9038ebfff3b40298572b3eaf10eb0531e105d4fa
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29
30 #include "ld.h"
31 #include "ldmain.h"
32 #include "ldexp.h"
33 #include "ldlang.h"
34 #include <ldgram.h>
35 #include "ldlex.h"
36 #include "ldmisc.h"
37 #include "ldctor.h"
38 #include "ldfile.h"
39 #include "ldemul.h"
40 #include "fnmatch.h"
41 #include "demangle.h"
42 #include "hashtab.h"
43 #include "libbfd.h"
44 #ifdef ENABLE_PLUGINS
45 #include "plugin.h"
46 #endif /* ENABLE_PLUGINS */
47
48 #ifndef offsetof
49 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
50 #endif
51
52 /* Locals variables. */
53 static struct obstack stat_obstack;
54 static struct obstack map_obstack;
55
56 #define obstack_chunk_alloc xmalloc
57 #define obstack_chunk_free free
58 static const char *startup_file;
59 static const char *entry_symbol_default = "start";
60 static bfd_boolean placed_commons = FALSE;
61 static bfd_boolean stripped_excluded_sections = FALSE;
62 static lang_output_section_statement_type *default_common_section;
63 static bfd_boolean map_option_f;
64 static bfd_vma print_dot;
65 static lang_input_statement_type *first_file;
66 static const char *current_target;
67 static lang_statement_list_type statement_list;
68 static struct bfd_hash_table lang_definedness_table;
69 static lang_statement_list_type *stat_save[10];
70 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
71 static struct unique_sections *unique_section_list;
72 static bfd_boolean ldlang_sysrooted_script = FALSE;
73
74 /* Forward declarations. */
75 static void exp_init_os (etree_type *);
76 static void init_map_userdata (bfd *, asection *, void *);
77 static lang_input_statement_type *lookup_name (const char *);
78 static struct bfd_hash_entry *lang_definedness_newfunc
79 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
80 static void insert_undefined (const char *);
81 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
82 static void print_statement (lang_statement_union_type *,
83 lang_output_section_statement_type *);
84 static void print_statement_list (lang_statement_union_type *,
85 lang_output_section_statement_type *);
86 static void print_statements (void);
87 static void print_input_section (asection *, bfd_boolean);
88 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
89 static void lang_record_phdrs (void);
90 static void lang_do_version_exports_section (void);
91 static void lang_finalize_version_expr_head
92 (struct bfd_elf_version_expr_head *);
93
94 /* Exported variables. */
95 const char *output_target;
96 lang_output_section_statement_type *abs_output_section;
97 lang_statement_list_type lang_output_section_statement;
98 lang_statement_list_type *stat_ptr = &statement_list;
99 lang_statement_list_type file_chain = { NULL, NULL };
100 lang_statement_list_type input_file_chain;
101 struct bfd_sym_chain entry_symbol = { NULL, NULL };
102 const char *entry_section = ".text";
103 bfd_boolean entry_from_cmdline;
104 bfd_boolean undef_from_cmdline;
105 bfd_boolean lang_has_input_file = FALSE;
106 bfd_boolean had_output_filename = FALSE;
107 bfd_boolean lang_float_flag = FALSE;
108 bfd_boolean delete_output_file_on_failure = FALSE;
109 struct lang_phdr *lang_phdr_list;
110 struct lang_nocrossrefs *nocrossref_list;
111 bfd_boolean missing_file = FALSE;
112
113 /* Functions that traverse the linker script and might evaluate
114 DEFINED() need to increment this. */
115 int lang_statement_iteration = 0;
116
117 etree_type *base; /* Relocation base - or null */
118
119 /* Return TRUE if the PATTERN argument is a wildcard pattern.
120 Although backslashes are treated specially if a pattern contains
121 wildcards, we do not consider the mere presence of a backslash to
122 be enough to cause the pattern to be treated as a wildcard.
123 That lets us handle DOS filenames more naturally. */
124 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
125
126 #define new_stat(x, y) \
127 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
128
129 #define outside_section_address(q) \
130 ((q)->output_offset + (q)->output_section->vma)
131
132 #define outside_symbol_address(q) \
133 ((q)->value + outside_section_address (q->section))
134
135 #define SECTION_NAME_MAP_LENGTH (16)
136
137 void *
138 stat_alloc (size_t size)
139 {
140 return obstack_alloc (&stat_obstack, size);
141 }
142
143 static int
144 name_match (const char *pattern, const char *name)
145 {
146 if (wildcardp (pattern))
147 return fnmatch (pattern, name, 0);
148 return strcmp (pattern, name);
149 }
150
151 /* If PATTERN is of the form archive:file, return a pointer to the
152 separator. If not, return NULL. */
153
154 static char *
155 archive_path (const char *pattern)
156 {
157 char *p = NULL;
158
159 if (link_info.path_separator == 0)
160 return p;
161
162 p = strchr (pattern, link_info.path_separator);
163 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
164 if (p == NULL || link_info.path_separator != ':')
165 return p;
166
167 /* Assume a match on the second char is part of drive specifier,
168 as in "c:\silly.dos". */
169 if (p == pattern + 1 && ISALPHA (*pattern))
170 p = strchr (p + 1, link_info.path_separator);
171 #endif
172 return p;
173 }
174
175 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
176 return whether F matches FILE_SPEC. */
177
178 static bfd_boolean
179 input_statement_is_archive_path (const char *file_spec, char *sep,
180 lang_input_statement_type *f)
181 {
182 bfd_boolean match = FALSE;
183
184 if ((*(sep + 1) == 0
185 || name_match (sep + 1, f->filename) == 0)
186 && ((sep != file_spec)
187 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
188 {
189 match = TRUE;
190
191 if (sep != file_spec)
192 {
193 const char *aname = f->the_bfd->my_archive->filename;
194 *sep = 0;
195 match = name_match (file_spec, aname) == 0;
196 *sep = link_info.path_separator;
197 }
198 }
199 return match;
200 }
201
202 static bfd_boolean
203 unique_section_p (const asection *sec,
204 const lang_output_section_statement_type *os)
205 {
206 struct unique_sections *unam;
207 const char *secnam;
208
209 if (link_info.relocatable
210 && sec->owner != NULL
211 && bfd_is_group_section (sec->owner, sec))
212 return !(os != NULL
213 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
214
215 secnam = sec->name;
216 for (unam = unique_section_list; unam; unam = unam->next)
217 if (name_match (unam->name, secnam) == 0)
218 return TRUE;
219
220 return FALSE;
221 }
222
223 /* Generic traversal routines for finding matching sections. */
224
225 /* Try processing a section against a wildcard. This just calls
226 the callback unless the filename exclusion list is present
227 and excludes the file. It's hardly ever present so this
228 function is very fast. */
229
230 static void
231 walk_wild_consider_section (lang_wild_statement_type *ptr,
232 lang_input_statement_type *file,
233 asection *s,
234 struct wildcard_list *sec,
235 callback_t callback,
236 void *data)
237 {
238 struct name_list *list_tmp;
239
240 /* Don't process sections from files which were excluded. */
241 for (list_tmp = sec->spec.exclude_name_list;
242 list_tmp;
243 list_tmp = list_tmp->next)
244 {
245 char *p = archive_path (list_tmp->name);
246
247 if (p != NULL)
248 {
249 if (input_statement_is_archive_path (list_tmp->name, p, file))
250 return;
251 }
252
253 else if (name_match (list_tmp->name, file->filename) == 0)
254 return;
255
256 /* FIXME: Perhaps remove the following at some stage? Matching
257 unadorned archives like this was never documented and has
258 been superceded by the archive:path syntax. */
259 else if (file->the_bfd != NULL
260 && file->the_bfd->my_archive != NULL
261 && name_match (list_tmp->name,
262 file->the_bfd->my_archive->filename) == 0)
263 return;
264 }
265
266 (*callback) (ptr, sec, s, file, data);
267 }
268
269 /* Lowest common denominator routine that can handle everything correctly,
270 but slowly. */
271
272 static void
273 walk_wild_section_general (lang_wild_statement_type *ptr,
274 lang_input_statement_type *file,
275 callback_t callback,
276 void *data)
277 {
278 asection *s;
279 struct wildcard_list *sec;
280
281 for (s = file->the_bfd->sections; s != NULL; s = s->next)
282 {
283 sec = ptr->section_list;
284 if (sec == NULL)
285 (*callback) (ptr, sec, s, file, data);
286
287 while (sec != NULL)
288 {
289 bfd_boolean skip = FALSE;
290
291 if (sec->spec.name != NULL)
292 {
293 const char *sname = bfd_get_section_name (file->the_bfd, s);
294
295 skip = name_match (sec->spec.name, sname) != 0;
296 }
297
298 if (!skip)
299 walk_wild_consider_section (ptr, file, s, sec, callback, data);
300
301 sec = sec->next;
302 }
303 }
304 }
305
306 /* Routines to find a single section given its name. If there's more
307 than one section with that name, we report that. */
308
309 typedef struct
310 {
311 asection *found_section;
312 bfd_boolean multiple_sections_found;
313 } section_iterator_callback_data;
314
315 static bfd_boolean
316 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
317 {
318 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
319
320 if (d->found_section != NULL)
321 {
322 d->multiple_sections_found = TRUE;
323 return TRUE;
324 }
325
326 d->found_section = s;
327 return FALSE;
328 }
329
330 static asection *
331 find_section (lang_input_statement_type *file,
332 struct wildcard_list *sec,
333 bfd_boolean *multiple_sections_found)
334 {
335 section_iterator_callback_data cb_data = { NULL, FALSE };
336
337 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
338 section_iterator_callback, &cb_data);
339 *multiple_sections_found = cb_data.multiple_sections_found;
340 return cb_data.found_section;
341 }
342
343 /* Code for handling simple wildcards without going through fnmatch,
344 which can be expensive because of charset translations etc. */
345
346 /* A simple wild is a literal string followed by a single '*',
347 where the literal part is at least 4 characters long. */
348
349 static bfd_boolean
350 is_simple_wild (const char *name)
351 {
352 size_t len = strcspn (name, "*?[");
353 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
354 }
355
356 static bfd_boolean
357 match_simple_wild (const char *pattern, const char *name)
358 {
359 /* The first four characters of the pattern are guaranteed valid
360 non-wildcard characters. So we can go faster. */
361 if (pattern[0] != name[0] || pattern[1] != name[1]
362 || pattern[2] != name[2] || pattern[3] != name[3])
363 return FALSE;
364
365 pattern += 4;
366 name += 4;
367 while (*pattern != '*')
368 if (*name++ != *pattern++)
369 return FALSE;
370
371 return TRUE;
372 }
373
374 /* Compare sections ASEC and BSEC according to SORT. */
375
376 static int
377 compare_section (sort_type sort, asection *asec, asection *bsec)
378 {
379 int ret;
380
381 switch (sort)
382 {
383 default:
384 abort ();
385
386 case by_alignment_name:
387 ret = (bfd_section_alignment (bsec->owner, bsec)
388 - bfd_section_alignment (asec->owner, asec));
389 if (ret)
390 break;
391 /* Fall through. */
392
393 case by_name:
394 ret = strcmp (bfd_get_section_name (asec->owner, asec),
395 bfd_get_section_name (bsec->owner, bsec));
396 break;
397
398 case by_name_alignment:
399 ret = strcmp (bfd_get_section_name (asec->owner, asec),
400 bfd_get_section_name (bsec->owner, bsec));
401 if (ret)
402 break;
403 /* Fall through. */
404
405 case by_alignment:
406 ret = (bfd_section_alignment (bsec->owner, bsec)
407 - bfd_section_alignment (asec->owner, asec));
408 break;
409 }
410
411 return ret;
412 }
413
414 /* Build a Binary Search Tree to sort sections, unlike insertion sort
415 used in wild_sort(). BST is considerably faster if the number of
416 of sections are large. */
417
418 static lang_section_bst_type **
419 wild_sort_fast (lang_wild_statement_type *wild,
420 struct wildcard_list *sec,
421 lang_input_statement_type *file ATTRIBUTE_UNUSED,
422 asection *section)
423 {
424 lang_section_bst_type **tree;
425
426 tree = &wild->tree;
427 if (!wild->filenames_sorted
428 && (sec == NULL || sec->spec.sorted == none))
429 {
430 /* Append at the right end of tree. */
431 while (*tree)
432 tree = &((*tree)->right);
433 return tree;
434 }
435
436 while (*tree)
437 {
438 /* Find the correct node to append this section. */
439 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
440 tree = &((*tree)->left);
441 else
442 tree = &((*tree)->right);
443 }
444
445 return tree;
446 }
447
448 /* Use wild_sort_fast to build a BST to sort sections. */
449
450 static void
451 output_section_callback_fast (lang_wild_statement_type *ptr,
452 struct wildcard_list *sec,
453 asection *section,
454 lang_input_statement_type *file,
455 void *output)
456 {
457 lang_section_bst_type *node;
458 lang_section_bst_type **tree;
459 lang_output_section_statement_type *os;
460
461 os = (lang_output_section_statement_type *) output;
462
463 if (unique_section_p (section, os))
464 return;
465
466 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
467 node->left = 0;
468 node->right = 0;
469 node->section = section;
470
471 tree = wild_sort_fast (ptr, sec, file, section);
472 if (tree != NULL)
473 *tree = node;
474 }
475
476 /* Convert a sorted sections' BST back to list form. */
477
478 static void
479 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
480 lang_section_bst_type *tree,
481 void *output)
482 {
483 if (tree->left)
484 output_section_callback_tree_to_list (ptr, tree->left, output);
485
486 lang_add_section (&ptr->children, tree->section,
487 (lang_output_section_statement_type *) output);
488
489 if (tree->right)
490 output_section_callback_tree_to_list (ptr, tree->right, output);
491
492 free (tree);
493 }
494
495 /* Specialized, optimized routines for handling different kinds of
496 wildcards */
497
498 static void
499 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
500 lang_input_statement_type *file,
501 callback_t callback,
502 void *data)
503 {
504 /* We can just do a hash lookup for the section with the right name.
505 But if that lookup discovers more than one section with the name
506 (should be rare), we fall back to the general algorithm because
507 we would otherwise have to sort the sections to make sure they
508 get processed in the bfd's order. */
509 bfd_boolean multiple_sections_found;
510 struct wildcard_list *sec0 = ptr->handler_data[0];
511 asection *s0 = find_section (file, sec0, &multiple_sections_found);
512
513 if (multiple_sections_found)
514 walk_wild_section_general (ptr, file, callback, data);
515 else if (s0)
516 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
517 }
518
519 static void
520 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
521 lang_input_statement_type *file,
522 callback_t callback,
523 void *data)
524 {
525 asection *s;
526 struct wildcard_list *wildsec0 = ptr->handler_data[0];
527
528 for (s = file->the_bfd->sections; s != NULL; s = s->next)
529 {
530 const char *sname = bfd_get_section_name (file->the_bfd, s);
531 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
532
533 if (!skip)
534 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
535 }
536 }
537
538 static void
539 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
540 lang_input_statement_type *file,
541 callback_t callback,
542 void *data)
543 {
544 asection *s;
545 struct wildcard_list *sec0 = ptr->handler_data[0];
546 struct wildcard_list *wildsec1 = ptr->handler_data[1];
547 bfd_boolean multiple_sections_found;
548 asection *s0 = find_section (file, sec0, &multiple_sections_found);
549
550 if (multiple_sections_found)
551 {
552 walk_wild_section_general (ptr, file, callback, data);
553 return;
554 }
555
556 /* Note that if the section was not found, s0 is NULL and
557 we'll simply never succeed the s == s0 test below. */
558 for (s = file->the_bfd->sections; s != NULL; s = s->next)
559 {
560 /* Recall that in this code path, a section cannot satisfy more
561 than one spec, so if s == s0 then it cannot match
562 wildspec1. */
563 if (s == s0)
564 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
565 else
566 {
567 const char *sname = bfd_get_section_name (file->the_bfd, s);
568 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
569
570 if (!skip)
571 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
572 data);
573 }
574 }
575 }
576
577 static void
578 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
579 lang_input_statement_type *file,
580 callback_t callback,
581 void *data)
582 {
583 asection *s;
584 struct wildcard_list *sec0 = ptr->handler_data[0];
585 struct wildcard_list *wildsec1 = ptr->handler_data[1];
586 struct wildcard_list *wildsec2 = ptr->handler_data[2];
587 bfd_boolean multiple_sections_found;
588 asection *s0 = find_section (file, sec0, &multiple_sections_found);
589
590 if (multiple_sections_found)
591 {
592 walk_wild_section_general (ptr, file, callback, data);
593 return;
594 }
595
596 for (s = file->the_bfd->sections; s != NULL; s = s->next)
597 {
598 if (s == s0)
599 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
600 else
601 {
602 const char *sname = bfd_get_section_name (file->the_bfd, s);
603 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
604
605 if (!skip)
606 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
607 else
608 {
609 skip = !match_simple_wild (wildsec2->spec.name, sname);
610 if (!skip)
611 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
612 data);
613 }
614 }
615 }
616 }
617
618 static void
619 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
620 lang_input_statement_type *file,
621 callback_t callback,
622 void *data)
623 {
624 asection *s;
625 struct wildcard_list *sec0 = ptr->handler_data[0];
626 struct wildcard_list *sec1 = ptr->handler_data[1];
627 struct wildcard_list *wildsec2 = ptr->handler_data[2];
628 struct wildcard_list *wildsec3 = ptr->handler_data[3];
629 bfd_boolean multiple_sections_found;
630 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
631
632 if (multiple_sections_found)
633 {
634 walk_wild_section_general (ptr, file, callback, data);
635 return;
636 }
637
638 s1 = find_section (file, sec1, &multiple_sections_found);
639 if (multiple_sections_found)
640 {
641 walk_wild_section_general (ptr, file, callback, data);
642 return;
643 }
644
645 for (s = file->the_bfd->sections; s != NULL; s = s->next)
646 {
647 if (s == s0)
648 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
649 else
650 if (s == s1)
651 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
652 else
653 {
654 const char *sname = bfd_get_section_name (file->the_bfd, s);
655 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
656 sname);
657
658 if (!skip)
659 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
660 data);
661 else
662 {
663 skip = !match_simple_wild (wildsec3->spec.name, sname);
664 if (!skip)
665 walk_wild_consider_section (ptr, file, s, wildsec3,
666 callback, data);
667 }
668 }
669 }
670 }
671
672 static void
673 walk_wild_section (lang_wild_statement_type *ptr,
674 lang_input_statement_type *file,
675 callback_t callback,
676 void *data)
677 {
678 if (file->just_syms_flag)
679 return;
680
681 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
682 }
683
684 /* Returns TRUE when name1 is a wildcard spec that might match
685 something name2 can match. We're conservative: we return FALSE
686 only if the prefixes of name1 and name2 are different up to the
687 first wildcard character. */
688
689 static bfd_boolean
690 wild_spec_can_overlap (const char *name1, const char *name2)
691 {
692 size_t prefix1_len = strcspn (name1, "?*[");
693 size_t prefix2_len = strcspn (name2, "?*[");
694 size_t min_prefix_len;
695
696 /* Note that if there is no wildcard character, then we treat the
697 terminating 0 as part of the prefix. Thus ".text" won't match
698 ".text." or ".text.*", for example. */
699 if (name1[prefix1_len] == '\0')
700 prefix1_len++;
701 if (name2[prefix2_len] == '\0')
702 prefix2_len++;
703
704 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
705
706 return memcmp (name1, name2, min_prefix_len) == 0;
707 }
708
709 /* Select specialized code to handle various kinds of wildcard
710 statements. */
711
712 static void
713 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
714 {
715 int sec_count = 0;
716 int wild_name_count = 0;
717 struct wildcard_list *sec;
718 int signature;
719 int data_counter;
720
721 ptr->walk_wild_section_handler = walk_wild_section_general;
722 ptr->handler_data[0] = NULL;
723 ptr->handler_data[1] = NULL;
724 ptr->handler_data[2] = NULL;
725 ptr->handler_data[3] = NULL;
726 ptr->tree = NULL;
727
728 /* Count how many wildcard_specs there are, and how many of those
729 actually use wildcards in the name. Also, bail out if any of the
730 wildcard names are NULL. (Can this actually happen?
731 walk_wild_section used to test for it.) And bail out if any
732 of the wildcards are more complex than a simple string
733 ending in a single '*'. */
734 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
735 {
736 ++sec_count;
737 if (sec->spec.name == NULL)
738 return;
739 if (wildcardp (sec->spec.name))
740 {
741 ++wild_name_count;
742 if (!is_simple_wild (sec->spec.name))
743 return;
744 }
745 }
746
747 /* The zero-spec case would be easy to optimize but it doesn't
748 happen in practice. Likewise, more than 4 specs doesn't
749 happen in practice. */
750 if (sec_count == 0 || sec_count > 4)
751 return;
752
753 /* Check that no two specs can match the same section. */
754 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
755 {
756 struct wildcard_list *sec2;
757 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
758 {
759 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
760 return;
761 }
762 }
763
764 signature = (sec_count << 8) + wild_name_count;
765 switch (signature)
766 {
767 case 0x0100:
768 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
769 break;
770 case 0x0101:
771 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
772 break;
773 case 0x0201:
774 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
775 break;
776 case 0x0302:
777 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
778 break;
779 case 0x0402:
780 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
781 break;
782 default:
783 return;
784 }
785
786 /* Now fill the data array with pointers to the specs, first the
787 specs with non-wildcard names, then the specs with wildcard
788 names. It's OK to process the specs in different order from the
789 given order, because we've already determined that no section
790 will match more than one spec. */
791 data_counter = 0;
792 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
793 if (!wildcardp (sec->spec.name))
794 ptr->handler_data[data_counter++] = sec;
795 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
796 if (wildcardp (sec->spec.name))
797 ptr->handler_data[data_counter++] = sec;
798 }
799
800 /* Handle a wild statement for a single file F. */
801
802 static void
803 walk_wild_file (lang_wild_statement_type *s,
804 lang_input_statement_type *f,
805 callback_t callback,
806 void *data)
807 {
808 if (f->the_bfd == NULL
809 || ! bfd_check_format (f->the_bfd, bfd_archive))
810 walk_wild_section (s, f, callback, data);
811 else
812 {
813 bfd *member;
814
815 /* This is an archive file. We must map each member of the
816 archive separately. */
817 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
818 while (member != NULL)
819 {
820 /* When lookup_name is called, it will call the add_symbols
821 entry point for the archive. For each element of the
822 archive which is included, BFD will call ldlang_add_file,
823 which will set the usrdata field of the member to the
824 lang_input_statement. */
825 if (member->usrdata != NULL)
826 {
827 walk_wild_section (s,
828 (lang_input_statement_type *) member->usrdata,
829 callback, data);
830 }
831
832 member = bfd_openr_next_archived_file (f->the_bfd, member);
833 }
834 }
835 }
836
837 static void
838 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
839 {
840 const char *file_spec = s->filename;
841 char *p;
842
843 if (file_spec == NULL)
844 {
845 /* Perform the iteration over all files in the list. */
846 LANG_FOR_EACH_INPUT_STATEMENT (f)
847 {
848 walk_wild_file (s, f, callback, data);
849 }
850 }
851 else if ((p = archive_path (file_spec)) != NULL)
852 {
853 LANG_FOR_EACH_INPUT_STATEMENT (f)
854 {
855 if (input_statement_is_archive_path (file_spec, p, f))
856 walk_wild_file (s, f, callback, data);
857 }
858 }
859 else if (wildcardp (file_spec))
860 {
861 LANG_FOR_EACH_INPUT_STATEMENT (f)
862 {
863 if (fnmatch (file_spec, f->filename, 0) == 0)
864 walk_wild_file (s, f, callback, data);
865 }
866 }
867 else
868 {
869 lang_input_statement_type *f;
870
871 /* Perform the iteration over a single file. */
872 f = lookup_name (file_spec);
873 if (f)
874 walk_wild_file (s, f, callback, data);
875 }
876 }
877
878 /* lang_for_each_statement walks the parse tree and calls the provided
879 function for each node, except those inside output section statements
880 with constraint set to -1. */
881
882 void
883 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
884 lang_statement_union_type *s)
885 {
886 for (; s != NULL; s = s->header.next)
887 {
888 func (s);
889
890 switch (s->header.type)
891 {
892 case lang_constructors_statement_enum:
893 lang_for_each_statement_worker (func, constructor_list.head);
894 break;
895 case lang_output_section_statement_enum:
896 if (s->output_section_statement.constraint != -1)
897 lang_for_each_statement_worker
898 (func, s->output_section_statement.children.head);
899 break;
900 case lang_wild_statement_enum:
901 lang_for_each_statement_worker (func,
902 s->wild_statement.children.head);
903 break;
904 case lang_group_statement_enum:
905 lang_for_each_statement_worker (func,
906 s->group_statement.children.head);
907 break;
908 case lang_data_statement_enum:
909 case lang_reloc_statement_enum:
910 case lang_object_symbols_statement_enum:
911 case lang_output_statement_enum:
912 case lang_target_statement_enum:
913 case lang_input_section_enum:
914 case lang_input_statement_enum:
915 case lang_assignment_statement_enum:
916 case lang_padding_statement_enum:
917 case lang_address_statement_enum:
918 case lang_fill_statement_enum:
919 case lang_insert_statement_enum:
920 break;
921 default:
922 FAIL ();
923 break;
924 }
925 }
926 }
927
928 void
929 lang_for_each_statement (void (*func) (lang_statement_union_type *))
930 {
931 lang_for_each_statement_worker (func, statement_list.head);
932 }
933
934 /*----------------------------------------------------------------------*/
935
936 void
937 lang_list_init (lang_statement_list_type *list)
938 {
939 list->head = NULL;
940 list->tail = &list->head;
941 }
942
943 void
944 push_stat_ptr (lang_statement_list_type *new_ptr)
945 {
946 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
947 abort ();
948 *stat_save_ptr++ = stat_ptr;
949 stat_ptr = new_ptr;
950 }
951
952 void
953 pop_stat_ptr (void)
954 {
955 if (stat_save_ptr <= stat_save)
956 abort ();
957 stat_ptr = *--stat_save_ptr;
958 }
959
960 /* Build a new statement node for the parse tree. */
961
962 static lang_statement_union_type *
963 new_statement (enum statement_enum type,
964 size_t size,
965 lang_statement_list_type *list)
966 {
967 lang_statement_union_type *new_stmt;
968
969 new_stmt = (lang_statement_union_type *) stat_alloc (size);
970 new_stmt->header.type = type;
971 new_stmt->header.next = NULL;
972 lang_statement_append (list, new_stmt, &new_stmt->header.next);
973 return new_stmt;
974 }
975
976 /* Build a new input file node for the language. There are several
977 ways in which we treat an input file, eg, we only look at symbols,
978 or prefix it with a -l etc.
979
980 We can be supplied with requests for input files more than once;
981 they may, for example be split over several lines like foo.o(.text)
982 foo.o(.data) etc, so when asked for a file we check that we haven't
983 got it already so we don't duplicate the bfd. */
984
985 static lang_input_statement_type *
986 new_afile (const char *name,
987 lang_input_file_enum_type file_type,
988 const char *target,
989 bfd_boolean add_to_list)
990 {
991 lang_input_statement_type *p;
992
993 if (add_to_list)
994 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
995 else
996 {
997 p = (lang_input_statement_type *)
998 stat_alloc (sizeof (lang_input_statement_type));
999 p->header.type = lang_input_statement_enum;
1000 p->header.next = NULL;
1001 }
1002
1003 lang_has_input_file = TRUE;
1004 p->target = target;
1005 p->sysrooted = FALSE;
1006
1007 if (file_type == lang_input_file_is_l_enum
1008 && name[0] == ':' && name[1] != '\0')
1009 {
1010 file_type = lang_input_file_is_search_file_enum;
1011 name = name + 1;
1012 }
1013
1014 switch (file_type)
1015 {
1016 case lang_input_file_is_symbols_only_enum:
1017 p->filename = name;
1018 p->is_archive = FALSE;
1019 p->real = TRUE;
1020 p->local_sym_name = name;
1021 p->just_syms_flag = TRUE;
1022 p->search_dirs_flag = FALSE;
1023 break;
1024 case lang_input_file_is_fake_enum:
1025 p->filename = name;
1026 p->is_archive = FALSE;
1027 p->real = FALSE;
1028 p->local_sym_name = name;
1029 p->just_syms_flag = FALSE;
1030 p->search_dirs_flag = FALSE;
1031 break;
1032 case lang_input_file_is_l_enum:
1033 p->is_archive = TRUE;
1034 p->filename = name;
1035 p->real = TRUE;
1036 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1037 p->just_syms_flag = FALSE;
1038 p->search_dirs_flag = TRUE;
1039 break;
1040 case lang_input_file_is_marker_enum:
1041 p->filename = name;
1042 p->is_archive = FALSE;
1043 p->real = FALSE;
1044 p->local_sym_name = name;
1045 p->just_syms_flag = FALSE;
1046 p->search_dirs_flag = TRUE;
1047 break;
1048 case lang_input_file_is_search_file_enum:
1049 p->sysrooted = ldlang_sysrooted_script;
1050 p->filename = name;
1051 p->is_archive = FALSE;
1052 p->real = TRUE;
1053 p->local_sym_name = name;
1054 p->just_syms_flag = FALSE;
1055 p->search_dirs_flag = TRUE;
1056 break;
1057 case lang_input_file_is_file_enum:
1058 p->filename = name;
1059 p->is_archive = FALSE;
1060 p->real = TRUE;
1061 p->local_sym_name = name;
1062 p->just_syms_flag = FALSE;
1063 p->search_dirs_flag = FALSE;
1064 break;
1065 default:
1066 FAIL ();
1067 }
1068 p->the_bfd = NULL;
1069 p->next_real_file = NULL;
1070 p->next = NULL;
1071 p->dynamic = config.dynamic_link;
1072 p->add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
1073 p->add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
1074 p->whole_archive = whole_archive;
1075 p->loaded = FALSE;
1076 p->missing_file = FALSE;
1077
1078 lang_statement_append (&input_file_chain,
1079 (lang_statement_union_type *) p,
1080 &p->next_real_file);
1081 return p;
1082 }
1083
1084 lang_input_statement_type *
1085 lang_add_input_file (const char *name,
1086 lang_input_file_enum_type file_type,
1087 const char *target)
1088 {
1089 return new_afile (name, file_type, target, TRUE);
1090 }
1091
1092 struct out_section_hash_entry
1093 {
1094 struct bfd_hash_entry root;
1095 lang_statement_union_type s;
1096 };
1097
1098 /* The hash table. */
1099
1100 static struct bfd_hash_table output_section_statement_table;
1101
1102 /* Support routines for the hash table used by lang_output_section_find,
1103 initialize the table, fill in an entry and remove the table. */
1104
1105 static struct bfd_hash_entry *
1106 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1107 struct bfd_hash_table *table,
1108 const char *string)
1109 {
1110 lang_output_section_statement_type **nextp;
1111 struct out_section_hash_entry *ret;
1112
1113 if (entry == NULL)
1114 {
1115 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1116 sizeof (*ret));
1117 if (entry == NULL)
1118 return entry;
1119 }
1120
1121 entry = bfd_hash_newfunc (entry, table, string);
1122 if (entry == NULL)
1123 return entry;
1124
1125 ret = (struct out_section_hash_entry *) entry;
1126 memset (&ret->s, 0, sizeof (ret->s));
1127 ret->s.header.type = lang_output_section_statement_enum;
1128 ret->s.output_section_statement.subsection_alignment = -1;
1129 ret->s.output_section_statement.section_alignment = -1;
1130 ret->s.output_section_statement.block_value = 1;
1131 lang_list_init (&ret->s.output_section_statement.children);
1132 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1133
1134 /* For every output section statement added to the list, except the
1135 first one, lang_output_section_statement.tail points to the "next"
1136 field of the last element of the list. */
1137 if (lang_output_section_statement.head != NULL)
1138 ret->s.output_section_statement.prev
1139 = ((lang_output_section_statement_type *)
1140 ((char *) lang_output_section_statement.tail
1141 - offsetof (lang_output_section_statement_type, next)));
1142
1143 /* GCC's strict aliasing rules prevent us from just casting the
1144 address, so we store the pointer in a variable and cast that
1145 instead. */
1146 nextp = &ret->s.output_section_statement.next;
1147 lang_statement_append (&lang_output_section_statement,
1148 &ret->s,
1149 (lang_statement_union_type **) nextp);
1150 return &ret->root;
1151 }
1152
1153 static void
1154 output_section_statement_table_init (void)
1155 {
1156 if (!bfd_hash_table_init_n (&output_section_statement_table,
1157 output_section_statement_newfunc,
1158 sizeof (struct out_section_hash_entry),
1159 61))
1160 einfo (_("%P%F: can not create hash table: %E\n"));
1161 }
1162
1163 static void
1164 output_section_statement_table_free (void)
1165 {
1166 bfd_hash_table_free (&output_section_statement_table);
1167 }
1168
1169 /* Build enough state so that the parser can build its tree. */
1170
1171 void
1172 lang_init (void)
1173 {
1174 obstack_begin (&stat_obstack, 1000);
1175
1176 stat_ptr = &statement_list;
1177
1178 output_section_statement_table_init ();
1179
1180 lang_list_init (stat_ptr);
1181
1182 lang_list_init (&input_file_chain);
1183 lang_list_init (&lang_output_section_statement);
1184 lang_list_init (&file_chain);
1185 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1186 NULL);
1187 abs_output_section =
1188 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1189
1190 abs_output_section->bfd_section = bfd_abs_section_ptr;
1191
1192 /* The value "3" is ad-hoc, somewhat related to the expected number of
1193 DEFINED expressions in a linker script. For most default linker
1194 scripts, there are none. Why a hash table then? Well, it's somewhat
1195 simpler to re-use working machinery than using a linked list in terms
1196 of code-complexity here in ld, besides the initialization which just
1197 looks like other code here. */
1198 if (!bfd_hash_table_init_n (&lang_definedness_table,
1199 lang_definedness_newfunc,
1200 sizeof (struct lang_definedness_hash_entry),
1201 3))
1202 einfo (_("%P%F: can not create hash table: %E\n"));
1203 }
1204
1205 void
1206 lang_finish (void)
1207 {
1208 output_section_statement_table_free ();
1209 }
1210
1211 /*----------------------------------------------------------------------
1212 A region is an area of memory declared with the
1213 MEMORY { name:org=exp, len=exp ... }
1214 syntax.
1215
1216 We maintain a list of all the regions here.
1217
1218 If no regions are specified in the script, then the default is used
1219 which is created when looked up to be the entire data space.
1220
1221 If create is true we are creating a region inside a MEMORY block.
1222 In this case it is probably an error to create a region that has
1223 already been created. If we are not inside a MEMORY block it is
1224 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1225 and so we issue a warning.
1226
1227 Each region has at least one name. The first name is either
1228 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1229 alias names to an existing region within a script with
1230 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1231 region. */
1232
1233 static lang_memory_region_type *lang_memory_region_list;
1234 static lang_memory_region_type **lang_memory_region_list_tail
1235 = &lang_memory_region_list;
1236
1237 lang_memory_region_type *
1238 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1239 {
1240 lang_memory_region_name *n;
1241 lang_memory_region_type *r;
1242 lang_memory_region_type *new_region;
1243
1244 /* NAME is NULL for LMA memspecs if no region was specified. */
1245 if (name == NULL)
1246 return NULL;
1247
1248 for (r = lang_memory_region_list; r != NULL; r = r->next)
1249 for (n = &r->name_list; n != NULL; n = n->next)
1250 if (strcmp (n->name, name) == 0)
1251 {
1252 if (create)
1253 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1254 name);
1255 return r;
1256 }
1257
1258 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1259 einfo (_("%P:%S: warning: memory region `%s' not declared\n"), name);
1260
1261 new_region = (lang_memory_region_type *)
1262 stat_alloc (sizeof (lang_memory_region_type));
1263
1264 new_region->name_list.name = xstrdup (name);
1265 new_region->name_list.next = NULL;
1266 new_region->next = NULL;
1267 new_region->origin = 0;
1268 new_region->length = ~(bfd_size_type) 0;
1269 new_region->current = 0;
1270 new_region->last_os = NULL;
1271 new_region->flags = 0;
1272 new_region->not_flags = 0;
1273 new_region->had_full_message = FALSE;
1274
1275 *lang_memory_region_list_tail = new_region;
1276 lang_memory_region_list_tail = &new_region->next;
1277
1278 return new_region;
1279 }
1280
1281 void
1282 lang_memory_region_alias (const char * alias, const char * region_name)
1283 {
1284 lang_memory_region_name * n;
1285 lang_memory_region_type * r;
1286 lang_memory_region_type * region;
1287
1288 /* The default region must be unique. This ensures that it is not necessary
1289 to iterate through the name list if someone wants the check if a region is
1290 the default memory region. */
1291 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1292 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1293 einfo (_("%F%P:%S: error: alias for default memory region\n"));
1294
1295 /* Look for the target region and check if the alias is not already
1296 in use. */
1297 region = NULL;
1298 for (r = lang_memory_region_list; r != NULL; r = r->next)
1299 for (n = &r->name_list; n != NULL; n = n->next)
1300 {
1301 if (region == NULL && strcmp (n->name, region_name) == 0)
1302 region = r;
1303 if (strcmp (n->name, alias) == 0)
1304 einfo (_("%F%P:%S: error: redefinition of memory region "
1305 "alias `%s'\n"),
1306 alias);
1307 }
1308
1309 /* Check if the target region exists. */
1310 if (region == NULL)
1311 einfo (_("%F%P:%S: error: memory region `%s' "
1312 "for alias `%s' does not exist\n"),
1313 region_name,
1314 alias);
1315
1316 /* Add alias to region name list. */
1317 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1318 n->name = xstrdup (alias);
1319 n->next = region->name_list.next;
1320 region->name_list.next = n;
1321 }
1322
1323 static lang_memory_region_type *
1324 lang_memory_default (asection * section)
1325 {
1326 lang_memory_region_type *p;
1327
1328 flagword sec_flags = section->flags;
1329
1330 /* Override SEC_DATA to mean a writable section. */
1331 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1332 sec_flags |= SEC_DATA;
1333
1334 for (p = lang_memory_region_list; p != NULL; p = p->next)
1335 {
1336 if ((p->flags & sec_flags) != 0
1337 && (p->not_flags & sec_flags) == 0)
1338 {
1339 return p;
1340 }
1341 }
1342 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1343 }
1344
1345 /* Find or create an output_section_statement with the given NAME.
1346 If CONSTRAINT is non-zero match one with that constraint, otherwise
1347 match any non-negative constraint. If CREATE, always make a
1348 new output_section_statement for SPECIAL CONSTRAINT. */
1349
1350 lang_output_section_statement_type *
1351 lang_output_section_statement_lookup (const char *name,
1352 int constraint,
1353 bfd_boolean create)
1354 {
1355 struct out_section_hash_entry *entry;
1356
1357 entry = ((struct out_section_hash_entry *)
1358 bfd_hash_lookup (&output_section_statement_table, name,
1359 create, FALSE));
1360 if (entry == NULL)
1361 {
1362 if (create)
1363 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1364 return NULL;
1365 }
1366
1367 if (entry->s.output_section_statement.name != NULL)
1368 {
1369 /* We have a section of this name, but it might not have the correct
1370 constraint. */
1371 struct out_section_hash_entry *last_ent;
1372
1373 name = entry->s.output_section_statement.name;
1374 if (create && constraint == SPECIAL)
1375 /* Not traversing to the end reverses the order of the second
1376 and subsequent SPECIAL sections in the hash table chain,
1377 but that shouldn't matter. */
1378 last_ent = entry;
1379 else
1380 do
1381 {
1382 if (constraint == entry->s.output_section_statement.constraint
1383 || (constraint == 0
1384 && entry->s.output_section_statement.constraint >= 0))
1385 return &entry->s.output_section_statement;
1386 last_ent = entry;
1387 entry = (struct out_section_hash_entry *) entry->root.next;
1388 }
1389 while (entry != NULL
1390 && name == entry->s.output_section_statement.name);
1391
1392 if (!create)
1393 return NULL;
1394
1395 entry
1396 = ((struct out_section_hash_entry *)
1397 output_section_statement_newfunc (NULL,
1398 &output_section_statement_table,
1399 name));
1400 if (entry == NULL)
1401 {
1402 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1403 return NULL;
1404 }
1405 entry->root = last_ent->root;
1406 last_ent->root.next = &entry->root;
1407 }
1408
1409 entry->s.output_section_statement.name = name;
1410 entry->s.output_section_statement.constraint = constraint;
1411 return &entry->s.output_section_statement;
1412 }
1413
1414 /* Find the next output_section_statement with the same name as OS.
1415 If CONSTRAINT is non-zero, find one with that constraint otherwise
1416 match any non-negative constraint. */
1417
1418 lang_output_section_statement_type *
1419 next_matching_output_section_statement (lang_output_section_statement_type *os,
1420 int constraint)
1421 {
1422 /* All output_section_statements are actually part of a
1423 struct out_section_hash_entry. */
1424 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1425 ((char *) os
1426 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1427 const char *name = os->name;
1428
1429 ASSERT (name == entry->root.string);
1430 do
1431 {
1432 entry = (struct out_section_hash_entry *) entry->root.next;
1433 if (entry == NULL
1434 || name != entry->s.output_section_statement.name)
1435 return NULL;
1436 }
1437 while (constraint != entry->s.output_section_statement.constraint
1438 && (constraint != 0
1439 || entry->s.output_section_statement.constraint < 0));
1440
1441 return &entry->s.output_section_statement;
1442 }
1443
1444 /* A variant of lang_output_section_find used by place_orphan.
1445 Returns the output statement that should precede a new output
1446 statement for SEC. If an exact match is found on certain flags,
1447 sets *EXACT too. */
1448
1449 lang_output_section_statement_type *
1450 lang_output_section_find_by_flags (const asection *sec,
1451 lang_output_section_statement_type **exact,
1452 lang_match_sec_type_func match_type)
1453 {
1454 lang_output_section_statement_type *first, *look, *found;
1455 flagword flags;
1456
1457 /* We know the first statement on this list is *ABS*. May as well
1458 skip it. */
1459 first = &lang_output_section_statement.head->output_section_statement;
1460 first = first->next;
1461
1462 /* First try for an exact match. */
1463 found = NULL;
1464 for (look = first; look; look = look->next)
1465 {
1466 flags = look->flags;
1467 if (look->bfd_section != NULL)
1468 {
1469 flags = look->bfd_section->flags;
1470 if (match_type && !match_type (link_info.output_bfd,
1471 look->bfd_section,
1472 sec->owner, sec))
1473 continue;
1474 }
1475 flags ^= sec->flags;
1476 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1477 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1478 found = look;
1479 }
1480 if (found != NULL)
1481 {
1482 if (exact != NULL)
1483 *exact = found;
1484 return found;
1485 }
1486
1487 if ((sec->flags & SEC_CODE) != 0
1488 && (sec->flags & SEC_ALLOC) != 0)
1489 {
1490 /* Try for a rw code section. */
1491 for (look = first; look; look = look->next)
1492 {
1493 flags = look->flags;
1494 if (look->bfd_section != NULL)
1495 {
1496 flags = look->bfd_section->flags;
1497 if (match_type && !match_type (link_info.output_bfd,
1498 look->bfd_section,
1499 sec->owner, sec))
1500 continue;
1501 }
1502 flags ^= sec->flags;
1503 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1504 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1505 found = look;
1506 }
1507 }
1508 else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0
1509 && (sec->flags & SEC_ALLOC) != 0)
1510 {
1511 /* .rodata can go after .text, .sdata2 after .rodata. */
1512 for (look = first; look; look = look->next)
1513 {
1514 flags = look->flags;
1515 if (look->bfd_section != NULL)
1516 {
1517 flags = look->bfd_section->flags;
1518 if (match_type && !match_type (link_info.output_bfd,
1519 look->bfd_section,
1520 sec->owner, sec))
1521 continue;
1522 }
1523 flags ^= sec->flags;
1524 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1525 | SEC_READONLY))
1526 && !(look->flags & (SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1527 found = look;
1528 }
1529 }
1530 else if ((sec->flags & SEC_SMALL_DATA) != 0
1531 && (sec->flags & SEC_ALLOC) != 0)
1532 {
1533 /* .sdata goes after .data, .sbss after .sdata. */
1534 for (look = first; look; look = look->next)
1535 {
1536 flags = look->flags;
1537 if (look->bfd_section != NULL)
1538 {
1539 flags = look->bfd_section->flags;
1540 if (match_type && !match_type (link_info.output_bfd,
1541 look->bfd_section,
1542 sec->owner, sec))
1543 continue;
1544 }
1545 flags ^= sec->flags;
1546 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1547 | SEC_THREAD_LOCAL))
1548 || ((look->flags & SEC_SMALL_DATA)
1549 && !(sec->flags & SEC_HAS_CONTENTS)))
1550 found = look;
1551 }
1552 }
1553 else if ((sec->flags & SEC_HAS_CONTENTS) != 0
1554 && (sec->flags & SEC_ALLOC) != 0)
1555 {
1556 /* .data goes after .rodata. */
1557 for (look = first; look; look = look->next)
1558 {
1559 flags = look->flags;
1560 if (look->bfd_section != NULL)
1561 {
1562 flags = look->bfd_section->flags;
1563 if (match_type && !match_type (link_info.output_bfd,
1564 look->bfd_section,
1565 sec->owner, sec))
1566 continue;
1567 }
1568 flags ^= sec->flags;
1569 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1570 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1571 found = look;
1572 }
1573 }
1574 else if ((sec->flags & SEC_ALLOC) != 0)
1575 {
1576 /* .bss goes after any other alloc section. */
1577 for (look = first; look; look = look->next)
1578 {
1579 flags = look->flags;
1580 if (look->bfd_section != NULL)
1581 {
1582 flags = look->bfd_section->flags;
1583 if (match_type && !match_type (link_info.output_bfd,
1584 look->bfd_section,
1585 sec->owner, sec))
1586 continue;
1587 }
1588 flags ^= sec->flags;
1589 if (!(flags & SEC_ALLOC))
1590 found = look;
1591 }
1592 }
1593 else
1594 {
1595 /* non-alloc go last. */
1596 for (look = first; look; look = look->next)
1597 {
1598 flags = look->flags;
1599 if (look->bfd_section != NULL)
1600 flags = look->bfd_section->flags;
1601 flags ^= sec->flags;
1602 if (!(flags & SEC_DEBUGGING))
1603 found = look;
1604 }
1605 return found;
1606 }
1607
1608 if (found || !match_type)
1609 return found;
1610
1611 return lang_output_section_find_by_flags (sec, NULL, NULL);
1612 }
1613
1614 /* Find the last output section before given output statement.
1615 Used by place_orphan. */
1616
1617 static asection *
1618 output_prev_sec_find (lang_output_section_statement_type *os)
1619 {
1620 lang_output_section_statement_type *lookup;
1621
1622 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1623 {
1624 if (lookup->constraint < 0)
1625 continue;
1626
1627 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1628 return lookup->bfd_section;
1629 }
1630
1631 return NULL;
1632 }
1633
1634 /* Look for a suitable place for a new output section statement. The
1635 idea is to skip over anything that might be inside a SECTIONS {}
1636 statement in a script, before we find another output section
1637 statement. Assignments to "dot" before an output section statement
1638 are assumed to belong to it, except in two cases; The first
1639 assignment to dot, and assignments before non-alloc sections.
1640 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1641 similar assignments that set the initial address, or we might
1642 insert non-alloc note sections among assignments setting end of
1643 image symbols. */
1644
1645 static lang_statement_union_type **
1646 insert_os_after (lang_output_section_statement_type *after)
1647 {
1648 lang_statement_union_type **where;
1649 lang_statement_union_type **assign = NULL;
1650 bfd_boolean ignore_first;
1651
1652 ignore_first
1653 = after == &lang_output_section_statement.head->output_section_statement;
1654
1655 for (where = &after->header.next;
1656 *where != NULL;
1657 where = &(*where)->header.next)
1658 {
1659 switch ((*where)->header.type)
1660 {
1661 case lang_assignment_statement_enum:
1662 if (assign == NULL)
1663 {
1664 lang_assignment_statement_type *ass;
1665
1666 ass = &(*where)->assignment_statement;
1667 if (ass->exp->type.node_class != etree_assert
1668 && ass->exp->assign.dst[0] == '.'
1669 && ass->exp->assign.dst[1] == 0
1670 && !ignore_first)
1671 assign = where;
1672 }
1673 ignore_first = FALSE;
1674 continue;
1675 case lang_wild_statement_enum:
1676 case lang_input_section_enum:
1677 case lang_object_symbols_statement_enum:
1678 case lang_fill_statement_enum:
1679 case lang_data_statement_enum:
1680 case lang_reloc_statement_enum:
1681 case lang_padding_statement_enum:
1682 case lang_constructors_statement_enum:
1683 assign = NULL;
1684 continue;
1685 case lang_output_section_statement_enum:
1686 if (assign != NULL)
1687 {
1688 asection *s = (*where)->output_section_statement.bfd_section;
1689
1690 if (s == NULL
1691 || s->map_head.s == NULL
1692 || (s->flags & SEC_ALLOC) != 0)
1693 where = assign;
1694 }
1695 break;
1696 case lang_input_statement_enum:
1697 case lang_address_statement_enum:
1698 case lang_target_statement_enum:
1699 case lang_output_statement_enum:
1700 case lang_group_statement_enum:
1701 case lang_insert_statement_enum:
1702 continue;
1703 }
1704 break;
1705 }
1706
1707 return where;
1708 }
1709
1710 lang_output_section_statement_type *
1711 lang_insert_orphan (asection *s,
1712 const char *secname,
1713 int constraint,
1714 lang_output_section_statement_type *after,
1715 struct orphan_save *place,
1716 etree_type *address,
1717 lang_statement_list_type *add_child)
1718 {
1719 lang_statement_list_type add;
1720 const char *ps;
1721 lang_output_section_statement_type *os;
1722 lang_output_section_statement_type **os_tail;
1723
1724 /* If we have found an appropriate place for the output section
1725 statements for this orphan, add them to our own private list,
1726 inserting them later into the global statement list. */
1727 if (after != NULL)
1728 {
1729 lang_list_init (&add);
1730 push_stat_ptr (&add);
1731 }
1732
1733 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1734 address = exp_intop (0);
1735
1736 os_tail = ((lang_output_section_statement_type **)
1737 lang_output_section_statement.tail);
1738 os = lang_enter_output_section_statement (secname, address, normal_section,
1739 NULL, NULL, NULL, constraint);
1740
1741 ps = NULL;
1742 if (config.build_constructors && *os_tail == os)
1743 {
1744 /* If the name of the section is representable in C, then create
1745 symbols to mark the start and the end of the section. */
1746 for (ps = secname; *ps != '\0'; ps++)
1747 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1748 break;
1749 if (*ps == '\0')
1750 {
1751 char *symname;
1752 etree_type *e_align;
1753
1754 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1755 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1756 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1757 e_align = exp_unop (ALIGN_K,
1758 exp_intop ((bfd_vma) 1 << s->alignment_power));
1759 lang_add_assignment (exp_assop ('=', ".", e_align));
1760 lang_add_assignment (exp_provide (symname,
1761 exp_unop (ABSOLUTE,
1762 exp_nameop (NAME, ".")),
1763 FALSE));
1764 }
1765 }
1766
1767 if (add_child == NULL)
1768 add_child = &os->children;
1769 lang_add_section (add_child, s, os);
1770
1771 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1772 {
1773 const char *region = (after->region
1774 ? after->region->name_list.name
1775 : DEFAULT_MEMORY_REGION);
1776 const char *lma_region = (after->lma_region
1777 ? after->lma_region->name_list.name
1778 : NULL);
1779 lang_leave_output_section_statement (NULL, region, after->phdrs,
1780 lma_region);
1781 }
1782 else
1783 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1784 NULL);
1785
1786 if (ps != NULL && *ps == '\0')
1787 {
1788 char *symname;
1789
1790 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1791 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1792 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1793 lang_add_assignment (exp_provide (symname,
1794 exp_nameop (NAME, "."),
1795 FALSE));
1796 }
1797
1798 /* Restore the global list pointer. */
1799 if (after != NULL)
1800 pop_stat_ptr ();
1801
1802 if (after != NULL && os->bfd_section != NULL)
1803 {
1804 asection *snew, *as;
1805
1806 snew = os->bfd_section;
1807
1808 /* Shuffle the bfd section list to make the output file look
1809 neater. This is really only cosmetic. */
1810 if (place->section == NULL
1811 && after != (&lang_output_section_statement.head
1812 ->output_section_statement))
1813 {
1814 asection *bfd_section = after->bfd_section;
1815
1816 /* If the output statement hasn't been used to place any input
1817 sections (and thus doesn't have an output bfd_section),
1818 look for the closest prior output statement having an
1819 output section. */
1820 if (bfd_section == NULL)
1821 bfd_section = output_prev_sec_find (after);
1822
1823 if (bfd_section != NULL && bfd_section != snew)
1824 place->section = &bfd_section->next;
1825 }
1826
1827 if (place->section == NULL)
1828 place->section = &link_info.output_bfd->sections;
1829
1830 as = *place->section;
1831
1832 if (!as)
1833 {
1834 /* Put the section at the end of the list. */
1835
1836 /* Unlink the section. */
1837 bfd_section_list_remove (link_info.output_bfd, snew);
1838
1839 /* Now tack it back on in the right place. */
1840 bfd_section_list_append (link_info.output_bfd, snew);
1841 }
1842 else if (as != snew && as->prev != snew)
1843 {
1844 /* Unlink the section. */
1845 bfd_section_list_remove (link_info.output_bfd, snew);
1846
1847 /* Now tack it back on in the right place. */
1848 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1849 }
1850
1851 /* Save the end of this list. Further ophans of this type will
1852 follow the one we've just added. */
1853 place->section = &snew->next;
1854
1855 /* The following is non-cosmetic. We try to put the output
1856 statements in some sort of reasonable order here, because they
1857 determine the final load addresses of the orphan sections.
1858 In addition, placing output statements in the wrong order may
1859 require extra segments. For instance, given a typical
1860 situation of all read-only sections placed in one segment and
1861 following that a segment containing all the read-write
1862 sections, we wouldn't want to place an orphan read/write
1863 section before or amongst the read-only ones. */
1864 if (add.head != NULL)
1865 {
1866 lang_output_section_statement_type *newly_added_os;
1867
1868 if (place->stmt == NULL)
1869 {
1870 lang_statement_union_type **where = insert_os_after (after);
1871
1872 *add.tail = *where;
1873 *where = add.head;
1874
1875 place->os_tail = &after->next;
1876 }
1877 else
1878 {
1879 /* Put it after the last orphan statement we added. */
1880 *add.tail = *place->stmt;
1881 *place->stmt = add.head;
1882 }
1883
1884 /* Fix the global list pointer if we happened to tack our
1885 new list at the tail. */
1886 if (*stat_ptr->tail == add.head)
1887 stat_ptr->tail = add.tail;
1888
1889 /* Save the end of this list. */
1890 place->stmt = add.tail;
1891
1892 /* Do the same for the list of output section statements. */
1893 newly_added_os = *os_tail;
1894 *os_tail = NULL;
1895 newly_added_os->prev = (lang_output_section_statement_type *)
1896 ((char *) place->os_tail
1897 - offsetof (lang_output_section_statement_type, next));
1898 newly_added_os->next = *place->os_tail;
1899 if (newly_added_os->next != NULL)
1900 newly_added_os->next->prev = newly_added_os;
1901 *place->os_tail = newly_added_os;
1902 place->os_tail = &newly_added_os->next;
1903
1904 /* Fixing the global list pointer here is a little different.
1905 We added to the list in lang_enter_output_section_statement,
1906 trimmed off the new output_section_statment above when
1907 assigning *os_tail = NULL, but possibly added it back in
1908 the same place when assigning *place->os_tail. */
1909 if (*os_tail == NULL)
1910 lang_output_section_statement.tail
1911 = (lang_statement_union_type **) os_tail;
1912 }
1913 }
1914 return os;
1915 }
1916
1917 static void
1918 lang_map_flags (flagword flag)
1919 {
1920 if (flag & SEC_ALLOC)
1921 minfo ("a");
1922
1923 if (flag & SEC_CODE)
1924 minfo ("x");
1925
1926 if (flag & SEC_READONLY)
1927 minfo ("r");
1928
1929 if (flag & SEC_DATA)
1930 minfo ("w");
1931
1932 if (flag & SEC_LOAD)
1933 minfo ("l");
1934 }
1935
1936 void
1937 lang_map (void)
1938 {
1939 lang_memory_region_type *m;
1940 bfd_boolean dis_header_printed = FALSE;
1941 bfd *p;
1942
1943 LANG_FOR_EACH_INPUT_STATEMENT (file)
1944 {
1945 asection *s;
1946
1947 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
1948 || file->just_syms_flag)
1949 continue;
1950
1951 for (s = file->the_bfd->sections; s != NULL; s = s->next)
1952 if ((s->output_section == NULL
1953 || s->output_section->owner != link_info.output_bfd)
1954 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
1955 {
1956 if (! dis_header_printed)
1957 {
1958 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
1959 dis_header_printed = TRUE;
1960 }
1961
1962 print_input_section (s, TRUE);
1963 }
1964 }
1965
1966 minfo (_("\nMemory Configuration\n\n"));
1967 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
1968 _("Name"), _("Origin"), _("Length"), _("Attributes"));
1969
1970 for (m = lang_memory_region_list; m != NULL; m = m->next)
1971 {
1972 char buf[100];
1973 int len;
1974
1975 fprintf (config.map_file, "%-16s ", m->name_list.name);
1976
1977 sprintf_vma (buf, m->origin);
1978 minfo ("0x%s ", buf);
1979 len = strlen (buf);
1980 while (len < 16)
1981 {
1982 print_space ();
1983 ++len;
1984 }
1985
1986 minfo ("0x%V", m->length);
1987 if (m->flags || m->not_flags)
1988 {
1989 #ifndef BFD64
1990 minfo (" ");
1991 #endif
1992 if (m->flags)
1993 {
1994 print_space ();
1995 lang_map_flags (m->flags);
1996 }
1997
1998 if (m->not_flags)
1999 {
2000 minfo (" !");
2001 lang_map_flags (m->not_flags);
2002 }
2003 }
2004
2005 print_nl ();
2006 }
2007
2008 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2009
2010 if (! link_info.reduce_memory_overheads)
2011 {
2012 obstack_begin (&map_obstack, 1000);
2013 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
2014 bfd_map_over_sections (p, init_map_userdata, 0);
2015 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2016 }
2017 lang_statement_iteration ++;
2018 print_statements ();
2019 }
2020
2021 static void
2022 init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED,
2023 asection *sec,
2024 void *data ATTRIBUTE_UNUSED)
2025 {
2026 fat_section_userdata_type *new_data
2027 = ((fat_section_userdata_type *) (stat_alloc
2028 (sizeof (fat_section_userdata_type))));
2029
2030 ASSERT (get_userdata (sec) == NULL);
2031 get_userdata (sec) = new_data;
2032 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
2033 new_data->map_symbol_def_count = 0;
2034 }
2035
2036 static bfd_boolean
2037 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2038 void *info ATTRIBUTE_UNUSED)
2039 {
2040 if (hash_entry->type == bfd_link_hash_defined
2041 || hash_entry->type == bfd_link_hash_defweak)
2042 {
2043 struct fat_user_section_struct *ud;
2044 struct map_symbol_def *def;
2045
2046 ud = (struct fat_user_section_struct *)
2047 get_userdata (hash_entry->u.def.section);
2048 if (! ud)
2049 {
2050 /* ??? What do we have to do to initialize this beforehand? */
2051 /* The first time we get here is bfd_abs_section... */
2052 init_map_userdata (0, hash_entry->u.def.section, 0);
2053 ud = (struct fat_user_section_struct *)
2054 get_userdata (hash_entry->u.def.section);
2055 }
2056 else if (!ud->map_symbol_def_tail)
2057 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2058
2059 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2060 def->entry = hash_entry;
2061 *(ud->map_symbol_def_tail) = def;
2062 ud->map_symbol_def_tail = &def->next;
2063 ud->map_symbol_def_count++;
2064 }
2065 return TRUE;
2066 }
2067
2068 /* Initialize an output section. */
2069
2070 static void
2071 init_os (lang_output_section_statement_type *s, flagword flags)
2072 {
2073 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2074 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2075
2076 if (s->constraint != SPECIAL)
2077 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2078 if (s->bfd_section == NULL)
2079 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2080 s->name, flags);
2081 if (s->bfd_section == NULL)
2082 {
2083 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
2084 link_info.output_bfd->xvec->name, s->name);
2085 }
2086 s->bfd_section->output_section = s->bfd_section;
2087 s->bfd_section->output_offset = 0;
2088
2089 if (!link_info.reduce_memory_overheads)
2090 {
2091 fat_section_userdata_type *new_userdata = (fat_section_userdata_type *)
2092 stat_alloc (sizeof (fat_section_userdata_type));
2093 memset (new_userdata, 0, sizeof (fat_section_userdata_type));
2094 get_userdata (s->bfd_section) = new_userdata;
2095 }
2096
2097 /* If there is a base address, make sure that any sections it might
2098 mention are initialized. */
2099 if (s->addr_tree != NULL)
2100 exp_init_os (s->addr_tree);
2101
2102 if (s->load_base != NULL)
2103 exp_init_os (s->load_base);
2104
2105 /* If supplied an alignment, set it. */
2106 if (s->section_alignment != -1)
2107 s->bfd_section->alignment_power = s->section_alignment;
2108 }
2109
2110 /* Make sure that all output sections mentioned in an expression are
2111 initialized. */
2112
2113 static void
2114 exp_init_os (etree_type *exp)
2115 {
2116 switch (exp->type.node_class)
2117 {
2118 case etree_assign:
2119 case etree_provide:
2120 exp_init_os (exp->assign.src);
2121 break;
2122
2123 case etree_binary:
2124 exp_init_os (exp->binary.lhs);
2125 exp_init_os (exp->binary.rhs);
2126 break;
2127
2128 case etree_trinary:
2129 exp_init_os (exp->trinary.cond);
2130 exp_init_os (exp->trinary.lhs);
2131 exp_init_os (exp->trinary.rhs);
2132 break;
2133
2134 case etree_assert:
2135 exp_init_os (exp->assert_s.child);
2136 break;
2137
2138 case etree_unary:
2139 exp_init_os (exp->unary.child);
2140 break;
2141
2142 case etree_name:
2143 switch (exp->type.node_code)
2144 {
2145 case ADDR:
2146 case LOADADDR:
2147 case SIZEOF:
2148 {
2149 lang_output_section_statement_type *os;
2150
2151 os = lang_output_section_find (exp->name.name);
2152 if (os != NULL && os->bfd_section == NULL)
2153 init_os (os, 0);
2154 }
2155 }
2156 break;
2157
2158 default:
2159 break;
2160 }
2161 }
2162 \f
2163 static void
2164 section_already_linked (bfd *abfd, asection *sec, void *data)
2165 {
2166 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2167
2168 /* If we are only reading symbols from this object, then we want to
2169 discard all sections. */
2170 if (entry->just_syms_flag)
2171 {
2172 bfd_link_just_syms (abfd, sec, &link_info);
2173 return;
2174 }
2175
2176 if (!(abfd->flags & DYNAMIC))
2177 bfd_section_already_linked (abfd, sec, &link_info);
2178 }
2179 \f
2180 /* The wild routines.
2181
2182 These expand statements like *(.text) and foo.o to a list of
2183 explicit actions, like foo.o(.text), bar.o(.text) and
2184 foo.o(.text, .data). */
2185
2186 /* Add SECTION to the output section OUTPUT. Do this by creating a
2187 lang_input_section statement which is placed at PTR. FILE is the
2188 input file which holds SECTION. */
2189
2190 void
2191 lang_add_section (lang_statement_list_type *ptr,
2192 asection *section,
2193 lang_output_section_statement_type *output)
2194 {
2195 flagword flags = section->flags;
2196 bfd_boolean discard;
2197 lang_input_section_type *new_section;
2198
2199 /* Discard sections marked with SEC_EXCLUDE. */
2200 discard = (flags & SEC_EXCLUDE) != 0;
2201
2202 /* Discard input sections which are assigned to a section named
2203 DISCARD_SECTION_NAME. */
2204 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2205 discard = TRUE;
2206
2207 /* Discard debugging sections if we are stripping debugging
2208 information. */
2209 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2210 && (flags & SEC_DEBUGGING) != 0)
2211 discard = TRUE;
2212
2213 if (discard)
2214 {
2215 if (section->output_section == NULL)
2216 {
2217 /* This prevents future calls from assigning this section. */
2218 section->output_section = bfd_abs_section_ptr;
2219 }
2220 return;
2221 }
2222
2223 if (section->output_section != NULL)
2224 return;
2225
2226 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2227 to an output section, because we want to be able to include a
2228 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2229 section (I don't know why we want to do this, but we do).
2230 build_link_order in ldwrite.c handles this case by turning
2231 the embedded SEC_NEVER_LOAD section into a fill. */
2232 flags &= ~ SEC_NEVER_LOAD;
2233
2234 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2235 already been processed. One reason to do this is that on pe
2236 format targets, .text$foo sections go into .text and it's odd
2237 to see .text with SEC_LINK_ONCE set. */
2238
2239 if (!link_info.relocatable)
2240 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2241
2242 switch (output->sectype)
2243 {
2244 case normal_section:
2245 case overlay_section:
2246 break;
2247 case noalloc_section:
2248 flags &= ~SEC_ALLOC;
2249 break;
2250 case noload_section:
2251 flags &= ~SEC_LOAD;
2252 flags |= SEC_NEVER_LOAD;
2253 /* Unfortunately GNU ld has managed to evolve two different
2254 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2255 alloc, no contents section. All others get a noload, noalloc
2256 section. */
2257 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2258 flags &= ~SEC_HAS_CONTENTS;
2259 else
2260 flags &= ~SEC_ALLOC;
2261 break;
2262 }
2263
2264 if (output->bfd_section == NULL)
2265 init_os (output, flags);
2266
2267 /* If SEC_READONLY is not set in the input section, then clear
2268 it from the output section. */
2269 output->bfd_section->flags &= flags | ~SEC_READONLY;
2270
2271 if (output->bfd_section->linker_has_input)
2272 {
2273 /* Only set SEC_READONLY flag on the first input section. */
2274 flags &= ~ SEC_READONLY;
2275
2276 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2277 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2278 != (flags & (SEC_MERGE | SEC_STRINGS))
2279 || ((flags & SEC_MERGE) != 0
2280 && output->bfd_section->entsize != section->entsize))
2281 {
2282 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2283 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2284 }
2285 }
2286 output->bfd_section->flags |= flags;
2287
2288 if (!output->bfd_section->linker_has_input)
2289 {
2290 output->bfd_section->linker_has_input = 1;
2291 /* This must happen after flags have been updated. The output
2292 section may have been created before we saw its first input
2293 section, eg. for a data statement. */
2294 bfd_init_private_section_data (section->owner, section,
2295 link_info.output_bfd,
2296 output->bfd_section,
2297 &link_info);
2298 if ((flags & SEC_MERGE) != 0)
2299 output->bfd_section->entsize = section->entsize;
2300 }
2301
2302 if ((flags & SEC_TIC54X_BLOCK) != 0
2303 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2304 {
2305 /* FIXME: This value should really be obtained from the bfd... */
2306 output->block_value = 128;
2307 }
2308
2309 if (section->alignment_power > output->bfd_section->alignment_power)
2310 output->bfd_section->alignment_power = section->alignment_power;
2311
2312 section->output_section = output->bfd_section;
2313
2314 if (!link_info.relocatable
2315 && !stripped_excluded_sections)
2316 {
2317 asection *s = output->bfd_section->map_tail.s;
2318 output->bfd_section->map_tail.s = section;
2319 section->map_head.s = NULL;
2320 section->map_tail.s = s;
2321 if (s != NULL)
2322 s->map_head.s = section;
2323 else
2324 output->bfd_section->map_head.s = section;
2325 }
2326
2327 /* Add a section reference to the list. */
2328 new_section = new_stat (lang_input_section, ptr);
2329 new_section->section = section;
2330 }
2331
2332 /* Handle wildcard sorting. This returns the lang_input_section which
2333 should follow the one we are going to create for SECTION and FILE,
2334 based on the sorting requirements of WILD. It returns NULL if the
2335 new section should just go at the end of the current list. */
2336
2337 static lang_statement_union_type *
2338 wild_sort (lang_wild_statement_type *wild,
2339 struct wildcard_list *sec,
2340 lang_input_statement_type *file,
2341 asection *section)
2342 {
2343 lang_statement_union_type *l;
2344
2345 if (!wild->filenames_sorted
2346 && (sec == NULL || sec->spec.sorted == none))
2347 return NULL;
2348
2349 for (l = wild->children.head; l != NULL; l = l->header.next)
2350 {
2351 lang_input_section_type *ls;
2352
2353 if (l->header.type != lang_input_section_enum)
2354 continue;
2355 ls = &l->input_section;
2356
2357 /* Sorting by filename takes precedence over sorting by section
2358 name. */
2359
2360 if (wild->filenames_sorted)
2361 {
2362 const char *fn, *ln;
2363 bfd_boolean fa, la;
2364 int i;
2365
2366 /* The PE support for the .idata section as generated by
2367 dlltool assumes that files will be sorted by the name of
2368 the archive and then the name of the file within the
2369 archive. */
2370
2371 if (file->the_bfd != NULL
2372 && bfd_my_archive (file->the_bfd) != NULL)
2373 {
2374 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2375 fa = TRUE;
2376 }
2377 else
2378 {
2379 fn = file->filename;
2380 fa = FALSE;
2381 }
2382
2383 if (bfd_my_archive (ls->section->owner) != NULL)
2384 {
2385 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2386 la = TRUE;
2387 }
2388 else
2389 {
2390 ln = ls->section->owner->filename;
2391 la = FALSE;
2392 }
2393
2394 i = strcmp (fn, ln);
2395 if (i > 0)
2396 continue;
2397 else if (i < 0)
2398 break;
2399
2400 if (fa || la)
2401 {
2402 if (fa)
2403 fn = file->filename;
2404 if (la)
2405 ln = ls->section->owner->filename;
2406
2407 i = strcmp (fn, ln);
2408 if (i > 0)
2409 continue;
2410 else if (i < 0)
2411 break;
2412 }
2413 }
2414
2415 /* Here either the files are not sorted by name, or we are
2416 looking at the sections for this file. */
2417
2418 if (sec != NULL && sec->spec.sorted != none)
2419 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2420 break;
2421 }
2422
2423 return l;
2424 }
2425
2426 /* Expand a wild statement for a particular FILE. SECTION may be
2427 NULL, in which case it is a wild card. */
2428
2429 static void
2430 output_section_callback (lang_wild_statement_type *ptr,
2431 struct wildcard_list *sec,
2432 asection *section,
2433 lang_input_statement_type *file,
2434 void *output)
2435 {
2436 lang_statement_union_type *before;
2437 lang_output_section_statement_type *os;
2438
2439 os = (lang_output_section_statement_type *) output;
2440
2441 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2442 if (unique_section_p (section, os))
2443 return;
2444
2445 before = wild_sort (ptr, sec, file, section);
2446
2447 /* Here BEFORE points to the lang_input_section which
2448 should follow the one we are about to add. If BEFORE
2449 is NULL, then the section should just go at the end
2450 of the current list. */
2451
2452 if (before == NULL)
2453 lang_add_section (&ptr->children, section, os);
2454 else
2455 {
2456 lang_statement_list_type list;
2457 lang_statement_union_type **pp;
2458
2459 lang_list_init (&list);
2460 lang_add_section (&list, section, os);
2461
2462 /* If we are discarding the section, LIST.HEAD will
2463 be NULL. */
2464 if (list.head != NULL)
2465 {
2466 ASSERT (list.head->header.next == NULL);
2467
2468 for (pp = &ptr->children.head;
2469 *pp != before;
2470 pp = &(*pp)->header.next)
2471 ASSERT (*pp != NULL);
2472
2473 list.head->header.next = *pp;
2474 *pp = list.head;
2475 }
2476 }
2477 }
2478
2479 /* Check if all sections in a wild statement for a particular FILE
2480 are readonly. */
2481
2482 static void
2483 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2484 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2485 asection *section,
2486 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2487 void *output)
2488 {
2489 lang_output_section_statement_type *os;
2490
2491 os = (lang_output_section_statement_type *) output;
2492
2493 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2494 if (unique_section_p (section, os))
2495 return;
2496
2497 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2498 os->all_input_readonly = FALSE;
2499 }
2500
2501 /* This is passed a file name which must have been seen already and
2502 added to the statement tree. We will see if it has been opened
2503 already and had its symbols read. If not then we'll read it. */
2504
2505 static lang_input_statement_type *
2506 lookup_name (const char *name)
2507 {
2508 lang_input_statement_type *search;
2509
2510 for (search = (lang_input_statement_type *) input_file_chain.head;
2511 search != NULL;
2512 search = (lang_input_statement_type *) search->next_real_file)
2513 {
2514 /* Use the local_sym_name as the name of the file that has
2515 already been loaded as filename might have been transformed
2516 via the search directory lookup mechanism. */
2517 const char *filename = search->local_sym_name;
2518
2519 if (filename != NULL
2520 && strcmp (filename, name) == 0)
2521 break;
2522 }
2523
2524 if (search == NULL)
2525 search = new_afile (name, lang_input_file_is_search_file_enum,
2526 default_target, FALSE);
2527
2528 /* If we have already added this file, or this file is not real
2529 don't add this file. */
2530 if (search->loaded || !search->real)
2531 return search;
2532
2533 if (! load_symbols (search, NULL))
2534 return NULL;
2535
2536 return search;
2537 }
2538
2539 /* Save LIST as a list of libraries whose symbols should not be exported. */
2540
2541 struct excluded_lib
2542 {
2543 char *name;
2544 struct excluded_lib *next;
2545 };
2546 static struct excluded_lib *excluded_libs;
2547
2548 void
2549 add_excluded_libs (const char *list)
2550 {
2551 const char *p = list, *end;
2552
2553 while (*p != '\0')
2554 {
2555 struct excluded_lib *entry;
2556 end = strpbrk (p, ",:");
2557 if (end == NULL)
2558 end = p + strlen (p);
2559 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2560 entry->next = excluded_libs;
2561 entry->name = (char *) xmalloc (end - p + 1);
2562 memcpy (entry->name, p, end - p);
2563 entry->name[end - p] = '\0';
2564 excluded_libs = entry;
2565 if (*end == '\0')
2566 break;
2567 p = end + 1;
2568 }
2569 }
2570
2571 static void
2572 check_excluded_libs (bfd *abfd)
2573 {
2574 struct excluded_lib *lib = excluded_libs;
2575
2576 while (lib)
2577 {
2578 int len = strlen (lib->name);
2579 const char *filename = lbasename (abfd->filename);
2580
2581 if (strcmp (lib->name, "ALL") == 0)
2582 {
2583 abfd->no_export = TRUE;
2584 return;
2585 }
2586
2587 if (strncmp (lib->name, filename, len) == 0
2588 && (filename[len] == '\0'
2589 || (filename[len] == '.' && filename[len + 1] == 'a'
2590 && filename[len + 2] == '\0')))
2591 {
2592 abfd->no_export = TRUE;
2593 return;
2594 }
2595
2596 lib = lib->next;
2597 }
2598 }
2599
2600 /* Get the symbols for an input file. */
2601
2602 bfd_boolean
2603 load_symbols (lang_input_statement_type *entry,
2604 lang_statement_list_type *place)
2605 {
2606 char **matching;
2607
2608 if (entry->loaded)
2609 return TRUE;
2610
2611 ldfile_open_file (entry);
2612
2613 /* Do not process further if the file was missing. */
2614 if (entry->missing_file)
2615 return TRUE;
2616
2617 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2618 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2619 {
2620 bfd_error_type err;
2621 bfd_boolean save_ldlang_sysrooted_script;
2622 bfd_boolean save_add_DT_NEEDED_for_regular;
2623 bfd_boolean save_add_DT_NEEDED_for_dynamic;
2624 bfd_boolean save_whole_archive;
2625
2626 err = bfd_get_error ();
2627
2628 /* See if the emulation has some special knowledge. */
2629 if (ldemul_unrecognized_file (entry))
2630 return TRUE;
2631
2632 if (err == bfd_error_file_ambiguously_recognized)
2633 {
2634 char **p;
2635
2636 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2637 einfo (_("%B: matching formats:"), entry->the_bfd);
2638 for (p = matching; *p != NULL; p++)
2639 einfo (" %s", *p);
2640 einfo ("%F\n");
2641 }
2642 else if (err != bfd_error_file_not_recognized
2643 || place == NULL)
2644 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2645
2646 bfd_close (entry->the_bfd);
2647 entry->the_bfd = NULL;
2648
2649 /* Try to interpret the file as a linker script. */
2650 ldfile_open_command_file (entry->filename);
2651
2652 push_stat_ptr (place);
2653 save_ldlang_sysrooted_script = ldlang_sysrooted_script;
2654 ldlang_sysrooted_script = entry->sysrooted;
2655 save_add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
2656 add_DT_NEEDED_for_regular = entry->add_DT_NEEDED_for_regular;
2657 save_add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
2658 add_DT_NEEDED_for_dynamic = entry->add_DT_NEEDED_for_dynamic;
2659 save_whole_archive = whole_archive;
2660 whole_archive = entry->whole_archive;
2661
2662 ldfile_assumed_script = TRUE;
2663 parser_input = input_script;
2664 /* We want to use the same -Bdynamic/-Bstatic as the one for
2665 ENTRY. */
2666 config.dynamic_link = entry->dynamic;
2667 yyparse ();
2668 ldfile_assumed_script = FALSE;
2669
2670 ldlang_sysrooted_script = save_ldlang_sysrooted_script;
2671 add_DT_NEEDED_for_regular = save_add_DT_NEEDED_for_regular;
2672 add_DT_NEEDED_for_dynamic = save_add_DT_NEEDED_for_dynamic;
2673 whole_archive = save_whole_archive;
2674 pop_stat_ptr ();
2675
2676 return TRUE;
2677 }
2678
2679 if (ldemul_recognized_file (entry))
2680 return TRUE;
2681
2682 /* We don't call ldlang_add_file for an archive. Instead, the
2683 add_symbols entry point will call ldlang_add_file, via the
2684 add_archive_element callback, for each element of the archive
2685 which is used. */
2686 switch (bfd_get_format (entry->the_bfd))
2687 {
2688 default:
2689 break;
2690
2691 case bfd_object:
2692 ldlang_add_file (entry);
2693 if (trace_files || trace_file_tries)
2694 info_msg ("%I\n", entry);
2695 break;
2696
2697 case bfd_archive:
2698 check_excluded_libs (entry->the_bfd);
2699
2700 if (entry->whole_archive)
2701 {
2702 bfd *member = NULL;
2703 bfd_boolean loaded = TRUE;
2704
2705 for (;;)
2706 {
2707 bfd *subsbfd;
2708 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2709
2710 if (member == NULL)
2711 break;
2712
2713 if (! bfd_check_format (member, bfd_object))
2714 {
2715 einfo (_("%F%B: member %B in archive is not an object\n"),
2716 entry->the_bfd, member);
2717 loaded = FALSE;
2718 }
2719
2720 subsbfd = NULL;
2721 if (! ((*link_info.callbacks->add_archive_element)
2722 (&link_info, member, "--whole-archive", &subsbfd)))
2723 abort ();
2724
2725 /* Potentially, the add_archive_element hook may have set a
2726 substitute BFD for us. */
2727 if (! bfd_link_add_symbols (subsbfd ? subsbfd : member,
2728 &link_info))
2729 {
2730 einfo (_("%F%B: could not read symbols: %E\n"), member);
2731 loaded = FALSE;
2732 }
2733 }
2734
2735 entry->loaded = loaded;
2736 return loaded;
2737 }
2738 break;
2739 }
2740
2741 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2742 entry->loaded = TRUE;
2743 else
2744 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2745
2746 return entry->loaded;
2747 }
2748
2749 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2750 may be NULL, indicating that it is a wildcard. Separate
2751 lang_input_section statements are created for each part of the
2752 expansion; they are added after the wild statement S. OUTPUT is
2753 the output section. */
2754
2755 static void
2756 wild (lang_wild_statement_type *s,
2757 const char *target ATTRIBUTE_UNUSED,
2758 lang_output_section_statement_type *output)
2759 {
2760 struct wildcard_list *sec;
2761
2762 if (s->handler_data[0]
2763 && s->handler_data[0]->spec.sorted == by_name
2764 && !s->filenames_sorted)
2765 {
2766 lang_section_bst_type *tree;
2767
2768 walk_wild (s, output_section_callback_fast, output);
2769
2770 tree = s->tree;
2771 if (tree)
2772 {
2773 output_section_callback_tree_to_list (s, tree, output);
2774 s->tree = NULL;
2775 }
2776 }
2777 else
2778 walk_wild (s, output_section_callback, output);
2779
2780 if (default_common_section == NULL)
2781 for (sec = s->section_list; sec != NULL; sec = sec->next)
2782 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2783 {
2784 /* Remember the section that common is going to in case we
2785 later get something which doesn't know where to put it. */
2786 default_common_section = output;
2787 break;
2788 }
2789 }
2790
2791 /* Return TRUE iff target is the sought target. */
2792
2793 static int
2794 get_target (const bfd_target *target, void *data)
2795 {
2796 const char *sought = (const char *) data;
2797
2798 return strcmp (target->name, sought) == 0;
2799 }
2800
2801 /* Like strcpy() but convert to lower case as well. */
2802
2803 static void
2804 stricpy (char *dest, char *src)
2805 {
2806 char c;
2807
2808 while ((c = *src++) != 0)
2809 *dest++ = TOLOWER (c);
2810
2811 *dest = 0;
2812 }
2813
2814 /* Remove the first occurrence of needle (if any) in haystack
2815 from haystack. */
2816
2817 static void
2818 strcut (char *haystack, char *needle)
2819 {
2820 haystack = strstr (haystack, needle);
2821
2822 if (haystack)
2823 {
2824 char *src;
2825
2826 for (src = haystack + strlen (needle); *src;)
2827 *haystack++ = *src++;
2828
2829 *haystack = 0;
2830 }
2831 }
2832
2833 /* Compare two target format name strings.
2834 Return a value indicating how "similar" they are. */
2835
2836 static int
2837 name_compare (char *first, char *second)
2838 {
2839 char *copy1;
2840 char *copy2;
2841 int result;
2842
2843 copy1 = (char *) xmalloc (strlen (first) + 1);
2844 copy2 = (char *) xmalloc (strlen (second) + 1);
2845
2846 /* Convert the names to lower case. */
2847 stricpy (copy1, first);
2848 stricpy (copy2, second);
2849
2850 /* Remove size and endian strings from the name. */
2851 strcut (copy1, "big");
2852 strcut (copy1, "little");
2853 strcut (copy2, "big");
2854 strcut (copy2, "little");
2855
2856 /* Return a value based on how many characters match,
2857 starting from the beginning. If both strings are
2858 the same then return 10 * their length. */
2859 for (result = 0; copy1[result] == copy2[result]; result++)
2860 if (copy1[result] == 0)
2861 {
2862 result *= 10;
2863 break;
2864 }
2865
2866 free (copy1);
2867 free (copy2);
2868
2869 return result;
2870 }
2871
2872 /* Set by closest_target_match() below. */
2873 static const bfd_target *winner;
2874
2875 /* Scan all the valid bfd targets looking for one that has the endianness
2876 requirement that was specified on the command line, and is the nearest
2877 match to the original output target. */
2878
2879 static int
2880 closest_target_match (const bfd_target *target, void *data)
2881 {
2882 const bfd_target *original = (const bfd_target *) data;
2883
2884 if (command_line.endian == ENDIAN_BIG
2885 && target->byteorder != BFD_ENDIAN_BIG)
2886 return 0;
2887
2888 if (command_line.endian == ENDIAN_LITTLE
2889 && target->byteorder != BFD_ENDIAN_LITTLE)
2890 return 0;
2891
2892 /* Must be the same flavour. */
2893 if (target->flavour != original->flavour)
2894 return 0;
2895
2896 /* Ignore generic big and little endian elf vectors. */
2897 if (strcmp (target->name, "elf32-big") == 0
2898 || strcmp (target->name, "elf64-big") == 0
2899 || strcmp (target->name, "elf32-little") == 0
2900 || strcmp (target->name, "elf64-little") == 0)
2901 return 0;
2902
2903 /* If we have not found a potential winner yet, then record this one. */
2904 if (winner == NULL)
2905 {
2906 winner = target;
2907 return 0;
2908 }
2909
2910 /* Oh dear, we now have two potential candidates for a successful match.
2911 Compare their names and choose the better one. */
2912 if (name_compare (target->name, original->name)
2913 > name_compare (winner->name, original->name))
2914 winner = target;
2915
2916 /* Keep on searching until wqe have checked them all. */
2917 return 0;
2918 }
2919
2920 /* Return the BFD target format of the first input file. */
2921
2922 static char *
2923 get_first_input_target (void)
2924 {
2925 char *target = NULL;
2926
2927 LANG_FOR_EACH_INPUT_STATEMENT (s)
2928 {
2929 if (s->header.type == lang_input_statement_enum
2930 && s->real)
2931 {
2932 ldfile_open_file (s);
2933
2934 if (s->the_bfd != NULL
2935 && bfd_check_format (s->the_bfd, bfd_object))
2936 {
2937 target = bfd_get_target (s->the_bfd);
2938
2939 if (target != NULL)
2940 break;
2941 }
2942 }
2943 }
2944
2945 return target;
2946 }
2947
2948 const char *
2949 lang_get_output_target (void)
2950 {
2951 const char *target;
2952
2953 /* Has the user told us which output format to use? */
2954 if (output_target != NULL)
2955 return output_target;
2956
2957 /* No - has the current target been set to something other than
2958 the default? */
2959 if (current_target != default_target)
2960 return current_target;
2961
2962 /* No - can we determine the format of the first input file? */
2963 target = get_first_input_target ();
2964 if (target != NULL)
2965 return target;
2966
2967 /* Failed - use the default output target. */
2968 return default_target;
2969 }
2970
2971 /* Open the output file. */
2972
2973 static void
2974 open_output (const char *name)
2975 {
2976 output_target = lang_get_output_target ();
2977
2978 /* Has the user requested a particular endianness on the command
2979 line? */
2980 if (command_line.endian != ENDIAN_UNSET)
2981 {
2982 const bfd_target *target;
2983 enum bfd_endian desired_endian;
2984
2985 /* Get the chosen target. */
2986 target = bfd_search_for_target (get_target, (void *) output_target);
2987
2988 /* If the target is not supported, we cannot do anything. */
2989 if (target != NULL)
2990 {
2991 if (command_line.endian == ENDIAN_BIG)
2992 desired_endian = BFD_ENDIAN_BIG;
2993 else
2994 desired_endian = BFD_ENDIAN_LITTLE;
2995
2996 /* See if the target has the wrong endianness. This should
2997 not happen if the linker script has provided big and
2998 little endian alternatives, but some scrips don't do
2999 this. */
3000 if (target->byteorder != desired_endian)
3001 {
3002 /* If it does, then see if the target provides
3003 an alternative with the correct endianness. */
3004 if (target->alternative_target != NULL
3005 && (target->alternative_target->byteorder == desired_endian))
3006 output_target = target->alternative_target->name;
3007 else
3008 {
3009 /* Try to find a target as similar as possible to
3010 the default target, but which has the desired
3011 endian characteristic. */
3012 bfd_search_for_target (closest_target_match,
3013 (void *) target);
3014
3015 /* Oh dear - we could not find any targets that
3016 satisfy our requirements. */
3017 if (winner == NULL)
3018 einfo (_("%P: warning: could not find any targets"
3019 " that match endianness requirement\n"));
3020 else
3021 output_target = winner->name;
3022 }
3023 }
3024 }
3025 }
3026
3027 link_info.output_bfd = bfd_openw (name, output_target);
3028
3029 if (link_info.output_bfd == NULL)
3030 {
3031 if (bfd_get_error () == bfd_error_invalid_target)
3032 einfo (_("%P%F: target %s not found\n"), output_target);
3033
3034 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3035 }
3036
3037 delete_output_file_on_failure = TRUE;
3038
3039 if (! bfd_set_format (link_info.output_bfd, bfd_object))
3040 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3041 if (! bfd_set_arch_mach (link_info.output_bfd,
3042 ldfile_output_architecture,
3043 ldfile_output_machine))
3044 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3045
3046 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3047 if (link_info.hash == NULL)
3048 einfo (_("%P%F: can not create hash table: %E\n"));
3049
3050 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3051 }
3052
3053 static void
3054 ldlang_open_output (lang_statement_union_type *statement)
3055 {
3056 switch (statement->header.type)
3057 {
3058 case lang_output_statement_enum:
3059 ASSERT (link_info.output_bfd == NULL);
3060 open_output (statement->output_statement.name);
3061 ldemul_set_output_arch ();
3062 if (config.magic_demand_paged && !link_info.relocatable)
3063 link_info.output_bfd->flags |= D_PAGED;
3064 else
3065 link_info.output_bfd->flags &= ~D_PAGED;
3066 if (config.text_read_only)
3067 link_info.output_bfd->flags |= WP_TEXT;
3068 else
3069 link_info.output_bfd->flags &= ~WP_TEXT;
3070 if (link_info.traditional_format)
3071 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3072 else
3073 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3074 break;
3075
3076 case lang_target_statement_enum:
3077 current_target = statement->target_statement.target;
3078 break;
3079 default:
3080 break;
3081 }
3082 }
3083
3084 /* Convert between addresses in bytes and sizes in octets.
3085 For currently supported targets, octets_per_byte is always a power
3086 of two, so we can use shifts. */
3087 #define TO_ADDR(X) ((X) >> opb_shift)
3088 #define TO_SIZE(X) ((X) << opb_shift)
3089
3090 /* Support the above. */
3091 static unsigned int opb_shift = 0;
3092
3093 static void
3094 init_opb (void)
3095 {
3096 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3097 ldfile_output_machine);
3098 opb_shift = 0;
3099 if (x > 1)
3100 while ((x & 1) == 0)
3101 {
3102 x >>= 1;
3103 ++opb_shift;
3104 }
3105 ASSERT (x == 1);
3106 }
3107
3108 /* Open all the input files. */
3109
3110 static void
3111 open_input_bfds (lang_statement_union_type *s, bfd_boolean force)
3112 {
3113 for (; s != NULL; s = s->header.next)
3114 {
3115 switch (s->header.type)
3116 {
3117 case lang_constructors_statement_enum:
3118 open_input_bfds (constructor_list.head, force);
3119 break;
3120 case lang_output_section_statement_enum:
3121 open_input_bfds (s->output_section_statement.children.head, force);
3122 break;
3123 case lang_wild_statement_enum:
3124 /* Maybe we should load the file's symbols. */
3125 if (s->wild_statement.filename
3126 && !wildcardp (s->wild_statement.filename)
3127 && !archive_path (s->wild_statement.filename))
3128 lookup_name (s->wild_statement.filename);
3129 open_input_bfds (s->wild_statement.children.head, force);
3130 break;
3131 case lang_group_statement_enum:
3132 {
3133 struct bfd_link_hash_entry *undefs;
3134
3135 /* We must continually search the entries in the group
3136 until no new symbols are added to the list of undefined
3137 symbols. */
3138
3139 do
3140 {
3141 undefs = link_info.hash->undefs_tail;
3142 open_input_bfds (s->group_statement.children.head, TRUE);
3143 }
3144 while (undefs != link_info.hash->undefs_tail);
3145 }
3146 break;
3147 case lang_target_statement_enum:
3148 current_target = s->target_statement.target;
3149 break;
3150 case lang_input_statement_enum:
3151 if (s->input_statement.real)
3152 {
3153 lang_statement_union_type **os_tail;
3154 lang_statement_list_type add;
3155
3156 s->input_statement.target = current_target;
3157
3158 /* If we are being called from within a group, and this
3159 is an archive which has already been searched, then
3160 force it to be researched unless the whole archive
3161 has been loaded already. */
3162 if (force
3163 && !s->input_statement.whole_archive
3164 && s->input_statement.loaded
3165 && bfd_check_format (s->input_statement.the_bfd,
3166 bfd_archive))
3167 s->input_statement.loaded = FALSE;
3168
3169 os_tail = lang_output_section_statement.tail;
3170 lang_list_init (&add);
3171
3172 if (! load_symbols (&s->input_statement, &add))
3173 config.make_executable = FALSE;
3174
3175 if (add.head != NULL)
3176 {
3177 /* If this was a script with output sections then
3178 tack any added statements on to the end of the
3179 list. This avoids having to reorder the output
3180 section statement list. Very likely the user
3181 forgot -T, and whatever we do here will not meet
3182 naive user expectations. */
3183 if (os_tail != lang_output_section_statement.tail)
3184 {
3185 einfo (_("%P: warning: %s contains output sections;"
3186 " did you forget -T?\n"),
3187 s->input_statement.filename);
3188 *stat_ptr->tail = add.head;
3189 stat_ptr->tail = add.tail;
3190 }
3191 else
3192 {
3193 *add.tail = s->header.next;
3194 s->header.next = add.head;
3195 }
3196 }
3197 }
3198 break;
3199 default:
3200 break;
3201 }
3202 }
3203
3204 /* Exit if any of the files were missing. */
3205 if (missing_file)
3206 einfo ("%F");
3207 }
3208
3209 /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
3210
3211 void
3212 lang_track_definedness (const char *name)
3213 {
3214 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
3215 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
3216 }
3217
3218 /* New-function for the definedness hash table. */
3219
3220 static struct bfd_hash_entry *
3221 lang_definedness_newfunc (struct bfd_hash_entry *entry,
3222 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
3223 const char *name ATTRIBUTE_UNUSED)
3224 {
3225 struct lang_definedness_hash_entry *ret
3226 = (struct lang_definedness_hash_entry *) entry;
3227
3228 if (ret == NULL)
3229 ret = (struct lang_definedness_hash_entry *)
3230 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3231
3232 if (ret == NULL)
3233 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3234
3235 ret->iteration = -1;
3236 return &ret->root;
3237 }
3238
3239 /* Return the iteration when the definition of NAME was last updated. A
3240 value of -1 means that the symbol is not defined in the linker script
3241 or the command line, but may be defined in the linker symbol table. */
3242
3243 int
3244 lang_symbol_definition_iteration (const char *name)
3245 {
3246 struct lang_definedness_hash_entry *defentry
3247 = (struct lang_definedness_hash_entry *)
3248 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3249
3250 /* We've already created this one on the presence of DEFINED in the
3251 script, so it can't be NULL unless something is borked elsewhere in
3252 the code. */
3253 if (defentry == NULL)
3254 FAIL ();
3255
3256 return defentry->iteration;
3257 }
3258
3259 /* Update the definedness state of NAME. */
3260
3261 void
3262 lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3263 {
3264 struct lang_definedness_hash_entry *defentry
3265 = (struct lang_definedness_hash_entry *)
3266 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3267
3268 /* We don't keep track of symbols not tested with DEFINED. */
3269 if (defentry == NULL)
3270 return;
3271
3272 /* If the symbol was already defined, and not from an earlier statement
3273 iteration, don't update the definedness iteration, because that'd
3274 make the symbol seem defined in the linker script at this point, and
3275 it wasn't; it was defined in some object. If we do anyway, DEFINED
3276 would start to yield false before this point and the construct "sym =
3277 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3278 in an object. */
3279 if (h->type != bfd_link_hash_undefined
3280 && h->type != bfd_link_hash_common
3281 && h->type != bfd_link_hash_new
3282 && defentry->iteration == -1)
3283 return;
3284
3285 defentry->iteration = lang_statement_iteration;
3286 }
3287
3288 /* Add the supplied name to the symbol table as an undefined reference.
3289 This is a two step process as the symbol table doesn't even exist at
3290 the time the ld command line is processed. First we put the name
3291 on a list, then, once the output file has been opened, transfer the
3292 name to the symbol table. */
3293
3294 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3295
3296 #define ldlang_undef_chain_list_head entry_symbol.next
3297
3298 void
3299 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3300 {
3301 ldlang_undef_chain_list_type *new_undef;
3302
3303 undef_from_cmdline = undef_from_cmdline || cmdline;
3304 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3305 new_undef->next = ldlang_undef_chain_list_head;
3306 ldlang_undef_chain_list_head = new_undef;
3307
3308 new_undef->name = xstrdup (name);
3309
3310 if (link_info.output_bfd != NULL)
3311 insert_undefined (new_undef->name);
3312 }
3313
3314 /* Insert NAME as undefined in the symbol table. */
3315
3316 static void
3317 insert_undefined (const char *name)
3318 {
3319 struct bfd_link_hash_entry *h;
3320
3321 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3322 if (h == NULL)
3323 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3324 if (h->type == bfd_link_hash_new)
3325 {
3326 h->type = bfd_link_hash_undefined;
3327 h->u.undef.abfd = NULL;
3328 bfd_link_add_undef (link_info.hash, h);
3329 }
3330 }
3331
3332 /* Run through the list of undefineds created above and place them
3333 into the linker hash table as undefined symbols belonging to the
3334 script file. */
3335
3336 static void
3337 lang_place_undefineds (void)
3338 {
3339 ldlang_undef_chain_list_type *ptr;
3340
3341 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3342 insert_undefined (ptr->name);
3343 }
3344
3345 typedef struct bfd_sym_chain ldlang_def_chain_list_type;
3346
3347 static ldlang_def_chain_list_type ldlang_def_chain_list_head;
3348
3349 /* Insert NAME as defined in the symbol table. */
3350
3351 static void
3352 insert_defined (const char *name)
3353 {
3354 struct bfd_link_hash_entry *h;
3355
3356 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3357 if (h == NULL)
3358 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3359 if (h->type == bfd_link_hash_new
3360 || h->type == bfd_link_hash_undefined
3361 || h->type == bfd_link_hash_undefweak)
3362 {
3363 h->type = bfd_link_hash_defined;
3364 h->u.def.section = bfd_abs_section_ptr;
3365 h->u.def.value = 0;
3366 }
3367 }
3368
3369 /* Like lang_add_undef, but this time for symbols defined on the
3370 command line. */
3371
3372 static void
3373 ldlang_add_def (const char *const name)
3374 {
3375 if (link_info.output_bfd != NULL)
3376 insert_defined (xstrdup (name));
3377 else
3378 {
3379 ldlang_def_chain_list_type *new_def;
3380
3381 new_def = (ldlang_def_chain_list_type *) stat_alloc (sizeof (*new_def));
3382 new_def->next = ldlang_def_chain_list_head.next;
3383 ldlang_def_chain_list_head.next = new_def;
3384
3385 new_def->name = xstrdup (name);
3386 }
3387 }
3388
3389 /* Run through the list of defineds created above and place them
3390 into the linker hash table as defined symbols belonging to the
3391 script file. */
3392
3393 static void
3394 lang_place_defineds (void)
3395 {
3396 ldlang_def_chain_list_type *ptr;
3397
3398 for (ptr = ldlang_def_chain_list_head.next;
3399 ptr != NULL;
3400 ptr = ptr->next)
3401 insert_defined (ptr->name);
3402 }
3403
3404 /* Check for all readonly or some readwrite sections. */
3405
3406 static void
3407 check_input_sections
3408 (lang_statement_union_type *s,
3409 lang_output_section_statement_type *output_section_statement)
3410 {
3411 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3412 {
3413 switch (s->header.type)
3414 {
3415 case lang_wild_statement_enum:
3416 walk_wild (&s->wild_statement, check_section_callback,
3417 output_section_statement);
3418 if (! output_section_statement->all_input_readonly)
3419 return;
3420 break;
3421 case lang_constructors_statement_enum:
3422 check_input_sections (constructor_list.head,
3423 output_section_statement);
3424 if (! output_section_statement->all_input_readonly)
3425 return;
3426 break;
3427 case lang_group_statement_enum:
3428 check_input_sections (s->group_statement.children.head,
3429 output_section_statement);
3430 if (! output_section_statement->all_input_readonly)
3431 return;
3432 break;
3433 default:
3434 break;
3435 }
3436 }
3437 }
3438
3439 /* Update wildcard statements if needed. */
3440
3441 static void
3442 update_wild_statements (lang_statement_union_type *s)
3443 {
3444 struct wildcard_list *sec;
3445
3446 switch (sort_section)
3447 {
3448 default:
3449 FAIL ();
3450
3451 case none:
3452 break;
3453
3454 case by_name:
3455 case by_alignment:
3456 for (; s != NULL; s = s->header.next)
3457 {
3458 switch (s->header.type)
3459 {
3460 default:
3461 break;
3462
3463 case lang_wild_statement_enum:
3464 sec = s->wild_statement.section_list;
3465 for (sec = s->wild_statement.section_list; sec != NULL;
3466 sec = sec->next)
3467 {
3468 switch (sec->spec.sorted)
3469 {
3470 case none:
3471 sec->spec.sorted = sort_section;
3472 break;
3473 case by_name:
3474 if (sort_section == by_alignment)
3475 sec->spec.sorted = by_name_alignment;
3476 break;
3477 case by_alignment:
3478 if (sort_section == by_name)
3479 sec->spec.sorted = by_alignment_name;
3480 break;
3481 default:
3482 break;
3483 }
3484 }
3485 break;
3486
3487 case lang_constructors_statement_enum:
3488 update_wild_statements (constructor_list.head);
3489 break;
3490
3491 case lang_output_section_statement_enum:
3492 update_wild_statements
3493 (s->output_section_statement.children.head);
3494 break;
3495
3496 case lang_group_statement_enum:
3497 update_wild_statements (s->group_statement.children.head);
3498 break;
3499 }
3500 }
3501 break;
3502 }
3503 }
3504
3505 /* Open input files and attach to output sections. */
3506
3507 static void
3508 map_input_to_output_sections
3509 (lang_statement_union_type *s, const char *target,
3510 lang_output_section_statement_type *os)
3511 {
3512 for (; s != NULL; s = s->header.next)
3513 {
3514 lang_output_section_statement_type *tos;
3515 flagword flags;
3516
3517 switch (s->header.type)
3518 {
3519 case lang_wild_statement_enum:
3520 wild (&s->wild_statement, target, os);
3521 break;
3522 case lang_constructors_statement_enum:
3523 map_input_to_output_sections (constructor_list.head,
3524 target,
3525 os);
3526 break;
3527 case lang_output_section_statement_enum:
3528 tos = &s->output_section_statement;
3529 if (tos->constraint != 0)
3530 {
3531 if (tos->constraint != ONLY_IF_RW
3532 && tos->constraint != ONLY_IF_RO)
3533 break;
3534 tos->all_input_readonly = TRUE;
3535 check_input_sections (tos->children.head, tos);
3536 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3537 {
3538 tos->constraint = -1;
3539 break;
3540 }
3541 }
3542 map_input_to_output_sections (tos->children.head,
3543 target,
3544 tos);
3545 break;
3546 case lang_output_statement_enum:
3547 break;
3548 case lang_target_statement_enum:
3549 target = s->target_statement.target;
3550 break;
3551 case lang_group_statement_enum:
3552 map_input_to_output_sections (s->group_statement.children.head,
3553 target,
3554 os);
3555 break;
3556 case lang_data_statement_enum:
3557 /* Make sure that any sections mentioned in the expression
3558 are initialized. */
3559 exp_init_os (s->data_statement.exp);
3560 /* The output section gets CONTENTS, ALLOC and LOAD, but
3561 these may be overridden by the script. */
3562 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3563 switch (os->sectype)
3564 {
3565 case normal_section:
3566 case overlay_section:
3567 break;
3568 case noalloc_section:
3569 flags = SEC_HAS_CONTENTS;
3570 break;
3571 case noload_section:
3572 if (bfd_get_flavour (link_info.output_bfd)
3573 == bfd_target_elf_flavour)
3574 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3575 else
3576 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3577 break;
3578 }
3579 if (os->bfd_section == NULL)
3580 init_os (os, flags);
3581 else
3582 os->bfd_section->flags |= flags;
3583 break;
3584 case lang_input_section_enum:
3585 break;
3586 case lang_fill_statement_enum:
3587 case lang_object_symbols_statement_enum:
3588 case lang_reloc_statement_enum:
3589 case lang_padding_statement_enum:
3590 case lang_input_statement_enum:
3591 if (os != NULL && os->bfd_section == NULL)
3592 init_os (os, 0);
3593 break;
3594 case lang_assignment_statement_enum:
3595 if (os != NULL && os->bfd_section == NULL)
3596 init_os (os, 0);
3597
3598 /* Make sure that any sections mentioned in the assignment
3599 are initialized. */
3600 exp_init_os (s->assignment_statement.exp);
3601 break;
3602 case lang_address_statement_enum:
3603 /* Mark the specified section with the supplied address.
3604 If this section was actually a segment marker, then the
3605 directive is ignored if the linker script explicitly
3606 processed the segment marker. Originally, the linker
3607 treated segment directives (like -Ttext on the
3608 command-line) as section directives. We honor the
3609 section directive semantics for backwards compatibilty;
3610 linker scripts that do not specifically check for
3611 SEGMENT_START automatically get the old semantics. */
3612 if (!s->address_statement.segment
3613 || !s->address_statement.segment->used)
3614 {
3615 const char *name = s->address_statement.section_name;
3616
3617 /* Create the output section statement here so that
3618 orphans with a set address will be placed after other
3619 script sections. If we let the orphan placement code
3620 place them in amongst other sections then the address
3621 will affect following script sections, which is
3622 likely to surprise naive users. */
3623 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3624 tos->addr_tree = s->address_statement.address;
3625 if (tos->bfd_section == NULL)
3626 init_os (tos, 0);
3627 }
3628 break;
3629 case lang_insert_statement_enum:
3630 break;
3631 }
3632 }
3633 }
3634
3635 /* An insert statement snips out all the linker statements from the
3636 start of the list and places them after the output section
3637 statement specified by the insert. This operation is complicated
3638 by the fact that we keep a doubly linked list of output section
3639 statements as well as the singly linked list of all statements. */
3640
3641 static void
3642 process_insert_statements (void)
3643 {
3644 lang_statement_union_type **s;
3645 lang_output_section_statement_type *first_os = NULL;
3646 lang_output_section_statement_type *last_os = NULL;
3647 lang_output_section_statement_type *os;
3648
3649 /* "start of list" is actually the statement immediately after
3650 the special abs_section output statement, so that it isn't
3651 reordered. */
3652 s = &lang_output_section_statement.head;
3653 while (*(s = &(*s)->header.next) != NULL)
3654 {
3655 if ((*s)->header.type == lang_output_section_statement_enum)
3656 {
3657 /* Keep pointers to the first and last output section
3658 statement in the sequence we may be about to move. */
3659 os = &(*s)->output_section_statement;
3660
3661 ASSERT (last_os == NULL || last_os->next == os);
3662 last_os = os;
3663
3664 /* Set constraint negative so that lang_output_section_find
3665 won't match this output section statement. At this
3666 stage in linking constraint has values in the range
3667 [-1, ONLY_IN_RW]. */
3668 last_os->constraint = -2 - last_os->constraint;
3669 if (first_os == NULL)
3670 first_os = last_os;
3671 }
3672 else if ((*s)->header.type == lang_insert_statement_enum)
3673 {
3674 lang_insert_statement_type *i = &(*s)->insert_statement;
3675 lang_output_section_statement_type *where;
3676 lang_statement_union_type **ptr;
3677 lang_statement_union_type *first;
3678
3679 where = lang_output_section_find (i->where);
3680 if (where != NULL && i->is_before)
3681 {
3682 do
3683 where = where->prev;
3684 while (where != NULL && where->constraint < 0);
3685 }
3686 if (where == NULL)
3687 {
3688 einfo (_("%F%P: %s not found for insert\n"), i->where);
3689 return;
3690 }
3691
3692 /* Deal with reordering the output section statement list. */
3693 if (last_os != NULL)
3694 {
3695 asection *first_sec, *last_sec;
3696 struct lang_output_section_statement_struct **next;
3697
3698 /* Snip out the output sections we are moving. */
3699 first_os->prev->next = last_os->next;
3700 if (last_os->next == NULL)
3701 {
3702 next = &first_os->prev->next;
3703 lang_output_section_statement.tail
3704 = (lang_statement_union_type **) next;
3705 }
3706 else
3707 last_os->next->prev = first_os->prev;
3708 /* Add them in at the new position. */
3709 last_os->next = where->next;
3710 if (where->next == NULL)
3711 {
3712 next = &last_os->next;
3713 lang_output_section_statement.tail
3714 = (lang_statement_union_type **) next;
3715 }
3716 else
3717 where->next->prev = last_os;
3718 first_os->prev = where;
3719 where->next = first_os;
3720
3721 /* Move the bfd sections in the same way. */
3722 first_sec = NULL;
3723 last_sec = NULL;
3724 for (os = first_os; os != NULL; os = os->next)
3725 {
3726 os->constraint = -2 - os->constraint;
3727 if (os->bfd_section != NULL
3728 && os->bfd_section->owner != NULL)
3729 {
3730 last_sec = os->bfd_section;
3731 if (first_sec == NULL)
3732 first_sec = last_sec;
3733 }
3734 if (os == last_os)
3735 break;
3736 }
3737 if (last_sec != NULL)
3738 {
3739 asection *sec = where->bfd_section;
3740 if (sec == NULL)
3741 sec = output_prev_sec_find (where);
3742
3743 /* The place we want to insert must come after the
3744 sections we are moving. So if we find no
3745 section or if the section is the same as our
3746 last section, then no move is needed. */
3747 if (sec != NULL && sec != last_sec)
3748 {
3749 /* Trim them off. */
3750 if (first_sec->prev != NULL)
3751 first_sec->prev->next = last_sec->next;
3752 else
3753 link_info.output_bfd->sections = last_sec->next;
3754 if (last_sec->next != NULL)
3755 last_sec->next->prev = first_sec->prev;
3756 else
3757 link_info.output_bfd->section_last = first_sec->prev;
3758 /* Add back. */
3759 last_sec->next = sec->next;
3760 if (sec->next != NULL)
3761 sec->next->prev = last_sec;
3762 else
3763 link_info.output_bfd->section_last = last_sec;
3764 first_sec->prev = sec;
3765 sec->next = first_sec;
3766 }
3767 }
3768
3769 first_os = NULL;
3770 last_os = NULL;
3771 }
3772
3773 ptr = insert_os_after (where);
3774 /* Snip everything after the abs_section output statement we
3775 know is at the start of the list, up to and including
3776 the insert statement we are currently processing. */
3777 first = lang_output_section_statement.head->header.next;
3778 lang_output_section_statement.head->header.next = (*s)->header.next;
3779 /* Add them back where they belong. */
3780 *s = *ptr;
3781 if (*s == NULL)
3782 statement_list.tail = s;
3783 *ptr = first;
3784 s = &lang_output_section_statement.head;
3785 }
3786 }
3787
3788 /* Undo constraint twiddling. */
3789 for (os = first_os; os != NULL; os = os->next)
3790 {
3791 os->constraint = -2 - os->constraint;
3792 if (os == last_os)
3793 break;
3794 }
3795 }
3796
3797 /* An output section might have been removed after its statement was
3798 added. For example, ldemul_before_allocation can remove dynamic
3799 sections if they turn out to be not needed. Clean them up here. */
3800
3801 void
3802 strip_excluded_output_sections (void)
3803 {
3804 lang_output_section_statement_type *os;
3805
3806 /* Run lang_size_sections (if not already done). */
3807 if (expld.phase != lang_mark_phase_enum)
3808 {
3809 expld.phase = lang_mark_phase_enum;
3810 expld.dataseg.phase = exp_dataseg_none;
3811 one_lang_size_sections_pass (NULL, FALSE);
3812 lang_reset_memory_regions ();
3813 }
3814
3815 for (os = &lang_output_section_statement.head->output_section_statement;
3816 os != NULL;
3817 os = os->next)
3818 {
3819 asection *output_section;
3820 bfd_boolean exclude;
3821
3822 if (os->constraint < 0)
3823 continue;
3824
3825 output_section = os->bfd_section;
3826 if (output_section == NULL)
3827 continue;
3828
3829 exclude = (output_section->rawsize == 0
3830 && (output_section->flags & SEC_KEEP) == 0
3831 && !bfd_section_removed_from_list (link_info.output_bfd,
3832 output_section));
3833
3834 /* Some sections have not yet been sized, notably .gnu.version,
3835 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3836 input sections, so don't drop output sections that have such
3837 input sections unless they are also marked SEC_EXCLUDE. */
3838 if (exclude && output_section->map_head.s != NULL)
3839 {
3840 asection *s;
3841
3842 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3843 if ((s->flags & SEC_LINKER_CREATED) != 0
3844 && (s->flags & SEC_EXCLUDE) == 0)
3845 {
3846 exclude = FALSE;
3847 break;
3848 }
3849 }
3850
3851 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3852 output_section->map_head.link_order = NULL;
3853 output_section->map_tail.link_order = NULL;
3854
3855 if (exclude)
3856 {
3857 /* We don't set bfd_section to NULL since bfd_section of the
3858 removed output section statement may still be used. */
3859 if (!os->section_relative_symbol
3860 && !os->update_dot_tree)
3861 os->ignored = TRUE;
3862 output_section->flags |= SEC_EXCLUDE;
3863 bfd_section_list_remove (link_info.output_bfd, output_section);
3864 link_info.output_bfd->section_count--;
3865 }
3866 }
3867
3868 /* Stop future calls to lang_add_section from messing with map_head
3869 and map_tail link_order fields. */
3870 stripped_excluded_sections = TRUE;
3871 }
3872
3873 static void
3874 print_output_section_statement
3875 (lang_output_section_statement_type *output_section_statement)
3876 {
3877 asection *section = output_section_statement->bfd_section;
3878 int len;
3879
3880 if (output_section_statement != abs_output_section)
3881 {
3882 minfo ("\n%s", output_section_statement->name);
3883
3884 if (section != NULL)
3885 {
3886 print_dot = section->vma;
3887
3888 len = strlen (output_section_statement->name);
3889 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3890 {
3891 print_nl ();
3892 len = 0;
3893 }
3894 while (len < SECTION_NAME_MAP_LENGTH)
3895 {
3896 print_space ();
3897 ++len;
3898 }
3899
3900 minfo ("0x%V %W", section->vma, section->size);
3901
3902 if (section->vma != section->lma)
3903 minfo (_(" load address 0x%V"), section->lma);
3904
3905 if (output_section_statement->update_dot_tree != NULL)
3906 exp_fold_tree (output_section_statement->update_dot_tree,
3907 bfd_abs_section_ptr, &print_dot);
3908 }
3909
3910 print_nl ();
3911 }
3912
3913 print_statement_list (output_section_statement->children.head,
3914 output_section_statement);
3915 }
3916
3917 /* Scan for the use of the destination in the right hand side
3918 of an expression. In such cases we will not compute the
3919 correct expression, since the value of DST that is used on
3920 the right hand side will be its final value, not its value
3921 just before this expression is evaluated. */
3922
3923 static bfd_boolean
3924 scan_for_self_assignment (const char * dst, etree_type * rhs)
3925 {
3926 if (rhs == NULL || dst == NULL)
3927 return FALSE;
3928
3929 switch (rhs->type.node_class)
3930 {
3931 case etree_binary:
3932 return scan_for_self_assignment (dst, rhs->binary.lhs)
3933 || scan_for_self_assignment (dst, rhs->binary.rhs);
3934
3935 case etree_trinary:
3936 return scan_for_self_assignment (dst, rhs->trinary.lhs)
3937 || scan_for_self_assignment (dst, rhs->trinary.rhs);
3938
3939 case etree_assign:
3940 case etree_provided:
3941 case etree_provide:
3942 if (strcmp (dst, rhs->assign.dst) == 0)
3943 return TRUE;
3944 return scan_for_self_assignment (dst, rhs->assign.src);
3945
3946 case etree_unary:
3947 return scan_for_self_assignment (dst, rhs->unary.child);
3948
3949 case etree_value:
3950 if (rhs->value.str)
3951 return strcmp (dst, rhs->value.str) == 0;
3952 return FALSE;
3953
3954 case etree_name:
3955 if (rhs->name.name)
3956 return strcmp (dst, rhs->name.name) == 0;
3957 return FALSE;
3958
3959 default:
3960 break;
3961 }
3962
3963 return FALSE;
3964 }
3965
3966
3967 static void
3968 print_assignment (lang_assignment_statement_type *assignment,
3969 lang_output_section_statement_type *output_section)
3970 {
3971 unsigned int i;
3972 bfd_boolean is_dot;
3973 bfd_boolean computation_is_valid = TRUE;
3974 etree_type *tree;
3975 asection *osec;
3976
3977 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3978 print_space ();
3979
3980 if (assignment->exp->type.node_class == etree_assert)
3981 {
3982 is_dot = FALSE;
3983 tree = assignment->exp->assert_s.child;
3984 computation_is_valid = TRUE;
3985 }
3986 else
3987 {
3988 const char *dst = assignment->exp->assign.dst;
3989
3990 is_dot = (dst[0] == '.' && dst[1] == 0);
3991 tree = assignment->exp->assign.src;
3992 computation_is_valid = is_dot || (scan_for_self_assignment (dst, tree) == FALSE);
3993 }
3994
3995 osec = output_section->bfd_section;
3996 if (osec == NULL)
3997 osec = bfd_abs_section_ptr;
3998 exp_fold_tree (tree, osec, &print_dot);
3999 if (expld.result.valid_p)
4000 {
4001 bfd_vma value;
4002
4003 if (computation_is_valid)
4004 {
4005 value = expld.result.value;
4006
4007 if (expld.result.section != NULL)
4008 value += expld.result.section->vma;
4009
4010 minfo ("0x%V", value);
4011 if (is_dot)
4012 print_dot = value;
4013 }
4014 else
4015 {
4016 struct bfd_link_hash_entry *h;
4017
4018 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4019 FALSE, FALSE, TRUE);
4020 if (h)
4021 {
4022 value = h->u.def.value;
4023
4024 if (expld.result.section != NULL)
4025 value += expld.result.section->vma;
4026
4027 minfo ("[0x%V]", value);
4028 }
4029 else
4030 minfo ("[unresolved]");
4031 }
4032 }
4033 else
4034 {
4035 minfo ("*undef* ");
4036 #ifdef BFD64
4037 minfo (" ");
4038 #endif
4039 }
4040
4041 minfo (" ");
4042 exp_print_tree (assignment->exp);
4043 print_nl ();
4044 }
4045
4046 static void
4047 print_input_statement (lang_input_statement_type *statm)
4048 {
4049 if (statm->filename != NULL
4050 && (statm->the_bfd == NULL
4051 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4052 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4053 }
4054
4055 /* Print all symbols defined in a particular section. This is called
4056 via bfd_link_hash_traverse, or by print_all_symbols. */
4057
4058 static bfd_boolean
4059 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4060 {
4061 asection *sec = (asection *) ptr;
4062
4063 if ((hash_entry->type == bfd_link_hash_defined
4064 || hash_entry->type == bfd_link_hash_defweak)
4065 && sec == hash_entry->u.def.section)
4066 {
4067 int i;
4068
4069 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4070 print_space ();
4071 minfo ("0x%V ",
4072 (hash_entry->u.def.value
4073 + hash_entry->u.def.section->output_offset
4074 + hash_entry->u.def.section->output_section->vma));
4075
4076 minfo (" %T\n", hash_entry->root.string);
4077 }
4078
4079 return TRUE;
4080 }
4081
4082 static int
4083 hash_entry_addr_cmp (const void *a, const void *b)
4084 {
4085 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4086 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4087
4088 if (l->u.def.value < r->u.def.value)
4089 return -1;
4090 else if (l->u.def.value > r->u.def.value)
4091 return 1;
4092 else
4093 return 0;
4094 }
4095
4096 static void
4097 print_all_symbols (asection *sec)
4098 {
4099 struct fat_user_section_struct *ud =
4100 (struct fat_user_section_struct *) get_userdata (sec);
4101 struct map_symbol_def *def;
4102 struct bfd_link_hash_entry **entries;
4103 unsigned int i;
4104
4105 if (!ud)
4106 return;
4107
4108 *ud->map_symbol_def_tail = 0;
4109
4110 /* Sort the symbols by address. */
4111 entries = (struct bfd_link_hash_entry **)
4112 obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries));
4113
4114 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4115 entries[i] = def->entry;
4116
4117 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4118 hash_entry_addr_cmp);
4119
4120 /* Print the symbols. */
4121 for (i = 0; i < ud->map_symbol_def_count; i++)
4122 print_one_symbol (entries[i], sec);
4123
4124 obstack_free (&map_obstack, entries);
4125 }
4126
4127 /* Print information about an input section to the map file. */
4128
4129 static void
4130 print_input_section (asection *i, bfd_boolean is_discarded)
4131 {
4132 bfd_size_type size = i->size;
4133 int len;
4134 bfd_vma addr;
4135
4136 init_opb ();
4137
4138 print_space ();
4139 minfo ("%s", i->name);
4140
4141 len = 1 + strlen (i->name);
4142 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4143 {
4144 print_nl ();
4145 len = 0;
4146 }
4147 while (len < SECTION_NAME_MAP_LENGTH)
4148 {
4149 print_space ();
4150 ++len;
4151 }
4152
4153 if (i->output_section != NULL
4154 && i->output_section->owner == link_info.output_bfd)
4155 addr = i->output_section->vma + i->output_offset;
4156 else
4157 {
4158 addr = print_dot;
4159 if (!is_discarded)
4160 size = 0;
4161 }
4162
4163 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
4164
4165 if (size != i->rawsize && i->rawsize != 0)
4166 {
4167 len = SECTION_NAME_MAP_LENGTH + 3;
4168 #ifdef BFD64
4169 len += 16;
4170 #else
4171 len += 8;
4172 #endif
4173 while (len > 0)
4174 {
4175 print_space ();
4176 --len;
4177 }
4178
4179 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4180 }
4181
4182 if (i->output_section != NULL
4183 && i->output_section->owner == link_info.output_bfd)
4184 {
4185 if (link_info.reduce_memory_overheads)
4186 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4187 else
4188 print_all_symbols (i);
4189
4190 /* Update print_dot, but make sure that we do not move it
4191 backwards - this could happen if we have overlays and a
4192 later overlay is shorter than an earier one. */
4193 if (addr + TO_ADDR (size) > print_dot)
4194 print_dot = addr + TO_ADDR (size);
4195 }
4196 }
4197
4198 static void
4199 print_fill_statement (lang_fill_statement_type *fill)
4200 {
4201 size_t size;
4202 unsigned char *p;
4203 fputs (" FILL mask 0x", config.map_file);
4204 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4205 fprintf (config.map_file, "%02x", *p);
4206 fputs ("\n", config.map_file);
4207 }
4208
4209 static void
4210 print_data_statement (lang_data_statement_type *data)
4211 {
4212 int i;
4213 bfd_vma addr;
4214 bfd_size_type size;
4215 const char *name;
4216
4217 init_opb ();
4218 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4219 print_space ();
4220
4221 addr = data->output_offset;
4222 if (data->output_section != NULL)
4223 addr += data->output_section->vma;
4224
4225 switch (data->type)
4226 {
4227 default:
4228 abort ();
4229 case BYTE:
4230 size = BYTE_SIZE;
4231 name = "BYTE";
4232 break;
4233 case SHORT:
4234 size = SHORT_SIZE;
4235 name = "SHORT";
4236 break;
4237 case LONG:
4238 size = LONG_SIZE;
4239 name = "LONG";
4240 break;
4241 case QUAD:
4242 size = QUAD_SIZE;
4243 name = "QUAD";
4244 break;
4245 case SQUAD:
4246 size = QUAD_SIZE;
4247 name = "SQUAD";
4248 break;
4249 }
4250
4251 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
4252
4253 if (data->exp->type.node_class != etree_value)
4254 {
4255 print_space ();
4256 exp_print_tree (data->exp);
4257 }
4258
4259 print_nl ();
4260
4261 print_dot = addr + TO_ADDR (size);
4262 }
4263
4264 /* Print an address statement. These are generated by options like
4265 -Ttext. */
4266
4267 static void
4268 print_address_statement (lang_address_statement_type *address)
4269 {
4270 minfo (_("Address of section %s set to "), address->section_name);
4271 exp_print_tree (address->address);
4272 print_nl ();
4273 }
4274
4275 /* Print a reloc statement. */
4276
4277 static void
4278 print_reloc_statement (lang_reloc_statement_type *reloc)
4279 {
4280 int i;
4281 bfd_vma addr;
4282 bfd_size_type size;
4283
4284 init_opb ();
4285 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4286 print_space ();
4287
4288 addr = reloc->output_offset;
4289 if (reloc->output_section != NULL)
4290 addr += reloc->output_section->vma;
4291
4292 size = bfd_get_reloc_size (reloc->howto);
4293
4294 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
4295
4296 if (reloc->name != NULL)
4297 minfo ("%s+", reloc->name);
4298 else
4299 minfo ("%s+", reloc->section->name);
4300
4301 exp_print_tree (reloc->addend_exp);
4302
4303 print_nl ();
4304
4305 print_dot = addr + TO_ADDR (size);
4306 }
4307
4308 static void
4309 print_padding_statement (lang_padding_statement_type *s)
4310 {
4311 int len;
4312 bfd_vma addr;
4313
4314 init_opb ();
4315 minfo (" *fill*");
4316
4317 len = sizeof " *fill*" - 1;
4318 while (len < SECTION_NAME_MAP_LENGTH)
4319 {
4320 print_space ();
4321 ++len;
4322 }
4323
4324 addr = s->output_offset;
4325 if (s->output_section != NULL)
4326 addr += s->output_section->vma;
4327 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
4328
4329 if (s->fill->size != 0)
4330 {
4331 size_t size;
4332 unsigned char *p;
4333 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4334 fprintf (config.map_file, "%02x", *p);
4335 }
4336
4337 print_nl ();
4338
4339 print_dot = addr + TO_ADDR (s->size);
4340 }
4341
4342 static void
4343 print_wild_statement (lang_wild_statement_type *w,
4344 lang_output_section_statement_type *os)
4345 {
4346 struct wildcard_list *sec;
4347
4348 print_space ();
4349
4350 if (w->filenames_sorted)
4351 minfo ("SORT(");
4352 if (w->filename != NULL)
4353 minfo ("%s", w->filename);
4354 else
4355 minfo ("*");
4356 if (w->filenames_sorted)
4357 minfo (")");
4358
4359 minfo ("(");
4360 for (sec = w->section_list; sec; sec = sec->next)
4361 {
4362 if (sec->spec.sorted)
4363 minfo ("SORT(");
4364 if (sec->spec.exclude_name_list != NULL)
4365 {
4366 name_list *tmp;
4367 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4368 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4369 minfo (" %s", tmp->name);
4370 minfo (") ");
4371 }
4372 if (sec->spec.name != NULL)
4373 minfo ("%s", sec->spec.name);
4374 else
4375 minfo ("*");
4376 if (sec->spec.sorted)
4377 minfo (")");
4378 if (sec->next)
4379 minfo (" ");
4380 }
4381 minfo (")");
4382
4383 print_nl ();
4384
4385 print_statement_list (w->children.head, os);
4386 }
4387
4388 /* Print a group statement. */
4389
4390 static void
4391 print_group (lang_group_statement_type *s,
4392 lang_output_section_statement_type *os)
4393 {
4394 fprintf (config.map_file, "START GROUP\n");
4395 print_statement_list (s->children.head, os);
4396 fprintf (config.map_file, "END GROUP\n");
4397 }
4398
4399 /* Print the list of statements in S.
4400 This can be called for any statement type. */
4401
4402 static void
4403 print_statement_list (lang_statement_union_type *s,
4404 lang_output_section_statement_type *os)
4405 {
4406 while (s != NULL)
4407 {
4408 print_statement (s, os);
4409 s = s->header.next;
4410 }
4411 }
4412
4413 /* Print the first statement in statement list S.
4414 This can be called for any statement type. */
4415
4416 static void
4417 print_statement (lang_statement_union_type *s,
4418 lang_output_section_statement_type *os)
4419 {
4420 switch (s->header.type)
4421 {
4422 default:
4423 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4424 FAIL ();
4425 break;
4426 case lang_constructors_statement_enum:
4427 if (constructor_list.head != NULL)
4428 {
4429 if (constructors_sorted)
4430 minfo (" SORT (CONSTRUCTORS)\n");
4431 else
4432 minfo (" CONSTRUCTORS\n");
4433 print_statement_list (constructor_list.head, os);
4434 }
4435 break;
4436 case lang_wild_statement_enum:
4437 print_wild_statement (&s->wild_statement, os);
4438 break;
4439 case lang_address_statement_enum:
4440 print_address_statement (&s->address_statement);
4441 break;
4442 case lang_object_symbols_statement_enum:
4443 minfo (" CREATE_OBJECT_SYMBOLS\n");
4444 break;
4445 case lang_fill_statement_enum:
4446 print_fill_statement (&s->fill_statement);
4447 break;
4448 case lang_data_statement_enum:
4449 print_data_statement (&s->data_statement);
4450 break;
4451 case lang_reloc_statement_enum:
4452 print_reloc_statement (&s->reloc_statement);
4453 break;
4454 case lang_input_section_enum:
4455 print_input_section (s->input_section.section, FALSE);
4456 break;
4457 case lang_padding_statement_enum:
4458 print_padding_statement (&s->padding_statement);
4459 break;
4460 case lang_output_section_statement_enum:
4461 print_output_section_statement (&s->output_section_statement);
4462 break;
4463 case lang_assignment_statement_enum:
4464 print_assignment (&s->assignment_statement, os);
4465 break;
4466 case lang_target_statement_enum:
4467 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4468 break;
4469 case lang_output_statement_enum:
4470 minfo ("OUTPUT(%s", s->output_statement.name);
4471 if (output_target != NULL)
4472 minfo (" %s", output_target);
4473 minfo (")\n");
4474 break;
4475 case lang_input_statement_enum:
4476 print_input_statement (&s->input_statement);
4477 break;
4478 case lang_group_statement_enum:
4479 print_group (&s->group_statement, os);
4480 break;
4481 case lang_insert_statement_enum:
4482 minfo ("INSERT %s %s\n",
4483 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4484 s->insert_statement.where);
4485 break;
4486 }
4487 }
4488
4489 static void
4490 print_statements (void)
4491 {
4492 print_statement_list (statement_list.head, abs_output_section);
4493 }
4494
4495 /* Print the first N statements in statement list S to STDERR.
4496 If N == 0, nothing is printed.
4497 If N < 0, the entire list is printed.
4498 Intended to be called from GDB. */
4499
4500 void
4501 dprint_statement (lang_statement_union_type *s, int n)
4502 {
4503 FILE *map_save = config.map_file;
4504
4505 config.map_file = stderr;
4506
4507 if (n < 0)
4508 print_statement_list (s, abs_output_section);
4509 else
4510 {
4511 while (s && --n >= 0)
4512 {
4513 print_statement (s, abs_output_section);
4514 s = s->header.next;
4515 }
4516 }
4517
4518 config.map_file = map_save;
4519 }
4520
4521 static void
4522 insert_pad (lang_statement_union_type **ptr,
4523 fill_type *fill,
4524 unsigned int alignment_needed,
4525 asection *output_section,
4526 bfd_vma dot)
4527 {
4528 static fill_type zero_fill = { 1, { 0 } };
4529 lang_statement_union_type *pad = NULL;
4530
4531 if (ptr != &statement_list.head)
4532 pad = ((lang_statement_union_type *)
4533 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4534 if (pad != NULL
4535 && pad->header.type == lang_padding_statement_enum
4536 && pad->padding_statement.output_section == output_section)
4537 {
4538 /* Use the existing pad statement. */
4539 }
4540 else if ((pad = *ptr) != NULL
4541 && pad->header.type == lang_padding_statement_enum
4542 && pad->padding_statement.output_section == output_section)
4543 {
4544 /* Use the existing pad statement. */
4545 }
4546 else
4547 {
4548 /* Make a new padding statement, linked into existing chain. */
4549 pad = (lang_statement_union_type *)
4550 stat_alloc (sizeof (lang_padding_statement_type));
4551 pad->header.next = *ptr;
4552 *ptr = pad;
4553 pad->header.type = lang_padding_statement_enum;
4554 pad->padding_statement.output_section = output_section;
4555 if (fill == NULL)
4556 fill = &zero_fill;
4557 pad->padding_statement.fill = fill;
4558 }
4559 pad->padding_statement.output_offset = dot - output_section->vma;
4560 pad->padding_statement.size = alignment_needed;
4561 output_section->size += alignment_needed;
4562 }
4563
4564 /* Work out how much this section will move the dot point. */
4565
4566 static bfd_vma
4567 size_input_section
4568 (lang_statement_union_type **this_ptr,
4569 lang_output_section_statement_type *output_section_statement,
4570 fill_type *fill,
4571 bfd_vma dot)
4572 {
4573 lang_input_section_type *is = &((*this_ptr)->input_section);
4574 asection *i = is->section;
4575
4576 if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag
4577 && (i->flags & SEC_EXCLUDE) == 0)
4578 {
4579 unsigned int alignment_needed;
4580 asection *o;
4581
4582 /* Align this section first to the input sections requirement,
4583 then to the output section's requirement. If this alignment
4584 is greater than any seen before, then record it too. Perform
4585 the alignment by inserting a magic 'padding' statement. */
4586
4587 if (output_section_statement->subsection_alignment != -1)
4588 i->alignment_power = output_section_statement->subsection_alignment;
4589
4590 o = output_section_statement->bfd_section;
4591 if (o->alignment_power < i->alignment_power)
4592 o->alignment_power = i->alignment_power;
4593
4594 alignment_needed = align_power (dot, i->alignment_power) - dot;
4595
4596 if (alignment_needed != 0)
4597 {
4598 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4599 dot += alignment_needed;
4600 }
4601
4602 /* Remember where in the output section this input section goes. */
4603
4604 i->output_offset = dot - o->vma;
4605
4606 /* Mark how big the output section must be to contain this now. */
4607 dot += TO_ADDR (i->size);
4608 o->size = TO_SIZE (dot - o->vma);
4609 }
4610 else
4611 {
4612 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4613 }
4614
4615 return dot;
4616 }
4617
4618 static int
4619 sort_sections_by_lma (const void *arg1, const void *arg2)
4620 {
4621 const asection *sec1 = *(const asection **) arg1;
4622 const asection *sec2 = *(const asection **) arg2;
4623
4624 if (bfd_section_lma (sec1->owner, sec1)
4625 < bfd_section_lma (sec2->owner, sec2))
4626 return -1;
4627 else if (bfd_section_lma (sec1->owner, sec1)
4628 > bfd_section_lma (sec2->owner, sec2))
4629 return 1;
4630 else if (sec1->id < sec2->id)
4631 return -1;
4632 else if (sec1->id > sec2->id)
4633 return 1;
4634
4635 return 0;
4636 }
4637
4638 #define IGNORE_SECTION(s) \
4639 ((s->flags & SEC_ALLOC) == 0 \
4640 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4641 && (s->flags & SEC_LOAD) == 0))
4642
4643 /* Check to see if any allocated sections overlap with other allocated
4644 sections. This can happen if a linker script specifies the output
4645 section addresses of the two sections. Also check whether any memory
4646 region has overflowed. */
4647
4648 static void
4649 lang_check_section_addresses (void)
4650 {
4651 asection *s, *p;
4652 asection **sections, **spp;
4653 unsigned int count;
4654 bfd_vma s_start;
4655 bfd_vma s_end;
4656 bfd_vma p_start;
4657 bfd_vma p_end;
4658 bfd_size_type amt;
4659 lang_memory_region_type *m;
4660
4661 if (bfd_count_sections (link_info.output_bfd) <= 1)
4662 return;
4663
4664 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4665 sections = (asection **) xmalloc (amt);
4666
4667 /* Scan all sections in the output list. */
4668 count = 0;
4669 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4670 {
4671 /* Only consider loadable sections with real contents. */
4672 if (!(s->flags & SEC_LOAD)
4673 || !(s->flags & SEC_ALLOC)
4674 || s->size == 0)
4675 continue;
4676
4677 sections[count] = s;
4678 count++;
4679 }
4680
4681 if (count <= 1)
4682 return;
4683
4684 qsort (sections, (size_t) count, sizeof (asection *),
4685 sort_sections_by_lma);
4686
4687 spp = sections;
4688 s = *spp++;
4689 s_start = s->lma;
4690 s_end = s_start + TO_ADDR (s->size) - 1;
4691 for (count--; count; count--)
4692 {
4693 /* We must check the sections' LMA addresses not their VMA
4694 addresses because overlay sections can have overlapping VMAs
4695 but they must have distinct LMAs. */
4696 p = s;
4697 p_start = s_start;
4698 p_end = s_end;
4699 s = *spp++;
4700 s_start = s->lma;
4701 s_end = s_start + TO_ADDR (s->size) - 1;
4702
4703 /* Look for an overlap. We have sorted sections by lma, so we
4704 know that s_start >= p_start. Besides the obvious case of
4705 overlap when the current section starts before the previous
4706 one ends, we also must have overlap if the previous section
4707 wraps around the address space. */
4708 if (s_start <= p_end
4709 || p_end < p_start)
4710 einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"),
4711 s->name, s_start, s_end, p->name, p_start, p_end);
4712 }
4713
4714 free (sections);
4715
4716 /* If any memory region has overflowed, report by how much.
4717 We do not issue this diagnostic for regions that had sections
4718 explicitly placed outside their bounds; os_region_check's
4719 diagnostics are adequate for that case.
4720
4721 FIXME: It is conceivable that m->current - (m->origin + m->length)
4722 might overflow a 32-bit integer. There is, alas, no way to print
4723 a bfd_vma quantity in decimal. */
4724 for (m = lang_memory_region_list; m; m = m->next)
4725 if (m->had_full_message)
4726 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4727 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4728
4729 }
4730
4731 /* Make sure the new address is within the region. We explicitly permit the
4732 current address to be at the exact end of the region when the address is
4733 non-zero, in case the region is at the end of addressable memory and the
4734 calculation wraps around. */
4735
4736 static void
4737 os_region_check (lang_output_section_statement_type *os,
4738 lang_memory_region_type *region,
4739 etree_type *tree,
4740 bfd_vma rbase)
4741 {
4742 if ((region->current < region->origin
4743 || (region->current - region->origin > region->length))
4744 && ((region->current != region->origin + region->length)
4745 || rbase == 0))
4746 {
4747 if (tree != NULL)
4748 {
4749 einfo (_("%X%P: address 0x%v of %B section `%s'"
4750 " is not within region `%s'\n"),
4751 region->current,
4752 os->bfd_section->owner,
4753 os->bfd_section->name,
4754 region->name_list.name);
4755 }
4756 else if (!region->had_full_message)
4757 {
4758 region->had_full_message = TRUE;
4759
4760 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4761 os->bfd_section->owner,
4762 os->bfd_section->name,
4763 region->name_list.name);
4764 }
4765 }
4766 }
4767
4768 /* Set the sizes for all the output sections. */
4769
4770 static bfd_vma
4771 lang_size_sections_1
4772 (lang_statement_union_type **prev,
4773 lang_output_section_statement_type *output_section_statement,
4774 fill_type *fill,
4775 bfd_vma dot,
4776 bfd_boolean *relax,
4777 bfd_boolean check_regions)
4778 {
4779 lang_statement_union_type *s;
4780
4781 /* Size up the sections from their constituent parts. */
4782 for (s = *prev; s != NULL; s = s->header.next)
4783 {
4784 switch (s->header.type)
4785 {
4786 case lang_output_section_statement_enum:
4787 {
4788 bfd_vma newdot, after;
4789 lang_output_section_statement_type *os;
4790 lang_memory_region_type *r;
4791
4792 os = &s->output_section_statement;
4793 if (os->constraint == -1)
4794 break;
4795
4796 /* FIXME: We shouldn't need to zero section vmas for ld -r
4797 here, in lang_insert_orphan, or in the default linker scripts.
4798 This is covering for coff backend linker bugs. See PR6945. */
4799 if (os->addr_tree == NULL
4800 && link_info.relocatable
4801 && (bfd_get_flavour (link_info.output_bfd)
4802 == bfd_target_coff_flavour))
4803 os->addr_tree = exp_intop (0);
4804 if (os->addr_tree != NULL)
4805 {
4806 os->processed_vma = FALSE;
4807 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4808
4809 if (expld.result.valid_p)
4810 {
4811 dot = expld.result.value;
4812 if (expld.result.section != NULL)
4813 dot += expld.result.section->vma;
4814 }
4815 else if (expld.phase != lang_mark_phase_enum)
4816 einfo (_("%F%S: non constant or forward reference"
4817 " address expression for section %s\n"),
4818 os->name);
4819 }
4820
4821 if (os->bfd_section == NULL)
4822 /* This section was removed or never actually created. */
4823 break;
4824
4825 /* If this is a COFF shared library section, use the size and
4826 address from the input section. FIXME: This is COFF
4827 specific; it would be cleaner if there were some other way
4828 to do this, but nothing simple comes to mind. */
4829 if (((bfd_get_flavour (link_info.output_bfd)
4830 == bfd_target_ecoff_flavour)
4831 || (bfd_get_flavour (link_info.output_bfd)
4832 == bfd_target_coff_flavour))
4833 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4834 {
4835 asection *input;
4836
4837 if (os->children.head == NULL
4838 || os->children.head->header.next != NULL
4839 || (os->children.head->header.type
4840 != lang_input_section_enum))
4841 einfo (_("%P%X: Internal error on COFF shared library"
4842 " section %s\n"), os->name);
4843
4844 input = os->children.head->input_section.section;
4845 bfd_set_section_vma (os->bfd_section->owner,
4846 os->bfd_section,
4847 bfd_section_vma (input->owner, input));
4848 os->bfd_section->size = input->size;
4849 break;
4850 }
4851
4852 newdot = dot;
4853 if (bfd_is_abs_section (os->bfd_section))
4854 {
4855 /* No matter what happens, an abs section starts at zero. */
4856 ASSERT (os->bfd_section->vma == 0);
4857 }
4858 else
4859 {
4860 int align;
4861
4862 if (os->addr_tree == NULL)
4863 {
4864 /* No address specified for this section, get one
4865 from the region specification. */
4866 if (os->region == NULL
4867 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4868 && os->region->name_list.name[0] == '*'
4869 && strcmp (os->region->name_list.name,
4870 DEFAULT_MEMORY_REGION) == 0))
4871 {
4872 os->region = lang_memory_default (os->bfd_section);
4873 }
4874
4875 /* If a loadable section is using the default memory
4876 region, and some non default memory regions were
4877 defined, issue an error message. */
4878 if (!os->ignored
4879 && !IGNORE_SECTION (os->bfd_section)
4880 && ! link_info.relocatable
4881 && check_regions
4882 && strcmp (os->region->name_list.name,
4883 DEFAULT_MEMORY_REGION) == 0
4884 && lang_memory_region_list != NULL
4885 && (strcmp (lang_memory_region_list->name_list.name,
4886 DEFAULT_MEMORY_REGION) != 0
4887 || lang_memory_region_list->next != NULL)
4888 && expld.phase != lang_mark_phase_enum)
4889 {
4890 /* By default this is an error rather than just a
4891 warning because if we allocate the section to the
4892 default memory region we can end up creating an
4893 excessively large binary, or even seg faulting when
4894 attempting to perform a negative seek. See
4895 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4896 for an example of this. This behaviour can be
4897 overridden by the using the --no-check-sections
4898 switch. */
4899 if (command_line.check_section_addresses)
4900 einfo (_("%P%F: error: no memory region specified"
4901 " for loadable section `%s'\n"),
4902 bfd_get_section_name (link_info.output_bfd,
4903 os->bfd_section));
4904 else
4905 einfo (_("%P: warning: no memory region specified"
4906 " for loadable section `%s'\n"),
4907 bfd_get_section_name (link_info.output_bfd,
4908 os->bfd_section));
4909 }
4910
4911 newdot = os->region->current;
4912 align = os->bfd_section->alignment_power;
4913 }
4914 else
4915 align = os->section_alignment;
4916
4917 /* Align to what the section needs. */
4918 if (align > 0)
4919 {
4920 bfd_vma savedot = newdot;
4921 newdot = align_power (newdot, align);
4922
4923 if (newdot != savedot
4924 && (config.warn_section_align
4925 || os->addr_tree != NULL)
4926 && expld.phase != lang_mark_phase_enum)
4927 einfo (_("%P: warning: changing start of section"
4928 " %s by %lu bytes\n"),
4929 os->name, (unsigned long) (newdot - savedot));
4930 }
4931
4932 bfd_set_section_vma (0, os->bfd_section, newdot);
4933
4934 os->bfd_section->output_offset = 0;
4935 }
4936
4937 lang_size_sections_1 (&os->children.head, os,
4938 os->fill, newdot, relax, check_regions);
4939
4940 os->processed_vma = TRUE;
4941
4942 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4943 /* Except for some special linker created sections,
4944 no output section should change from zero size
4945 after strip_excluded_output_sections. A non-zero
4946 size on an ignored section indicates that some
4947 input section was not sized early enough. */
4948 ASSERT (os->bfd_section->size == 0);
4949 else
4950 {
4951 dot = os->bfd_section->vma;
4952
4953 /* Put the section within the requested block size, or
4954 align at the block boundary. */
4955 after = ((dot
4956 + TO_ADDR (os->bfd_section->size)
4957 + os->block_value - 1)
4958 & - (bfd_vma) os->block_value);
4959
4960 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
4961 }
4962
4963 /* Set section lma. */
4964 r = os->region;
4965 if (r == NULL)
4966 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
4967
4968 if (os->load_base)
4969 {
4970 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
4971 os->bfd_section->lma = lma;
4972 }
4973 else if (os->lma_region != NULL)
4974 {
4975 bfd_vma lma = os->lma_region->current;
4976
4977 if (os->section_alignment != -1)
4978 lma = align_power (lma, os->section_alignment);
4979 os->bfd_section->lma = lma;
4980 }
4981 else if (r->last_os != NULL
4982 && (os->bfd_section->flags & SEC_ALLOC) != 0)
4983 {
4984 bfd_vma lma;
4985 asection *last;
4986
4987 last = r->last_os->output_section_statement.bfd_section;
4988
4989 /* A backwards move of dot should be accompanied by
4990 an explicit assignment to the section LMA (ie.
4991 os->load_base set) because backwards moves can
4992 create overlapping LMAs. */
4993 if (dot < last->vma
4994 && os->bfd_section->size != 0
4995 && dot + os->bfd_section->size <= last->vma)
4996 {
4997 /* If dot moved backwards then leave lma equal to
4998 vma. This is the old default lma, which might
4999 just happen to work when the backwards move is
5000 sufficiently large. Nag if this changes anything,
5001 so people can fix their linker scripts. */
5002
5003 if (last->vma != last->lma)
5004 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
5005 os->name);
5006 }
5007 else
5008 {
5009 /* If this is an overlay, set the current lma to that
5010 at the end of the previous section. */
5011 if (os->sectype == overlay_section)
5012 lma = last->lma + last->size;
5013
5014 /* Otherwise, keep the same lma to vma relationship
5015 as the previous section. */
5016 else
5017 lma = dot + last->lma - last->vma;
5018
5019 if (os->section_alignment != -1)
5020 lma = align_power (lma, os->section_alignment);
5021 os->bfd_section->lma = lma;
5022 }
5023 }
5024 os->processed_lma = TRUE;
5025
5026 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5027 break;
5028
5029 /* Keep track of normal sections using the default
5030 lma region. We use this to set the lma for
5031 following sections. Overlays or other linker
5032 script assignment to lma might mean that the
5033 default lma == vma is incorrect.
5034 To avoid warnings about dot moving backwards when using
5035 -Ttext, don't start tracking sections until we find one
5036 of non-zero size or with lma set differently to vma. */
5037 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5038 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
5039 && (os->bfd_section->flags & SEC_ALLOC) != 0
5040 && (os->bfd_section->size != 0
5041 || (r->last_os == NULL
5042 && os->bfd_section->vma != os->bfd_section->lma)
5043 || (r->last_os != NULL
5044 && dot >= (r->last_os->output_section_statement
5045 .bfd_section->vma)))
5046 && os->lma_region == NULL
5047 && !link_info.relocatable)
5048 r->last_os = s;
5049
5050 /* .tbss sections effectively have zero size. */
5051 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5052 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5053 || link_info.relocatable)
5054 dot += TO_ADDR (os->bfd_section->size);
5055
5056 if (os->update_dot_tree != 0)
5057 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5058
5059 /* Update dot in the region ?
5060 We only do this if the section is going to be allocated,
5061 since unallocated sections do not contribute to the region's
5062 overall size in memory. */
5063 if (os->region != NULL
5064 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5065 {
5066 os->region->current = dot;
5067
5068 if (check_regions)
5069 /* Make sure the new address is within the region. */
5070 os_region_check (os, os->region, os->addr_tree,
5071 os->bfd_section->vma);
5072
5073 if (os->lma_region != NULL && os->lma_region != os->region
5074 && (os->bfd_section->flags & SEC_LOAD))
5075 {
5076 os->lma_region->current
5077 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
5078
5079 if (check_regions)
5080 os_region_check (os, os->lma_region, NULL,
5081 os->bfd_section->lma);
5082 }
5083 }
5084 }
5085 break;
5086
5087 case lang_constructors_statement_enum:
5088 dot = lang_size_sections_1 (&constructor_list.head,
5089 output_section_statement,
5090 fill, dot, relax, check_regions);
5091 break;
5092
5093 case lang_data_statement_enum:
5094 {
5095 unsigned int size = 0;
5096
5097 s->data_statement.output_offset =
5098 dot - output_section_statement->bfd_section->vma;
5099 s->data_statement.output_section =
5100 output_section_statement->bfd_section;
5101
5102 /* We might refer to provided symbols in the expression, and
5103 need to mark them as needed. */
5104 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5105
5106 switch (s->data_statement.type)
5107 {
5108 default:
5109 abort ();
5110 case QUAD:
5111 case SQUAD:
5112 size = QUAD_SIZE;
5113 break;
5114 case LONG:
5115 size = LONG_SIZE;
5116 break;
5117 case SHORT:
5118 size = SHORT_SIZE;
5119 break;
5120 case BYTE:
5121 size = BYTE_SIZE;
5122 break;
5123 }
5124 if (size < TO_SIZE ((unsigned) 1))
5125 size = TO_SIZE ((unsigned) 1);
5126 dot += TO_ADDR (size);
5127 output_section_statement->bfd_section->size += size;
5128 }
5129 break;
5130
5131 case lang_reloc_statement_enum:
5132 {
5133 int size;
5134
5135 s->reloc_statement.output_offset =
5136 dot - output_section_statement->bfd_section->vma;
5137 s->reloc_statement.output_section =
5138 output_section_statement->bfd_section;
5139 size = bfd_get_reloc_size (s->reloc_statement.howto);
5140 dot += TO_ADDR (size);
5141 output_section_statement->bfd_section->size += size;
5142 }
5143 break;
5144
5145 case lang_wild_statement_enum:
5146 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5147 output_section_statement,
5148 fill, dot, relax, check_regions);
5149 break;
5150
5151 case lang_object_symbols_statement_enum:
5152 link_info.create_object_symbols_section =
5153 output_section_statement->bfd_section;
5154 break;
5155
5156 case lang_output_statement_enum:
5157 case lang_target_statement_enum:
5158 break;
5159
5160 case lang_input_section_enum:
5161 {
5162 asection *i;
5163
5164 i = s->input_section.section;
5165 if (relax)
5166 {
5167 bfd_boolean again;
5168
5169 if (! bfd_relax_section (i->owner, i, &link_info, &again))
5170 einfo (_("%P%F: can't relax section: %E\n"));
5171 if (again)
5172 *relax = TRUE;
5173 }
5174 dot = size_input_section (prev, output_section_statement,
5175 output_section_statement->fill, dot);
5176 }
5177 break;
5178
5179 case lang_input_statement_enum:
5180 break;
5181
5182 case lang_fill_statement_enum:
5183 s->fill_statement.output_section =
5184 output_section_statement->bfd_section;
5185
5186 fill = s->fill_statement.fill;
5187 break;
5188
5189 case lang_assignment_statement_enum:
5190 {
5191 bfd_vma newdot = dot;
5192 etree_type *tree = s->assignment_statement.exp;
5193
5194 expld.dataseg.relro = exp_dataseg_relro_none;
5195
5196 exp_fold_tree (tree,
5197 output_section_statement->bfd_section,
5198 &newdot);
5199
5200 if (expld.dataseg.relro == exp_dataseg_relro_start)
5201 {
5202 if (!expld.dataseg.relro_start_stat)
5203 expld.dataseg.relro_start_stat = s;
5204 else
5205 {
5206 ASSERT (expld.dataseg.relro_start_stat == s);
5207 }
5208 }
5209 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5210 {
5211 if (!expld.dataseg.relro_end_stat)
5212 expld.dataseg.relro_end_stat = s;
5213 else
5214 {
5215 ASSERT (expld.dataseg.relro_end_stat == s);
5216 }
5217 }
5218 expld.dataseg.relro = exp_dataseg_relro_none;
5219
5220 /* This symbol is relative to this section. */
5221 if ((tree->type.node_class == etree_provided
5222 || tree->type.node_class == etree_assign)
5223 && (tree->assign.dst [0] != '.'
5224 || tree->assign.dst [1] != '\0'))
5225 output_section_statement->section_relative_symbol = 1;
5226
5227 if (!output_section_statement->ignored)
5228 {
5229 if (output_section_statement == abs_output_section)
5230 {
5231 /* If we don't have an output section, then just adjust
5232 the default memory address. */
5233 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5234 FALSE)->current = newdot;
5235 }
5236 else if (newdot != dot)
5237 {
5238 /* Insert a pad after this statement. We can't
5239 put the pad before when relaxing, in case the
5240 assignment references dot. */
5241 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5242 output_section_statement->bfd_section, dot);
5243
5244 /* Don't neuter the pad below when relaxing. */
5245 s = s->header.next;
5246
5247 /* If dot is advanced, this implies that the section
5248 should have space allocated to it, unless the
5249 user has explicitly stated that the section
5250 should not be allocated. */
5251 if (output_section_statement->sectype != noalloc_section
5252 && (output_section_statement->sectype != noload_section
5253 || (bfd_get_flavour (link_info.output_bfd)
5254 == bfd_target_elf_flavour)))
5255 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5256 }
5257 dot = newdot;
5258 }
5259 }
5260 break;
5261
5262 case lang_padding_statement_enum:
5263 /* If this is the first time lang_size_sections is called,
5264 we won't have any padding statements. If this is the
5265 second or later passes when relaxing, we should allow
5266 padding to shrink. If padding is needed on this pass, it
5267 will be added back in. */
5268 s->padding_statement.size = 0;
5269
5270 /* Make sure output_offset is valid. If relaxation shrinks
5271 the section and this pad isn't needed, it's possible to
5272 have output_offset larger than the final size of the
5273 section. bfd_set_section_contents will complain even for
5274 a pad size of zero. */
5275 s->padding_statement.output_offset
5276 = dot - output_section_statement->bfd_section->vma;
5277 break;
5278
5279 case lang_group_statement_enum:
5280 dot = lang_size_sections_1 (&s->group_statement.children.head,
5281 output_section_statement,
5282 fill, dot, relax, check_regions);
5283 break;
5284
5285 case lang_insert_statement_enum:
5286 break;
5287
5288 /* We can only get here when relaxing is turned on. */
5289 case lang_address_statement_enum:
5290 break;
5291
5292 default:
5293 FAIL ();
5294 break;
5295 }
5296 prev = &s->header.next;
5297 }
5298 return dot;
5299 }
5300
5301 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5302 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5303 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5304 segments. We are allowed an opportunity to override this decision. */
5305
5306 bfd_boolean
5307 ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
5308 bfd * abfd ATTRIBUTE_UNUSED,
5309 asection * current_section,
5310 asection * previous_section,
5311 bfd_boolean new_segment)
5312 {
5313 lang_output_section_statement_type * cur;
5314 lang_output_section_statement_type * prev;
5315
5316 /* The checks below are only necessary when the BFD library has decided
5317 that the two sections ought to be placed into the same segment. */
5318 if (new_segment)
5319 return TRUE;
5320
5321 /* Paranoia checks. */
5322 if (current_section == NULL || previous_section == NULL)
5323 return new_segment;
5324
5325 /* Find the memory regions associated with the two sections.
5326 We call lang_output_section_find() here rather than scanning the list
5327 of output sections looking for a matching section pointer because if
5328 we have a large number of sections then a hash lookup is faster. */
5329 cur = lang_output_section_find (current_section->name);
5330 prev = lang_output_section_find (previous_section->name);
5331
5332 /* More paranoia. */
5333 if (cur == NULL || prev == NULL)
5334 return new_segment;
5335
5336 /* If the regions are different then force the sections to live in
5337 different segments. See the email thread starting at the following
5338 URL for the reasons why this is necessary:
5339 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5340 return cur->region != prev->region;
5341 }
5342
5343 void
5344 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5345 {
5346 lang_statement_iteration++;
5347 lang_size_sections_1 (&statement_list.head, abs_output_section,
5348 0, 0, relax, check_regions);
5349 }
5350
5351 void
5352 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5353 {
5354 expld.phase = lang_allocating_phase_enum;
5355 expld.dataseg.phase = exp_dataseg_none;
5356
5357 one_lang_size_sections_pass (relax, check_regions);
5358 if (expld.dataseg.phase == exp_dataseg_end_seen
5359 && link_info.relro && expld.dataseg.relro_end)
5360 {
5361 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
5362 to put expld.dataseg.relro on a (common) page boundary. */
5363 bfd_vma min_base, old_base, relro_end, maxpage;
5364
5365 expld.dataseg.phase = exp_dataseg_relro_adjust;
5366 maxpage = expld.dataseg.maxpagesize;
5367 /* MIN_BASE is the absolute minimum address we are allowed to start the
5368 read-write segment (byte before will be mapped read-only). */
5369 min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1);
5370 /* OLD_BASE is the address for a feasible minimum address which will
5371 still not cause a data overlap inside MAXPAGE causing file offset skip
5372 by MAXPAGE. */
5373 old_base = expld.dataseg.base;
5374 expld.dataseg.base += (-expld.dataseg.relro_end
5375 & (expld.dataseg.pagesize - 1));
5376 /* Compute the expected PT_GNU_RELRO segment end. */
5377 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5378 & ~(expld.dataseg.pagesize - 1));
5379 if (min_base + maxpage < expld.dataseg.base)
5380 {
5381 expld.dataseg.base -= maxpage;
5382 relro_end -= maxpage;
5383 }
5384 lang_reset_memory_regions ();
5385 one_lang_size_sections_pass (relax, check_regions);
5386 if (expld.dataseg.relro_end > relro_end)
5387 {
5388 /* The alignment of sections between DATA_SEGMENT_ALIGN
5389 and DATA_SEGMENT_RELRO_END caused huge padding to be
5390 inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so
5391 that the section alignments will fit in. */
5392 asection *sec;
5393 unsigned int max_alignment_power = 0;
5394
5395 /* Find maximum alignment power of sections between
5396 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5397 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5398 if (sec->vma >= expld.dataseg.base
5399 && sec->vma < expld.dataseg.relro_end
5400 && sec->alignment_power > max_alignment_power)
5401 max_alignment_power = sec->alignment_power;
5402
5403 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5404 {
5405 if (expld.dataseg.base - (1 << max_alignment_power) < old_base)
5406 expld.dataseg.base += expld.dataseg.pagesize;
5407 expld.dataseg.base -= (1 << max_alignment_power);
5408 lang_reset_memory_regions ();
5409 one_lang_size_sections_pass (relax, check_regions);
5410 }
5411 }
5412 link_info.relro_start = expld.dataseg.base;
5413 link_info.relro_end = expld.dataseg.relro_end;
5414 }
5415 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5416 {
5417 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5418 a page could be saved in the data segment. */
5419 bfd_vma first, last;
5420
5421 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5422 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5423 if (first && last
5424 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5425 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5426 && first + last <= expld.dataseg.pagesize)
5427 {
5428 expld.dataseg.phase = exp_dataseg_adjust;
5429 lang_reset_memory_regions ();
5430 one_lang_size_sections_pass (relax, check_regions);
5431 }
5432 }
5433
5434 expld.phase = lang_final_phase_enum;
5435 }
5436
5437 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5438
5439 static bfd_vma
5440 lang_do_assignments_1 (lang_statement_union_type *s,
5441 lang_output_section_statement_type *current_os,
5442 fill_type *fill,
5443 bfd_vma dot)
5444 {
5445 for (; s != NULL; s = s->header.next)
5446 {
5447 switch (s->header.type)
5448 {
5449 case lang_constructors_statement_enum:
5450 dot = lang_do_assignments_1 (constructor_list.head,
5451 current_os, fill, dot);
5452 break;
5453
5454 case lang_output_section_statement_enum:
5455 {
5456 lang_output_section_statement_type *os;
5457
5458 os = &(s->output_section_statement);
5459 if (os->bfd_section != NULL && !os->ignored)
5460 {
5461 dot = os->bfd_section->vma;
5462
5463 lang_do_assignments_1 (os->children.head, os, os->fill, dot);
5464
5465 /* .tbss sections effectively have zero size. */
5466 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5467 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5468 || link_info.relocatable)
5469 dot += TO_ADDR (os->bfd_section->size);
5470
5471 if (os->update_dot_tree != NULL)
5472 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5473 }
5474 }
5475 break;
5476
5477 case lang_wild_statement_enum:
5478
5479 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5480 current_os, fill, dot);
5481 break;
5482
5483 case lang_object_symbols_statement_enum:
5484 case lang_output_statement_enum:
5485 case lang_target_statement_enum:
5486 break;
5487
5488 case lang_data_statement_enum:
5489 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5490 if (expld.result.valid_p)
5491 {
5492 s->data_statement.value = expld.result.value;
5493 if (expld.result.section != NULL)
5494 s->data_statement.value += expld.result.section->vma;
5495 }
5496 else
5497 einfo (_("%F%P: invalid data statement\n"));
5498 {
5499 unsigned int size;
5500 switch (s->data_statement.type)
5501 {
5502 default:
5503 abort ();
5504 case QUAD:
5505 case SQUAD:
5506 size = QUAD_SIZE;
5507 break;
5508 case LONG:
5509 size = LONG_SIZE;
5510 break;
5511 case SHORT:
5512 size = SHORT_SIZE;
5513 break;
5514 case BYTE:
5515 size = BYTE_SIZE;
5516 break;
5517 }
5518 if (size < TO_SIZE ((unsigned) 1))
5519 size = TO_SIZE ((unsigned) 1);
5520 dot += TO_ADDR (size);
5521 }
5522 break;
5523
5524 case lang_reloc_statement_enum:
5525 exp_fold_tree (s->reloc_statement.addend_exp,
5526 bfd_abs_section_ptr, &dot);
5527 if (expld.result.valid_p)
5528 s->reloc_statement.addend_value = expld.result.value;
5529 else
5530 einfo (_("%F%P: invalid reloc statement\n"));
5531 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5532 break;
5533
5534 case lang_input_section_enum:
5535 {
5536 asection *in = s->input_section.section;
5537
5538 if ((in->flags & SEC_EXCLUDE) == 0)
5539 dot += TO_ADDR (in->size);
5540 }
5541 break;
5542
5543 case lang_input_statement_enum:
5544 break;
5545
5546 case lang_fill_statement_enum:
5547 fill = s->fill_statement.fill;
5548 break;
5549
5550 case lang_assignment_statement_enum:
5551 exp_fold_tree (s->assignment_statement.exp,
5552 current_os->bfd_section,
5553 &dot);
5554 break;
5555
5556 case lang_padding_statement_enum:
5557 dot += TO_ADDR (s->padding_statement.size);
5558 break;
5559
5560 case lang_group_statement_enum:
5561 dot = lang_do_assignments_1 (s->group_statement.children.head,
5562 current_os, fill, dot);
5563 break;
5564
5565 case lang_insert_statement_enum:
5566 break;
5567
5568 case lang_address_statement_enum:
5569 break;
5570
5571 default:
5572 FAIL ();
5573 break;
5574 }
5575 }
5576 return dot;
5577 }
5578
5579 void
5580 lang_do_assignments (void)
5581 {
5582 lang_statement_iteration++;
5583 lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
5584 }
5585
5586 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5587 operator .startof. (section_name), it produces an undefined symbol
5588 .startof.section_name. Similarly, when it sees
5589 .sizeof. (section_name), it produces an undefined symbol
5590 .sizeof.section_name. For all the output sections, we look for
5591 such symbols, and set them to the correct value. */
5592
5593 static void
5594 lang_set_startof (void)
5595 {
5596 asection *s;
5597
5598 if (link_info.relocatable)
5599 return;
5600
5601 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5602 {
5603 const char *secname;
5604 char *buf;
5605 struct bfd_link_hash_entry *h;
5606
5607 secname = bfd_get_section_name (link_info.output_bfd, s);
5608 buf = (char *) xmalloc (10 + strlen (secname));
5609
5610 sprintf (buf, ".startof.%s", secname);
5611 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5612 if (h != NULL && h->type == bfd_link_hash_undefined)
5613 {
5614 h->type = bfd_link_hash_defined;
5615 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s);
5616 h->u.def.section = bfd_abs_section_ptr;
5617 }
5618
5619 sprintf (buf, ".sizeof.%s", secname);
5620 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5621 if (h != NULL && h->type == bfd_link_hash_undefined)
5622 {
5623 h->type = bfd_link_hash_defined;
5624 h->u.def.value = TO_ADDR (s->size);
5625 h->u.def.section = bfd_abs_section_ptr;
5626 }
5627
5628 free (buf);
5629 }
5630 }
5631
5632 static void
5633 lang_end (void)
5634 {
5635 struct bfd_link_hash_entry *h;
5636 bfd_boolean warn;
5637
5638 if ((link_info.relocatable && !link_info.gc_sections)
5639 || (link_info.shared && !link_info.executable))
5640 warn = entry_from_cmdline;
5641 else
5642 warn = TRUE;
5643
5644 /* Force the user to specify a root when generating a relocatable with
5645 --gc-sections. */
5646 if (link_info.gc_sections && link_info.relocatable
5647 && !(entry_from_cmdline || undef_from_cmdline))
5648 einfo (_("%P%F: gc-sections requires either an entry or "
5649 "an undefined symbol\n"));
5650
5651 if (entry_symbol.name == NULL)
5652 {
5653 /* No entry has been specified. Look for the default entry, but
5654 don't warn if we don't find it. */
5655 entry_symbol.name = entry_symbol_default;
5656 warn = FALSE;
5657 }
5658
5659 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5660 FALSE, FALSE, TRUE);
5661 if (h != NULL
5662 && (h->type == bfd_link_hash_defined
5663 || h->type == bfd_link_hash_defweak)
5664 && h->u.def.section->output_section != NULL)
5665 {
5666 bfd_vma val;
5667
5668 val = (h->u.def.value
5669 + bfd_get_section_vma (link_info.output_bfd,
5670 h->u.def.section->output_section)
5671 + h->u.def.section->output_offset);
5672 if (! bfd_set_start_address (link_info.output_bfd, val))
5673 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5674 }
5675 else
5676 {
5677 bfd_vma val;
5678 const char *send;
5679
5680 /* We couldn't find the entry symbol. Try parsing it as a
5681 number. */
5682 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5683 if (*send == '\0')
5684 {
5685 if (! bfd_set_start_address (link_info.output_bfd, val))
5686 einfo (_("%P%F: can't set start address\n"));
5687 }
5688 else
5689 {
5690 asection *ts;
5691
5692 /* Can't find the entry symbol, and it's not a number. Use
5693 the first address in the text section. */
5694 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5695 if (ts != NULL)
5696 {
5697 if (warn)
5698 einfo (_("%P: warning: cannot find entry symbol %s;"
5699 " defaulting to %V\n"),
5700 entry_symbol.name,
5701 bfd_get_section_vma (link_info.output_bfd, ts));
5702 if (!(bfd_set_start_address
5703 (link_info.output_bfd,
5704 bfd_get_section_vma (link_info.output_bfd, ts))))
5705 einfo (_("%P%F: can't set start address\n"));
5706 }
5707 else
5708 {
5709 if (warn)
5710 einfo (_("%P: warning: cannot find entry symbol %s;"
5711 " not setting start address\n"),
5712 entry_symbol.name);
5713 }
5714 }
5715 }
5716
5717 /* Don't bfd_hash_table_free (&lang_definedness_table);
5718 map file output may result in a call of lang_track_definedness. */
5719 }
5720
5721 /* This is a small function used when we want to ignore errors from
5722 BFD. */
5723
5724 static void
5725 ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5726 {
5727 /* Don't do anything. */
5728 }
5729
5730 /* Check that the architecture of all the input files is compatible
5731 with the output file. Also call the backend to let it do any
5732 other checking that is needed. */
5733
5734 static void
5735 lang_check (void)
5736 {
5737 lang_statement_union_type *file;
5738 bfd *input_bfd;
5739 const bfd_arch_info_type *compatible;
5740
5741 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5742 {
5743 input_bfd = file->input_statement.the_bfd;
5744 compatible
5745 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5746 command_line.accept_unknown_input_arch);
5747
5748 /* In general it is not possible to perform a relocatable
5749 link between differing object formats when the input
5750 file has relocations, because the relocations in the
5751 input format may not have equivalent representations in
5752 the output format (and besides BFD does not translate
5753 relocs for other link purposes than a final link). */
5754 if ((link_info.relocatable || link_info.emitrelocations)
5755 && (compatible == NULL
5756 || (bfd_get_flavour (input_bfd)
5757 != bfd_get_flavour (link_info.output_bfd)))
5758 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5759 {
5760 einfo (_("%P%F: Relocatable linking with relocations from"
5761 " format %s (%B) to format %s (%B) is not supported\n"),
5762 bfd_get_target (input_bfd), input_bfd,
5763 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5764 /* einfo with %F exits. */
5765 }
5766
5767 if (compatible == NULL)
5768 {
5769 if (command_line.warn_mismatch)
5770 einfo (_("%P%X: %s architecture of input file `%B'"
5771 " is incompatible with %s output\n"),
5772 bfd_printable_name (input_bfd), input_bfd,
5773 bfd_printable_name (link_info.output_bfd));
5774 }
5775 else if (bfd_count_sections (input_bfd))
5776 {
5777 /* If the input bfd has no contents, it shouldn't set the
5778 private data of the output bfd. */
5779
5780 bfd_error_handler_type pfn = NULL;
5781
5782 /* If we aren't supposed to warn about mismatched input
5783 files, temporarily set the BFD error handler to a
5784 function which will do nothing. We still want to call
5785 bfd_merge_private_bfd_data, since it may set up
5786 information which is needed in the output file. */
5787 if (! command_line.warn_mismatch)
5788 pfn = bfd_set_error_handler (ignore_bfd_errors);
5789 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5790 {
5791 if (command_line.warn_mismatch)
5792 einfo (_("%P%X: failed to merge target specific data"
5793 " of file %B\n"), input_bfd);
5794 }
5795 if (! command_line.warn_mismatch)
5796 bfd_set_error_handler (pfn);
5797 }
5798 }
5799 }
5800
5801 /* Look through all the global common symbols and attach them to the
5802 correct section. The -sort-common command line switch may be used
5803 to roughly sort the entries by alignment. */
5804
5805 static void
5806 lang_common (void)
5807 {
5808 if (command_line.inhibit_common_definition)
5809 return;
5810 if (link_info.relocatable
5811 && ! command_line.force_common_definition)
5812 return;
5813
5814 if (! config.sort_common)
5815 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5816 else
5817 {
5818 unsigned int power;
5819
5820 if (config.sort_common == sort_descending)
5821 {
5822 for (power = 4; power > 0; power--)
5823 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5824
5825 power = 0;
5826 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5827 }
5828 else
5829 {
5830 for (power = 0; power <= 4; power++)
5831 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5832
5833 power = UINT_MAX;
5834 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5835 }
5836 }
5837 }
5838
5839 /* Place one common symbol in the correct section. */
5840
5841 static bfd_boolean
5842 lang_one_common (struct bfd_link_hash_entry *h, void *info)
5843 {
5844 unsigned int power_of_two;
5845 bfd_vma size;
5846 asection *section;
5847
5848 if (h->type != bfd_link_hash_common)
5849 return TRUE;
5850
5851 size = h->u.c.size;
5852 power_of_two = h->u.c.p->alignment_power;
5853
5854 if (config.sort_common == sort_descending
5855 && power_of_two < *(unsigned int *) info)
5856 return TRUE;
5857 else if (config.sort_common == sort_ascending
5858 && power_of_two > *(unsigned int *) info)
5859 return TRUE;
5860
5861 section = h->u.c.p->section;
5862 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
5863 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
5864 h->root.string);
5865
5866 if (config.map_file != NULL)
5867 {
5868 static bfd_boolean header_printed;
5869 int len;
5870 char *name;
5871 char buf[50];
5872
5873 if (! header_printed)
5874 {
5875 minfo (_("\nAllocating common symbols\n"));
5876 minfo (_("Common symbol size file\n\n"));
5877 header_printed = TRUE;
5878 }
5879
5880 name = bfd_demangle (link_info.output_bfd, h->root.string,
5881 DMGL_ANSI | DMGL_PARAMS);
5882 if (name == NULL)
5883 {
5884 minfo ("%s", h->root.string);
5885 len = strlen (h->root.string);
5886 }
5887 else
5888 {
5889 minfo ("%s", name);
5890 len = strlen (name);
5891 free (name);
5892 }
5893
5894 if (len >= 19)
5895 {
5896 print_nl ();
5897 len = 0;
5898 }
5899 while (len < 20)
5900 {
5901 print_space ();
5902 ++len;
5903 }
5904
5905 minfo ("0x");
5906 if (size <= 0xffffffff)
5907 sprintf (buf, "%lx", (unsigned long) size);
5908 else
5909 sprintf_vma (buf, size);
5910 minfo ("%s", buf);
5911 len = strlen (buf);
5912
5913 while (len < 16)
5914 {
5915 print_space ();
5916 ++len;
5917 }
5918
5919 minfo ("%B\n", section->owner);
5920 }
5921
5922 return TRUE;
5923 }
5924
5925 /* Run through the input files and ensure that every input section has
5926 somewhere to go. If one is found without a destination then create
5927 an input request and place it into the statement tree. */
5928
5929 static void
5930 lang_place_orphans (void)
5931 {
5932 LANG_FOR_EACH_INPUT_STATEMENT (file)
5933 {
5934 asection *s;
5935
5936 for (s = file->the_bfd->sections; s != NULL; s = s->next)
5937 {
5938 if (s->output_section == NULL)
5939 {
5940 /* This section of the file is not attached, root
5941 around for a sensible place for it to go. */
5942
5943 if (file->just_syms_flag)
5944 bfd_link_just_syms (file->the_bfd, s, &link_info);
5945 else if ((s->flags & SEC_EXCLUDE) != 0)
5946 s->output_section = bfd_abs_section_ptr;
5947 else if (strcmp (s->name, "COMMON") == 0)
5948 {
5949 /* This is a lonely common section which must have
5950 come from an archive. We attach to the section
5951 with the wildcard. */
5952 if (! link_info.relocatable
5953 || command_line.force_common_definition)
5954 {
5955 if (default_common_section == NULL)
5956 default_common_section
5957 = lang_output_section_statement_lookup (".bss", 0,
5958 TRUE);
5959 lang_add_section (&default_common_section->children, s,
5960 default_common_section);
5961 }
5962 }
5963 else
5964 {
5965 const char *name = s->name;
5966 int constraint = 0;
5967
5968 if (config.unique_orphan_sections
5969 || unique_section_p (s, NULL))
5970 constraint = SPECIAL;
5971
5972 if (!ldemul_place_orphan (s, name, constraint))
5973 {
5974 lang_output_section_statement_type *os;
5975 os = lang_output_section_statement_lookup (name,
5976 constraint,
5977 TRUE);
5978 if (os->addr_tree == NULL
5979 && (link_info.relocatable
5980 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
5981 os->addr_tree = exp_intop (0);
5982 lang_add_section (&os->children, s, os);
5983 }
5984 }
5985 }
5986 }
5987 }
5988 }
5989
5990 void
5991 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
5992 {
5993 flagword *ptr_flags;
5994
5995 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
5996 while (*flags)
5997 {
5998 switch (*flags)
5999 {
6000 case 'A': case 'a':
6001 *ptr_flags |= SEC_ALLOC;
6002 break;
6003
6004 case 'R': case 'r':
6005 *ptr_flags |= SEC_READONLY;
6006 break;
6007
6008 case 'W': case 'w':
6009 *ptr_flags |= SEC_DATA;
6010 break;
6011
6012 case 'X': case 'x':
6013 *ptr_flags |= SEC_CODE;
6014 break;
6015
6016 case 'L': case 'l':
6017 case 'I': case 'i':
6018 *ptr_flags |= SEC_LOAD;
6019 break;
6020
6021 default:
6022 einfo (_("%P%F: invalid syntax in flags\n"));
6023 break;
6024 }
6025 flags++;
6026 }
6027 }
6028
6029 /* Call a function on each input file. This function will be called
6030 on an archive, but not on the elements. */
6031
6032 void
6033 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6034 {
6035 lang_input_statement_type *f;
6036
6037 for (f = (lang_input_statement_type *) input_file_chain.head;
6038 f != NULL;
6039 f = (lang_input_statement_type *) f->next_real_file)
6040 func (f);
6041 }
6042
6043 /* Call a function on each file. The function will be called on all
6044 the elements of an archive which are included in the link, but will
6045 not be called on the archive file itself. */
6046
6047 void
6048 lang_for_each_file (void (*func) (lang_input_statement_type *))
6049 {
6050 LANG_FOR_EACH_INPUT_STATEMENT (f)
6051 {
6052 func (f);
6053 }
6054 }
6055
6056 void
6057 ldlang_add_file (lang_input_statement_type *entry)
6058 {
6059 lang_statement_append (&file_chain,
6060 (lang_statement_union_type *) entry,
6061 &entry->next);
6062
6063 /* The BFD linker needs to have a list of all input BFDs involved in
6064 a link. */
6065 ASSERT (entry->the_bfd->link_next == NULL);
6066 ASSERT (entry->the_bfd != link_info.output_bfd);
6067
6068 *link_info.input_bfds_tail = entry->the_bfd;
6069 link_info.input_bfds_tail = &entry->the_bfd->link_next;
6070 entry->the_bfd->usrdata = entry;
6071 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6072
6073 /* Look through the sections and check for any which should not be
6074 included in the link. We need to do this now, so that we can
6075 notice when the backend linker tries to report multiple
6076 definition errors for symbols which are in sections we aren't
6077 going to link. FIXME: It might be better to entirely ignore
6078 symbols which are defined in sections which are going to be
6079 discarded. This would require modifying the backend linker for
6080 each backend which might set the SEC_LINK_ONCE flag. If we do
6081 this, we should probably handle SEC_EXCLUDE in the same way. */
6082
6083 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6084 }
6085
6086 void
6087 lang_add_output (const char *name, int from_script)
6088 {
6089 /* Make -o on command line override OUTPUT in script. */
6090 if (!had_output_filename || !from_script)
6091 {
6092 output_filename = name;
6093 had_output_filename = TRUE;
6094 }
6095 }
6096
6097 static lang_output_section_statement_type *current_section;
6098
6099 static int
6100 topower (int x)
6101 {
6102 unsigned int i = 1;
6103 int l;
6104
6105 if (x < 0)
6106 return -1;
6107
6108 for (l = 0; l < 32; l++)
6109 {
6110 if (i >= (unsigned int) x)
6111 return l;
6112 i <<= 1;
6113 }
6114
6115 return 0;
6116 }
6117
6118 lang_output_section_statement_type *
6119 lang_enter_output_section_statement (const char *output_section_statement_name,
6120 etree_type *address_exp,
6121 enum section_type sectype,
6122 etree_type *align,
6123 etree_type *subalign,
6124 etree_type *ebase,
6125 int constraint)
6126 {
6127 lang_output_section_statement_type *os;
6128
6129 os = lang_output_section_statement_lookup (output_section_statement_name,
6130 constraint, TRUE);
6131 current_section = os;
6132
6133 if (os->addr_tree == NULL)
6134 {
6135 os->addr_tree = address_exp;
6136 }
6137 os->sectype = sectype;
6138 if (sectype != noload_section)
6139 os->flags = SEC_NO_FLAGS;
6140 else
6141 os->flags = SEC_NEVER_LOAD;
6142 os->block_value = 1;
6143
6144 /* Make next things chain into subchain of this. */
6145 push_stat_ptr (&os->children);
6146
6147 os->subsection_alignment =
6148 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6149 os->section_alignment =
6150 topower (exp_get_value_int (align, -1, "section alignment"));
6151
6152 os->load_base = ebase;
6153 return os;
6154 }
6155
6156 void
6157 lang_final (void)
6158 {
6159 lang_output_statement_type *new_stmt;
6160
6161 new_stmt = new_stat (lang_output_statement, stat_ptr);
6162 new_stmt->name = output_filename;
6163
6164 }
6165
6166 /* Reset the current counters in the regions. */
6167
6168 void
6169 lang_reset_memory_regions (void)
6170 {
6171 lang_memory_region_type *p = lang_memory_region_list;
6172 asection *o;
6173 lang_output_section_statement_type *os;
6174
6175 for (p = lang_memory_region_list; p != NULL; p = p->next)
6176 {
6177 p->current = p->origin;
6178 p->last_os = NULL;
6179 }
6180
6181 for (os = &lang_output_section_statement.head->output_section_statement;
6182 os != NULL;
6183 os = os->next)
6184 {
6185 os->processed_vma = FALSE;
6186 os->processed_lma = FALSE;
6187 }
6188
6189 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6190 {
6191 /* Save the last size for possible use by bfd_relax_section. */
6192 o->rawsize = o->size;
6193 o->size = 0;
6194 }
6195 }
6196
6197 /* Worker for lang_gc_sections_1. */
6198
6199 static void
6200 gc_section_callback (lang_wild_statement_type *ptr,
6201 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6202 asection *section,
6203 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6204 void *data ATTRIBUTE_UNUSED)
6205 {
6206 /* If the wild pattern was marked KEEP, the member sections
6207 should be as well. */
6208 if (ptr->keep_sections)
6209 section->flags |= SEC_KEEP;
6210 }
6211
6212 /* Iterate over sections marking them against GC. */
6213
6214 static void
6215 lang_gc_sections_1 (lang_statement_union_type *s)
6216 {
6217 for (; s != NULL; s = s->header.next)
6218 {
6219 switch (s->header.type)
6220 {
6221 case lang_wild_statement_enum:
6222 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6223 break;
6224 case lang_constructors_statement_enum:
6225 lang_gc_sections_1 (constructor_list.head);
6226 break;
6227 case lang_output_section_statement_enum:
6228 lang_gc_sections_1 (s->output_section_statement.children.head);
6229 break;
6230 case lang_group_statement_enum:
6231 lang_gc_sections_1 (s->group_statement.children.head);
6232 break;
6233 default:
6234 break;
6235 }
6236 }
6237 }
6238
6239 static void
6240 lang_gc_sections (void)
6241 {
6242 /* Keep all sections so marked in the link script. */
6243
6244 lang_gc_sections_1 (statement_list.head);
6245
6246 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6247 the special case of debug info. (See bfd/stabs.c)
6248 Twiddle the flag here, to simplify later linker code. */
6249 if (link_info.relocatable)
6250 {
6251 LANG_FOR_EACH_INPUT_STATEMENT (f)
6252 {
6253 asection *sec;
6254 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6255 if ((sec->flags & SEC_DEBUGGING) == 0)
6256 sec->flags &= ~SEC_EXCLUDE;
6257 }
6258 }
6259
6260 if (link_info.gc_sections)
6261 bfd_gc_sections (link_info.output_bfd, &link_info);
6262 }
6263
6264 /* Worker for lang_find_relro_sections_1. */
6265
6266 static void
6267 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6268 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6269 asection *section,
6270 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6271 void *data)
6272 {
6273 /* Discarded, excluded and ignored sections effectively have zero
6274 size. */
6275 if (section->output_section != NULL
6276 && section->output_section->owner == link_info.output_bfd
6277 && (section->output_section->flags & SEC_EXCLUDE) == 0
6278 && !IGNORE_SECTION (section)
6279 && section->size != 0)
6280 {
6281 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6282 *has_relro_section = TRUE;
6283 }
6284 }
6285
6286 /* Iterate over sections for relro sections. */
6287
6288 static void
6289 lang_find_relro_sections_1 (lang_statement_union_type *s,
6290 bfd_boolean *has_relro_section)
6291 {
6292 if (*has_relro_section)
6293 return;
6294
6295 for (; s != NULL; s = s->header.next)
6296 {
6297 if (s == expld.dataseg.relro_end_stat)
6298 break;
6299
6300 switch (s->header.type)
6301 {
6302 case lang_wild_statement_enum:
6303 walk_wild (&s->wild_statement,
6304 find_relro_section_callback,
6305 has_relro_section);
6306 break;
6307 case lang_constructors_statement_enum:
6308 lang_find_relro_sections_1 (constructor_list.head,
6309 has_relro_section);
6310 break;
6311 case lang_output_section_statement_enum:
6312 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6313 has_relro_section);
6314 break;
6315 case lang_group_statement_enum:
6316 lang_find_relro_sections_1 (s->group_statement.children.head,
6317 has_relro_section);
6318 break;
6319 default:
6320 break;
6321 }
6322 }
6323 }
6324
6325 static void
6326 lang_find_relro_sections (void)
6327 {
6328 bfd_boolean has_relro_section = FALSE;
6329
6330 /* Check all sections in the link script. */
6331
6332 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6333 &has_relro_section);
6334
6335 if (!has_relro_section)
6336 link_info.relro = FALSE;
6337 }
6338
6339 /* Relax all sections until bfd_relax_section gives up. */
6340
6341 void
6342 lang_relax_sections (bfd_boolean need_layout)
6343 {
6344 if (RELAXATION_ENABLED)
6345 {
6346 /* We may need more than one relaxation pass. */
6347 int i = link_info.relax_pass;
6348
6349 /* The backend can use it to determine the current pass. */
6350 link_info.relax_pass = 0;
6351
6352 while (i--)
6353 {
6354 /* Keep relaxing until bfd_relax_section gives up. */
6355 bfd_boolean relax_again;
6356
6357 link_info.relax_trip = -1;
6358 do
6359 {
6360 link_info.relax_trip++;
6361
6362 /* Note: pe-dll.c does something like this also. If you find
6363 you need to change this code, you probably need to change
6364 pe-dll.c also. DJ */
6365
6366 /* Do all the assignments with our current guesses as to
6367 section sizes. */
6368 lang_do_assignments ();
6369
6370 /* We must do this after lang_do_assignments, because it uses
6371 size. */
6372 lang_reset_memory_regions ();
6373
6374 /* Perform another relax pass - this time we know where the
6375 globals are, so can make a better guess. */
6376 relax_again = FALSE;
6377 lang_size_sections (&relax_again, FALSE);
6378 }
6379 while (relax_again);
6380
6381 link_info.relax_pass++;
6382 }
6383 need_layout = TRUE;
6384 }
6385
6386 if (need_layout)
6387 {
6388 /* Final extra sizing to report errors. */
6389 lang_do_assignments ();
6390 lang_reset_memory_regions ();
6391 lang_size_sections (NULL, TRUE);
6392 }
6393 }
6394
6395 void
6396 lang_process (void)
6397 {
6398 /* Finalize dynamic list. */
6399 if (link_info.dynamic_list)
6400 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6401
6402 current_target = default_target;
6403
6404 /* Open the output file. */
6405 lang_for_each_statement (ldlang_open_output);
6406 init_opb ();
6407
6408 ldemul_create_output_section_statements ();
6409
6410 /* Add to the hash table all undefineds on the command line. */
6411 lang_place_undefineds ();
6412 lang_place_defineds ();
6413
6414 if (!bfd_section_already_linked_table_init ())
6415 einfo (_("%P%F: Failed to create hash table\n"));
6416
6417 /* Create a bfd for each input file. */
6418 current_target = default_target;
6419 open_input_bfds (statement_list.head, FALSE);
6420
6421 #ifdef ENABLE_PLUGINS
6422 {
6423 union lang_statement_union **listend;
6424 /* Now all files are read, let the plugin(s) decide if there
6425 are any more to be added to the link before we call the
6426 emulation's after_open hook. */
6427 listend = statement_list.tail;
6428 ASSERT (!*listend);
6429 if (plugin_call_all_symbols_read ())
6430 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6431 plugin_error_plugin ());
6432 /* If any new files were added, they will be on the end of the
6433 statement list, and we can open them now by getting open_input_bfds
6434 to carry on from where it ended last time. */
6435 if (*listend)
6436 open_input_bfds (*listend, FALSE);
6437 }
6438 #endif /* ENABLE_PLUGINS */
6439
6440 link_info.gc_sym_list = &entry_symbol;
6441 if (entry_symbol.name == NULL)
6442 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6443
6444 ldemul_after_open ();
6445
6446 bfd_section_already_linked_table_free ();
6447
6448 /* Make sure that we're not mixing architectures. We call this
6449 after all the input files have been opened, but before we do any
6450 other processing, so that any operations merge_private_bfd_data
6451 does on the output file will be known during the rest of the
6452 link. */
6453 lang_check ();
6454
6455 /* Handle .exports instead of a version script if we're told to do so. */
6456 if (command_line.version_exports_section)
6457 lang_do_version_exports_section ();
6458
6459 /* Build all sets based on the information gathered from the input
6460 files. */
6461 ldctor_build_sets ();
6462
6463 /* Remove unreferenced sections if asked to. */
6464 lang_gc_sections ();
6465
6466 /* Size up the common data. */
6467 lang_common ();
6468
6469 /* Update wild statements. */
6470 update_wild_statements (statement_list.head);
6471
6472 /* Run through the contours of the script and attach input sections
6473 to the correct output sections. */
6474 map_input_to_output_sections (statement_list.head, NULL, NULL);
6475
6476 process_insert_statements ();
6477
6478 /* Find any sections not attached explicitly and handle them. */
6479 lang_place_orphans ();
6480
6481 if (! link_info.relocatable)
6482 {
6483 asection *found;
6484
6485 /* Merge SEC_MERGE sections. This has to be done after GC of
6486 sections, so that GCed sections are not merged, but before
6487 assigning dynamic symbols, since removing whole input sections
6488 is hard then. */
6489 bfd_merge_sections (link_info.output_bfd, &link_info);
6490
6491 /* Look for a text section and set the readonly attribute in it. */
6492 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6493
6494 if (found != NULL)
6495 {
6496 if (config.text_read_only)
6497 found->flags |= SEC_READONLY;
6498 else
6499 found->flags &= ~SEC_READONLY;
6500 }
6501 }
6502
6503 /* Do anything special before sizing sections. This is where ELF
6504 and other back-ends size dynamic sections. */
6505 ldemul_before_allocation ();
6506
6507 /* We must record the program headers before we try to fix the
6508 section positions, since they will affect SIZEOF_HEADERS. */
6509 lang_record_phdrs ();
6510
6511 /* Check relro sections. */
6512 if (link_info.relro && ! link_info.relocatable)
6513 lang_find_relro_sections ();
6514
6515 /* Size up the sections. */
6516 lang_size_sections (NULL, ! RELAXATION_ENABLED);
6517
6518 /* See if anything special should be done now we know how big
6519 everything is. This is where relaxation is done. */
6520 ldemul_after_allocation ();
6521
6522 /* Fix any .startof. or .sizeof. symbols. */
6523 lang_set_startof ();
6524
6525 /* Do all the assignments, now that we know the final resting places
6526 of all the symbols. */
6527
6528 lang_do_assignments ();
6529
6530 ldemul_finish ();
6531
6532 /* Make sure that the section addresses make sense. */
6533 if (command_line.check_section_addresses)
6534 lang_check_section_addresses ();
6535
6536 lang_end ();
6537 }
6538
6539 /* EXPORTED TO YACC */
6540
6541 void
6542 lang_add_wild (struct wildcard_spec *filespec,
6543 struct wildcard_list *section_list,
6544 bfd_boolean keep_sections)
6545 {
6546 struct wildcard_list *curr, *next;
6547 lang_wild_statement_type *new_stmt;
6548
6549 /* Reverse the list as the parser puts it back to front. */
6550 for (curr = section_list, section_list = NULL;
6551 curr != NULL;
6552 section_list = curr, curr = next)
6553 {
6554 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6555 placed_commons = TRUE;
6556
6557 next = curr->next;
6558 curr->next = section_list;
6559 }
6560
6561 if (filespec != NULL && filespec->name != NULL)
6562 {
6563 if (strcmp (filespec->name, "*") == 0)
6564 filespec->name = NULL;
6565 else if (! wildcardp (filespec->name))
6566 lang_has_input_file = TRUE;
6567 }
6568
6569 new_stmt = new_stat (lang_wild_statement, stat_ptr);
6570 new_stmt->filename = NULL;
6571 new_stmt->filenames_sorted = FALSE;
6572 if (filespec != NULL)
6573 {
6574 new_stmt->filename = filespec->name;
6575 new_stmt->filenames_sorted = filespec->sorted == by_name;
6576 }
6577 new_stmt->section_list = section_list;
6578 new_stmt->keep_sections = keep_sections;
6579 lang_list_init (&new_stmt->children);
6580 analyze_walk_wild_section_handler (new_stmt);
6581 }
6582
6583 void
6584 lang_section_start (const char *name, etree_type *address,
6585 const segment_type *segment)
6586 {
6587 lang_address_statement_type *ad;
6588
6589 ad = new_stat (lang_address_statement, stat_ptr);
6590 ad->section_name = name;
6591 ad->address = address;
6592 ad->segment = segment;
6593 }
6594
6595 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6596 because of a -e argument on the command line, or zero if this is
6597 called by ENTRY in a linker script. Command line arguments take
6598 precedence. */
6599
6600 void
6601 lang_add_entry (const char *name, bfd_boolean cmdline)
6602 {
6603 if (entry_symbol.name == NULL
6604 || cmdline
6605 || ! entry_from_cmdline)
6606 {
6607 entry_symbol.name = name;
6608 entry_from_cmdline = cmdline;
6609 }
6610 }
6611
6612 /* Set the default start symbol to NAME. .em files should use this,
6613 not lang_add_entry, to override the use of "start" if neither the
6614 linker script nor the command line specifies an entry point. NAME
6615 must be permanently allocated. */
6616 void
6617 lang_default_entry (const char *name)
6618 {
6619 entry_symbol_default = name;
6620 }
6621
6622 void
6623 lang_add_target (const char *name)
6624 {
6625 lang_target_statement_type *new_stmt;
6626
6627 new_stmt = new_stat (lang_target_statement, stat_ptr);
6628 new_stmt->target = name;
6629 }
6630
6631 void
6632 lang_add_map (const char *name)
6633 {
6634 while (*name)
6635 {
6636 switch (*name)
6637 {
6638 case 'F':
6639 map_option_f = TRUE;
6640 break;
6641 }
6642 name++;
6643 }
6644 }
6645
6646 void
6647 lang_add_fill (fill_type *fill)
6648 {
6649 lang_fill_statement_type *new_stmt;
6650
6651 new_stmt = new_stat (lang_fill_statement, stat_ptr);
6652 new_stmt->fill = fill;
6653 }
6654
6655 void
6656 lang_add_data (int type, union etree_union *exp)
6657 {
6658 lang_data_statement_type *new_stmt;
6659
6660 new_stmt = new_stat (lang_data_statement, stat_ptr);
6661 new_stmt->exp = exp;
6662 new_stmt->type = type;
6663 }
6664
6665 /* Create a new reloc statement. RELOC is the BFD relocation type to
6666 generate. HOWTO is the corresponding howto structure (we could
6667 look this up, but the caller has already done so). SECTION is the
6668 section to generate a reloc against, or NAME is the name of the
6669 symbol to generate a reloc against. Exactly one of SECTION and
6670 NAME must be NULL. ADDEND is an expression for the addend. */
6671
6672 void
6673 lang_add_reloc (bfd_reloc_code_real_type reloc,
6674 reloc_howto_type *howto,
6675 asection *section,
6676 const char *name,
6677 union etree_union *addend)
6678 {
6679 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6680
6681 p->reloc = reloc;
6682 p->howto = howto;
6683 p->section = section;
6684 p->name = name;
6685 p->addend_exp = addend;
6686
6687 p->addend_value = 0;
6688 p->output_section = NULL;
6689 p->output_offset = 0;
6690 }
6691
6692 lang_assignment_statement_type *
6693 lang_add_assignment (etree_type *exp)
6694 {
6695 lang_assignment_statement_type *new_stmt;
6696
6697 extern int parsing_defsym;
6698 if (parsing_defsym)
6699 ldlang_add_def (exp->assign.dst);
6700
6701 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
6702 new_stmt->exp = exp;
6703 return new_stmt;
6704 }
6705
6706 void
6707 lang_add_attribute (enum statement_enum attribute)
6708 {
6709 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6710 }
6711
6712 void
6713 lang_startup (const char *name)
6714 {
6715 if (startup_file != NULL)
6716 {
6717 einfo (_("%P%F: multiple STARTUP files\n"));
6718 }
6719 first_file->filename = name;
6720 first_file->local_sym_name = name;
6721 first_file->real = TRUE;
6722
6723 startup_file = name;
6724 }
6725
6726 void
6727 lang_float (bfd_boolean maybe)
6728 {
6729 lang_float_flag = maybe;
6730 }
6731
6732
6733 /* Work out the load- and run-time regions from a script statement, and
6734 store them in *LMA_REGION and *REGION respectively.
6735
6736 MEMSPEC is the name of the run-time region, or the value of
6737 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6738 LMA_MEMSPEC is the name of the load-time region, or null if the
6739 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6740 had an explicit load address.
6741
6742 It is an error to specify both a load region and a load address. */
6743
6744 static void
6745 lang_get_regions (lang_memory_region_type **region,
6746 lang_memory_region_type **lma_region,
6747 const char *memspec,
6748 const char *lma_memspec,
6749 bfd_boolean have_lma,
6750 bfd_boolean have_vma)
6751 {
6752 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6753
6754 /* If no runtime region or VMA has been specified, but the load region
6755 has been specified, then use the load region for the runtime region
6756 as well. */
6757 if (lma_memspec != NULL
6758 && ! have_vma
6759 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6760 *region = *lma_region;
6761 else
6762 *region = lang_memory_region_lookup (memspec, FALSE);
6763
6764 if (have_lma && lma_memspec != 0)
6765 einfo (_("%X%P:%S: section has both a load address and a load region\n"));
6766 }
6767
6768 void
6769 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6770 lang_output_section_phdr_list *phdrs,
6771 const char *lma_memspec)
6772 {
6773 lang_get_regions (&current_section->region,
6774 &current_section->lma_region,
6775 memspec, lma_memspec,
6776 current_section->load_base != NULL,
6777 current_section->addr_tree != NULL);
6778
6779 /* If this section has no load region or base, but has the same
6780 region as the previous section, then propagate the previous
6781 section's load region. */
6782
6783 if (!current_section->lma_region && !current_section->load_base
6784 && current_section->region == current_section->prev->region)
6785 current_section->lma_region = current_section->prev->lma_region;
6786
6787 current_section->fill = fill;
6788 current_section->phdrs = phdrs;
6789 pop_stat_ptr ();
6790 }
6791
6792 /* Create an absolute symbol with the given name with the value of the
6793 address of first byte of the section named.
6794
6795 If the symbol already exists, then do nothing. */
6796
6797 void
6798 lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
6799 {
6800 struct bfd_link_hash_entry *h;
6801
6802 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6803 if (h == NULL)
6804 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6805
6806 if (h->type == bfd_link_hash_new
6807 || h->type == bfd_link_hash_undefined)
6808 {
6809 asection *sec;
6810
6811 h->type = bfd_link_hash_defined;
6812
6813 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6814 if (sec == NULL)
6815 h->u.def.value = 0;
6816 else
6817 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec);
6818
6819 h->u.def.section = bfd_abs_section_ptr;
6820 }
6821 }
6822
6823 /* Create an absolute symbol with the given name with the value of the
6824 address of the first byte after the end of the section named.
6825
6826 If the symbol already exists, then do nothing. */
6827
6828 void
6829 lang_abs_symbol_at_end_of (const char *secname, const char *name)
6830 {
6831 struct bfd_link_hash_entry *h;
6832
6833 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6834 if (h == NULL)
6835 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6836
6837 if (h->type == bfd_link_hash_new
6838 || h->type == bfd_link_hash_undefined)
6839 {
6840 asection *sec;
6841
6842 h->type = bfd_link_hash_defined;
6843
6844 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6845 if (sec == NULL)
6846 h->u.def.value = 0;
6847 else
6848 h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec)
6849 + TO_ADDR (sec->size));
6850
6851 h->u.def.section = bfd_abs_section_ptr;
6852 }
6853 }
6854
6855 void
6856 lang_statement_append (lang_statement_list_type *list,
6857 lang_statement_union_type *element,
6858 lang_statement_union_type **field)
6859 {
6860 *(list->tail) = element;
6861 list->tail = field;
6862 }
6863
6864 /* Set the output format type. -oformat overrides scripts. */
6865
6866 void
6867 lang_add_output_format (const char *format,
6868 const char *big,
6869 const char *little,
6870 int from_script)
6871 {
6872 if (output_target == NULL || !from_script)
6873 {
6874 if (command_line.endian == ENDIAN_BIG
6875 && big != NULL)
6876 format = big;
6877 else if (command_line.endian == ENDIAN_LITTLE
6878 && little != NULL)
6879 format = little;
6880
6881 output_target = format;
6882 }
6883 }
6884
6885 void
6886 lang_add_insert (const char *where, int is_before)
6887 {
6888 lang_insert_statement_type *new_stmt;
6889
6890 new_stmt = new_stat (lang_insert_statement, stat_ptr);
6891 new_stmt->where = where;
6892 new_stmt->is_before = is_before;
6893 saved_script_handle = previous_script_handle;
6894 }
6895
6896 /* Enter a group. This creates a new lang_group_statement, and sets
6897 stat_ptr to build new statements within the group. */
6898
6899 void
6900 lang_enter_group (void)
6901 {
6902 lang_group_statement_type *g;
6903
6904 g = new_stat (lang_group_statement, stat_ptr);
6905 lang_list_init (&g->children);
6906 push_stat_ptr (&g->children);
6907 }
6908
6909 /* Leave a group. This just resets stat_ptr to start writing to the
6910 regular list of statements again. Note that this will not work if
6911 groups can occur inside anything else which can adjust stat_ptr,
6912 but currently they can't. */
6913
6914 void
6915 lang_leave_group (void)
6916 {
6917 pop_stat_ptr ();
6918 }
6919
6920 /* Add a new program header. This is called for each entry in a PHDRS
6921 command in a linker script. */
6922
6923 void
6924 lang_new_phdr (const char *name,
6925 etree_type *type,
6926 bfd_boolean filehdr,
6927 bfd_boolean phdrs,
6928 etree_type *at,
6929 etree_type *flags)
6930 {
6931 struct lang_phdr *n, **pp;
6932 bfd_boolean hdrs;
6933
6934 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
6935 n->next = NULL;
6936 n->name = name;
6937 n->type = exp_get_value_int (type, 0, "program header type");
6938 n->filehdr = filehdr;
6939 n->phdrs = phdrs;
6940 n->at = at;
6941 n->flags = flags;
6942
6943 hdrs = n->type == 1 && (phdrs || filehdr);
6944
6945 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
6946 if (hdrs
6947 && (*pp)->type == 1
6948 && !((*pp)->filehdr || (*pp)->phdrs))
6949 {
6950 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported when prior PT_LOAD headers lack them\n"));
6951 hdrs = FALSE;
6952 }
6953
6954 *pp = n;
6955 }
6956
6957 /* Record the program header information in the output BFD. FIXME: We
6958 should not be calling an ELF specific function here. */
6959
6960 static void
6961 lang_record_phdrs (void)
6962 {
6963 unsigned int alc;
6964 asection **secs;
6965 lang_output_section_phdr_list *last;
6966 struct lang_phdr *l;
6967 lang_output_section_statement_type *os;
6968
6969 alc = 10;
6970 secs = (asection **) xmalloc (alc * sizeof (asection *));
6971 last = NULL;
6972
6973 for (l = lang_phdr_list; l != NULL; l = l->next)
6974 {
6975 unsigned int c;
6976 flagword flags;
6977 bfd_vma at;
6978
6979 c = 0;
6980 for (os = &lang_output_section_statement.head->output_section_statement;
6981 os != NULL;
6982 os = os->next)
6983 {
6984 lang_output_section_phdr_list *pl;
6985
6986 if (os->constraint < 0)
6987 continue;
6988
6989 pl = os->phdrs;
6990 if (pl != NULL)
6991 last = pl;
6992 else
6993 {
6994 if (os->sectype == noload_section
6995 || os->bfd_section == NULL
6996 || (os->bfd_section->flags & SEC_ALLOC) == 0)
6997 continue;
6998
6999 /* Don't add orphans to PT_INTERP header. */
7000 if (l->type == 3)
7001 continue;
7002
7003 if (last == NULL)
7004 {
7005 lang_output_section_statement_type * tmp_os;
7006
7007 /* If we have not run across a section with a program
7008 header assigned to it yet, then scan forwards to find
7009 one. This prevents inconsistencies in the linker's
7010 behaviour when a script has specified just a single
7011 header and there are sections in that script which are
7012 not assigned to it, and which occur before the first
7013 use of that header. See here for more details:
7014 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7015 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7016 if (tmp_os->phdrs)
7017 {
7018 last = tmp_os->phdrs;
7019 break;
7020 }
7021 if (last == NULL)
7022 einfo (_("%F%P: no sections assigned to phdrs\n"));
7023 }
7024 pl = last;
7025 }
7026
7027 if (os->bfd_section == NULL)
7028 continue;
7029
7030 for (; pl != NULL; pl = pl->next)
7031 {
7032 if (strcmp (pl->name, l->name) == 0)
7033 {
7034 if (c >= alc)
7035 {
7036 alc *= 2;
7037 secs = (asection **) xrealloc (secs,
7038 alc * sizeof (asection *));
7039 }
7040 secs[c] = os->bfd_section;
7041 ++c;
7042 pl->used = TRUE;
7043 }
7044 }
7045 }
7046
7047 if (l->flags == NULL)
7048 flags = 0;
7049 else
7050 flags = exp_get_vma (l->flags, 0, "phdr flags");
7051
7052 if (l->at == NULL)
7053 at = 0;
7054 else
7055 at = exp_get_vma (l->at, 0, "phdr load address");
7056
7057 if (! bfd_record_phdr (link_info.output_bfd, l->type,
7058 l->flags != NULL, flags, l->at != NULL,
7059 at, l->filehdr, l->phdrs, c, secs))
7060 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7061 }
7062
7063 free (secs);
7064
7065 /* Make sure all the phdr assignments succeeded. */
7066 for (os = &lang_output_section_statement.head->output_section_statement;
7067 os != NULL;
7068 os = os->next)
7069 {
7070 lang_output_section_phdr_list *pl;
7071
7072 if (os->constraint < 0
7073 || os->bfd_section == NULL)
7074 continue;
7075
7076 for (pl = os->phdrs;
7077 pl != NULL;
7078 pl = pl->next)
7079 if (! pl->used && strcmp (pl->name, "NONE") != 0)
7080 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7081 os->name, pl->name);
7082 }
7083 }
7084
7085 /* Record a list of sections which may not be cross referenced. */
7086
7087 void
7088 lang_add_nocrossref (lang_nocrossref_type *l)
7089 {
7090 struct lang_nocrossrefs *n;
7091
7092 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7093 n->next = nocrossref_list;
7094 n->list = l;
7095 nocrossref_list = n;
7096
7097 /* Set notice_all so that we get informed about all symbols. */
7098 link_info.notice_all = TRUE;
7099 }
7100 \f
7101 /* Overlay handling. We handle overlays with some static variables. */
7102
7103 /* The overlay virtual address. */
7104 static etree_type *overlay_vma;
7105 /* And subsection alignment. */
7106 static etree_type *overlay_subalign;
7107
7108 /* An expression for the maximum section size seen so far. */
7109 static etree_type *overlay_max;
7110
7111 /* A list of all the sections in this overlay. */
7112
7113 struct overlay_list {
7114 struct overlay_list *next;
7115 lang_output_section_statement_type *os;
7116 };
7117
7118 static struct overlay_list *overlay_list;
7119
7120 /* Start handling an overlay. */
7121
7122 void
7123 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7124 {
7125 /* The grammar should prevent nested overlays from occurring. */
7126 ASSERT (overlay_vma == NULL
7127 && overlay_subalign == NULL
7128 && overlay_max == NULL);
7129
7130 overlay_vma = vma_expr;
7131 overlay_subalign = subalign;
7132 }
7133
7134 /* Start a section in an overlay. We handle this by calling
7135 lang_enter_output_section_statement with the correct VMA.
7136 lang_leave_overlay sets up the LMA and memory regions. */
7137
7138 void
7139 lang_enter_overlay_section (const char *name)
7140 {
7141 struct overlay_list *n;
7142 etree_type *size;
7143
7144 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7145 0, overlay_subalign, 0, 0);
7146
7147 /* If this is the first section, then base the VMA of future
7148 sections on this one. This will work correctly even if `.' is
7149 used in the addresses. */
7150 if (overlay_list == NULL)
7151 overlay_vma = exp_nameop (ADDR, name);
7152
7153 /* Remember the section. */
7154 n = (struct overlay_list *) xmalloc (sizeof *n);
7155 n->os = current_section;
7156 n->next = overlay_list;
7157 overlay_list = n;
7158
7159 size = exp_nameop (SIZEOF, name);
7160
7161 /* Arrange to work out the maximum section end address. */
7162 if (overlay_max == NULL)
7163 overlay_max = size;
7164 else
7165 overlay_max = exp_binop (MAX_K, overlay_max, size);
7166 }
7167
7168 /* Finish a section in an overlay. There isn't any special to do
7169 here. */
7170
7171 void
7172 lang_leave_overlay_section (fill_type *fill,
7173 lang_output_section_phdr_list *phdrs)
7174 {
7175 const char *name;
7176 char *clean, *s2;
7177 const char *s1;
7178 char *buf;
7179
7180 name = current_section->name;
7181
7182 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7183 region and that no load-time region has been specified. It doesn't
7184 really matter what we say here, since lang_leave_overlay will
7185 override it. */
7186 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7187
7188 /* Define the magic symbols. */
7189
7190 clean = (char *) xmalloc (strlen (name) + 1);
7191 s2 = clean;
7192 for (s1 = name; *s1 != '\0'; s1++)
7193 if (ISALNUM (*s1) || *s1 == '_')
7194 *s2++ = *s1;
7195 *s2 = '\0';
7196
7197 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7198 sprintf (buf, "__load_start_%s", clean);
7199 lang_add_assignment (exp_provide (buf,
7200 exp_nameop (LOADADDR, name),
7201 FALSE));
7202
7203 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7204 sprintf (buf, "__load_stop_%s", clean);
7205 lang_add_assignment (exp_provide (buf,
7206 exp_binop ('+',
7207 exp_nameop (LOADADDR, name),
7208 exp_nameop (SIZEOF, name)),
7209 FALSE));
7210
7211 free (clean);
7212 }
7213
7214 /* Finish an overlay. If there are any overlay wide settings, this
7215 looks through all the sections in the overlay and sets them. */
7216
7217 void
7218 lang_leave_overlay (etree_type *lma_expr,
7219 int nocrossrefs,
7220 fill_type *fill,
7221 const char *memspec,
7222 lang_output_section_phdr_list *phdrs,
7223 const char *lma_memspec)
7224 {
7225 lang_memory_region_type *region;
7226 lang_memory_region_type *lma_region;
7227 struct overlay_list *l;
7228 lang_nocrossref_type *nocrossref;
7229
7230 lang_get_regions (&region, &lma_region,
7231 memspec, lma_memspec,
7232 lma_expr != NULL, FALSE);
7233
7234 nocrossref = NULL;
7235
7236 /* After setting the size of the last section, set '.' to end of the
7237 overlay region. */
7238 if (overlay_list != NULL)
7239 overlay_list->os->update_dot_tree
7240 = exp_assop ('=', ".", exp_binop ('+', overlay_vma, overlay_max));
7241
7242 l = overlay_list;
7243 while (l != NULL)
7244 {
7245 struct overlay_list *next;
7246
7247 if (fill != NULL && l->os->fill == NULL)
7248 l->os->fill = fill;
7249
7250 l->os->region = region;
7251 l->os->lma_region = lma_region;
7252
7253 /* The first section has the load address specified in the
7254 OVERLAY statement. The rest are worked out from that.
7255 The base address is not needed (and should be null) if
7256 an LMA region was specified. */
7257 if (l->next == 0)
7258 {
7259 l->os->load_base = lma_expr;
7260 l->os->sectype = normal_section;
7261 }
7262 if (phdrs != NULL && l->os->phdrs == NULL)
7263 l->os->phdrs = phdrs;
7264
7265 if (nocrossrefs)
7266 {
7267 lang_nocrossref_type *nc;
7268
7269 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7270 nc->name = l->os->name;
7271 nc->next = nocrossref;
7272 nocrossref = nc;
7273 }
7274
7275 next = l->next;
7276 free (l);
7277 l = next;
7278 }
7279
7280 if (nocrossref != NULL)
7281 lang_add_nocrossref (nocrossref);
7282
7283 overlay_vma = NULL;
7284 overlay_list = NULL;
7285 overlay_max = NULL;
7286 }
7287 \f
7288 /* Version handling. This is only useful for ELF. */
7289
7290 /* This global variable holds the version tree that we build. */
7291
7292 struct bfd_elf_version_tree *lang_elf_version_info;
7293
7294 /* If PREV is NULL, return first version pattern matching particular symbol.
7295 If PREV is non-NULL, return first version pattern matching particular
7296 symbol after PREV (previously returned by lang_vers_match). */
7297
7298 static struct bfd_elf_version_expr *
7299 lang_vers_match (struct bfd_elf_version_expr_head *head,
7300 struct bfd_elf_version_expr *prev,
7301 const char *sym)
7302 {
7303 const char *cxx_sym = sym;
7304 const char *java_sym = sym;
7305 struct bfd_elf_version_expr *expr = NULL;
7306
7307 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7308 {
7309 cxx_sym = cplus_demangle (sym, DMGL_PARAMS | DMGL_ANSI);
7310 if (!cxx_sym)
7311 cxx_sym = sym;
7312 }
7313 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7314 {
7315 java_sym = cplus_demangle (sym, DMGL_JAVA);
7316 if (!java_sym)
7317 java_sym = sym;
7318 }
7319
7320 if (head->htab && (prev == NULL || prev->literal))
7321 {
7322 struct bfd_elf_version_expr e;
7323
7324 switch (prev ? prev->mask : 0)
7325 {
7326 case 0:
7327 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7328 {
7329 e.pattern = sym;
7330 expr = (struct bfd_elf_version_expr *)
7331 htab_find ((htab_t) head->htab, &e);
7332 while (expr && strcmp (expr->pattern, sym) == 0)
7333 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7334 goto out_ret;
7335 else
7336 expr = expr->next;
7337 }
7338 /* Fallthrough */
7339 case BFD_ELF_VERSION_C_TYPE:
7340 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7341 {
7342 e.pattern = cxx_sym;
7343 expr = (struct bfd_elf_version_expr *)
7344 htab_find ((htab_t) head->htab, &e);
7345 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7346 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7347 goto out_ret;
7348 else
7349 expr = expr->next;
7350 }
7351 /* Fallthrough */
7352 case BFD_ELF_VERSION_CXX_TYPE:
7353 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7354 {
7355 e.pattern = java_sym;
7356 expr = (struct bfd_elf_version_expr *)
7357 htab_find ((htab_t) head->htab, &e);
7358 while (expr && strcmp (expr->pattern, java_sym) == 0)
7359 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7360 goto out_ret;
7361 else
7362 expr = expr->next;
7363 }
7364 /* Fallthrough */
7365 default:
7366 break;
7367 }
7368 }
7369
7370 /* Finally, try the wildcards. */
7371 if (prev == NULL || prev->literal)
7372 expr = head->remaining;
7373 else
7374 expr = prev->next;
7375 for (; expr; expr = expr->next)
7376 {
7377 const char *s;
7378
7379 if (!expr->pattern)
7380 continue;
7381
7382 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7383 break;
7384
7385 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7386 s = java_sym;
7387 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7388 s = cxx_sym;
7389 else
7390 s = sym;
7391 if (fnmatch (expr->pattern, s, 0) == 0)
7392 break;
7393 }
7394
7395 out_ret:
7396 if (cxx_sym != sym)
7397 free ((char *) cxx_sym);
7398 if (java_sym != sym)
7399 free ((char *) java_sym);
7400 return expr;
7401 }
7402
7403 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7404 return a pointer to the symbol name with any backslash quotes removed. */
7405
7406 static const char *
7407 realsymbol (const char *pattern)
7408 {
7409 const char *p;
7410 bfd_boolean changed = FALSE, backslash = FALSE;
7411 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7412
7413 for (p = pattern, s = symbol; *p != '\0'; ++p)
7414 {
7415 /* It is a glob pattern only if there is no preceding
7416 backslash. */
7417 if (backslash)
7418 {
7419 /* Remove the preceding backslash. */
7420 *(s - 1) = *p;
7421 backslash = FALSE;
7422 changed = TRUE;
7423 }
7424 else
7425 {
7426 if (*p == '?' || *p == '*' || *p == '[')
7427 {
7428 free (symbol);
7429 return NULL;
7430 }
7431
7432 *s++ = *p;
7433 backslash = *p == '\\';
7434 }
7435 }
7436
7437 if (changed)
7438 {
7439 *s = '\0';
7440 return symbol;
7441 }
7442 else
7443 {
7444 free (symbol);
7445 return pattern;
7446 }
7447 }
7448
7449 /* This is called for each variable name or match expression. NEW_NAME is
7450 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7451 pattern to be matched against symbol names. */
7452
7453 struct bfd_elf_version_expr *
7454 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7455 const char *new_name,
7456 const char *lang,
7457 bfd_boolean literal_p)
7458 {
7459 struct bfd_elf_version_expr *ret;
7460
7461 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7462 ret->next = orig;
7463 ret->symver = 0;
7464 ret->script = 0;
7465 ret->literal = TRUE;
7466 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7467 if (ret->pattern == NULL)
7468 {
7469 ret->pattern = new_name;
7470 ret->literal = FALSE;
7471 }
7472
7473 if (lang == NULL || strcasecmp (lang, "C") == 0)
7474 ret->mask = BFD_ELF_VERSION_C_TYPE;
7475 else if (strcasecmp (lang, "C++") == 0)
7476 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7477 else if (strcasecmp (lang, "Java") == 0)
7478 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7479 else
7480 {
7481 einfo (_("%X%P: unknown language `%s' in version information\n"),
7482 lang);
7483 ret->mask = BFD_ELF_VERSION_C_TYPE;
7484 }
7485
7486 return ldemul_new_vers_pattern (ret);
7487 }
7488
7489 /* This is called for each set of variable names and match
7490 expressions. */
7491
7492 struct bfd_elf_version_tree *
7493 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7494 struct bfd_elf_version_expr *locals)
7495 {
7496 struct bfd_elf_version_tree *ret;
7497
7498 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7499 ret->globals.list = globals;
7500 ret->locals.list = locals;
7501 ret->match = lang_vers_match;
7502 ret->name_indx = (unsigned int) -1;
7503 return ret;
7504 }
7505
7506 /* This static variable keeps track of version indices. */
7507
7508 static int version_index;
7509
7510 static hashval_t
7511 version_expr_head_hash (const void *p)
7512 {
7513 const struct bfd_elf_version_expr *e =
7514 (const struct bfd_elf_version_expr *) p;
7515
7516 return htab_hash_string (e->pattern);
7517 }
7518
7519 static int
7520 version_expr_head_eq (const void *p1, const void *p2)
7521 {
7522 const struct bfd_elf_version_expr *e1 =
7523 (const struct bfd_elf_version_expr *) p1;
7524 const struct bfd_elf_version_expr *e2 =
7525 (const struct bfd_elf_version_expr *) p2;
7526
7527 return strcmp (e1->pattern, e2->pattern) == 0;
7528 }
7529
7530 static void
7531 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7532 {
7533 size_t count = 0;
7534 struct bfd_elf_version_expr *e, *next;
7535 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7536
7537 for (e = head->list; e; e = e->next)
7538 {
7539 if (e->literal)
7540 count++;
7541 head->mask |= e->mask;
7542 }
7543
7544 if (count)
7545 {
7546 head->htab = htab_create (count * 2, version_expr_head_hash,
7547 version_expr_head_eq, NULL);
7548 list_loc = &head->list;
7549 remaining_loc = &head->remaining;
7550 for (e = head->list; e; e = next)
7551 {
7552 next = e->next;
7553 if (!e->literal)
7554 {
7555 *remaining_loc = e;
7556 remaining_loc = &e->next;
7557 }
7558 else
7559 {
7560 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
7561
7562 if (*loc)
7563 {
7564 struct bfd_elf_version_expr *e1, *last;
7565
7566 e1 = (struct bfd_elf_version_expr *) *loc;
7567 last = NULL;
7568 do
7569 {
7570 if (e1->mask == e->mask)
7571 {
7572 last = NULL;
7573 break;
7574 }
7575 last = e1;
7576 e1 = e1->next;
7577 }
7578 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
7579
7580 if (last == NULL)
7581 {
7582 /* This is a duplicate. */
7583 /* FIXME: Memory leak. Sometimes pattern is not
7584 xmalloced alone, but in larger chunk of memory. */
7585 /* free (e->pattern); */
7586 free (e);
7587 }
7588 else
7589 {
7590 e->next = last->next;
7591 last->next = e;
7592 }
7593 }
7594 else
7595 {
7596 *loc = e;
7597 *list_loc = e;
7598 list_loc = &e->next;
7599 }
7600 }
7601 }
7602 *remaining_loc = NULL;
7603 *list_loc = head->remaining;
7604 }
7605 else
7606 head->remaining = head->list;
7607 }
7608
7609 /* This is called when we know the name and dependencies of the
7610 version. */
7611
7612 void
7613 lang_register_vers_node (const char *name,
7614 struct bfd_elf_version_tree *version,
7615 struct bfd_elf_version_deps *deps)
7616 {
7617 struct bfd_elf_version_tree *t, **pp;
7618 struct bfd_elf_version_expr *e1;
7619
7620 if (name == NULL)
7621 name = "";
7622
7623 if ((name[0] == '\0' && lang_elf_version_info != NULL)
7624 || (lang_elf_version_info && lang_elf_version_info->name[0] == '\0'))
7625 {
7626 einfo (_("%X%P: anonymous version tag cannot be combined"
7627 " with other version tags\n"));
7628 free (version);
7629 return;
7630 }
7631
7632 /* Make sure this node has a unique name. */
7633 for (t = lang_elf_version_info; t != NULL; t = t->next)
7634 if (strcmp (t->name, name) == 0)
7635 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7636
7637 lang_finalize_version_expr_head (&version->globals);
7638 lang_finalize_version_expr_head (&version->locals);
7639
7640 /* Check the global and local match names, and make sure there
7641 aren't any duplicates. */
7642
7643 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7644 {
7645 for (t = lang_elf_version_info; t != NULL; t = t->next)
7646 {
7647 struct bfd_elf_version_expr *e2;
7648
7649 if (t->locals.htab && e1->literal)
7650 {
7651 e2 = (struct bfd_elf_version_expr *)
7652 htab_find ((htab_t) t->locals.htab, e1);
7653 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7654 {
7655 if (e1->mask == e2->mask)
7656 einfo (_("%X%P: duplicate expression `%s'"
7657 " in version information\n"), e1->pattern);
7658 e2 = e2->next;
7659 }
7660 }
7661 else if (!e1->literal)
7662 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7663 if (strcmp (e1->pattern, e2->pattern) == 0
7664 && e1->mask == e2->mask)
7665 einfo (_("%X%P: duplicate expression `%s'"
7666 " in version information\n"), e1->pattern);
7667 }
7668 }
7669
7670 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7671 {
7672 for (t = lang_elf_version_info; t != NULL; t = t->next)
7673 {
7674 struct bfd_elf_version_expr *e2;
7675
7676 if (t->globals.htab && e1->literal)
7677 {
7678 e2 = (struct bfd_elf_version_expr *)
7679 htab_find ((htab_t) t->globals.htab, e1);
7680 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7681 {
7682 if (e1->mask == e2->mask)
7683 einfo (_("%X%P: duplicate expression `%s'"
7684 " in version information\n"),
7685 e1->pattern);
7686 e2 = e2->next;
7687 }
7688 }
7689 else if (!e1->literal)
7690 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7691 if (strcmp (e1->pattern, e2->pattern) == 0
7692 && e1->mask == e2->mask)
7693 einfo (_("%X%P: duplicate expression `%s'"
7694 " in version information\n"), e1->pattern);
7695 }
7696 }
7697
7698 version->deps = deps;
7699 version->name = name;
7700 if (name[0] != '\0')
7701 {
7702 ++version_index;
7703 version->vernum = version_index;
7704 }
7705 else
7706 version->vernum = 0;
7707
7708 for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next)
7709 ;
7710 *pp = version;
7711 }
7712
7713 /* This is called when we see a version dependency. */
7714
7715 struct bfd_elf_version_deps *
7716 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7717 {
7718 struct bfd_elf_version_deps *ret;
7719 struct bfd_elf_version_tree *t;
7720
7721 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
7722 ret->next = list;
7723
7724 for (t = lang_elf_version_info; t != NULL; t = t->next)
7725 {
7726 if (strcmp (t->name, name) == 0)
7727 {
7728 ret->version_needed = t;
7729 return ret;
7730 }
7731 }
7732
7733 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7734
7735 ret->version_needed = NULL;
7736 return ret;
7737 }
7738
7739 static void
7740 lang_do_version_exports_section (void)
7741 {
7742 struct bfd_elf_version_expr *greg = NULL, *lreg;
7743
7744 LANG_FOR_EACH_INPUT_STATEMENT (is)
7745 {
7746 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7747 char *contents, *p;
7748 bfd_size_type len;
7749
7750 if (sec == NULL)
7751 continue;
7752
7753 len = sec->size;
7754 contents = (char *) xmalloc (len);
7755 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7756 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7757
7758 p = contents;
7759 while (p < contents + len)
7760 {
7761 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7762 p = strchr (p, '\0') + 1;
7763 }
7764
7765 /* Do not free the contents, as we used them creating the regex. */
7766
7767 /* Do not include this section in the link. */
7768 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7769 }
7770
7771 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7772 lang_register_vers_node (command_line.version_exports_section,
7773 lang_new_vers_node (greg, lreg), NULL);
7774 }
7775
7776 void
7777 lang_add_unique (const char *name)
7778 {
7779 struct unique_sections *ent;
7780
7781 for (ent = unique_section_list; ent; ent = ent->next)
7782 if (strcmp (ent->name, name) == 0)
7783 return;
7784
7785 ent = (struct unique_sections *) xmalloc (sizeof *ent);
7786 ent->name = xstrdup (name);
7787 ent->next = unique_section_list;
7788 unique_section_list = ent;
7789 }
7790
7791 /* Append the list of dynamic symbols to the existing one. */
7792
7793 void
7794 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7795 {
7796 if (link_info.dynamic_list)
7797 {
7798 struct bfd_elf_version_expr *tail;
7799 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7800 ;
7801 tail->next = link_info.dynamic_list->head.list;
7802 link_info.dynamic_list->head.list = dynamic;
7803 }
7804 else
7805 {
7806 struct bfd_elf_dynamic_list *d;
7807
7808 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
7809 d->head.list = dynamic;
7810 d->match = lang_vers_match;
7811 link_info.dynamic_list = d;
7812 }
7813 }
7814
7815 /* Append the list of C++ typeinfo dynamic symbols to the existing
7816 one. */
7817
7818 void
7819 lang_append_dynamic_list_cpp_typeinfo (void)
7820 {
7821 const char * symbols [] =
7822 {
7823 "typeinfo name for*",
7824 "typeinfo for*"
7825 };
7826 struct bfd_elf_version_expr *dynamic = NULL;
7827 unsigned int i;
7828
7829 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7830 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7831 FALSE);
7832
7833 lang_append_dynamic_list (dynamic);
7834 }
7835
7836 /* Append the list of C++ operator new and delete dynamic symbols to the
7837 existing one. */
7838
7839 void
7840 lang_append_dynamic_list_cpp_new (void)
7841 {
7842 const char * symbols [] =
7843 {
7844 "operator new*",
7845 "operator delete*"
7846 };
7847 struct bfd_elf_version_expr *dynamic = NULL;
7848 unsigned int i;
7849
7850 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7851 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7852 FALSE);
7853
7854 lang_append_dynamic_list (dynamic);
7855 }
This page took 0.190754 seconds and 4 git commands to generate.