Implement MI notification for new threads.
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29
30 #include "ld.h"
31 #include "ldmain.h"
32 #include "ldexp.h"
33 #include "ldlang.h"
34 #include <ldgram.h>
35 #include "ldlex.h"
36 #include "ldmisc.h"
37 #include "ldctor.h"
38 #include "ldfile.h"
39 #include "ldemul.h"
40 #include "fnmatch.h"
41 #include "demangle.h"
42 #include "hashtab.h"
43
44 #ifndef offsetof
45 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
46 #endif
47
48 /* Locals variables. */
49 static struct obstack stat_obstack;
50 static struct obstack map_obstack;
51
52 #define obstack_chunk_alloc xmalloc
53 #define obstack_chunk_free free
54 static const char *startup_file;
55 static bfd_boolean placed_commons = FALSE;
56 static bfd_boolean stripped_excluded_sections = FALSE;
57 static lang_output_section_statement_type *default_common_section;
58 static bfd_boolean map_option_f;
59 static bfd_vma print_dot;
60 static lang_input_statement_type *first_file;
61 static const char *current_target;
62 static const char *output_target;
63 static lang_statement_list_type statement_list;
64 static struct bfd_hash_table lang_definedness_table;
65
66 /* Forward declarations. */
67 static void exp_init_os (etree_type *);
68 static void init_map_userdata (bfd *, asection *, void *);
69 static lang_input_statement_type *lookup_name (const char *);
70 static struct bfd_hash_entry *lang_definedness_newfunc
71 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
72 static void insert_undefined (const char *);
73 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
74 static void print_statement (lang_statement_union_type *,
75 lang_output_section_statement_type *);
76 static void print_statement_list (lang_statement_union_type *,
77 lang_output_section_statement_type *);
78 static void print_statements (void);
79 static void print_input_section (asection *);
80 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
81 static void lang_record_phdrs (void);
82 static void lang_do_version_exports_section (void);
83 static void lang_finalize_version_expr_head
84 (struct bfd_elf_version_expr_head *);
85
86 /* Exported variables. */
87 lang_output_section_statement_type *abs_output_section;
88 lang_statement_list_type lang_output_section_statement;
89 lang_statement_list_type *stat_ptr = &statement_list;
90 lang_statement_list_type file_chain = { NULL, NULL };
91 lang_statement_list_type input_file_chain;
92 struct bfd_sym_chain entry_symbol = { NULL, NULL };
93 static const char *entry_symbol_default = "start";
94 const char *entry_section = ".text";
95 bfd_boolean entry_from_cmdline;
96 bfd_boolean lang_has_input_file = FALSE;
97 bfd_boolean had_output_filename = FALSE;
98 bfd_boolean lang_float_flag = FALSE;
99 bfd_boolean delete_output_file_on_failure = FALSE;
100 struct lang_phdr *lang_phdr_list;
101 struct lang_nocrossrefs *nocrossref_list;
102 static struct unique_sections *unique_section_list;
103 static bfd_boolean ldlang_sysrooted_script = FALSE;
104
105 /* Functions that traverse the linker script and might evaluate
106 DEFINED() need to increment this. */
107 int lang_statement_iteration = 0;
108
109 etree_type *base; /* Relocation base - or null */
110
111 /* Return TRUE if the PATTERN argument is a wildcard pattern.
112 Although backslashes are treated specially if a pattern contains
113 wildcards, we do not consider the mere presence of a backslash to
114 be enough to cause the pattern to be treated as a wildcard.
115 That lets us handle DOS filenames more naturally. */
116 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
117
118 #define new_stat(x, y) \
119 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
120
121 #define outside_section_address(q) \
122 ((q)->output_offset + (q)->output_section->vma)
123
124 #define outside_symbol_address(q) \
125 ((q)->value + outside_section_address (q->section))
126
127 #define SECTION_NAME_MAP_LENGTH (16)
128
129 void *
130 stat_alloc (size_t size)
131 {
132 return obstack_alloc (&stat_obstack, size);
133 }
134
135 bfd_boolean
136 unique_section_p (const asection *sec)
137 {
138 struct unique_sections *unam;
139 const char *secnam;
140
141 if (link_info.relocatable
142 && sec->owner != NULL
143 && bfd_is_group_section (sec->owner, sec))
144 return TRUE;
145
146 secnam = sec->name;
147 for (unam = unique_section_list; unam; unam = unam->next)
148 if (wildcardp (unam->name)
149 ? fnmatch (unam->name, secnam, 0) == 0
150 : strcmp (unam->name, secnam) == 0)
151 {
152 return TRUE;
153 }
154
155 return FALSE;
156 }
157
158 /* Generic traversal routines for finding matching sections. */
159
160 /* Try processing a section against a wildcard. This just calls
161 the callback unless the filename exclusion list is present
162 and excludes the file. It's hardly ever present so this
163 function is very fast. */
164
165 static void
166 walk_wild_consider_section (lang_wild_statement_type *ptr,
167 lang_input_statement_type *file,
168 asection *s,
169 struct wildcard_list *sec,
170 callback_t callback,
171 void *data)
172 {
173 bfd_boolean skip = FALSE;
174 struct name_list *list_tmp;
175
176 /* Don't process sections from files which were
177 excluded. */
178 for (list_tmp = sec->spec.exclude_name_list;
179 list_tmp;
180 list_tmp = list_tmp->next)
181 {
182 bfd_boolean is_wildcard = wildcardp (list_tmp->name);
183 if (is_wildcard)
184 skip = fnmatch (list_tmp->name, file->filename, 0) == 0;
185 else
186 skip = strcmp (list_tmp->name, file->filename) == 0;
187
188 /* If this file is part of an archive, and the archive is
189 excluded, exclude this file. */
190 if (! skip && file->the_bfd != NULL
191 && file->the_bfd->my_archive != NULL
192 && file->the_bfd->my_archive->filename != NULL)
193 {
194 if (is_wildcard)
195 skip = fnmatch (list_tmp->name,
196 file->the_bfd->my_archive->filename,
197 0) == 0;
198 else
199 skip = strcmp (list_tmp->name,
200 file->the_bfd->my_archive->filename) == 0;
201 }
202
203 if (skip)
204 break;
205 }
206
207 if (!skip)
208 (*callback) (ptr, sec, s, file, data);
209 }
210
211 /* Lowest common denominator routine that can handle everything correctly,
212 but slowly. */
213
214 static void
215 walk_wild_section_general (lang_wild_statement_type *ptr,
216 lang_input_statement_type *file,
217 callback_t callback,
218 void *data)
219 {
220 asection *s;
221 struct wildcard_list *sec;
222
223 for (s = file->the_bfd->sections; s != NULL; s = s->next)
224 {
225 sec = ptr->section_list;
226 if (sec == NULL)
227 (*callback) (ptr, sec, s, file, data);
228
229 while (sec != NULL)
230 {
231 bfd_boolean skip = FALSE;
232
233 if (sec->spec.name != NULL)
234 {
235 const char *sname = bfd_get_section_name (file->the_bfd, s);
236
237 if (wildcardp (sec->spec.name))
238 skip = fnmatch (sec->spec.name, sname, 0) != 0;
239 else
240 skip = strcmp (sec->spec.name, sname) != 0;
241 }
242
243 if (!skip)
244 walk_wild_consider_section (ptr, file, s, sec, callback, data);
245
246 sec = sec->next;
247 }
248 }
249 }
250
251 /* Routines to find a single section given its name. If there's more
252 than one section with that name, we report that. */
253
254 typedef struct
255 {
256 asection *found_section;
257 bfd_boolean multiple_sections_found;
258 } section_iterator_callback_data;
259
260 static bfd_boolean
261 section_iterator_callback (bfd *bfd ATTRIBUTE_UNUSED, asection *s, void *data)
262 {
263 section_iterator_callback_data *d = data;
264
265 if (d->found_section != NULL)
266 {
267 d->multiple_sections_found = TRUE;
268 return TRUE;
269 }
270
271 d->found_section = s;
272 return FALSE;
273 }
274
275 static asection *
276 find_section (lang_input_statement_type *file,
277 struct wildcard_list *sec,
278 bfd_boolean *multiple_sections_found)
279 {
280 section_iterator_callback_data cb_data = { NULL, FALSE };
281
282 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
283 section_iterator_callback, &cb_data);
284 *multiple_sections_found = cb_data.multiple_sections_found;
285 return cb_data.found_section;
286 }
287
288 /* Code for handling simple wildcards without going through fnmatch,
289 which can be expensive because of charset translations etc. */
290
291 /* A simple wild is a literal string followed by a single '*',
292 where the literal part is at least 4 characters long. */
293
294 static bfd_boolean
295 is_simple_wild (const char *name)
296 {
297 size_t len = strcspn (name, "*?[");
298 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
299 }
300
301 static bfd_boolean
302 match_simple_wild (const char *pattern, const char *name)
303 {
304 /* The first four characters of the pattern are guaranteed valid
305 non-wildcard characters. So we can go faster. */
306 if (pattern[0] != name[0] || pattern[1] != name[1]
307 || pattern[2] != name[2] || pattern[3] != name[3])
308 return FALSE;
309
310 pattern += 4;
311 name += 4;
312 while (*pattern != '*')
313 if (*name++ != *pattern++)
314 return FALSE;
315
316 return TRUE;
317 }
318
319 /* Compare sections ASEC and BSEC according to SORT. */
320
321 static int
322 compare_section (sort_type sort, asection *asec, asection *bsec)
323 {
324 int ret;
325
326 switch (sort)
327 {
328 default:
329 abort ();
330
331 case by_alignment_name:
332 ret = (bfd_section_alignment (bsec->owner, bsec)
333 - bfd_section_alignment (asec->owner, asec));
334 if (ret)
335 break;
336 /* Fall through. */
337
338 case by_name:
339 ret = strcmp (bfd_get_section_name (asec->owner, asec),
340 bfd_get_section_name (bsec->owner, bsec));
341 break;
342
343 case by_name_alignment:
344 ret = strcmp (bfd_get_section_name (asec->owner, asec),
345 bfd_get_section_name (bsec->owner, bsec));
346 if (ret)
347 break;
348 /* Fall through. */
349
350 case by_alignment:
351 ret = (bfd_section_alignment (bsec->owner, bsec)
352 - bfd_section_alignment (asec->owner, asec));
353 break;
354 }
355
356 return ret;
357 }
358
359 /* Build a Binary Search Tree to sort sections, unlike insertion sort
360 used in wild_sort(). BST is considerably faster if the number of
361 of sections are large. */
362
363 static lang_section_bst_type **
364 wild_sort_fast (lang_wild_statement_type *wild,
365 struct wildcard_list *sec,
366 lang_input_statement_type *file ATTRIBUTE_UNUSED,
367 asection *section)
368 {
369 lang_section_bst_type **tree;
370
371 tree = &wild->tree;
372 if (!wild->filenames_sorted
373 && (sec == NULL || sec->spec.sorted == none))
374 {
375 /* Append at the right end of tree. */
376 while (*tree)
377 tree = &((*tree)->right);
378 return tree;
379 }
380
381 while (*tree)
382 {
383 /* Find the correct node to append this section. */
384 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
385 tree = &((*tree)->left);
386 else
387 tree = &((*tree)->right);
388 }
389
390 return tree;
391 }
392
393 /* Use wild_sort_fast to build a BST to sort sections. */
394
395 static void
396 output_section_callback_fast (lang_wild_statement_type *ptr,
397 struct wildcard_list *sec,
398 asection *section,
399 lang_input_statement_type *file,
400 void *output ATTRIBUTE_UNUSED)
401 {
402 lang_section_bst_type *node;
403 lang_section_bst_type **tree;
404
405 if (unique_section_p (section))
406 return;
407
408 node = xmalloc (sizeof (lang_section_bst_type));
409 node->left = 0;
410 node->right = 0;
411 node->section = section;
412
413 tree = wild_sort_fast (ptr, sec, file, section);
414 if (tree != NULL)
415 *tree = node;
416 }
417
418 /* Convert a sorted sections' BST back to list form. */
419
420 static void
421 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
422 lang_section_bst_type *tree,
423 void *output)
424 {
425 if (tree->left)
426 output_section_callback_tree_to_list (ptr, tree->left, output);
427
428 lang_add_section (&ptr->children, tree->section,
429 (lang_output_section_statement_type *) output);
430
431 if (tree->right)
432 output_section_callback_tree_to_list (ptr, tree->right, output);
433
434 free (tree);
435 }
436
437 /* Specialized, optimized routines for handling different kinds of
438 wildcards */
439
440 static void
441 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
442 lang_input_statement_type *file,
443 callback_t callback,
444 void *data)
445 {
446 /* We can just do a hash lookup for the section with the right name.
447 But if that lookup discovers more than one section with the name
448 (should be rare), we fall back to the general algorithm because
449 we would otherwise have to sort the sections to make sure they
450 get processed in the bfd's order. */
451 bfd_boolean multiple_sections_found;
452 struct wildcard_list *sec0 = ptr->handler_data[0];
453 asection *s0 = find_section (file, sec0, &multiple_sections_found);
454
455 if (multiple_sections_found)
456 walk_wild_section_general (ptr, file, callback, data);
457 else if (s0)
458 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
459 }
460
461 static void
462 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
463 lang_input_statement_type *file,
464 callback_t callback,
465 void *data)
466 {
467 asection *s;
468 struct wildcard_list *wildsec0 = ptr->handler_data[0];
469
470 for (s = file->the_bfd->sections; s != NULL; s = s->next)
471 {
472 const char *sname = bfd_get_section_name (file->the_bfd, s);
473 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
474
475 if (!skip)
476 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
477 }
478 }
479
480 static void
481 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
482 lang_input_statement_type *file,
483 callback_t callback,
484 void *data)
485 {
486 asection *s;
487 struct wildcard_list *sec0 = ptr->handler_data[0];
488 struct wildcard_list *wildsec1 = ptr->handler_data[1];
489 bfd_boolean multiple_sections_found;
490 asection *s0 = find_section (file, sec0, &multiple_sections_found);
491
492 if (multiple_sections_found)
493 {
494 walk_wild_section_general (ptr, file, callback, data);
495 return;
496 }
497
498 /* Note that if the section was not found, s0 is NULL and
499 we'll simply never succeed the s == s0 test below. */
500 for (s = file->the_bfd->sections; s != NULL; s = s->next)
501 {
502 /* Recall that in this code path, a section cannot satisfy more
503 than one spec, so if s == s0 then it cannot match
504 wildspec1. */
505 if (s == s0)
506 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
507 else
508 {
509 const char *sname = bfd_get_section_name (file->the_bfd, s);
510 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
511
512 if (!skip)
513 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
514 data);
515 }
516 }
517 }
518
519 static void
520 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
521 lang_input_statement_type *file,
522 callback_t callback,
523 void *data)
524 {
525 asection *s;
526 struct wildcard_list *sec0 = ptr->handler_data[0];
527 struct wildcard_list *wildsec1 = ptr->handler_data[1];
528 struct wildcard_list *wildsec2 = ptr->handler_data[2];
529 bfd_boolean multiple_sections_found;
530 asection *s0 = find_section (file, sec0, &multiple_sections_found);
531
532 if (multiple_sections_found)
533 {
534 walk_wild_section_general (ptr, file, callback, data);
535 return;
536 }
537
538 for (s = file->the_bfd->sections; s != NULL; s = s->next)
539 {
540 if (s == s0)
541 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
542 else
543 {
544 const char *sname = bfd_get_section_name (file->the_bfd, s);
545 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
546
547 if (!skip)
548 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
549 else
550 {
551 skip = !match_simple_wild (wildsec2->spec.name, sname);
552 if (!skip)
553 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
554 data);
555 }
556 }
557 }
558 }
559
560 static void
561 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
562 lang_input_statement_type *file,
563 callback_t callback,
564 void *data)
565 {
566 asection *s;
567 struct wildcard_list *sec0 = ptr->handler_data[0];
568 struct wildcard_list *sec1 = ptr->handler_data[1];
569 struct wildcard_list *wildsec2 = ptr->handler_data[2];
570 struct wildcard_list *wildsec3 = ptr->handler_data[3];
571 bfd_boolean multiple_sections_found;
572 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
573
574 if (multiple_sections_found)
575 {
576 walk_wild_section_general (ptr, file, callback, data);
577 return;
578 }
579
580 s1 = find_section (file, sec1, &multiple_sections_found);
581 if (multiple_sections_found)
582 {
583 walk_wild_section_general (ptr, file, callback, data);
584 return;
585 }
586
587 for (s = file->the_bfd->sections; s != NULL; s = s->next)
588 {
589 if (s == s0)
590 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
591 else
592 if (s == s1)
593 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
594 else
595 {
596 const char *sname = bfd_get_section_name (file->the_bfd, s);
597 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
598 sname);
599
600 if (!skip)
601 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
602 data);
603 else
604 {
605 skip = !match_simple_wild (wildsec3->spec.name, sname);
606 if (!skip)
607 walk_wild_consider_section (ptr, file, s, wildsec3,
608 callback, data);
609 }
610 }
611 }
612 }
613
614 static void
615 walk_wild_section (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 if (file->just_syms_flag)
621 return;
622
623 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
624 }
625
626 /* Returns TRUE when name1 is a wildcard spec that might match
627 something name2 can match. We're conservative: we return FALSE
628 only if the prefixes of name1 and name2 are different up to the
629 first wildcard character. */
630
631 static bfd_boolean
632 wild_spec_can_overlap (const char *name1, const char *name2)
633 {
634 size_t prefix1_len = strcspn (name1, "?*[");
635 size_t prefix2_len = strcspn (name2, "?*[");
636 size_t min_prefix_len;
637
638 /* Note that if there is no wildcard character, then we treat the
639 terminating 0 as part of the prefix. Thus ".text" won't match
640 ".text." or ".text.*", for example. */
641 if (name1[prefix1_len] == '\0')
642 prefix1_len++;
643 if (name2[prefix2_len] == '\0')
644 prefix2_len++;
645
646 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
647
648 return memcmp (name1, name2, min_prefix_len) == 0;
649 }
650
651 /* Select specialized code to handle various kinds of wildcard
652 statements. */
653
654 static void
655 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
656 {
657 int sec_count = 0;
658 int wild_name_count = 0;
659 struct wildcard_list *sec;
660 int signature;
661 int data_counter;
662
663 ptr->walk_wild_section_handler = walk_wild_section_general;
664 ptr->handler_data[0] = NULL;
665 ptr->handler_data[1] = NULL;
666 ptr->handler_data[2] = NULL;
667 ptr->handler_data[3] = NULL;
668 ptr->tree = NULL;
669
670 /* Count how many wildcard_specs there are, and how many of those
671 actually use wildcards in the name. Also, bail out if any of the
672 wildcard names are NULL. (Can this actually happen?
673 walk_wild_section used to test for it.) And bail out if any
674 of the wildcards are more complex than a simple string
675 ending in a single '*'. */
676 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
677 {
678 ++sec_count;
679 if (sec->spec.name == NULL)
680 return;
681 if (wildcardp (sec->spec.name))
682 {
683 ++wild_name_count;
684 if (!is_simple_wild (sec->spec.name))
685 return;
686 }
687 }
688
689 /* The zero-spec case would be easy to optimize but it doesn't
690 happen in practice. Likewise, more than 4 specs doesn't
691 happen in practice. */
692 if (sec_count == 0 || sec_count > 4)
693 return;
694
695 /* Check that no two specs can match the same section. */
696 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
697 {
698 struct wildcard_list *sec2;
699 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
700 {
701 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
702 return;
703 }
704 }
705
706 signature = (sec_count << 8) + wild_name_count;
707 switch (signature)
708 {
709 case 0x0100:
710 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
711 break;
712 case 0x0101:
713 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
714 break;
715 case 0x0201:
716 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
717 break;
718 case 0x0302:
719 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
720 break;
721 case 0x0402:
722 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
723 break;
724 default:
725 return;
726 }
727
728 /* Now fill the data array with pointers to the specs, first the
729 specs with non-wildcard names, then the specs with wildcard
730 names. It's OK to process the specs in different order from the
731 given order, because we've already determined that no section
732 will match more than one spec. */
733 data_counter = 0;
734 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
735 if (!wildcardp (sec->spec.name))
736 ptr->handler_data[data_counter++] = sec;
737 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
738 if (wildcardp (sec->spec.name))
739 ptr->handler_data[data_counter++] = sec;
740 }
741
742 /* Handle a wild statement for a single file F. */
743
744 static void
745 walk_wild_file (lang_wild_statement_type *s,
746 lang_input_statement_type *f,
747 callback_t callback,
748 void *data)
749 {
750 if (f->the_bfd == NULL
751 || ! bfd_check_format (f->the_bfd, bfd_archive))
752 walk_wild_section (s, f, callback, data);
753 else
754 {
755 bfd *member;
756
757 /* This is an archive file. We must map each member of the
758 archive separately. */
759 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
760 while (member != NULL)
761 {
762 /* When lookup_name is called, it will call the add_symbols
763 entry point for the archive. For each element of the
764 archive which is included, BFD will call ldlang_add_file,
765 which will set the usrdata field of the member to the
766 lang_input_statement. */
767 if (member->usrdata != NULL)
768 {
769 walk_wild_section (s, member->usrdata, callback, data);
770 }
771
772 member = bfd_openr_next_archived_file (f->the_bfd, member);
773 }
774 }
775 }
776
777 static void
778 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
779 {
780 const char *file_spec = s->filename;
781
782 if (file_spec == NULL)
783 {
784 /* Perform the iteration over all files in the list. */
785 LANG_FOR_EACH_INPUT_STATEMENT (f)
786 {
787 walk_wild_file (s, f, callback, data);
788 }
789 }
790 else if (wildcardp (file_spec))
791 {
792 LANG_FOR_EACH_INPUT_STATEMENT (f)
793 {
794 if (fnmatch (file_spec, f->filename, 0) == 0)
795 walk_wild_file (s, f, callback, data);
796 }
797 }
798 else
799 {
800 lang_input_statement_type *f;
801
802 /* Perform the iteration over a single file. */
803 f = lookup_name (file_spec);
804 if (f)
805 walk_wild_file (s, f, callback, data);
806 }
807 }
808
809 /* lang_for_each_statement walks the parse tree and calls the provided
810 function for each node. */
811
812 static void
813 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
814 lang_statement_union_type *s)
815 {
816 for (; s != NULL; s = s->header.next)
817 {
818 func (s);
819
820 switch (s->header.type)
821 {
822 case lang_constructors_statement_enum:
823 lang_for_each_statement_worker (func, constructor_list.head);
824 break;
825 case lang_output_section_statement_enum:
826 lang_for_each_statement_worker
827 (func, s->output_section_statement.children.head);
828 break;
829 case lang_wild_statement_enum:
830 lang_for_each_statement_worker (func,
831 s->wild_statement.children.head);
832 break;
833 case lang_group_statement_enum:
834 lang_for_each_statement_worker (func,
835 s->group_statement.children.head);
836 break;
837 case lang_data_statement_enum:
838 case lang_reloc_statement_enum:
839 case lang_object_symbols_statement_enum:
840 case lang_output_statement_enum:
841 case lang_target_statement_enum:
842 case lang_input_section_enum:
843 case lang_input_statement_enum:
844 case lang_assignment_statement_enum:
845 case lang_padding_statement_enum:
846 case lang_address_statement_enum:
847 case lang_fill_statement_enum:
848 case lang_insert_statement_enum:
849 break;
850 default:
851 FAIL ();
852 break;
853 }
854 }
855 }
856
857 void
858 lang_for_each_statement (void (*func) (lang_statement_union_type *))
859 {
860 lang_for_each_statement_worker (func, statement_list.head);
861 }
862
863 /*----------------------------------------------------------------------*/
864
865 void
866 lang_list_init (lang_statement_list_type *list)
867 {
868 list->head = NULL;
869 list->tail = &list->head;
870 }
871
872 /* Build a new statement node for the parse tree. */
873
874 static lang_statement_union_type *
875 new_statement (enum statement_enum type,
876 size_t size,
877 lang_statement_list_type *list)
878 {
879 lang_statement_union_type *new;
880
881 new = stat_alloc (size);
882 new->header.type = type;
883 new->header.next = NULL;
884 lang_statement_append (list, new, &new->header.next);
885 return new;
886 }
887
888 /* Build a new input file node for the language. There are several
889 ways in which we treat an input file, eg, we only look at symbols,
890 or prefix it with a -l etc.
891
892 We can be supplied with requests for input files more than once;
893 they may, for example be split over several lines like foo.o(.text)
894 foo.o(.data) etc, so when asked for a file we check that we haven't
895 got it already so we don't duplicate the bfd. */
896
897 static lang_input_statement_type *
898 new_afile (const char *name,
899 lang_input_file_enum_type file_type,
900 const char *target,
901 bfd_boolean add_to_list)
902 {
903 lang_input_statement_type *p;
904
905 if (add_to_list)
906 p = new_stat (lang_input_statement, stat_ptr);
907 else
908 {
909 p = stat_alloc (sizeof (lang_input_statement_type));
910 p->header.type = lang_input_statement_enum;
911 p->header.next = NULL;
912 }
913
914 lang_has_input_file = TRUE;
915 p->target = target;
916 p->sysrooted = FALSE;
917
918 if (file_type == lang_input_file_is_l_enum
919 && name[0] == ':' && name[1] != '\0')
920 {
921 file_type = lang_input_file_is_search_file_enum;
922 name = name + 1;
923 }
924
925 switch (file_type)
926 {
927 case lang_input_file_is_symbols_only_enum:
928 p->filename = name;
929 p->is_archive = FALSE;
930 p->real = TRUE;
931 p->local_sym_name = name;
932 p->just_syms_flag = TRUE;
933 p->search_dirs_flag = FALSE;
934 break;
935 case lang_input_file_is_fake_enum:
936 p->filename = name;
937 p->is_archive = FALSE;
938 p->real = FALSE;
939 p->local_sym_name = name;
940 p->just_syms_flag = FALSE;
941 p->search_dirs_flag = FALSE;
942 break;
943 case lang_input_file_is_l_enum:
944 p->is_archive = TRUE;
945 p->filename = name;
946 p->real = TRUE;
947 p->local_sym_name = concat ("-l", name, (const char *) NULL);
948 p->just_syms_flag = FALSE;
949 p->search_dirs_flag = TRUE;
950 break;
951 case lang_input_file_is_marker_enum:
952 p->filename = name;
953 p->is_archive = FALSE;
954 p->real = FALSE;
955 p->local_sym_name = name;
956 p->just_syms_flag = FALSE;
957 p->search_dirs_flag = TRUE;
958 break;
959 case lang_input_file_is_search_file_enum:
960 p->sysrooted = ldlang_sysrooted_script;
961 p->filename = name;
962 p->is_archive = FALSE;
963 p->real = TRUE;
964 p->local_sym_name = name;
965 p->just_syms_flag = FALSE;
966 p->search_dirs_flag = TRUE;
967 break;
968 case lang_input_file_is_file_enum:
969 p->filename = name;
970 p->is_archive = FALSE;
971 p->real = TRUE;
972 p->local_sym_name = name;
973 p->just_syms_flag = FALSE;
974 p->search_dirs_flag = FALSE;
975 break;
976 default:
977 FAIL ();
978 }
979 p->the_bfd = NULL;
980 p->asymbols = NULL;
981 p->next_real_file = NULL;
982 p->next = NULL;
983 p->symbol_count = 0;
984 p->dynamic = config.dynamic_link;
985 p->add_needed = add_needed;
986 p->as_needed = as_needed;
987 p->whole_archive = whole_archive;
988 p->loaded = FALSE;
989 lang_statement_append (&input_file_chain,
990 (lang_statement_union_type *) p,
991 &p->next_real_file);
992 return p;
993 }
994
995 lang_input_statement_type *
996 lang_add_input_file (const char *name,
997 lang_input_file_enum_type file_type,
998 const char *target)
999 {
1000 return new_afile (name, file_type, target, TRUE);
1001 }
1002
1003 struct out_section_hash_entry
1004 {
1005 struct bfd_hash_entry root;
1006 lang_statement_union_type s;
1007 };
1008
1009 /* The hash table. */
1010
1011 static struct bfd_hash_table output_section_statement_table;
1012
1013 /* Support routines for the hash table used by lang_output_section_find,
1014 initialize the table, fill in an entry and remove the table. */
1015
1016 static struct bfd_hash_entry *
1017 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1018 struct bfd_hash_table *table,
1019 const char *string)
1020 {
1021 lang_output_section_statement_type **nextp;
1022 struct out_section_hash_entry *ret;
1023
1024 if (entry == NULL)
1025 {
1026 entry = bfd_hash_allocate (table, sizeof (*ret));
1027 if (entry == NULL)
1028 return entry;
1029 }
1030
1031 entry = bfd_hash_newfunc (entry, table, string);
1032 if (entry == NULL)
1033 return entry;
1034
1035 ret = (struct out_section_hash_entry *) entry;
1036 memset (&ret->s, 0, sizeof (ret->s));
1037 ret->s.header.type = lang_output_section_statement_enum;
1038 ret->s.output_section_statement.subsection_alignment = -1;
1039 ret->s.output_section_statement.section_alignment = -1;
1040 ret->s.output_section_statement.block_value = 1;
1041 lang_list_init (&ret->s.output_section_statement.children);
1042 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1043
1044 /* For every output section statement added to the list, except the
1045 first one, lang_output_section_statement.tail points to the "next"
1046 field of the last element of the list. */
1047 if (lang_output_section_statement.head != NULL)
1048 ret->s.output_section_statement.prev
1049 = ((lang_output_section_statement_type *)
1050 ((char *) lang_output_section_statement.tail
1051 - offsetof (lang_output_section_statement_type, next)));
1052
1053 /* GCC's strict aliasing rules prevent us from just casting the
1054 address, so we store the pointer in a variable and cast that
1055 instead. */
1056 nextp = &ret->s.output_section_statement.next;
1057 lang_statement_append (&lang_output_section_statement,
1058 &ret->s,
1059 (lang_statement_union_type **) nextp);
1060 return &ret->root;
1061 }
1062
1063 static void
1064 output_section_statement_table_init (void)
1065 {
1066 if (!bfd_hash_table_init_n (&output_section_statement_table,
1067 output_section_statement_newfunc,
1068 sizeof (struct out_section_hash_entry),
1069 61))
1070 einfo (_("%P%F: can not create hash table: %E\n"));
1071 }
1072
1073 static void
1074 output_section_statement_table_free (void)
1075 {
1076 bfd_hash_table_free (&output_section_statement_table);
1077 }
1078
1079 /* Build enough state so that the parser can build its tree. */
1080
1081 void
1082 lang_init (void)
1083 {
1084 obstack_begin (&stat_obstack, 1000);
1085
1086 stat_ptr = &statement_list;
1087
1088 output_section_statement_table_init ();
1089
1090 lang_list_init (stat_ptr);
1091
1092 lang_list_init (&input_file_chain);
1093 lang_list_init (&lang_output_section_statement);
1094 lang_list_init (&file_chain);
1095 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1096 NULL);
1097 abs_output_section =
1098 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME);
1099
1100 abs_output_section->bfd_section = bfd_abs_section_ptr;
1101
1102 /* The value "3" is ad-hoc, somewhat related to the expected number of
1103 DEFINED expressions in a linker script. For most default linker
1104 scripts, there are none. Why a hash table then? Well, it's somewhat
1105 simpler to re-use working machinery than using a linked list in terms
1106 of code-complexity here in ld, besides the initialization which just
1107 looks like other code here. */
1108 if (!bfd_hash_table_init_n (&lang_definedness_table,
1109 lang_definedness_newfunc,
1110 sizeof (struct lang_definedness_hash_entry),
1111 3))
1112 einfo (_("%P%F: can not create hash table: %E\n"));
1113 }
1114
1115 void
1116 lang_finish (void)
1117 {
1118 output_section_statement_table_free ();
1119 }
1120
1121 /*----------------------------------------------------------------------
1122 A region is an area of memory declared with the
1123 MEMORY { name:org=exp, len=exp ... }
1124 syntax.
1125
1126 We maintain a list of all the regions here.
1127
1128 If no regions are specified in the script, then the default is used
1129 which is created when looked up to be the entire data space.
1130
1131 If create is true we are creating a region inside a MEMORY block.
1132 In this case it is probably an error to create a region that has
1133 already been created. If we are not inside a MEMORY block it is
1134 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1135 and so we issue a warning. */
1136
1137 static lang_memory_region_type *lang_memory_region_list;
1138 static lang_memory_region_type **lang_memory_region_list_tail
1139 = &lang_memory_region_list;
1140
1141 lang_memory_region_type *
1142 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1143 {
1144 lang_memory_region_type *p;
1145 lang_memory_region_type *new;
1146
1147 /* NAME is NULL for LMA memspecs if no region was specified. */
1148 if (name == NULL)
1149 return NULL;
1150
1151 for (p = lang_memory_region_list; p != NULL; p = p->next)
1152 if (strcmp (p->name, name) == 0)
1153 {
1154 if (create)
1155 einfo (_("%P:%S: warning: redeclaration of memory region '%s'\n"),
1156 name);
1157 return p;
1158 }
1159
1160 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1161 einfo (_("%P:%S: warning: memory region %s not declared\n"), name);
1162
1163 new = stat_alloc (sizeof (lang_memory_region_type));
1164
1165 new->name = xstrdup (name);
1166 new->next = NULL;
1167 new->origin = 0;
1168 new->length = ~(bfd_size_type) 0;
1169 new->current = 0;
1170 new->last_os = NULL;
1171 new->flags = 0;
1172 new->not_flags = 0;
1173 new->had_full_message = FALSE;
1174
1175 *lang_memory_region_list_tail = new;
1176 lang_memory_region_list_tail = &new->next;
1177
1178 return new;
1179 }
1180
1181 static lang_memory_region_type *
1182 lang_memory_default (asection *section)
1183 {
1184 lang_memory_region_type *p;
1185
1186 flagword sec_flags = section->flags;
1187
1188 /* Override SEC_DATA to mean a writable section. */
1189 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1190 sec_flags |= SEC_DATA;
1191
1192 for (p = lang_memory_region_list; p != NULL; p = p->next)
1193 {
1194 if ((p->flags & sec_flags) != 0
1195 && (p->not_flags & sec_flags) == 0)
1196 {
1197 return p;
1198 }
1199 }
1200 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1201 }
1202
1203 lang_output_section_statement_type *
1204 lang_output_section_find (const char *const name)
1205 {
1206 struct out_section_hash_entry *entry;
1207 unsigned long hash;
1208
1209 entry = ((struct out_section_hash_entry *)
1210 bfd_hash_lookup (&output_section_statement_table, name,
1211 FALSE, FALSE));
1212 if (entry == NULL)
1213 return NULL;
1214
1215 hash = entry->root.hash;
1216 do
1217 {
1218 if (entry->s.output_section_statement.constraint != -1)
1219 return &entry->s.output_section_statement;
1220 entry = (struct out_section_hash_entry *) entry->root.next;
1221 }
1222 while (entry != NULL
1223 && entry->root.hash == hash
1224 && strcmp (name, entry->s.output_section_statement.name) == 0);
1225
1226 return NULL;
1227 }
1228
1229 static lang_output_section_statement_type *
1230 lang_output_section_statement_lookup_1 (const char *const name, int constraint)
1231 {
1232 struct out_section_hash_entry *entry;
1233 struct out_section_hash_entry *last_ent;
1234 unsigned long hash;
1235
1236 entry = ((struct out_section_hash_entry *)
1237 bfd_hash_lookup (&output_section_statement_table, name,
1238 TRUE, FALSE));
1239 if (entry == NULL)
1240 {
1241 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1242 return NULL;
1243 }
1244
1245 if (entry->s.output_section_statement.name != NULL)
1246 {
1247 /* We have a section of this name, but it might not have the correct
1248 constraint. */
1249 hash = entry->root.hash;
1250 do
1251 {
1252 if (entry->s.output_section_statement.constraint != -1
1253 && (constraint == 0
1254 || (constraint == entry->s.output_section_statement.constraint
1255 && constraint != SPECIAL)))
1256 return &entry->s.output_section_statement;
1257 last_ent = entry;
1258 entry = (struct out_section_hash_entry *) entry->root.next;
1259 }
1260 while (entry != NULL
1261 && entry->root.hash == hash
1262 && strcmp (name, entry->s.output_section_statement.name) == 0);
1263
1264 entry
1265 = ((struct out_section_hash_entry *)
1266 output_section_statement_newfunc (NULL,
1267 &output_section_statement_table,
1268 name));
1269 if (entry == NULL)
1270 {
1271 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1272 return NULL;
1273 }
1274 entry->root = last_ent->root;
1275 last_ent->root.next = &entry->root;
1276 }
1277
1278 entry->s.output_section_statement.name = name;
1279 entry->s.output_section_statement.constraint = constraint;
1280 return &entry->s.output_section_statement;
1281 }
1282
1283 lang_output_section_statement_type *
1284 lang_output_section_statement_lookup (const char *const name)
1285 {
1286 return lang_output_section_statement_lookup_1 (name, 0);
1287 }
1288
1289 /* A variant of lang_output_section_find used by place_orphan.
1290 Returns the output statement that should precede a new output
1291 statement for SEC. If an exact match is found on certain flags,
1292 sets *EXACT too. */
1293
1294 lang_output_section_statement_type *
1295 lang_output_section_find_by_flags (const asection *sec,
1296 lang_output_section_statement_type **exact,
1297 lang_match_sec_type_func match_type)
1298 {
1299 lang_output_section_statement_type *first, *look, *found;
1300 flagword flags;
1301
1302 /* We know the first statement on this list is *ABS*. May as well
1303 skip it. */
1304 first = &lang_output_section_statement.head->output_section_statement;
1305 first = first->next;
1306
1307 /* First try for an exact match. */
1308 found = NULL;
1309 for (look = first; look; look = look->next)
1310 {
1311 flags = look->flags;
1312 if (look->bfd_section != NULL)
1313 {
1314 flags = look->bfd_section->flags;
1315 if (match_type && !match_type (link_info.output_bfd,
1316 look->bfd_section,
1317 sec->owner, sec))
1318 continue;
1319 }
1320 flags ^= sec->flags;
1321 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1322 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1323 found = look;
1324 }
1325 if (found != NULL)
1326 {
1327 if (exact != NULL)
1328 *exact = found;
1329 return found;
1330 }
1331
1332 if (sec->flags & SEC_CODE)
1333 {
1334 /* Try for a rw code section. */
1335 for (look = first; look; look = look->next)
1336 {
1337 flags = look->flags;
1338 if (look->bfd_section != NULL)
1339 {
1340 flags = look->bfd_section->flags;
1341 if (match_type && !match_type (link_info.output_bfd,
1342 look->bfd_section,
1343 sec->owner, sec))
1344 continue;
1345 }
1346 flags ^= sec->flags;
1347 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1348 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1349 found = look;
1350 }
1351 }
1352 else if (sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL))
1353 {
1354 /* .rodata can go after .text, .sdata2 after .rodata. */
1355 for (look = first; look; look = look->next)
1356 {
1357 flags = look->flags;
1358 if (look->bfd_section != NULL)
1359 {
1360 flags = look->bfd_section->flags;
1361 if (match_type && !match_type (link_info.output_bfd,
1362 look->bfd_section,
1363 sec->owner, sec))
1364 continue;
1365 }
1366 flags ^= sec->flags;
1367 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1368 | SEC_READONLY))
1369 && !(look->flags & (SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1370 found = look;
1371 }
1372 }
1373 else if (sec->flags & SEC_SMALL_DATA)
1374 {
1375 /* .sdata goes after .data, .sbss after .sdata. */
1376 for (look = first; look; look = look->next)
1377 {
1378 flags = look->flags;
1379 if (look->bfd_section != NULL)
1380 {
1381 flags = look->bfd_section->flags;
1382 if (match_type && !match_type (link_info.output_bfd,
1383 look->bfd_section,
1384 sec->owner, sec))
1385 continue;
1386 }
1387 flags ^= sec->flags;
1388 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1389 | SEC_THREAD_LOCAL))
1390 || ((look->flags & SEC_SMALL_DATA)
1391 && !(sec->flags & SEC_HAS_CONTENTS)))
1392 found = look;
1393 }
1394 }
1395 else if (sec->flags & SEC_HAS_CONTENTS)
1396 {
1397 /* .data goes after .rodata. */
1398 for (look = first; look; look = look->next)
1399 {
1400 flags = look->flags;
1401 if (look->bfd_section != NULL)
1402 {
1403 flags = look->bfd_section->flags;
1404 if (match_type && !match_type (link_info.output_bfd,
1405 look->bfd_section,
1406 sec->owner, sec))
1407 continue;
1408 }
1409 flags ^= sec->flags;
1410 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1411 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1412 found = look;
1413 }
1414 }
1415 else
1416 {
1417 /* .bss goes last. */
1418 for (look = first; look; look = look->next)
1419 {
1420 flags = look->flags;
1421 if (look->bfd_section != NULL)
1422 {
1423 flags = look->bfd_section->flags;
1424 if (match_type && !match_type (link_info.output_bfd,
1425 look->bfd_section,
1426 sec->owner, sec))
1427 continue;
1428 }
1429 flags ^= sec->flags;
1430 if (!(flags & SEC_ALLOC))
1431 found = look;
1432 }
1433 }
1434
1435 if (found || !match_type)
1436 return found;
1437
1438 return lang_output_section_find_by_flags (sec, NULL, NULL);
1439 }
1440
1441 /* Find the last output section before given output statement.
1442 Used by place_orphan. */
1443
1444 static asection *
1445 output_prev_sec_find (lang_output_section_statement_type *os)
1446 {
1447 lang_output_section_statement_type *lookup;
1448
1449 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1450 {
1451 if (lookup->constraint == -1)
1452 continue;
1453
1454 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1455 return lookup->bfd_section;
1456 }
1457
1458 return NULL;
1459 }
1460
1461 /* Look for a suitable place for a new output section statement. The
1462 idea is to skip over anything that might be inside a SECTIONS {}
1463 statement in a script, before we find another output section
1464 statement. Assignments to "dot" before an output section statement
1465 are assumed to belong to it. An exception to this rule is made for
1466 the first assignment to dot, otherwise we might put an orphan
1467 before . = . + SIZEOF_HEADERS or similar assignments that set the
1468 initial address. */
1469
1470 static lang_statement_union_type **
1471 insert_os_after (lang_output_section_statement_type *after)
1472 {
1473 lang_statement_union_type **where;
1474 lang_statement_union_type **assign = NULL;
1475 bfd_boolean ignore_first;
1476
1477 ignore_first
1478 = after == &lang_output_section_statement.head->output_section_statement;
1479
1480 for (where = &after->header.next;
1481 *where != NULL;
1482 where = &(*where)->header.next)
1483 {
1484 switch ((*where)->header.type)
1485 {
1486 case lang_assignment_statement_enum:
1487 if (assign == NULL)
1488 {
1489 lang_assignment_statement_type *ass;
1490
1491 ass = &(*where)->assignment_statement;
1492 if (ass->exp->type.node_class != etree_assert
1493 && ass->exp->assign.dst[0] == '.'
1494 && ass->exp->assign.dst[1] == 0
1495 && !ignore_first)
1496 assign = where;
1497 }
1498 ignore_first = FALSE;
1499 continue;
1500 case lang_wild_statement_enum:
1501 case lang_input_section_enum:
1502 case lang_object_symbols_statement_enum:
1503 case lang_fill_statement_enum:
1504 case lang_data_statement_enum:
1505 case lang_reloc_statement_enum:
1506 case lang_padding_statement_enum:
1507 case lang_constructors_statement_enum:
1508 assign = NULL;
1509 continue;
1510 case lang_output_section_statement_enum:
1511 if (assign != NULL)
1512 where = assign;
1513 break;
1514 case lang_input_statement_enum:
1515 case lang_address_statement_enum:
1516 case lang_target_statement_enum:
1517 case lang_output_statement_enum:
1518 case lang_group_statement_enum:
1519 case lang_insert_statement_enum:
1520 continue;
1521 }
1522 break;
1523 }
1524
1525 return where;
1526 }
1527
1528 lang_output_section_statement_type *
1529 lang_insert_orphan (asection *s,
1530 const char *secname,
1531 lang_output_section_statement_type *after,
1532 struct orphan_save *place,
1533 etree_type *address,
1534 lang_statement_list_type *add_child)
1535 {
1536 lang_statement_list_type *old;
1537 lang_statement_list_type add;
1538 const char *ps;
1539 lang_output_section_statement_type *os;
1540 lang_output_section_statement_type **os_tail;
1541
1542 /* Start building a list of statements for this section.
1543 First save the current statement pointer. */
1544 old = stat_ptr;
1545
1546 /* If we have found an appropriate place for the output section
1547 statements for this orphan, add them to our own private list,
1548 inserting them later into the global statement list. */
1549 if (after != NULL)
1550 {
1551 stat_ptr = &add;
1552 lang_list_init (stat_ptr);
1553 }
1554
1555 ps = NULL;
1556 if (config.build_constructors)
1557 {
1558 /* If the name of the section is representable in C, then create
1559 symbols to mark the start and the end of the section. */
1560 for (ps = secname; *ps != '\0'; ps++)
1561 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1562 break;
1563 if (*ps == '\0')
1564 {
1565 char *symname;
1566 etree_type *e_align;
1567
1568 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1569 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1570 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1571 e_align = exp_unop (ALIGN_K,
1572 exp_intop ((bfd_vma) 1 << s->alignment_power));
1573 lang_add_assignment (exp_assop ('=', ".", e_align));
1574 lang_add_assignment (exp_provide (symname,
1575 exp_nameop (NAME, "."),
1576 FALSE));
1577 }
1578 }
1579
1580 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1581 address = exp_intop (0);
1582
1583 os_tail = ((lang_output_section_statement_type **)
1584 lang_output_section_statement.tail);
1585 os = lang_enter_output_section_statement (secname, address, 0, NULL, NULL,
1586 NULL, 0);
1587
1588 if (add_child == NULL)
1589 add_child = &os->children;
1590 lang_add_section (add_child, s, os);
1591
1592 lang_leave_output_section_statement (0, "*default*", NULL, NULL);
1593
1594 if (config.build_constructors && *ps == '\0')
1595 {
1596 char *symname;
1597
1598 /* lang_leave_ouput_section_statement resets stat_ptr.
1599 Put stat_ptr back where we want it. */
1600 if (after != NULL)
1601 stat_ptr = &add;
1602
1603 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1604 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1605 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1606 lang_add_assignment (exp_provide (symname,
1607 exp_nameop (NAME, "."),
1608 FALSE));
1609 }
1610
1611 /* Restore the global list pointer. */
1612 if (after != NULL)
1613 stat_ptr = old;
1614
1615 if (after != NULL && os->bfd_section != NULL)
1616 {
1617 asection *snew, *as;
1618
1619 snew = os->bfd_section;
1620
1621 /* Shuffle the bfd section list to make the output file look
1622 neater. This is really only cosmetic. */
1623 if (place->section == NULL
1624 && after != (&lang_output_section_statement.head
1625 ->output_section_statement))
1626 {
1627 asection *bfd_section = after->bfd_section;
1628
1629 /* If the output statement hasn't been used to place any input
1630 sections (and thus doesn't have an output bfd_section),
1631 look for the closest prior output statement having an
1632 output section. */
1633 if (bfd_section == NULL)
1634 bfd_section = output_prev_sec_find (after);
1635
1636 if (bfd_section != NULL && bfd_section != snew)
1637 place->section = &bfd_section->next;
1638 }
1639
1640 if (place->section == NULL)
1641 place->section = &link_info.output_bfd->sections;
1642
1643 as = *place->section;
1644
1645 if (!as)
1646 {
1647 /* Put the section at the end of the list. */
1648
1649 /* Unlink the section. */
1650 bfd_section_list_remove (link_info.output_bfd, snew);
1651
1652 /* Now tack it back on in the right place. */
1653 bfd_section_list_append (link_info.output_bfd, snew);
1654 }
1655 else if (as != snew && as->prev != snew)
1656 {
1657 /* Unlink the section. */
1658 bfd_section_list_remove (link_info.output_bfd, snew);
1659
1660 /* Now tack it back on in the right place. */
1661 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1662 }
1663
1664 /* Save the end of this list. Further ophans of this type will
1665 follow the one we've just added. */
1666 place->section = &snew->next;
1667
1668 /* The following is non-cosmetic. We try to put the output
1669 statements in some sort of reasonable order here, because they
1670 determine the final load addresses of the orphan sections.
1671 In addition, placing output statements in the wrong order may
1672 require extra segments. For instance, given a typical
1673 situation of all read-only sections placed in one segment and
1674 following that a segment containing all the read-write
1675 sections, we wouldn't want to place an orphan read/write
1676 section before or amongst the read-only ones. */
1677 if (add.head != NULL)
1678 {
1679 lang_output_section_statement_type *newly_added_os;
1680
1681 if (place->stmt == NULL)
1682 {
1683 lang_statement_union_type **where = insert_os_after (after);
1684
1685 *add.tail = *where;
1686 *where = add.head;
1687
1688 place->os_tail = &after->next;
1689 }
1690 else
1691 {
1692 /* Put it after the last orphan statement we added. */
1693 *add.tail = *place->stmt;
1694 *place->stmt = add.head;
1695 }
1696
1697 /* Fix the global list pointer if we happened to tack our
1698 new list at the tail. */
1699 if (*old->tail == add.head)
1700 old->tail = add.tail;
1701
1702 /* Save the end of this list. */
1703 place->stmt = add.tail;
1704
1705 /* Do the same for the list of output section statements. */
1706 newly_added_os = *os_tail;
1707 *os_tail = NULL;
1708 newly_added_os->prev = (lang_output_section_statement_type *)
1709 ((char *) place->os_tail
1710 - offsetof (lang_output_section_statement_type, next));
1711 newly_added_os->next = *place->os_tail;
1712 if (newly_added_os->next != NULL)
1713 newly_added_os->next->prev = newly_added_os;
1714 *place->os_tail = newly_added_os;
1715 place->os_tail = &newly_added_os->next;
1716
1717 /* Fixing the global list pointer here is a little different.
1718 We added to the list in lang_enter_output_section_statement,
1719 trimmed off the new output_section_statment above when
1720 assigning *os_tail = NULL, but possibly added it back in
1721 the same place when assigning *place->os_tail. */
1722 if (*os_tail == NULL)
1723 lang_output_section_statement.tail
1724 = (lang_statement_union_type **) os_tail;
1725 }
1726 }
1727 return os;
1728 }
1729
1730 static void
1731 lang_map_flags (flagword flag)
1732 {
1733 if (flag & SEC_ALLOC)
1734 minfo ("a");
1735
1736 if (flag & SEC_CODE)
1737 minfo ("x");
1738
1739 if (flag & SEC_READONLY)
1740 minfo ("r");
1741
1742 if (flag & SEC_DATA)
1743 minfo ("w");
1744
1745 if (flag & SEC_LOAD)
1746 minfo ("l");
1747 }
1748
1749 void
1750 lang_map (void)
1751 {
1752 lang_memory_region_type *m;
1753 bfd_boolean dis_header_printed = FALSE;
1754 bfd *p;
1755
1756 LANG_FOR_EACH_INPUT_STATEMENT (file)
1757 {
1758 asection *s;
1759
1760 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
1761 || file->just_syms_flag)
1762 continue;
1763
1764 for (s = file->the_bfd->sections; s != NULL; s = s->next)
1765 if ((s->output_section == NULL
1766 || s->output_section->owner != link_info.output_bfd)
1767 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
1768 {
1769 if (! dis_header_printed)
1770 {
1771 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
1772 dis_header_printed = TRUE;
1773 }
1774
1775 print_input_section (s);
1776 }
1777 }
1778
1779 minfo (_("\nMemory Configuration\n\n"));
1780 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
1781 _("Name"), _("Origin"), _("Length"), _("Attributes"));
1782
1783 for (m = lang_memory_region_list; m != NULL; m = m->next)
1784 {
1785 char buf[100];
1786 int len;
1787
1788 fprintf (config.map_file, "%-16s ", m->name);
1789
1790 sprintf_vma (buf, m->origin);
1791 minfo ("0x%s ", buf);
1792 len = strlen (buf);
1793 while (len < 16)
1794 {
1795 print_space ();
1796 ++len;
1797 }
1798
1799 minfo ("0x%V", m->length);
1800 if (m->flags || m->not_flags)
1801 {
1802 #ifndef BFD64
1803 minfo (" ");
1804 #endif
1805 if (m->flags)
1806 {
1807 print_space ();
1808 lang_map_flags (m->flags);
1809 }
1810
1811 if (m->not_flags)
1812 {
1813 minfo (" !");
1814 lang_map_flags (m->not_flags);
1815 }
1816 }
1817
1818 print_nl ();
1819 }
1820
1821 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
1822
1823 if (! link_info.reduce_memory_overheads)
1824 {
1825 obstack_begin (&map_obstack, 1000);
1826 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
1827 bfd_map_over_sections (p, init_map_userdata, 0);
1828 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
1829 }
1830 lang_statement_iteration ++;
1831 print_statements ();
1832 }
1833
1834 static void
1835 init_map_userdata (abfd, sec, data)
1836 bfd *abfd ATTRIBUTE_UNUSED;
1837 asection *sec;
1838 void *data ATTRIBUTE_UNUSED;
1839 {
1840 fat_section_userdata_type *new_data
1841 = ((fat_section_userdata_type *) (stat_alloc
1842 (sizeof (fat_section_userdata_type))));
1843
1844 ASSERT (get_userdata (sec) == NULL);
1845 get_userdata (sec) = new_data;
1846 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
1847 }
1848
1849 static bfd_boolean
1850 sort_def_symbol (hash_entry, info)
1851 struct bfd_link_hash_entry *hash_entry;
1852 void *info ATTRIBUTE_UNUSED;
1853 {
1854 if (hash_entry->type == bfd_link_hash_defined
1855 || hash_entry->type == bfd_link_hash_defweak)
1856 {
1857 struct fat_user_section_struct *ud;
1858 struct map_symbol_def *def;
1859
1860 ud = get_userdata (hash_entry->u.def.section);
1861 if (! ud)
1862 {
1863 /* ??? What do we have to do to initialize this beforehand? */
1864 /* The first time we get here is bfd_abs_section... */
1865 init_map_userdata (0, hash_entry->u.def.section, 0);
1866 ud = get_userdata (hash_entry->u.def.section);
1867 }
1868 else if (!ud->map_symbol_def_tail)
1869 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
1870
1871 def = obstack_alloc (&map_obstack, sizeof *def);
1872 def->entry = hash_entry;
1873 *(ud->map_symbol_def_tail) = def;
1874 ud->map_symbol_def_tail = &def->next;
1875 }
1876 return TRUE;
1877 }
1878
1879 /* Initialize an output section. */
1880
1881 static void
1882 init_os (lang_output_section_statement_type *s, asection *isec,
1883 flagword flags)
1884 {
1885 if (s->bfd_section != NULL)
1886 return;
1887
1888 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
1889 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
1890
1891 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
1892 if (s->bfd_section == NULL)
1893 s->bfd_section = bfd_make_section_with_flags (link_info.output_bfd,
1894 s->name, flags);
1895 if (s->bfd_section == NULL)
1896 {
1897 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
1898 link_info.output_bfd->xvec->name, s->name);
1899 }
1900 s->bfd_section->output_section = s->bfd_section;
1901 s->bfd_section->output_offset = 0;
1902
1903 if (!link_info.reduce_memory_overheads)
1904 {
1905 fat_section_userdata_type *new
1906 = stat_alloc (sizeof (fat_section_userdata_type));
1907 memset (new, 0, sizeof (fat_section_userdata_type));
1908 get_userdata (s->bfd_section) = new;
1909 }
1910
1911 /* If there is a base address, make sure that any sections it might
1912 mention are initialized. */
1913 if (s->addr_tree != NULL)
1914 exp_init_os (s->addr_tree);
1915
1916 if (s->load_base != NULL)
1917 exp_init_os (s->load_base);
1918
1919 /* If supplied an alignment, set it. */
1920 if (s->section_alignment != -1)
1921 s->bfd_section->alignment_power = s->section_alignment;
1922
1923 if (isec)
1924 bfd_init_private_section_data (isec->owner, isec,
1925 link_info.output_bfd, s->bfd_section,
1926 &link_info);
1927 }
1928
1929 /* Make sure that all output sections mentioned in an expression are
1930 initialized. */
1931
1932 static void
1933 exp_init_os (etree_type *exp)
1934 {
1935 switch (exp->type.node_class)
1936 {
1937 case etree_assign:
1938 case etree_provide:
1939 exp_init_os (exp->assign.src);
1940 break;
1941
1942 case etree_binary:
1943 exp_init_os (exp->binary.lhs);
1944 exp_init_os (exp->binary.rhs);
1945 break;
1946
1947 case etree_trinary:
1948 exp_init_os (exp->trinary.cond);
1949 exp_init_os (exp->trinary.lhs);
1950 exp_init_os (exp->trinary.rhs);
1951 break;
1952
1953 case etree_assert:
1954 exp_init_os (exp->assert_s.child);
1955 break;
1956
1957 case etree_unary:
1958 exp_init_os (exp->unary.child);
1959 break;
1960
1961 case etree_name:
1962 switch (exp->type.node_code)
1963 {
1964 case ADDR:
1965 case LOADADDR:
1966 case SIZEOF:
1967 {
1968 lang_output_section_statement_type *os;
1969
1970 os = lang_output_section_find (exp->name.name);
1971 if (os != NULL && os->bfd_section == NULL)
1972 init_os (os, NULL, 0);
1973 }
1974 }
1975 break;
1976
1977 default:
1978 break;
1979 }
1980 }
1981 \f
1982 static void
1983 section_already_linked (bfd *abfd, asection *sec, void *data)
1984 {
1985 lang_input_statement_type *entry = data;
1986
1987 /* If we are only reading symbols from this object, then we want to
1988 discard all sections. */
1989 if (entry->just_syms_flag)
1990 {
1991 bfd_link_just_syms (abfd, sec, &link_info);
1992 return;
1993 }
1994
1995 if (!(abfd->flags & DYNAMIC))
1996 bfd_section_already_linked (abfd, sec, &link_info);
1997 }
1998 \f
1999 /* The wild routines.
2000
2001 These expand statements like *(.text) and foo.o to a list of
2002 explicit actions, like foo.o(.text), bar.o(.text) and
2003 foo.o(.text, .data). */
2004
2005 /* Add SECTION to the output section OUTPUT. Do this by creating a
2006 lang_input_section statement which is placed at PTR. FILE is the
2007 input file which holds SECTION. */
2008
2009 void
2010 lang_add_section (lang_statement_list_type *ptr,
2011 asection *section,
2012 lang_output_section_statement_type *output)
2013 {
2014 flagword flags = section->flags;
2015 bfd_boolean discard;
2016
2017 /* Discard sections marked with SEC_EXCLUDE. */
2018 discard = (flags & SEC_EXCLUDE) != 0;
2019
2020 /* Discard input sections which are assigned to a section named
2021 DISCARD_SECTION_NAME. */
2022 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2023 discard = TRUE;
2024
2025 /* Discard debugging sections if we are stripping debugging
2026 information. */
2027 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2028 && (flags & SEC_DEBUGGING) != 0)
2029 discard = TRUE;
2030
2031 if (discard)
2032 {
2033 if (section->output_section == NULL)
2034 {
2035 /* This prevents future calls from assigning this section. */
2036 section->output_section = bfd_abs_section_ptr;
2037 }
2038 return;
2039 }
2040
2041 if (section->output_section == NULL)
2042 {
2043 bfd_boolean first;
2044 lang_input_section_type *new;
2045 flagword flags;
2046
2047 flags = section->flags;
2048
2049 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2050 to an output section, because we want to be able to include a
2051 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2052 section (I don't know why we want to do this, but we do).
2053 build_link_order in ldwrite.c handles this case by turning
2054 the embedded SEC_NEVER_LOAD section into a fill. */
2055
2056 flags &= ~ SEC_NEVER_LOAD;
2057
2058 switch (output->sectype)
2059 {
2060 case normal_section:
2061 case overlay_section:
2062 break;
2063 case noalloc_section:
2064 flags &= ~SEC_ALLOC;
2065 break;
2066 case noload_section:
2067 flags &= ~SEC_LOAD;
2068 flags |= SEC_NEVER_LOAD;
2069 break;
2070 }
2071
2072 if (output->bfd_section == NULL)
2073 init_os (output, section, flags);
2074
2075 first = ! output->bfd_section->linker_has_input;
2076 output->bfd_section->linker_has_input = 1;
2077
2078 if (!link_info.relocatable
2079 && !stripped_excluded_sections)
2080 {
2081 asection *s = output->bfd_section->map_tail.s;
2082 output->bfd_section->map_tail.s = section;
2083 section->map_head.s = NULL;
2084 section->map_tail.s = s;
2085 if (s != NULL)
2086 s->map_head.s = section;
2087 else
2088 output->bfd_section->map_head.s = section;
2089 }
2090
2091 /* Add a section reference to the list. */
2092 new = new_stat (lang_input_section, ptr);
2093
2094 new->section = section;
2095 section->output_section = output->bfd_section;
2096
2097 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2098 already been processed. One reason to do this is that on pe
2099 format targets, .text$foo sections go into .text and it's odd
2100 to see .text with SEC_LINK_ONCE set. */
2101
2102 if (! link_info.relocatable)
2103 flags &= ~ (SEC_LINK_ONCE | SEC_LINK_DUPLICATES);
2104
2105 /* If this is not the first input section, and the SEC_READONLY
2106 flag is not currently set, then don't set it just because the
2107 input section has it set. */
2108
2109 if (! first && (output->bfd_section->flags & SEC_READONLY) == 0)
2110 flags &= ~ SEC_READONLY;
2111
2112 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2113 if (! first
2114 && ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2115 != (flags & (SEC_MERGE | SEC_STRINGS))
2116 || ((flags & SEC_MERGE)
2117 && output->bfd_section->entsize != section->entsize)))
2118 {
2119 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2120 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2121 }
2122
2123 output->bfd_section->flags |= flags;
2124
2125 if (flags & SEC_MERGE)
2126 output->bfd_section->entsize = section->entsize;
2127
2128 /* If SEC_READONLY is not set in the input section, then clear
2129 it from the output section. */
2130 if ((section->flags & SEC_READONLY) == 0)
2131 output->bfd_section->flags &= ~SEC_READONLY;
2132
2133 /* Copy over SEC_SMALL_DATA. */
2134 if (section->flags & SEC_SMALL_DATA)
2135 output->bfd_section->flags |= SEC_SMALL_DATA;
2136
2137 if (section->alignment_power > output->bfd_section->alignment_power)
2138 output->bfd_section->alignment_power = section->alignment_power;
2139
2140 if (bfd_get_arch (section->owner) == bfd_arch_tic54x
2141 && (section->flags & SEC_TIC54X_BLOCK) != 0)
2142 {
2143 output->bfd_section->flags |= SEC_TIC54X_BLOCK;
2144 /* FIXME: This value should really be obtained from the bfd... */
2145 output->block_value = 128;
2146 }
2147 }
2148 }
2149
2150 /* Handle wildcard sorting. This returns the lang_input_section which
2151 should follow the one we are going to create for SECTION and FILE,
2152 based on the sorting requirements of WILD. It returns NULL if the
2153 new section should just go at the end of the current list. */
2154
2155 static lang_statement_union_type *
2156 wild_sort (lang_wild_statement_type *wild,
2157 struct wildcard_list *sec,
2158 lang_input_statement_type *file,
2159 asection *section)
2160 {
2161 const char *section_name;
2162 lang_statement_union_type *l;
2163
2164 if (!wild->filenames_sorted
2165 && (sec == NULL || sec->spec.sorted == none))
2166 return NULL;
2167
2168 section_name = bfd_get_section_name (file->the_bfd, section);
2169 for (l = wild->children.head; l != NULL; l = l->header.next)
2170 {
2171 lang_input_section_type *ls;
2172
2173 if (l->header.type != lang_input_section_enum)
2174 continue;
2175 ls = &l->input_section;
2176
2177 /* Sorting by filename takes precedence over sorting by section
2178 name. */
2179
2180 if (wild->filenames_sorted)
2181 {
2182 const char *fn, *ln;
2183 bfd_boolean fa, la;
2184 int i;
2185
2186 /* The PE support for the .idata section as generated by
2187 dlltool assumes that files will be sorted by the name of
2188 the archive and then the name of the file within the
2189 archive. */
2190
2191 if (file->the_bfd != NULL
2192 && bfd_my_archive (file->the_bfd) != NULL)
2193 {
2194 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2195 fa = TRUE;
2196 }
2197 else
2198 {
2199 fn = file->filename;
2200 fa = FALSE;
2201 }
2202
2203 if (bfd_my_archive (ls->section->owner) != NULL)
2204 {
2205 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2206 la = TRUE;
2207 }
2208 else
2209 {
2210 ln = ls->section->owner->filename;
2211 la = FALSE;
2212 }
2213
2214 i = strcmp (fn, ln);
2215 if (i > 0)
2216 continue;
2217 else if (i < 0)
2218 break;
2219
2220 if (fa || la)
2221 {
2222 if (fa)
2223 fn = file->filename;
2224 if (la)
2225 ln = ls->section->owner->filename;
2226
2227 i = strcmp (fn, ln);
2228 if (i > 0)
2229 continue;
2230 else if (i < 0)
2231 break;
2232 }
2233 }
2234
2235 /* Here either the files are not sorted by name, or we are
2236 looking at the sections for this file. */
2237
2238 if (sec != NULL && sec->spec.sorted != none)
2239 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2240 break;
2241 }
2242
2243 return l;
2244 }
2245
2246 /* Expand a wild statement for a particular FILE. SECTION may be
2247 NULL, in which case it is a wild card. */
2248
2249 static void
2250 output_section_callback (lang_wild_statement_type *ptr,
2251 struct wildcard_list *sec,
2252 asection *section,
2253 lang_input_statement_type *file,
2254 void *output)
2255 {
2256 lang_statement_union_type *before;
2257
2258 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2259 if (unique_section_p (section))
2260 return;
2261
2262 before = wild_sort (ptr, sec, file, section);
2263
2264 /* Here BEFORE points to the lang_input_section which
2265 should follow the one we are about to add. If BEFORE
2266 is NULL, then the section should just go at the end
2267 of the current list. */
2268
2269 if (before == NULL)
2270 lang_add_section (&ptr->children, section,
2271 (lang_output_section_statement_type *) output);
2272 else
2273 {
2274 lang_statement_list_type list;
2275 lang_statement_union_type **pp;
2276
2277 lang_list_init (&list);
2278 lang_add_section (&list, section,
2279 (lang_output_section_statement_type *) output);
2280
2281 /* If we are discarding the section, LIST.HEAD will
2282 be NULL. */
2283 if (list.head != NULL)
2284 {
2285 ASSERT (list.head->header.next == NULL);
2286
2287 for (pp = &ptr->children.head;
2288 *pp != before;
2289 pp = &(*pp)->header.next)
2290 ASSERT (*pp != NULL);
2291
2292 list.head->header.next = *pp;
2293 *pp = list.head;
2294 }
2295 }
2296 }
2297
2298 /* Check if all sections in a wild statement for a particular FILE
2299 are readonly. */
2300
2301 static void
2302 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2303 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2304 asection *section,
2305 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2306 void *data)
2307 {
2308 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2309 if (unique_section_p (section))
2310 return;
2311
2312 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2313 ((lang_output_section_statement_type *) data)->all_input_readonly = FALSE;
2314 }
2315
2316 /* This is passed a file name which must have been seen already and
2317 added to the statement tree. We will see if it has been opened
2318 already and had its symbols read. If not then we'll read it. */
2319
2320 static lang_input_statement_type *
2321 lookup_name (const char *name)
2322 {
2323 lang_input_statement_type *search;
2324
2325 for (search = (lang_input_statement_type *) input_file_chain.head;
2326 search != NULL;
2327 search = (lang_input_statement_type *) search->next_real_file)
2328 {
2329 /* Use the local_sym_name as the name of the file that has
2330 already been loaded as filename might have been transformed
2331 via the search directory lookup mechanism. */
2332 const char *filename = search->local_sym_name;
2333
2334 if (filename != NULL
2335 && strcmp (filename, name) == 0)
2336 break;
2337 }
2338
2339 if (search == NULL)
2340 search = new_afile (name, lang_input_file_is_search_file_enum,
2341 default_target, FALSE);
2342
2343 /* If we have already added this file, or this file is not real
2344 don't add this file. */
2345 if (search->loaded || !search->real)
2346 return search;
2347
2348 if (! load_symbols (search, NULL))
2349 return NULL;
2350
2351 return search;
2352 }
2353
2354 /* Save LIST as a list of libraries whose symbols should not be exported. */
2355
2356 struct excluded_lib
2357 {
2358 char *name;
2359 struct excluded_lib *next;
2360 };
2361 static struct excluded_lib *excluded_libs;
2362
2363 void
2364 add_excluded_libs (const char *list)
2365 {
2366 const char *p = list, *end;
2367
2368 while (*p != '\0')
2369 {
2370 struct excluded_lib *entry;
2371 end = strpbrk (p, ",:");
2372 if (end == NULL)
2373 end = p + strlen (p);
2374 entry = xmalloc (sizeof (*entry));
2375 entry->next = excluded_libs;
2376 entry->name = xmalloc (end - p + 1);
2377 memcpy (entry->name, p, end - p);
2378 entry->name[end - p] = '\0';
2379 excluded_libs = entry;
2380 if (*end == '\0')
2381 break;
2382 p = end + 1;
2383 }
2384 }
2385
2386 static void
2387 check_excluded_libs (bfd *abfd)
2388 {
2389 struct excluded_lib *lib = excluded_libs;
2390
2391 while (lib)
2392 {
2393 int len = strlen (lib->name);
2394 const char *filename = lbasename (abfd->filename);
2395
2396 if (strcmp (lib->name, "ALL") == 0)
2397 {
2398 abfd->no_export = TRUE;
2399 return;
2400 }
2401
2402 if (strncmp (lib->name, filename, len) == 0
2403 && (filename[len] == '\0'
2404 || (filename[len] == '.' && filename[len + 1] == 'a'
2405 && filename[len + 2] == '\0')))
2406 {
2407 abfd->no_export = TRUE;
2408 return;
2409 }
2410
2411 lib = lib->next;
2412 }
2413 }
2414
2415 /* Get the symbols for an input file. */
2416
2417 bfd_boolean
2418 load_symbols (lang_input_statement_type *entry,
2419 lang_statement_list_type *place)
2420 {
2421 char **matching;
2422
2423 if (entry->loaded)
2424 return TRUE;
2425
2426 ldfile_open_file (entry);
2427
2428 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2429 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2430 {
2431 bfd_error_type err;
2432 lang_statement_list_type *hold;
2433 bfd_boolean bad_load = TRUE;
2434 bfd_boolean save_ldlang_sysrooted_script;
2435 bfd_boolean save_as_needed, save_add_needed;
2436
2437 err = bfd_get_error ();
2438
2439 /* See if the emulation has some special knowledge. */
2440 if (ldemul_unrecognized_file (entry))
2441 return TRUE;
2442
2443 if (err == bfd_error_file_ambiguously_recognized)
2444 {
2445 char **p;
2446
2447 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2448 einfo (_("%B: matching formats:"), entry->the_bfd);
2449 for (p = matching; *p != NULL; p++)
2450 einfo (" %s", *p);
2451 einfo ("%F\n");
2452 }
2453 else if (err != bfd_error_file_not_recognized
2454 || place == NULL)
2455 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2456 else
2457 bad_load = FALSE;
2458
2459 bfd_close (entry->the_bfd);
2460 entry->the_bfd = NULL;
2461
2462 /* Try to interpret the file as a linker script. */
2463 ldfile_open_command_file (entry->filename);
2464
2465 hold = stat_ptr;
2466 stat_ptr = place;
2467 save_ldlang_sysrooted_script = ldlang_sysrooted_script;
2468 ldlang_sysrooted_script = entry->sysrooted;
2469 save_as_needed = as_needed;
2470 as_needed = entry->as_needed;
2471 save_add_needed = add_needed;
2472 add_needed = entry->add_needed;
2473
2474 ldfile_assumed_script = TRUE;
2475 parser_input = input_script;
2476 /* We want to use the same -Bdynamic/-Bstatic as the one for
2477 ENTRY. */
2478 config.dynamic_link = entry->dynamic;
2479 yyparse ();
2480 ldfile_assumed_script = FALSE;
2481
2482 ldlang_sysrooted_script = save_ldlang_sysrooted_script;
2483 as_needed = save_as_needed;
2484 add_needed = save_add_needed;
2485 stat_ptr = hold;
2486
2487 return ! bad_load;
2488 }
2489
2490 if (ldemul_recognized_file (entry))
2491 return TRUE;
2492
2493 /* We don't call ldlang_add_file for an archive. Instead, the
2494 add_symbols entry point will call ldlang_add_file, via the
2495 add_archive_element callback, for each element of the archive
2496 which is used. */
2497 switch (bfd_get_format (entry->the_bfd))
2498 {
2499 default:
2500 break;
2501
2502 case bfd_object:
2503 ldlang_add_file (entry);
2504 if (trace_files || trace_file_tries)
2505 info_msg ("%I\n", entry);
2506 break;
2507
2508 case bfd_archive:
2509 check_excluded_libs (entry->the_bfd);
2510
2511 if (entry->whole_archive)
2512 {
2513 bfd *member = NULL;
2514 bfd_boolean loaded = TRUE;
2515
2516 for (;;)
2517 {
2518 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2519
2520 if (member == NULL)
2521 break;
2522
2523 if (! bfd_check_format (member, bfd_object))
2524 {
2525 einfo (_("%F%B: member %B in archive is not an object\n"),
2526 entry->the_bfd, member);
2527 loaded = FALSE;
2528 }
2529
2530 if (! ((*link_info.callbacks->add_archive_element)
2531 (&link_info, member, "--whole-archive")))
2532 abort ();
2533
2534 if (! bfd_link_add_symbols (member, &link_info))
2535 {
2536 einfo (_("%F%B: could not read symbols: %E\n"), member);
2537 loaded = FALSE;
2538 }
2539 }
2540
2541 entry->loaded = loaded;
2542 return loaded;
2543 }
2544 break;
2545 }
2546
2547 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2548 entry->loaded = TRUE;
2549 else
2550 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2551
2552 return entry->loaded;
2553 }
2554
2555 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2556 may be NULL, indicating that it is a wildcard. Separate
2557 lang_input_section statements are created for each part of the
2558 expansion; they are added after the wild statement S. OUTPUT is
2559 the output section. */
2560
2561 static void
2562 wild (lang_wild_statement_type *s,
2563 const char *target ATTRIBUTE_UNUSED,
2564 lang_output_section_statement_type *output)
2565 {
2566 struct wildcard_list *sec;
2567
2568 if (s->handler_data[0]
2569 && s->handler_data[0]->spec.sorted == by_name
2570 && !s->filenames_sorted)
2571 {
2572 lang_section_bst_type *tree;
2573
2574 walk_wild (s, output_section_callback_fast, output);
2575
2576 tree = s->tree;
2577 if (tree)
2578 {
2579 output_section_callback_tree_to_list (s, tree, output);
2580 s->tree = NULL;
2581 }
2582 }
2583 else
2584 walk_wild (s, output_section_callback, output);
2585
2586 if (default_common_section == NULL)
2587 for (sec = s->section_list; sec != NULL; sec = sec->next)
2588 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2589 {
2590 /* Remember the section that common is going to in case we
2591 later get something which doesn't know where to put it. */
2592 default_common_section = output;
2593 break;
2594 }
2595 }
2596
2597 /* Return TRUE iff target is the sought target. */
2598
2599 static int
2600 get_target (const bfd_target *target, void *data)
2601 {
2602 const char *sought = data;
2603
2604 return strcmp (target->name, sought) == 0;
2605 }
2606
2607 /* Like strcpy() but convert to lower case as well. */
2608
2609 static void
2610 stricpy (char *dest, char *src)
2611 {
2612 char c;
2613
2614 while ((c = *src++) != 0)
2615 *dest++ = TOLOWER (c);
2616
2617 *dest = 0;
2618 }
2619
2620 /* Remove the first occurrence of needle (if any) in haystack
2621 from haystack. */
2622
2623 static void
2624 strcut (char *haystack, char *needle)
2625 {
2626 haystack = strstr (haystack, needle);
2627
2628 if (haystack)
2629 {
2630 char *src;
2631
2632 for (src = haystack + strlen (needle); *src;)
2633 *haystack++ = *src++;
2634
2635 *haystack = 0;
2636 }
2637 }
2638
2639 /* Compare two target format name strings.
2640 Return a value indicating how "similar" they are. */
2641
2642 static int
2643 name_compare (char *first, char *second)
2644 {
2645 char *copy1;
2646 char *copy2;
2647 int result;
2648
2649 copy1 = xmalloc (strlen (first) + 1);
2650 copy2 = xmalloc (strlen (second) + 1);
2651
2652 /* Convert the names to lower case. */
2653 stricpy (copy1, first);
2654 stricpy (copy2, second);
2655
2656 /* Remove size and endian strings from the name. */
2657 strcut (copy1, "big");
2658 strcut (copy1, "little");
2659 strcut (copy2, "big");
2660 strcut (copy2, "little");
2661
2662 /* Return a value based on how many characters match,
2663 starting from the beginning. If both strings are
2664 the same then return 10 * their length. */
2665 for (result = 0; copy1[result] == copy2[result]; result++)
2666 if (copy1[result] == 0)
2667 {
2668 result *= 10;
2669 break;
2670 }
2671
2672 free (copy1);
2673 free (copy2);
2674
2675 return result;
2676 }
2677
2678 /* Set by closest_target_match() below. */
2679 static const bfd_target *winner;
2680
2681 /* Scan all the valid bfd targets looking for one that has the endianness
2682 requirement that was specified on the command line, and is the nearest
2683 match to the original output target. */
2684
2685 static int
2686 closest_target_match (const bfd_target *target, void *data)
2687 {
2688 const bfd_target *original = data;
2689
2690 if (command_line.endian == ENDIAN_BIG
2691 && target->byteorder != BFD_ENDIAN_BIG)
2692 return 0;
2693
2694 if (command_line.endian == ENDIAN_LITTLE
2695 && target->byteorder != BFD_ENDIAN_LITTLE)
2696 return 0;
2697
2698 /* Must be the same flavour. */
2699 if (target->flavour != original->flavour)
2700 return 0;
2701
2702 /* If we have not found a potential winner yet, then record this one. */
2703 if (winner == NULL)
2704 {
2705 winner = target;
2706 return 0;
2707 }
2708
2709 /* Oh dear, we now have two potential candidates for a successful match.
2710 Compare their names and choose the better one. */
2711 if (name_compare (target->name, original->name)
2712 > name_compare (winner->name, original->name))
2713 winner = target;
2714
2715 /* Keep on searching until wqe have checked them all. */
2716 return 0;
2717 }
2718
2719 /* Return the BFD target format of the first input file. */
2720
2721 static char *
2722 get_first_input_target (void)
2723 {
2724 char *target = NULL;
2725
2726 LANG_FOR_EACH_INPUT_STATEMENT (s)
2727 {
2728 if (s->header.type == lang_input_statement_enum
2729 && s->real)
2730 {
2731 ldfile_open_file (s);
2732
2733 if (s->the_bfd != NULL
2734 && bfd_check_format (s->the_bfd, bfd_object))
2735 {
2736 target = bfd_get_target (s->the_bfd);
2737
2738 if (target != NULL)
2739 break;
2740 }
2741 }
2742 }
2743
2744 return target;
2745 }
2746
2747 const char *
2748 lang_get_output_target (void)
2749 {
2750 const char *target;
2751
2752 /* Has the user told us which output format to use? */
2753 if (output_target != NULL)
2754 return output_target;
2755
2756 /* No - has the current target been set to something other than
2757 the default? */
2758 if (current_target != default_target)
2759 return current_target;
2760
2761 /* No - can we determine the format of the first input file? */
2762 target = get_first_input_target ();
2763 if (target != NULL)
2764 return target;
2765
2766 /* Failed - use the default output target. */
2767 return default_target;
2768 }
2769
2770 /* Open the output file. */
2771
2772 static void
2773 open_output (const char *name)
2774 {
2775 output_target = lang_get_output_target ();
2776
2777 /* Has the user requested a particular endianness on the command
2778 line? */
2779 if (command_line.endian != ENDIAN_UNSET)
2780 {
2781 const bfd_target *target;
2782 enum bfd_endian desired_endian;
2783
2784 /* Get the chosen target. */
2785 target = bfd_search_for_target (get_target, (void *) output_target);
2786
2787 /* If the target is not supported, we cannot do anything. */
2788 if (target != NULL)
2789 {
2790 if (command_line.endian == ENDIAN_BIG)
2791 desired_endian = BFD_ENDIAN_BIG;
2792 else
2793 desired_endian = BFD_ENDIAN_LITTLE;
2794
2795 /* See if the target has the wrong endianness. This should
2796 not happen if the linker script has provided big and
2797 little endian alternatives, but some scrips don't do
2798 this. */
2799 if (target->byteorder != desired_endian)
2800 {
2801 /* If it does, then see if the target provides
2802 an alternative with the correct endianness. */
2803 if (target->alternative_target != NULL
2804 && (target->alternative_target->byteorder == desired_endian))
2805 output_target = target->alternative_target->name;
2806 else
2807 {
2808 /* Try to find a target as similar as possible to
2809 the default target, but which has the desired
2810 endian characteristic. */
2811 bfd_search_for_target (closest_target_match,
2812 (void *) target);
2813
2814 /* Oh dear - we could not find any targets that
2815 satisfy our requirements. */
2816 if (winner == NULL)
2817 einfo (_("%P: warning: could not find any targets"
2818 " that match endianness requirement\n"));
2819 else
2820 output_target = winner->name;
2821 }
2822 }
2823 }
2824 }
2825
2826 link_info.output_bfd = bfd_openw (name, output_target);
2827
2828 if (link_info.output_bfd == NULL)
2829 {
2830 if (bfd_get_error () == bfd_error_invalid_target)
2831 einfo (_("%P%F: target %s not found\n"), output_target);
2832
2833 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
2834 }
2835
2836 delete_output_file_on_failure = TRUE;
2837
2838 if (! bfd_set_format (link_info.output_bfd, bfd_object))
2839 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
2840 if (! bfd_set_arch_mach (link_info.output_bfd,
2841 ldfile_output_architecture,
2842 ldfile_output_machine))
2843 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
2844
2845 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
2846 if (link_info.hash == NULL)
2847 einfo (_("%P%F: can not create hash table: %E\n"));
2848
2849 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
2850 }
2851
2852 static void
2853 ldlang_open_output (lang_statement_union_type *statement)
2854 {
2855 switch (statement->header.type)
2856 {
2857 case lang_output_statement_enum:
2858 ASSERT (link_info.output_bfd == NULL);
2859 open_output (statement->output_statement.name);
2860 ldemul_set_output_arch ();
2861 if (config.magic_demand_paged && !link_info.relocatable)
2862 link_info.output_bfd->flags |= D_PAGED;
2863 else
2864 link_info.output_bfd->flags &= ~D_PAGED;
2865 if (config.text_read_only)
2866 link_info.output_bfd->flags |= WP_TEXT;
2867 else
2868 link_info.output_bfd->flags &= ~WP_TEXT;
2869 if (link_info.traditional_format)
2870 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
2871 else
2872 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
2873 break;
2874
2875 case lang_target_statement_enum:
2876 current_target = statement->target_statement.target;
2877 break;
2878 default:
2879 break;
2880 }
2881 }
2882
2883 /* Convert between addresses in bytes and sizes in octets.
2884 For currently supported targets, octets_per_byte is always a power
2885 of two, so we can use shifts. */
2886 #define TO_ADDR(X) ((X) >> opb_shift)
2887 #define TO_SIZE(X) ((X) << opb_shift)
2888
2889 /* Support the above. */
2890 static unsigned int opb_shift = 0;
2891
2892 static void
2893 init_opb (void)
2894 {
2895 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
2896 ldfile_output_machine);
2897 opb_shift = 0;
2898 if (x > 1)
2899 while ((x & 1) == 0)
2900 {
2901 x >>= 1;
2902 ++opb_shift;
2903 }
2904 ASSERT (x == 1);
2905 }
2906
2907 /* Open all the input files. */
2908
2909 static void
2910 open_input_bfds (lang_statement_union_type *s, bfd_boolean force)
2911 {
2912 for (; s != NULL; s = s->header.next)
2913 {
2914 switch (s->header.type)
2915 {
2916 case lang_constructors_statement_enum:
2917 open_input_bfds (constructor_list.head, force);
2918 break;
2919 case lang_output_section_statement_enum:
2920 open_input_bfds (s->output_section_statement.children.head, force);
2921 break;
2922 case lang_wild_statement_enum:
2923 /* Maybe we should load the file's symbols. */
2924 if (s->wild_statement.filename
2925 && ! wildcardp (s->wild_statement.filename))
2926 lookup_name (s->wild_statement.filename);
2927 open_input_bfds (s->wild_statement.children.head, force);
2928 break;
2929 case lang_group_statement_enum:
2930 {
2931 struct bfd_link_hash_entry *undefs;
2932
2933 /* We must continually search the entries in the group
2934 until no new symbols are added to the list of undefined
2935 symbols. */
2936
2937 do
2938 {
2939 undefs = link_info.hash->undefs_tail;
2940 open_input_bfds (s->group_statement.children.head, TRUE);
2941 }
2942 while (undefs != link_info.hash->undefs_tail);
2943 }
2944 break;
2945 case lang_target_statement_enum:
2946 current_target = s->target_statement.target;
2947 break;
2948 case lang_input_statement_enum:
2949 if (s->input_statement.real)
2950 {
2951 lang_statement_list_type add;
2952
2953 s->input_statement.target = current_target;
2954
2955 /* If we are being called from within a group, and this
2956 is an archive which has already been searched, then
2957 force it to be researched unless the whole archive
2958 has been loaded already. */
2959 if (force
2960 && !s->input_statement.whole_archive
2961 && s->input_statement.loaded
2962 && bfd_check_format (s->input_statement.the_bfd,
2963 bfd_archive))
2964 s->input_statement.loaded = FALSE;
2965
2966 lang_list_init (&add);
2967
2968 if (! load_symbols (&s->input_statement, &add))
2969 config.make_executable = FALSE;
2970
2971 if (add.head != NULL)
2972 {
2973 *add.tail = s->header.next;
2974 s->header.next = add.head;
2975 }
2976 }
2977 break;
2978 default:
2979 break;
2980 }
2981 }
2982 }
2983
2984 /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
2985
2986 void
2987 lang_track_definedness (const char *name)
2988 {
2989 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
2990 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
2991 }
2992
2993 /* New-function for the definedness hash table. */
2994
2995 static struct bfd_hash_entry *
2996 lang_definedness_newfunc (struct bfd_hash_entry *entry,
2997 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
2998 const char *name ATTRIBUTE_UNUSED)
2999 {
3000 struct lang_definedness_hash_entry *ret
3001 = (struct lang_definedness_hash_entry *) entry;
3002
3003 if (ret == NULL)
3004 ret = (struct lang_definedness_hash_entry *)
3005 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3006
3007 if (ret == NULL)
3008 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3009
3010 ret->iteration = -1;
3011 return &ret->root;
3012 }
3013
3014 /* Return the iteration when the definition of NAME was last updated. A
3015 value of -1 means that the symbol is not defined in the linker script
3016 or the command line, but may be defined in the linker symbol table. */
3017
3018 int
3019 lang_symbol_definition_iteration (const char *name)
3020 {
3021 struct lang_definedness_hash_entry *defentry
3022 = (struct lang_definedness_hash_entry *)
3023 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3024
3025 /* We've already created this one on the presence of DEFINED in the
3026 script, so it can't be NULL unless something is borked elsewhere in
3027 the code. */
3028 if (defentry == NULL)
3029 FAIL ();
3030
3031 return defentry->iteration;
3032 }
3033
3034 /* Update the definedness state of NAME. */
3035
3036 void
3037 lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3038 {
3039 struct lang_definedness_hash_entry *defentry
3040 = (struct lang_definedness_hash_entry *)
3041 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3042
3043 /* We don't keep track of symbols not tested with DEFINED. */
3044 if (defentry == NULL)
3045 return;
3046
3047 /* If the symbol was already defined, and not from an earlier statement
3048 iteration, don't update the definedness iteration, because that'd
3049 make the symbol seem defined in the linker script at this point, and
3050 it wasn't; it was defined in some object. If we do anyway, DEFINED
3051 would start to yield false before this point and the construct "sym =
3052 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3053 in an object. */
3054 if (h->type != bfd_link_hash_undefined
3055 && h->type != bfd_link_hash_common
3056 && h->type != bfd_link_hash_new
3057 && defentry->iteration == -1)
3058 return;
3059
3060 defentry->iteration = lang_statement_iteration;
3061 }
3062
3063 /* Add the supplied name to the symbol table as an undefined reference.
3064 This is a two step process as the symbol table doesn't even exist at
3065 the time the ld command line is processed. First we put the name
3066 on a list, then, once the output file has been opened, transfer the
3067 name to the symbol table. */
3068
3069 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3070
3071 #define ldlang_undef_chain_list_head entry_symbol.next
3072
3073 void
3074 ldlang_add_undef (const char *const name)
3075 {
3076 ldlang_undef_chain_list_type *new =
3077 stat_alloc (sizeof (ldlang_undef_chain_list_type));
3078
3079 new->next = ldlang_undef_chain_list_head;
3080 ldlang_undef_chain_list_head = new;
3081
3082 new->name = xstrdup (name);
3083
3084 if (link_info.output_bfd != NULL)
3085 insert_undefined (new->name);
3086 }
3087
3088 /* Insert NAME as undefined in the symbol table. */
3089
3090 static void
3091 insert_undefined (const char *name)
3092 {
3093 struct bfd_link_hash_entry *h;
3094
3095 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3096 if (h == NULL)
3097 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3098 if (h->type == bfd_link_hash_new)
3099 {
3100 h->type = bfd_link_hash_undefined;
3101 h->u.undef.abfd = NULL;
3102 bfd_link_add_undef (link_info.hash, h);
3103 }
3104 }
3105
3106 /* Run through the list of undefineds created above and place them
3107 into the linker hash table as undefined symbols belonging to the
3108 script file. */
3109
3110 static void
3111 lang_place_undefineds (void)
3112 {
3113 ldlang_undef_chain_list_type *ptr;
3114
3115 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3116 insert_undefined (ptr->name);
3117 }
3118
3119 /* Check for all readonly or some readwrite sections. */
3120
3121 static void
3122 check_input_sections
3123 (lang_statement_union_type *s,
3124 lang_output_section_statement_type *output_section_statement)
3125 {
3126 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3127 {
3128 switch (s->header.type)
3129 {
3130 case lang_wild_statement_enum:
3131 walk_wild (&s->wild_statement, check_section_callback,
3132 output_section_statement);
3133 if (! output_section_statement->all_input_readonly)
3134 return;
3135 break;
3136 case lang_constructors_statement_enum:
3137 check_input_sections (constructor_list.head,
3138 output_section_statement);
3139 if (! output_section_statement->all_input_readonly)
3140 return;
3141 break;
3142 case lang_group_statement_enum:
3143 check_input_sections (s->group_statement.children.head,
3144 output_section_statement);
3145 if (! output_section_statement->all_input_readonly)
3146 return;
3147 break;
3148 default:
3149 break;
3150 }
3151 }
3152 }
3153
3154 /* Update wildcard statements if needed. */
3155
3156 static void
3157 update_wild_statements (lang_statement_union_type *s)
3158 {
3159 struct wildcard_list *sec;
3160
3161 switch (sort_section)
3162 {
3163 default:
3164 FAIL ();
3165
3166 case none:
3167 break;
3168
3169 case by_name:
3170 case by_alignment:
3171 for (; s != NULL; s = s->header.next)
3172 {
3173 switch (s->header.type)
3174 {
3175 default:
3176 break;
3177
3178 case lang_wild_statement_enum:
3179 sec = s->wild_statement.section_list;
3180 for (sec = s->wild_statement.section_list; sec != NULL;
3181 sec = sec->next)
3182 {
3183 switch (sec->spec.sorted)
3184 {
3185 case none:
3186 sec->spec.sorted = sort_section;
3187 break;
3188 case by_name:
3189 if (sort_section == by_alignment)
3190 sec->spec.sorted = by_name_alignment;
3191 break;
3192 case by_alignment:
3193 if (sort_section == by_name)
3194 sec->spec.sorted = by_alignment_name;
3195 break;
3196 default:
3197 break;
3198 }
3199 }
3200 break;
3201
3202 case lang_constructors_statement_enum:
3203 update_wild_statements (constructor_list.head);
3204 break;
3205
3206 case lang_output_section_statement_enum:
3207 update_wild_statements
3208 (s->output_section_statement.children.head);
3209 break;
3210
3211 case lang_group_statement_enum:
3212 update_wild_statements (s->group_statement.children.head);
3213 break;
3214 }
3215 }
3216 break;
3217 }
3218 }
3219
3220 /* Open input files and attach to output sections. */
3221
3222 static void
3223 map_input_to_output_sections
3224 (lang_statement_union_type *s, const char *target,
3225 lang_output_section_statement_type *os)
3226 {
3227 flagword flags;
3228
3229 for (; s != NULL; s = s->header.next)
3230 {
3231 switch (s->header.type)
3232 {
3233 case lang_wild_statement_enum:
3234 wild (&s->wild_statement, target, os);
3235 break;
3236 case lang_constructors_statement_enum:
3237 map_input_to_output_sections (constructor_list.head,
3238 target,
3239 os);
3240 break;
3241 case lang_output_section_statement_enum:
3242 if (s->output_section_statement.constraint)
3243 {
3244 if (s->output_section_statement.constraint != ONLY_IF_RW
3245 && s->output_section_statement.constraint != ONLY_IF_RO)
3246 break;
3247 s->output_section_statement.all_input_readonly = TRUE;
3248 check_input_sections (s->output_section_statement.children.head,
3249 &s->output_section_statement);
3250 if ((s->output_section_statement.all_input_readonly
3251 && s->output_section_statement.constraint == ONLY_IF_RW)
3252 || (!s->output_section_statement.all_input_readonly
3253 && s->output_section_statement.constraint == ONLY_IF_RO))
3254 {
3255 s->output_section_statement.constraint = -1;
3256 break;
3257 }
3258 }
3259
3260 map_input_to_output_sections (s->output_section_statement.children.head,
3261 target,
3262 &s->output_section_statement);
3263 break;
3264 case lang_output_statement_enum:
3265 break;
3266 case lang_target_statement_enum:
3267 target = s->target_statement.target;
3268 break;
3269 case lang_group_statement_enum:
3270 map_input_to_output_sections (s->group_statement.children.head,
3271 target,
3272 os);
3273 break;
3274 case lang_data_statement_enum:
3275 /* Make sure that any sections mentioned in the expression
3276 are initialized. */
3277 exp_init_os (s->data_statement.exp);
3278 flags = SEC_HAS_CONTENTS;
3279 /* The output section gets contents, and then we inspect for
3280 any flags set in the input script which override any ALLOC. */
3281 if (!(os->flags & SEC_NEVER_LOAD))
3282 flags |= SEC_ALLOC | SEC_LOAD;
3283 if (os->bfd_section == NULL)
3284 init_os (os, NULL, flags);
3285 else
3286 os->bfd_section->flags |= flags;
3287 break;
3288 case lang_input_section_enum:
3289 break;
3290 case lang_fill_statement_enum:
3291 case lang_object_symbols_statement_enum:
3292 case lang_reloc_statement_enum:
3293 case lang_padding_statement_enum:
3294 case lang_input_statement_enum:
3295 if (os != NULL && os->bfd_section == NULL)
3296 init_os (os, NULL, 0);
3297 break;
3298 case lang_assignment_statement_enum:
3299 if (os != NULL && os->bfd_section == NULL)
3300 init_os (os, NULL, 0);
3301
3302 /* Make sure that any sections mentioned in the assignment
3303 are initialized. */
3304 exp_init_os (s->assignment_statement.exp);
3305 break;
3306 case lang_address_statement_enum:
3307 /* Mark the specified section with the supplied address.
3308
3309 If this section was actually a segment marker, then the
3310 directive is ignored if the linker script explicitly
3311 processed the segment marker. Originally, the linker
3312 treated segment directives (like -Ttext on the
3313 command-line) as section directives. We honor the
3314 section directive semantics for backwards compatibilty;
3315 linker scripts that do not specifically check for
3316 SEGMENT_START automatically get the old semantics. */
3317 if (!s->address_statement.segment
3318 || !s->address_statement.segment->used)
3319 {
3320 lang_output_section_statement_type *aos
3321 = (lang_output_section_statement_lookup
3322 (s->address_statement.section_name));
3323
3324 if (aos->bfd_section == NULL)
3325 init_os (aos, NULL, 0);
3326 aos->addr_tree = s->address_statement.address;
3327 }
3328 break;
3329 case lang_insert_statement_enum:
3330 break;
3331 }
3332 }
3333 }
3334
3335 /* An insert statement snips out all the linker statements from the
3336 start of the list and places them after the output section
3337 statement specified by the insert. This operation is complicated
3338 by the fact that we keep a doubly linked list of output section
3339 statements as well as the singly linked list of all statements. */
3340
3341 static void
3342 process_insert_statements (void)
3343 {
3344 lang_statement_union_type **s;
3345 lang_output_section_statement_type *first_os = NULL;
3346 lang_output_section_statement_type *last_os = NULL;
3347
3348 /* "start of list" is actually the statement immediately after
3349 the special abs_section output statement, so that it isn't
3350 reordered. */
3351 s = &lang_output_section_statement.head;
3352 while (*(s = &(*s)->header.next) != NULL)
3353 {
3354 if ((*s)->header.type == lang_output_section_statement_enum)
3355 {
3356 /* Keep pointers to the first and last output section
3357 statement in the sequence we may be about to move. */
3358 last_os = &(*s)->output_section_statement;
3359 if (first_os == NULL)
3360 first_os = last_os;
3361 }
3362 else if ((*s)->header.type == lang_insert_statement_enum)
3363 {
3364 lang_insert_statement_type *i = &(*s)->insert_statement;
3365 lang_output_section_statement_type *where;
3366 lang_output_section_statement_type *os;
3367 lang_statement_union_type **ptr;
3368 lang_statement_union_type *first;
3369
3370 where = lang_output_section_find (i->where);
3371 if (where != NULL && i->is_before)
3372 {
3373 do
3374 where = where->prev;
3375 while (where != NULL && where->constraint == -1);
3376 }
3377 if (where == NULL)
3378 {
3379 einfo (_("%X%P: %s not found for insert\n"), i->where);
3380 continue;
3381 }
3382 /* You can't insert into the list you are moving. */
3383 for (os = first_os; os != NULL; os = os->next)
3384 if (os == where || os == last_os)
3385 break;
3386 if (os == where)
3387 {
3388 einfo (_("%X%P: %s not found for insert\n"), i->where);
3389 continue;
3390 }
3391
3392 /* Deal with reordering the output section statement list. */
3393 if (last_os != NULL)
3394 {
3395 asection *first_sec, *last_sec;
3396 struct lang_output_section_statement_struct **next;
3397
3398 /* Snip out the output sections we are moving. */
3399 first_os->prev->next = last_os->next;
3400 if (last_os->next == NULL)
3401 {
3402 next = &first_os->prev->next;
3403 lang_output_section_statement.tail
3404 = (lang_statement_union_type **) next;
3405 }
3406 else
3407 last_os->next->prev = first_os->prev;
3408 /* Add them in at the new position. */
3409 last_os->next = where->next;
3410 if (where->next == NULL)
3411 {
3412 next = &last_os->next;
3413 lang_output_section_statement.tail
3414 = (lang_statement_union_type **) next;
3415 }
3416 else
3417 where->next->prev = last_os;
3418 first_os->prev = where;
3419 where->next = first_os;
3420
3421 /* Move the bfd sections in the same way. */
3422 first_sec = NULL;
3423 last_sec = NULL;
3424 for (os = first_os; os != NULL; os = os->next)
3425 {
3426 if (os->bfd_section != NULL
3427 && os->bfd_section->owner != NULL)
3428 {
3429 last_sec = os->bfd_section;
3430 if (first_sec == NULL)
3431 first_sec = last_sec;
3432 }
3433 if (os == last_os)
3434 break;
3435 }
3436 if (last_sec != NULL)
3437 {
3438 asection *sec = where->bfd_section;
3439 if (sec == NULL)
3440 sec = output_prev_sec_find (where);
3441
3442 /* The place we want to insert must come after the
3443 sections we are moving. So if we find no
3444 section or if the section is the same as our
3445 last section, then no move is needed. */
3446 if (sec != NULL && sec != last_sec)
3447 {
3448 /* Trim them off. */
3449 if (first_sec->prev != NULL)
3450 first_sec->prev->next = last_sec->next;
3451 else
3452 link_info.output_bfd->sections = last_sec->next;
3453 if (last_sec->next != NULL)
3454 last_sec->next->prev = first_sec->prev;
3455 else
3456 link_info.output_bfd->section_last = first_sec->prev;
3457 /* Add back. */
3458 last_sec->next = sec->next;
3459 if (sec->next != NULL)
3460 sec->next->prev = last_sec;
3461 else
3462 link_info.output_bfd->section_last = last_sec;
3463 first_sec->prev = sec;
3464 sec->next = first_sec;
3465 }
3466 }
3467
3468 first_os = NULL;
3469 last_os = NULL;
3470 }
3471
3472 ptr = insert_os_after (where);
3473 /* Snip everything after the abs_section output statement we
3474 know is at the start of the list, up to and including
3475 the insert statement we are currently processing. */
3476 first = lang_output_section_statement.head->header.next;
3477 lang_output_section_statement.head->header.next = (*s)->header.next;
3478 /* Add them back where they belong. */
3479 *s = *ptr;
3480 if (*s == NULL)
3481 statement_list.tail = s;
3482 *ptr = first;
3483 s = &lang_output_section_statement.head;
3484 }
3485 }
3486 }
3487
3488 /* An output section might have been removed after its statement was
3489 added. For example, ldemul_before_allocation can remove dynamic
3490 sections if they turn out to be not needed. Clean them up here. */
3491
3492 void
3493 strip_excluded_output_sections (void)
3494 {
3495 lang_output_section_statement_type *os;
3496
3497 /* Run lang_size_sections (if not already done). */
3498 if (expld.phase != lang_mark_phase_enum)
3499 {
3500 expld.phase = lang_mark_phase_enum;
3501 expld.dataseg.phase = exp_dataseg_none;
3502 one_lang_size_sections_pass (NULL, FALSE);
3503 lang_reset_memory_regions ();
3504 }
3505
3506 for (os = &lang_output_section_statement.head->output_section_statement;
3507 os != NULL;
3508 os = os->next)
3509 {
3510 asection *output_section;
3511 bfd_boolean exclude;
3512
3513 if (os->constraint == -1)
3514 continue;
3515
3516 output_section = os->bfd_section;
3517 if (output_section == NULL)
3518 continue;
3519
3520 exclude = (output_section->rawsize == 0
3521 && (output_section->flags & SEC_KEEP) == 0
3522 && !bfd_section_removed_from_list (link_info.output_bfd,
3523 output_section));
3524
3525 /* Some sections have not yet been sized, notably .gnu.version,
3526 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3527 input sections, so don't drop output sections that have such
3528 input sections unless they are also marked SEC_EXCLUDE. */
3529 if (exclude && output_section->map_head.s != NULL)
3530 {
3531 asection *s;
3532
3533 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3534 if ((s->flags & SEC_LINKER_CREATED) != 0
3535 && (s->flags & SEC_EXCLUDE) == 0)
3536 {
3537 exclude = FALSE;
3538 break;
3539 }
3540 }
3541
3542 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3543 output_section->map_head.link_order = NULL;
3544 output_section->map_tail.link_order = NULL;
3545
3546 if (exclude)
3547 {
3548 /* We don't set bfd_section to NULL since bfd_section of the
3549 removed output section statement may still be used. */
3550 if (!os->section_relative_symbol
3551 && !os->update_dot_tree)
3552 os->ignored = TRUE;
3553 output_section->flags |= SEC_EXCLUDE;
3554 bfd_section_list_remove (link_info.output_bfd, output_section);
3555 link_info.output_bfd->section_count--;
3556 }
3557 }
3558
3559 /* Stop future calls to lang_add_section from messing with map_head
3560 and map_tail link_order fields. */
3561 stripped_excluded_sections = TRUE;
3562 }
3563
3564 static void
3565 print_output_section_statement
3566 (lang_output_section_statement_type *output_section_statement)
3567 {
3568 asection *section = output_section_statement->bfd_section;
3569 int len;
3570
3571 if (output_section_statement != abs_output_section)
3572 {
3573 minfo ("\n%s", output_section_statement->name);
3574
3575 if (section != NULL)
3576 {
3577 print_dot = section->vma;
3578
3579 len = strlen (output_section_statement->name);
3580 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3581 {
3582 print_nl ();
3583 len = 0;
3584 }
3585 while (len < SECTION_NAME_MAP_LENGTH)
3586 {
3587 print_space ();
3588 ++len;
3589 }
3590
3591 minfo ("0x%V %W", section->vma, section->size);
3592
3593 if (section->vma != section->lma)
3594 minfo (_(" load address 0x%V"), section->lma);
3595 }
3596
3597 print_nl ();
3598 }
3599
3600 print_statement_list (output_section_statement->children.head,
3601 output_section_statement);
3602 }
3603
3604 /* Scan for the use of the destination in the right hand side
3605 of an expression. In such cases we will not compute the
3606 correct expression, since the value of DST that is used on
3607 the right hand side will be its final value, not its value
3608 just before this expression is evaluated. */
3609
3610 static bfd_boolean
3611 scan_for_self_assignment (const char * dst, etree_type * rhs)
3612 {
3613 if (rhs == NULL || dst == NULL)
3614 return FALSE;
3615
3616 switch (rhs->type.node_class)
3617 {
3618 case etree_binary:
3619 return scan_for_self_assignment (dst, rhs->binary.lhs)
3620 || scan_for_self_assignment (dst, rhs->binary.rhs);
3621
3622 case etree_trinary:
3623 return scan_for_self_assignment (dst, rhs->trinary.lhs)
3624 || scan_for_self_assignment (dst, rhs->trinary.rhs);
3625
3626 case etree_assign:
3627 case etree_provided:
3628 case etree_provide:
3629 if (strcmp (dst, rhs->assign.dst) == 0)
3630 return TRUE;
3631 return scan_for_self_assignment (dst, rhs->assign.src);
3632
3633 case etree_unary:
3634 return scan_for_self_assignment (dst, rhs->unary.child);
3635
3636 case etree_value:
3637 if (rhs->value.str)
3638 return strcmp (dst, rhs->value.str) == 0;
3639 return FALSE;
3640
3641 case etree_name:
3642 if (rhs->name.name)
3643 return strcmp (dst, rhs->name.name) == 0;
3644 return FALSE;
3645
3646 default:
3647 break;
3648 }
3649
3650 return FALSE;
3651 }
3652
3653
3654 static void
3655 print_assignment (lang_assignment_statement_type *assignment,
3656 lang_output_section_statement_type *output_section)
3657 {
3658 unsigned int i;
3659 bfd_boolean is_dot;
3660 bfd_boolean computation_is_valid = TRUE;
3661 etree_type *tree;
3662
3663 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3664 print_space ();
3665
3666 if (assignment->exp->type.node_class == etree_assert)
3667 {
3668 is_dot = FALSE;
3669 tree = assignment->exp->assert_s.child;
3670 computation_is_valid = TRUE;
3671 }
3672 else
3673 {
3674 const char *dst = assignment->exp->assign.dst;
3675
3676 is_dot = (dst[0] == '.' && dst[1] == 0);
3677 tree = assignment->exp->assign.src;
3678 computation_is_valid = is_dot || (scan_for_self_assignment (dst, tree) == FALSE);
3679 }
3680
3681 exp_fold_tree (tree, output_section->bfd_section, &print_dot);
3682 if (expld.result.valid_p)
3683 {
3684 bfd_vma value;
3685
3686 if (computation_is_valid)
3687 {
3688 value = expld.result.value;
3689
3690 if (expld.result.section)
3691 value += expld.result.section->vma;
3692
3693 minfo ("0x%V", value);
3694 if (is_dot)
3695 print_dot = value;
3696 }
3697 else
3698 {
3699 struct bfd_link_hash_entry *h;
3700
3701 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
3702 FALSE, FALSE, TRUE);
3703 if (h)
3704 {
3705 value = h->u.def.value;
3706
3707 if (expld.result.section)
3708 value += expld.result.section->vma;
3709
3710 minfo ("[0x%V]", value);
3711 }
3712 else
3713 minfo ("[unresolved]");
3714 }
3715 }
3716 else
3717 {
3718 minfo ("*undef* ");
3719 #ifdef BFD64
3720 minfo (" ");
3721 #endif
3722 }
3723
3724 minfo (" ");
3725 exp_print_tree (assignment->exp);
3726 print_nl ();
3727 }
3728
3729 static void
3730 print_input_statement (lang_input_statement_type *statm)
3731 {
3732 if (statm->filename != NULL)
3733 {
3734 fprintf (config.map_file, "LOAD %s\n", statm->filename);
3735 }
3736 }
3737
3738 /* Print all symbols defined in a particular section. This is called
3739 via bfd_link_hash_traverse, or by print_all_symbols. */
3740
3741 static bfd_boolean
3742 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
3743 {
3744 asection *sec = ptr;
3745
3746 if ((hash_entry->type == bfd_link_hash_defined
3747 || hash_entry->type == bfd_link_hash_defweak)
3748 && sec == hash_entry->u.def.section)
3749 {
3750 int i;
3751
3752 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3753 print_space ();
3754 minfo ("0x%V ",
3755 (hash_entry->u.def.value
3756 + hash_entry->u.def.section->output_offset
3757 + hash_entry->u.def.section->output_section->vma));
3758
3759 minfo (" %T\n", hash_entry->root.string);
3760 }
3761
3762 return TRUE;
3763 }
3764
3765 static void
3766 print_all_symbols (asection *sec)
3767 {
3768 struct fat_user_section_struct *ud = get_userdata (sec);
3769 struct map_symbol_def *def;
3770
3771 if (!ud)
3772 return;
3773
3774 *ud->map_symbol_def_tail = 0;
3775 for (def = ud->map_symbol_def_head; def; def = def->next)
3776 print_one_symbol (def->entry, sec);
3777 }
3778
3779 /* Print information about an input section to the map file. */
3780
3781 static void
3782 print_input_section (asection *i)
3783 {
3784 bfd_size_type size = i->size;
3785 int len;
3786 bfd_vma addr;
3787
3788 init_opb ();
3789
3790 print_space ();
3791 minfo ("%s", i->name);
3792
3793 len = 1 + strlen (i->name);
3794 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3795 {
3796 print_nl ();
3797 len = 0;
3798 }
3799 while (len < SECTION_NAME_MAP_LENGTH)
3800 {
3801 print_space ();
3802 ++len;
3803 }
3804
3805 if (i->output_section != NULL
3806 && i->output_section->owner == link_info.output_bfd)
3807 addr = i->output_section->vma + i->output_offset;
3808 else
3809 {
3810 addr = print_dot;
3811 size = 0;
3812 }
3813
3814 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
3815
3816 if (size != i->rawsize && i->rawsize != 0)
3817 {
3818 len = SECTION_NAME_MAP_LENGTH + 3;
3819 #ifdef BFD64
3820 len += 16;
3821 #else
3822 len += 8;
3823 #endif
3824 while (len > 0)
3825 {
3826 print_space ();
3827 --len;
3828 }
3829
3830 minfo (_("%W (size before relaxing)\n"), i->rawsize);
3831 }
3832
3833 if (i->output_section != NULL
3834 && i->output_section->owner == link_info.output_bfd)
3835 {
3836 if (link_info.reduce_memory_overheads)
3837 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
3838 else
3839 print_all_symbols (i);
3840
3841 print_dot = addr + TO_ADDR (size);
3842 }
3843 }
3844
3845 static void
3846 print_fill_statement (lang_fill_statement_type *fill)
3847 {
3848 size_t size;
3849 unsigned char *p;
3850 fputs (" FILL mask 0x", config.map_file);
3851 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
3852 fprintf (config.map_file, "%02x", *p);
3853 fputs ("\n", config.map_file);
3854 }
3855
3856 static void
3857 print_data_statement (lang_data_statement_type *data)
3858 {
3859 int i;
3860 bfd_vma addr;
3861 bfd_size_type size;
3862 const char *name;
3863
3864 init_opb ();
3865 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3866 print_space ();
3867
3868 addr = data->output_offset;
3869 if (data->output_section != NULL)
3870 addr += data->output_section->vma;
3871
3872 switch (data->type)
3873 {
3874 default:
3875 abort ();
3876 case BYTE:
3877 size = BYTE_SIZE;
3878 name = "BYTE";
3879 break;
3880 case SHORT:
3881 size = SHORT_SIZE;
3882 name = "SHORT";
3883 break;
3884 case LONG:
3885 size = LONG_SIZE;
3886 name = "LONG";
3887 break;
3888 case QUAD:
3889 size = QUAD_SIZE;
3890 name = "QUAD";
3891 break;
3892 case SQUAD:
3893 size = QUAD_SIZE;
3894 name = "SQUAD";
3895 break;
3896 }
3897
3898 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
3899
3900 if (data->exp->type.node_class != etree_value)
3901 {
3902 print_space ();
3903 exp_print_tree (data->exp);
3904 }
3905
3906 print_nl ();
3907
3908 print_dot = addr + TO_ADDR (size);
3909 }
3910
3911 /* Print an address statement. These are generated by options like
3912 -Ttext. */
3913
3914 static void
3915 print_address_statement (lang_address_statement_type *address)
3916 {
3917 minfo (_("Address of section %s set to "), address->section_name);
3918 exp_print_tree (address->address);
3919 print_nl ();
3920 }
3921
3922 /* Print a reloc statement. */
3923
3924 static void
3925 print_reloc_statement (lang_reloc_statement_type *reloc)
3926 {
3927 int i;
3928 bfd_vma addr;
3929 bfd_size_type size;
3930
3931 init_opb ();
3932 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3933 print_space ();
3934
3935 addr = reloc->output_offset;
3936 if (reloc->output_section != NULL)
3937 addr += reloc->output_section->vma;
3938
3939 size = bfd_get_reloc_size (reloc->howto);
3940
3941 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
3942
3943 if (reloc->name != NULL)
3944 minfo ("%s+", reloc->name);
3945 else
3946 minfo ("%s+", reloc->section->name);
3947
3948 exp_print_tree (reloc->addend_exp);
3949
3950 print_nl ();
3951
3952 print_dot = addr + TO_ADDR (size);
3953 }
3954
3955 static void
3956 print_padding_statement (lang_padding_statement_type *s)
3957 {
3958 int len;
3959 bfd_vma addr;
3960
3961 init_opb ();
3962 minfo (" *fill*");
3963
3964 len = sizeof " *fill*" - 1;
3965 while (len < SECTION_NAME_MAP_LENGTH)
3966 {
3967 print_space ();
3968 ++len;
3969 }
3970
3971 addr = s->output_offset;
3972 if (s->output_section != NULL)
3973 addr += s->output_section->vma;
3974 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
3975
3976 if (s->fill->size != 0)
3977 {
3978 size_t size;
3979 unsigned char *p;
3980 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
3981 fprintf (config.map_file, "%02x", *p);
3982 }
3983
3984 print_nl ();
3985
3986 print_dot = addr + TO_ADDR (s->size);
3987 }
3988
3989 static void
3990 print_wild_statement (lang_wild_statement_type *w,
3991 lang_output_section_statement_type *os)
3992 {
3993 struct wildcard_list *sec;
3994
3995 print_space ();
3996
3997 if (w->filenames_sorted)
3998 minfo ("SORT(");
3999 if (w->filename != NULL)
4000 minfo ("%s", w->filename);
4001 else
4002 minfo ("*");
4003 if (w->filenames_sorted)
4004 minfo (")");
4005
4006 minfo ("(");
4007 for (sec = w->section_list; sec; sec = sec->next)
4008 {
4009 if (sec->spec.sorted)
4010 minfo ("SORT(");
4011 if (sec->spec.exclude_name_list != NULL)
4012 {
4013 name_list *tmp;
4014 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4015 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4016 minfo (" %s", tmp->name);
4017 minfo (") ");
4018 }
4019 if (sec->spec.name != NULL)
4020 minfo ("%s", sec->spec.name);
4021 else
4022 minfo ("*");
4023 if (sec->spec.sorted)
4024 minfo (")");
4025 if (sec->next)
4026 minfo (" ");
4027 }
4028 minfo (")");
4029
4030 print_nl ();
4031
4032 print_statement_list (w->children.head, os);
4033 }
4034
4035 /* Print a group statement. */
4036
4037 static void
4038 print_group (lang_group_statement_type *s,
4039 lang_output_section_statement_type *os)
4040 {
4041 fprintf (config.map_file, "START GROUP\n");
4042 print_statement_list (s->children.head, os);
4043 fprintf (config.map_file, "END GROUP\n");
4044 }
4045
4046 /* Print the list of statements in S.
4047 This can be called for any statement type. */
4048
4049 static void
4050 print_statement_list (lang_statement_union_type *s,
4051 lang_output_section_statement_type *os)
4052 {
4053 while (s != NULL)
4054 {
4055 print_statement (s, os);
4056 s = s->header.next;
4057 }
4058 }
4059
4060 /* Print the first statement in statement list S.
4061 This can be called for any statement type. */
4062
4063 static void
4064 print_statement (lang_statement_union_type *s,
4065 lang_output_section_statement_type *os)
4066 {
4067 switch (s->header.type)
4068 {
4069 default:
4070 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4071 FAIL ();
4072 break;
4073 case lang_constructors_statement_enum:
4074 if (constructor_list.head != NULL)
4075 {
4076 if (constructors_sorted)
4077 minfo (" SORT (CONSTRUCTORS)\n");
4078 else
4079 minfo (" CONSTRUCTORS\n");
4080 print_statement_list (constructor_list.head, os);
4081 }
4082 break;
4083 case lang_wild_statement_enum:
4084 print_wild_statement (&s->wild_statement, os);
4085 break;
4086 case lang_address_statement_enum:
4087 print_address_statement (&s->address_statement);
4088 break;
4089 case lang_object_symbols_statement_enum:
4090 minfo (" CREATE_OBJECT_SYMBOLS\n");
4091 break;
4092 case lang_fill_statement_enum:
4093 print_fill_statement (&s->fill_statement);
4094 break;
4095 case lang_data_statement_enum:
4096 print_data_statement (&s->data_statement);
4097 break;
4098 case lang_reloc_statement_enum:
4099 print_reloc_statement (&s->reloc_statement);
4100 break;
4101 case lang_input_section_enum:
4102 print_input_section (s->input_section.section);
4103 break;
4104 case lang_padding_statement_enum:
4105 print_padding_statement (&s->padding_statement);
4106 break;
4107 case lang_output_section_statement_enum:
4108 print_output_section_statement (&s->output_section_statement);
4109 break;
4110 case lang_assignment_statement_enum:
4111 print_assignment (&s->assignment_statement, os);
4112 break;
4113 case lang_target_statement_enum:
4114 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4115 break;
4116 case lang_output_statement_enum:
4117 minfo ("OUTPUT(%s", s->output_statement.name);
4118 if (output_target != NULL)
4119 minfo (" %s", output_target);
4120 minfo (")\n");
4121 break;
4122 case lang_input_statement_enum:
4123 print_input_statement (&s->input_statement);
4124 break;
4125 case lang_group_statement_enum:
4126 print_group (&s->group_statement, os);
4127 break;
4128 case lang_insert_statement_enum:
4129 minfo ("INSERT %s %s\n",
4130 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4131 s->insert_statement.where);
4132 break;
4133 }
4134 }
4135
4136 static void
4137 print_statements (void)
4138 {
4139 print_statement_list (statement_list.head, abs_output_section);
4140 }
4141
4142 /* Print the first N statements in statement list S to STDERR.
4143 If N == 0, nothing is printed.
4144 If N < 0, the entire list is printed.
4145 Intended to be called from GDB. */
4146
4147 void
4148 dprint_statement (lang_statement_union_type *s, int n)
4149 {
4150 FILE *map_save = config.map_file;
4151
4152 config.map_file = stderr;
4153
4154 if (n < 0)
4155 print_statement_list (s, abs_output_section);
4156 else
4157 {
4158 while (s && --n >= 0)
4159 {
4160 print_statement (s, abs_output_section);
4161 s = s->header.next;
4162 }
4163 }
4164
4165 config.map_file = map_save;
4166 }
4167
4168 static void
4169 insert_pad (lang_statement_union_type **ptr,
4170 fill_type *fill,
4171 unsigned int alignment_needed,
4172 asection *output_section,
4173 bfd_vma dot)
4174 {
4175 static fill_type zero_fill = { 1, { 0 } };
4176 lang_statement_union_type *pad = NULL;
4177
4178 if (ptr != &statement_list.head)
4179 pad = ((lang_statement_union_type *)
4180 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4181 if (pad != NULL
4182 && pad->header.type == lang_padding_statement_enum
4183 && pad->padding_statement.output_section == output_section)
4184 {
4185 /* Use the existing pad statement. */
4186 }
4187 else if ((pad = *ptr) != NULL
4188 && pad->header.type == lang_padding_statement_enum
4189 && pad->padding_statement.output_section == output_section)
4190 {
4191 /* Use the existing pad statement. */
4192 }
4193 else
4194 {
4195 /* Make a new padding statement, linked into existing chain. */
4196 pad = stat_alloc (sizeof (lang_padding_statement_type));
4197 pad->header.next = *ptr;
4198 *ptr = pad;
4199 pad->header.type = lang_padding_statement_enum;
4200 pad->padding_statement.output_section = output_section;
4201 if (fill == NULL)
4202 fill = &zero_fill;
4203 pad->padding_statement.fill = fill;
4204 }
4205 pad->padding_statement.output_offset = dot - output_section->vma;
4206 pad->padding_statement.size = alignment_needed;
4207 output_section->size += alignment_needed;
4208 }
4209
4210 /* Work out how much this section will move the dot point. */
4211
4212 static bfd_vma
4213 size_input_section
4214 (lang_statement_union_type **this_ptr,
4215 lang_output_section_statement_type *output_section_statement,
4216 fill_type *fill,
4217 bfd_vma dot)
4218 {
4219 lang_input_section_type *is = &((*this_ptr)->input_section);
4220 asection *i = is->section;
4221
4222 if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag
4223 && (i->flags & SEC_EXCLUDE) == 0)
4224 {
4225 unsigned int alignment_needed;
4226 asection *o;
4227
4228 /* Align this section first to the input sections requirement,
4229 then to the output section's requirement. If this alignment
4230 is greater than any seen before, then record it too. Perform
4231 the alignment by inserting a magic 'padding' statement. */
4232
4233 if (output_section_statement->subsection_alignment != -1)
4234 i->alignment_power = output_section_statement->subsection_alignment;
4235
4236 o = output_section_statement->bfd_section;
4237 if (o->alignment_power < i->alignment_power)
4238 o->alignment_power = i->alignment_power;
4239
4240 alignment_needed = align_power (dot, i->alignment_power) - dot;
4241
4242 if (alignment_needed != 0)
4243 {
4244 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4245 dot += alignment_needed;
4246 }
4247
4248 /* Remember where in the output section this input section goes. */
4249
4250 i->output_offset = dot - o->vma;
4251
4252 /* Mark how big the output section must be to contain this now. */
4253 dot += TO_ADDR (i->size);
4254 o->size = TO_SIZE (dot - o->vma);
4255 }
4256 else
4257 {
4258 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4259 }
4260
4261 return dot;
4262 }
4263
4264 static int
4265 sort_sections_by_lma (const void *arg1, const void *arg2)
4266 {
4267 const asection *sec1 = *(const asection **) arg1;
4268 const asection *sec2 = *(const asection **) arg2;
4269
4270 if (bfd_section_lma (sec1->owner, sec1)
4271 < bfd_section_lma (sec2->owner, sec2))
4272 return -1;
4273 else if (bfd_section_lma (sec1->owner, sec1)
4274 > bfd_section_lma (sec2->owner, sec2))
4275 return 1;
4276 else if (sec1->id < sec2->id)
4277 return -1;
4278 else if (sec1->id > sec2->id)
4279 return 1;
4280
4281 return 0;
4282 }
4283
4284 #define IGNORE_SECTION(s) \
4285 ((s->flags & SEC_NEVER_LOAD) != 0 \
4286 || (s->flags & SEC_ALLOC) == 0 \
4287 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4288 && (s->flags & SEC_LOAD) == 0))
4289
4290 /* Check to see if any allocated sections overlap with other allocated
4291 sections. This can happen if a linker script specifies the output
4292 section addresses of the two sections. Also check whether any memory
4293 region has overflowed. */
4294
4295 static void
4296 lang_check_section_addresses (void)
4297 {
4298 asection *s, *os;
4299 asection **sections, **spp;
4300 unsigned int count;
4301 bfd_vma s_start;
4302 bfd_vma s_end;
4303 bfd_vma os_start;
4304 bfd_vma os_end;
4305 bfd_size_type amt;
4306 lang_memory_region_type *m;
4307
4308 if (bfd_count_sections (link_info.output_bfd) <= 1)
4309 return;
4310
4311 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4312 sections = xmalloc (amt);
4313
4314 /* Scan all sections in the output list. */
4315 count = 0;
4316 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4317 {
4318 /* Only consider loadable sections with real contents. */
4319 if (IGNORE_SECTION (s) || s->size == 0)
4320 continue;
4321
4322 sections[count] = s;
4323 count++;
4324 }
4325
4326 if (count <= 1)
4327 return;
4328
4329 qsort (sections, (size_t) count, sizeof (asection *),
4330 sort_sections_by_lma);
4331
4332 spp = sections;
4333 s = *spp++;
4334 s_start = bfd_section_lma (link_info.output_bfd, s);
4335 s_end = s_start + TO_ADDR (s->size) - 1;
4336 for (count--; count; count--)
4337 {
4338 /* We must check the sections' LMA addresses not their VMA
4339 addresses because overlay sections can have overlapping VMAs
4340 but they must have distinct LMAs. */
4341 os = s;
4342 os_start = s_start;
4343 os_end = s_end;
4344 s = *spp++;
4345 s_start = bfd_section_lma (link_info.output_bfd, s);
4346 s_end = s_start + TO_ADDR (s->size) - 1;
4347
4348 /* Look for an overlap. */
4349 if (s_end >= os_start && s_start <= os_end)
4350 einfo (_("%X%P: section %s [%V -> %V] overlaps section %s [%V -> %V]\n"),
4351 s->name, s_start, s_end, os->name, os_start, os_end);
4352 }
4353
4354 free (sections);
4355
4356 /* If any memory region has overflowed, report by how much.
4357 We do not issue this diagnostic for regions that had sections
4358 explicitly placed outside their bounds; os_region_check's
4359 diagnostics are adequate for that case.
4360
4361 FIXME: It is conceivable that m->current - (m->origin + m->length)
4362 might overflow a 32-bit integer. There is, alas, no way to print
4363 a bfd_vma quantity in decimal. */
4364 for (m = lang_memory_region_list; m; m = m->next)
4365 if (m->had_full_message)
4366 einfo (_("%X%P: region %s overflowed by %ld bytes\n"),
4367 m->name, (long)(m->current - (m->origin + m->length)));
4368
4369 }
4370
4371 /* Make sure the new address is within the region. We explicitly permit the
4372 current address to be at the exact end of the region when the address is
4373 non-zero, in case the region is at the end of addressable memory and the
4374 calculation wraps around. */
4375
4376 static void
4377 os_region_check (lang_output_section_statement_type *os,
4378 lang_memory_region_type *region,
4379 etree_type *tree,
4380 bfd_vma base)
4381 {
4382 if ((region->current < region->origin
4383 || (region->current - region->origin > region->length))
4384 && ((region->current != region->origin + region->length)
4385 || base == 0))
4386 {
4387 if (tree != NULL)
4388 {
4389 einfo (_("%X%P: address 0x%v of %B section %s"
4390 " is not within region %s\n"),
4391 region->current,
4392 os->bfd_section->owner,
4393 os->bfd_section->name,
4394 region->name);
4395 }
4396 else if (!region->had_full_message)
4397 {
4398 region->had_full_message = TRUE;
4399
4400 einfo (_("%X%P: %B section %s will not fit in region %s\n"),
4401 os->bfd_section->owner,
4402 os->bfd_section->name,
4403 region->name);
4404 }
4405 }
4406 }
4407
4408 /* Set the sizes for all the output sections. */
4409
4410 static bfd_vma
4411 lang_size_sections_1
4412 (lang_statement_union_type *s,
4413 lang_output_section_statement_type *output_section_statement,
4414 lang_statement_union_type **prev,
4415 fill_type *fill,
4416 bfd_vma dot,
4417 bfd_boolean *relax,
4418 bfd_boolean check_regions)
4419 {
4420 /* Size up the sections from their constituent parts. */
4421 for (; s != NULL; s = s->header.next)
4422 {
4423 switch (s->header.type)
4424 {
4425 case lang_output_section_statement_enum:
4426 {
4427 bfd_vma newdot, after;
4428 lang_output_section_statement_type *os;
4429 lang_memory_region_type *r;
4430
4431 os = &s->output_section_statement;
4432 if (os->addr_tree != NULL)
4433 {
4434 os->processed_vma = FALSE;
4435 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4436
4437 if (expld.result.valid_p)
4438 dot = expld.result.value + expld.result.section->vma;
4439 else if (expld.phase != lang_mark_phase_enum)
4440 einfo (_("%F%S: non constant or forward reference"
4441 " address expression for section %s\n"),
4442 os->name);
4443 }
4444
4445 if (os->bfd_section == NULL)
4446 /* This section was removed or never actually created. */
4447 break;
4448
4449 /* If this is a COFF shared library section, use the size and
4450 address from the input section. FIXME: This is COFF
4451 specific; it would be cleaner if there were some other way
4452 to do this, but nothing simple comes to mind. */
4453 if (((bfd_get_flavour (link_info.output_bfd)
4454 == bfd_target_ecoff_flavour)
4455 || (bfd_get_flavour (link_info.output_bfd)
4456 == bfd_target_coff_flavour))
4457 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4458 {
4459 asection *input;
4460
4461 if (os->children.head == NULL
4462 || os->children.head->header.next != NULL
4463 || (os->children.head->header.type
4464 != lang_input_section_enum))
4465 einfo (_("%P%X: Internal error on COFF shared library"
4466 " section %s\n"), os->name);
4467
4468 input = os->children.head->input_section.section;
4469 bfd_set_section_vma (os->bfd_section->owner,
4470 os->bfd_section,
4471 bfd_section_vma (input->owner, input));
4472 os->bfd_section->size = input->size;
4473 break;
4474 }
4475
4476 newdot = dot;
4477 if (bfd_is_abs_section (os->bfd_section))
4478 {
4479 /* No matter what happens, an abs section starts at zero. */
4480 ASSERT (os->bfd_section->vma == 0);
4481 }
4482 else
4483 {
4484 int align;
4485
4486 if (os->addr_tree == NULL)
4487 {
4488 /* No address specified for this section, get one
4489 from the region specification. */
4490 if (os->region == NULL
4491 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4492 && os->region->name[0] == '*'
4493 && strcmp (os->region->name,
4494 DEFAULT_MEMORY_REGION) == 0))
4495 {
4496 os->region = lang_memory_default (os->bfd_section);
4497 }
4498
4499 /* If a loadable section is using the default memory
4500 region, and some non default memory regions were
4501 defined, issue an error message. */
4502 if (!os->ignored
4503 && !IGNORE_SECTION (os->bfd_section)
4504 && ! link_info.relocatable
4505 && check_regions
4506 && strcmp (os->region->name,
4507 DEFAULT_MEMORY_REGION) == 0
4508 && lang_memory_region_list != NULL
4509 && (strcmp (lang_memory_region_list->name,
4510 DEFAULT_MEMORY_REGION) != 0
4511 || lang_memory_region_list->next != NULL)
4512 && expld.phase != lang_mark_phase_enum)
4513 {
4514 /* By default this is an error rather than just a
4515 warning because if we allocate the section to the
4516 default memory region we can end up creating an
4517 excessively large binary, or even seg faulting when
4518 attempting to perform a negative seek. See
4519 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4520 for an example of this. This behaviour can be
4521 overridden by the using the --no-check-sections
4522 switch. */
4523 if (command_line.check_section_addresses)
4524 einfo (_("%P%F: error: no memory region specified"
4525 " for loadable section `%s'\n"),
4526 bfd_get_section_name (link_info.output_bfd,
4527 os->bfd_section));
4528 else
4529 einfo (_("%P: warning: no memory region specified"
4530 " for loadable section `%s'\n"),
4531 bfd_get_section_name (link_info.output_bfd,
4532 os->bfd_section));
4533 }
4534
4535 newdot = os->region->current;
4536 align = os->bfd_section->alignment_power;
4537 }
4538 else
4539 align = os->section_alignment;
4540
4541 /* Align to what the section needs. */
4542 if (align > 0)
4543 {
4544 bfd_vma savedot = newdot;
4545 newdot = align_power (newdot, align);
4546
4547 if (newdot != savedot
4548 && (config.warn_section_align
4549 || os->addr_tree != NULL)
4550 && expld.phase != lang_mark_phase_enum)
4551 einfo (_("%P: warning: changing start of section"
4552 " %s by %lu bytes\n"),
4553 os->name, (unsigned long) (newdot - savedot));
4554 }
4555
4556 bfd_set_section_vma (0, os->bfd_section, newdot);
4557
4558 os->bfd_section->output_offset = 0;
4559 }
4560
4561 lang_size_sections_1 (os->children.head, os, &os->children.head,
4562 os->fill, newdot, relax, check_regions);
4563
4564 os->processed_vma = TRUE;
4565
4566 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4567 /* Except for some special linker created sections,
4568 no output section should change from zero size
4569 after strip_excluded_output_sections. A non-zero
4570 size on an ignored section indicates that some
4571 input section was not sized early enough. */
4572 ASSERT (os->bfd_section->size == 0);
4573 else
4574 {
4575 dot = os->bfd_section->vma;
4576
4577 /* Put the section within the requested block size, or
4578 align at the block boundary. */
4579 after = ((dot
4580 + TO_ADDR (os->bfd_section->size)
4581 + os->block_value - 1)
4582 & - (bfd_vma) os->block_value);
4583
4584 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
4585 }
4586
4587 /* Set section lma. */
4588 r = os->region;
4589 if (r == NULL)
4590 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
4591
4592 if (os->load_base)
4593 {
4594 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
4595 os->bfd_section->lma = lma;
4596 }
4597 else if (os->lma_region != NULL)
4598 {
4599 bfd_vma lma = os->lma_region->current;
4600
4601 if (os->section_alignment != -1)
4602 lma = align_power (lma, os->section_alignment);
4603 os->bfd_section->lma = lma;
4604 }
4605 else if (r->last_os != NULL
4606 && (os->bfd_section->flags & SEC_ALLOC) != 0)
4607 {
4608 bfd_vma lma;
4609 asection *last;
4610
4611 last = r->last_os->output_section_statement.bfd_section;
4612
4613 /* A backwards move of dot should be accompanied by
4614 an explicit assignment to the section LMA (ie.
4615 os->load_base set) because backwards moves can
4616 create overlapping LMAs. */
4617 if (dot < last->vma
4618 && os->bfd_section->size != 0
4619 && dot + os->bfd_section->size <= last->vma)
4620 {
4621 /* If dot moved backwards then leave lma equal to
4622 vma. This is the old default lma, which might
4623 just happen to work when the backwards move is
4624 sufficiently large. Nag if this changes anything,
4625 so people can fix their linker scripts. */
4626
4627 if (last->vma != last->lma)
4628 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
4629 os->name);
4630 }
4631 else
4632 {
4633 /* If this is an overlay, set the current lma to that
4634 at the end of the previous section. */
4635 if (os->sectype == overlay_section)
4636 lma = last->lma + last->size;
4637
4638 /* Otherwise, keep the same lma to vma relationship
4639 as the previous section. */
4640 else
4641 lma = dot + last->lma - last->vma;
4642
4643 if (os->section_alignment != -1)
4644 lma = align_power (lma, os->section_alignment);
4645 os->bfd_section->lma = lma;
4646 }
4647 }
4648 os->processed_lma = TRUE;
4649
4650 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4651 break;
4652
4653 /* Keep track of normal sections using the default
4654 lma region. We use this to set the lma for
4655 following sections. Overlays or other linker
4656 script assignment to lma might mean that the
4657 default lma == vma is incorrect.
4658 To avoid warnings about dot moving backwards when using
4659 -Ttext, don't start tracking sections until we find one
4660 of non-zero size or with lma set differently to vma. */
4661 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
4662 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
4663 && (os->bfd_section->flags & SEC_ALLOC) != 0
4664 && (os->bfd_section->size != 0
4665 || (r->last_os == NULL
4666 && os->bfd_section->vma != os->bfd_section->lma)
4667 || (r->last_os != NULL
4668 && dot >= (r->last_os->output_section_statement
4669 .bfd_section->vma)))
4670 && os->lma_region == NULL
4671 && !link_info.relocatable)
4672 r->last_os = s;
4673
4674 /* .tbss sections effectively have zero size. */
4675 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
4676 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
4677 || link_info.relocatable)
4678 dot += TO_ADDR (os->bfd_section->size);
4679
4680 if (os->update_dot_tree != 0)
4681 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
4682
4683 /* Update dot in the region ?
4684 We only do this if the section is going to be allocated,
4685 since unallocated sections do not contribute to the region's
4686 overall size in memory.
4687
4688 If the SEC_NEVER_LOAD bit is not set, it will affect the
4689 addresses of sections after it. We have to update
4690 dot. */
4691 if (os->region != NULL
4692 && ((os->bfd_section->flags & SEC_NEVER_LOAD) == 0
4693 || (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))))
4694 {
4695 os->region->current = dot;
4696
4697 if (check_regions)
4698 /* Make sure the new address is within the region. */
4699 os_region_check (os, os->region, os->addr_tree,
4700 os->bfd_section->vma);
4701
4702 if (os->lma_region != NULL && os->lma_region != os->region)
4703 {
4704 os->lma_region->current
4705 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
4706
4707 if (check_regions)
4708 os_region_check (os, os->lma_region, NULL,
4709 os->bfd_section->lma);
4710 }
4711 }
4712 }
4713 break;
4714
4715 case lang_constructors_statement_enum:
4716 dot = lang_size_sections_1 (constructor_list.head,
4717 output_section_statement,
4718 &s->wild_statement.children.head,
4719 fill, dot, relax, check_regions);
4720 break;
4721
4722 case lang_data_statement_enum:
4723 {
4724 unsigned int size = 0;
4725
4726 s->data_statement.output_offset =
4727 dot - output_section_statement->bfd_section->vma;
4728 s->data_statement.output_section =
4729 output_section_statement->bfd_section;
4730
4731 /* We might refer to provided symbols in the expression, and
4732 need to mark them as needed. */
4733 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
4734
4735 switch (s->data_statement.type)
4736 {
4737 default:
4738 abort ();
4739 case QUAD:
4740 case SQUAD:
4741 size = QUAD_SIZE;
4742 break;
4743 case LONG:
4744 size = LONG_SIZE;
4745 break;
4746 case SHORT:
4747 size = SHORT_SIZE;
4748 break;
4749 case BYTE:
4750 size = BYTE_SIZE;
4751 break;
4752 }
4753 if (size < TO_SIZE ((unsigned) 1))
4754 size = TO_SIZE ((unsigned) 1);
4755 dot += TO_ADDR (size);
4756 output_section_statement->bfd_section->size += size;
4757 }
4758 break;
4759
4760 case lang_reloc_statement_enum:
4761 {
4762 int size;
4763
4764 s->reloc_statement.output_offset =
4765 dot - output_section_statement->bfd_section->vma;
4766 s->reloc_statement.output_section =
4767 output_section_statement->bfd_section;
4768 size = bfd_get_reloc_size (s->reloc_statement.howto);
4769 dot += TO_ADDR (size);
4770 output_section_statement->bfd_section->size += size;
4771 }
4772 break;
4773
4774 case lang_wild_statement_enum:
4775 dot = lang_size_sections_1 (s->wild_statement.children.head,
4776 output_section_statement,
4777 &s->wild_statement.children.head,
4778 fill, dot, relax, check_regions);
4779 break;
4780
4781 case lang_object_symbols_statement_enum:
4782 link_info.create_object_symbols_section =
4783 output_section_statement->bfd_section;
4784 break;
4785
4786 case lang_output_statement_enum:
4787 case lang_target_statement_enum:
4788 break;
4789
4790 case lang_input_section_enum:
4791 {
4792 asection *i;
4793
4794 i = (*prev)->input_section.section;
4795 if (relax)
4796 {
4797 bfd_boolean again;
4798
4799 if (! bfd_relax_section (i->owner, i, &link_info, &again))
4800 einfo (_("%P%F: can't relax section: %E\n"));
4801 if (again)
4802 *relax = TRUE;
4803 }
4804 dot = size_input_section (prev, output_section_statement,
4805 output_section_statement->fill, dot);
4806 }
4807 break;
4808
4809 case lang_input_statement_enum:
4810 break;
4811
4812 case lang_fill_statement_enum:
4813 s->fill_statement.output_section =
4814 output_section_statement->bfd_section;
4815
4816 fill = s->fill_statement.fill;
4817 break;
4818
4819 case lang_assignment_statement_enum:
4820 {
4821 bfd_vma newdot = dot;
4822 etree_type *tree = s->assignment_statement.exp;
4823
4824 expld.dataseg.relro = exp_dataseg_relro_none;
4825
4826 exp_fold_tree (tree,
4827 output_section_statement->bfd_section,
4828 &newdot);
4829
4830 if (expld.dataseg.relro == exp_dataseg_relro_start)
4831 {
4832 if (!expld.dataseg.relro_start_stat)
4833 expld.dataseg.relro_start_stat = s;
4834 else
4835 {
4836 ASSERT (expld.dataseg.relro_start_stat == s);
4837 }
4838 }
4839 else if (expld.dataseg.relro == exp_dataseg_relro_end)
4840 {
4841 if (!expld.dataseg.relro_end_stat)
4842 expld.dataseg.relro_end_stat = s;
4843 else
4844 {
4845 ASSERT (expld.dataseg.relro_end_stat == s);
4846 }
4847 }
4848 expld.dataseg.relro = exp_dataseg_relro_none;
4849
4850 /* This symbol is relative to this section. */
4851 if ((tree->type.node_class == etree_provided
4852 || tree->type.node_class == etree_assign)
4853 && (tree->assign.dst [0] != '.'
4854 || tree->assign.dst [1] != '\0'))
4855 output_section_statement->section_relative_symbol = 1;
4856
4857 if (!output_section_statement->ignored)
4858 {
4859 if (output_section_statement == abs_output_section)
4860 {
4861 /* If we don't have an output section, then just adjust
4862 the default memory address. */
4863 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
4864 FALSE)->current = newdot;
4865 }
4866 else if (newdot != dot)
4867 {
4868 /* Insert a pad after this statement. We can't
4869 put the pad before when relaxing, in case the
4870 assignment references dot. */
4871 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
4872 output_section_statement->bfd_section, dot);
4873
4874 /* Don't neuter the pad below when relaxing. */
4875 s = s->header.next;
4876
4877 /* If dot is advanced, this implies that the section
4878 should have space allocated to it, unless the
4879 user has explicitly stated that the section
4880 should never be loaded. */
4881 if (!(output_section_statement->flags & SEC_NEVER_LOAD))
4882 output_section_statement->bfd_section->flags |= SEC_ALLOC;
4883 }
4884 dot = newdot;
4885 }
4886 }
4887 break;
4888
4889 case lang_padding_statement_enum:
4890 /* If this is the first time lang_size_sections is called,
4891 we won't have any padding statements. If this is the
4892 second or later passes when relaxing, we should allow
4893 padding to shrink. If padding is needed on this pass, it
4894 will be added back in. */
4895 s->padding_statement.size = 0;
4896
4897 /* Make sure output_offset is valid. If relaxation shrinks
4898 the section and this pad isn't needed, it's possible to
4899 have output_offset larger than the final size of the
4900 section. bfd_set_section_contents will complain even for
4901 a pad size of zero. */
4902 s->padding_statement.output_offset
4903 = dot - output_section_statement->bfd_section->vma;
4904 break;
4905
4906 case lang_group_statement_enum:
4907 dot = lang_size_sections_1 (s->group_statement.children.head,
4908 output_section_statement,
4909 &s->group_statement.children.head,
4910 fill, dot, relax, check_regions);
4911 break;
4912
4913 case lang_insert_statement_enum:
4914 break;
4915
4916 /* We can only get here when relaxing is turned on. */
4917 case lang_address_statement_enum:
4918 break;
4919
4920 default:
4921 FAIL ();
4922 break;
4923 }
4924 prev = &s->header.next;
4925 }
4926 return dot;
4927 }
4928
4929 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
4930 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
4931 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
4932 segments. We are allowed an opportunity to override this decision. */
4933
4934 bfd_boolean
4935 ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
4936 bfd * abfd ATTRIBUTE_UNUSED,
4937 asection * current_section,
4938 asection * previous_section,
4939 bfd_boolean new_segment)
4940 {
4941 lang_output_section_statement_type * cur;
4942 lang_output_section_statement_type * prev;
4943
4944 /* The checks below are only necessary when the BFD library has decided
4945 that the two sections ought to be placed into the same segment. */
4946 if (new_segment)
4947 return TRUE;
4948
4949 /* Paranoia checks. */
4950 if (current_section == NULL || previous_section == NULL)
4951 return new_segment;
4952
4953 /* Find the memory regions associated with the two sections.
4954 We call lang_output_section_find() here rather than scanning the list
4955 of output sections looking for a matching section pointer because if
4956 we have a large number of sections then a hash lookup is faster. */
4957 cur = lang_output_section_find (current_section->name);
4958 prev = lang_output_section_find (previous_section->name);
4959
4960 /* More paranoia. */
4961 if (cur == NULL || prev == NULL)
4962 return new_segment;
4963
4964 /* If the regions are different then force the sections to live in
4965 different segments. See the email thread starting at the following
4966 URL for the reasons why this is necessary:
4967 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
4968 return cur->region != prev->region;
4969 }
4970
4971 void
4972 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
4973 {
4974 lang_statement_iteration++;
4975 lang_size_sections_1 (statement_list.head, abs_output_section,
4976 &statement_list.head, 0, 0, relax, check_regions);
4977 }
4978
4979 void
4980 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
4981 {
4982 expld.phase = lang_allocating_phase_enum;
4983 expld.dataseg.phase = exp_dataseg_none;
4984
4985 one_lang_size_sections_pass (relax, check_regions);
4986 if (expld.dataseg.phase == exp_dataseg_end_seen
4987 && link_info.relro && expld.dataseg.relro_end)
4988 {
4989 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
4990 to put expld.dataseg.relro on a (common) page boundary. */
4991 bfd_vma old_min_base, relro_end, maxpage;
4992
4993 expld.dataseg.phase = exp_dataseg_relro_adjust;
4994 old_min_base = expld.dataseg.min_base;
4995 maxpage = expld.dataseg.maxpagesize;
4996 expld.dataseg.base += (-expld.dataseg.relro_end
4997 & (expld.dataseg.pagesize - 1));
4998 /* Compute the expected PT_GNU_RELRO segment end. */
4999 relro_end = (expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5000 & ~(expld.dataseg.pagesize - 1);
5001 if (old_min_base + maxpage < expld.dataseg.base)
5002 {
5003 expld.dataseg.base -= maxpage;
5004 relro_end -= maxpage;
5005 }
5006 lang_reset_memory_regions ();
5007 one_lang_size_sections_pass (relax, check_regions);
5008 if (expld.dataseg.relro_end > relro_end)
5009 {
5010 /* The alignment of sections between DATA_SEGMENT_ALIGN
5011 and DATA_SEGMENT_RELRO_END caused huge padding to be
5012 inserted at DATA_SEGMENT_RELRO_END. Try some other base. */
5013 asection *sec;
5014 unsigned int max_alignment_power = 0;
5015
5016 /* Find maximum alignment power of sections between
5017 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5018 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5019 if (sec->vma >= expld.dataseg.base
5020 && sec->vma < expld.dataseg.relro_end
5021 && sec->alignment_power > max_alignment_power)
5022 max_alignment_power = sec->alignment_power;
5023
5024 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5025 {
5026 if (expld.dataseg.base - (1 << max_alignment_power)
5027 < old_min_base)
5028 expld.dataseg.base += expld.dataseg.pagesize;
5029 expld.dataseg.base -= (1 << max_alignment_power);
5030 lang_reset_memory_regions ();
5031 one_lang_size_sections_pass (relax, check_regions);
5032 }
5033 }
5034 link_info.relro_start = expld.dataseg.base;
5035 link_info.relro_end = expld.dataseg.relro_end;
5036 }
5037 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5038 {
5039 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5040 a page could be saved in the data segment. */
5041 bfd_vma first, last;
5042
5043 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5044 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5045 if (first && last
5046 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5047 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5048 && first + last <= expld.dataseg.pagesize)
5049 {
5050 expld.dataseg.phase = exp_dataseg_adjust;
5051 lang_reset_memory_regions ();
5052 one_lang_size_sections_pass (relax, check_regions);
5053 }
5054 }
5055
5056 expld.phase = lang_final_phase_enum;
5057 }
5058
5059 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5060
5061 static bfd_vma
5062 lang_do_assignments_1 (lang_statement_union_type *s,
5063 lang_output_section_statement_type *current_os,
5064 fill_type *fill,
5065 bfd_vma dot)
5066 {
5067 for (; s != NULL; s = s->header.next)
5068 {
5069 switch (s->header.type)
5070 {
5071 case lang_constructors_statement_enum:
5072 dot = lang_do_assignments_1 (constructor_list.head,
5073 current_os, fill, dot);
5074 break;
5075
5076 case lang_output_section_statement_enum:
5077 {
5078 lang_output_section_statement_type *os;
5079
5080 os = &(s->output_section_statement);
5081 if (os->bfd_section != NULL && !os->ignored)
5082 {
5083 dot = os->bfd_section->vma;
5084
5085 lang_do_assignments_1 (os->children.head, os, os->fill, dot);
5086
5087 /* .tbss sections effectively have zero size. */
5088 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5089 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5090 || link_info.relocatable)
5091 dot += TO_ADDR (os->bfd_section->size);
5092 }
5093 }
5094 break;
5095
5096 case lang_wild_statement_enum:
5097
5098 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5099 current_os, fill, dot);
5100 break;
5101
5102 case lang_object_symbols_statement_enum:
5103 case lang_output_statement_enum:
5104 case lang_target_statement_enum:
5105 break;
5106
5107 case lang_data_statement_enum:
5108 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5109 if (expld.result.valid_p)
5110 s->data_statement.value = (expld.result.value
5111 + expld.result.section->vma);
5112 else
5113 einfo (_("%F%P: invalid data statement\n"));
5114 {
5115 unsigned int size;
5116 switch (s->data_statement.type)
5117 {
5118 default:
5119 abort ();
5120 case QUAD:
5121 case SQUAD:
5122 size = QUAD_SIZE;
5123 break;
5124 case LONG:
5125 size = LONG_SIZE;
5126 break;
5127 case SHORT:
5128 size = SHORT_SIZE;
5129 break;
5130 case BYTE:
5131 size = BYTE_SIZE;
5132 break;
5133 }
5134 if (size < TO_SIZE ((unsigned) 1))
5135 size = TO_SIZE ((unsigned) 1);
5136 dot += TO_ADDR (size);
5137 }
5138 break;
5139
5140 case lang_reloc_statement_enum:
5141 exp_fold_tree (s->reloc_statement.addend_exp,
5142 bfd_abs_section_ptr, &dot);
5143 if (expld.result.valid_p)
5144 s->reloc_statement.addend_value = expld.result.value;
5145 else
5146 einfo (_("%F%P: invalid reloc statement\n"));
5147 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5148 break;
5149
5150 case lang_input_section_enum:
5151 {
5152 asection *in = s->input_section.section;
5153
5154 if ((in->flags & SEC_EXCLUDE) == 0)
5155 dot += TO_ADDR (in->size);
5156 }
5157 break;
5158
5159 case lang_input_statement_enum:
5160 break;
5161
5162 case lang_fill_statement_enum:
5163 fill = s->fill_statement.fill;
5164 break;
5165
5166 case lang_assignment_statement_enum:
5167 exp_fold_tree (s->assignment_statement.exp,
5168 current_os->bfd_section,
5169 &dot);
5170 break;
5171
5172 case lang_padding_statement_enum:
5173 dot += TO_ADDR (s->padding_statement.size);
5174 break;
5175
5176 case lang_group_statement_enum:
5177 dot = lang_do_assignments_1 (s->group_statement.children.head,
5178 current_os, fill, dot);
5179 break;
5180
5181 case lang_insert_statement_enum:
5182 break;
5183
5184 case lang_address_statement_enum:
5185 break;
5186
5187 default:
5188 FAIL ();
5189 break;
5190 }
5191 }
5192 return dot;
5193 }
5194
5195 void
5196 lang_do_assignments (void)
5197 {
5198 lang_statement_iteration++;
5199 lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
5200 }
5201
5202 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5203 operator .startof. (section_name), it produces an undefined symbol
5204 .startof.section_name. Similarly, when it sees
5205 .sizeof. (section_name), it produces an undefined symbol
5206 .sizeof.section_name. For all the output sections, we look for
5207 such symbols, and set them to the correct value. */
5208
5209 static void
5210 lang_set_startof (void)
5211 {
5212 asection *s;
5213
5214 if (link_info.relocatable)
5215 return;
5216
5217 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5218 {
5219 const char *secname;
5220 char *buf;
5221 struct bfd_link_hash_entry *h;
5222
5223 secname = bfd_get_section_name (link_info.output_bfd, s);
5224 buf = xmalloc (10 + strlen (secname));
5225
5226 sprintf (buf, ".startof.%s", secname);
5227 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5228 if (h != NULL && h->type == bfd_link_hash_undefined)
5229 {
5230 h->type = bfd_link_hash_defined;
5231 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s);
5232 h->u.def.section = bfd_abs_section_ptr;
5233 }
5234
5235 sprintf (buf, ".sizeof.%s", secname);
5236 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5237 if (h != NULL && h->type == bfd_link_hash_undefined)
5238 {
5239 h->type = bfd_link_hash_defined;
5240 h->u.def.value = TO_ADDR (s->size);
5241 h->u.def.section = bfd_abs_section_ptr;
5242 }
5243
5244 free (buf);
5245 }
5246 }
5247
5248 static void
5249 lang_end (void)
5250 {
5251 struct bfd_link_hash_entry *h;
5252 bfd_boolean warn;
5253
5254 if ((link_info.relocatable && !link_info.gc_sections)
5255 || link_info.shared)
5256 warn = entry_from_cmdline;
5257 else
5258 warn = TRUE;
5259
5260 /* Force the user to specify a root when generating a relocatable with
5261 --gc-sections. */
5262 if (link_info.gc_sections && link_info.relocatable
5263 && (entry_symbol.name == NULL
5264 && ldlang_undef_chain_list_head == NULL))
5265 einfo (_("%P%F: gc-sections requires either an entry or "
5266 "an undefined symbol\n"));
5267
5268 if (entry_symbol.name == NULL)
5269 {
5270 /* No entry has been specified. Look for the default entry, but
5271 don't warn if we don't find it. */
5272 entry_symbol.name = entry_symbol_default;
5273 warn = FALSE;
5274 }
5275
5276 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5277 FALSE, FALSE, TRUE);
5278 if (h != NULL
5279 && (h->type == bfd_link_hash_defined
5280 || h->type == bfd_link_hash_defweak)
5281 && h->u.def.section->output_section != NULL)
5282 {
5283 bfd_vma val;
5284
5285 val = (h->u.def.value
5286 + bfd_get_section_vma (link_info.output_bfd,
5287 h->u.def.section->output_section)
5288 + h->u.def.section->output_offset);
5289 if (! bfd_set_start_address (link_info.output_bfd, val))
5290 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5291 }
5292 else
5293 {
5294 bfd_vma val;
5295 const char *send;
5296
5297 /* We couldn't find the entry symbol. Try parsing it as a
5298 number. */
5299 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5300 if (*send == '\0')
5301 {
5302 if (! bfd_set_start_address (link_info.output_bfd, val))
5303 einfo (_("%P%F: can't set start address\n"));
5304 }
5305 else
5306 {
5307 asection *ts;
5308
5309 /* Can't find the entry symbol, and it's not a number. Use
5310 the first address in the text section. */
5311 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5312 if (ts != NULL)
5313 {
5314 if (warn)
5315 einfo (_("%P: warning: cannot find entry symbol %s;"
5316 " defaulting to %V\n"),
5317 entry_symbol.name,
5318 bfd_get_section_vma (link_info.output_bfd, ts));
5319 if (!(bfd_set_start_address
5320 (link_info.output_bfd,
5321 bfd_get_section_vma (link_info.output_bfd, ts))))
5322 einfo (_("%P%F: can't set start address\n"));
5323 }
5324 else
5325 {
5326 if (warn)
5327 einfo (_("%P: warning: cannot find entry symbol %s;"
5328 " not setting start address\n"),
5329 entry_symbol.name);
5330 }
5331 }
5332 }
5333
5334 /* Don't bfd_hash_table_free (&lang_definedness_table);
5335 map file output may result in a call of lang_track_definedness. */
5336 }
5337
5338 /* This is a small function used when we want to ignore errors from
5339 BFD. */
5340
5341 static void
5342 ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5343 {
5344 /* Don't do anything. */
5345 }
5346
5347 /* Check that the architecture of all the input files is compatible
5348 with the output file. Also call the backend to let it do any
5349 other checking that is needed. */
5350
5351 static void
5352 lang_check (void)
5353 {
5354 lang_statement_union_type *file;
5355 bfd *input_bfd;
5356 const bfd_arch_info_type *compatible;
5357
5358 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5359 {
5360 input_bfd = file->input_statement.the_bfd;
5361 compatible
5362 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5363 command_line.accept_unknown_input_arch);
5364
5365 /* In general it is not possible to perform a relocatable
5366 link between differing object formats when the input
5367 file has relocations, because the relocations in the
5368 input format may not have equivalent representations in
5369 the output format (and besides BFD does not translate
5370 relocs for other link purposes than a final link). */
5371 if ((link_info.relocatable || link_info.emitrelocations)
5372 && (compatible == NULL
5373 || (bfd_get_flavour (input_bfd)
5374 != bfd_get_flavour (link_info.output_bfd)))
5375 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5376 {
5377 einfo (_("%P%F: Relocatable linking with relocations from"
5378 " format %s (%B) to format %s (%B) is not supported\n"),
5379 bfd_get_target (input_bfd), input_bfd,
5380 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5381 /* einfo with %F exits. */
5382 }
5383
5384 if (compatible == NULL)
5385 {
5386 if (command_line.warn_mismatch)
5387 einfo (_("%P%X: %s architecture of input file `%B'"
5388 " is incompatible with %s output\n"),
5389 bfd_printable_name (input_bfd), input_bfd,
5390 bfd_printable_name (link_info.output_bfd));
5391 }
5392 else if (bfd_count_sections (input_bfd))
5393 {
5394 /* If the input bfd has no contents, it shouldn't set the
5395 private data of the output bfd. */
5396
5397 bfd_error_handler_type pfn = NULL;
5398
5399 /* If we aren't supposed to warn about mismatched input
5400 files, temporarily set the BFD error handler to a
5401 function which will do nothing. We still want to call
5402 bfd_merge_private_bfd_data, since it may set up
5403 information which is needed in the output file. */
5404 if (! command_line.warn_mismatch)
5405 pfn = bfd_set_error_handler (ignore_bfd_errors);
5406 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5407 {
5408 if (command_line.warn_mismatch)
5409 einfo (_("%P%X: failed to merge target specific data"
5410 " of file %B\n"), input_bfd);
5411 }
5412 if (! command_line.warn_mismatch)
5413 bfd_set_error_handler (pfn);
5414 }
5415 }
5416 }
5417
5418 /* Look through all the global common symbols and attach them to the
5419 correct section. The -sort-common command line switch may be used
5420 to roughly sort the entries by size. */
5421
5422 static void
5423 lang_common (void)
5424 {
5425 if (command_line.inhibit_common_definition)
5426 return;
5427 if (link_info.relocatable
5428 && ! command_line.force_common_definition)
5429 return;
5430
5431 if (! config.sort_common)
5432 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5433 else
5434 {
5435 int power;
5436
5437 for (power = 4; power >= 0; power--)
5438 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5439 }
5440 }
5441
5442 /* Place one common symbol in the correct section. */
5443
5444 static bfd_boolean
5445 lang_one_common (struct bfd_link_hash_entry *h, void *info)
5446 {
5447 unsigned int power_of_two;
5448 bfd_vma size;
5449 asection *section;
5450
5451 if (h->type != bfd_link_hash_common)
5452 return TRUE;
5453
5454 size = h->u.c.size;
5455 power_of_two = h->u.c.p->alignment_power;
5456
5457 if (config.sort_common
5458 && power_of_two < (unsigned int) *(int *) info)
5459 return TRUE;
5460
5461 section = h->u.c.p->section;
5462
5463 /* Increase the size of the section to align the common sym. */
5464 section->size += ((bfd_vma) 1 << (power_of_two + opb_shift)) - 1;
5465 section->size &= (- (bfd_vma) 1 << (power_of_two + opb_shift));
5466
5467 /* Adjust the alignment if necessary. */
5468 if (power_of_two > section->alignment_power)
5469 section->alignment_power = power_of_two;
5470
5471 /* Change the symbol from common to defined. */
5472 h->type = bfd_link_hash_defined;
5473 h->u.def.section = section;
5474 h->u.def.value = section->size;
5475
5476 /* Increase the size of the section. */
5477 section->size += size;
5478
5479 /* Make sure the section is allocated in memory, and make sure that
5480 it is no longer a common section. */
5481 section->flags |= SEC_ALLOC;
5482 section->flags &= ~SEC_IS_COMMON;
5483
5484 if (config.map_file != NULL)
5485 {
5486 static bfd_boolean header_printed;
5487 int len;
5488 char *name;
5489 char buf[50];
5490
5491 if (! header_printed)
5492 {
5493 minfo (_("\nAllocating common symbols\n"));
5494 minfo (_("Common symbol size file\n\n"));
5495 header_printed = TRUE;
5496 }
5497
5498 name = bfd_demangle (link_info.output_bfd, h->root.string,
5499 DMGL_ANSI | DMGL_PARAMS);
5500 if (name == NULL)
5501 {
5502 minfo ("%s", h->root.string);
5503 len = strlen (h->root.string);
5504 }
5505 else
5506 {
5507 minfo ("%s", name);
5508 len = strlen (name);
5509 free (name);
5510 }
5511
5512 if (len >= 19)
5513 {
5514 print_nl ();
5515 len = 0;
5516 }
5517 while (len < 20)
5518 {
5519 print_space ();
5520 ++len;
5521 }
5522
5523 minfo ("0x");
5524 if (size <= 0xffffffff)
5525 sprintf (buf, "%lx", (unsigned long) size);
5526 else
5527 sprintf_vma (buf, size);
5528 minfo ("%s", buf);
5529 len = strlen (buf);
5530
5531 while (len < 16)
5532 {
5533 print_space ();
5534 ++len;
5535 }
5536
5537 minfo ("%B\n", section->owner);
5538 }
5539
5540 return TRUE;
5541 }
5542
5543 /* Run through the input files and ensure that every input section has
5544 somewhere to go. If one is found without a destination then create
5545 an input request and place it into the statement tree. */
5546
5547 static void
5548 lang_place_orphans (void)
5549 {
5550 LANG_FOR_EACH_INPUT_STATEMENT (file)
5551 {
5552 asection *s;
5553
5554 for (s = file->the_bfd->sections; s != NULL; s = s->next)
5555 {
5556 if (s->output_section == NULL)
5557 {
5558 /* This section of the file is not attached, root
5559 around for a sensible place for it to go. */
5560
5561 if (file->just_syms_flag)
5562 bfd_link_just_syms (file->the_bfd, s, &link_info);
5563 else if ((s->flags & SEC_EXCLUDE) != 0)
5564 s->output_section = bfd_abs_section_ptr;
5565 else if (strcmp (s->name, "COMMON") == 0)
5566 {
5567 /* This is a lonely common section which must have
5568 come from an archive. We attach to the section
5569 with the wildcard. */
5570 if (! link_info.relocatable
5571 || command_line.force_common_definition)
5572 {
5573 if (default_common_section == NULL)
5574 {
5575 default_common_section =
5576 lang_output_section_statement_lookup (".bss");
5577
5578 }
5579 lang_add_section (&default_common_section->children, s,
5580 default_common_section);
5581 }
5582 }
5583 else if (ldemul_place_orphan (s))
5584 ;
5585 else
5586 {
5587 lang_output_section_statement_type *os;
5588
5589 os = lang_output_section_statement_lookup (s->name);
5590 lang_add_section (&os->children, s, os);
5591 }
5592 }
5593 }
5594 }
5595 }
5596
5597 void
5598 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
5599 {
5600 flagword *ptr_flags;
5601
5602 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
5603 while (*flags)
5604 {
5605 switch (*flags)
5606 {
5607 case 'A': case 'a':
5608 *ptr_flags |= SEC_ALLOC;
5609 break;
5610
5611 case 'R': case 'r':
5612 *ptr_flags |= SEC_READONLY;
5613 break;
5614
5615 case 'W': case 'w':
5616 *ptr_flags |= SEC_DATA;
5617 break;
5618
5619 case 'X': case 'x':
5620 *ptr_flags |= SEC_CODE;
5621 break;
5622
5623 case 'L': case 'l':
5624 case 'I': case 'i':
5625 *ptr_flags |= SEC_LOAD;
5626 break;
5627
5628 default:
5629 einfo (_("%P%F: invalid syntax in flags\n"));
5630 break;
5631 }
5632 flags++;
5633 }
5634 }
5635
5636 /* Call a function on each input file. This function will be called
5637 on an archive, but not on the elements. */
5638
5639 void
5640 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
5641 {
5642 lang_input_statement_type *f;
5643
5644 for (f = (lang_input_statement_type *) input_file_chain.head;
5645 f != NULL;
5646 f = (lang_input_statement_type *) f->next_real_file)
5647 func (f);
5648 }
5649
5650 /* Call a function on each file. The function will be called on all
5651 the elements of an archive which are included in the link, but will
5652 not be called on the archive file itself. */
5653
5654 void
5655 lang_for_each_file (void (*func) (lang_input_statement_type *))
5656 {
5657 LANG_FOR_EACH_INPUT_STATEMENT (f)
5658 {
5659 func (f);
5660 }
5661 }
5662
5663 void
5664 ldlang_add_file (lang_input_statement_type *entry)
5665 {
5666 lang_statement_append (&file_chain,
5667 (lang_statement_union_type *) entry,
5668 &entry->next);
5669
5670 /* The BFD linker needs to have a list of all input BFDs involved in
5671 a link. */
5672 ASSERT (entry->the_bfd->link_next == NULL);
5673 ASSERT (entry->the_bfd != link_info.output_bfd);
5674
5675 *link_info.input_bfds_tail = entry->the_bfd;
5676 link_info.input_bfds_tail = &entry->the_bfd->link_next;
5677 entry->the_bfd->usrdata = entry;
5678 bfd_set_gp_size (entry->the_bfd, g_switch_value);
5679
5680 /* Look through the sections and check for any which should not be
5681 included in the link. We need to do this now, so that we can
5682 notice when the backend linker tries to report multiple
5683 definition errors for symbols which are in sections we aren't
5684 going to link. FIXME: It might be better to entirely ignore
5685 symbols which are defined in sections which are going to be
5686 discarded. This would require modifying the backend linker for
5687 each backend which might set the SEC_LINK_ONCE flag. If we do
5688 this, we should probably handle SEC_EXCLUDE in the same way. */
5689
5690 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
5691 }
5692
5693 void
5694 lang_add_output (const char *name, int from_script)
5695 {
5696 /* Make -o on command line override OUTPUT in script. */
5697 if (!had_output_filename || !from_script)
5698 {
5699 output_filename = name;
5700 had_output_filename = TRUE;
5701 }
5702 }
5703
5704 static lang_output_section_statement_type *current_section;
5705
5706 static int
5707 topower (int x)
5708 {
5709 unsigned int i = 1;
5710 int l;
5711
5712 if (x < 0)
5713 return -1;
5714
5715 for (l = 0; l < 32; l++)
5716 {
5717 if (i >= (unsigned int) x)
5718 return l;
5719 i <<= 1;
5720 }
5721
5722 return 0;
5723 }
5724
5725 lang_output_section_statement_type *
5726 lang_enter_output_section_statement (const char *output_section_statement_name,
5727 etree_type *address_exp,
5728 enum section_type sectype,
5729 etree_type *align,
5730 etree_type *subalign,
5731 etree_type *ebase,
5732 int constraint)
5733 {
5734 lang_output_section_statement_type *os;
5735
5736 os = lang_output_section_statement_lookup_1 (output_section_statement_name,
5737 constraint);
5738 current_section = os;
5739
5740 /* Make next things chain into subchain of this. */
5741
5742 if (os->addr_tree == NULL)
5743 {
5744 os->addr_tree = address_exp;
5745 }
5746 os->sectype = sectype;
5747 if (sectype != noload_section)
5748 os->flags = SEC_NO_FLAGS;
5749 else
5750 os->flags = SEC_NEVER_LOAD;
5751 os->block_value = 1;
5752 stat_ptr = &os->children;
5753
5754 os->subsection_alignment =
5755 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
5756 os->section_alignment =
5757 topower (exp_get_value_int (align, -1, "section alignment"));
5758
5759 os->load_base = ebase;
5760 return os;
5761 }
5762
5763 void
5764 lang_final (void)
5765 {
5766 lang_output_statement_type *new;
5767
5768 new = new_stat (lang_output_statement, stat_ptr);
5769 new->name = output_filename;
5770 }
5771
5772 /* Reset the current counters in the regions. */
5773
5774 void
5775 lang_reset_memory_regions (void)
5776 {
5777 lang_memory_region_type *p = lang_memory_region_list;
5778 asection *o;
5779 lang_output_section_statement_type *os;
5780
5781 for (p = lang_memory_region_list; p != NULL; p = p->next)
5782 {
5783 p->current = p->origin;
5784 p->last_os = NULL;
5785 }
5786
5787 for (os = &lang_output_section_statement.head->output_section_statement;
5788 os != NULL;
5789 os = os->next)
5790 {
5791 os->processed_vma = FALSE;
5792 os->processed_lma = FALSE;
5793 }
5794
5795 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
5796 {
5797 /* Save the last size for possible use by bfd_relax_section. */
5798 o->rawsize = o->size;
5799 o->size = 0;
5800 }
5801 }
5802
5803 /* Worker for lang_gc_sections_1. */
5804
5805 static void
5806 gc_section_callback (lang_wild_statement_type *ptr,
5807 struct wildcard_list *sec ATTRIBUTE_UNUSED,
5808 asection *section,
5809 lang_input_statement_type *file ATTRIBUTE_UNUSED,
5810 void *data ATTRIBUTE_UNUSED)
5811 {
5812 /* If the wild pattern was marked KEEP, the member sections
5813 should be as well. */
5814 if (ptr->keep_sections)
5815 section->flags |= SEC_KEEP;
5816 }
5817
5818 /* Iterate over sections marking them against GC. */
5819
5820 static void
5821 lang_gc_sections_1 (lang_statement_union_type *s)
5822 {
5823 for (; s != NULL; s = s->header.next)
5824 {
5825 switch (s->header.type)
5826 {
5827 case lang_wild_statement_enum:
5828 walk_wild (&s->wild_statement, gc_section_callback, NULL);
5829 break;
5830 case lang_constructors_statement_enum:
5831 lang_gc_sections_1 (constructor_list.head);
5832 break;
5833 case lang_output_section_statement_enum:
5834 lang_gc_sections_1 (s->output_section_statement.children.head);
5835 break;
5836 case lang_group_statement_enum:
5837 lang_gc_sections_1 (s->group_statement.children.head);
5838 break;
5839 default:
5840 break;
5841 }
5842 }
5843 }
5844
5845 static void
5846 lang_gc_sections (void)
5847 {
5848 /* Keep all sections so marked in the link script. */
5849
5850 lang_gc_sections_1 (statement_list.head);
5851
5852 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
5853 the special case of debug info. (See bfd/stabs.c)
5854 Twiddle the flag here, to simplify later linker code. */
5855 if (link_info.relocatable)
5856 {
5857 LANG_FOR_EACH_INPUT_STATEMENT (f)
5858 {
5859 asection *sec;
5860 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
5861 if ((sec->flags & SEC_DEBUGGING) == 0)
5862 sec->flags &= ~SEC_EXCLUDE;
5863 }
5864 }
5865
5866 if (link_info.gc_sections)
5867 bfd_gc_sections (link_info.output_bfd, &link_info);
5868 }
5869
5870 /* Worker for lang_find_relro_sections_1. */
5871
5872 static void
5873 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
5874 struct wildcard_list *sec ATTRIBUTE_UNUSED,
5875 asection *section,
5876 lang_input_statement_type *file ATTRIBUTE_UNUSED,
5877 void *data)
5878 {
5879 /* Discarded, excluded and ignored sections effectively have zero
5880 size. */
5881 if (section->output_section != NULL
5882 && section->output_section->owner == link_info.output_bfd
5883 && (section->output_section->flags & SEC_EXCLUDE) == 0
5884 && !IGNORE_SECTION (section)
5885 && section->size != 0)
5886 {
5887 bfd_boolean *has_relro_section = (bfd_boolean *) data;
5888 *has_relro_section = TRUE;
5889 }
5890 }
5891
5892 /* Iterate over sections for relro sections. */
5893
5894 static void
5895 lang_find_relro_sections_1 (lang_statement_union_type *s,
5896 bfd_boolean *has_relro_section)
5897 {
5898 if (*has_relro_section)
5899 return;
5900
5901 for (; s != NULL; s = s->header.next)
5902 {
5903 if (s == expld.dataseg.relro_end_stat)
5904 break;
5905
5906 switch (s->header.type)
5907 {
5908 case lang_wild_statement_enum:
5909 walk_wild (&s->wild_statement,
5910 find_relro_section_callback,
5911 has_relro_section);
5912 break;
5913 case lang_constructors_statement_enum:
5914 lang_find_relro_sections_1 (constructor_list.head,
5915 has_relro_section);
5916 break;
5917 case lang_output_section_statement_enum:
5918 lang_find_relro_sections_1 (s->output_section_statement.children.head,
5919 has_relro_section);
5920 break;
5921 case lang_group_statement_enum:
5922 lang_find_relro_sections_1 (s->group_statement.children.head,
5923 has_relro_section);
5924 break;
5925 default:
5926 break;
5927 }
5928 }
5929 }
5930
5931 static void
5932 lang_find_relro_sections (void)
5933 {
5934 bfd_boolean has_relro_section = FALSE;
5935
5936 /* Check all sections in the link script. */
5937
5938 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
5939 &has_relro_section);
5940
5941 if (!has_relro_section)
5942 link_info.relro = FALSE;
5943 }
5944
5945 /* Relax all sections until bfd_relax_section gives up. */
5946
5947 static void
5948 relax_sections (void)
5949 {
5950 /* Keep relaxing until bfd_relax_section gives up. */
5951 bfd_boolean relax_again;
5952
5953 link_info.relax_trip = -1;
5954 do
5955 {
5956 relax_again = FALSE;
5957 link_info.relax_trip++;
5958
5959 /* Note: pe-dll.c does something like this also. If you find
5960 you need to change this code, you probably need to change
5961 pe-dll.c also. DJ */
5962
5963 /* Do all the assignments with our current guesses as to
5964 section sizes. */
5965 lang_do_assignments ();
5966
5967 /* We must do this after lang_do_assignments, because it uses
5968 size. */
5969 lang_reset_memory_regions ();
5970
5971 /* Perform another relax pass - this time we know where the
5972 globals are, so can make a better guess. */
5973 lang_size_sections (&relax_again, FALSE);
5974 }
5975 while (relax_again);
5976 }
5977
5978 void
5979 lang_process (void)
5980 {
5981 /* Finalize dynamic list. */
5982 if (link_info.dynamic_list)
5983 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
5984
5985 current_target = default_target;
5986
5987 /* Open the output file. */
5988 lang_for_each_statement (ldlang_open_output);
5989 init_opb ();
5990
5991 ldemul_create_output_section_statements ();
5992
5993 /* Add to the hash table all undefineds on the command line. */
5994 lang_place_undefineds ();
5995
5996 if (!bfd_section_already_linked_table_init ())
5997 einfo (_("%P%F: Failed to create hash table\n"));
5998
5999 /* Create a bfd for each input file. */
6000 current_target = default_target;
6001 open_input_bfds (statement_list.head, FALSE);
6002
6003 link_info.gc_sym_list = &entry_symbol;
6004 if (entry_symbol.name == NULL)
6005 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6006
6007 ldemul_after_open ();
6008
6009 bfd_section_already_linked_table_free ();
6010
6011 /* Make sure that we're not mixing architectures. We call this
6012 after all the input files have been opened, but before we do any
6013 other processing, so that any operations merge_private_bfd_data
6014 does on the output file will be known during the rest of the
6015 link. */
6016 lang_check ();
6017
6018 /* Handle .exports instead of a version script if we're told to do so. */
6019 if (command_line.version_exports_section)
6020 lang_do_version_exports_section ();
6021
6022 /* Build all sets based on the information gathered from the input
6023 files. */
6024 ldctor_build_sets ();
6025
6026 /* Remove unreferenced sections if asked to. */
6027 lang_gc_sections ();
6028
6029 /* Size up the common data. */
6030 lang_common ();
6031
6032 /* Update wild statements. */
6033 update_wild_statements (statement_list.head);
6034
6035 /* Run through the contours of the script and attach input sections
6036 to the correct output sections. */
6037 map_input_to_output_sections (statement_list.head, NULL, NULL);
6038
6039 process_insert_statements ();
6040
6041 /* Find any sections not attached explicitly and handle them. */
6042 lang_place_orphans ();
6043
6044 if (! link_info.relocatable)
6045 {
6046 asection *found;
6047
6048 /* Merge SEC_MERGE sections. This has to be done after GC of
6049 sections, so that GCed sections are not merged, but before
6050 assigning dynamic symbols, since removing whole input sections
6051 is hard then. */
6052 bfd_merge_sections (link_info.output_bfd, &link_info);
6053
6054 /* Look for a text section and set the readonly attribute in it. */
6055 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6056
6057 if (found != NULL)
6058 {
6059 if (config.text_read_only)
6060 found->flags |= SEC_READONLY;
6061 else
6062 found->flags &= ~SEC_READONLY;
6063 }
6064 }
6065
6066 /* Do anything special before sizing sections. This is where ELF
6067 and other back-ends size dynamic sections. */
6068 ldemul_before_allocation ();
6069
6070 /* We must record the program headers before we try to fix the
6071 section positions, since they will affect SIZEOF_HEADERS. */
6072 lang_record_phdrs ();
6073
6074 /* Check relro sections. */
6075 if (link_info.relro && ! link_info.relocatable)
6076 lang_find_relro_sections ();
6077
6078 /* Size up the sections. */
6079 lang_size_sections (NULL, !command_line.relax);
6080
6081 /* Now run around and relax if we can. */
6082 if (command_line.relax)
6083 {
6084 /* We may need more than one relaxation pass. */
6085 int i = link_info.relax_pass;
6086
6087 /* The backend can use it to determine the current pass. */
6088 link_info.relax_pass = 0;
6089
6090 while (i--)
6091 {
6092 relax_sections ();
6093 link_info.relax_pass++;
6094 }
6095
6096 /* Final extra sizing to report errors. */
6097 lang_do_assignments ();
6098 lang_reset_memory_regions ();
6099 lang_size_sections (NULL, TRUE);
6100 }
6101
6102 /* See if anything special should be done now we know how big
6103 everything is. */
6104 ldemul_after_allocation ();
6105
6106 /* Fix any .startof. or .sizeof. symbols. */
6107 lang_set_startof ();
6108
6109 /* Do all the assignments, now that we know the final resting places
6110 of all the symbols. */
6111
6112 lang_do_assignments ();
6113
6114 ldemul_finish ();
6115
6116 /* Make sure that the section addresses make sense. */
6117 if (! link_info.relocatable
6118 && command_line.check_section_addresses)
6119 lang_check_section_addresses ();
6120
6121 lang_end ();
6122 }
6123
6124 /* EXPORTED TO YACC */
6125
6126 void
6127 lang_add_wild (struct wildcard_spec *filespec,
6128 struct wildcard_list *section_list,
6129 bfd_boolean keep_sections)
6130 {
6131 struct wildcard_list *curr, *next;
6132 lang_wild_statement_type *new;
6133
6134 /* Reverse the list as the parser puts it back to front. */
6135 for (curr = section_list, section_list = NULL;
6136 curr != NULL;
6137 section_list = curr, curr = next)
6138 {
6139 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6140 placed_commons = TRUE;
6141
6142 next = curr->next;
6143 curr->next = section_list;
6144 }
6145
6146 if (filespec != NULL && filespec->name != NULL)
6147 {
6148 if (strcmp (filespec->name, "*") == 0)
6149 filespec->name = NULL;
6150 else if (! wildcardp (filespec->name))
6151 lang_has_input_file = TRUE;
6152 }
6153
6154 new = new_stat (lang_wild_statement, stat_ptr);
6155 new->filename = NULL;
6156 new->filenames_sorted = FALSE;
6157 if (filespec != NULL)
6158 {
6159 new->filename = filespec->name;
6160 new->filenames_sorted = filespec->sorted == by_name;
6161 }
6162 new->section_list = section_list;
6163 new->keep_sections = keep_sections;
6164 lang_list_init (&new->children);
6165 analyze_walk_wild_section_handler (new);
6166 }
6167
6168 void
6169 lang_section_start (const char *name, etree_type *address,
6170 const segment_type *segment)
6171 {
6172 lang_address_statement_type *ad;
6173
6174 ad = new_stat (lang_address_statement, stat_ptr);
6175 ad->section_name = name;
6176 ad->address = address;
6177 ad->segment = segment;
6178 }
6179
6180 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6181 because of a -e argument on the command line, or zero if this is
6182 called by ENTRY in a linker script. Command line arguments take
6183 precedence. */
6184
6185 void
6186 lang_add_entry (const char *name, bfd_boolean cmdline)
6187 {
6188 if (entry_symbol.name == NULL
6189 || cmdline
6190 || ! entry_from_cmdline)
6191 {
6192 entry_symbol.name = name;
6193 entry_from_cmdline = cmdline;
6194 }
6195 }
6196
6197 /* Set the default start symbol to NAME. .em files should use this,
6198 not lang_add_entry, to override the use of "start" if neither the
6199 linker script nor the command line specifies an entry point. NAME
6200 must be permanently allocated. */
6201 void
6202 lang_default_entry (const char *name)
6203 {
6204 entry_symbol_default = name;
6205 }
6206
6207 void
6208 lang_add_target (const char *name)
6209 {
6210 lang_target_statement_type *new;
6211
6212 new = new_stat (lang_target_statement, stat_ptr);
6213 new->target = name;
6214 }
6215
6216 void
6217 lang_add_map (const char *name)
6218 {
6219 while (*name)
6220 {
6221 switch (*name)
6222 {
6223 case 'F':
6224 map_option_f = TRUE;
6225 break;
6226 }
6227 name++;
6228 }
6229 }
6230
6231 void
6232 lang_add_fill (fill_type *fill)
6233 {
6234 lang_fill_statement_type *new;
6235
6236 new = new_stat (lang_fill_statement, stat_ptr);
6237 new->fill = fill;
6238 }
6239
6240 void
6241 lang_add_data (int type, union etree_union *exp)
6242 {
6243 lang_data_statement_type *new;
6244
6245 new = new_stat (lang_data_statement, stat_ptr);
6246 new->exp = exp;
6247 new->type = type;
6248 }
6249
6250 /* Create a new reloc statement. RELOC is the BFD relocation type to
6251 generate. HOWTO is the corresponding howto structure (we could
6252 look this up, but the caller has already done so). SECTION is the
6253 section to generate a reloc against, or NAME is the name of the
6254 symbol to generate a reloc against. Exactly one of SECTION and
6255 NAME must be NULL. ADDEND is an expression for the addend. */
6256
6257 void
6258 lang_add_reloc (bfd_reloc_code_real_type reloc,
6259 reloc_howto_type *howto,
6260 asection *section,
6261 const char *name,
6262 union etree_union *addend)
6263 {
6264 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6265
6266 p->reloc = reloc;
6267 p->howto = howto;
6268 p->section = section;
6269 p->name = name;
6270 p->addend_exp = addend;
6271
6272 p->addend_value = 0;
6273 p->output_section = NULL;
6274 p->output_offset = 0;
6275 }
6276
6277 lang_assignment_statement_type *
6278 lang_add_assignment (etree_type *exp)
6279 {
6280 lang_assignment_statement_type *new;
6281
6282 new = new_stat (lang_assignment_statement, stat_ptr);
6283 new->exp = exp;
6284 return new;
6285 }
6286
6287 void
6288 lang_add_attribute (enum statement_enum attribute)
6289 {
6290 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6291 }
6292
6293 void
6294 lang_startup (const char *name)
6295 {
6296 if (startup_file != NULL)
6297 {
6298 einfo (_("%P%F: multiple STARTUP files\n"));
6299 }
6300 first_file->filename = name;
6301 first_file->local_sym_name = name;
6302 first_file->real = TRUE;
6303
6304 startup_file = name;
6305 }
6306
6307 void
6308 lang_float (bfd_boolean maybe)
6309 {
6310 lang_float_flag = maybe;
6311 }
6312
6313
6314 /* Work out the load- and run-time regions from a script statement, and
6315 store them in *LMA_REGION and *REGION respectively.
6316
6317 MEMSPEC is the name of the run-time region, or the value of
6318 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6319 LMA_MEMSPEC is the name of the load-time region, or null if the
6320 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6321 had an explicit load address.
6322
6323 It is an error to specify both a load region and a load address. */
6324
6325 static void
6326 lang_get_regions (lang_memory_region_type **region,
6327 lang_memory_region_type **lma_region,
6328 const char *memspec,
6329 const char *lma_memspec,
6330 bfd_boolean have_lma,
6331 bfd_boolean have_vma)
6332 {
6333 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6334
6335 /* If no runtime region or VMA has been specified, but the load region
6336 has been specified, then use the load region for the runtime region
6337 as well. */
6338 if (lma_memspec != NULL
6339 && ! have_vma
6340 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6341 *region = *lma_region;
6342 else
6343 *region = lang_memory_region_lookup (memspec, FALSE);
6344
6345 if (have_lma && lma_memspec != 0)
6346 einfo (_("%X%P:%S: section has both a load address and a load region\n"));
6347 }
6348
6349 void
6350 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6351 lang_output_section_phdr_list *phdrs,
6352 const char *lma_memspec)
6353 {
6354 lang_get_regions (&current_section->region,
6355 &current_section->lma_region,
6356 memspec, lma_memspec,
6357 current_section->load_base != NULL,
6358 current_section->addr_tree != NULL);
6359 current_section->fill = fill;
6360 current_section->phdrs = phdrs;
6361 stat_ptr = &statement_list;
6362 }
6363
6364 /* Create an absolute symbol with the given name with the value of the
6365 address of first byte of the section named.
6366
6367 If the symbol already exists, then do nothing. */
6368
6369 void
6370 lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
6371 {
6372 struct bfd_link_hash_entry *h;
6373
6374 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6375 if (h == NULL)
6376 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6377
6378 if (h->type == bfd_link_hash_new
6379 || h->type == bfd_link_hash_undefined)
6380 {
6381 asection *sec;
6382
6383 h->type = bfd_link_hash_defined;
6384
6385 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6386 if (sec == NULL)
6387 h->u.def.value = 0;
6388 else
6389 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec);
6390
6391 h->u.def.section = bfd_abs_section_ptr;
6392 }
6393 }
6394
6395 /* Create an absolute symbol with the given name with the value of the
6396 address of the first byte after the end of the section named.
6397
6398 If the symbol already exists, then do nothing. */
6399
6400 void
6401 lang_abs_symbol_at_end_of (const char *secname, const char *name)
6402 {
6403 struct bfd_link_hash_entry *h;
6404
6405 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6406 if (h == NULL)
6407 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6408
6409 if (h->type == bfd_link_hash_new
6410 || h->type == bfd_link_hash_undefined)
6411 {
6412 asection *sec;
6413
6414 h->type = bfd_link_hash_defined;
6415
6416 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6417 if (sec == NULL)
6418 h->u.def.value = 0;
6419 else
6420 h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec)
6421 + TO_ADDR (sec->size));
6422
6423 h->u.def.section = bfd_abs_section_ptr;
6424 }
6425 }
6426
6427 void
6428 lang_statement_append (lang_statement_list_type *list,
6429 lang_statement_union_type *element,
6430 lang_statement_union_type **field)
6431 {
6432 *(list->tail) = element;
6433 list->tail = field;
6434 }
6435
6436 /* Set the output format type. -oformat overrides scripts. */
6437
6438 void
6439 lang_add_output_format (const char *format,
6440 const char *big,
6441 const char *little,
6442 int from_script)
6443 {
6444 if (output_target == NULL || !from_script)
6445 {
6446 if (command_line.endian == ENDIAN_BIG
6447 && big != NULL)
6448 format = big;
6449 else if (command_line.endian == ENDIAN_LITTLE
6450 && little != NULL)
6451 format = little;
6452
6453 output_target = format;
6454 }
6455 }
6456
6457 void
6458 lang_add_insert (const char *where, int is_before)
6459 {
6460 lang_insert_statement_type *new;
6461
6462 new = new_stat (lang_insert_statement, stat_ptr);
6463 new->where = where;
6464 new->is_before = is_before;
6465 saved_script_handle = previous_script_handle;
6466 }
6467
6468 /* Enter a group. This creates a new lang_group_statement, and sets
6469 stat_ptr to build new statements within the group. */
6470
6471 void
6472 lang_enter_group (void)
6473 {
6474 lang_group_statement_type *g;
6475
6476 g = new_stat (lang_group_statement, stat_ptr);
6477 lang_list_init (&g->children);
6478 stat_ptr = &g->children;
6479 }
6480
6481 /* Leave a group. This just resets stat_ptr to start writing to the
6482 regular list of statements again. Note that this will not work if
6483 groups can occur inside anything else which can adjust stat_ptr,
6484 but currently they can't. */
6485
6486 void
6487 lang_leave_group (void)
6488 {
6489 stat_ptr = &statement_list;
6490 }
6491
6492 /* Add a new program header. This is called for each entry in a PHDRS
6493 command in a linker script. */
6494
6495 void
6496 lang_new_phdr (const char *name,
6497 etree_type *type,
6498 bfd_boolean filehdr,
6499 bfd_boolean phdrs,
6500 etree_type *at,
6501 etree_type *flags)
6502 {
6503 struct lang_phdr *n, **pp;
6504
6505 n = stat_alloc (sizeof (struct lang_phdr));
6506 n->next = NULL;
6507 n->name = name;
6508 n->type = exp_get_value_int (type, 0, "program header type");
6509 n->filehdr = filehdr;
6510 n->phdrs = phdrs;
6511 n->at = at;
6512 n->flags = flags;
6513
6514 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
6515 ;
6516 *pp = n;
6517 }
6518
6519 /* Record the program header information in the output BFD. FIXME: We
6520 should not be calling an ELF specific function here. */
6521
6522 static void
6523 lang_record_phdrs (void)
6524 {
6525 unsigned int alc;
6526 asection **secs;
6527 lang_output_section_phdr_list *last;
6528 struct lang_phdr *l;
6529 lang_output_section_statement_type *os;
6530
6531 alc = 10;
6532 secs = xmalloc (alc * sizeof (asection *));
6533 last = NULL;
6534
6535 for (l = lang_phdr_list; l != NULL; l = l->next)
6536 {
6537 unsigned int c;
6538 flagword flags;
6539 bfd_vma at;
6540
6541 c = 0;
6542 for (os = &lang_output_section_statement.head->output_section_statement;
6543 os != NULL;
6544 os = os->next)
6545 {
6546 lang_output_section_phdr_list *pl;
6547
6548 if (os->constraint == -1)
6549 continue;
6550
6551 pl = os->phdrs;
6552 if (pl != NULL)
6553 last = pl;
6554 else
6555 {
6556 if (os->sectype == noload_section
6557 || os->bfd_section == NULL
6558 || (os->bfd_section->flags & SEC_ALLOC) == 0)
6559 continue;
6560
6561 if (last == NULL)
6562 {
6563 lang_output_section_statement_type * tmp_os;
6564
6565 /* If we have not run across a section with a program
6566 header assigned to it yet, then scan forwards to find
6567 one. This prevents inconsistencies in the linker's
6568 behaviour when a script has specified just a single
6569 header and there are sections in that script which are
6570 not assigned to it, and which occur before the first
6571 use of that header. See here for more details:
6572 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
6573 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
6574 if (tmp_os->phdrs)
6575 {
6576 last = tmp_os->phdrs;
6577 break;
6578 }
6579 if (last == NULL)
6580 einfo (_("%F%P: no sections assigned to phdrs\n"));
6581 }
6582 pl = last;
6583 }
6584
6585 if (os->bfd_section == NULL)
6586 continue;
6587
6588 for (; pl != NULL; pl = pl->next)
6589 {
6590 if (strcmp (pl->name, l->name) == 0)
6591 {
6592 if (c >= alc)
6593 {
6594 alc *= 2;
6595 secs = xrealloc (secs, alc * sizeof (asection *));
6596 }
6597 secs[c] = os->bfd_section;
6598 ++c;
6599 pl->used = TRUE;
6600 }
6601 }
6602 }
6603
6604 if (l->flags == NULL)
6605 flags = 0;
6606 else
6607 flags = exp_get_vma (l->flags, 0, "phdr flags");
6608
6609 if (l->at == NULL)
6610 at = 0;
6611 else
6612 at = exp_get_vma (l->at, 0, "phdr load address");
6613
6614 if (! bfd_record_phdr (link_info.output_bfd, l->type,
6615 l->flags != NULL, flags, l->at != NULL,
6616 at, l->filehdr, l->phdrs, c, secs))
6617 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
6618 }
6619
6620 free (secs);
6621
6622 /* Make sure all the phdr assignments succeeded. */
6623 for (os = &lang_output_section_statement.head->output_section_statement;
6624 os != NULL;
6625 os = os->next)
6626 {
6627 lang_output_section_phdr_list *pl;
6628
6629 if (os->constraint == -1
6630 || os->bfd_section == NULL)
6631 continue;
6632
6633 for (pl = os->phdrs;
6634 pl != NULL;
6635 pl = pl->next)
6636 if (! pl->used && strcmp (pl->name, "NONE") != 0)
6637 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
6638 os->name, pl->name);
6639 }
6640 }
6641
6642 /* Record a list of sections which may not be cross referenced. */
6643
6644 void
6645 lang_add_nocrossref (lang_nocrossref_type *l)
6646 {
6647 struct lang_nocrossrefs *n;
6648
6649 n = xmalloc (sizeof *n);
6650 n->next = nocrossref_list;
6651 n->list = l;
6652 nocrossref_list = n;
6653
6654 /* Set notice_all so that we get informed about all symbols. */
6655 link_info.notice_all = TRUE;
6656 }
6657 \f
6658 /* Overlay handling. We handle overlays with some static variables. */
6659
6660 /* The overlay virtual address. */
6661 static etree_type *overlay_vma;
6662 /* And subsection alignment. */
6663 static etree_type *overlay_subalign;
6664
6665 /* An expression for the maximum section size seen so far. */
6666 static etree_type *overlay_max;
6667
6668 /* A list of all the sections in this overlay. */
6669
6670 struct overlay_list {
6671 struct overlay_list *next;
6672 lang_output_section_statement_type *os;
6673 };
6674
6675 static struct overlay_list *overlay_list;
6676
6677 /* Start handling an overlay. */
6678
6679 void
6680 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
6681 {
6682 /* The grammar should prevent nested overlays from occurring. */
6683 ASSERT (overlay_vma == NULL
6684 && overlay_subalign == NULL
6685 && overlay_max == NULL);
6686
6687 overlay_vma = vma_expr;
6688 overlay_subalign = subalign;
6689 }
6690
6691 /* Start a section in an overlay. We handle this by calling
6692 lang_enter_output_section_statement with the correct VMA.
6693 lang_leave_overlay sets up the LMA and memory regions. */
6694
6695 void
6696 lang_enter_overlay_section (const char *name)
6697 {
6698 struct overlay_list *n;
6699 etree_type *size;
6700
6701 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
6702 0, overlay_subalign, 0, 0);
6703
6704 /* If this is the first section, then base the VMA of future
6705 sections on this one. This will work correctly even if `.' is
6706 used in the addresses. */
6707 if (overlay_list == NULL)
6708 overlay_vma = exp_nameop (ADDR, name);
6709
6710 /* Remember the section. */
6711 n = xmalloc (sizeof *n);
6712 n->os = current_section;
6713 n->next = overlay_list;
6714 overlay_list = n;
6715
6716 size = exp_nameop (SIZEOF, name);
6717
6718 /* Arrange to work out the maximum section end address. */
6719 if (overlay_max == NULL)
6720 overlay_max = size;
6721 else
6722 overlay_max = exp_binop (MAX_K, overlay_max, size);
6723 }
6724
6725 /* Finish a section in an overlay. There isn't any special to do
6726 here. */
6727
6728 void
6729 lang_leave_overlay_section (fill_type *fill,
6730 lang_output_section_phdr_list *phdrs)
6731 {
6732 const char *name;
6733 char *clean, *s2;
6734 const char *s1;
6735 char *buf;
6736
6737 name = current_section->name;
6738
6739 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
6740 region and that no load-time region has been specified. It doesn't
6741 really matter what we say here, since lang_leave_overlay will
6742 override it. */
6743 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
6744
6745 /* Define the magic symbols. */
6746
6747 clean = xmalloc (strlen (name) + 1);
6748 s2 = clean;
6749 for (s1 = name; *s1 != '\0'; s1++)
6750 if (ISALNUM (*s1) || *s1 == '_')
6751 *s2++ = *s1;
6752 *s2 = '\0';
6753
6754 buf = xmalloc (strlen (clean) + sizeof "__load_start_");
6755 sprintf (buf, "__load_start_%s", clean);
6756 lang_add_assignment (exp_provide (buf,
6757 exp_nameop (LOADADDR, name),
6758 FALSE));
6759
6760 buf = xmalloc (strlen (clean) + sizeof "__load_stop_");
6761 sprintf (buf, "__load_stop_%s", clean);
6762 lang_add_assignment (exp_provide (buf,
6763 exp_binop ('+',
6764 exp_nameop (LOADADDR, name),
6765 exp_nameop (SIZEOF, name)),
6766 FALSE));
6767
6768 free (clean);
6769 }
6770
6771 /* Finish an overlay. If there are any overlay wide settings, this
6772 looks through all the sections in the overlay and sets them. */
6773
6774 void
6775 lang_leave_overlay (etree_type *lma_expr,
6776 int nocrossrefs,
6777 fill_type *fill,
6778 const char *memspec,
6779 lang_output_section_phdr_list *phdrs,
6780 const char *lma_memspec)
6781 {
6782 lang_memory_region_type *region;
6783 lang_memory_region_type *lma_region;
6784 struct overlay_list *l;
6785 lang_nocrossref_type *nocrossref;
6786
6787 lang_get_regions (&region, &lma_region,
6788 memspec, lma_memspec,
6789 lma_expr != NULL, FALSE);
6790
6791 nocrossref = NULL;
6792
6793 /* After setting the size of the last section, set '.' to end of the
6794 overlay region. */
6795 if (overlay_list != NULL)
6796 overlay_list->os->update_dot_tree
6797 = exp_assop ('=', ".", exp_binop ('+', overlay_vma, overlay_max));
6798
6799 l = overlay_list;
6800 while (l != NULL)
6801 {
6802 struct overlay_list *next;
6803
6804 if (fill != NULL && l->os->fill == NULL)
6805 l->os->fill = fill;
6806
6807 l->os->region = region;
6808 l->os->lma_region = lma_region;
6809
6810 /* The first section has the load address specified in the
6811 OVERLAY statement. The rest are worked out from that.
6812 The base address is not needed (and should be null) if
6813 an LMA region was specified. */
6814 if (l->next == 0)
6815 {
6816 l->os->load_base = lma_expr;
6817 l->os->sectype = normal_section;
6818 }
6819 if (phdrs != NULL && l->os->phdrs == NULL)
6820 l->os->phdrs = phdrs;
6821
6822 if (nocrossrefs)
6823 {
6824 lang_nocrossref_type *nc;
6825
6826 nc = xmalloc (sizeof *nc);
6827 nc->name = l->os->name;
6828 nc->next = nocrossref;
6829 nocrossref = nc;
6830 }
6831
6832 next = l->next;
6833 free (l);
6834 l = next;
6835 }
6836
6837 if (nocrossref != NULL)
6838 lang_add_nocrossref (nocrossref);
6839
6840 overlay_vma = NULL;
6841 overlay_list = NULL;
6842 overlay_max = NULL;
6843 }
6844 \f
6845 /* Version handling. This is only useful for ELF. */
6846
6847 /* This global variable holds the version tree that we build. */
6848
6849 struct bfd_elf_version_tree *lang_elf_version_info;
6850
6851 /* If PREV is NULL, return first version pattern matching particular symbol.
6852 If PREV is non-NULL, return first version pattern matching particular
6853 symbol after PREV (previously returned by lang_vers_match). */
6854
6855 static struct bfd_elf_version_expr *
6856 lang_vers_match (struct bfd_elf_version_expr_head *head,
6857 struct bfd_elf_version_expr *prev,
6858 const char *sym)
6859 {
6860 const char *cxx_sym = sym;
6861 const char *java_sym = sym;
6862 struct bfd_elf_version_expr *expr = NULL;
6863
6864 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
6865 {
6866 cxx_sym = cplus_demangle (sym, DMGL_PARAMS | DMGL_ANSI);
6867 if (!cxx_sym)
6868 cxx_sym = sym;
6869 }
6870 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
6871 {
6872 java_sym = cplus_demangle (sym, DMGL_JAVA);
6873 if (!java_sym)
6874 java_sym = sym;
6875 }
6876
6877 if (head->htab && (prev == NULL || prev->symbol))
6878 {
6879 struct bfd_elf_version_expr e;
6880
6881 switch (prev ? prev->mask : 0)
6882 {
6883 case 0:
6884 if (head->mask & BFD_ELF_VERSION_C_TYPE)
6885 {
6886 e.symbol = sym;
6887 expr = htab_find (head->htab, &e);
6888 while (expr && strcmp (expr->symbol, sym) == 0)
6889 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
6890 goto out_ret;
6891 else
6892 expr = expr->next;
6893 }
6894 /* Fallthrough */
6895 case BFD_ELF_VERSION_C_TYPE:
6896 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
6897 {
6898 e.symbol = cxx_sym;
6899 expr = htab_find (head->htab, &e);
6900 while (expr && strcmp (expr->symbol, cxx_sym) == 0)
6901 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
6902 goto out_ret;
6903 else
6904 expr = expr->next;
6905 }
6906 /* Fallthrough */
6907 case BFD_ELF_VERSION_CXX_TYPE:
6908 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
6909 {
6910 e.symbol = java_sym;
6911 expr = htab_find (head->htab, &e);
6912 while (expr && strcmp (expr->symbol, java_sym) == 0)
6913 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
6914 goto out_ret;
6915 else
6916 expr = expr->next;
6917 }
6918 /* Fallthrough */
6919 default:
6920 break;
6921 }
6922 }
6923
6924 /* Finally, try the wildcards. */
6925 if (prev == NULL || prev->symbol)
6926 expr = head->remaining;
6927 else
6928 expr = prev->next;
6929 for (; expr; expr = expr->next)
6930 {
6931 const char *s;
6932
6933 if (!expr->pattern)
6934 continue;
6935
6936 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
6937 break;
6938
6939 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
6940 s = java_sym;
6941 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
6942 s = cxx_sym;
6943 else
6944 s = sym;
6945 if (fnmatch (expr->pattern, s, 0) == 0)
6946 break;
6947 }
6948
6949 out_ret:
6950 if (cxx_sym != sym)
6951 free ((char *) cxx_sym);
6952 if (java_sym != sym)
6953 free ((char *) java_sym);
6954 return expr;
6955 }
6956
6957 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
6958 return a string pointing to the symbol name. */
6959
6960 static const char *
6961 realsymbol (const char *pattern)
6962 {
6963 const char *p;
6964 bfd_boolean changed = FALSE, backslash = FALSE;
6965 char *s, *symbol = xmalloc (strlen (pattern) + 1);
6966
6967 for (p = pattern, s = symbol; *p != '\0'; ++p)
6968 {
6969 /* It is a glob pattern only if there is no preceding
6970 backslash. */
6971 if (! backslash && (*p == '?' || *p == '*' || *p == '['))
6972 {
6973 free (symbol);
6974 return NULL;
6975 }
6976
6977 if (backslash)
6978 {
6979 /* Remove the preceding backslash. */
6980 *(s - 1) = *p;
6981 changed = TRUE;
6982 }
6983 else
6984 *s++ = *p;
6985
6986 backslash = *p == '\\';
6987 }
6988
6989 if (changed)
6990 {
6991 *s = '\0';
6992 return symbol;
6993 }
6994 else
6995 {
6996 free (symbol);
6997 return pattern;
6998 }
6999 }
7000
7001 /* This is called for each variable name or match expression. NEW is
7002 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7003 pattern to be matched against symbol names. */
7004
7005 struct bfd_elf_version_expr *
7006 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7007 const char *new,
7008 const char *lang,
7009 bfd_boolean literal_p)
7010 {
7011 struct bfd_elf_version_expr *ret;
7012
7013 ret = xmalloc (sizeof *ret);
7014 ret->next = orig;
7015 ret->pattern = literal_p ? NULL : new;
7016 ret->symver = 0;
7017 ret->script = 0;
7018 ret->symbol = literal_p ? new : realsymbol (new);
7019
7020 if (lang == NULL || strcasecmp (lang, "C") == 0)
7021 ret->mask = BFD_ELF_VERSION_C_TYPE;
7022 else if (strcasecmp (lang, "C++") == 0)
7023 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7024 else if (strcasecmp (lang, "Java") == 0)
7025 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7026 else
7027 {
7028 einfo (_("%X%P: unknown language `%s' in version information\n"),
7029 lang);
7030 ret->mask = BFD_ELF_VERSION_C_TYPE;
7031 }
7032
7033 return ldemul_new_vers_pattern (ret);
7034 }
7035
7036 /* This is called for each set of variable names and match
7037 expressions. */
7038
7039 struct bfd_elf_version_tree *
7040 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7041 struct bfd_elf_version_expr *locals)
7042 {
7043 struct bfd_elf_version_tree *ret;
7044
7045 ret = xcalloc (1, sizeof *ret);
7046 ret->globals.list = globals;
7047 ret->locals.list = locals;
7048 ret->match = lang_vers_match;
7049 ret->name_indx = (unsigned int) -1;
7050 return ret;
7051 }
7052
7053 /* This static variable keeps track of version indices. */
7054
7055 static int version_index;
7056
7057 static hashval_t
7058 version_expr_head_hash (const void *p)
7059 {
7060 const struct bfd_elf_version_expr *e = p;
7061
7062 return htab_hash_string (e->symbol);
7063 }
7064
7065 static int
7066 version_expr_head_eq (const void *p1, const void *p2)
7067 {
7068 const struct bfd_elf_version_expr *e1 = p1;
7069 const struct bfd_elf_version_expr *e2 = p2;
7070
7071 return strcmp (e1->symbol, e2->symbol) == 0;
7072 }
7073
7074 static void
7075 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7076 {
7077 size_t count = 0;
7078 struct bfd_elf_version_expr *e, *next;
7079 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7080
7081 for (e = head->list; e; e = e->next)
7082 {
7083 if (e->symbol)
7084 count++;
7085 head->mask |= e->mask;
7086 }
7087
7088 if (count)
7089 {
7090 head->htab = htab_create (count * 2, version_expr_head_hash,
7091 version_expr_head_eq, NULL);
7092 list_loc = &head->list;
7093 remaining_loc = &head->remaining;
7094 for (e = head->list; e; e = next)
7095 {
7096 next = e->next;
7097 if (!e->symbol)
7098 {
7099 *remaining_loc = e;
7100 remaining_loc = &e->next;
7101 }
7102 else
7103 {
7104 void **loc = htab_find_slot (head->htab, e, INSERT);
7105
7106 if (*loc)
7107 {
7108 struct bfd_elf_version_expr *e1, *last;
7109
7110 e1 = *loc;
7111 last = NULL;
7112 do
7113 {
7114 if (e1->mask == e->mask)
7115 {
7116 last = NULL;
7117 break;
7118 }
7119 last = e1;
7120 e1 = e1->next;
7121 }
7122 while (e1 && strcmp (e1->symbol, e->symbol) == 0);
7123
7124 if (last == NULL)
7125 {
7126 /* This is a duplicate. */
7127 /* FIXME: Memory leak. Sometimes pattern is not
7128 xmalloced alone, but in larger chunk of memory. */
7129 /* free (e->symbol); */
7130 free (e);
7131 }
7132 else
7133 {
7134 e->next = last->next;
7135 last->next = e;
7136 }
7137 }
7138 else
7139 {
7140 *loc = e;
7141 *list_loc = e;
7142 list_loc = &e->next;
7143 }
7144 }
7145 }
7146 *remaining_loc = NULL;
7147 *list_loc = head->remaining;
7148 }
7149 else
7150 head->remaining = head->list;
7151 }
7152
7153 /* This is called when we know the name and dependencies of the
7154 version. */
7155
7156 void
7157 lang_register_vers_node (const char *name,
7158 struct bfd_elf_version_tree *version,
7159 struct bfd_elf_version_deps *deps)
7160 {
7161 struct bfd_elf_version_tree *t, **pp;
7162 struct bfd_elf_version_expr *e1;
7163
7164 if (name == NULL)
7165 name = "";
7166
7167 if ((name[0] == '\0' && lang_elf_version_info != NULL)
7168 || (lang_elf_version_info && lang_elf_version_info->name[0] == '\0'))
7169 {
7170 einfo (_("%X%P: anonymous version tag cannot be combined"
7171 " with other version tags\n"));
7172 free (version);
7173 return;
7174 }
7175
7176 /* Make sure this node has a unique name. */
7177 for (t = lang_elf_version_info; t != NULL; t = t->next)
7178 if (strcmp (t->name, name) == 0)
7179 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7180
7181 lang_finalize_version_expr_head (&version->globals);
7182 lang_finalize_version_expr_head (&version->locals);
7183
7184 /* Check the global and local match names, and make sure there
7185 aren't any duplicates. */
7186
7187 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7188 {
7189 for (t = lang_elf_version_info; t != NULL; t = t->next)
7190 {
7191 struct bfd_elf_version_expr *e2;
7192
7193 if (t->locals.htab && e1->symbol)
7194 {
7195 e2 = htab_find (t->locals.htab, e1);
7196 while (e2 && strcmp (e1->symbol, e2->symbol) == 0)
7197 {
7198 if (e1->mask == e2->mask)
7199 einfo (_("%X%P: duplicate expression `%s'"
7200 " in version information\n"), e1->symbol);
7201 e2 = e2->next;
7202 }
7203 }
7204 else if (!e1->symbol)
7205 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7206 if (strcmp (e1->pattern, e2->pattern) == 0
7207 && e1->mask == e2->mask)
7208 einfo (_("%X%P: duplicate expression `%s'"
7209 " in version information\n"), e1->pattern);
7210 }
7211 }
7212
7213 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7214 {
7215 for (t = lang_elf_version_info; t != NULL; t = t->next)
7216 {
7217 struct bfd_elf_version_expr *e2;
7218
7219 if (t->globals.htab && e1->symbol)
7220 {
7221 e2 = htab_find (t->globals.htab, e1);
7222 while (e2 && strcmp (e1->symbol, e2->symbol) == 0)
7223 {
7224 if (e1->mask == e2->mask)
7225 einfo (_("%X%P: duplicate expression `%s'"
7226 " in version information\n"),
7227 e1->symbol);
7228 e2 = e2->next;
7229 }
7230 }
7231 else if (!e1->symbol)
7232 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7233 if (strcmp (e1->pattern, e2->pattern) == 0
7234 && e1->mask == e2->mask)
7235 einfo (_("%X%P: duplicate expression `%s'"
7236 " in version information\n"), e1->pattern);
7237 }
7238 }
7239
7240 version->deps = deps;
7241 version->name = name;
7242 if (name[0] != '\0')
7243 {
7244 ++version_index;
7245 version->vernum = version_index;
7246 }
7247 else
7248 version->vernum = 0;
7249
7250 for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next)
7251 ;
7252 *pp = version;
7253 }
7254
7255 /* This is called when we see a version dependency. */
7256
7257 struct bfd_elf_version_deps *
7258 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7259 {
7260 struct bfd_elf_version_deps *ret;
7261 struct bfd_elf_version_tree *t;
7262
7263 ret = xmalloc (sizeof *ret);
7264 ret->next = list;
7265
7266 for (t = lang_elf_version_info; t != NULL; t = t->next)
7267 {
7268 if (strcmp (t->name, name) == 0)
7269 {
7270 ret->version_needed = t;
7271 return ret;
7272 }
7273 }
7274
7275 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7276
7277 return ret;
7278 }
7279
7280 static void
7281 lang_do_version_exports_section (void)
7282 {
7283 struct bfd_elf_version_expr *greg = NULL, *lreg;
7284
7285 LANG_FOR_EACH_INPUT_STATEMENT (is)
7286 {
7287 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7288 char *contents, *p;
7289 bfd_size_type len;
7290
7291 if (sec == NULL)
7292 continue;
7293
7294 len = sec->size;
7295 contents = xmalloc (len);
7296 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7297 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7298
7299 p = contents;
7300 while (p < contents + len)
7301 {
7302 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7303 p = strchr (p, '\0') + 1;
7304 }
7305
7306 /* Do not free the contents, as we used them creating the regex. */
7307
7308 /* Do not include this section in the link. */
7309 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7310 }
7311
7312 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7313 lang_register_vers_node (command_line.version_exports_section,
7314 lang_new_vers_node (greg, lreg), NULL);
7315 }
7316
7317 void
7318 lang_add_unique (const char *name)
7319 {
7320 struct unique_sections *ent;
7321
7322 for (ent = unique_section_list; ent; ent = ent->next)
7323 if (strcmp (ent->name, name) == 0)
7324 return;
7325
7326 ent = xmalloc (sizeof *ent);
7327 ent->name = xstrdup (name);
7328 ent->next = unique_section_list;
7329 unique_section_list = ent;
7330 }
7331
7332 /* Append the list of dynamic symbols to the existing one. */
7333
7334 void
7335 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7336 {
7337 if (link_info.dynamic_list)
7338 {
7339 struct bfd_elf_version_expr *tail;
7340 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7341 ;
7342 tail->next = link_info.dynamic_list->head.list;
7343 link_info.dynamic_list->head.list = dynamic;
7344 }
7345 else
7346 {
7347 struct bfd_elf_dynamic_list *d;
7348
7349 d = xcalloc (1, sizeof *d);
7350 d->head.list = dynamic;
7351 d->match = lang_vers_match;
7352 link_info.dynamic_list = d;
7353 }
7354 }
7355
7356 /* Append the list of C++ typeinfo dynamic symbols to the existing
7357 one. */
7358
7359 void
7360 lang_append_dynamic_list_cpp_typeinfo (void)
7361 {
7362 const char * symbols [] =
7363 {
7364 "typeinfo name for*",
7365 "typeinfo for*"
7366 };
7367 struct bfd_elf_version_expr *dynamic = NULL;
7368 unsigned int i;
7369
7370 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7371 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7372 FALSE);
7373
7374 lang_append_dynamic_list (dynamic);
7375 }
7376
7377 /* Append the list of C++ operator new and delete dynamic symbols to the
7378 existing one. */
7379
7380 void
7381 lang_append_dynamic_list_cpp_new (void)
7382 {
7383 const char * symbols [] =
7384 {
7385 "operator new*",
7386 "operator delete*"
7387 };
7388 struct bfd_elf_version_expr *dynamic = NULL;
7389 unsigned int i;
7390
7391 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7392 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7393 FALSE);
7394
7395 lang_append_dynamic_list (dynamic);
7396 }
This page took 0.181473 seconds and 4 git commands to generate.