority (const char *name)
378 {
379 char *end;
380 unsigned long init_priority;
381
382 /* GCC uses the following section names for the init_priority
383 attribute with numerical values 101 and 65535 inclusive. A
384 lower value means a higher priority.
385
386 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
387 decimal numerical value of the init_priority attribute.
388 The order of execution in .init_array is forward and
389 .fini_array is backward.
390 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
391 decimal numerical value of the init_priority attribute.
392 The order of execution in .ctors is backward and .dtors
393 is forward.
394 */
395 if (strncmp (name, ".init_array.", 12) == 0
396 || strncmp (name, ".fini_array.", 12) == 0)
397 {
398 init_priority = strtoul (name + 12, &end, 10);
399 return *end ? 0 : init_priority;
400 }
401 else if (strncmp (name, ".ctors.", 7) == 0
402 || strncmp (name, ".dtors.", 7) == 0)
403 {
404 init_priority = strtoul (name + 7, &end, 10);
405 return *end ? 0 : 65535 - init_priority;
406 }
407
408 return 0;
409 }
410
411 /* Compare sections ASEC and BSEC according to SORT. */
412
413 static int
414 compare_section (sort_type sort, asection *asec, asection *bsec)
415 {
416 int ret;
417 unsigned long ainit_priority, binit_priority;
418
419 switch (sort)
420 {
421 default:
422 abort ();
423
424 case by_init_priority:
425 ainit_priority
426 = get_init_priority (bfd_get_section_name (asec->owner, asec));
427 binit_priority
428 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
429 if (ainit_priority == 0 || binit_priority == 0)
430 goto sort_by_name;
431 ret = ainit_priority - binit_priority;
432 if (ret)
433 break;
434 else
435 goto sort_by_name;
436
437 case by_alignment_name:
438 ret = (bfd_section_alignment (bsec->owner, bsec)
439 - bfd_section_alignment (asec->owner, asec));
440 if (ret)
441 break;
442 /* Fall through. */
443
444 case by_name:
445 sort_by_name:
446 ret = strcmp (bfd_get_section_name (asec->owner, asec),
447 bfd_get_section_name (bsec->owner, bsec));
448 break;
449
450 case by_name_alignment:
451 ret = strcmp (bfd_get_section_name (asec->owner, asec),
452 bfd_get_section_name (bsec->owner, bsec));
453 if (ret)
454 break;
455 /* Fall through. */
456
457 case by_alignment:
458 ret = (bfd_section_alignment (bsec->owner, bsec)
459 - bfd_section_alignment (asec->owner, asec));
460 break;
461 }
462
463 return ret;
464 }
465
466 /* Build a Binary Search Tree to sort sections, unlike insertion sort
467 used in wild_sort(). BST is considerably faster if the number of
468 of sections are large. */
469
470 static lang_section_bst_type **
471 wild_sort_fast (lang_wild_statement_type *wild,
472 struct wildcard_list *sec,
473 lang_input_statement_type *file ATTRIBUTE_UNUSED,
474 asection *section)
475 {
476 lang_section_bst_type **tree;
477
478 tree = &wild->tree;
479 if (!wild->filenames_sorted
480 && (sec == NULL || sec->spec.sorted == none))
481 {
482 /* Append at the right end of tree. */
483 while (*tree)
484 tree = &((*tree)->right);
485 return tree;
486 }
487
488 while (*tree)
489 {
490 /* Find the correct node to append this section. */
491 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
492 tree = &((*tree)->left);
493 else
494 tree = &((*tree)->right);
495 }
496
497 return tree;
498 }
499
500 /* Use wild_sort_fast to build a BST to sort sections. */
501
502 static void
503 output_section_callback_fast (lang_wild_statement_type *ptr,
504 struct wildcard_list *sec,
505 asection *section,
506 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
507 lang_input_statement_type *file,
508 void *output)
509 {
510 lang_section_bst_type *node;
511 lang_section_bst_type **tree;
512 lang_output_section_statement_type *os;
513
514 os = (lang_output_section_statement_type *) output;
515
516 if (unique_section_p (section, os))
517 return;
518
519 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
520 node->left = 0;
521 node->right = 0;
522 node->section = section;
523
524 tree = wild_sort_fast (ptr, sec, file, section);
525 if (tree != NULL)
526 *tree = node;
527 }
528
529 /* Convert a sorted sections' BST back to list form. */
530
531 static void
532 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
533 lang_section_bst_type *tree,
534 void *output)
535 {
536 if (tree->left)
537 output_section_callback_tree_to_list (ptr, tree->left, output);
538
539 lang_add_section (&ptr->children, tree->section, NULL,
540 (lang_output_section_statement_type *) output);
541
542 if (tree->right)
543 output_section_callback_tree_to_list (ptr, tree->right, output);
544
545 free (tree);
546 }
547
548 /* Specialized, optimized routines for handling different kinds of
549 wildcards */
550
551 static void
552 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
553 lang_input_statement_type *file,
554 callback_t callback,
555 void *data)
556 {
557 /* We can just do a hash lookup for the section with the right name.
558 But if that lookup discovers more than one section with the name
559 (should be rare), we fall back to the general algorithm because
560 we would otherwise have to sort the sections to make sure they
561 get processed in the bfd's order. */
562 bfd_boolean multiple_sections_found;
563 struct wildcard_list *sec0 = ptr->handler_data[0];
564 asection *s0 = find_section (file, sec0, &multiple_sections_found);
565
566 if (multiple_sections_found)
567 walk_wild_section_general (ptr, file, callback, data);
568 else if (s0)
569 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
570 }
571
572 static void
573 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
574 lang_input_statement_type *file,
575 callback_t callback,
576 void *data)
577 {
578 asection *s;
579 struct wildcard_list *wildsec0 = ptr->handler_data[0];
580
581 for (s = file->the_bfd->sections; s != NULL; s = s->next)
582 {
583 const char *sname = bfd_get_section_name (file->the_bfd, s);
584 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
585
586 if (!skip)
587 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
588 }
589 }
590
591 static void
592 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
593 lang_input_statement_type *file,
594 callback_t callback,
595 void *data)
596 {
597 asection *s;
598 struct wildcard_list *sec0 = ptr->handler_data[0];
599 struct wildcard_list *wildsec1 = ptr->handler_data[1];
600 bfd_boolean multiple_sections_found;
601 asection *s0 = find_section (file, sec0, &multiple_sections_found);
602
603 if (multiple_sections_found)
604 {
605 walk_wild_section_general (ptr, file, callback, data);
606 return;
607 }
608
609 /* Note that if the section was not found, s0 is NULL and
610 we'll simply never succeed the s == s0 test below. */
611 for (s = file->the_bfd->sections; s != NULL; s = s->next)
612 {
613 /* Recall that in this code path, a section cannot satisfy more
614 than one spec, so if s == s0 then it cannot match
615 wildspec1. */
616 if (s == s0)
617 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
618 else
619 {
620 const char *sname = bfd_get_section_name (file->the_bfd, s);
621 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
622
623 if (!skip)
624 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
625 data);
626 }
627 }
628 }
629
630 static void
631 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
632 lang_input_statement_type *file,
633 callback_t callback,
634 void *data)
635 {
636 asection *s;
637 struct wildcard_list *sec0 = ptr->handler_data[0];
638 struct wildcard_list *wildsec1 = ptr->handler_data[1];
639 struct wildcard_list *wildsec2 = ptr->handler_data[2];
640 bfd_boolean multiple_sections_found;
641 asection *s0 = find_section (file, sec0, &multiple_sections_found);
642
643 if (multiple_sections_found)
644 {
645 walk_wild_section_general (ptr, file, callback, data);
646 return;
647 }
648
649 for (s = file->the_bfd->sections; s != NULL; s = s->next)
650 {
651 if (s == s0)
652 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
653 else
654 {
655 const char *sname = bfd_get_section_name (file->the_bfd, s);
656 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
657
658 if (!skip)
659 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
660 else
661 {
662 skip = !match_simple_wild (wildsec2->spec.name, sname);
663 if (!skip)
664 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
665 data);
666 }
667 }
668 }
669 }
670
671 static void
672 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
673 lang_input_statement_type *file,
674 callback_t callback,
675 void *data)
676 {
677 asection *s;
678 struct wildcard_list *sec0 = ptr->handler_data[0];
679 struct wildcard_list *sec1 = ptr->handler_data[1];
680 struct wildcard_list *wildsec2 = ptr->handler_data[2];
681 struct wildcard_list *wildsec3 = ptr->handler_data[3];
682 bfd_boolean multiple_sections_found;
683 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
684
685 if (multiple_sections_found)
686 {
687 walk_wild_section_general (ptr, file, callback, data);
688 return;
689 }
690
691 s1 = find_section (file, sec1, &multiple_sections_found);
692 if (multiple_sections_found)
693 {
694 walk_wild_section_general (ptr, file, callback, data);
695 return;
696 }
697
698 for (s = file->the_bfd->sections; s != NULL; s = s->next)
699 {
700 if (s == s0)
701 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
702 else
703 if (s == s1)
704 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
705 else
706 {
707 const char *sname = bfd_get_section_name (file->the_bfd, s);
708 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
709 sname);
710
711 if (!skip)
712 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
713 data);
714 else
715 {
716 skip = !match_simple_wild (wildsec3->spec.name, sname);
717 if (!skip)
718 walk_wild_consider_section (ptr, file, s, wildsec3,
719 callback, data);
720 }
721 }
722 }
723 }
724
725 static void
726 walk_wild_section (lang_wild_statement_type *ptr,
727 lang_input_statement_type *file,
728 callback_t callback,
729 void *data)
730 {
731 if (file->flags.just_syms)
732 return;
733
734 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
735 }
736
737 /* Returns TRUE when name1 is a wildcard spec that might match
738 something name2 can match. We're conservative: we return FALSE
739 only if the prefixes of name1 and name2 are different up to the
740 first wildcard character. */
741
742 static bfd_boolean
743 wild_spec_can_overlap (const char *name1, const char *name2)
744 {
745 size_t prefix1_len = strcspn (name1, "?*[");
746 size_t prefix2_len = strcspn (name2, "?*[");
747 size_t min_prefix_len;
748
749 /* Note that if there is no wildcard character, then we treat the
750 terminating 0 as part of the prefix. Thus ".text" won't match
751 ".text." or ".text.*", for example. */
752 if (name1[prefix1_len] == '\0')
753 prefix1_len++;
754 if (name2[prefix2_len] == '\0')
755 prefix2_len++;
756
757 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
758
759 return memcmp (name1, name2, min_prefix_len) == 0;
760 }
761
762 /* Select specialized code to handle various kinds of wildcard
763 statements. */
764
765 static void
766 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
767 {
768 int sec_count = 0;
769 int wild_name_count = 0;
770 struct wildcard_list *sec;
771 int signature;
772 int data_counter;
773
774 ptr->walk_wild_section_handler = walk_wild_section_general;
775 ptr->handler_data[0] = NULL;
776 ptr->handler_data[1] = NULL;
777 ptr->handler_data[2] = NULL;
778 ptr->handler_data[3] = NULL;
779 ptr->tree = NULL;
780
781 /* Count how many wildcard_specs there are, and how many of those
782 actually use wildcards in the name. Also, bail out if any of the
783 wildcard names are NULL. (Can this actually happen?
784 walk_wild_section used to test for it.) And bail out if any
785 of the wildcards are more complex than a simple string
786 ending in a single '*'. */
787 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
788 {
789 ++sec_count;
790 if (sec->spec.name == NULL)
791 return;
792 if (wildcardp (sec->spec.name))
793 {
794 ++wild_name_count;
795 if (!is_simple_wild (sec->spec.name))
796 return;
797 }
798 }
799
800 /* The zero-spec case would be easy to optimize but it doesn't
801 happen in practice. Likewise, more than 4 specs doesn't
802 happen in practice. */
803 if (sec_count == 0 || sec_count > 4)
804 return;
805
806 /* Check that no two specs can match the same section. */
807 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
808 {
809 struct wildcard_list *sec2;
810 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
811 {
812 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
813 return;
814 }
815 }
816
817 signature = (sec_count << 8) + wild_name_count;
818 switch (signature)
819 {
820 case 0x0100:
821 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
822 break;
823 case 0x0101:
824 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
825 break;
826 case 0x0201:
827 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
828 break;
829 case 0x0302:
830 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
831 break;
832 case 0x0402:
833 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
834 break;
835 default:
836 return;
837 }
838
839 /* Now fill the data array with pointers to the specs, first the
840 specs with non-wildcard names, then the specs with wildcard
841 names. It's OK to process the specs in different order from the
842 given order, because we've already determined that no section
843 will match more than one spec. */
844 data_counter = 0;
845 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
846 if (!wildcardp (sec->spec.name))
847 ptr->handler_data[data_counter++] = sec;
848 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
849 if (wildcardp (sec->spec.name))
850 ptr->handler_data[data_counter++] = sec;
851 }
852
853 /* Handle a wild statement for a single file F. */
854
855 static void
856 walk_wild_file (lang_wild_statement_type *s,
857 lang_input_statement_type *f,
858 callback_t callback,
859 void *data)
860 {
861 if (f->the_bfd == NULL
862 || ! bfd_check_format (f->the_bfd, bfd_archive))
863 walk_wild_section (s, f, callback, data);
864 else
865 {
866 bfd *member;
867
868 /* This is an archive file. We must map each member of the
869 archive separately. */
870 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
871 while (member != NULL)
872 {
873 /* When lookup_name is called, it will call the add_symbols
874 entry point for the archive. For each element of the
875 archive which is included, BFD will call ldlang_add_file,
876 which will set the usrdata field of the member to the
877 lang_input_statement. */
878 if (member->usrdata != NULL)
879 {
880 walk_wild_section (s,
881 (lang_input_statement_type *) member->usrdata,
882 callback, data);
883 }
884
885 member = bfd_openr_next_archived_file (f->the_bfd, member);
886 }
887 }
888 }
889
890 static void
891 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
892 {
893 const char *file_spec = s->filename;
894 char *p;
895
896 if (file_spec == NULL)
897 {
898 /* Perform the iteration over all files in the list. */
899 LANG_FOR_EACH_INPUT_STATEMENT (f)
900 {
901 walk_wild_file (s, f, callback, data);
902 }
903 }
904 else if ((p = archive_path (file_spec)) != NULL)
905 {
906 LANG_FOR_EACH_INPUT_STATEMENT (f)
907 {
908 if (input_statement_is_archive_path (file_spec, p, f))
909 walk_wild_file (s, f, callback, data);
910 }
911 }
912 else if (wildcardp (file_spec))
913 {
914 LANG_FOR_EACH_INPUT_STATEMENT (f)
915 {
916 if (fnmatch (file_spec, f->filename, 0) == 0)
917 walk_wild_file (s, f, callback, data);
918 }
919 }
920 else
921 {
922 lang_input_statement_type *f;
923
924 /* Perform the iteration over a single file. */
925 f = lookup_name (file_spec);
926 if (f)
927 walk_wild_file (s, f, callback, data);
928 }
929 }
930
931 /* lang_for_each_statement walks the parse tree and calls the provided
932 function for each node, except those inside output section statements
933 with constraint set to -1. */
934
935 void
936 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
937 lang_statement_union_type *s)
938 {
939 for (; s != NULL; s = s->header.next)
940 {
941 func (s);
942
943 switch (s->header.type)
944 {
945 case lang_constructors_statement_enum:
946 lang_for_each_statement_worker (func, constructor_list.head);
947 break;
948 case lang_output_section_statement_enum:
949 if (s->output_section_statement.constraint != -1)
950 lang_for_each_statement_worker
951 (func, s->output_section_statement.children.head);
952 break;
953 case lang_wild_statement_enum:
954 lang_for_each_statement_worker (func,
955 s->wild_statement.children.head);
956 break;
957 case lang_group_statement_enum:
958 lang_for_each_statement_worker (func,
959 s->group_statement.children.head);
960 break;
961 case lang_data_statement_enum:
962 case lang_reloc_statement_enum:
963 case lang_object_symbols_statement_enum:
964 case lang_output_statement_enum:
965 case lang_target_statement_enum:
966 case lang_input_section_enum:
967 case lang_input_statement_enum:
968 case lang_assignment_statement_enum:
969 case lang_padding_statement_enum:
970 case lang_address_statement_enum:
971 case lang_fill_statement_enum:
972 case lang_insert_statement_enum:
973 break;
974 default:
975 FAIL ();
976 break;
977 }
978 }
979 }
980
981 void
982 lang_for_each_statement (void (*func) (lang_statement_union_type *))
983 {
984 lang_for_each_statement_worker (func, statement_list.head);
985 }
986
987 /*----------------------------------------------------------------------*/
988
989 void
990 lang_list_init (lang_statement_list_type *list)
991 {
992 list->head = NULL;
993 list->tail = &list->head;
994 }
995
996 void
997 push_stat_ptr (lang_statement_list_type *new_ptr)
998 {
999 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1000 abort ();
1001 *stat_save_ptr++ = stat_ptr;
1002 stat_ptr = new_ptr;
1003 }
1004
1005 void
1006 pop_stat_ptr (void)
1007 {
1008 if (stat_save_ptr <= stat_save)
1009 abort ();
1010 stat_ptr = *--stat_save_ptr;
1011 }
1012
1013 /* Build a new statement node for the parse tree. */
1014
1015 static lang_statement_union_type *
1016 new_statement (enum statement_enum type,
1017 size_t size,
1018 lang_statement_list_type *list)
1019 {
1020 lang_statement_union_type *new_stmt;
1021
1022 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1023 new_stmt->header.type = type;
1024 new_stmt->header.next = NULL;
1025 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1026 return new_stmt;
1027 }
1028
1029 /* Build a new input file node for the language. There are several
1030 ways in which we treat an input file, eg, we only look at symbols,
1031 or prefix it with a -l etc.
1032
1033 We can be supplied with requests for input files more than once;
1034 they may, for example be split over several lines like foo.o(.text)
1035 foo.o(.data) etc, so when asked for a file we check that we haven't
1036 got it already so we don't duplicate the bfd. */
1037
1038 static lang_input_statement_type *
1039 new_afile (const char *name,
1040 lang_input_file_enum_type file_type,
1041 const char *target,
1042 bfd_boolean add_to_list)
1043 {
1044 lang_input_statement_type *p;
1045
1046 lang_has_input_file = TRUE;
1047
1048 if (add_to_list)
1049 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1050 else
1051 {
1052 p = (lang_input_statement_type *)
1053 stat_alloc (sizeof (lang_input_statement_type));
1054 p->header.type = lang_input_statement_enum;
1055 p->header.next = NULL;
1056 }
1057
1058 memset (&p->the_bfd, 0,
1059 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1060 p->target = target;
1061 p->flags.dynamic = input_flags.dynamic;
1062 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1063 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1064 p->flags.whole_archive = input_flags.whole_archive;
1065 p->flags.sysrooted = input_flags.sysrooted;
1066
1067 if (file_type == lang_input_file_is_l_enum
1068 && name[0] == ':' && name[1] != '\0')
1069 {
1070 file_type = lang_input_file_is_search_file_enum;
1071 name = name + 1;
1072 }
1073
1074 switch (file_type)
1075 {
1076 case lang_input_file_is_symbols_only_enum:
1077 p->filename = name;
1078 p->local_sym_name = name;
1079 p->flags.real = TRUE;
1080 p->flags.just_syms = TRUE;
1081 break;
1082 case lang_input_file_is_fake_enum:
1083 p->filename = name;
1084 p->local_sym_name = name;
1085 break;
1086 case lang_input_file_is_l_enum:
1087 p->filename = name;
1088 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1089 p->flags.maybe_archive = TRUE;
1090 p->flags.real = TRUE;
1091 p->flags.search_dirs = TRUE;
1092 break;
1093 case lang_input_file_is_marker_enum:
1094 p->filename = name;
1095 p->local_sym_name = name;
1096 p->flags.search_dirs = TRUE;
1097 break;
1098 case lang_input_file_is_search_file_enum:
1099 p->filename = name;
1100 p->local_sym_name = name;
1101 p->flags.real = TRUE;
1102 p->flags.search_dirs = TRUE;
1103 break;
1104 case lang_input_file_is_file_enum:
1105 p->filename = name;
1106 p->local_sym_name = name;
1107 p->flags.real = TRUE;
1108 break;
1109 default:
1110 FAIL ();
1111 }
1112
1113 lang_statement_append (&input_file_chain,
1114 (lang_statement_union_type *) p,
1115 &p->next_real_file);
1116 return p;
1117 }
1118
1119 lang_input_statement_type *
1120 lang_add_input_file (const char *name,
1121 lang_input_file_enum_type file_type,
1122 const char *target)
1123 {
1124 return new_afile (name, file_type, target, TRUE);
1125 }
1126
1127 struct out_section_hash_entry
1128 {
1129 struct bfd_hash_entry root;
1130 lang_statement_union_type s;
1131 };
1132
1133 /* The hash table. */
1134
1135 static struct bfd_hash_table output_section_statement_table;
1136
1137 /* Support routines for the hash table used by lang_output_section_find,
1138 initialize the table, fill in an entry and remove the table. */
1139
1140 static struct bfd_hash_entry *
1141 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1142 struct bfd_hash_table *table,
1143 const char *string)
1144 {
1145 lang_output_section_statement_type **nextp;
1146 struct out_section_hash_entry *ret;
1147
1148 if (entry == NULL)
1149 {
1150 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1151 sizeof (*ret));
1152 if (entry == NULL)
1153 return entry;
1154 }
1155
1156 entry = bfd_hash_newfunc (entry, table, string);
1157 if (entry == NULL)
1158 return entry;
1159
1160 ret = (struct out_section_hash_entry *) entry;
1161 memset (&ret->s, 0, sizeof (ret->s));
1162 ret->s.header.type = lang_output_section_statement_enum;
1163 ret->s.output_section_statement.subsection_alignment = -1;
1164 ret->s.output_section_statement.section_alignment = -1;
1165 ret->s.output_section_statement.block_value = 1;
1166 lang_list_init (&ret->s.output_section_statement.children);
1167 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1168
1169 /* For every output section statement added to the list, except the
1170 first one, lang_output_section_statement.tail points to the "next"
1171 field of the last element of the list. */
1172 if (lang_output_section_statement.head != NULL)
1173 ret->s.output_section_statement.prev
1174 = ((lang_output_section_statement_type *)
1175 ((char *) lang_output_section_statement.tail
1176 - offsetof (lang_output_section_statement_type, next)));
1177
1178 /* GCC's strict aliasing rules prevent us from just casting the
1179 address, so we store the pointer in a variable and cast that
1180 instead. */
1181 nextp = &ret->s.output_section_statement.next;
1182 lang_statement_append (&lang_output_section_statement,
1183 &ret->s,
1184 (lang_statement_union_type **) nextp);
1185 return &ret->root;
1186 }
1187
1188 static void
1189 output_section_statement_table_init (void)
1190 {
1191 if (!bfd_hash_table_init_n (&output_section_statement_table,
1192 output_section_statement_newfunc,
1193 sizeof (struct out_section_hash_entry),
1194 61))
1195 einfo (_("%P%F: can not create hash table: %E\n"));
1196 }
1197
1198 static void
1199 output_section_statement_table_free (void)
1200 {
1201 bfd_hash_table_free (&output_section_statement_table);
1202 }
1203
1204 /* Build enough state so that the parser can build its tree. */
1205
1206 void
1207 lang_init (void)
1208 {
1209 obstack_begin (&stat_obstack, 1000);
1210
1211 stat_ptr = &statement_list;
1212
1213 output_section_statement_table_init ();
1214
1215 lang_list_init (stat_ptr);
1216
1217 lang_list_init (&input_file_chain);
1218 lang_list_init (&lang_output_section_statement);
1219 lang_list_init (&file_chain);
1220 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1221 NULL);
1222 abs_output_section =
1223 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1224
1225 abs_output_section->bfd_section = bfd_abs_section_ptr;
1226
1227 /* The value "3" is ad-hoc, somewhat related to the expected number of
1228 DEFINED expressions in a linker script. For most default linker
1229 scripts, there are none. Why a hash table then? Well, it's somewhat
1230 simpler to re-use working machinery than using a linked list in terms
1231 of code-complexity here in ld, besides the initialization which just
1232 looks like other code here. */
1233 if (!bfd_hash_table_init_n (&lang_definedness_table,
1234 lang_definedness_newfunc,
1235 sizeof (struct lang_definedness_hash_entry),
1236 3))
1237 einfo (_("%P%F: can not create hash table: %E\n"));
1238 }
1239
1240 void
1241 lang_finish (void)
1242 {
1243 bfd_link_hash_table_free (link_info.output_bfd, link_info.hash);
1244 bfd_hash_table_free (&lang_definedness_table);
1245 output_section_statement_table_free ();
1246 }
1247
1248 /*----------------------------------------------------------------------
1249 A region is an area of memory declared with the
1250 MEMORY { name:org=exp, len=exp ... }
1251 syntax.
1252
1253 We maintain a list of all the regions here.
1254
1255 If no regions are specified in the script, then the default is used
1256 which is created when looked up to be the entire data space.
1257
1258 If create is true we are creating a region inside a MEMORY block.
1259 In this case it is probably an error to create a region that has
1260 already been created. If we are not inside a MEMORY block it is
1261 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1262 and so we issue a warning.
1263
1264 Each region has at least one name. The first name is either
1265 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1266 alias names to an existing region within a script with
1267 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1268 region. */
1269
1270 static lang_memory_region_type *lang_memory_region_list;
1271 static lang_memory_region_type **lang_memory_region_list_tail
1272 = &lang_memory_region_list;
1273
1274 lang_memory_region_type *
1275 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1276 {
1277 lang_memory_region_name *n;
1278 lang_memory_region_type *r;
1279 lang_memory_region_type *new_region;
1280
1281 /* NAME is NULL for LMA memspecs if no region was specified. */
1282 if (name == NULL)
1283 return NULL;
1284
1285 for (r = lang_memory_region_list; r != NULL; r = r->next)
1286 for (n = &r->name_list; n != NULL; n = n->next)
1287 if (strcmp (n->name, name) == 0)
1288 {
1289 if (create)
1290 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1291 NULL, name);
1292 return r;
1293 }
1294
1295 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1296 einfo (_("%P:%S: warning: memory region `%s' not declared\n"),
1297 NULL, name);
1298
1299 new_region = (lang_memory_region_type *)
1300 stat_alloc (sizeof (lang_memory_region_type));
1301
1302 new_region->name_list.name = xstrdup (name);
1303 new_region->name_list.next = NULL;
1304 new_region->next = NULL;
1305 new_region->origin = 0;
1306 new_region->length = ~(bfd_size_type) 0;
1307 new_region->current = 0;
1308 new_region->last_os = NULL;
1309 new_region->flags = 0;
1310 new_region->not_flags = 0;
1311 new_region->had_full_message = FALSE;
1312
1313 *lang_memory_region_list_tail = new_region;
1314 lang_memory_region_list_tail = &new_region->next;
1315
1316 return new_region;
1317 }
1318
1319 void
1320 lang_memory_region_alias (const char * alias, const char * region_name)
1321 {
1322 lang_memory_region_name * n;
1323 lang_memory_region_type * r;
1324 lang_memory_region_type * region;
1325
1326 /* The default region must be unique. This ensures that it is not necessary
1327 to iterate through the name list if someone wants the check if a region is
1328 the default memory region. */
1329 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1330 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1331 einfo (_("%F%P:%S: error: alias for default memory region\n"), NULL);
1332
1333 /* Look for the target region and check if the alias is not already
1334 in use. */
1335 region = NULL;
1336 for (r = lang_memory_region_list; r != NULL; r = r->next)
1337 for (n = &r->name_list; n != NULL; n = n->next)
1338 {
1339 if (region == NULL && strcmp (n->name, region_name) == 0)
1340 region = r;
1341 if (strcmp (n->name, alias) == 0)
1342 einfo (_("%F%P:%S: error: redefinition of memory region "
1343 "alias `%s'\n"),
1344 NULL, alias);
1345 }
1346
1347 /* Check if the target region exists. */
1348 if (region == NULL)
1349 einfo (_("%F%P:%S: error: memory region `%s' "
1350 "for alias `%s' does not exist\n"),
1351 NULL, region_name, alias);
1352
1353 /* Add alias to region name list. */
1354 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1355 n->name = xstrdup (alias);
1356 n->next = region->name_list.next;
1357 region->name_list.next = n;
1358 }
1359
1360 static lang_memory_region_type *
1361 lang_memory_default (asection * section)
1362 {
1363 lang_memory_region_type *p;
1364
1365 flagword sec_flags = section->flags;
1366
1367 /* Override SEC_DATA to mean a writable section. */
1368 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1369 sec_flags |= SEC_DATA;
1370
1371 for (p = lang_memory_region_list; p != NULL; p = p->next)
1372 {
1373 if ((p->flags & sec_flags) != 0
1374 && (p->not_flags & sec_flags) == 0)
1375 {
1376 return p;
1377 }
1378 }
1379 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1380 }
1381
1382 /* Find or create an output_section_statement with the given NAME.
1383 If CONSTRAINT is non-zero match one with that constraint, otherwise
1384 match any non-negative constraint. If CREATE, always make a
1385 new output_section_statement for SPECIAL CONSTRAINT. */
1386
1387 lang_output_section_statement_type *
1388 lang_output_section_statement_lookup (const char *name,
1389 int constraint,
1390 bfd_boolean create)
1391 {
1392 struct out_section_hash_entry *entry;
1393
1394 entry = ((struct out_section_hash_entry *)
1395 bfd_hash_lookup (&output_section_statement_table, name,
1396 create, FALSE));
1397 if (entry == NULL)
1398 {
1399 if (create)
1400 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1401 return NULL;
1402 }
1403
1404 if (entry->s.output_section_statement.name != NULL)
1405 {
1406 /* We have a section of this name, but it might not have the correct
1407 constraint. */
1408 struct out_section_hash_entry *last_ent;
1409
1410 name = entry->s.output_section_statement.name;
1411 if (create && constraint == SPECIAL)
1412 /* Not traversing to the end reverses the order of the second
1413 and subsequent SPECIAL sections in the hash table chain,
1414 but that shouldn't matter. */
1415 last_ent = entry;
1416 else
1417 do
1418 {
1419 if (constraint == entry->s.output_section_statement.constraint
1420 || (constraint == 0
1421 && entry->s.output_section_statement.constraint >= 0))
1422 return &entry->s.output_section_statement;
1423 last_ent = entry;
1424 entry = (struct out_section_hash_entry *) entry->root.next;
1425 }
1426 while (entry != NULL
1427 && name == entry->s.output_section_statement.name);
1428
1429 if (!create)
1430 return NULL;
1431
1432 entry
1433 = ((struct out_section_hash_entry *)
1434 output_section_statement_newfunc (NULL,
1435 &output_section_statement_table,
1436 name));
1437 if (entry == NULL)
1438 {
1439 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1440 return NULL;
1441 }
1442 entry->root = last_ent->root;
1443 last_ent->root.next = &entry->root;
1444 }
1445
1446 entry->s.output_section_statement.name = name;
1447 entry->s.output_section_statement.constraint = constraint;
1448 return &entry->s.output_section_statement;
1449 }
1450
1451 /* Find the next output_section_statement with the same name as OS.
1452 If CONSTRAINT is non-zero, find one with that constraint otherwise
1453 match any non-negative constraint. */
1454
1455 lang_output_section_statement_type *
1456 next_matching_output_section_statement (lang_output_section_statement_type *os,
1457 int constraint)
1458 {
1459 /* All output_section_statements are actually part of a
1460 struct out_section_hash_entry. */
1461 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1462 ((char *) os
1463 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1464 const char *name = os->name;
1465
1466 ASSERT (name == entry->root.string);
1467 do
1468 {
1469 entry = (struct out_section_hash_entry *) entry->root.next;
1470 if (entry == NULL
1471 || name != entry->s.output_section_statement.name)
1472 return NULL;
1473 }
1474 while (constraint != entry->s.output_section_statement.constraint
1475 && (constraint != 0
1476 || entry->s.output_section_statement.constraint < 0));
1477
1478 return &entry->s.output_section_statement;
1479 }
1480
1481 /* A variant of lang_output_section_find used by place_orphan.
1482 Returns the output statement that should precede a new output
1483 statement for SEC. If an exact match is found on certain flags,
1484 sets *EXACT too. */
1485
1486 lang_output_section_statement_type *
1487 lang_output_section_find_by_flags (const asection *sec,
1488 lang_output_section_statement_type **exact,
1489 lang_match_sec_type_func match_type)
1490 {
1491 lang_output_section_statement_type *first, *look, *found;
1492 flagword flags;
1493
1494 /* We know the first statement on this list is *ABS*. May as well
1495 skip it. */
1496 first = &lang_output_section_statement.head->output_section_statement;
1497 first = first->next;
1498
1499 /* First try for an exact match. */
1500 found = NULL;
1501 for (look = first; look; look = look->next)
1502 {
1503 flags = look->flags;
1504 if (look->bfd_section != NULL)
1505 {
1506 flags = look->bfd_section->flags;
1507 if (match_type && !match_type (link_info.output_bfd,
1508 look->bfd_section,
1509 sec->owner, sec))
1510 continue;
1511 }
1512 flags ^= sec->flags;
1513 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1514 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1515 found = look;
1516 }
1517 if (found != NULL)
1518 {
1519 if (exact != NULL)
1520 *exact = found;
1521 return found;
1522 }
1523
1524 if ((sec->flags & SEC_CODE) != 0
1525 && (sec->flags & SEC_ALLOC) != 0)
1526 {
1527 /* Try for a rw code section. */
1528 for (look = first; look; look = look->next)
1529 {
1530 flags = look->flags;
1531 if (look->bfd_section != NULL)
1532 {
1533 flags = look->bfd_section->flags;
1534 if (match_type && !match_type (link_info.output_bfd,
1535 look->bfd_section,
1536 sec->owner, sec))
1537 continue;
1538 }
1539 flags ^= sec->flags;
1540 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1541 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1542 found = look;
1543 }
1544 }
1545 else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0
1546 && (sec->flags & SEC_ALLOC) != 0)
1547 {
1548 /* .rodata can go after .text, .sdata2 after .rodata. */
1549 for (look = first; look; look = look->next)
1550 {
1551 flags = look->flags;
1552 if (look->bfd_section != NULL)
1553 {
1554 flags = look->bfd_section->flags;
1555 if (match_type && !match_type (link_info.output_bfd,
1556 look->bfd_section,
1557 sec->owner, sec))
1558 continue;
1559 }
1560 flags ^= sec->flags;
1561 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1562 | SEC_READONLY | SEC_SMALL_DATA))
1563 || (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1564 | SEC_READONLY))
1565 && !(look->flags & SEC_SMALL_DATA))
1566 || (!(flags & (SEC_THREAD_LOCAL | SEC_ALLOC))
1567 && (look->flags & SEC_THREAD_LOCAL)
1568 && (!(flags & SEC_LOAD)
1569 || (look->flags & SEC_LOAD))))
1570 found = look;
1571 }
1572 }
1573 else if ((sec->flags & SEC_SMALL_DATA) != 0
1574 && (sec->flags & SEC_ALLOC) != 0)
1575 {
1576 /* .sdata goes after .data, .sbss after .sdata. */
1577 for (look = first; look; look = look->next)
1578 {
1579 flags = look->flags;
1580 if (look->bfd_section != NULL)
1581 {
1582 flags = look->bfd_section->flags;
1583 if (match_type && !match_type (link_info.output_bfd,
1584 look->bfd_section,
1585 sec->owner, sec))
1586 continue;
1587 }
1588 flags ^= sec->flags;
1589 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1590 | SEC_THREAD_LOCAL))
1591 || ((look->flags & SEC_SMALL_DATA)
1592 && !(sec->flags & SEC_HAS_CONTENTS)))
1593 found = look;
1594 }
1595 }
1596 else if ((sec->flags & SEC_HAS_CONTENTS) != 0
1597 && (sec->flags & SEC_ALLOC) != 0)
1598 {
1599 /* .data goes after .rodata. */
1600 for (look = first; look; look = look->next)
1601 {
1602 flags = look->flags;
1603 if (look->bfd_section != NULL)
1604 {
1605 flags = look->bfd_section->flags;
1606 if (match_type && !match_type (link_info.output_bfd,
1607 look->bfd_section,
1608 sec->owner, sec))
1609 continue;
1610 }
1611 flags ^= sec->flags;
1612 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1613 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1614 found = look;
1615 }
1616 }
1617 else if ((sec->flags & SEC_ALLOC) != 0)
1618 {
1619 /* .bss goes after any other alloc section. */
1620 for (look = first; look; look = look->next)
1621 {
1622 flags = look->flags;
1623 if (look->bfd_section != NULL)
1624 {
1625 flags = look->bfd_section->flags;
1626 if (match_type && !match_type (link_info.output_bfd,
1627 look->bfd_section,
1628 sec->owner, sec))
1629 continue;
1630 }
1631 flags ^= sec->flags;
1632 if (!(flags & SEC_ALLOC))
1633 found = look;
1634 }
1635 }
1636 else
1637 {
1638 /* non-alloc go last. */
1639 for (look = first; look; look = look->next)
1640 {
1641 flags = look->flags;
1642 if (look->bfd_section != NULL)
1643 flags = look->bfd_section->flags;
1644 flags ^= sec->flags;
1645 if (!(flags & SEC_DEBUGGING))
1646 found = look;
1647 }
1648 return found;
1649 }
1650
1651 if (found || !match_type)
1652 return found;
1653
1654 return lang_output_section_find_by_flags (sec, NULL, NULL);
1655 }
1656
1657 /* Find the last output section before given output statement.
1658 Used by place_orphan. */
1659
1660 static asection *
1661 output_prev_sec_find (lang_output_section_statement_type *os)
1662 {
1663 lang_output_section_statement_type *lookup;
1664
1665 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1666 {
1667 if (lookup->constraint < 0)
1668 continue;
1669
1670 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1671 return lookup->bfd_section;
1672 }
1673
1674 return NULL;
1675 }
1676
1677 /* Look for a suitable place for a new output section statement. The
1678 idea is to skip over anything that might be inside a SECTIONS {}
1679 statement in a script, before we find another output section
1680 statement. Assignments to "dot" before an output section statement
1681 are assumed to belong to it, except in two cases; The first
1682 assignment to dot, and assignments before non-alloc sections.
1683 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1684 similar assignments that set the initial address, or we might
1685 insert non-alloc note sections among assignments setting end of
1686 image symbols. */
1687
1688 static lang_statement_union_type **
1689 insert_os_after (lang_output_section_statement_type *after)
1690 {
1691 lang_statement_union_type **where;
1692 lang_statement_union_type **assign = NULL;
1693 bfd_boolean ignore_first;
1694
1695 ignore_first
1696 = after == &lang_output_section_statement.head->output_section_statement;
1697
1698 for (where = &after->header.next;
1699 *where != NULL;
1700 where = &(*where)->header.next)
1701 {
1702 switch ((*where)->header.type)
1703 {
1704 case lang_assignment_statement_enum:
1705 if (assign == NULL)
1706 {
1707 lang_assignment_statement_type *ass;
1708
1709 ass = &(*where)->assignment_statement;
1710 if (ass->exp->type.node_class != etree_assert
1711 && ass->exp->assign.dst[0] == '.'
1712 && ass->exp->assign.dst[1] == 0
1713 && !ignore_first)
1714 assign = where;
1715 }
1716 ignore_first = FALSE;
1717 continue;
1718 case lang_wild_statement_enum:
1719 case lang_input_section_enum:
1720 case lang_object_symbols_statement_enum:
1721 case lang_fill_statement_enum:
1722 case lang_data_statement_enum:
1723 case lang_reloc_statement_enum:
1724 case lang_padding_statement_enum:
1725 case lang_constructors_statement_enum:
1726 assign = NULL;
1727 continue;
1728 case lang_output_section_statement_enum:
1729 if (assign != NULL)
1730 {
1731 asection *s = (*where)->output_section_statement.bfd_section;
1732
1733 if (s == NULL
1734 || s->map_head.s == NULL
1735 || (s->flags & SEC_ALLOC) != 0)
1736 where = assign;
1737 }
1738 break;
1739 case lang_input_statement_enum:
1740 case lang_address_statement_enum:
1741 case lang_target_statement_enum:
1742 case lang_output_statement_enum:
1743 case lang_group_statement_enum:
1744 case lang_insert_statement_enum:
1745 continue;
1746 }
1747 break;
1748 }
1749
1750 return where;
1751 }
1752
1753 lang_output_section_statement_type *
1754 lang_insert_orphan (asection *s,
1755 const char *secname,
1756 int constraint,
1757 lang_output_section_statement_type *after,
1758 struct orphan_save *place,
1759 etree_type *address,
1760 lang_statement_list_type *add_child)
1761 {
1762 lang_statement_list_type add;
1763 const char *ps;
1764 lang_output_section_statement_type *os;
1765 lang_output_section_statement_type **os_tail;
1766
1767 /* If we have found an appropriate place for the output section
1768 statements for this orphan, add them to our own private list,
1769 inserting them later into the global statement list. */
1770 if (after != NULL)
1771 {
1772 lang_list_init (&add);
1773 push_stat_ptr (&add);
1774 }
1775
1776 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1777 address = exp_intop (0);
1778
1779 os_tail = ((lang_output_section_statement_type **)
1780 lang_output_section_statement.tail);
1781 os = lang_enter_output_section_statement (secname, address, normal_section,
1782 NULL, NULL, NULL, constraint);
1783
1784 ps = NULL;
1785 if (config.build_constructors && *os_tail == os)
1786 {
1787 /* If the name of the section is representable in C, then create
1788 symbols to mark the start and the end of the section. */
1789 for (ps = secname; *ps != '\0'; ps++)
1790 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1791 break;
1792 if (*ps == '\0')
1793 {
1794 char *symname;
1795
1796 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1797 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1798 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1799 lang_add_assignment (exp_provide (symname,
1800 exp_nameop (NAME, "."),
1801 FALSE));
1802 }
1803 }
1804
1805 if (add_child == NULL)
1806 add_child = &os->children;
1807 lang_add_section (add_child, s, NULL, os);
1808
1809 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1810 {
1811 const char *region = (after->region
1812 ? after->region->name_list.name
1813 : DEFAULT_MEMORY_REGION);
1814 const char *lma_region = (after->lma_region
1815 ? after->lma_region->name_list.name
1816 : NULL);
1817 lang_leave_output_section_statement (NULL, region, after->phdrs,
1818 lma_region);
1819 }
1820 else
1821 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1822 NULL);
1823
1824 if (ps != NULL && *ps == '\0')
1825 {
1826 char *symname;
1827
1828 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1829 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1830 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1831 lang_add_assignment (exp_provide (symname,
1832 exp_nameop (NAME, "."),
1833 FALSE));
1834 }
1835
1836 /* Restore the global list pointer. */
1837 if (after != NULL)
1838 pop_stat_ptr ();
1839
1840 if (after != NULL && os->bfd_section != NULL)
1841 {
1842 asection *snew, *as;
1843
1844 snew = os->bfd_section;
1845
1846 /* Shuffle the bfd section list to make the output file look
1847 neater. This is really only cosmetic. */
1848 if (place->section == NULL
1849 && after != (&lang_output_section_statement.head
1850 ->output_section_statement))
1851 {
1852 asection *bfd_section = after->bfd_section;
1853
1854 /* If the output statement hasn't been used to place any input
1855 sections (and thus doesn't have an output bfd_section),
1856 look for the closest prior output statement having an
1857 output section. */
1858 if (bfd_section == NULL)
1859 bfd_section = output_prev_sec_find (after);
1860
1861 if (bfd_section != NULL && bfd_section != snew)
1862 place->section = &bfd_section->next;
1863 }
1864
1865 if (place->section == NULL)
1866 place->section = &link_info.output_bfd->sections;
1867
1868 as = *place->section;
1869
1870 if (!as)
1871 {
1872 /* Put the section at the end of the list. */
1873
1874 /* Unlink the section. */
1875 bfd_section_list_remove (link_info.output_bfd, snew);
1876
1877 /* Now tack it back on in the right place. */
1878 bfd_section_list_append (link_info.output_bfd, snew);
1879 }
1880 else if (as != snew && as->prev != snew)
1881 {
1882 /* Unlink the section. */
1883 bfd_section_list_remove (link_info.output_bfd, snew);
1884
1885 /* Now tack it back on in the right place. */
1886 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1887 }
1888
1889 /* Save the end of this list. Further ophans of this type will
1890 follow the one we've just added. */
1891 place->section = &snew->next;
1892
1893 /* The following is non-cosmetic. We try to put the output
1894 statements in some sort of reasonable order here, because they
1895 determine the final load addresses of the orphan sections.
1896 In addition, placing output statements in the wrong order may
1897 require extra segments. For instance, given a typical
1898 situation of all read-only sections placed in one segment and
1899 following that a segment containing all the read-write
1900 sections, we wouldn't want to place an orphan read/write
1901 section before or amongst the read-only ones. */
1902 if (add.head != NULL)
1903 {
1904 lang_output_section_statement_type *newly_added_os;
1905
1906 if (place->stmt == NULL)
1907 {
1908 lang_statement_union_type **where = insert_os_after (after);
1909
1910 *add.tail = *where;
1911 *where = add.head;
1912
1913 place->os_tail = &after->next;
1914 }
1915 else
1916 {
1917 /* Put it after the last orphan statement we added. */
1918 *add.tail = *place->stmt;
1919 *place->stmt = add.head;
1920 }
1921
1922 /* Fix the global list pointer if we happened to tack our
1923 new list at the tail. */
1924 if (*stat_ptr->tail == add.head)
1925 stat_ptr->tail = add.tail;
1926
1927 /* Save the end of this list. */
1928 place->stmt = add.tail;
1929
1930 /* Do the same for the list of output section statements. */
1931 newly_added_os = *os_tail;
1932 *os_tail = NULL;
1933 newly_added_os->prev = (lang_output_section_statement_type *)
1934 ((char *) place->os_tail
1935 - offsetof (lang_output_section_statement_type, next));
1936 newly_added_os->next = *place->os_tail;
1937 if (newly_added_os->next != NULL)
1938 newly_added_os->next->prev = newly_added_os;
1939 *place->os_tail = newly_added_os;
1940 place->os_tail = &newly_added_os->next;
1941
1942 /* Fixing the global list pointer here is a little different.
1943 We added to the list in lang_enter_output_section_statement,
1944 trimmed off the new output_section_statment above when
1945 assigning *os_tail = NULL, but possibly added it back in
1946 the same place when assigning *place->os_tail. */
1947 if (*os_tail == NULL)
1948 lang_output_section_statement.tail
1949 = (lang_statement_union_type **) os_tail;
1950 }
1951 }
1952 return os;
1953 }
1954
1955 static void
1956 lang_map_flags (flagword flag)
1957 {
1958 if (flag & SEC_ALLOC)
1959 minfo ("a");
1960
1961 if (flag & SEC_CODE)
1962 minfo ("x");
1963
1964 if (flag & SEC_READONLY)
1965 minfo ("r");
1966
1967 if (flag & SEC_DATA)
1968 minfo ("w");
1969
1970 if (flag & SEC_LOAD)
1971 minfo ("l");
1972 }
1973
1974 void
1975 lang_map (void)
1976 {
1977 lang_memory_region_type *m;
1978 bfd_boolean dis_header_printed = FALSE;
1979 bfd *p;
1980
1981 LANG_FOR_EACH_INPUT_STATEMENT (file)
1982 {
1983 asection *s;
1984
1985 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
1986 || file->flags.just_syms)
1987 continue;
1988
1989 for (s = file->the_bfd->sections; s != NULL; s = s->next)
1990 if ((s->output_section == NULL
1991 || s->output_section->owner != link_info.output_bfd)
1992 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
1993 {
1994 if (! dis_header_printed)
1995 {
1996 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
1997 dis_header_printed = TRUE;
1998 }
1999
2000 print_input_section (s, TRUE);
2001 }
2002 }
2003
2004 minfo (_("\nMemory Configuration\n\n"));
2005 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2006 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2007
2008 for (m = lang_memory_region_list; m != NULL; m = m->next)
2009 {
2010 char buf[100];
2011 int len;
2012
2013 fprintf (config.map_file, "%-16s ", m->name_list.name);
2014
2015 sprintf_vma (buf, m->origin);
2016 minfo ("0x%s ", buf);
2017 len = strlen (buf);
2018 while (len < 16)
2019 {
2020 print_space ();
2021 ++len;
2022 }
2023
2024 minfo ("0x%V", m->length);
2025 if (m->flags || m->not_flags)
2026 {
2027 #ifndef BFD64
2028 minfo (" ");
2029 #endif
2030 if (m->flags)
2031 {
2032 print_space ();
2033 lang_map_flags (m->flags);
2034 }
2035
2036 if (m->not_flags)
2037 {
2038 minfo (" !");
2039 lang_map_flags (m->not_flags);
2040 }
2041 }
2042
2043 print_nl ();
2044 }
2045
2046 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2047
2048 if (! link_info.reduce_memory_overheads)
2049 {
2050 obstack_begin (&map_obstack, 1000);
2051 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
2052 bfd_map_over_sections (p, init_map_userdata, 0);
2053 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2054 }
2055 lang_statement_iteration ++;
2056 print_statements ();
2057 }
2058
2059 static void
2060 init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED,
2061 asection *sec,
2062 void *data ATTRIBUTE_UNUSED)
2063 {
2064 fat_section_userdata_type *new_data
2065 = ((fat_section_userdata_type *) (stat_alloc
2066 (sizeof (fat_section_userdata_type))));
2067
2068 ASSERT (get_userdata (sec) == NULL);
2069 get_userdata (sec) = new_data;
2070 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
2071 new_data->map_symbol_def_count = 0;
2072 }
2073
2074 static bfd_boolean
2075 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2076 void *info ATTRIBUTE_UNUSED)
2077 {
2078 if (hash_entry->type == bfd_link_hash_defined
2079 || hash_entry->type == bfd_link_hash_defweak)
2080 {
2081 struct fat_user_section_struct *ud;
2082 struct map_symbol_def *def;
2083
2084 ud = (struct fat_user_section_struct *)
2085 get_userdata (hash_entry->u.def.section);
2086 if (! ud)
2087 {
2088 /* ??? What do we have to do to initialize this beforehand? */
2089 /* The first time we get here is bfd_abs_section... */
2090 init_map_userdata (0, hash_entry->u.def.section, 0);
2091 ud = (struct fat_user_section_struct *)
2092 get_userdata (hash_entry->u.def.section);
2093 }
2094 else if (!ud->map_symbol_def_tail)
2095 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2096
2097 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2098 def->entry = hash_entry;
2099 *(ud->map_symbol_def_tail) = def;
2100 ud->map_symbol_def_tail = &def->next;
2101 ud->map_symbol_def_count++;
2102 }
2103 return TRUE;
2104 }
2105
2106 /* Initialize an output section. */
2107
2108 static void
2109 init_os (lang_output_section_statement_type *s, flagword flags)
2110 {
2111 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2112 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2113
2114 if (s->constraint != SPECIAL)
2115 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2116 if (s->bfd_section == NULL)
2117 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2118 s->name, flags);
2119 if (s->bfd_section == NULL)
2120 {
2121 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
2122 link_info.output_bfd->xvec->name, s->name);
2123 }
2124 s->bfd_section->output_section = s->bfd_section;
2125 s->bfd_section->output_offset = 0;
2126
2127 if (!link_info.reduce_memory_overheads)
2128 {
2129 fat_section_userdata_type *new_userdata = (fat_section_userdata_type *)
2130 stat_alloc (sizeof (fat_section_userdata_type));
2131 memset (new_userdata, 0, sizeof (fat_section_userdata_type));
2132 get_userdata (s->bfd_section) = new_userdata;
2133 }
2134
2135 /* If there is a base address, make sure that any sections it might
2136 mention are initialized. */
2137 if (s->addr_tree != NULL)
2138 exp_init_os (s->addr_tree);
2139
2140 if (s->load_base != NULL)
2141 exp_init_os (s->load_base);
2142
2143 /* If supplied an alignment, set it. */
2144 if (s->section_alignment != -1)
2145 s->bfd_section->alignment_power = s->section_alignment;
2146 }
2147
2148 /* Make sure that all output sections mentioned in an expression are
2149 initialized. */
2150
2151 static void
2152 exp_init_os (etree_type *exp)
2153 {
2154 switch (exp->type.node_class)
2155 {
2156 case etree_assign:
2157 case etree_provide:
2158 exp_init_os (exp->assign.src);
2159 break;
2160
2161 case etree_binary:
2162 exp_init_os (exp->binary.lhs);
2163 exp_init_os (exp->binary.rhs);
2164 break;
2165
2166 case etree_trinary:
2167 exp_init_os (exp->trinary.cond);
2168 exp_init_os (exp->trinary.lhs);
2169 exp_init_os (exp->trinary.rhs);
2170 break;
2171
2172 case etree_assert:
2173 exp_init_os (exp->assert_s.child);
2174 break;
2175
2176 case etree_unary:
2177 exp_init_os (exp->unary.child);
2178 break;
2179
2180 case etree_name:
2181 switch (exp->type.node_code)
2182 {
2183 case ADDR:
2184 case LOADADDR:
2185 case SIZEOF:
2186 {
2187 lang_output_section_statement_type *os;
2188
2189 os = lang_output_section_find (exp->name.name);
2190 if (os != NULL && os->bfd_section == NULL)
2191 init_os (os, 0);
2192 }
2193 }
2194 break;
2195
2196 default:
2197 break;
2198 }
2199 }
2200 \f
2201 static void
2202 section_already_linked (bfd *abfd, asection *sec, void *data)
2203 {
2204 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2205
2206 /* If we are only reading symbols from this object, then we want to
2207 discard all sections. */
2208 if (entry->flags.just_syms)
2209 {
2210 bfd_link_just_syms (abfd, sec, &link_info);
2211 return;
2212 }
2213
2214 if (!(abfd->flags & DYNAMIC))
2215 bfd_section_already_linked (abfd, sec, &link_info);
2216 }
2217 \f
2218 /* The wild routines.
2219
2220 These expand statements like *(.text) and foo.o to a list of
2221 explicit actions, like foo.o(.text), bar.o(.text) and
2222 foo.o(.text, .data). */
2223
2224 /* Add SECTION to the output section OUTPUT. Do this by creating a
2225 lang_input_section statement which is placed at PTR. */
2226
2227 void
2228 lang_add_section (lang_statement_list_type *ptr,
2229 asection *section,
2230 struct flag_info *sflag_info,
2231 lang_output_section_statement_type *output)
2232 {
2233 flagword flags = section->flags;
2234
2235 bfd_boolean discard;
2236 lang_input_section_type *new_section;
2237 bfd *abfd = link_info.output_bfd;
2238
2239 /* Discard sections marked with SEC_EXCLUDE. */
2240 discard = (flags & SEC_EXCLUDE) != 0;
2241
2242 /* Discard input sections which are assigned to a section named
2243 DISCARD_SECTION_NAME. */
2244 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2245 discard = TRUE;
2246
2247 /* Discard debugging sections if we are stripping debugging
2248 information. */
2249 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2250 && (flags & SEC_DEBUGGING) != 0)
2251 discard = TRUE;
2252
2253 if (discard)
2254 {
2255 if (section->output_section == NULL)
2256 {
2257 /* This prevents future calls from assigning this section. */
2258 section->output_section = bfd_abs_section_ptr;
2259 }
2260 return;
2261 }
2262
2263 if (sflag_info)
2264 {
2265 bfd_boolean keep;
2266
2267 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2268 if (!keep)
2269 return;
2270 }
2271
2272 if (section->output_section != NULL)
2273 return;
2274
2275 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2276 to an output section, because we want to be able to include a
2277 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2278 section (I don't know why we want to do this, but we do).
2279 build_link_order in ldwrite.c handles this case by turning
2280 the embedded SEC_NEVER_LOAD section into a fill. */
2281 flags &= ~ SEC_NEVER_LOAD;
2282
2283 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2284 already been processed. One reason to do this is that on pe
2285 format targets, .text$foo sections go into .text and it's odd
2286 to see .text with SEC_LINK_ONCE set. */
2287
2288 if (!link_info.relocatable)
2289 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2290
2291 switch (output->sectype)
2292 {
2293 case normal_section:
2294 case overlay_section:
2295 break;
2296 case noalloc_section:
2297 flags &= ~SEC_ALLOC;
2298 break;
2299 case noload_section:
2300 flags &= ~SEC_LOAD;
2301 flags |= SEC_NEVER_LOAD;
2302 /* Unfortunately GNU ld has managed to evolve two different
2303 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2304 alloc, no contents section. All others get a noload, noalloc
2305 section. */
2306 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2307 flags &= ~SEC_HAS_CONTENTS;
2308 else
2309 flags &= ~SEC_ALLOC;
2310 break;
2311 }
2312
2313 if (output->bfd_section == NULL)
2314 init_os (output, flags);
2315
2316 /* If SEC_READONLY is not set in the input section, then clear
2317 it from the output section. */
2318 output->bfd_section->flags &= flags | ~SEC_READONLY;
2319
2320 if (output->bfd_section->linker_has_input)
2321 {
2322 /* Only set SEC_READONLY flag on the first input section. */
2323 flags &= ~ SEC_READONLY;
2324
2325 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2326 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2327 != (flags & (SEC_MERGE | SEC_STRINGS))
2328 || ((flags & SEC_MERGE) != 0
2329 && output->bfd_section->entsize != section->entsize))
2330 {
2331 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2332 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2333 }
2334 }
2335 output->bfd_section->flags |= flags;
2336
2337 if (!output->bfd_section->linker_has_input)
2338 {
2339 output->bfd_section->linker_has_input = 1;
2340 /* This must happen after flags have been updated. The output
2341 section may have been created before we saw its first input
2342 section, eg. for a data statement. */
2343 bfd_init_private_section_data (section->owner, section,
2344 link_info.output_bfd,
2345 output->bfd_section,
2346 &link_info);
2347 if ((flags & SEC_MERGE) != 0)
2348 output->bfd_section->entsize = section->entsize;
2349 }
2350
2351 if ((flags & SEC_TIC54X_BLOCK) != 0
2352 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2353 {
2354 /* FIXME: This value should really be obtained from the bfd... */
2355 output->block_value = 128;
2356 }
2357
2358 if (section->alignment_power > output->bfd_section->alignment_power)
2359 output->bfd_section->alignment_power = section->alignment_power;
2360
2361 section->output_section = output->bfd_section;
2362
2363 if (!link_info.relocatable
2364 && !stripped_excluded_sections)
2365 {
2366 asection *s = output->bfd_section->map_tail.s;
2367 output->bfd_section->map_tail.s = section;
2368 section->map_head.s = NULL;
2369 section->map_tail.s = s;
2370 if (s != NULL)
2371 s->map_head.s = section;
2372 else
2373 output->bfd_section->map_head.s = section;
2374 }
2375
2376 /* Add a section reference to the list. */
2377 new_section = new_stat (lang_input_section, ptr);
2378 new_section->section = section;
2379 }
2380
2381 /* Handle wildcard sorting. This returns the lang_input_section which
2382 should follow the one we are going to create for SECTION and FILE,
2383 based on the sorting requirements of WILD. It returns NULL if the
2384 new section should just go at the end of the current list. */
2385
2386 static lang_statement_union_type *
2387 wild_sort (lang_wild_statement_type *wild,
2388 struct wildcard_list *sec,
2389 lang_input_statement_type *file,
2390 asection *section)
2391 {
2392 lang_statement_union_type *l;
2393
2394 if (!wild->filenames_sorted
2395 && (sec == NULL || sec->spec.sorted == none))
2396 return NULL;
2397
2398 for (l = wild->children.head; l != NULL; l = l->header.next)
2399 {
2400 lang_input_section_type *ls;
2401
2402 if (l->header.type != lang_input_section_enum)
2403 continue;
2404 ls = &l->input_section;
2405
2406 /* Sorting by filename takes precedence over sorting by section
2407 name. */
2408
2409 if (wild->filenames_sorted)
2410 {
2411 const char *fn, *ln;
2412 bfd_boolean fa, la;
2413 int i;
2414
2415 /* The PE support for the .idata section as generated by
2416 dlltool assumes that files will be sorted by the name of
2417 the archive and then the name of the file within the
2418 archive. */
2419
2420 if (file->the_bfd != NULL
2421 && bfd_my_archive (file->the_bfd) != NULL)
2422 {
2423 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2424 fa = TRUE;
2425 }
2426 else
2427 {
2428 fn = file->filename;
2429 fa = FALSE;
2430 }
2431
2432 if (bfd_my_archive (ls->section->owner) != NULL)
2433 {
2434 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2435 la = TRUE;
2436 }
2437 else
2438 {
2439 ln = ls->section->owner->filename;
2440 la = FALSE;
2441 }
2442
2443 i = filename_cmp (fn, ln);
2444 if (i > 0)
2445 continue;
2446 else if (i < 0)
2447 break;
2448
2449 if (fa || la)
2450 {
2451 if (fa)
2452 fn = file->filename;
2453 if (la)
2454 ln = ls->section->owner->filename;
2455
2456 i = filename_cmp (fn, ln);
2457 if (i > 0)
2458 continue;
2459 else if (i < 0)
2460 break;
2461 }
2462 }
2463
2464 /* Here either the files are not sorted by name, or we are
2465 looking at the sections for this file. */
2466
2467 if (sec != NULL
2468 && sec->spec.sorted != none
2469 && sec->spec.sorted != by_none)
2470 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2471 break;
2472 }
2473
2474 return l;
2475 }
2476
2477 /* Expand a wild statement for a particular FILE. SECTION may be
2478 NULL, in which case it is a wild card. */
2479
2480 static void
2481 output_section_callback (lang_wild_statement_type *ptr,
2482 struct wildcard_list *sec,
2483 asection *section,
2484 struct flag_info *sflag_info,
2485 lang_input_statement_type *file,
2486 void *output)
2487 {
2488 lang_statement_union_type *before;
2489 lang_output_section_statement_type *os;
2490
2491 os = (lang_output_section_statement_type *) output;
2492
2493 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2494 if (unique_section_p (section, os))
2495 return;
2496
2497 before = wild_sort (ptr, sec, file, section);
2498
2499 /* Here BEFORE points to the lang_input_section which
2500 should follow the one we are about to add. If BEFORE
2501 is NULL, then the section should just go at the end
2502 of the current list. */
2503
2504 if (before == NULL)
2505 lang_add_section (&ptr->children, section, sflag_info, os);
2506 else
2507 {
2508 lang_statement_list_type list;
2509 lang_statement_union_type **pp;
2510
2511 lang_list_init (&list);
2512 lang_add_section (&list, section, sflag_info, os);
2513
2514 /* If we are discarding the section, LIST.HEAD will
2515 be NULL. */
2516 if (list.head != NULL)
2517 {
2518 ASSERT (list.head->header.next == NULL);
2519
2520 for (pp = &ptr->children.head;
2521 *pp != before;
2522 pp = &(*pp)->header.next)
2523 ASSERT (*pp != NULL);
2524
2525 list.head->header.next = *pp;
2526 *pp = list.head;
2527 }
2528 }
2529 }
2530
2531 /* Check if all sections in a wild statement for a particular FILE
2532 are readonly. */
2533
2534 static void
2535 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2536 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2537 asection *section,
2538 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2539 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2540 void *output)
2541 {
2542 lang_output_section_statement_type *os;
2543
2544 os = (lang_output_section_statement_type *) output;
2545
2546 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2547 if (unique_section_p (section, os))
2548 return;
2549
2550 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2551 os->all_input_readonly = FALSE;
2552 }
2553
2554 /* This is passed a file name which must have been seen already and
2555 added to the statement tree. We will see if it has been opened
2556 already and had its symbols read. If not then we'll read it. */
2557
2558 static lang_input_statement_type *
2559 lookup_name (const char *name)
2560 {
2561 lang_input_statement_type *search;
2562
2563 for (search = (lang_input_statement_type *) input_file_chain.head;
2564 search != NULL;
2565 search = (lang_input_statement_type *) search->next_real_file)
2566 {
2567 /* Use the local_sym_name as the name of the file that has
2568 already been loaded as filename might have been transformed
2569 via the search directory lookup mechanism. */
2570 const char *filename = search->local_sym_name;
2571
2572 if (filename != NULL
2573 && filename_cmp (filename, name) == 0)
2574 break;
2575 }
2576
2577 if (search == NULL)
2578 search = new_afile (name, lang_input_file_is_search_file_enum,
2579 default_target, FALSE);
2580
2581 /* If we have already added this file, or this file is not real
2582 don't add this file. */
2583 if (search->flags.loaded || !search->flags.real)
2584 return search;
2585
2586 if (! load_symbols (search, NULL))
2587 return NULL;
2588
2589 return search;
2590 }
2591
2592 /* Save LIST as a list of libraries whose symbols should not be exported. */
2593
2594 struct excluded_lib
2595 {
2596 char *name;
2597 struct excluded_lib *next;
2598 };
2599 static struct excluded_lib *excluded_libs;
2600
2601 void
2602 add_excluded_libs (const char *list)
2603 {
2604 const char *p = list, *end;
2605
2606 while (*p != '\0')
2607 {
2608 struct excluded_lib *entry;
2609 end = strpbrk (p, ",:");
2610 if (end == NULL)
2611 end = p + strlen (p);
2612 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2613 entry->next = excluded_libs;
2614 entry->name = (char *) xmalloc (end - p + 1);
2615 memcpy (entry->name, p, end - p);
2616 entry->name[end - p] = '\0';
2617 excluded_libs = entry;
2618 if (*end == '\0')
2619 break;
2620 p = end + 1;
2621 }
2622 }
2623
2624 static void
2625 check_excluded_libs (bfd *abfd)
2626 {
2627 struct excluded_lib *lib = excluded_libs;
2628
2629 while (lib)
2630 {
2631 int len = strlen (lib->name);
2632 const char *filename = lbasename (abfd->filename);
2633
2634 if (strcmp (lib->name, "ALL") == 0)
2635 {
2636 abfd->no_export = TRUE;
2637 return;
2638 }
2639
2640 if (filename_ncmp (lib->name, filename, len) == 0
2641 && (filename[len] == '\0'
2642 || (filename[len] == '.' && filename[len + 1] == 'a'
2643 && filename[len + 2] == '\0')))
2644 {
2645 abfd->no_export = TRUE;
2646 return;
2647 }
2648
2649 lib = lib->next;
2650 }
2651 }
2652
2653 /* Get the symbols for an input file. */
2654
2655 bfd_boolean
2656 load_symbols (lang_input_statement_type *entry,
2657 lang_statement_list_type *place)
2658 {
2659 char **matching;
2660
2661 if (entry->flags.loaded)
2662 return TRUE;
2663
2664 ldfile_open_file (entry);
2665
2666 /* Do not process further if the file was missing. */
2667 if (entry->flags.missing_file)
2668 return TRUE;
2669
2670 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2671 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2672 {
2673 bfd_error_type err;
2674 struct lang_input_statement_flags save_flags;
2675 extern FILE *yyin;
2676
2677 err = bfd_get_error ();
2678
2679 /* See if the emulation has some special knowledge. */
2680 if (ldemul_unrecognized_file (entry))
2681 return TRUE;
2682
2683 if (err == bfd_error_file_ambiguously_recognized)
2684 {
2685 char **p;
2686
2687 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2688 einfo (_("%B: matching formats:"), entry->the_bfd);
2689 for (p = matching; *p != NULL; p++)
2690 einfo (" %s", *p);
2691 einfo ("%F\n");
2692 }
2693 else if (err != bfd_error_file_not_recognized
2694 || place == NULL)
2695 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2696
2697 bfd_close (entry->the_bfd);
2698 entry->the_bfd = NULL;
2699
2700 /* Try to interpret the file as a linker script. */
2701 save_flags = input_flags;
2702 ldfile_open_command_file (entry->filename);
2703
2704 push_stat_ptr (place);
2705 input_flags.add_DT_NEEDED_for_regular
2706 = entry->flags.add_DT_NEEDED_for_regular;
2707 input_flags.add_DT_NEEDED_for_dynamic
2708 = entry->flags.add_DT_NEEDED_for_dynamic;
2709 input_flags.whole_archive = entry->flags.whole_archive;
2710 input_flags.dynamic = entry->flags.dynamic;
2711
2712 ldfile_assumed_script = TRUE;
2713 parser_input = input_script;
2714 yyparse ();
2715 ldfile_assumed_script = FALSE;
2716
2717 /* missing_file is sticky. sysrooted will already have been
2718 restored when seeing EOF in yyparse, but no harm to restore
2719 again. */
2720 save_flags.missing_file |= input_flags.missing_file;
2721 input_flags = save_flags;
2722 pop_stat_ptr ();
2723 fclose (yyin);
2724 yyin = NULL;
2725 entry->flags.loaded = TRUE;
2726
2727 return TRUE;
2728 }
2729
2730 if (ldemul_recognized_file (entry))
2731 return TRUE;
2732
2733 /* We don't call ldlang_add_file for an archive. Instead, the
2734 add_symbols entry point will call ldlang_add_file, via the
2735 add_archive_element callback, for each element of the archive
2736 which is used. */
2737 switch (bfd_get_format (entry->the_bfd))
2738 {
2739 default:
2740 break;
2741
2742 case bfd_object:
2743 #ifdef ENABLE_PLUGINS
2744 if (!entry->flags.reload)
2745 #endif
2746 ldlang_add_file (entry);
2747 if (trace_files || verbose)
2748 info_msg ("%I\n", entry);
2749 break;
2750
2751 case bfd_archive:
2752 check_excluded_libs (entry->the_bfd);
2753
2754 if (entry->flags.whole_archive)
2755 {
2756 bfd *member = NULL;
2757 bfd_boolean loaded = TRUE;
2758
2759 for (;;)
2760 {
2761 bfd *subsbfd;
2762 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2763
2764 if (member == NULL)
2765 break;
2766
2767 if (! bfd_check_format (member, bfd_object))
2768 {
2769 einfo (_("%F%B: member %B in archive is not an object\n"),
2770 entry->the_bfd, member);
2771 loaded = FALSE;
2772 }
2773
2774 subsbfd = member;
2775 if (!(*link_info.callbacks
2776 ->add_archive_element) (&link_info, member,
2777 "--whole-archive", &subsbfd))
2778 abort ();
2779
2780 /* Potentially, the add_archive_element hook may have set a
2781 substitute BFD for us. */
2782 if (!bfd_link_add_symbols (subsbfd, &link_info))
2783 {
2784 einfo (_("%F%B: could not read symbols: %E\n"), member);
2785 loaded = FALSE;
2786 }
2787 }
2788
2789 entry->flags.loaded = loaded;
2790 return loaded;
2791 }
2792 break;
2793 }
2794
2795 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2796 entry->flags.loaded = TRUE;
2797 else
2798 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2799
2800 return entry->flags.loaded;
2801 }
2802
2803 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2804 may be NULL, indicating that it is a wildcard. Separate
2805 lang_input_section statements are created for each part of the
2806 expansion; they are added after the wild statement S. OUTPUT is
2807 the output section. */
2808
2809 static void
2810 wild (lang_wild_statement_type *s,
2811 const char *target ATTRIBUTE_UNUSED,
2812 lang_output_section_statement_type *output)
2813 {
2814 struct wildcard_list *sec;
2815
2816 if (s->handler_data[0]
2817 && s->handler_data[0]->spec.sorted == by_name
2818 && !s->filenames_sorted)
2819 {
2820 lang_section_bst_type *tree;
2821
2822 walk_wild (s, output_section_callback_fast, output);
2823
2824 tree = s->tree;
2825 if (tree)
2826 {
2827 output_section_callback_tree_to_list (s, tree, output);
2828 s->tree = NULL;
2829 }
2830 }
2831 else
2832 walk_wild (s, output_section_callback, output);
2833
2834 if (default_common_section == NULL)
2835 for (sec = s->section_list; sec != NULL; sec = sec->next)
2836 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2837 {
2838 /* Remember the section that common is going to in case we
2839 later get something which doesn't know where to put it. */
2840 default_common_section = output;
2841 break;
2842 }
2843 }
2844
2845 /* Return TRUE iff target is the sought target. */
2846
2847 static int
2848 get_target (const bfd_target *target, void *data)
2849 {
2850 const char *sought = (const char *) data;
2851
2852 return strcmp (target->name, sought) == 0;
2853 }
2854
2855 /* Like strcpy() but convert to lower case as well. */
2856
2857 static void
2858 stricpy (char *dest, char *src)
2859 {
2860 char c;
2861
2862 while ((c = *src++) != 0)
2863 *dest++ = TOLOWER (c);
2864
2865 *dest = 0;
2866 }
2867
2868 /* Remove the first occurrence of needle (if any) in haystack
2869 from haystack. */
2870
2871 static void
2872 strcut (char *haystack, char *needle)
2873 {
2874 haystack = strstr (haystack, needle);
2875
2876 if (haystack)
2877 {
2878 char *src;
2879
2880 for (src = haystack + strlen (needle); *src;)
2881 *haystack++ = *src++;
2882
2883 *haystack = 0;
2884 }
2885 }
2886
2887 /* Compare two target format name strings.
2888 Return a value indicating how "similar" they are. */
2889
2890 static int
2891 name_compare (char *first, char *second)
2892 {
2893 char *copy1;
2894 char *copy2;
2895 int result;
2896
2897 copy1 = (char *) xmalloc (strlen (first) + 1);
2898 copy2 = (char *) xmalloc (strlen (second) + 1);
2899
2900 /* Convert the names to lower case. */
2901 stricpy (copy1, first);
2902 stricpy (copy2, second);
2903
2904 /* Remove size and endian strings from the name. */
2905 strcut (copy1, "big");
2906 strcut (copy1, "little");
2907 strcut (copy2, "big");
2908 strcut (copy2, "little");
2909
2910 /* Return a value based on how many characters match,
2911 starting from the beginning. If both strings are
2912 the same then return 10 * their length. */
2913 for (result = 0; copy1[result] == copy2[result]; result++)
2914 if (copy1[result] == 0)
2915 {
2916 result *= 10;
2917 break;
2918 }
2919
2920 free (copy1);
2921 free (copy2);
2922
2923 return result;
2924 }
2925
2926 /* Set by closest_target_match() below. */
2927 static const bfd_target *winner;
2928
2929 /* Scan all the valid bfd targets looking for one that has the endianness
2930 requirement that was specified on the command line, and is the nearest
2931 match to the original output target. */
2932
2933 static int
2934 closest_target_match (const bfd_target *target, void *data)
2935 {
2936 const bfd_target *original = (const bfd_target *) data;
2937
2938 if (command_line.endian == ENDIAN_BIG
2939 && target->byteorder != BFD_ENDIAN_BIG)
2940 return 0;
2941
2942 if (command_line.endian == ENDIAN_LITTLE
2943 && target->byteorder != BFD_ENDIAN_LITTLE)
2944 return 0;
2945
2946 /* Must be the same flavour. */
2947 if (target->flavour != original->flavour)
2948 return 0;
2949
2950 /* Ignore generic big and little endian elf vectors. */
2951 if (strcmp (target->name, "elf32-big") == 0
2952 || strcmp (target->name, "elf64-big") == 0
2953 || strcmp (target->name, "elf32-little") == 0
2954 || strcmp (target->name, "elf64-little") == 0)
2955 return 0;
2956
2957 /* If we have not found a potential winner yet, then record this one. */
2958 if (winner == NULL)
2959 {
2960 winner = target;
2961 return 0;
2962 }
2963
2964 /* Oh dear, we now have two potential candidates for a successful match.
2965 Compare their names and choose the better one. */
2966 if (name_compare (target->name, original->name)
2967 > name_compare (winner->name, original->name))
2968 winner = target;
2969
2970 /* Keep on searching until wqe have checked them all. */
2971 return 0;
2972 }
2973
2974 /* Return the BFD target format of the first input file. */
2975
2976 static char *
2977 get_first_input_target (void)
2978 {
2979 char *target = NULL;
2980
2981 LANG_FOR_EACH_INPUT_STATEMENT (s)
2982 {
2983 if (s->header.type == lang_input_statement_enum
2984 && s->flags.real)
2985 {
2986 ldfile_open_file (s);
2987
2988 if (s->the_bfd != NULL
2989 && bfd_check_format (s->the_bfd, bfd_object))
2990 {
2991 target = bfd_get_target (s->the_bfd);
2992
2993 if (target != NULL)
2994 break;
2995 }
2996 }
2997 }
2998
2999 return target;
3000 }
3001
3002 const char *
3003 lang_get_output_target (void)
3004 {
3005 const char *target;
3006
3007 /* Has the user told us which output format to use? */
3008 if (output_target != NULL)
3009 return output_target;
3010
3011 /* No - has the current target been set to something other than
3012 the default? */
3013 if (current_target != default_target && current_target != NULL)
3014 return current_target;
3015
3016 /* No - can we determine the format of the first input file? */
3017 target = get_first_input_target ();
3018 if (target != NULL)
3019 return target;
3020
3021 /* Failed - use the default output target. */
3022 return default_target;
3023 }
3024
3025 /* Open the output file. */
3026
3027 static void
3028 open_output (const char *name)
3029 {
3030 output_target = lang_get_output_target ();
3031
3032 /* Has the user requested a particular endianness on the command
3033 line? */
3034 if (command_line.endian != ENDIAN_UNSET)
3035 {
3036 const bfd_target *target;
3037 enum bfd_endian desired_endian;
3038
3039 /* Get the chosen target. */
3040 target = bfd_search_for_target (get_target, (void *) output_target);
3041
3042 /* If the target is not supported, we cannot do anything. */
3043 if (target != NULL)
3044 {
3045 if (command_line.endian == ENDIAN_BIG)
3046 desired_endian = BFD_ENDIAN_BIG;
3047 else
3048 desired_endian = BFD_ENDIAN_LITTLE;
3049
3050 /* See if the target has the wrong endianness. This should
3051 not happen if the linker script has provided big and
3052 little endian alternatives, but some scrips don't do
3053 this. */
3054 if (target->byteorder != desired_endian)
3055 {
3056 /* If it does, then see if the target provides
3057 an alternative with the correct endianness. */
3058 if (target->alternative_target != NULL
3059 && (target->alternative_target->byteorder == desired_endian))
3060 output_target = target->alternative_target->name;
3061 else
3062 {
3063 /* Try to find a target as similar as possible to
3064 the default target, but which has the desired
3065 endian characteristic. */
3066 bfd_search_for_target (closest_target_match,
3067 (void *) target);
3068
3069 /* Oh dear - we could not find any targets that
3070 satisfy our requirements. */
3071 if (winner == NULL)
3072 einfo (_("%P: warning: could not find any targets"
3073 " that match endianness requirement\n"));
3074 else
3075 output_target = winner->name;
3076 }
3077 }
3078 }
3079 }
3080
3081 link_info.output_bfd = bfd_openw (name, output_target);
3082
3083 if (link_info.output_bfd == NULL)
3084 {
3085 if (bfd_get_error () == bfd_error_invalid_target)
3086 einfo (_("%P%F: target %s not found\n"), output_target);
3087
3088 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3089 }
3090
3091 delete_output_file_on_failure = TRUE;
3092
3093 if (! bfd_set_format (link_info.output_bfd, bfd_object))
3094 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3095 if (! bfd_set_arch_mach (link_info.output_bfd,
3096 ldfile_output_architecture,
3097 ldfile_output_machine))
3098 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3099
3100 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3101 if (link_info.hash == NULL)
3102 einfo (_("%P%F: can not create hash table: %E\n"));
3103
3104 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3105 }
3106
3107 static void
3108 ldlang_open_output (lang_statement_union_type *statement)
3109 {
3110 switch (statement->header.type)
3111 {
3112 case lang_output_statement_enum:
3113 ASSERT (link_info.output_bfd == NULL);
3114 open_output (statement->output_statement.name);
3115 ldemul_set_output_arch ();
3116 if (config.magic_demand_paged && !link_info.relocatable)
3117 link_info.output_bfd->flags |= D_PAGED;
3118 else
3119 link_info.output_bfd->flags &= ~D_PAGED;
3120 if (config.text_read_only)
3121 link_info.output_bfd->flags |= WP_TEXT;
3122 else
3123 link_info.output_bfd->flags &= ~WP_TEXT;
3124 if (link_info.traditional_format)
3125 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3126 else
3127 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3128 break;
3129
3130 case lang_target_statement_enum:
3131 current_target = statement->target_statement.target;
3132 break;
3133 default:
3134 break;
3135 }
3136 }
3137
3138 /* Convert between addresses in bytes and sizes in octets.
3139 For currently supported targets, octets_per_byte is always a power
3140 of two, so we can use shifts. */
3141 #define TO_ADDR(X) ((X) >> opb_shift)
3142 #define TO_SIZE(X) ((X) << opb_shift)
3143
3144 /* Support the above. */
3145 static unsigned int opb_shift = 0;
3146
3147 static void
3148 init_opb (void)
3149 {
3150 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3151 ldfile_output_machine);
3152 opb_shift = 0;
3153 if (x > 1)
3154 while ((x & 1) == 0)
3155 {
3156 x >>= 1;
3157 ++opb_shift;
3158 }
3159 ASSERT (x == 1);
3160 }
3161
3162 /* Open all the input files. */
3163
3164 enum open_bfd_mode
3165 {
3166 OPEN_BFD_NORMAL = 0,
3167 OPEN_BFD_FORCE = 1,
3168 OPEN_BFD_RESCAN = 2
3169 };
3170 #ifdef ENABLE_PLUGINS
3171 static lang_input_statement_type *plugin_insert = NULL;
3172 #endif
3173
3174 static void
3175 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3176 {
3177 for (; s != NULL; s = s->header.next)
3178 {
3179 switch (s->header.type)
3180 {
3181 case lang_constructors_statement_enum:
3182 open_input_bfds (constructor_list.head, mode);
3183 break;
3184 case lang_output_section_statement_enum:
3185 open_input_bfds (s->output_section_statement.children.head, mode);
3186 break;
3187 case lang_wild_statement_enum:
3188 /* Maybe we should load the file's symbols. */
3189 if ((mode & OPEN_BFD_RESCAN) == 0
3190 && s->wild_statement.filename
3191 && !wildcardp (s->wild_statement.filename)
3192 && !archive_path (s->wild_statement.filename))
3193 lookup_name (s->wild_statement.filename);
3194 open_input_bfds (s->wild_statement.children.head, mode);
3195 break;
3196 case lang_group_statement_enum:
3197 {
3198 struct bfd_link_hash_entry *undefs;
3199
3200 /* We must continually search the entries in the group
3201 until no new symbols are added to the list of undefined
3202 symbols. */
3203
3204 do
3205 {
3206 undefs = link_info.hash->undefs_tail;
3207 open_input_bfds (s->group_statement.children.head,
3208 mode | OPEN_BFD_FORCE);
3209 }
3210 while (undefs != link_info.hash->undefs_tail);
3211 }
3212 break;
3213 case lang_target_statement_enum:
3214 current_target = s->target_statement.target;
3215 break;
3216 case lang_input_statement_enum:
3217 if (s->input_statement.flags.real)
3218 {
3219 lang_statement_union_type **os_tail;
3220 lang_statement_list_type add;
3221
3222 s->input_statement.target = current_target;
3223
3224 /* If we are being called from within a group, and this
3225 is an archive which has already been searched, then
3226 force it to be researched unless the whole archive
3227 has been loaded already. Do the same for a rescan. */
3228 if (mode != OPEN_BFD_NORMAL
3229 #ifdef ENABLE_PLUGINS
3230 && ((mode & OPEN_BFD_RESCAN) == 0
3231 || plugin_insert == NULL)
3232 #endif
3233 && !s->input_statement.flags.whole_archive
3234 && s->input_statement.flags.loaded
3235 && s->input_statement.the_bfd != NULL
3236 && bfd_check_format (s->input_statement.the_bfd,
3237 bfd_archive))
3238 s->input_statement.flags.loaded = FALSE;
3239 #ifdef ENABLE_PLUGINS
3240 /* When rescanning, reload --as-needed shared libs. */
3241 else if ((mode & OPEN_BFD_RESCAN) != 0
3242 && plugin_insert == NULL
3243 && s->input_statement.flags.loaded
3244 && s->input_statement.flags.add_DT_NEEDED_for_regular
3245 && s->input_statement.the_bfd != NULL
3246 && ((s->input_statement.the_bfd->flags) & DYNAMIC) != 0
3247 && plugin_should_reload (s->input_statement.the_bfd))
3248 {
3249 s->input_statement.flags.loaded = FALSE;
3250 s->input_statement.flags.reload = TRUE;
3251 }
3252 #endif
3253
3254 os_tail = lang_output_section_statement.tail;
3255 lang_list_init (&add);
3256
3257 if (! load_symbols (&s->input_statement, &add))
3258 config.make_executable = FALSE;
3259
3260 if (add.head != NULL)
3261 {
3262 /* If this was a script with output sections then
3263 tack any added statements on to the end of the
3264 list. This avoids having to reorder the output
3265 section statement list. Very likely the user
3266 forgot -T, and whatever we do here will not meet
3267 naive user expectations. */
3268 if (os_tail != lang_output_section_statement.tail)
3269 {
3270 einfo (_("%P: warning: %s contains output sections;"
3271 " did you forget -T?\n"),
3272 s->input_statement.filename);
3273 *stat_ptr->tail = add.head;
3274 stat_ptr->tail = add.tail;
3275 }
3276 else
3277 {
3278 *add.tail = s->header.next;
3279 s->header.next = add.head;
3280 }
3281 }
3282 }
3283 #ifdef ENABLE_PLUGINS
3284 /* If we have found the point at which a plugin added new
3285 files, clear plugin_insert to enable archive rescan. */
3286 if (&s->input_statement == plugin_insert)
3287 plugin_insert = NULL;
3288 #endif
3289 break;
3290 case lang_assignment_statement_enum:
3291 if (s->assignment_statement.exp->assign.defsym)
3292 /* This is from a --defsym on the command line. */
3293 exp_fold_tree_no_dot (s->assignment_statement.exp);
3294 break;
3295 default:
3296 break;
3297 }
3298 }
3299
3300 /* Exit if any of the files were missing. */
3301 if (input_flags.missing_file)
3302 einfo ("%F");
3303 }
3304
3305 /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
3306
3307 void
3308 lang_track_definedness (const char *name)
3309 {
3310 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
3311 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
3312 }
3313
3314 /* New-function for the definedness hash table. */
3315
3316 static struct bfd_hash_entry *
3317 lang_definedness_newfunc (struct bfd_hash_entry *entry,
3318 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
3319 const char *name ATTRIBUTE_UNUSED)
3320 {
3321 struct lang_definedness_hash_entry *ret
3322 = (struct lang_definedness_hash_entry *) entry;
3323
3324 if (ret == NULL)
3325 ret = (struct lang_definedness_hash_entry *)
3326 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3327
3328 if (ret == NULL)
3329 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3330
3331 ret->iteration = -1;
3332 return &ret->root;
3333 }
3334
3335 /* Return the iteration when the definition of NAME was last updated. A
3336 value of -1 means that the symbol is not defined in the linker script
3337 or the command line, but may be defined in the linker symbol table. */
3338
3339 int
3340 lang_symbol_definition_iteration (const char *name)
3341 {
3342 struct lang_definedness_hash_entry *defentry
3343 = (struct lang_definedness_hash_entry *)
3344 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3345
3346 /* We've already created this one on the presence of DEFINED in the
3347 script, so it can't be NULL unless something is borked elsewhere in
3348 the code. */
3349 if (defentry == NULL)
3350 FAIL ();
3351
3352 return defentry->iteration;
3353 }
3354
3355 /* Update the definedness state of NAME. */
3356
3357 void
3358 lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3359 {
3360 struct lang_definedness_hash_entry *defentry
3361 = (struct lang_definedness_hash_entry *)
3362 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3363
3364 /* We don't keep track of symbols not tested with DEFINED. */
3365 if (defentry == NULL)
3366 return;
3367
3368 /* If the symbol was already defined, and not from an earlier statement
3369 iteration, don't update the definedness iteration, because that'd
3370 make the symbol seem defined in the linker script at this point, and
3371 it wasn't; it was defined in some object. If we do anyway, DEFINED
3372 would start to yield false before this point and the construct "sym =
3373 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3374 in an object. */
3375 if (h->type != bfd_link_hash_undefined
3376 && h->type != bfd_link_hash_common
3377 && h->type != bfd_link_hash_new
3378 && defentry->iteration == -1)
3379 return;
3380
3381 defentry->iteration = lang_statement_iteration;
3382 }
3383
3384 /* Add the supplied name to the symbol table as an undefined reference.
3385 This is a two step process as the symbol table doesn't even exist at
3386 the time the ld command line is processed. First we put the name
3387 on a list, then, once the output file has been opened, transfer the
3388 name to the symbol table. */
3389
3390 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3391
3392 #define ldlang_undef_chain_list_head entry_symbol.next
3393
3394 void
3395 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3396 {
3397 ldlang_undef_chain_list_type *new_undef;
3398
3399 undef_from_cmdline = undef_from_cmdline || cmdline;
3400 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3401 new_undef->next = ldlang_undef_chain_list_head;
3402 ldlang_undef_chain_list_head = new_undef;
3403
3404 new_undef->name = xstrdup (name);
3405
3406 if (link_info.output_bfd != NULL)
3407 insert_undefined (new_undef->name);
3408 }
3409
3410 /* Insert NAME as undefined in the symbol table. */
3411
3412 static void
3413 insert_undefined (const char *name)
3414 {
3415 struct bfd_link_hash_entry *h;
3416
3417 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3418 if (h == NULL)
3419 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3420 if (h->type == bfd_link_hash_new)
3421 {
3422 h->type = bfd_link_hash_undefined;
3423 h->u.undef.abfd = NULL;
3424 bfd_link_add_undef (link_info.hash, h);
3425 }
3426 }
3427
3428 /* Run through the list of undefineds created above and place them
3429 into the linker hash table as undefined symbols belonging to the
3430 script file. */
3431
3432 static void
3433 lang_place_undefineds (void)
3434 {
3435 ldlang_undef_chain_list_type *ptr;
3436
3437 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3438 insert_undefined (ptr->name);
3439 }
3440
3441 /* Check for all readonly or some readwrite sections. */
3442
3443 static void
3444 check_input_sections
3445 (lang_statement_union_type *s,
3446 lang_output_section_statement_type *output_section_statement)
3447 {
3448 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3449 {
3450 switch (s->header.type)
3451 {
3452 case lang_wild_statement_enum:
3453 walk_wild (&s->wild_statement, check_section_callback,
3454 output_section_statement);
3455 if (! output_section_statement->all_input_readonly)
3456 return;
3457 break;
3458 case lang_constructors_statement_enum:
3459 check_input_sections (constructor_list.head,
3460 output_section_statement);
3461 if (! output_section_statement->all_input_readonly)
3462 return;
3463 break;
3464 case lang_group_statement_enum:
3465 check_input_sections (s->group_statement.children.head,
3466 output_section_statement);
3467 if (! output_section_statement->all_input_readonly)
3468 return;
3469 break;
3470 default:
3471 break;
3472 }
3473 }
3474 }
3475
3476 /* Update wildcard statements if needed. */
3477
3478 static void
3479 update_wild_statements (lang_statement_union_type *s)
3480 {
3481 struct wildcard_list *sec;
3482
3483 switch (sort_section)
3484 {
3485 default:
3486 FAIL ();
3487
3488 case none:
3489 break;
3490
3491 case by_name:
3492 case by_alignment:
3493 for (; s != NULL; s = s->header.next)
3494 {
3495 switch (s->header.type)
3496 {
3497 default:
3498 break;
3499
3500 case lang_wild_statement_enum:
3501 for (sec = s->wild_statement.section_list; sec != NULL;
3502 sec = sec->next)
3503 {
3504 switch (sec->spec.sorted)
3505 {
3506 case none:
3507 sec->spec.sorted = sort_section;
3508 break;
3509 case by_name:
3510 if (sort_section == by_alignment)
3511 sec->spec.sorted = by_name_alignment;
3512 break;
3513 case by_alignment:
3514 if (sort_section == by_name)
3515 sec->spec.sorted = by_alignment_name;
3516 break;
3517 default:
3518 break;
3519 }
3520 }
3521 break;
3522
3523 case lang_constructors_statement_enum:
3524 update_wild_statements (constructor_list.head);
3525 break;
3526
3527 case lang_output_section_statement_enum:
3528 /* Don't sort .init/.fini sections. */
3529 if (strcmp (s->output_section_statement.name, ".init") != 0
3530 && strcmp (s->output_section_statement.name, ".fini") != 0)
3531 update_wild_statements
3532 (s->output_section_statement.children.head);
3533 break;
3534
3535 case lang_group_statement_enum:
3536 update_wild_statements (s->group_statement.children.head);
3537 break;
3538 }
3539 }
3540 break;
3541 }
3542 }
3543
3544 /* Open input files and attach to output sections. */
3545
3546 static void
3547 map_input_to_output_sections
3548 (lang_statement_union_type *s, const char *target,
3549 lang_output_section_statement_type *os)
3550 {
3551 for (; s != NULL; s = s->header.next)
3552 {
3553 lang_output_section_statement_type *tos;
3554 flagword flags;
3555
3556 switch (s->header.type)
3557 {
3558 case lang_wild_statement_enum:
3559 wild (&s->wild_statement, target, os);
3560 break;
3561 case lang_constructors_statement_enum:
3562 map_input_to_output_sections (constructor_list.head,
3563 target,
3564 os);
3565 break;
3566 case lang_output_section_statement_enum:
3567 tos = &s->output_section_statement;
3568 if (tos->constraint != 0)
3569 {
3570 if (tos->constraint != ONLY_IF_RW
3571 && tos->constraint != ONLY_IF_RO)
3572 break;
3573 tos->all_input_readonly = TRUE;
3574 check_input_sections (tos->children.head, tos);
3575 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3576 {
3577 tos->constraint = -1;
3578 break;
3579 }
3580 }
3581 map_input_to_output_sections (tos->children.head,
3582 target,
3583 tos);
3584 break;
3585 case lang_output_statement_enum:
3586 break;
3587 case lang_target_statement_enum:
3588 target = s->target_statement.target;
3589 break;
3590 case lang_group_statement_enum:
3591 map_input_to_output_sections (s->group_statement.children.head,
3592 target,
3593 os);
3594 break;
3595 case lang_data_statement_enum:
3596 /* Make sure that any sections mentioned in the expression
3597 are initialized. */
3598 exp_init_os (s->data_statement.exp);
3599 /* The output section gets CONTENTS, ALLOC and LOAD, but
3600 these may be overridden by the script. */
3601 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3602 switch (os->sectype)
3603 {
3604 case normal_section:
3605 case overlay_section:
3606 break;
3607 case noalloc_section:
3608 flags = SEC_HAS_CONTENTS;
3609 break;
3610 case noload_section:
3611 if (bfd_get_flavour (link_info.output_bfd)
3612 == bfd_target_elf_flavour)
3613 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3614 else
3615 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3616 break;
3617 }
3618 if (os->bfd_section == NULL)
3619 init_os (os, flags);
3620 else
3621 os->bfd_section->flags |= flags;
3622 break;
3623 case lang_input_section_enum:
3624 break;
3625 case lang_fill_statement_enum:
3626 case lang_object_symbols_statement_enum:
3627 case lang_reloc_statement_enum:
3628 case lang_padding_statement_enum:
3629 case lang_input_statement_enum:
3630 if (os != NULL && os->bfd_section == NULL)
3631 init_os (os, 0);
3632 break;
3633 case lang_assignment_statement_enum:
3634 if (os != NULL && os->bfd_section == NULL)
3635 init_os (os, 0);
3636
3637 /* Make sure that any sections mentioned in the assignment
3638 are initialized. */
3639 exp_init_os (s->assignment_statement.exp);
3640 break;
3641 case lang_address_statement_enum:
3642 /* Mark the specified section with the supplied address.
3643 If this section was actually a segment marker, then the
3644 directive is ignored if the linker script explicitly
3645 processed the segment marker. Originally, the linker
3646 treated segment directives (like -Ttext on the
3647 command-line) as section directives. We honor the
3648 section directive semantics for backwards compatibilty;
3649 linker scripts that do not specifically check for
3650 SEGMENT_START automatically get the old semantics. */
3651 if (!s->address_statement.segment
3652 || !s->address_statement.segment->used)
3653 {
3654 const char *name = s->address_statement.section_name;
3655
3656 /* Create the output section statement here so that
3657 orphans with a set address will be placed after other
3658 script sections. If we let the orphan placement code
3659 place them in amongst other sections then the address
3660 will affect following script sections, which is
3661 likely to surprise naive users. */
3662 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3663 tos->addr_tree = s->address_statement.address;
3664 if (tos->bfd_section == NULL)
3665 init_os (tos, 0);
3666 }
3667 break;
3668 case lang_insert_statement_enum:
3669 break;
3670 }
3671 }
3672 }
3673
3674 /* An insert statement snips out all the linker statements from the
3675 start of the list and places them after the output section
3676 statement specified by the insert. This operation is complicated
3677 by the fact that we keep a doubly linked list of output section
3678 statements as well as the singly linked list of all statements. */
3679
3680 static void
3681 process_insert_statements (void)
3682 {
3683 lang_statement_union_type **s;
3684 lang_output_section_statement_type *first_os = NULL;
3685 lang_output_section_statement_type *last_os = NULL;
3686 lang_output_section_statement_type *os;
3687
3688 /* "start of list" is actually the statement immediately after
3689 the special abs_section output statement, so that it isn't
3690 reordered. */
3691 s = &lang_output_section_statement.head;
3692 while (*(s = &(*s)->header.next) != NULL)
3693 {
3694 if ((*s)->header.type == lang_output_section_statement_enum)
3695 {
3696 /* Keep pointers to the first and last output section
3697 statement in the sequence we may be about to move. */
3698 os = &(*s)->output_section_statement;
3699
3700 ASSERT (last_os == NULL || last_os->next == os);
3701 last_os = os;
3702
3703 /* Set constraint negative so that lang_output_section_find
3704 won't match this output section statement. At this
3705 stage in linking constraint has values in the range
3706 [-1, ONLY_IN_RW]. */
3707 last_os->constraint = -2 - last_os->constraint;
3708 if (first_os == NULL)
3709 first_os = last_os;
3710 }
3711 else if ((*s)->header.type == lang_insert_statement_enum)
3712 {
3713 lang_insert_statement_type *i = &(*s)->insert_statement;
3714 lang_output_section_statement_type *where;
3715 lang_statement_union_type **ptr;
3716 lang_statement_union_type *first;
3717
3718 where = lang_output_section_find (i->where);
3719 if (where != NULL && i->is_before)
3720 {
3721 do
3722 where = where->prev;
3723 while (where != NULL && where->constraint < 0);
3724 }
3725 if (where == NULL)
3726 {
3727 einfo (_("%F%P: %s not found for insert\n"), i->where);
3728 return;
3729 }
3730
3731 /* Deal with reordering the output section statement list. */
3732 if (last_os != NULL)
3733 {
3734 asection *first_sec, *last_sec;
3735 struct lang_output_section_statement_struct **next;
3736
3737 /* Snip out the output sections we are moving. */
3738 first_os->prev->next = last_os->next;
3739 if (last_os->next == NULL)
3740 {
3741 next = &first_os->prev->next;
3742 lang_output_section_statement.tail
3743 = (lang_statement_union_type **) next;
3744 }
3745 else
3746 last_os->next->prev = first_os->prev;
3747 /* Add them in at the new position. */
3748 last_os->next = where->next;
3749 if (where->next == NULL)
3750 {
3751 next = &last_os->next;
3752 lang_output_section_statement.tail
3753 = (lang_statement_union_type **) next;
3754 }
3755 else
3756 where->next->prev = last_os;
3757 first_os->prev = where;
3758 where->next = first_os;
3759
3760 /* Move the bfd sections in the same way. */
3761 first_sec = NULL;
3762 last_sec = NULL;
3763 for (os = first_os; os != NULL; os = os->next)
3764 {
3765 os->constraint = -2 - os->constraint;
3766 if (os->bfd_section != NULL
3767 && os->bfd_section->owner != NULL)
3768 {
3769 last_sec = os->bfd_section;
3770 if (first_sec == NULL)
3771 first_sec = last_sec;
3772 }
3773 if (os == last_os)
3774 break;
3775 }
3776 if (last_sec != NULL)
3777 {
3778 asection *sec = where->bfd_section;
3779 if (sec == NULL)
3780 sec = output_prev_sec_find (where);
3781
3782 /* The place we want to insert must come after the
3783 sections we are moving. So if we find no
3784 section or if the section is the same as our
3785 last section, then no move is needed. */
3786 if (sec != NULL && sec != last_sec)
3787 {
3788 /* Trim them off. */
3789 if (first_sec->prev != NULL)
3790 first_sec->prev->next = last_sec->next;
3791 else
3792 link_info.output_bfd->sections = last_sec->next;
3793 if (last_sec->next != NULL)
3794 last_sec->next->prev = first_sec->prev;
3795 else
3796 link_info.output_bfd->section_last = first_sec->prev;
3797 /* Add back. */
3798 last_sec->next = sec->next;
3799 if (sec->next != NULL)
3800 sec->next->prev = last_sec;
3801 else
3802 link_info.output_bfd->section_last = last_sec;
3803 first_sec->prev = sec;
3804 sec->next = first_sec;
3805 }
3806 }
3807
3808 first_os = NULL;
3809 last_os = NULL;
3810 }
3811
3812 ptr = insert_os_after (where);
3813 /* Snip everything after the abs_section output statement we
3814 know is at the start of the list, up to and including
3815 the insert statement we are currently processing. */
3816 first = lang_output_section_statement.head->header.next;
3817 lang_output_section_statement.head->header.next = (*s)->header.next;
3818 /* Add them back where they belong. */
3819 *s = *ptr;
3820 if (*s == NULL)
3821 statement_list.tail = s;
3822 *ptr = first;
3823 s = &lang_output_section_statement.head;
3824 }
3825 }
3826
3827 /* Undo constraint twiddling. */
3828 for (os = first_os; os != NULL; os = os->next)
3829 {
3830 os->constraint = -2 - os->constraint;
3831 if (os == last_os)
3832 break;
3833 }
3834 }
3835
3836 /* An output section might have been removed after its statement was
3837 added. For example, ldemul_before_allocation can remove dynamic
3838 sections if they turn out to be not needed. Clean them up here. */
3839
3840 void
3841 strip_excluded_output_sections (void)
3842 {
3843 lang_output_section_statement_type *os;
3844
3845 /* Run lang_size_sections (if not already done). */
3846 if (expld.phase != lang_mark_phase_enum)
3847 {
3848 expld.phase = lang_mark_phase_enum;
3849 expld.dataseg.phase = exp_dataseg_none;
3850 one_lang_size_sections_pass (NULL, FALSE);
3851 lang_reset_memory_regions ();
3852 }
3853
3854 for (os = &lang_output_section_statement.head->output_section_statement;
3855 os != NULL;
3856 os = os->next)
3857 {
3858 asection *output_section;
3859 bfd_boolean exclude;
3860
3861 if (os->constraint < 0)
3862 continue;
3863
3864 output_section = os->bfd_section;
3865 if (output_section == NULL)
3866 continue;
3867
3868 exclude = (output_section->rawsize == 0
3869 && (output_section->flags & SEC_KEEP) == 0
3870 && !bfd_section_removed_from_list (link_info.output_bfd,
3871 output_section));
3872
3873 /* Some sections have not yet been sized, notably .gnu.version,
3874 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3875 input sections, so don't drop output sections that have such
3876 input sections unless they are also marked SEC_EXCLUDE. */
3877 if (exclude && output_section->map_head.s != NULL)
3878 {
3879 asection *s;
3880
3881 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3882 if ((s->flags & SEC_EXCLUDE) == 0
3883 && ((s->flags & SEC_LINKER_CREATED) != 0
3884 || link_info.emitrelocations))
3885 {
3886 exclude = FALSE;
3887 break;
3888 }
3889 }
3890
3891 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3892 output_section->map_head.link_order = NULL;
3893 output_section->map_tail.link_order = NULL;
3894
3895 if (exclude)
3896 {
3897 /* We don't set bfd_section to NULL since bfd_section of the
3898 removed output section statement may still be used. */
3899 if (!os->update_dot)
3900 os->ignored = TRUE;
3901 output_section->flags |= SEC_EXCLUDE;
3902 bfd_section_list_remove (link_info.output_bfd, output_section);
3903 link_info.output_bfd->section_count--;
3904 }
3905 }
3906
3907 /* Stop future calls to lang_add_section from messing with map_head
3908 and map_tail link_order fields. */
3909 stripped_excluded_sections = TRUE;
3910 }
3911
3912 static void
3913 print_output_section_statement
3914 (lang_output_section_statement_type *output_section_statement)
3915 {
3916 asection *section = output_section_statement->bfd_section;
3917 int len;
3918
3919 if (output_section_statement != abs_output_section)
3920 {
3921 minfo ("\n%s", output_section_statement->name);
3922
3923 if (section != NULL)
3924 {
3925 print_dot = section->vma;
3926
3927 len = strlen (output_section_statement->name);
3928 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3929 {
3930 print_nl ();
3931 len = 0;
3932 }
3933 while (len < SECTION_NAME_MAP_LENGTH)
3934 {
3935 print_space ();
3936 ++len;
3937 }
3938
3939 minfo ("0x%V %W", section->vma, section->size);
3940
3941 if (section->vma != section->lma)
3942 minfo (_(" load address 0x%V"), section->lma);
3943
3944 if (output_section_statement->update_dot_tree != NULL)
3945 exp_fold_tree (output_section_statement->update_dot_tree,
3946 bfd_abs_section_ptr, &print_dot);
3947 }
3948
3949 print_nl ();
3950 }
3951
3952 print_statement_list (output_section_statement->children.head,
3953 output_section_statement);
3954 }
3955
3956 static void
3957 print_assignment (lang_assignment_statement_type *assignment,
3958 lang_output_section_statement_type *output_section)
3959 {
3960 unsigned int i;
3961 bfd_boolean is_dot;
3962 etree_type *tree;
3963 asection *osec;
3964
3965 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3966 print_space ();
3967
3968 if (assignment->exp->type.node_class == etree_assert)
3969 {
3970 is_dot = FALSE;
3971 tree = assignment->exp->assert_s.child;
3972 }
3973 else
3974 {
3975 const char *dst = assignment->exp->assign.dst;
3976
3977 is_dot = (dst[0] == '.' && dst[1] == 0);
3978 expld.assign_name = dst;
3979 tree = assignment->exp->assign.src;
3980 }
3981
3982 osec = output_section->bfd_section;
3983 if (osec == NULL)
3984 osec = bfd_abs_section_ptr;
3985 exp_fold_tree (tree, osec, &print_dot);
3986 if (expld.result.valid_p)
3987 {
3988 bfd_vma value;
3989
3990 if (assignment->exp->type.node_class == etree_assert
3991 || is_dot
3992 || expld.assign_name != NULL)
3993 {
3994 value = expld.result.value;
3995
3996 if (expld.result.section != NULL)
3997 value += expld.result.section->vma;
3998
3999 minfo ("0x%V", value);
4000 if (is_dot)
4001 print_dot = value;
4002 }
4003 else
4004 {
4005 struct bfd_link_hash_entry *h;
4006
4007 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4008 FALSE, FALSE, TRUE);
4009 if (h)
4010 {
4011 value = h->u.def.value;
4012 value += h->u.def.section->output_section->vma;
4013 value += h->u.def.section->output_offset;
4014
4015 minfo ("[0x%V]", value);
4016 }
4017 else
4018 minfo ("[unresolved]");
4019 }
4020 }
4021 else
4022 {
4023 minfo ("*undef* ");
4024 #ifdef BFD64
4025 minfo (" ");
4026 #endif
4027 }
4028 expld.assign_name = NULL;
4029
4030 minfo (" ");
4031 exp_print_tree (assignment->exp);
4032 print_nl ();
4033 }
4034
4035 static void
4036 print_input_statement (lang_input_statement_type *statm)
4037 {
4038 if (statm->filename != NULL
4039 && (statm->the_bfd == NULL
4040 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4041 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4042 }
4043
4044 /* Print all symbols defined in a particular section. This is called
4045 via bfd_link_hash_traverse, or by print_all_symbols. */
4046
4047 static bfd_boolean
4048 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4049 {
4050 asection *sec = (asection *) ptr;
4051
4052 if ((hash_entry->type == bfd_link_hash_defined
4053 || hash_entry->type == bfd_link_hash_defweak)
4054 && sec == hash_entry->u.def.section)
4055 {
4056 int i;
4057
4058 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4059 print_space ();
4060 minfo ("0x%V ",
4061 (hash_entry->u.def.value
4062 + hash_entry->u.def.section->output_offset
4063 + hash_entry->u.def.section->output_section->vma));
4064
4065 minfo (" %T\n", hash_entry->root.string);
4066 }
4067
4068 return TRUE;
4069 }
4070
4071 static int
4072 hash_entry_addr_cmp (const void *a, const void *b)
4073 {
4074 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4075 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4076
4077 if (l->u.def.value < r->u.def.value)
4078 return -1;
4079 else if (l->u.def.value > r->u.def.value)
4080 return 1;
4081 else
4082 return 0;
4083 }
4084
4085 static void
4086 print_all_symbols (asection *sec)
4087 {
4088 struct fat_user_section_struct *ud =
4089 (struct fat_user_section_struct *) get_userdata (sec);
4090 struct map_symbol_def *def;
4091 struct bfd_link_hash_entry **entries;
4092 unsigned int i;
4093
4094 if (!ud)
4095 return;
4096
4097 *ud->map_symbol_def_tail = 0;
4098
4099 /* Sort the symbols by address. */
4100 entries = (struct bfd_link_hash_entry **)
4101 obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries));
4102
4103 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4104 entries[i] = def->entry;
4105
4106 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4107 hash_entry_addr_cmp);
4108
4109 /* Print the symbols. */
4110 for (i = 0; i < ud->map_symbol_def_count; i++)
4111 print_one_symbol (entries[i], sec);
4112
4113 obstack_free (&map_obstack, entries);
4114 }
4115
4116 /* Print information about an input section to the map file. */
4117
4118 static void
4119 print_input_section (asection *i, bfd_boolean is_discarded)
4120 {
4121 bfd_size_type size = i->size;
4122 int len;
4123 bfd_vma addr;
4124
4125 init_opb ();
4126
4127 print_space ();
4128 minfo ("%s", i->name);
4129
4130 len = 1 + strlen (i->name);
4131 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4132 {
4133 print_nl ();
4134 len = 0;
4135 }
4136 while (len < SECTION_NAME_MAP_LENGTH)
4137 {
4138 print_space ();
4139 ++len;
4140 }
4141
4142 if (i->output_section != NULL
4143 && i->output_section->owner == link_info.output_bfd)
4144 addr = i->output_section->vma + i->output_offset;
4145 else
4146 {
4147 addr = print_dot;
4148 if (!is_discarded)
4149 size = 0;
4150 }
4151
4152 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
4153
4154 if (size != i->rawsize && i->rawsize != 0)
4155 {
4156 len = SECTION_NAME_MAP_LENGTH + 3;
4157 #ifdef BFD64
4158 len += 16;
4159 #else
4160 len += 8;
4161 #endif
4162 while (len > 0)
4163 {
4164 print_space ();
4165 --len;
4166 }
4167
4168 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4169 }
4170
4171 if (i->output_section != NULL
4172 && i->output_section->owner == link_info.output_bfd)
4173 {
4174 if (link_info.reduce_memory_overheads)
4175 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4176 else
4177 print_all_symbols (i);
4178
4179 /* Update print_dot, but make sure that we do not move it
4180 backwards - this could happen if we have overlays and a
4181 later overlay is shorter than an earier one. */
4182 if (addr + TO_ADDR (size) > print_dot)
4183 print_dot = addr + TO_ADDR (size);
4184 }
4185 }
4186
4187 static void
4188 print_fill_statement (lang_fill_statement_type *fill)
4189 {
4190 size_t size;
4191 unsigned char *p;
4192 fputs (" FILL mask 0x", config.map_file);
4193 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4194 fprintf (config.map_file, "%02x", *p);
4195 fputs ("\n", config.map_file);
4196 }
4197
4198 static void
4199 print_data_statement (lang_data_statement_type *data)
4200 {
4201 int i;
4202 bfd_vma addr;
4203 bfd_size_type size;
4204 const char *name;
4205
4206 init_opb ();
4207 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4208 print_space ();
4209
4210 addr = data->output_offset;
4211 if (data->output_section != NULL)
4212 addr += data->output_section->vma;
4213
4214 switch (data->type)
4215 {
4216 default:
4217 abort ();
4218 case BYTE:
4219 size = BYTE_SIZE;
4220 name = "BYTE";
4221 break;
4222 case SHORT:
4223 size = SHORT_SIZE;
4224 name = "SHORT";
4225 break;
4226 case LONG:
4227 size = LONG_SIZE;
4228 name = "LONG";
4229 break;
4230 case QUAD:
4231 size = QUAD_SIZE;
4232 name = "QUAD";
4233 break;
4234 case SQUAD:
4235 size = QUAD_SIZE;
4236 name = "SQUAD";
4237 break;
4238 }
4239
4240 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
4241
4242 if (data->exp->type.node_class != etree_value)
4243 {
4244 print_space ();
4245 exp_print_tree (data->exp);
4246 }
4247
4248 print_nl ();
4249
4250 print_dot = addr + TO_ADDR (size);
4251 }
4252
4253 /* Print an address statement. These are generated by options like
4254 -Ttext. */
4255
4256 static void
4257 print_address_statement (lang_address_statement_type *address)
4258 {
4259 minfo (_("Address of section %s set to "), address->section_name);
4260 exp_print_tree (address->address);
4261 print_nl ();
4262 }
4263
4264 /* Print a reloc statement. */
4265
4266 static void
4267 print_reloc_statement (lang_reloc_statement_type *reloc)
4268 {
4269 int i;
4270 bfd_vma addr;
4271 bfd_size_type size;
4272
4273 init_opb ();
4274 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4275 print_space ();
4276
4277 addr = reloc->output_offset;
4278 if (reloc->output_section != NULL)
4279 addr += reloc->output_section->vma;
4280
4281 size = bfd_get_reloc_size (reloc->howto);
4282
4283 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
4284
4285 if (reloc->name != NULL)
4286 minfo ("%s+", reloc->name);
4287 else
4288 minfo ("%s+", reloc->section->name);
4289
4290 exp_print_tree (reloc->addend_exp);
4291
4292 print_nl ();
4293
4294 print_dot = addr + TO_ADDR (size);
4295 }
4296
4297 static void
4298 print_padding_statement (lang_padding_statement_type *s)
4299 {
4300 int len;
4301 bfd_vma addr;
4302
4303 init_opb ();
4304 minfo (" *fill*");
4305
4306 len = sizeof " *fill*" - 1;
4307 while (len < SECTION_NAME_MAP_LENGTH)
4308 {
4309 print_space ();
4310 ++len;
4311 }
4312
4313 addr = s->output_offset;
4314 if (s->output_section != NULL)
4315 addr += s->output_section->vma;
4316 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
4317
4318 if (s->fill->size != 0)
4319 {
4320 size_t size;
4321 unsigned char *p;
4322 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4323 fprintf (config.map_file, "%02x", *p);
4324 }
4325
4326 print_nl ();
4327
4328 print_dot = addr + TO_ADDR (s->size);
4329 }
4330
4331 static void
4332 print_wild_statement (lang_wild_statement_type *w,
4333 lang_output_section_statement_type *os)
4334 {
4335 struct wildcard_list *sec;
4336
4337 print_space ();
4338
4339 if (w->filenames_sorted)
4340 minfo ("SORT(");
4341 if (w->filename != NULL)
4342 minfo ("%s", w->filename);
4343 else
4344 minfo ("*");
4345 if (w->filenames_sorted)
4346 minfo (")");
4347
4348 minfo ("(");
4349 for (sec = w->section_list; sec; sec = sec->next)
4350 {
4351 if (sec->spec.sorted)
4352 minfo ("SORT(");
4353 if (sec->spec.exclude_name_list != NULL)
4354 {
4355 name_list *tmp;
4356 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4357 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4358 minfo (" %s", tmp->name);
4359 minfo (") ");
4360 }
4361 if (sec->spec.name != NULL)
4362 minfo ("%s", sec->spec.name);
4363 else
4364 minfo ("*");
4365 if (sec->spec.sorted)
4366 minfo (")");
4367 if (sec->next)
4368 minfo (" ");
4369 }
4370 minfo (")");
4371
4372 print_nl ();
4373
4374 print_statement_list (w->children.head, os);
4375 }
4376
4377 /* Print a group statement. */
4378
4379 static void
4380 print_group (lang_group_statement_type *s,
4381 lang_output_section_statement_type *os)
4382 {
4383 fprintf (config.map_file, "START GROUP\n");
4384 print_statement_list (s->children.head, os);
4385 fprintf (config.map_file, "END GROUP\n");
4386 }
4387
4388 /* Print the list of statements in S.
4389 This can be called for any statement type. */
4390
4391 static void
4392 print_statement_list (lang_statement_union_type *s,
4393 lang_output_section_statement_type *os)
4394 {
4395 while (s != NULL)
4396 {
4397 print_statement (s, os);
4398 s = s->header.next;
4399 }
4400 }
4401
4402 /* Print the first statement in statement list S.
4403 This can be called for any statement type. */
4404
4405 static void
4406 print_statement (lang_statement_union_type *s,
4407 lang_output_section_statement_type *os)
4408 {
4409 switch (s->header.type)
4410 {
4411 default:
4412 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4413 FAIL ();
4414 break;
4415 case lang_constructors_statement_enum:
4416 if (constructor_list.head != NULL)
4417 {
4418 if (constructors_sorted)
4419 minfo (" SORT (CONSTRUCTORS)\n");
4420 else
4421 minfo (" CONSTRUCTORS\n");
4422 print_statement_list (constructor_list.head, os);
4423 }
4424 break;
4425 case lang_wild_statement_enum:
4426 print_wild_statement (&s->wild_statement, os);
4427 break;
4428 case lang_address_statement_enum:
4429 print_address_statement (&s->address_statement);
4430 break;
4431 case lang_object_symbols_statement_enum:
4432 minfo (" CREATE_OBJECT_SYMBOLS\n");
4433 break;
4434 case lang_fill_statement_enum:
4435 print_fill_statement (&s->fill_statement);
4436 break;
4437 case lang_data_statement_enum:
4438 print_data_statement (&s->data_statement);
4439 break;
4440 case lang_reloc_statement_enum:
4441 print_reloc_statement (&s->reloc_statement);
4442 break;
4443 case lang_input_section_enum:
4444 print_input_section (s->input_section.section, FALSE);
4445 break;
4446 case lang_padding_statement_enum:
4447 print_padding_statement (&s->padding_statement);
4448 break;
4449 case lang_output_section_statement_enum:
4450 print_output_section_statement (&s->output_section_statement);
4451 break;
4452 case lang_assignment_statement_enum:
4453 print_assignment (&s->assignment_statement, os);
4454 break;
4455 case lang_target_statement_enum:
4456 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4457 break;
4458 case lang_output_statement_enum:
4459 minfo ("OUTPUT(%s", s->output_statement.name);
4460 if (output_target != NULL)
4461 minfo (" %s", output_target);
4462 minfo (")\n");
4463 break;
4464 case lang_input_statement_enum:
4465 print_input_statement (&s->input_statement);
4466 break;
4467 case lang_group_statement_enum:
4468 print_group (&s->group_statement, os);
4469 break;
4470 case lang_insert_statement_enum:
4471 minfo ("INSERT %s %s\n",
4472 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4473 s->insert_statement.where);
4474 break;
4475 }
4476 }
4477
4478 static void
4479 print_statements (void)
4480 {
4481 print_statement_list (statement_list.head, abs_output_section);
4482 }
4483
4484 /* Print the first N statements in statement list S to STDERR.
4485 If N == 0, nothing is printed.
4486 If N < 0, the entire list is printed.
4487 Intended to be called from GDB. */
4488
4489 void
4490 dprint_statement (lang_statement_union_type *s, int n)
4491 {
4492 FILE *map_save = config.map_file;
4493
4494 config.map_file = stderr;
4495
4496 if (n < 0)
4497 print_statement_list (s, abs_output_section);
4498 else
4499 {
4500 while (s && --n >= 0)
4501 {
4502 print_statement (s, abs_output_section);
4503 s = s->header.next;
4504 }
4505 }
4506
4507 config.map_file = map_save;
4508 }
4509
4510 static void
4511 insert_pad (lang_statement_union_type **ptr,
4512 fill_type *fill,
4513 bfd_size_type alignment_needed,
4514 asection *output_section,
4515 bfd_vma dot)
4516 {
4517 static fill_type zero_fill;
4518 lang_statement_union_type *pad = NULL;
4519
4520 if (ptr != &statement_list.head)
4521 pad = ((lang_statement_union_type *)
4522 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4523 if (pad != NULL
4524 && pad->header.type == lang_padding_statement_enum
4525 && pad->padding_statement.output_section == output_section)
4526 {
4527 /* Use the existing pad statement. */
4528 }
4529 else if ((pad = *ptr) != NULL
4530 && pad->header.type == lang_padding_statement_enum
4531 && pad->padding_statement.output_section == output_section)
4532 {
4533 /* Use the existing pad statement. */
4534 }
4535 else
4536 {
4537 /* Make a new padding statement, linked into existing chain. */
4538 pad = (lang_statement_union_type *)
4539 stat_alloc (sizeof (lang_padding_statement_type));
4540 pad->header.next = *ptr;
4541 *ptr = pad;
4542 pad->header.type = lang_padding_statement_enum;
4543 pad->padding_statement.output_section = output_section;
4544 if (fill == NULL)
4545 fill = &zero_fill;
4546 pad->padding_statement.fill = fill;
4547 }
4548 pad->padding_statement.output_offset = dot - output_section->vma;
4549 pad->padding_statement.size = alignment_needed;
4550 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
4551 - output_section->vma);
4552 }
4553
4554 /* Work out how much this section will move the dot point. */
4555
4556 static bfd_vma
4557 size_input_section
4558 (lang_statement_union_type **this_ptr,
4559 lang_output_section_statement_type *output_section_statement,
4560 fill_type *fill,
4561 bfd_vma dot)
4562 {
4563 lang_input_section_type *is = &((*this_ptr)->input_section);
4564 asection *i = is->section;
4565
4566 if (i->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
4567 && (i->flags & SEC_EXCLUDE) == 0)
4568 {
4569 bfd_size_type alignment_needed;
4570 asection *o;
4571
4572 /* Align this section first to the input sections requirement,
4573 then to the output section's requirement. If this alignment
4574 is greater than any seen before, then record it too. Perform
4575 the alignment by inserting a magic 'padding' statement. */
4576
4577 if (output_section_statement->subsection_alignment != -1)
4578 i->alignment_power = output_section_statement->subsection_alignment;
4579
4580 o = output_section_statement->bfd_section;
4581 if (o->alignment_power < i->alignment_power)
4582 o->alignment_power = i->alignment_power;
4583
4584 alignment_needed = align_power (dot, i->alignment_power) - dot;
4585
4586 if (alignment_needed != 0)
4587 {
4588 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4589 dot += alignment_needed;
4590 }
4591
4592 /* Remember where in the output section this input section goes. */
4593
4594 i->output_offset = dot - o->vma;
4595
4596 /* Mark how big the output section must be to contain this now. */
4597 dot += TO_ADDR (i->size);
4598 o->size = TO_SIZE (dot - o->vma);
4599 }
4600 else
4601 {
4602 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4603 }
4604
4605 return dot;
4606 }
4607
4608 static int
4609 sort_sections_by_lma (const void *arg1, const void *arg2)
4610 {
4611 const asection *sec1 = *(const asection **) arg1;
4612 const asection *sec2 = *(const asection **) arg2;
4613
4614 if (bfd_section_lma (sec1->owner, sec1)
4615 < bfd_section_lma (sec2->owner, sec2))
4616 return -1;
4617 else if (bfd_section_lma (sec1->owner, sec1)
4618 > bfd_section_lma (sec2->owner, sec2))
4619 return 1;
4620 else if (sec1->id < sec2->id)
4621 return -1;
4622 else if (sec1->id > sec2->id)
4623 return 1;
4624
4625 return 0;
4626 }
4627
4628 #define IGNORE_SECTION(s) \
4629 ((s->flags & SEC_ALLOC) == 0 \
4630 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4631 && (s->flags & SEC_LOAD) == 0))
4632
4633 /* Check to see if any allocated sections overlap with other allocated
4634 sections. This can happen if a linker script specifies the output
4635 section addresses of the two sections. Also check whether any memory
4636 region has overflowed. */
4637
4638 static void
4639 lang_check_section_addresses (void)
4640 {
4641 asection *s, *p;
4642 asection **sections, **spp;
4643 unsigned int count;
4644 bfd_vma s_start;
4645 bfd_vma s_end;
4646 bfd_vma p_start;
4647 bfd_vma p_end;
4648 bfd_size_type amt;
4649 lang_memory_region_type *m;
4650
4651 if (bfd_count_sections (link_info.output_bfd) <= 1)
4652 return;
4653
4654 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4655 sections = (asection **) xmalloc (amt);
4656
4657 /* Scan all sections in the output list. */
4658 count = 0;
4659 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4660 {
4661 /* Only consider loadable sections with real contents. */
4662 if (!(s->flags & SEC_LOAD)
4663 || !(s->flags & SEC_ALLOC)
4664 || s->size == 0)
4665 continue;
4666
4667 sections[count] = s;
4668 count++;
4669 }
4670
4671 if (count <= 1)
4672 return;
4673
4674 qsort (sections, (size_t) count, sizeof (asection *),
4675 sort_sections_by_lma);
4676
4677 spp = sections;
4678 s = *spp++;
4679 s_start = s->lma;
4680 s_end = s_start + TO_ADDR (s->size) - 1;
4681 for (count--; count; count--)
4682 {
4683 /* We must check the sections' LMA addresses not their VMA
4684 addresses because overlay sections can have overlapping VMAs
4685 but they must have distinct LMAs. */
4686 p = s;
4687 p_start = s_start;
4688 p_end = s_end;
4689 s = *spp++;
4690 s_start = s->lma;
4691 s_end = s_start + TO_ADDR (s->size) - 1;
4692
4693 /* Look for an overlap. We have sorted sections by lma, so we
4694 know that s_start >= p_start. Besides the obvious case of
4695 overlap when the current section starts before the previous
4696 one ends, we also must have overlap if the previous section
4697 wraps around the address space. */
4698 if (s_start <= p_end
4699 || p_end < p_start)
4700 einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"),
4701 s->name, s_start, s_end, p->name, p_start, p_end);
4702 }
4703
4704 free (sections);
4705
4706 /* If any memory region has overflowed, report by how much.
4707 We do not issue this diagnostic for regions that had sections
4708 explicitly placed outside their bounds; os_region_check's
4709 diagnostics are adequate for that case.
4710
4711 FIXME: It is conceivable that m->current - (m->origin + m->length)
4712 might overflow a 32-bit integer. There is, alas, no way to print
4713 a bfd_vma quantity in decimal. */
4714 for (m = lang_memory_region_list; m; m = m->next)
4715 if (m->had_full_message)
4716 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4717 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4718
4719 }
4720
4721 /* Make sure the new address is within the region. We explicitly permit the
4722 current address to be at the exact end of the region when the address is
4723 non-zero, in case the region is at the end of addressable memory and the
4724 calculation wraps around. */
4725
4726 static void
4727 os_region_check (lang_output_section_statement_type *os,
4728 lang_memory_region_type *region,
4729 etree_type *tree,
4730 bfd_vma rbase)
4731 {
4732 if ((region->current < region->origin
4733 || (region->current - region->origin > region->length))
4734 && ((region->current != region->origin + region->length)
4735 || rbase == 0))
4736 {
4737 if (tree != NULL)
4738 {
4739 einfo (_("%X%P: address 0x%v of %B section `%s'"
4740 " is not within region `%s'\n"),
4741 region->current,
4742 os->bfd_section->owner,
4743 os->bfd_section->name,
4744 region->name_list.name);
4745 }
4746 else if (!region->had_full_message)
4747 {
4748 region->had_full_message = TRUE;
4749
4750 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4751 os->bfd_section->owner,
4752 os->bfd_section->name,
4753 region->name_list.name);
4754 }
4755 }
4756 }
4757
4758 /* Set the sizes for all the output sections. */
4759
4760 static bfd_vma
4761 lang_size_sections_1
4762 (lang_statement_union_type **prev,
4763 lang_output_section_statement_type *output_section_statement,
4764 fill_type *fill,
4765 bfd_vma dot,
4766 bfd_boolean *relax,
4767 bfd_boolean check_regions)
4768 {
4769 lang_statement_union_type *s;
4770
4771 /* Size up the sections from their constituent parts. */
4772 for (s = *prev; s != NULL; s = s->header.next)
4773 {
4774 switch (s->header.type)
4775 {
4776 case lang_output_section_statement_enum:
4777 {
4778 bfd_vma newdot, after;
4779 lang_output_section_statement_type *os;
4780 lang_memory_region_type *r;
4781 int section_alignment = 0;
4782
4783 os = &s->output_section_statement;
4784 if (os->constraint == -1)
4785 break;
4786
4787 /* FIXME: We shouldn't need to zero section vmas for ld -r
4788 here, in lang_insert_orphan, or in the default linker scripts.
4789 This is covering for coff backend linker bugs. See PR6945. */
4790 if (os->addr_tree == NULL
4791 && link_info.relocatable
4792 && (bfd_get_flavour (link_info.output_bfd)
4793 == bfd_target_coff_flavour))
4794 os->addr_tree = exp_intop (0);
4795 if (os->addr_tree != NULL)
4796 {
4797 os->processed_vma = FALSE;
4798 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4799
4800 if (expld.result.valid_p)
4801 {
4802 dot = expld.result.value;
4803 if (expld.result.section != NULL)
4804 dot += expld.result.section->vma;
4805 }
4806 else if (expld.phase != lang_mark_phase_enum)
4807 einfo (_("%F%S: non constant or forward reference"
4808 " address expression for section %s\n"),
4809 os->addr_tree, os->name);
4810 }
4811
4812 if (os->bfd_section == NULL)
4813 /* This section was removed or never actually created. */
4814 break;
4815
4816 /* If this is a COFF shared library section, use the size and
4817 address from the input section. FIXME: This is COFF
4818 specific; it would be cleaner if there were some other way
4819 to do this, but nothing simple comes to mind. */
4820 if (((bfd_get_flavour (link_info.output_bfd)
4821 == bfd_target_ecoff_flavour)
4822 || (bfd_get_flavour (link_info.output_bfd)
4823 == bfd_target_coff_flavour))
4824 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4825 {
4826 asection *input;
4827
4828 if (os->children.head == NULL
4829 || os->children.head->header.next != NULL
4830 || (os->children.head->header.type
4831 != lang_input_section_enum))
4832 einfo (_("%P%X: Internal error on COFF shared library"
4833 " section %s\n"), os->name);
4834
4835 input = os->children.head->input_section.section;
4836 bfd_set_section_vma (os->bfd_section->owner,
4837 os->bfd_section,
4838 bfd_section_vma (input->owner, input));
4839 os->bfd_section->size = input->size;
4840 break;
4841 }
4842
4843 newdot = dot;
4844 if (bfd_is_abs_section (os->bfd_section))
4845 {
4846 /* No matter what happens, an abs section starts at zero. */
4847 ASSERT (os->bfd_section->vma == 0);
4848 }
4849 else
4850 {
4851 if (os->addr_tree == NULL)
4852 {
4853 /* No address specified for this section, get one
4854 from the region specification. */
4855 if (os->region == NULL
4856 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4857 && os->region->name_list.name[0] == '*'
4858 && strcmp (os->region->name_list.name,
4859 DEFAULT_MEMORY_REGION) == 0))
4860 {
4861 os->region = lang_memory_default (os->bfd_section);
4862 }
4863
4864 /* If a loadable section is using the default memory
4865 region, and some non default memory regions were
4866 defined, issue an error message. */
4867 if (!os->ignored
4868 && !IGNORE_SECTION (os->bfd_section)
4869 && ! link_info.relocatable
4870 && check_regions
4871 && strcmp (os->region->name_list.name,
4872 DEFAULT_MEMORY_REGION) == 0
4873 && lang_memory_region_list != NULL
4874 && (strcmp (lang_memory_region_list->name_list.name,
4875 DEFAULT_MEMORY_REGION) != 0
4876 || lang_memory_region_list->next != NULL)
4877 && expld.phase != lang_mark_phase_enum)
4878 {
4879 /* By default this is an error rather than just a
4880 warning because if we allocate the section to the
4881 default memory region we can end up creating an
4882 excessively large binary, or even seg faulting when
4883 attempting to perform a negative seek. See
4884 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4885 for an example of this. This behaviour can be
4886 overridden by the using the --no-check-sections
4887 switch. */
4888 if (command_line.check_section_addresses)
4889 einfo (_("%P%F: error: no memory region specified"
4890 " for loadable section `%s'\n"),
4891 bfd_get_section_name (link_info.output_bfd,
4892 os->bfd_section));
4893 else
4894 einfo (_("%P: warning: no memory region specified"
4895 " for loadable section `%s'\n"),
4896 bfd_get_section_name (link_info.output_bfd,
4897 os->bfd_section));
4898 }
4899
4900 newdot = os->region->current;
4901 section_alignment = os->bfd_section->alignment_power;
4902 }
4903 else
4904 section_alignment = os->section_alignment;
4905
4906 /* Align to what the section needs. */
4907 if (section_alignment > 0)
4908 {
4909 bfd_vma savedot = newdot;
4910 newdot = align_power (newdot, section_alignment);
4911
4912 if (newdot != savedot
4913 && (config.warn_section_align
4914 || os->addr_tree != NULL)
4915 && expld.phase != lang_mark_phase_enum)
4916 einfo (_("%P: warning: changing start of section"
4917 " %s by %lu bytes\n"),
4918 os->name, (unsigned long) (newdot - savedot));
4919 }
4920
4921 bfd_set_section_vma (0, os->bfd_section, newdot);
4922
4923 os->bfd_section->output_offset = 0;
4924 }
4925
4926 lang_size_sections_1 (&os->children.head, os,
4927 os->fill, newdot, relax, check_regions);
4928
4929 os->processed_vma = TRUE;
4930
4931 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4932 /* Except for some special linker created sections,
4933 no output section should change from zero size
4934 after strip_excluded_output_sections. A non-zero
4935 size on an ignored section indicates that some
4936 input section was not sized early enough. */
4937 ASSERT (os->bfd_section->size == 0);
4938 else
4939 {
4940 dot = os->bfd_section->vma;
4941
4942 /* Put the section within the requested block size, or
4943 align at the block boundary. */
4944 after = ((dot
4945 + TO_ADDR (os->bfd_section->size)
4946 + os->block_value - 1)
4947 & - (bfd_vma) os->block_value);
4948
4949 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
4950 }
4951
4952 /* Set section lma. */
4953 r = os->region;
4954 if (r == NULL)
4955 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
4956
4957 if (os->load_base)
4958 {
4959 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
4960 os->bfd_section->lma = lma;
4961 }
4962 else if (os->lma_region != NULL)
4963 {
4964 bfd_vma lma = os->lma_region->current;
4965
4966 if (section_alignment > 0)
4967 lma = align_power (lma, section_alignment);
4968 os->bfd_section->lma = lma;
4969 }
4970 else if (r->last_os != NULL
4971 && (os->bfd_section->flags & SEC_ALLOC) != 0)
4972 {
4973 bfd_vma lma;
4974 asection *last;
4975
4976 last = r->last_os->output_section_statement.bfd_section;
4977
4978 /* A backwards move of dot should be accompanied by
4979 an explicit assignment to the section LMA (ie.
4980 os->load_base set) because backwards moves can
4981 create overlapping LMAs. */
4982 if (dot < last->vma
4983 && os->bfd_section->size != 0
4984 && dot + os->bfd_section->size <= last->vma)
4985 {
4986 /* If dot moved backwards then leave lma equal to
4987 vma. This is the old default lma, which might
4988 just happen to work when the backwards move is
4989 sufficiently large. Nag if this changes anything,
4990 so people can fix their linker scripts. */
4991
4992 if (last->vma != last->lma)
4993 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
4994 os->name);
4995 }
4996 else
4997 {
4998 /* If this is an overlay, set the current lma to that
4999 at the end of the previous section. */
5000 if (os->sectype == overlay_section)
5001 lma = last->lma + last->size;
5002
5003 /* Otherwise, keep the same lma to vma relationship
5004 as the previous section. */
5005 else
5006 lma = dot + last->lma - last->vma;
5007
5008 if (section_alignment > 0)
5009 lma = align_power (lma, section_alignment);
5010 os->bfd_section->lma = lma;
5011 }
5012 }
5013 os->processed_lma = TRUE;
5014
5015 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5016 break;
5017
5018 /* Keep track of normal sections using the default
5019 lma region. We use this to set the lma for
5020 following sections. Overlays or other linker
5021 script assignment to lma might mean that the
5022 default lma == vma is incorrect.
5023 To avoid warnings about dot moving backwards when using
5024 -Ttext, don't start tracking sections until we find one
5025 of non-zero size or with lma set differently to vma. */
5026 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5027 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
5028 && (os->bfd_section->flags & SEC_ALLOC) != 0
5029 && (os->bfd_section->size != 0
5030 || (r->last_os == NULL
5031 && os->bfd_section->vma != os->bfd_section->lma)
5032 || (r->last_os != NULL
5033 && dot >= (r->last_os->output_section_statement
5034 .bfd_section->vma)))
5035 && os->lma_region == NULL
5036 && !link_info.relocatable)
5037 r->last_os = s;
5038
5039 /* .tbss sections effectively have zero size. */
5040 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5041 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5042 || link_info.relocatable)
5043 dot += TO_ADDR (os->bfd_section->size);
5044
5045 if (os->update_dot_tree != 0)
5046 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5047
5048 /* Update dot in the region ?
5049 We only do this if the section is going to be allocated,
5050 since unallocated sections do not contribute to the region's
5051 overall size in memory. */
5052 if (os->region != NULL
5053 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5054 {
5055 os->region->current = dot;
5056
5057 if (check_regions)
5058 /* Make sure the new address is within the region. */
5059 os_region_check (os, os->region, os->addr_tree,
5060 os->bfd_section->vma);
5061
5062 if (os->lma_region != NULL && os->lma_region != os->region
5063 && (os->bfd_section->flags & SEC_LOAD))
5064 {
5065 os->lma_region->current
5066 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
5067
5068 if (check_regions)
5069 os_region_check (os, os->lma_region, NULL,
5070 os->bfd_section->lma);
5071 }
5072 }
5073 }
5074 break;
5075
5076 case lang_constructors_statement_enum:
5077 dot = lang_size_sections_1 (&constructor_list.head,
5078 output_section_statement,
5079 fill, dot, relax, check_regions);
5080 break;
5081
5082 case lang_data_statement_enum:
5083 {
5084 unsigned int size = 0;
5085
5086 s->data_statement.output_offset =
5087 dot - output_section_statement->bfd_section->vma;
5088 s->data_statement.output_section =
5089 output_section_statement->bfd_section;
5090
5091 /* We might refer to provided symbols in the expression, and
5092 need to mark them as needed. */
5093 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5094
5095 switch (s->data_statement.type)
5096 {
5097 default:
5098 abort ();
5099 case QUAD:
5100 case SQUAD:
5101 size = QUAD_SIZE;
5102 break;
5103 case LONG:
5104 size = LONG_SIZE;
5105 break;
5106 case SHORT:
5107 size = SHORT_SIZE;
5108 break;
5109 case BYTE:
5110 size = BYTE_SIZE;
5111 break;
5112 }
5113 if (size < TO_SIZE ((unsigned) 1))
5114 size = TO_SIZE ((unsigned) 1);
5115 dot += TO_ADDR (size);
5116 output_section_statement->bfd_section->size
5117 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5118
5119 }
5120 break;
5121
5122 case lang_reloc_statement_enum:
5123 {
5124 int size;
5125
5126 s->reloc_statement.output_offset =
5127 dot - output_section_statement->bfd_section->vma;
5128 s->reloc_statement.output_section =
5129 output_section_statement->bfd_section;
5130 size = bfd_get_reloc_size (s->reloc_statement.howto);
5131 dot += TO_ADDR (size);
5132 output_section_statement->bfd_section->size
5133 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5134 }
5135 break;
5136
5137 case lang_wild_statement_enum:
5138 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5139 output_section_statement,
5140 fill, dot, relax, check_regions);
5141 break;
5142
5143 case lang_object_symbols_statement_enum:
5144 link_info.create_object_symbols_section =
5145 output_section_statement->bfd_section;
5146 break;
5147
5148 case lang_output_statement_enum:
5149 case lang_target_statement_enum:
5150 break;
5151
5152 case lang_input_section_enum:
5153 {
5154 asection *i;
5155
5156 i = s->input_section.section;
5157 if (relax)
5158 {
5159 bfd_boolean again;
5160
5161 if (! bfd_relax_section (i->owner, i, &link_info, &again))
5162 einfo (_("%P%F: can't relax section: %E\n"));
5163 if (again)
5164 *relax = TRUE;
5165 }
5166 dot = size_input_section (prev, output_section_statement,
5167 output_section_statement->fill, dot);
5168 }
5169 break;
5170
5171 case lang_input_statement_enum:
5172 break;
5173
5174 case lang_fill_statement_enum:
5175 s->fill_statement.output_section =
5176 output_section_statement->bfd_section;
5177
5178 fill = s->fill_statement.fill;
5179 break;
5180
5181 case lang_assignment_statement_enum:
5182 {
5183 bfd_vma newdot = dot;
5184 etree_type *tree = s->assignment_statement.exp;
5185
5186 expld.dataseg.relro = exp_dataseg_relro_none;
5187
5188 exp_fold_tree (tree,
5189 output_section_statement->bfd_section,
5190 &newdot);
5191
5192 if (expld.dataseg.relro == exp_dataseg_relro_start)
5193 {
5194 if (!expld.dataseg.relro_start_stat)
5195 expld.dataseg.relro_start_stat = s;
5196 else
5197 {
5198 ASSERT (expld.dataseg.relro_start_stat == s);
5199 }
5200 }
5201 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5202 {
5203 if (!expld.dataseg.relro_end_stat)
5204 expld.dataseg.relro_end_stat = s;
5205 else
5206 {
5207 ASSERT (expld.dataseg.relro_end_stat == s);
5208 }
5209 }
5210 expld.dataseg.relro = exp_dataseg_relro_none;
5211
5212 /* This symbol may be relative to this section. */
5213 if ((tree->type.node_class == etree_provided
5214 || tree->type.node_class == etree_assign)
5215 && (tree->assign.dst [0] != '.'
5216 || tree->assign.dst [1] != '\0'))
5217 output_section_statement->update_dot = 1;
5218
5219 if (!output_section_statement->ignored)
5220 {
5221 if (output_section_statement == abs_output_section)
5222 {
5223 /* If we don't have an output section, then just adjust
5224 the default memory address. */
5225 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5226 FALSE)->current = newdot;
5227 }
5228 else if (newdot != dot)
5229 {
5230 /* Insert a pad after this statement. We can't
5231 put the pad before when relaxing, in case the
5232 assignment references dot. */
5233 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5234 output_section_statement->bfd_section, dot);
5235
5236 /* Don't neuter the pad below when relaxing. */
5237 s = s->header.next;
5238
5239 /* If dot is advanced, this implies that the section
5240 should have space allocated to it, unless the
5241 user has explicitly stated that the section
5242 should not be allocated. */
5243 if (output_section_statement->sectype != noalloc_section
5244 && (output_section_statement->sectype != noload_section
5245 || (bfd_get_flavour (link_info.output_bfd)
5246 == bfd_target_elf_flavour)))
5247 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5248 }
5249 dot = newdot;
5250 }
5251 }
5252 break;
5253
5254 case lang_padding_statement_enum:
5255 /* If this is the first time lang_size_sections is called,
5256 we won't have any padding statements. If this is the
5257 second or later passes when relaxing, we should allow
5258 padding to shrink. If padding is needed on this pass, it
5259 will be added back in. */
5260 s->padding_statement.size = 0;
5261
5262 /* Make sure output_offset is valid. If relaxation shrinks
5263 the section and this pad isn't needed, it's possible to
5264 have output_offset larger than the final size of the
5265 section. bfd_set_section_contents will complain even for
5266 a pad size of zero. */
5267 s->padding_statement.output_offset
5268 = dot - output_section_statement->bfd_section->vma;
5269 break;
5270
5271 case lang_group_statement_enum:
5272 dot = lang_size_sections_1 (&s->group_statement.children.head,
5273 output_section_statement,
5274 fill, dot, relax, check_regions);
5275 break;
5276
5277 case lang_insert_statement_enum:
5278 break;
5279
5280 /* We can only get here when relaxing is turned on. */
5281 case lang_address_statement_enum:
5282 break;
5283
5284 default:
5285 FAIL ();
5286 break;
5287 }
5288 prev = &s->header.next;
5289 }
5290 return dot;
5291 }
5292
5293 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5294 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5295 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5296 segments. We are allowed an opportunity to override this decision. */
5297
5298 bfd_boolean
5299 ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
5300 bfd * abfd ATTRIBUTE_UNUSED,
5301 asection * current_section,
5302 asection * previous_section,
5303 bfd_boolean new_segment)
5304 {
5305 lang_output_section_statement_type * cur;
5306 lang_output_section_statement_type * prev;
5307
5308 /* The checks below are only necessary when the BFD library has decided
5309 that the two sections ought to be placed into the same segment. */
5310 if (new_segment)
5311 return TRUE;
5312
5313 /* Paranoia checks. */
5314 if (current_section == NULL || previous_section == NULL)
5315 return new_segment;
5316
5317 /* If this flag is set, the target never wants code and non-code
5318 sections comingled in the same segment. */
5319 if (config.separate_code
5320 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
5321 return TRUE;
5322
5323 /* Find the memory regions associated with the two sections.
5324 We call lang_output_section_find() here rather than scanning the list
5325 of output sections looking for a matching section pointer because if
5326 we have a large number of sections then a hash lookup is faster. */
5327 cur = lang_output_section_find (current_section->name);
5328 prev = lang_output_section_find (previous_section->name);
5329
5330 /* More paranoia. */
5331 if (cur == NULL || prev == NULL)
5332 return new_segment;
5333
5334 /* If the regions are different then force the sections to live in
5335 different segments. See the email thread starting at the following
5336 URL for the reasons why this is necessary:
5337 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5338 return cur->region != prev->region;
5339 }
5340
5341 void
5342 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5343 {
5344 lang_statement_iteration++;
5345 lang_size_sections_1 (&statement_list.head, abs_output_section,
5346 0, 0, relax, check_regions);
5347 }
5348
5349 void
5350 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5351 {
5352 expld.phase = lang_allocating_phase_enum;
5353 expld.dataseg.phase = exp_dataseg_none;
5354
5355 one_lang_size_sections_pass (relax, check_regions);
5356 if (expld.dataseg.phase == exp_dataseg_end_seen
5357 && link_info.relro && expld.dataseg.relro_end)
5358 {
5359 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
5360 to put expld.dataseg.relro on a (common) page boundary. */
5361 bfd_vma min_base, old_base, relro_end, maxpage;
5362
5363 expld.dataseg.phase = exp_dataseg_relro_adjust;
5364 maxpage = expld.dataseg.maxpagesize;
5365 /* MIN_BASE is the absolute minimum address we are allowed to start the
5366 read-write segment (byte before will be mapped read-only). */
5367 min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1);
5368 /* OLD_BASE is the address for a feasible minimum address which will
5369 still not cause a data overlap inside MAXPAGE causing file offset skip
5370 by MAXPAGE. */
5371 old_base = expld.dataseg.base;
5372 expld.dataseg.base += (-expld.dataseg.relro_end
5373 & (expld.dataseg.pagesize - 1));
5374 /* Compute the expected PT_GNU_RELRO segment end. */
5375 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5376 & ~(expld.dataseg.pagesize - 1));
5377 if (min_base + maxpage < expld.dataseg.base)
5378 {
5379 expld.dataseg.base -= maxpage;
5380 relro_end -= maxpage;
5381 }
5382 lang_reset_memory_regions ();
5383 one_lang_size_sections_pass (relax, check_regions);
5384 if (expld.dataseg.relro_end > relro_end)
5385 {
5386 /* The alignment of sections between DATA_SEGMENT_ALIGN
5387 and DATA_SEGMENT_RELRO_END caused huge padding to be
5388 inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so
5389 that the section alignments will fit in. */
5390 asection *sec;
5391 unsigned int max_alignment_power = 0;
5392
5393 /* Find maximum alignment power of sections between
5394 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5395 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5396 if (sec->vma >= expld.dataseg.base
5397 && sec->vma < expld.dataseg.relro_end
5398 && sec->alignment_power > max_alignment_power)
5399 max_alignment_power = sec->alignment_power;
5400
5401 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5402 {
5403 if (expld.dataseg.base - (1 << max_alignment_power) < old_base)
5404 expld.dataseg.base += expld.dataseg.pagesize;
5405 expld.dataseg.base -= (1 << max_alignment_power);
5406 lang_reset_memory_regions ();
5407 one_lang_size_sections_pass (relax, check_regions);
5408 }
5409 }
5410 link_info.relro_start = expld.dataseg.base;
5411 link_info.relro_end = expld.dataseg.relro_end;
5412 }
5413 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5414 {
5415 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5416 a page could be saved in the data segment. */
5417 bfd_vma first, last;
5418
5419 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5420 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5421 if (first && last
5422 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5423 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5424 && first + last <= expld.dataseg.pagesize)
5425 {
5426 expld.dataseg.phase = exp_dataseg_adjust;
5427 lang_reset_memory_regions ();
5428 one_lang_size_sections_pass (relax, check_regions);
5429 }
5430 else
5431 expld.dataseg.phase = exp_dataseg_done;
5432 }
5433 else
5434 expld.dataseg.phase = exp_dataseg_done;
5435 }
5436
5437 static lang_output_section_statement_type *current_section;
5438 static lang_assignment_statement_type *current_assign;
5439 static bfd_boolean prefer_next_section;
5440
5441 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5442
5443 static bfd_vma
5444 lang_do_assignments_1 (lang_statement_union_type *s,
5445 lang_output_section_statement_type *current_os,
5446 fill_type *fill,
5447 bfd_vma dot,
5448 bfd_boolean *found_end)
5449 {
5450 for (; s != NULL; s = s->header.next)
5451 {
5452 switch (s->header.type)
5453 {
5454 case lang_constructors_statement_enum:
5455 dot = lang_do_assignments_1 (constructor_list.head,
5456 current_os, fill, dot, found_end);
5457 break;
5458
5459 case lang_output_section_statement_enum:
5460 {
5461 lang_output_section_statement_type *os;
5462
5463 os = &(s->output_section_statement);
5464 os->after_end = *found_end;
5465 if (os->bfd_section != NULL && !os->ignored)
5466 {
5467 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
5468 {
5469 current_section = os;
5470 prefer_next_section = FALSE;
5471 }
5472 dot = os->bfd_section->vma;
5473
5474 lang_do_assignments_1 (os->children.head,
5475 os, os->fill, dot, found_end);
5476
5477 /* .tbss sections effectively have zero size. */
5478 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5479 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5480 || link_info.relocatable)
5481 dot += TO_ADDR (os->bfd_section->size);
5482
5483 if (os->update_dot_tree != NULL)
5484 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5485 }
5486 }
5487 break;
5488
5489 case lang_wild_statement_enum:
5490
5491 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5492 current_os, fill, dot, found_end);
5493 break;
5494
5495 case lang_object_symbols_statement_enum:
5496 case lang_output_statement_enum:
5497 case lang_target_statement_enum:
5498 break;
5499
5500 case lang_data_statement_enum:
5501 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5502 if (expld.result.valid_p)
5503 {
5504 s->data_statement.value = expld.result.value;
5505 if (expld.result.section != NULL)
5506 s->data_statement.value += expld.result.section->vma;
5507 }
5508 else
5509 einfo (_("%F%P: invalid data statement\n"));
5510 {
5511 unsigned int size;
5512 switch (s->data_statement.type)
5513 {
5514 default:
5515 abort ();
5516 case QUAD:
5517 case SQUAD:
5518 size = QUAD_SIZE;
5519 break;
5520 case LONG:
5521 size = LONG_SIZE;
5522 break;
5523 case SHORT:
5524 size = SHORT_SIZE;
5525 break;
5526 case BYTE:
5527 size = BYTE_SIZE;
5528 break;
5529 }
5530 if (size < TO_SIZE ((unsigned) 1))
5531 size = TO_SIZE ((unsigned) 1);
5532 dot += TO_ADDR (size);
5533 }
5534 break;
5535
5536 case lang_reloc_statement_enum:
5537 exp_fold_tree (s->reloc_statement.addend_exp,
5538 bfd_abs_section_ptr, &dot);
5539 if (expld.result.valid_p)
5540 s->reloc_statement.addend_value = expld.result.value;
5541 else
5542 einfo (_("%F%P: invalid reloc statement\n"));
5543 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5544 break;
5545
5546 case lang_input_section_enum:
5547 {
5548 asection *in = s->input_section.section;
5549
5550 if ((in->flags & SEC_EXCLUDE) == 0)
5551 dot += TO_ADDR (in->size);
5552 }
5553 break;
5554
5555 case lang_input_statement_enum:
5556 break;
5557
5558 case lang_fill_statement_enum:
5559 fill = s->fill_statement.fill;
5560 break;
5561
5562 case lang_assignment_statement_enum:
5563 current_assign = &s->assignment_statement;
5564 if (current_assign->exp->type.node_class != etree_assert)
5565 {
5566 const char *p = current_assign->exp->assign.dst;
5567
5568 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
5569 prefer_next_section = TRUE;
5570
5571 while (*p == '_')
5572 ++p;
5573 if (strcmp (p, "end") == 0)
5574 *found_end = TRUE;
5575 }
5576 exp_fold_tree (s->assignment_statement.exp,
5577 current_os->bfd_section,
5578 &dot);
5579 break;
5580
5581 case lang_padding_statement_enum:
5582 dot += TO_ADDR (s->padding_statement.size);
5583 break;
5584
5585 case lang_group_statement_enum:
5586 dot = lang_do_assignments_1 (s->group_statement.children.head,
5587 current_os, fill, dot, found_end);
5588 break;
5589
5590 case lang_insert_statement_enum:
5591 break;
5592
5593 case lang_address_statement_enum:
5594 break;
5595
5596 default:
5597 FAIL ();
5598 break;
5599 }
5600 }
5601 return dot;
5602 }
5603
5604 void
5605 lang_do_assignments (lang_phase_type phase)
5606 {
5607 bfd_boolean found_end = FALSE;
5608
5609 current_section = NULL;
5610 prefer_next_section = FALSE;
5611 expld.phase = phase;
5612 lang_statement_iteration++;
5613 lang_do_assignments_1 (statement_list.head,
5614 abs_output_section, NULL, 0, &found_end);
5615 }
5616
5617 /* For an assignment statement outside of an output section statement,
5618 choose the best of neighbouring output sections to use for values
5619 of "dot". */
5620
5621 asection *
5622 section_for_dot (void)
5623 {
5624 asection *s;
5625
5626 /* Assignments belong to the previous output section, unless there
5627 has been an assignment to "dot", in which case following
5628 assignments belong to the next output section. (The assumption
5629 is that an assignment to "dot" is setting up the address for the
5630 next output section.) Except that past the assignment to "_end"
5631 we always associate with the previous section. This exception is
5632 for targets like SH that define an alloc .stack or other
5633 weirdness after non-alloc sections. */
5634 if (current_section == NULL || prefer_next_section)
5635 {
5636 lang_statement_union_type *stmt;
5637 lang_output_section_statement_type *os;
5638
5639 for (stmt = (lang_statement_union_type *) current_assign;
5640 stmt != NULL;
5641 stmt = stmt->header.next)
5642 if (stmt->header.type == lang_output_section_statement_enum)
5643 break;
5644
5645 os = &stmt->output_section_statement;
5646 while (os != NULL
5647 && !os->after_end
5648 && (os->bfd_section == NULL
5649 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
5650 || bfd_section_removed_from_list (link_info.output_bfd,
5651 os->bfd_section)))
5652 os = os->next;
5653
5654 if (current_section == NULL || os == NULL || !os->after_end)
5655 {
5656 if (os != NULL)
5657 s = os->bfd_section;
5658 else
5659 s = link_info.output_bfd->section_last;
5660 while (s != NULL
5661 && ((s->flags & SEC_ALLOC) == 0
5662 || (s->flags & SEC_THREAD_LOCAL) != 0))
5663 s = s->prev;
5664 if (s != NULL)
5665 return s;
5666
5667 return bfd_abs_section_ptr;
5668 }
5669 }
5670
5671 s = current_section->bfd_section;
5672
5673 /* The section may have been stripped. */
5674 while (s != NULL
5675 && ((s->flags & SEC_EXCLUDE) != 0
5676 || (s->flags & SEC_ALLOC) == 0
5677 || (s->flags & SEC_THREAD_LOCAL) != 0
5678 || bfd_section_removed_from_list (link_info.output_bfd, s)))
5679 s = s->prev;
5680 if (s == NULL)
5681 s = link_info.output_bfd->sections;
5682 while (s != NULL
5683 && ((s->flags & SEC_ALLOC) == 0
5684 || (s->flags & SEC_THREAD_LOCAL) != 0))
5685 s = s->next;
5686 if (s != NULL)
5687 return s;
5688
5689 return bfd_abs_section_ptr;
5690 }
5691
5692 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5693 operator .startof. (section_name), it produces an undefined symbol
5694 .startof.section_name. Similarly, when it sees
5695 .sizeof. (section_name), it produces an undefined symbol
5696 .sizeof.section_name. For all the output sections, we look for
5697 such symbols, and set them to the correct value. */
5698
5699 static void
5700 lang_set_startof (void)
5701 {
5702 asection *s;
5703
5704 if (link_info.relocatable)
5705 return;
5706
5707 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5708 {
5709 const char *secname;
5710 char *buf;
5711 struct bfd_link_hash_entry *h;
5712
5713 secname = bfd_get_section_name (link_info.output_bfd, s);
5714 buf = (char *) xmalloc (10 + strlen (secname));
5715
5716 sprintf (buf, ".startof.%s", secname);
5717 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5718 if (h != NULL && h->type == bfd_link_hash_undefined)
5719 {
5720 h->type = bfd_link_hash_defined;
5721 h->u.def.value = 0;
5722 h->u.def.section = s;
5723 }
5724
5725 sprintf (buf, ".sizeof.%s", secname);
5726 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5727 if (h != NULL && h->type == bfd_link_hash_undefined)
5728 {
5729 h->type = bfd_link_hash_defined;
5730 h->u.def.value = TO_ADDR (s->size);
5731 h->u.def.section = bfd_abs_section_ptr;
5732 }
5733
5734 free (buf);
5735 }
5736 }
5737
5738 static void
5739 lang_end (void)
5740 {
5741 struct bfd_link_hash_entry *h;
5742 bfd_boolean warn;
5743
5744 if ((link_info.relocatable && !link_info.gc_sections)
5745 || (link_info.shared && !link_info.executable))
5746 warn = entry_from_cmdline;
5747 else
5748 warn = TRUE;
5749
5750 /* Force the user to specify a root when generating a relocatable with
5751 --gc-sections. */
5752 if (link_info.gc_sections && link_info.relocatable
5753 && !(entry_from_cmdline || undef_from_cmdline))
5754 einfo (_("%P%F: gc-sections requires either an entry or "
5755 "an undefined symbol\n"));
5756
5757 if (entry_symbol.name == NULL)
5758 {
5759 /* No entry has been specified. Look for the default entry, but
5760 don't warn if we don't find it. */
5761 entry_symbol.name = entry_symbol_default;
5762 warn = FALSE;
5763 }
5764
5765 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5766 FALSE, FALSE, TRUE);
5767 if (h != NULL
5768 && (h->type == bfd_link_hash_defined
5769 || h->type == bfd_link_hash_defweak)
5770 && h->u.def.section->output_section != NULL)
5771 {
5772 bfd_vma val;
5773
5774 val = (h->u.def.value
5775 + bfd_get_section_vma (link_info.output_bfd,
5776 h->u.def.section->output_section)
5777 + h->u.def.section->output_offset);
5778 if (! bfd_set_start_address (link_info.output_bfd, val))
5779 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5780 }
5781 else
5782 {
5783 bfd_vma val;
5784 const char *send;
5785
5786 /* We couldn't find the entry symbol. Try parsing it as a
5787 number. */
5788 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5789 if (*send == '\0')
5790 {
5791 if (! bfd_set_start_address (link_info.output_bfd, val))
5792 einfo (_("%P%F: can't set start address\n"));
5793 }
5794 else
5795 {
5796 asection *ts;
5797
5798 /* Can't find the entry symbol, and it's not a number. Use
5799 the first address in the text section. */
5800 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5801 if (ts != NULL)
5802 {
5803 if (warn)
5804 einfo (_("%P: warning: cannot find entry symbol %s;"
5805 " defaulting to %V\n"),
5806 entry_symbol.name,
5807 bfd_get_section_vma (link_info.output_bfd, ts));
5808 if (!(bfd_set_start_address
5809 (link_info.output_bfd,
5810 bfd_get_section_vma (link_info.output_bfd, ts))))
5811 einfo (_("%P%F: can't set start address\n"));
5812 }
5813 else
5814 {
5815 if (warn)
5816 einfo (_("%P: warning: cannot find entry symbol %s;"
5817 " not setting start address\n"),
5818 entry_symbol.name);
5819 }
5820 }
5821 }
5822 }
5823
5824 /* This is a small function used when we want to ignore errors from
5825 BFD. */
5826
5827 static void
5828 ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5829 {
5830 /* Don't do anything. */
5831 }
5832
5833 /* Check that the architecture of all the input files is compatible
5834 with the output file. Also call the backend to let it do any
5835 other checking that is needed. */
5836
5837 static void
5838 lang_check (void)
5839 {
5840 lang_statement_union_type *file;
5841 bfd *input_bfd;
5842 const bfd_arch_info_type *compatible;
5843
5844 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5845 {
5846 #ifdef ENABLE_PLUGINS
5847 /* Don't check format of files claimed by plugin. */
5848 if (file->input_statement.flags.claimed)
5849 continue;
5850 #endif /* ENABLE_PLUGINS */
5851 input_bfd = file->input_statement.the_bfd;
5852 compatible
5853 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5854 command_line.accept_unknown_input_arch);
5855
5856 /* In general it is not possible to perform a relocatable
5857 link between differing object formats when the input
5858 file has relocations, because the relocations in the
5859 input format may not have equivalent representations in
5860 the output format (and besides BFD does not translate
5861 relocs for other link purposes than a final link). */
5862 if ((link_info.relocatable || link_info.emitrelocations)
5863 && (compatible == NULL
5864 || (bfd_get_flavour (input_bfd)
5865 != bfd_get_flavour (link_info.output_bfd)))
5866 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5867 {
5868 einfo (_("%P%F: Relocatable linking with relocations from"
5869 " format %s (%B) to format %s (%B) is not supported\n"),
5870 bfd_get_target (input_bfd), input_bfd,
5871 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5872 /* einfo with %F exits. */
5873 }
5874
5875 if (compatible == NULL)
5876 {
5877 if (command_line.warn_mismatch)
5878 einfo (_("%P%X: %s architecture of input file `%B'"
5879 " is incompatible with %s output\n"),
5880 bfd_printable_name (input_bfd), input_bfd,
5881 bfd_printable_name (link_info.output_bfd));
5882 }
5883 else if (bfd_count_sections (input_bfd))
5884 {
5885 /* If the input bfd has no contents, it shouldn't set the
5886 private data of the output bfd. */
5887
5888 bfd_error_handler_type pfn = NULL;
5889
5890 /* If we aren't supposed to warn about mismatched input
5891 files, temporarily set the BFD error handler to a
5892 function which will do nothing. We still want to call
5893 bfd_merge_private_bfd_data, since it may set up
5894 information which is needed in the output file. */
5895 if (! command_line.warn_mismatch)
5896 pfn = bfd_set_error_handler (ignore_bfd_errors);
5897 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5898 {
5899 if (command_line.warn_mismatch)
5900 einfo (_("%P%X: failed to merge target specific data"
5901 " of file %B\n"), input_bfd);
5902 }
5903 if (! command_line.warn_mismatch)
5904 bfd_set_error_handler (pfn);
5905 }
5906 }
5907 }
5908
5909 /* Look through all the global common symbols and attach them to the
5910 correct section. The -sort-common command line switch may be used
5911 to roughly sort the entries by alignment. */
5912
5913 static void
5914 lang_common (void)
5915 {
5916 if (command_line.inhibit_common_definition)
5917 return;
5918 if (link_info.relocatable
5919 && ! command_line.force_common_definition)
5920 return;
5921
5922 if (! config.sort_common)
5923 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5924 else
5925 {
5926 unsigned int power;
5927
5928 if (config.sort_common == sort_descending)
5929 {
5930 for (power = 4; power > 0; power--)
5931 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5932
5933 power = 0;
5934 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5935 }
5936 else
5937 {
5938 for (power = 0; power <= 4; power++)
5939 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5940
5941 power = UINT_MAX;
5942 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5943 }
5944 }
5945 }
5946
5947 /* Place one common symbol in the correct section. */
5948
5949 static bfd_boolean
5950 lang_one_common (struct bfd_link_hash_entry *h, void *info)
5951 {
5952 unsigned int power_of_two;
5953 bfd_vma size;
5954 asection *section;
5955
5956 if (h->type != bfd_link_hash_common)
5957 return TRUE;
5958
5959 size = h->u.c.size;
5960 power_of_two = h->u.c.p->alignment_power;
5961
5962 if (config.sort_common == sort_descending
5963 && power_of_two < *(unsigned int *) info)
5964 return TRUE;
5965 else if (config.sort_common == sort_ascending
5966 && power_of_two > *(unsigned int *) info)
5967 return TRUE;
5968
5969 section = h->u.c.p->section;
5970 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
5971 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
5972 h->root.string);
5973
5974 if (config.map_file != NULL)
5975 {
5976 static bfd_boolean header_printed;
5977 int len;
5978 char *name;
5979 char buf[50];
5980
5981 if (! header_printed)
5982 {
5983 minfo (_("\nAllocating common symbols\n"));
5984 minfo (_("Common symbol size file\n\n"));
5985 header_printed = TRUE;
5986 }
5987
5988 name = bfd_demangle (link_info.output_bfd, h->root.string,
5989 DMGL_ANSI | DMGL_PARAMS);
5990 if (name == NULL)
5991 {
5992 minfo ("%s", h->root.string);
5993 len = strlen (h->root.string);
5994 }
5995 else
5996 {
5997 minfo ("%s", name);
5998 len = strlen (name);
5999 free (name);
6000 }
6001
6002 if (len >= 19)
6003 {
6004 print_nl ();
6005 len = 0;
6006 }
6007 while (len < 20)
6008 {
6009 print_space ();
6010 ++len;
6011 }
6012
6013 minfo ("0x");
6014 if (size <= 0xffffffff)
6015 sprintf (buf, "%lx", (unsigned long) size);
6016 else
6017 sprintf_vma (buf, size);
6018 minfo ("%s", buf);
6019 len = strlen (buf);
6020
6021 while (len < 16)
6022 {
6023 print_space ();
6024 ++len;
6025 }
6026
6027 minfo ("%B\n", section->owner);
6028 }
6029
6030 return TRUE;
6031 }
6032
6033 /* Run through the input files and ensure that every input section has
6034 somewhere to go. If one is found without a destination then create
6035 an input request and place it into the statement tree. */
6036
6037 static void
6038 lang_place_orphans (void)
6039 {
6040 LANG_FOR_EACH_INPUT_STATEMENT (file)
6041 {
6042 asection *s;
6043
6044 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6045 {
6046 if (s->output_section == NULL)
6047 {
6048 /* This section of the file is not attached, root
6049 around for a sensible place for it to go. */
6050
6051 if (file->flags.just_syms)
6052 bfd_link_just_syms (file->the_bfd, s, &link_info);
6053 else if ((s->flags & SEC_EXCLUDE) != 0)
6054 s->output_section = bfd_abs_section_ptr;
6055 else if (strcmp (s->name, "COMMON") == 0)
6056 {
6057 /* This is a lonely common section which must have
6058 come from an archive. We attach to the section
6059 with the wildcard. */
6060 if (! link_info.relocatable
6061 || command_line.force_common_definition)
6062 {
6063 if (default_common_section == NULL)
6064 default_common_section
6065 = lang_output_section_statement_lookup (".bss", 0,
6066 TRUE);
6067 lang_add_section (&default_common_section->children, s,
6068 NULL, default_common_section);
6069 }
6070 }
6071 else
6072 {
6073 const char *name = s->name;
6074 int constraint = 0;
6075
6076 if (config.unique_orphan_sections
6077 || unique_section_p (s, NULL))
6078 constraint = SPECIAL;
6079
6080 if (!ldemul_place_orphan (s, name, constraint))
6081 {
6082 lang_output_section_statement_type *os;
6083 os = lang_output_section_statement_lookup (name,
6084 constraint,
6085 TRUE);
6086 if (os->addr_tree == NULL
6087 && (link_info.relocatable
6088 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6089 os->addr_tree = exp_intop (0);
6090 lang_add_section (&os->children, s, NULL, os);
6091 }
6092 }
6093 }
6094 }
6095 }
6096 }
6097
6098 void
6099 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6100 {
6101 flagword *ptr_flags;
6102
6103 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6104 while (*flags)
6105 {
6106 switch (*flags)
6107 {
6108 case 'A': case 'a':
6109 *ptr_flags |= SEC_ALLOC;
6110 break;
6111
6112 case 'R': case 'r':
6113 *ptr_flags |= SEC_READONLY;
6114 break;
6115
6116 case 'W': case 'w':
6117 *ptr_flags |= SEC_DATA;
6118 break;
6119
6120 case 'X': case 'x':
6121 *ptr_flags |= SEC_CODE;
6122 break;
6123
6124 case 'L': case 'l':
6125 case 'I': case 'i':
6126 *ptr_flags |= SEC_LOAD;
6127 break;
6128
6129 default:
6130 einfo (_("%P%F: invalid syntax in flags\n"));
6131 break;
6132 }
6133 flags++;
6134 }
6135 }
6136
6137 /* Call a function on each input file. This function will be called
6138 on an archive, but not on the elements. */
6139
6140 void
6141 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6142 {
6143 lang_input_statement_type *f;
6144
6145 for (f = (lang_input_statement_type *) input_file_chain.head;
6146 f != NULL;
6147 f = (lang_input_statement_type *) f->next_real_file)
6148 func (f);
6149 }
6150
6151 /* Call a function on each file. The function will be called on all
6152 the elements of an archive which are included in the link, but will
6153 not be called on the archive file itself. */
6154
6155 void
6156 lang_for_each_file (void (*func) (lang_input_statement_type *))
6157 {
6158 LANG_FOR_EACH_INPUT_STATEMENT (f)
6159 {
6160 func (f);
6161 }
6162 }
6163
6164 void
6165 ldlang_add_file (lang_input_statement_type *entry)
6166 {
6167 lang_statement_append (&file_chain,
6168 (lang_statement_union_type *) entry,
6169 &entry->next);
6170
6171 /* The BFD linker needs to have a list of all input BFDs involved in
6172 a link. */
6173 ASSERT (entry->the_bfd->link_next == NULL);
6174 ASSERT (entry->the_bfd != link_info.output_bfd);
6175
6176 *link_info.input_bfds_tail = entry->the_bfd;
6177 link_info.input_bfds_tail = &entry->the_bfd->link_next;
6178 entry->the_bfd->usrdata = entry;
6179 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6180
6181 /* Look through the sections and check for any which should not be
6182 included in the link. We need to do this now, so that we can
6183 notice when the backend linker tries to report multiple
6184 definition errors for symbols which are in sections we aren't
6185 going to link. FIXME: It might be better to entirely ignore
6186 symbols which are defined in sections which are going to be
6187 discarded. This would require modifying the backend linker for
6188 each backend which might set the SEC_LINK_ONCE flag. If we do
6189 this, we should probably handle SEC_EXCLUDE in the same way. */
6190
6191 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6192 }
6193
6194 void
6195 lang_add_output (const char *name, int from_script)
6196 {
6197 /* Make -o on command line override OUTPUT in script. */
6198 if (!had_output_filename || !from_script)
6199 {
6200 output_filename = name;
6201 had_output_filename = TRUE;
6202 }
6203 }
6204
6205 static int
6206 topower (int x)
6207 {
6208 unsigned int i = 1;
6209 int l;
6210
6211 if (x < 0)
6212 return -1;
6213
6214 for (l = 0; l < 32; l++)
6215 {
6216 if (i >= (unsigned int) x)
6217 return l;
6218 i <<= 1;
6219 }
6220
6221 return 0;
6222 }
6223
6224 lang_output_section_statement_type *
6225 lang_enter_output_section_statement (const char *output_section_statement_name,
6226 etree_type *address_exp,
6227 enum section_type sectype,
6228 etree_type *align,
6229 etree_type *subalign,
6230 etree_type *ebase,
6231 int constraint)
6232 {
6233 lang_output_section_statement_type *os;
6234
6235 os = lang_output_section_statement_lookup (output_section_statement_name,
6236 constraint, TRUE);
6237 current_section = os;
6238
6239 if (os->addr_tree == NULL)
6240 {
6241 os->addr_tree = address_exp;
6242 }
6243 os->sectype = sectype;
6244 if (sectype != noload_section)
6245 os->flags = SEC_NO_FLAGS;
6246 else
6247 os->flags = SEC_NEVER_LOAD;
6248 os->block_value = 1;
6249
6250 /* Make next things chain into subchain of this. */
6251 push_stat_ptr (&os->children);
6252
6253 os->subsection_alignment =
6254 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6255 os->section_alignment =
6256 topower (exp_get_value_int (align, -1, "section alignment"));
6257
6258 os->load_base = ebase;
6259 return os;
6260 }
6261
6262 void
6263 lang_final (void)
6264 {
6265 lang_output_statement_type *new_stmt;
6266
6267 new_stmt = new_stat (lang_output_statement, stat_ptr);
6268 new_stmt->name = output_filename;
6269
6270 }
6271
6272 /* Reset the current counters in the regions. */
6273
6274 void
6275 lang_reset_memory_regions (void)
6276 {
6277 lang_memory_region_type *p = lang_memory_region_list;
6278 asection *o;
6279 lang_output_section_statement_type *os;
6280
6281 for (p = lang_memory_region_list; p != NULL; p = p->next)
6282 {
6283 p->current = p->origin;
6284 p->last_os = NULL;
6285 }
6286
6287 for (os = &lang_output_section_statement.head->output_section_statement;
6288 os != NULL;
6289 os = os->next)
6290 {
6291 os->processed_vma = FALSE;
6292 os->processed_lma = FALSE;
6293 }
6294
6295 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6296 {
6297 /* Save the last size for possible use by bfd_relax_section. */
6298 o->rawsize = o->size;
6299 o->size = 0;
6300 }
6301 }
6302
6303 /* Worker for lang_gc_sections_1. */
6304
6305 static void
6306 gc_section_callback (lang_wild_statement_type *ptr,
6307 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6308 asection *section,
6309 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6310 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6311 void *data ATTRIBUTE_UNUSED)
6312 {
6313 /* If the wild pattern was marked KEEP, the member sections
6314 should be as well. */
6315 if (ptr->keep_sections)
6316 section->flags |= SEC_KEEP;
6317 }
6318
6319 /* Iterate over sections marking them against GC. */
6320
6321 static void
6322 lang_gc_sections_1 (lang_statement_union_type *s)
6323 {
6324 for (; s != NULL; s = s->header.next)
6325 {
6326 switch (s->header.type)
6327 {
6328 case lang_wild_statement_enum:
6329 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6330 break;
6331 case lang_constructors_statement_enum:
6332 lang_gc_sections_1 (constructor_list.head);
6333 break;
6334 case lang_output_section_statement_enum:
6335 lang_gc_sections_1 (s->output_section_statement.children.head);
6336 break;
6337 case lang_group_statement_enum:
6338 lang_gc_sections_1 (s->group_statement.children.head);
6339 break;
6340 default:
6341 break;
6342 }
6343 }
6344 }
6345
6346 static void
6347 lang_gc_sections (void)
6348 {
6349 /* Keep all sections so marked in the link script. */
6350
6351 lang_gc_sections_1 (statement_list.head);
6352
6353 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6354 the special case of debug info. (See bfd/stabs.c)
6355 Twiddle the flag here, to simplify later linker code. */
6356 if (link_info.relocatable)
6357 {
6358 LANG_FOR_EACH_INPUT_STATEMENT (f)
6359 {
6360 asection *sec;
6361 #ifdef ENABLE_PLUGINS
6362 if (f->flags.claimed)
6363 continue;
6364 #endif
6365 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6366 if ((sec->flags & SEC_DEBUGGING) == 0)
6367 sec->flags &= ~SEC_EXCLUDE;
6368 }
6369 }
6370
6371 if (link_info.gc_sections)
6372 bfd_gc_sections (link_info.output_bfd, &link_info);
6373 }
6374
6375 /* Worker for lang_find_relro_sections_1. */
6376
6377 static void
6378 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6379 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6380 asection *section,
6381 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6382 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6383 void *data)
6384 {
6385 /* Discarded, excluded and ignored sections effectively have zero
6386 size. */
6387 if (section->output_section != NULL
6388 && section->output_section->owner == link_info.output_bfd
6389 && (section->output_section->flags & SEC_EXCLUDE) == 0
6390 && !IGNORE_SECTION (section)
6391 && section->size != 0)
6392 {
6393 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6394 *has_relro_section = TRUE;
6395 }
6396 }
6397
6398 /* Iterate over sections for relro sections. */
6399
6400 static void
6401 lang_find_relro_sections_1 (lang_statement_union_type *s,
6402 bfd_boolean *has_relro_section)
6403 {
6404 if (*has_relro_section)
6405 return;
6406
6407 for (; s != NULL; s = s->header.next)
6408 {
6409 if (s == expld.dataseg.relro_end_stat)
6410 break;
6411
6412 switch (s->header.type)
6413 {
6414 case lang_wild_statement_enum:
6415 walk_wild (&s->wild_statement,
6416 find_relro_section_callback,
6417 has_relro_section);
6418 break;
6419 case lang_constructors_statement_enum:
6420 lang_find_relro_sections_1 (constructor_list.head,
6421 has_relro_section);
6422 break;
6423 case lang_output_section_statement_enum:
6424 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6425 has_relro_section);
6426 break;
6427 case lang_group_statement_enum:
6428 lang_find_relro_sections_1 (s->group_statement.children.head,
6429 has_relro_section);
6430 break;
6431 default:
6432 break;
6433 }
6434 }
6435 }
6436
6437 static void
6438 lang_find_relro_sections (void)
6439 {
6440 bfd_boolean has_relro_section = FALSE;
6441
6442 /* Check all sections in the link script. */
6443
6444 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6445 &has_relro_section);
6446
6447 if (!has_relro_section)
6448 link_info.relro = FALSE;
6449 }
6450
6451 /* Relax all sections until bfd_relax_section gives up. */
6452
6453 void
6454 lang_relax_sections (bfd_boolean need_layout)
6455 {
6456 if (RELAXATION_ENABLED)
6457 {
6458 /* We may need more than one relaxation pass. */
6459 int i = link_info.relax_pass;
6460
6461 /* The backend can use it to determine the current pass. */
6462 link_info.relax_pass = 0;
6463
6464 while (i--)
6465 {
6466 /* Keep relaxing until bfd_relax_section gives up. */
6467 bfd_boolean relax_again;
6468
6469 link_info.relax_trip = -1;
6470 do
6471 {
6472 link_info.relax_trip++;
6473
6474 /* Note: pe-dll.c does something like this also. If you find
6475 you need to change this code, you probably need to change
6476 pe-dll.c also. DJ */
6477
6478 /* Do all the assignments with our current guesses as to
6479 section sizes. */
6480 lang_do_assignments (lang_assigning_phase_enum);
6481
6482 /* We must do this after lang_do_assignments, because it uses
6483 size. */
6484 lang_reset_memory_regions ();
6485
6486 /* Perform another relax pass - this time we know where the
6487 globals are, so can make a better guess. */
6488 relax_again = FALSE;
6489 lang_size_sections (&relax_again, FALSE);
6490 }
6491 while (relax_again);
6492
6493 link_info.relax_pass++;
6494 }
6495 need_layout = TRUE;
6496 }
6497
6498 if (need_layout)
6499 {
6500 /* Final extra sizing to report errors. */
6501 lang_do_assignments (lang_assigning_phase_enum);
6502 lang_reset_memory_regions ();
6503 lang_size_sections (NULL, TRUE);
6504 }
6505 }
6506
6507 #ifdef ENABLE_PLUGINS
6508 /* Find the insert point for the plugin's replacement files. We
6509 place them after the first claimed real object file, or if the
6510 first claimed object is an archive member, after the last real
6511 object file immediately preceding the archive. In the event
6512 no objects have been claimed at all, we return the first dummy
6513 object file on the list as the insert point; that works, but
6514 the callee must be careful when relinking the file_chain as it
6515 is not actually on that chain, only the statement_list and the
6516 input_file list; in that case, the replacement files must be
6517 inserted at the head of the file_chain. */
6518
6519 static lang_input_statement_type *
6520 find_replacements_insert_point (void)
6521 {
6522 lang_input_statement_type *claim1, *lastobject;
6523 lastobject = &input_file_chain.head->input_statement;
6524 for (claim1 = &file_chain.head->input_statement;
6525 claim1 != NULL;
6526 claim1 = &claim1->next->input_statement)
6527 {
6528 if (claim1->flags.claimed)
6529 return claim1->flags.claim_archive ? lastobject : claim1;
6530 /* Update lastobject if this is a real object file. */
6531 if (claim1->the_bfd && (claim1->the_bfd->my_archive == NULL))
6532 lastobject = claim1;
6533 }
6534 /* No files were claimed by the plugin. Choose the last object
6535 file found on the list (maybe the first, dummy entry) as the
6536 insert point. */
6537 return lastobject;
6538 }
6539
6540 /* Insert SRCLIST into DESTLIST after given element by chaining
6541 on FIELD as the next-pointer. (Counterintuitively does not need
6542 a pointer to the actual after-node itself, just its chain field.) */
6543
6544 static void
6545 lang_list_insert_after (lang_statement_list_type *destlist,
6546 lang_statement_list_type *srclist,
6547 lang_statement_union_type **field)
6548 {
6549 *(srclist->tail) = *field;
6550 *field = srclist->head;
6551 if (destlist->tail == field)
6552 destlist->tail = srclist->tail;
6553 }
6554
6555 /* Detach new nodes added to DESTLIST since the time ORIGLIST
6556 was taken as a copy of it and leave them in ORIGLIST. */
6557
6558 static void
6559 lang_list_remove_tail (lang_statement_list_type *destlist,
6560 lang_statement_list_type *origlist)
6561 {
6562 union lang_statement_union **savetail;
6563 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
6564 ASSERT (origlist->head == destlist->head);
6565 savetail = origlist->tail;
6566 origlist->head = *(savetail);
6567 origlist->tail = destlist->tail;
6568 destlist->tail = savetail;
6569 *savetail = NULL;
6570 }
6571 #endif /* ENABLE_PLUGINS */
6572
6573 void
6574 lang_process (void)
6575 {
6576 /* Finalize dynamic list. */
6577 if (link_info.dynamic_list)
6578 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6579
6580 current_target = default_target;
6581
6582 /* Open the output file. */
6583 lang_for_each_statement (ldlang_open_output);
6584 init_opb ();
6585
6586 ldemul_create_output_section_statements ();
6587
6588 /* Add to the hash table all undefineds on the command line. */
6589 lang_place_undefineds ();
6590
6591 if (!bfd_section_already_linked_table_init ())
6592 einfo (_("%P%F: Failed to create hash table\n"));
6593
6594 /* Create a bfd for each input file. */
6595 current_target = default_target;
6596 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
6597
6598 #ifdef ENABLE_PLUGINS
6599 if (plugin_active_plugins_p ())
6600 {
6601 lang_statement_list_type added;
6602 lang_statement_list_type files, inputfiles;
6603
6604 /* Now all files are read, let the plugin(s) decide if there
6605 are any more to be added to the link before we call the
6606 emulation's after_open hook. We create a private list of
6607 input statements for this purpose, which we will eventually
6608 insert into the global statment list after the first claimed
6609 file. */
6610 added = *stat_ptr;
6611 /* We need to manipulate all three chains in synchrony. */
6612 files = file_chain;
6613 inputfiles = input_file_chain;
6614 if (plugin_call_all_symbols_read ())
6615 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6616 plugin_error_plugin ());
6617 /* Open any newly added files, updating the file chains. */
6618 link_info.loading_lto_outputs = TRUE;
6619 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
6620 /* Restore the global list pointer now they have all been added. */
6621 lang_list_remove_tail (stat_ptr, &added);
6622 /* And detach the fresh ends of the file lists. */
6623 lang_list_remove_tail (&file_chain, &files);
6624 lang_list_remove_tail (&input_file_chain, &inputfiles);
6625 /* Were any new files added? */
6626 if (added.head != NULL)
6627 {
6628 /* If so, we will insert them into the statement list immediately
6629 after the first input file that was claimed by the plugin. */
6630 plugin_insert = find_replacements_insert_point ();
6631 /* If a plugin adds input files without having claimed any, we
6632 don't really have a good idea where to place them. Just putting
6633 them at the start or end of the list is liable to leave them
6634 outside the crtbegin...crtend range. */
6635 ASSERT (plugin_insert != NULL);
6636 /* Splice the new statement list into the old one. */
6637 lang_list_insert_after (stat_ptr, &added,
6638 &plugin_insert->header.next);
6639 /* Likewise for the file chains. */
6640 lang_list_insert_after (&input_file_chain, &inputfiles,
6641 &plugin_insert->next_real_file);
6642 /* We must be careful when relinking file_chain; we may need to
6643 insert the new files at the head of the list if the insert
6644 point chosen is the dummy first input file. */
6645 if (plugin_insert->filename)
6646 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
6647 else
6648 lang_list_insert_after (&file_chain, &files, &file_chain.head);
6649
6650 /* Rescan archives in case new undefined symbols have appeared. */
6651 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
6652 }
6653 }
6654 #endif /* ENABLE_PLUGINS */
6655
6656 link_info.gc_sym_list = &entry_symbol;
6657 if (entry_symbol.name == NULL)
6658 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6659
6660 ldemul_after_open ();
6661
6662 bfd_section_already_linked_table_free ();
6663
6664 /* Make sure that we're not mixing architectures. We call this
6665 after all the input files have been opened, but before we do any
6666 other processing, so that any operations merge_private_bfd_data
6667 does on the output file will be known during the rest of the
6668 link. */
6669 lang_check ();
6670
6671 /* Handle .exports instead of a version script if we're told to do so. */
6672 if (command_line.version_exports_section)
6673 lang_do_version_exports_section ();
6674
6675 /* Build all sets based on the information gathered from the input
6676 files. */
6677 ldctor_build_sets ();
6678
6679 /* PR 13683: We must rerun the assignments prior to running garbage
6680 collection in order to make sure that all symbol aliases are resolved. */
6681 lang_do_assignments (lang_mark_phase_enum);
6682 expld.phase = lang_first_phase_enum;
6683
6684 /* Remove unreferenced sections if asked to. */
6685 lang_gc_sections ();
6686
6687 /* Size up the common data. */
6688 lang_common ();
6689
6690 /* Update wild statements. */
6691 update_wild_statements (statement_list.head);
6692
6693 /* Run through the contours of the script and attach input sections
6694 to the correct output sections. */
6695 lang_statement_iteration++;
6696 map_input_to_output_sections (statement_list.head, NULL, NULL);
6697
6698 process_insert_statements ();
6699
6700 /* Find any sections not attached explicitly and handle them. */
6701 lang_place_orphans ();
6702
6703 if (! link_info.relocatable)
6704 {
6705 asection *found;
6706
6707 /* Merge SEC_MERGE sections. This has to be done after GC of
6708 sections, so that GCed sections are not merged, but before
6709 assigning dynamic symbols, since removing whole input sections
6710 is hard then. */
6711 bfd_merge_sections (link_info.output_bfd, &link_info);
6712
6713 /* Look for a text section and set the readonly attribute in it. */
6714 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6715
6716 if (found != NULL)
6717 {
6718 if (config.text_read_only)
6719 found->flags |= SEC_READONLY;
6720 else
6721 found->flags &= ~SEC_READONLY;
6722 }
6723 }
6724
6725 /* Do anything special before sizing sections. This is where ELF
6726 and other back-ends size dynamic sections. */
6727 ldemul_before_allocation ();
6728
6729 /* We must record the program headers before we try to fix the
6730 section positions, since they will affect SIZEOF_HEADERS. */
6731 lang_record_phdrs ();
6732
6733 /* Check relro sections. */
6734 if (link_info.relro && ! link_info.relocatable)
6735 lang_find_relro_sections ();
6736
6737 /* Size up the sections. */
6738 lang_size_sections (NULL, ! RELAXATION_ENABLED);
6739
6740 /* See if anything special should be done now we know how big
6741 everything is. This is where relaxation is done. */
6742 ldemul_after_allocation ();
6743
6744 /* Fix any .startof. or .sizeof. symbols. */
6745 lang_set_startof ();
6746
6747 /* Do all the assignments, now that we know the final resting places
6748 of all the symbols. */
6749 lang_do_assignments (lang_final_phase_enum);
6750
6751 ldemul_finish ();
6752
6753 /* Make sure that the section addresses make sense. */
6754 if (command_line.check_section_addresses)
6755 lang_check_section_addresses ();
6756
6757 lang_end ();
6758 }
6759
6760 /* EXPORTED TO YACC */
6761
6762 void
6763 lang_add_wild (struct wildcard_spec *filespec,
6764 struct wildcard_list *section_list,
6765 bfd_boolean keep_sections)
6766 {
6767 struct wildcard_list *curr, *next;
6768 lang_wild_statement_type *new_stmt;
6769
6770 /* Reverse the list as the parser puts it back to front. */
6771 for (curr = section_list, section_list = NULL;
6772 curr != NULL;
6773 section_list = curr, curr = next)
6774 {
6775 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6776 placed_commons = TRUE;
6777
6778 next = curr->next;
6779 curr->next = section_list;
6780 }
6781
6782 if (filespec != NULL && filespec->name != NULL)
6783 {
6784 if (strcmp (filespec->name, "*") == 0)
6785 filespec->name = NULL;
6786 else if (! wildcardp (filespec->name))
6787 lang_has_input_file = TRUE;
6788 }
6789
6790 new_stmt = new_stat (lang_wild_statement, stat_ptr);
6791 new_stmt->filename = NULL;
6792 new_stmt->filenames_sorted = FALSE;
6793 new_stmt->section_flag_list = NULL;
6794 if (filespec != NULL)
6795 {
6796 new_stmt->filename = filespec->name;
6797 new_stmt->filenames_sorted = filespec->sorted == by_name;
6798 new_stmt->section_flag_list = filespec->section_flag_list;
6799 }
6800 new_stmt->section_list = section_list;
6801 new_stmt->keep_sections = keep_sections;
6802 lang_list_init (&new_stmt->children);
6803 analyze_walk_wild_section_handler (new_stmt);
6804 }
6805
6806 void
6807 lang_section_start (const char *name, etree_type *address,
6808 const segment_type *segment)
6809 {
6810 lang_address_statement_type *ad;
6811
6812 ad = new_stat (lang_address_statement, stat_ptr);
6813 ad->section_name = name;
6814 ad->address = address;
6815 ad->segment = segment;
6816 }
6817
6818 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6819 because of a -e argument on the command line, or zero if this is
6820 called by ENTRY in a linker script. Command line arguments take
6821 precedence. */
6822
6823 void
6824 lang_add_entry (const char *name, bfd_boolean cmdline)
6825 {
6826 if (entry_symbol.name == NULL
6827 || cmdline
6828 || ! entry_from_cmdline)
6829 {
6830 entry_symbol.name = name;
6831 entry_from_cmdline = cmdline;
6832 }
6833 }
6834
6835 /* Set the default start symbol to NAME. .em files should use this,
6836 not lang_add_entry, to override the use of "start" if neither the
6837 linker script nor the command line specifies an entry point. NAME
6838 must be permanently allocated. */
6839 void
6840 lang_default_entry (const char *name)
6841 {
6842 entry_symbol_default = name;
6843 }
6844
6845 void
6846 lang_add_target (const char *name)
6847 {
6848 lang_target_statement_type *new_stmt;
6849
6850 new_stmt = new_stat (lang_target_statement, stat_ptr);
6851 new_stmt->target = name;
6852 }
6853
6854 void
6855 lang_add_map (const char *name)
6856 {
6857 while (*name)
6858 {
6859 switch (*name)
6860 {
6861 case 'F':
6862 map_option_f = TRUE;
6863 break;
6864 }
6865 name++;
6866 }
6867 }
6868
6869 void
6870 lang_add_fill (fill_type *fill)
6871 {
6872 lang_fill_statement_type *new_stmt;
6873
6874 new_stmt = new_stat (lang_fill_statement, stat_ptr);
6875 new_stmt->fill = fill;
6876 }
6877
6878 void
6879 lang_add_data (int type, union etree_union *exp)
6880 {
6881 lang_data_statement_type *new_stmt;
6882
6883 new_stmt = new_stat (lang_data_statement, stat_ptr);
6884 new_stmt->exp = exp;
6885 new_stmt->type = type;
6886 }
6887
6888 /* Create a new reloc statement. RELOC is the BFD relocation type to
6889 generate. HOWTO is the corresponding howto structure (we could
6890 look this up, but the caller has already done so). SECTION is the
6891 section to generate a reloc against, or NAME is the name of the
6892 symbol to generate a reloc against. Exactly one of SECTION and
6893 NAME must be NULL. ADDEND is an expression for the addend. */
6894
6895 void
6896 lang_add_reloc (bfd_reloc_code_real_type reloc,
6897 reloc_howto_type *howto,
6898 asection *section,
6899 const char *name,
6900 union etree_union *addend)
6901 {
6902 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6903
6904 p->reloc = reloc;
6905 p->howto = howto;
6906 p->section = section;
6907 p->name = name;
6908 p->addend_exp = addend;
6909
6910 p->addend_value = 0;
6911 p->output_section = NULL;
6912 p->output_offset = 0;
6913 }
6914
6915 lang_assignment_statement_type *
6916 lang_add_assignment (etree_type *exp)
6917 {
6918 lang_assignment_statement_type *new_stmt;
6919
6920 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
6921 new_stmt->exp = exp;
6922 return new_stmt;
6923 }
6924
6925 void
6926 lang_add_attribute (enum statement_enum attribute)
6927 {
6928 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6929 }
6930
6931 void
6932 lang_startup (const char *name)
6933 {
6934 if (first_file->filename != NULL)
6935 {
6936 einfo (_("%P%F: multiple STARTUP files\n"));
6937 }
6938 first_file->filename = name;
6939 first_file->local_sym_name = name;
6940 first_file->flags.real = TRUE;
6941 }
6942
6943 void
6944 lang_float (bfd_boolean maybe)
6945 {
6946 lang_float_flag = maybe;
6947 }
6948
6949
6950 /* Work out the load- and run-time regions from a script statement, and
6951 store them in *LMA_REGION and *REGION respectively.
6952
6953 MEMSPEC is the name of the run-time region, or the value of
6954 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6955 LMA_MEMSPEC is the name of the load-time region, or null if the
6956 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6957 had an explicit load address.
6958
6959 It is an error to specify both a load region and a load address. */
6960
6961 static void
6962 lang_get_regions (lang_memory_region_type **region,
6963 lang_memory_region_type **lma_region,
6964 const char *memspec,
6965 const char *lma_memspec,
6966 bfd_boolean have_lma,
6967 bfd_boolean have_vma)
6968 {
6969 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6970
6971 /* If no runtime region or VMA has been specified, but the load region
6972 has been specified, then use the load region for the runtime region
6973 as well. */
6974 if (lma_memspec != NULL
6975 && ! have_vma
6976 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6977 *region = *lma_region;
6978 else
6979 *region = lang_memory_region_lookup (memspec, FALSE);
6980
6981 if (have_lma && lma_memspec != 0)
6982 einfo (_("%X%P:%S: section has both a load address and a load region\n"),
6983 NULL);
6984 }
6985
6986 void
6987 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6988 lang_output_section_phdr_list *phdrs,
6989 const char *lma_memspec)
6990 {
6991 lang_get_regions (&current_section->region,
6992 &current_section->lma_region,
6993 memspec, lma_memspec,
6994 current_section->load_base != NULL,
6995 current_section->addr_tree != NULL);
6996
6997 /* If this section has no load region or base, but uses the same
6998 region as the previous section, then propagate the previous
6999 section's load region. */
7000
7001 if (current_section->lma_region == NULL
7002 && current_section->load_base == NULL
7003 && current_section->addr_tree == NULL
7004 && current_section->region == current_section->prev->region)
7005 current_section->lma_region = current_section->prev->lma_region;
7006
7007 current_section->fill = fill;
7008 current_section->phdrs = phdrs;
7009 pop_stat_ptr ();
7010 }
7011
7012 void
7013 lang_statement_append (lang_statement_list_type *list,
7014 lang_statement_union_type *element,
7015 lang_statement_union_type **field)
7016 {
7017 *(list->tail) = element;
7018 list->tail = field;
7019 }
7020
7021 /* Set the output format type. -oformat overrides scripts. */
7022
7023 void
7024 lang_add_output_format (const char *format,
7025 const char *big,
7026 const char *little,
7027 int from_script)
7028 {
7029 if (output_target == NULL || !from_script)
7030 {
7031 if (command_line.endian == ENDIAN_BIG
7032 && big != NULL)
7033 format = big;
7034 else if (command_line.endian == ENDIAN_LITTLE
7035 && little != NULL)
7036 format = little;
7037
7038 output_target = format;
7039 }
7040 }
7041
7042 void
7043 lang_add_insert (const char *where, int is_before)
7044 {
7045 lang_insert_statement_type *new_stmt;
7046
7047 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7048 new_stmt->where = where;
7049 new_stmt->is_before = is_before;
7050 saved_script_handle = previous_script_handle;
7051 }
7052
7053 /* Enter a group. This creates a new lang_group_statement, and sets
7054 stat_ptr to build new statements within the group. */
7055
7056 void
7057 lang_enter_group (void)
7058 {
7059 lang_group_statement_type *g;
7060
7061 g = new_stat (lang_group_statement, stat_ptr);
7062 lang_list_init (&g->children);
7063 push_stat_ptr (&g->children);
7064 }
7065
7066 /* Leave a group. This just resets stat_ptr to start writing to the
7067 regular list of statements again. Note that this will not work if
7068 groups can occur inside anything else which can adjust stat_ptr,
7069 but currently they can't. */
7070
7071 void
7072 lang_leave_group (void)
7073 {
7074 pop_stat_ptr ();
7075 }
7076
7077 /* Add a new program header. This is called for each entry in a PHDRS
7078 command in a linker script. */
7079
7080 void
7081 lang_new_phdr (const char *name,
7082 etree_type *type,
7083 bfd_boolean filehdr,
7084 bfd_boolean phdrs,
7085 etree_type *at,
7086 etree_type *flags)
7087 {
7088 struct lang_phdr *n, **pp;
7089 bfd_boolean hdrs;
7090
7091 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7092 n->next = NULL;
7093 n->name = name;
7094 n->type = exp_get_value_int (type, 0, "program header type");
7095 n->filehdr = filehdr;
7096 n->phdrs = phdrs;
7097 n->at = at;
7098 n->flags = flags;
7099
7100 hdrs = n->type == 1 && (phdrs || filehdr);
7101
7102 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7103 if (hdrs
7104 && (*pp)->type == 1
7105 && !((*pp)->filehdr || (*pp)->phdrs))
7106 {
7107 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported"
7108 " when prior PT_LOAD headers lack them\n"), NULL);
7109 hdrs = FALSE;
7110 }
7111
7112 *pp = n;
7113 }
7114
7115 /* Record the program header information in the output BFD. FIXME: We
7116 should not be calling an ELF specific function here. */
7117
7118 static void
7119 lang_record_phdrs (void)
7120 {
7121 unsigned int alc;
7122 asection **secs;
7123 lang_output_section_phdr_list *last;
7124 struct lang_phdr *l;
7125 lang_output_section_statement_type *os;
7126
7127 alc = 10;
7128 secs = (asection **) xmalloc (alc * sizeof (asection *));
7129 last = NULL;
7130
7131 for (l = lang_phdr_list; l != NULL; l = l->next)
7132 {
7133 unsigned int c;
7134 flagword flags;
7135 bfd_vma at;
7136
7137 c = 0;
7138 for (os = &lang_output_section_statement.head->output_section_statement;
7139 os != NULL;
7140 os = os->next)
7141 {
7142 lang_output_section_phdr_list *pl;
7143
7144 if (os->constraint < 0)
7145 continue;
7146
7147 pl = os->phdrs;
7148 if (pl != NULL)
7149 last = pl;
7150 else
7151 {
7152 if (os->sectype == noload_section
7153 || os->bfd_section == NULL
7154 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7155 continue;
7156
7157 /* Don't add orphans to PT_INTERP header. */
7158 if (l->type == 3)
7159 continue;
7160
7161 if (last == NULL)
7162 {
7163 lang_output_section_statement_type * tmp_os;
7164
7165 /* If we have not run across a section with a program
7166 header assigned to it yet, then scan forwards to find
7167 one. This prevents inconsistencies in the linker's
7168 behaviour when a script has specified just a single
7169 header and there are sections in that script which are
7170 not assigned to it, and which occur before the first
7171 use of that header. See here for more details:
7172 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7173 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7174 if (tmp_os->phdrs)
7175 {
7176 last = tmp_os->phdrs;
7177 break;
7178 }
7179 if (last == NULL)
7180 einfo (_("%F%P: no sections assigned to phdrs\n"));
7181 }
7182 pl = last;
7183 }
7184
7185 if (os->bfd_section == NULL)
7186 continue;
7187
7188 for (; pl != NULL; pl = pl->next)
7189 {
7190 if (strcmp (pl->name, l->name) == 0)
7191 {
7192 if (c >= alc)
7193 {
7194 alc *= 2;
7195 secs = (asection **) xrealloc (secs,
7196 alc * sizeof (asection *));
7197 }
7198 secs[c] = os->bfd_section;
7199 ++c;
7200 pl->used = TRUE;
7201 }
7202 }
7203 }
7204
7205 if (l->flags == NULL)
7206 flags = 0;
7207 else
7208 flags = exp_get_vma (l->flags, 0, "phdr flags");
7209
7210 if (l->at == NULL)
7211 at = 0;
7212 else
7213 at = exp_get_vma (l->at, 0, "phdr load address");
7214
7215 if (! bfd_record_phdr (link_info.output_bfd, l->type,
7216 l->flags != NULL, flags, l->at != NULL,
7217 at, l->filehdr, l->phdrs, c, secs))
7218 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7219 }
7220
7221 free (secs);
7222
7223 /* Make sure all the phdr assignments succeeded. */
7224 for (os = &lang_output_section_statement.head->output_section_statement;
7225 os != NULL;
7226 os = os->next)
7227 {
7228 lang_output_section_phdr_list *pl;
7229
7230 if (os->constraint < 0
7231 || os->bfd_section == NULL)
7232 continue;
7233
7234 for (pl = os->phdrs;
7235 pl != NULL;
7236 pl = pl->next)
7237 if (! pl->used && strcmp (pl->name, "NONE") != 0)
7238 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7239 os->name, pl->name);
7240 }
7241 }
7242
7243 /* Record a list of sections which may not be cross referenced. */
7244
7245 void
7246 lang_add_nocrossref (lang_nocrossref_type *l)
7247 {
7248 struct lang_nocrossrefs *n;
7249
7250 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7251 n->next = nocrossref_list;
7252 n->list = l;
7253 nocrossref_list = n;
7254
7255 /* Set notice_all so that we get informed about all symbols. */
7256 link_info.notice_all = TRUE;
7257 }
7258 \f
7259 /* Overlay handling. We handle overlays with some static variables. */
7260
7261 /* The overlay virtual address. */
7262 static etree_type *overlay_vma;
7263 /* And subsection alignment. */
7264 static etree_type *overlay_subalign;
7265
7266 /* An expression for the maximum section size seen so far. */
7267 static etree_type *overlay_max;
7268
7269 /* A list of all the sections in this overlay. */
7270
7271 struct overlay_list {
7272 struct overlay_list *next;
7273 lang_output_section_statement_type *os;
7274 };
7275
7276 static struct overlay_list *overlay_list;
7277
7278 /* Start handling an overlay. */
7279
7280 void
7281 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7282 {
7283 /* The grammar should prevent nested overlays from occurring. */
7284 ASSERT (overlay_vma == NULL
7285 && overlay_subalign == NULL
7286 && overlay_max == NULL);
7287
7288 overlay_vma = vma_expr;
7289 overlay_subalign = subalign;
7290 }
7291
7292 /* Start a section in an overlay. We handle this by calling
7293 lang_enter_output_section_statement with the correct VMA.
7294 lang_leave_overlay sets up the LMA and memory regions. */
7295
7296 void
7297 lang_enter_overlay_section (const char *name)
7298 {
7299 struct overlay_list *n;
7300 etree_type *size;
7301
7302 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7303 0, overlay_subalign, 0, 0);
7304
7305 /* If this is the first section, then base the VMA of future
7306 sections on this one. This will work correctly even if `.' is
7307 used in the addresses. */
7308 if (overlay_list == NULL)
7309 overlay_vma = exp_nameop (ADDR, name);
7310
7311 /* Remember the section. */
7312 n = (struct overlay_list *) xmalloc (sizeof *n);
7313 n->os = current_section;
7314 n->next = overlay_list;
7315 overlay_list = n;
7316
7317 size = exp_nameop (SIZEOF, name);
7318
7319 /* Arrange to work out the maximum section end address. */
7320 if (overlay_max == NULL)
7321 overlay_max = size;
7322 else
7323 overlay_max = exp_binop (MAX_K, overlay_max, size);
7324 }
7325
7326 /* Finish a section in an overlay. There isn't any special to do
7327 here. */
7328
7329 void
7330 lang_leave_overlay_section (fill_type *fill,
7331 lang_output_section_phdr_list *phdrs)
7332 {
7333 const char *name;
7334 char *clean, *s2;
7335 const char *s1;
7336 char *buf;
7337
7338 name = current_section->name;
7339
7340 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7341 region and that no load-time region has been specified. It doesn't
7342 really matter what we say here, since lang_leave_overlay will
7343 override it. */
7344 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7345
7346 /* Define the magic symbols. */
7347
7348 clean = (char *) xmalloc (strlen (name) + 1);
7349 s2 = clean;
7350 for (s1 = name; *s1 != '\0'; s1++)
7351 if (ISALNUM (*s1) || *s1 == '_')
7352 *s2++ = *s1;
7353 *s2 = '\0';
7354
7355 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7356 sprintf (buf, "__load_start_%s", clean);
7357 lang_add_assignment (exp_provide (buf,
7358 exp_nameop (LOADADDR, name),
7359 FALSE));
7360
7361 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7362 sprintf (buf, "__load_stop_%s", clean);
7363 lang_add_assignment (exp_provide (buf,
7364 exp_binop ('+',
7365 exp_nameop (LOADADDR, name),
7366 exp_nameop (SIZEOF, name)),
7367 FALSE));
7368
7369 free (clean);
7370 }
7371
7372 /* Finish an overlay. If there are any overlay wide settings, this
7373 looks through all the sections in the overlay and sets them. */
7374
7375 void
7376 lang_leave_overlay (etree_type *lma_expr,
7377 int nocrossrefs,
7378 fill_type *fill,
7379 const char *memspec,
7380 lang_output_section_phdr_list *phdrs,
7381 const char *lma_memspec)
7382 {
7383 lang_memory_region_type *region;
7384 lang_memory_region_type *lma_region;
7385 struct overlay_list *l;
7386 lang_nocrossref_type *nocrossref;
7387
7388 lang_get_regions (&region, &lma_region,
7389 memspec, lma_memspec,
7390 lma_expr != NULL, FALSE);
7391
7392 nocrossref = NULL;
7393
7394 /* After setting the size of the last section, set '.' to end of the
7395 overlay region. */
7396 if (overlay_list != NULL)
7397 {
7398 overlay_list->os->update_dot = 1;
7399 overlay_list->os->update_dot_tree
7400 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
7401 }
7402
7403 l = overlay_list;
7404 while (l != NULL)
7405 {
7406 struct overlay_list *next;
7407
7408 if (fill != NULL && l->os->fill == NULL)
7409 l->os->fill = fill;
7410
7411 l->os->region = region;
7412 l->os->lma_region = lma_region;
7413
7414 /* The first section has the load address specified in the
7415 OVERLAY statement. The rest are worked out from that.
7416 The base address is not needed (and should be null) if
7417 an LMA region was specified. */
7418 if (l->next == 0)
7419 {
7420 l->os->load_base = lma_expr;
7421 l->os->sectype = normal_section;
7422 }
7423 if (phdrs != NULL && l->os->phdrs == NULL)
7424 l->os->phdrs = phdrs;
7425
7426 if (nocrossrefs)
7427 {
7428 lang_nocrossref_type *nc;
7429
7430 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7431 nc->name = l->os->name;
7432 nc->next = nocrossref;
7433 nocrossref = nc;
7434 }
7435
7436 next = l->next;
7437 free (l);
7438 l = next;
7439 }
7440
7441 if (nocrossref != NULL)
7442 lang_add_nocrossref (nocrossref);
7443
7444 overlay_vma = NULL;
7445 overlay_list = NULL;
7446 overlay_max = NULL;
7447 }
7448 \f
7449 /* Version handling. This is only useful for ELF. */
7450
7451 /* If PREV is NULL, return first version pattern matching particular symbol.
7452 If PREV is non-NULL, return first version pattern matching particular
7453 symbol after PREV (previously returned by lang_vers_match). */
7454
7455 static struct bfd_elf_version_expr *
7456 lang_vers_match (struct bfd_elf_version_expr_head *head,
7457 struct bfd_elf_version_expr *prev,
7458 const char *sym)
7459 {
7460 const char *c_sym;
7461 const char *cxx_sym = sym;
7462 const char *java_sym = sym;
7463 struct bfd_elf_version_expr *expr = NULL;
7464 enum demangling_styles curr_style;
7465
7466 curr_style = CURRENT_DEMANGLING_STYLE;
7467 cplus_demangle_set_style (no_demangling);
7468 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
7469 if (!c_sym)
7470 c_sym = sym;
7471 cplus_demangle_set_style (curr_style);
7472
7473 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7474 {
7475 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
7476 DMGL_PARAMS | DMGL_ANSI);
7477 if (!cxx_sym)
7478 cxx_sym = sym;
7479 }
7480 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7481 {
7482 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
7483 if (!java_sym)
7484 java_sym = sym;
7485 }
7486
7487 if (head->htab && (prev == NULL || prev->literal))
7488 {
7489 struct bfd_elf_version_expr e;
7490
7491 switch (prev ? prev->mask : 0)
7492 {
7493 case 0:
7494 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7495 {
7496 e.pattern = c_sym;
7497 expr = (struct bfd_elf_version_expr *)
7498 htab_find ((htab_t) head->htab, &e);
7499 while (expr && strcmp (expr->pattern, c_sym) == 0)
7500 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7501 goto out_ret;
7502 else
7503 expr = expr->next;
7504 }
7505 /* Fallthrough */
7506 case BFD_ELF_VERSION_C_TYPE:
7507 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7508 {
7509 e.pattern = cxx_sym;
7510 expr = (struct bfd_elf_version_expr *)
7511 htab_find ((htab_t) head->htab, &e);
7512 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7513 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7514 goto out_ret;
7515 else
7516 expr = expr->next;
7517 }
7518 /* Fallthrough */
7519 case BFD_ELF_VERSION_CXX_TYPE:
7520 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7521 {
7522 e.pattern = java_sym;
7523 expr = (struct bfd_elf_version_expr *)
7524 htab_find ((htab_t) head->htab, &e);
7525 while (expr && strcmp (expr->pattern, java_sym) == 0)
7526 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7527 goto out_ret;
7528 else
7529 expr = expr->next;
7530 }
7531 /* Fallthrough */
7532 default:
7533 break;
7534 }
7535 }
7536
7537 /* Finally, try the wildcards. */
7538 if (prev == NULL || prev->literal)
7539 expr = head->remaining;
7540 else
7541 expr = prev->next;
7542 for (; expr; expr = expr->next)
7543 {
7544 const char *s;
7545
7546 if (!expr->pattern)
7547 continue;
7548
7549 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7550 break;
7551
7552 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7553 s = java_sym;
7554 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7555 s = cxx_sym;
7556 else
7557 s = c_sym;
7558 if (fnmatch (expr->pattern, s, 0) == 0)
7559 break;
7560 }
7561
7562 out_ret:
7563 if (c_sym != sym)
7564 free ((char *) c_sym);
7565 if (cxx_sym != sym)
7566 free ((char *) cxx_sym);
7567 if (java_sym != sym)
7568 free ((char *) java_sym);
7569 return expr;
7570 }
7571
7572 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7573 return a pointer to the symbol name with any backslash quotes removed. */
7574
7575 static const char *
7576 realsymbol (const char *pattern)
7577 {
7578 const char *p;
7579 bfd_boolean changed = FALSE, backslash = FALSE;
7580 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7581
7582 for (p = pattern, s = symbol; *p != '\0'; ++p)
7583 {
7584 /* It is a glob pattern only if there is no preceding
7585 backslash. */
7586 if (backslash)
7587 {
7588 /* Remove the preceding backslash. */
7589 *(s - 1) = *p;
7590 backslash = FALSE;
7591 changed = TRUE;
7592 }
7593 else
7594 {
7595 if (*p == '?' || *p == '*' || *p == '[')
7596 {
7597 free (symbol);
7598 return NULL;
7599 }
7600
7601 *s++ = *p;
7602 backslash = *p == '\\';
7603 }
7604 }
7605
7606 if (changed)
7607 {
7608 *s = '\0';
7609 return symbol;
7610 }
7611 else
7612 {
7613 free (symbol);
7614 return pattern;
7615 }
7616 }
7617
7618 /* This is called for each variable name or match expression. NEW_NAME is
7619 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7620 pattern to be matched against symbol names. */
7621
7622 struct bfd_elf_version_expr *
7623 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7624 const char *new_name,
7625 const char *lang,
7626 bfd_boolean literal_p)
7627 {
7628 struct bfd_elf_version_expr *ret;
7629
7630 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7631 ret->next = orig;
7632 ret->symver = 0;
7633 ret->script = 0;
7634 ret->literal = TRUE;
7635 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7636 if (ret->pattern == NULL)
7637 {
7638 ret->pattern = new_name;
7639 ret->literal = FALSE;
7640 }
7641
7642 if (lang == NULL || strcasecmp (lang, "C") == 0)
7643 ret->mask = BFD_ELF_VERSION_C_TYPE;
7644 else if (strcasecmp (lang, "C++") == 0)
7645 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7646 else if (strcasecmp (lang, "Java") == 0)
7647 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7648 else
7649 {
7650 einfo (_("%X%P: unknown language `%s' in version information\n"),
7651 lang);
7652 ret->mask = BFD_ELF_VERSION_C_TYPE;
7653 }
7654
7655 return ldemul_new_vers_pattern (ret);
7656 }
7657
7658 /* This is called for each set of variable names and match
7659 expressions. */
7660
7661 struct bfd_elf_version_tree *
7662 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7663 struct bfd_elf_version_expr *locals)
7664 {
7665 struct bfd_elf_version_tree *ret;
7666
7667 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7668 ret->globals.list = globals;
7669 ret->locals.list = locals;
7670 ret->match = lang_vers_match;
7671 ret->name_indx = (unsigned int) -1;
7672 return ret;
7673 }
7674
7675 /* This static variable keeps track of version indices. */
7676
7677 static int version_index;
7678
7679 static hashval_t
7680 version_expr_head_hash (const void *p)
7681 {
7682 const struct bfd_elf_version_expr *e =
7683 (const struct bfd_elf_version_expr *) p;
7684
7685 return htab_hash_string (e->pattern);
7686 }
7687
7688 static int
7689 version_expr_head_eq (const void *p1, const void *p2)
7690 {
7691 const struct bfd_elf_version_expr *e1 =
7692 (const struct bfd_elf_version_expr *) p1;
7693 const struct bfd_elf_version_expr *e2 =
7694 (const struct bfd_elf_version_expr *) p2;
7695
7696 return strcmp (e1->pattern, e2->pattern) == 0;
7697 }
7698
7699 static void
7700 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7701 {
7702 size_t count = 0;
7703 struct bfd_elf_version_expr *e, *next;
7704 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7705
7706 for (e = head->list; e; e = e->next)
7707 {
7708 if (e->literal)
7709 count++;
7710 head->mask |= e->mask;
7711 }
7712
7713 if (count)
7714 {
7715 head->htab = htab_create (count * 2, version_expr_head_hash,
7716 version_expr_head_eq, NULL);
7717 list_loc = &head->list;
7718 remaining_loc = &head->remaining;
7719 for (e = head->list; e; e = next)
7720 {
7721 next = e->next;
7722 if (!e->literal)
7723 {
7724 *remaining_loc = e;
7725 remaining_loc = &e->next;
7726 }
7727 else
7728 {
7729 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
7730
7731 if (*loc)
7732 {
7733 struct bfd_elf_version_expr *e1, *last;
7734
7735 e1 = (struct bfd_elf_version_expr *) *loc;
7736 last = NULL;
7737 do
7738 {
7739 if (e1->mask == e->mask)
7740 {
7741 last = NULL;
7742 break;
7743 }
7744 last = e1;
7745 e1 = e1->next;
7746 }
7747 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
7748
7749 if (last == NULL)
7750 {
7751 /* This is a duplicate. */
7752 /* FIXME: Memory leak. Sometimes pattern is not
7753 xmalloced alone, but in larger chunk of memory. */
7754 /* free (e->pattern); */
7755 free (e);
7756 }
7757 else
7758 {
7759 e->next = last->next;
7760 last->next = e;
7761 }
7762 }
7763 else
7764 {
7765 *loc = e;
7766 *list_loc = e;
7767 list_loc = &e->next;
7768 }
7769 }
7770 }
7771 *remaining_loc = NULL;
7772 *list_loc = head->remaining;
7773 }
7774 else
7775 head->remaining = head->list;
7776 }
7777
7778 /* This is called when we know the name and dependencies of the
7779 version. */
7780
7781 void
7782 lang_register_vers_node (const char *name,
7783 struct bfd_elf_version_tree *version,
7784 struct bfd_elf_version_deps *deps)
7785 {
7786 struct bfd_elf_version_tree *t, **pp;
7787 struct bfd_elf_version_expr *e1;
7788
7789 if (name == NULL)
7790 name = "";
7791
7792 if (link_info.version_info != NULL
7793 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
7794 {
7795 einfo (_("%X%P: anonymous version tag cannot be combined"
7796 " with other version tags\n"));
7797 free (version);
7798 return;
7799 }
7800
7801 /* Make sure this node has a unique name. */
7802 for (t = link_info.version_info; t != NULL; t = t->next)
7803 if (strcmp (t->name, name) == 0)
7804 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7805
7806 lang_finalize_version_expr_head (&version->globals);
7807 lang_finalize_version_expr_head (&version->locals);
7808
7809 /* Check the global and local match names, and make sure there
7810 aren't any duplicates. */
7811
7812 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7813 {
7814 for (t = link_info.version_info; t != NULL; t = t->next)
7815 {
7816 struct bfd_elf_version_expr *e2;
7817
7818 if (t->locals.htab && e1->literal)
7819 {
7820 e2 = (struct bfd_elf_version_expr *)
7821 htab_find ((htab_t) t->locals.htab, e1);
7822 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7823 {
7824 if (e1->mask == e2->mask)
7825 einfo (_("%X%P: duplicate expression `%s'"
7826 " in version information\n"), e1->pattern);
7827 e2 = e2->next;
7828 }
7829 }
7830 else if (!e1->literal)
7831 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7832 if (strcmp (e1->pattern, e2->pattern) == 0
7833 && e1->mask == e2->mask)
7834 einfo (_("%X%P: duplicate expression `%s'"
7835 " in version information\n"), e1->pattern);
7836 }
7837 }
7838
7839 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7840 {
7841 for (t = link_info.version_info; t != NULL; t = t->next)
7842 {
7843 struct bfd_elf_version_expr *e2;
7844
7845 if (t->globals.htab && e1->literal)
7846 {
7847 e2 = (struct bfd_elf_version_expr *)
7848 htab_find ((htab_t) t->globals.htab, e1);
7849 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7850 {
7851 if (e1->mask == e2->mask)
7852 einfo (_("%X%P: duplicate expression `%s'"
7853 " in version information\n"),
7854 e1->pattern);
7855 e2 = e2->next;
7856 }
7857 }
7858 else if (!e1->literal)
7859 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7860 if (strcmp (e1->pattern, e2->pattern) == 0
7861 && e1->mask == e2->mask)
7862 einfo (_("%X%P: duplicate expression `%s'"
7863 " in version information\n"), e1->pattern);
7864 }
7865 }
7866
7867 version->deps = deps;
7868 version->name = name;
7869 if (name[0] != '\0')
7870 {
7871 ++version_index;
7872 version->vernum = version_index;
7873 }
7874 else
7875 version->vernum = 0;
7876
7877 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
7878 ;
7879 *pp = version;
7880 }
7881
7882 /* This is called when we see a version dependency. */
7883
7884 struct bfd_elf_version_deps *
7885 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7886 {
7887 struct bfd_elf_version_deps *ret;
7888 struct bfd_elf_version_tree *t;
7889
7890 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
7891 ret->next = list;
7892
7893 for (t = link_info.version_info; t != NULL; t = t->next)
7894 {
7895 if (strcmp (t->name, name) == 0)
7896 {
7897 ret->version_needed = t;
7898 return ret;
7899 }
7900 }
7901
7902 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7903
7904 ret->version_needed = NULL;
7905 return ret;
7906 }
7907
7908 static void
7909 lang_do_version_exports_section (void)
7910 {
7911 struct bfd_elf_version_expr *greg = NULL, *lreg;
7912
7913 LANG_FOR_EACH_INPUT_STATEMENT (is)
7914 {
7915 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7916 char *contents, *p;
7917 bfd_size_type len;
7918
7919 if (sec == NULL)
7920 continue;
7921
7922 len = sec->size;
7923 contents = (char *) xmalloc (len);
7924 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7925 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7926
7927 p = contents;
7928 while (p < contents + len)
7929 {
7930 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7931 p = strchr (p, '\0') + 1;
7932 }
7933
7934 /* Do not free the contents, as we used them creating the regex. */
7935
7936 /* Do not include this section in the link. */
7937 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7938 }
7939
7940 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7941 lang_register_vers_node (command_line.version_exports_section,
7942 lang_new_vers_node (greg, lreg), NULL);
7943 }
7944
7945 void
7946 lang_add_unique (const char *name)
7947 {
7948 struct unique_sections *ent;
7949
7950 for (ent = unique_section_list; ent; ent = ent->next)
7951 if (strcmp (ent->name, name) == 0)
7952 return;
7953
7954 ent = (struct unique_sections *) xmalloc (sizeof *ent);
7955 ent->name = xstrdup (name);
7956 ent->next = unique_section_list;
7957 unique_section_list = ent;
7958 }
7959
7960 /* Append the list of dynamic symbols to the existing one. */
7961
7962 void
7963 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7964 {
7965 if (link_info.dynamic_list)
7966 {
7967 struct bfd_elf_version_expr *tail;
7968 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7969 ;
7970 tail->next = link_info.dynamic_list->head.list;
7971 link_info.dynamic_list->head.list = dynamic;
7972 }
7973 else
7974 {
7975 struct bfd_elf_dynamic_list *d;
7976
7977 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
7978 d->head.list = dynamic;
7979 d->match = lang_vers_match;
7980 link_info.dynamic_list = d;
7981 }
7982 }
7983
7984 /* Append the list of C++ typeinfo dynamic symbols to the existing
7985 one. */
7986
7987 void
7988 lang_append_dynamic_list_cpp_typeinfo (void)
7989 {
7990 const char * symbols [] =
7991 {
7992 "typeinfo name for*",
7993 "typeinfo for*"
7994 };
7995 struct bfd_elf_version_expr *dynamic = NULL;
7996 unsigned int i;
7997
7998 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7999 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8000 FALSE);
8001
8002 lang_append_dynamic_list (dynamic);
8003 }
8004
8005 /* Append the list of C++ operator new and delete dynamic symbols to the
8006 existing one. */
8007
8008 void
8009 lang_append_dynamic_list_cpp_new (void)
8010 {
8011 const char * symbols [] =
8012 {
8013 "operator new*",
8014 "operator delete*"
8015 };
8016 struct bfd_elf_version_expr *dynamic = NULL;
8017 unsigned int i;
8018
8019 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8020 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8021 FALSE);
8022
8023 lang_append_dynamic_list (dynamic);
8024 }
8025
8026 /* Scan a space and/or comma separated string of features. */
8027
8028 void
8029 lang_ld_feature (char *str)
8030 {
8031 char *p, *q;
8032
8033 p = str;
8034 while (*p)
8035 {
8036 char sep;
8037 while (*p == ',' || ISSPACE (*p))
8038 ++p;
8039 if (!*p)
8040 break;
8041 q = p + 1;
8042 while (*q && *q != ',' && !ISSPACE (*q))
8043 ++q;
8044 sep = *q;
8045 *q = 0;
8046 if (strcasecmp (p, "SANE_EXPR") == 0)
8047 config.sane_expr = TRUE;
8048 else
8049 einfo (_("%X%P: unknown feature `%s'\n"), p);
8050 *q = sep;
8051 p = q;
8052 }
8053 }
This page took 0.259757 seconds and 4 git commands to generate.