Treat common symbol as undefined for --no-define-common
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2017 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "filenames.h"
25 #include "safe-ctype.h"
26 #include "obstack.h"
27 #include "bfdlink.h"
28
29 #include "ld.h"
30 #include "ldmain.h"
31 #include "ldexp.h"
32 #include "ldlang.h"
33 #include <ldgram.h>
34 #include "ldlex.h"
35 #include "ldmisc.h"
36 #include "ldctor.h"
37 #include "ldfile.h"
38 #include "ldemul.h"
39 #include "fnmatch.h"
40 #include "demangle.h"
41 #include "hashtab.h"
42 #include "elf-bfd.h"
43 #ifdef ENABLE_PLUGINS
44 #include "plugin.h"
45 #endif /* ENABLE_PLUGINS */
46
47 #ifndef offsetof
48 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
49 #endif
50
51 /* Convert between addresses in bytes and sizes in octets.
52 For currently supported targets, octets_per_byte is always a power
53 of two, so we can use shifts. */
54 #define TO_ADDR(X) ((X) >> opb_shift)
55 #define TO_SIZE(X) ((X) << opb_shift)
56
57 /* Local variables. */
58 static struct obstack stat_obstack;
59 static struct obstack map_obstack;
60
61 #define obstack_chunk_alloc xmalloc
62 #define obstack_chunk_free free
63 static const char *entry_symbol_default = "start";
64 static bfd_boolean map_head_is_link_order = FALSE;
65 static lang_output_section_statement_type *default_common_section;
66 static bfd_boolean map_option_f;
67 static bfd_vma print_dot;
68 static lang_input_statement_type *first_file;
69 static const char *current_target;
70 static lang_statement_list_type statement_list;
71 static lang_statement_list_type *stat_save[10];
72 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
73 static struct unique_sections *unique_section_list;
74 static struct asneeded_minfo *asneeded_list_head;
75 static unsigned int opb_shift = 0;
76
77 /* Forward declarations. */
78 static void exp_init_os (etree_type *);
79 static lang_input_statement_type *lookup_name (const char *);
80 static void insert_undefined (const char *);
81 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
82 static void print_statement (lang_statement_union_type *,
83 lang_output_section_statement_type *);
84 static void print_statement_list (lang_statement_union_type *,
85 lang_output_section_statement_type *);
86 static void print_statements (void);
87 static void print_input_section (asection *, bfd_boolean);
88 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
89 static void lang_record_phdrs (void);
90 static void lang_do_version_exports_section (void);
91 static void lang_finalize_version_expr_head
92 (struct bfd_elf_version_expr_head *);
93 static void lang_do_memory_regions (void);
94
95 /* Exported variables. */
96 const char *output_target;
97 lang_output_section_statement_type *abs_output_section;
98 lang_statement_list_type lang_output_section_statement;
99 lang_statement_list_type *stat_ptr = &statement_list;
100 lang_statement_list_type file_chain = { NULL, NULL };
101 lang_statement_list_type input_file_chain;
102 struct bfd_sym_chain entry_symbol = { NULL, NULL };
103 const char *entry_section = ".text";
104 struct lang_input_statement_flags input_flags;
105 bfd_boolean entry_from_cmdline;
106 bfd_boolean undef_from_cmdline;
107 bfd_boolean lang_has_input_file = FALSE;
108 bfd_boolean had_output_filename = FALSE;
109 bfd_boolean lang_float_flag = FALSE;
110 bfd_boolean delete_output_file_on_failure = FALSE;
111 struct lang_phdr *lang_phdr_list;
112 struct lang_nocrossrefs *nocrossref_list;
113 struct asneeded_minfo **asneeded_list_tail;
114
115 /* Functions that traverse the linker script and might evaluate
116 DEFINED() need to increment this at the start of the traversal. */
117 int lang_statement_iteration = 0;
118
119 /* Return TRUE if the PATTERN argument is a wildcard pattern.
120 Although backslashes are treated specially if a pattern contains
121 wildcards, we do not consider the mere presence of a backslash to
122 be enough to cause the pattern to be treated as a wildcard.
123 That lets us handle DOS filenames more naturally. */
124 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
125
126 #define new_stat(x, y) \
127 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
128
129 #define outside_section_address(q) \
130 ((q)->output_offset + (q)->output_section->vma)
131
132 #define outside_symbol_address(q) \
133 ((q)->value + outside_section_address (q->section))
134
135 #define SECTION_NAME_MAP_LENGTH (16)
136
137 void *
138 stat_alloc (size_t size)
139 {
140 return obstack_alloc (&stat_obstack, size);
141 }
142
143 static int
144 name_match (const char *pattern, const char *name)
145 {
146 if (wildcardp (pattern))
147 return fnmatch (pattern, name, 0);
148 return strcmp (pattern, name);
149 }
150
151 /* If PATTERN is of the form archive:file, return a pointer to the
152 separator. If not, return NULL. */
153
154 static char *
155 archive_path (const char *pattern)
156 {
157 char *p = NULL;
158
159 if (link_info.path_separator == 0)
160 return p;
161
162 p = strchr (pattern, link_info.path_separator);
163 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
164 if (p == NULL || link_info.path_separator != ':')
165 return p;
166
167 /* Assume a match on the second char is part of drive specifier,
168 as in "c:\silly.dos". */
169 if (p == pattern + 1 && ISALPHA (*pattern))
170 p = strchr (p + 1, link_info.path_separator);
171 #endif
172 return p;
173 }
174
175 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
176 return whether F matches FILE_SPEC. */
177
178 static bfd_boolean
179 input_statement_is_archive_path (const char *file_spec, char *sep,
180 lang_input_statement_type *f)
181 {
182 bfd_boolean match = FALSE;
183
184 if ((*(sep + 1) == 0
185 || name_match (sep + 1, f->filename) == 0)
186 && ((sep != file_spec)
187 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
188 {
189 match = TRUE;
190
191 if (sep != file_spec)
192 {
193 const char *aname = f->the_bfd->my_archive->filename;
194 *sep = 0;
195 match = name_match (file_spec, aname) == 0;
196 *sep = link_info.path_separator;
197 }
198 }
199 return match;
200 }
201
202 static bfd_boolean
203 unique_section_p (const asection *sec,
204 const lang_output_section_statement_type *os)
205 {
206 struct unique_sections *unam;
207 const char *secnam;
208
209 if (!link_info.resolve_section_groups
210 && sec->owner != NULL
211 && bfd_is_group_section (sec->owner, sec))
212 return !(os != NULL
213 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
214
215 secnam = sec->name;
216 for (unam = unique_section_list; unam; unam = unam->next)
217 if (name_match (unam->name, secnam) == 0)
218 return TRUE;
219
220 return FALSE;
221 }
222
223 /* Generic traversal routines for finding matching sections. */
224
225 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
226 false. */
227
228 static bfd_boolean
229 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
230 lang_input_statement_type *file)
231 {
232 struct name_list *list_tmp;
233
234 for (list_tmp = exclude_list;
235 list_tmp;
236 list_tmp = list_tmp->next)
237 {
238 char *p = archive_path (list_tmp->name);
239
240 if (p != NULL)
241 {
242 if (input_statement_is_archive_path (list_tmp->name, p, file))
243 return TRUE;
244 }
245
246 else if (name_match (list_tmp->name, file->filename) == 0)
247 return TRUE;
248
249 /* FIXME: Perhaps remove the following at some stage? Matching
250 unadorned archives like this was never documented and has
251 been superceded by the archive:path syntax. */
252 else if (file->the_bfd != NULL
253 && file->the_bfd->my_archive != NULL
254 && name_match (list_tmp->name,
255 file->the_bfd->my_archive->filename) == 0)
256 return TRUE;
257 }
258
259 return FALSE;
260 }
261
262 /* Try processing a section against a wildcard. This just calls
263 the callback unless the filename exclusion list is present
264 and excludes the file. It's hardly ever present so this
265 function is very fast. */
266
267 static void
268 walk_wild_consider_section (lang_wild_statement_type *ptr,
269 lang_input_statement_type *file,
270 asection *s,
271 struct wildcard_list *sec,
272 callback_t callback,
273 void *data)
274 {
275 /* Don't process sections from files which were excluded. */
276 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
277 return;
278
279 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
280 }
281
282 /* Lowest common denominator routine that can handle everything correctly,
283 but slowly. */
284
285 static void
286 walk_wild_section_general (lang_wild_statement_type *ptr,
287 lang_input_statement_type *file,
288 callback_t callback,
289 void *data)
290 {
291 asection *s;
292 struct wildcard_list *sec;
293
294 for (s = file->the_bfd->sections; s != NULL; s = s->next)
295 {
296 sec = ptr->section_list;
297 if (sec == NULL)
298 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
299
300 while (sec != NULL)
301 {
302 bfd_boolean skip = FALSE;
303
304 if (sec->spec.name != NULL)
305 {
306 const char *sname = bfd_get_section_name (file->the_bfd, s);
307
308 skip = name_match (sec->spec.name, sname) != 0;
309 }
310
311 if (!skip)
312 walk_wild_consider_section (ptr, file, s, sec, callback, data);
313
314 sec = sec->next;
315 }
316 }
317 }
318
319 /* Routines to find a single section given its name. If there's more
320 than one section with that name, we report that. */
321
322 typedef struct
323 {
324 asection *found_section;
325 bfd_boolean multiple_sections_found;
326 } section_iterator_callback_data;
327
328 static bfd_boolean
329 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
330 {
331 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
332
333 if (d->found_section != NULL)
334 {
335 d->multiple_sections_found = TRUE;
336 return TRUE;
337 }
338
339 d->found_section = s;
340 return FALSE;
341 }
342
343 static asection *
344 find_section (lang_input_statement_type *file,
345 struct wildcard_list *sec,
346 bfd_boolean *multiple_sections_found)
347 {
348 section_iterator_callback_data cb_data = { NULL, FALSE };
349
350 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
351 section_iterator_callback, &cb_data);
352 *multiple_sections_found = cb_data.multiple_sections_found;
353 return cb_data.found_section;
354 }
355
356 /* Code for handling simple wildcards without going through fnmatch,
357 which can be expensive because of charset translations etc. */
358
359 /* A simple wild is a literal string followed by a single '*',
360 where the literal part is at least 4 characters long. */
361
362 static bfd_boolean
363 is_simple_wild (const char *name)
364 {
365 size_t len = strcspn (name, "*?[");
366 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
367 }
368
369 static bfd_boolean
370 match_simple_wild (const char *pattern, const char *name)
371 {
372 /* The first four characters of the pattern are guaranteed valid
373 non-wildcard characters. So we can go faster. */
374 if (pattern[0] != name[0] || pattern[1] != name[1]
375 || pattern[2] != name[2] || pattern[3] != name[3])
376 return FALSE;
377
378 pattern += 4;
379 name += 4;
380 while (*pattern != '*')
381 if (*name++ != *pattern++)
382 return FALSE;
383
384 return TRUE;
385 }
386
387 /* Return the numerical value of the init_priority attribute from
388 section name NAME. */
389
390 static unsigned long
391 get_init_priority (const char *name)
392 {
393 char *end;
394 unsigned long init_priority;
395
396 /* GCC uses the following section names for the init_priority
397 attribute with numerical values 101 and 65535 inclusive. A
398 lower value means a higher priority.
399
400 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
401 decimal numerical value of the init_priority attribute.
402 The order of execution in .init_array is forward and
403 .fini_array is backward.
404 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
405 decimal numerical value of the init_priority attribute.
406 The order of execution in .ctors is backward and .dtors
407 is forward.
408 */
409 if (strncmp (name, ".init_array.", 12) == 0
410 || strncmp (name, ".fini_array.", 12) == 0)
411 {
412 init_priority = strtoul (name + 12, &end, 10);
413 return *end ? 0 : init_priority;
414 }
415 else if (strncmp (name, ".ctors.", 7) == 0
416 || strncmp (name, ".dtors.", 7) == 0)
417 {
418 init_priority = strtoul (name + 7, &end, 10);
419 return *end ? 0 : 65535 - init_priority;
420 }
421
422 return 0;
423 }
424
425 /* Compare sections ASEC and BSEC according to SORT. */
426
427 static int
428 compare_section (sort_type sort, asection *asec, asection *bsec)
429 {
430 int ret;
431 unsigned long ainit_priority, binit_priority;
432
433 switch (sort)
434 {
435 default:
436 abort ();
437
438 case by_init_priority:
439 ainit_priority
440 = get_init_priority (bfd_get_section_name (asec->owner, asec));
441 binit_priority
442 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
443 if (ainit_priority == 0 || binit_priority == 0)
444 goto sort_by_name;
445 ret = ainit_priority - binit_priority;
446 if (ret)
447 break;
448 else
449 goto sort_by_name;
450
451 case by_alignment_name:
452 ret = (bfd_section_alignment (bsec->owner, bsec)
453 - bfd_section_alignment (asec->owner, asec));
454 if (ret)
455 break;
456 /* Fall through. */
457
458 case by_name:
459 sort_by_name:
460 ret = strcmp (bfd_get_section_name (asec->owner, asec),
461 bfd_get_section_name (bsec->owner, bsec));
462 break;
463
464 case by_name_alignment:
465 ret = strcmp (bfd_get_section_name (asec->owner, asec),
466 bfd_get_section_name (bsec->owner, bsec));
467 if (ret)
468 break;
469 /* Fall through. */
470
471 case by_alignment:
472 ret = (bfd_section_alignment (bsec->owner, bsec)
473 - bfd_section_alignment (asec->owner, asec));
474 break;
475 }
476
477 return ret;
478 }
479
480 /* Build a Binary Search Tree to sort sections, unlike insertion sort
481 used in wild_sort(). BST is considerably faster if the number of
482 of sections are large. */
483
484 static lang_section_bst_type **
485 wild_sort_fast (lang_wild_statement_type *wild,
486 struct wildcard_list *sec,
487 lang_input_statement_type *file ATTRIBUTE_UNUSED,
488 asection *section)
489 {
490 lang_section_bst_type **tree;
491
492 tree = &wild->tree;
493 if (!wild->filenames_sorted
494 && (sec == NULL || sec->spec.sorted == none))
495 {
496 /* Append at the right end of tree. */
497 while (*tree)
498 tree = &((*tree)->right);
499 return tree;
500 }
501
502 while (*tree)
503 {
504 /* Find the correct node to append this section. */
505 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
506 tree = &((*tree)->left);
507 else
508 tree = &((*tree)->right);
509 }
510
511 return tree;
512 }
513
514 /* Use wild_sort_fast to build a BST to sort sections. */
515
516 static void
517 output_section_callback_fast (lang_wild_statement_type *ptr,
518 struct wildcard_list *sec,
519 asection *section,
520 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
521 lang_input_statement_type *file,
522 void *output)
523 {
524 lang_section_bst_type *node;
525 lang_section_bst_type **tree;
526 lang_output_section_statement_type *os;
527
528 os = (lang_output_section_statement_type *) output;
529
530 if (unique_section_p (section, os))
531 return;
532
533 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
534 node->left = 0;
535 node->right = 0;
536 node->section = section;
537
538 tree = wild_sort_fast (ptr, sec, file, section);
539 if (tree != NULL)
540 *tree = node;
541 }
542
543 /* Convert a sorted sections' BST back to list form. */
544
545 static void
546 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
547 lang_section_bst_type *tree,
548 void *output)
549 {
550 if (tree->left)
551 output_section_callback_tree_to_list (ptr, tree->left, output);
552
553 lang_add_section (&ptr->children, tree->section, NULL,
554 (lang_output_section_statement_type *) output);
555
556 if (tree->right)
557 output_section_callback_tree_to_list (ptr, tree->right, output);
558
559 free (tree);
560 }
561
562 /* Specialized, optimized routines for handling different kinds of
563 wildcards */
564
565 static void
566 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
567 lang_input_statement_type *file,
568 callback_t callback,
569 void *data)
570 {
571 /* We can just do a hash lookup for the section with the right name.
572 But if that lookup discovers more than one section with the name
573 (should be rare), we fall back to the general algorithm because
574 we would otherwise have to sort the sections to make sure they
575 get processed in the bfd's order. */
576 bfd_boolean multiple_sections_found;
577 struct wildcard_list *sec0 = ptr->handler_data[0];
578 asection *s0 = find_section (file, sec0, &multiple_sections_found);
579
580 if (multiple_sections_found)
581 walk_wild_section_general (ptr, file, callback, data);
582 else if (s0)
583 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
584 }
585
586 static void
587 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
588 lang_input_statement_type *file,
589 callback_t callback,
590 void *data)
591 {
592 asection *s;
593 struct wildcard_list *wildsec0 = ptr->handler_data[0];
594
595 for (s = file->the_bfd->sections; s != NULL; s = s->next)
596 {
597 const char *sname = bfd_get_section_name (file->the_bfd, s);
598 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
599
600 if (!skip)
601 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
602 }
603 }
604
605 static void
606 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
607 lang_input_statement_type *file,
608 callback_t callback,
609 void *data)
610 {
611 asection *s;
612 struct wildcard_list *sec0 = ptr->handler_data[0];
613 struct wildcard_list *wildsec1 = ptr->handler_data[1];
614 bfd_boolean multiple_sections_found;
615 asection *s0 = find_section (file, sec0, &multiple_sections_found);
616
617 if (multiple_sections_found)
618 {
619 walk_wild_section_general (ptr, file, callback, data);
620 return;
621 }
622
623 /* Note that if the section was not found, s0 is NULL and
624 we'll simply never succeed the s == s0 test below. */
625 for (s = file->the_bfd->sections; s != NULL; s = s->next)
626 {
627 /* Recall that in this code path, a section cannot satisfy more
628 than one spec, so if s == s0 then it cannot match
629 wildspec1. */
630 if (s == s0)
631 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
632 else
633 {
634 const char *sname = bfd_get_section_name (file->the_bfd, s);
635 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
636
637 if (!skip)
638 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
639 data);
640 }
641 }
642 }
643
644 static void
645 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
646 lang_input_statement_type *file,
647 callback_t callback,
648 void *data)
649 {
650 asection *s;
651 struct wildcard_list *sec0 = ptr->handler_data[0];
652 struct wildcard_list *wildsec1 = ptr->handler_data[1];
653 struct wildcard_list *wildsec2 = ptr->handler_data[2];
654 bfd_boolean multiple_sections_found;
655 asection *s0 = find_section (file, sec0, &multiple_sections_found);
656
657 if (multiple_sections_found)
658 {
659 walk_wild_section_general (ptr, file, callback, data);
660 return;
661 }
662
663 for (s = file->the_bfd->sections; s != NULL; s = s->next)
664 {
665 if (s == s0)
666 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
667 else
668 {
669 const char *sname = bfd_get_section_name (file->the_bfd, s);
670 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
671
672 if (!skip)
673 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
674 else
675 {
676 skip = !match_simple_wild (wildsec2->spec.name, sname);
677 if (!skip)
678 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
679 data);
680 }
681 }
682 }
683 }
684
685 static void
686 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
687 lang_input_statement_type *file,
688 callback_t callback,
689 void *data)
690 {
691 asection *s;
692 struct wildcard_list *sec0 = ptr->handler_data[0];
693 struct wildcard_list *sec1 = ptr->handler_data[1];
694 struct wildcard_list *wildsec2 = ptr->handler_data[2];
695 struct wildcard_list *wildsec3 = ptr->handler_data[3];
696 bfd_boolean multiple_sections_found;
697 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
698
699 if (multiple_sections_found)
700 {
701 walk_wild_section_general (ptr, file, callback, data);
702 return;
703 }
704
705 s1 = find_section (file, sec1, &multiple_sections_found);
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 if (s == s1)
718 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
719 else
720 {
721 const char *sname = bfd_get_section_name (file->the_bfd, s);
722 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
723 sname);
724
725 if (!skip)
726 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
727 data);
728 else
729 {
730 skip = !match_simple_wild (wildsec3->spec.name, sname);
731 if (!skip)
732 walk_wild_consider_section (ptr, file, s, wildsec3,
733 callback, data);
734 }
735 }
736 }
737 }
738
739 static void
740 walk_wild_section (lang_wild_statement_type *ptr,
741 lang_input_statement_type *file,
742 callback_t callback,
743 void *data)
744 {
745 if (file->flags.just_syms)
746 return;
747
748 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
749 }
750
751 /* Returns TRUE when name1 is a wildcard spec that might match
752 something name2 can match. We're conservative: we return FALSE
753 only if the prefixes of name1 and name2 are different up to the
754 first wildcard character. */
755
756 static bfd_boolean
757 wild_spec_can_overlap (const char *name1, const char *name2)
758 {
759 size_t prefix1_len = strcspn (name1, "?*[");
760 size_t prefix2_len = strcspn (name2, "?*[");
761 size_t min_prefix_len;
762
763 /* Note that if there is no wildcard character, then we treat the
764 terminating 0 as part of the prefix. Thus ".text" won't match
765 ".text." or ".text.*", for example. */
766 if (name1[prefix1_len] == '\0')
767 prefix1_len++;
768 if (name2[prefix2_len] == '\0')
769 prefix2_len++;
770
771 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
772
773 return memcmp (name1, name2, min_prefix_len) == 0;
774 }
775
776 /* Select specialized code to handle various kinds of wildcard
777 statements. */
778
779 static void
780 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
781 {
782 int sec_count = 0;
783 int wild_name_count = 0;
784 struct wildcard_list *sec;
785 int signature;
786 int data_counter;
787
788 ptr->walk_wild_section_handler = walk_wild_section_general;
789 ptr->handler_data[0] = NULL;
790 ptr->handler_data[1] = NULL;
791 ptr->handler_data[2] = NULL;
792 ptr->handler_data[3] = NULL;
793 ptr->tree = NULL;
794
795 /* Count how many wildcard_specs there are, and how many of those
796 actually use wildcards in the name. Also, bail out if any of the
797 wildcard names are NULL. (Can this actually happen?
798 walk_wild_section used to test for it.) And bail out if any
799 of the wildcards are more complex than a simple string
800 ending in a single '*'. */
801 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
802 {
803 ++sec_count;
804 if (sec->spec.name == NULL)
805 return;
806 if (wildcardp (sec->spec.name))
807 {
808 ++wild_name_count;
809 if (!is_simple_wild (sec->spec.name))
810 return;
811 }
812 }
813
814 /* The zero-spec case would be easy to optimize but it doesn't
815 happen in practice. Likewise, more than 4 specs doesn't
816 happen in practice. */
817 if (sec_count == 0 || sec_count > 4)
818 return;
819
820 /* Check that no two specs can match the same section. */
821 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
822 {
823 struct wildcard_list *sec2;
824 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
825 {
826 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
827 return;
828 }
829 }
830
831 signature = (sec_count << 8) + wild_name_count;
832 switch (signature)
833 {
834 case 0x0100:
835 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
836 break;
837 case 0x0101:
838 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
839 break;
840 case 0x0201:
841 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
842 break;
843 case 0x0302:
844 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
845 break;
846 case 0x0402:
847 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
848 break;
849 default:
850 return;
851 }
852
853 /* Now fill the data array with pointers to the specs, first the
854 specs with non-wildcard names, then the specs with wildcard
855 names. It's OK to process the specs in different order from the
856 given order, because we've already determined that no section
857 will match more than one spec. */
858 data_counter = 0;
859 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
860 if (!wildcardp (sec->spec.name))
861 ptr->handler_data[data_counter++] = sec;
862 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
863 if (wildcardp (sec->spec.name))
864 ptr->handler_data[data_counter++] = sec;
865 }
866
867 /* Handle a wild statement for a single file F. */
868
869 static void
870 walk_wild_file (lang_wild_statement_type *s,
871 lang_input_statement_type *f,
872 callback_t callback,
873 void *data)
874 {
875 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
876 return;
877
878 if (f->the_bfd == NULL
879 || !bfd_check_format (f->the_bfd, bfd_archive))
880 walk_wild_section (s, f, callback, data);
881 else
882 {
883 bfd *member;
884
885 /* This is an archive file. We must map each member of the
886 archive separately. */
887 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
888 while (member != NULL)
889 {
890 /* When lookup_name is called, it will call the add_symbols
891 entry point for the archive. For each element of the
892 archive which is included, BFD will call ldlang_add_file,
893 which will set the usrdata field of the member to the
894 lang_input_statement. */
895 if (member->usrdata != NULL)
896 {
897 walk_wild_section (s,
898 (lang_input_statement_type *) member->usrdata,
899 callback, data);
900 }
901
902 member = bfd_openr_next_archived_file (f->the_bfd, member);
903 }
904 }
905 }
906
907 static void
908 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
909 {
910 const char *file_spec = s->filename;
911 char *p;
912
913 if (file_spec == NULL)
914 {
915 /* Perform the iteration over all files in the list. */
916 LANG_FOR_EACH_INPUT_STATEMENT (f)
917 {
918 walk_wild_file (s, f, callback, data);
919 }
920 }
921 else if ((p = archive_path (file_spec)) != NULL)
922 {
923 LANG_FOR_EACH_INPUT_STATEMENT (f)
924 {
925 if (input_statement_is_archive_path (file_spec, p, f))
926 walk_wild_file (s, f, callback, data);
927 }
928 }
929 else if (wildcardp (file_spec))
930 {
931 LANG_FOR_EACH_INPUT_STATEMENT (f)
932 {
933 if (fnmatch (file_spec, f->filename, 0) == 0)
934 walk_wild_file (s, f, callback, data);
935 }
936 }
937 else
938 {
939 lang_input_statement_type *f;
940
941 /* Perform the iteration over a single file. */
942 f = lookup_name (file_spec);
943 if (f)
944 walk_wild_file (s, f, callback, data);
945 }
946 }
947
948 /* lang_for_each_statement walks the parse tree and calls the provided
949 function for each node, except those inside output section statements
950 with constraint set to -1. */
951
952 void
953 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
954 lang_statement_union_type *s)
955 {
956 for (; s != NULL; s = s->header.next)
957 {
958 func (s);
959
960 switch (s->header.type)
961 {
962 case lang_constructors_statement_enum:
963 lang_for_each_statement_worker (func, constructor_list.head);
964 break;
965 case lang_output_section_statement_enum:
966 if (s->output_section_statement.constraint != -1)
967 lang_for_each_statement_worker
968 (func, s->output_section_statement.children.head);
969 break;
970 case lang_wild_statement_enum:
971 lang_for_each_statement_worker (func,
972 s->wild_statement.children.head);
973 break;
974 case lang_group_statement_enum:
975 lang_for_each_statement_worker (func,
976 s->group_statement.children.head);
977 break;
978 case lang_data_statement_enum:
979 case lang_reloc_statement_enum:
980 case lang_object_symbols_statement_enum:
981 case lang_output_statement_enum:
982 case lang_target_statement_enum:
983 case lang_input_section_enum:
984 case lang_input_statement_enum:
985 case lang_assignment_statement_enum:
986 case lang_padding_statement_enum:
987 case lang_address_statement_enum:
988 case lang_fill_statement_enum:
989 case lang_insert_statement_enum:
990 break;
991 default:
992 FAIL ();
993 break;
994 }
995 }
996 }
997
998 void
999 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1000 {
1001 lang_for_each_statement_worker (func, statement_list.head);
1002 }
1003
1004 /*----------------------------------------------------------------------*/
1005
1006 void
1007 lang_list_init (lang_statement_list_type *list)
1008 {
1009 list->head = NULL;
1010 list->tail = &list->head;
1011 }
1012
1013 void
1014 push_stat_ptr (lang_statement_list_type *new_ptr)
1015 {
1016 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1017 abort ();
1018 *stat_save_ptr++ = stat_ptr;
1019 stat_ptr = new_ptr;
1020 }
1021
1022 void
1023 pop_stat_ptr (void)
1024 {
1025 if (stat_save_ptr <= stat_save)
1026 abort ();
1027 stat_ptr = *--stat_save_ptr;
1028 }
1029
1030 /* Build a new statement node for the parse tree. */
1031
1032 static lang_statement_union_type *
1033 new_statement (enum statement_enum type,
1034 size_t size,
1035 lang_statement_list_type *list)
1036 {
1037 lang_statement_union_type *new_stmt;
1038
1039 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1040 new_stmt->header.type = type;
1041 new_stmt->header.next = NULL;
1042 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1043 return new_stmt;
1044 }
1045
1046 /* Build a new input file node for the language. There are several
1047 ways in which we treat an input file, eg, we only look at symbols,
1048 or prefix it with a -l etc.
1049
1050 We can be supplied with requests for input files more than once;
1051 they may, for example be split over several lines like foo.o(.text)
1052 foo.o(.data) etc, so when asked for a file we check that we haven't
1053 got it already so we don't duplicate the bfd. */
1054
1055 static lang_input_statement_type *
1056 new_afile (const char *name,
1057 lang_input_file_enum_type file_type,
1058 const char *target,
1059 bfd_boolean add_to_list)
1060 {
1061 lang_input_statement_type *p;
1062
1063 lang_has_input_file = TRUE;
1064
1065 if (add_to_list)
1066 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1067 else
1068 {
1069 p = (lang_input_statement_type *)
1070 stat_alloc (sizeof (lang_input_statement_type));
1071 p->header.type = lang_input_statement_enum;
1072 p->header.next = NULL;
1073 }
1074
1075 memset (&p->the_bfd, 0,
1076 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1077 p->target = target;
1078 p->flags.dynamic = input_flags.dynamic;
1079 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1080 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1081 p->flags.whole_archive = input_flags.whole_archive;
1082 p->flags.sysrooted = input_flags.sysrooted;
1083
1084 switch (file_type)
1085 {
1086 case lang_input_file_is_symbols_only_enum:
1087 p->filename = name;
1088 p->local_sym_name = name;
1089 p->flags.real = TRUE;
1090 p->flags.just_syms = TRUE;
1091 break;
1092 case lang_input_file_is_fake_enum:
1093 p->filename = name;
1094 p->local_sym_name = name;
1095 break;
1096 case lang_input_file_is_l_enum:
1097 if (name[0] == ':' && name[1] != '\0')
1098 {
1099 p->filename = name + 1;
1100 p->flags.full_name_provided = TRUE;
1101 }
1102 else
1103 p->filename = name;
1104 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1105 p->flags.maybe_archive = TRUE;
1106 p->flags.real = TRUE;
1107 p->flags.search_dirs = TRUE;
1108 break;
1109 case lang_input_file_is_marker_enum:
1110 p->filename = name;
1111 p->local_sym_name = name;
1112 p->flags.search_dirs = TRUE;
1113 break;
1114 case lang_input_file_is_search_file_enum:
1115 p->filename = name;
1116 p->local_sym_name = name;
1117 p->flags.real = TRUE;
1118 p->flags.search_dirs = TRUE;
1119 break;
1120 case lang_input_file_is_file_enum:
1121 p->filename = name;
1122 p->local_sym_name = name;
1123 p->flags.real = TRUE;
1124 break;
1125 default:
1126 FAIL ();
1127 }
1128
1129 lang_statement_append (&input_file_chain,
1130 (lang_statement_union_type *) p,
1131 &p->next_real_file);
1132 return p;
1133 }
1134
1135 lang_input_statement_type *
1136 lang_add_input_file (const char *name,
1137 lang_input_file_enum_type file_type,
1138 const char *target)
1139 {
1140 if (name != NULL
1141 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1142 {
1143 lang_input_statement_type *ret;
1144 char *sysrooted_name
1145 = concat (ld_sysroot,
1146 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1147 (const char *) NULL);
1148
1149 /* We've now forcibly prepended the sysroot, making the input
1150 file independent of the context. Therefore, temporarily
1151 force a non-sysrooted context for this statement, so it won't
1152 get the sysroot prepended again when opened. (N.B. if it's a
1153 script, any child nodes with input files starting with "/"
1154 will be handled as "sysrooted" as they'll be found to be
1155 within the sysroot subdirectory.) */
1156 unsigned int outer_sysrooted = input_flags.sysrooted;
1157 input_flags.sysrooted = 0;
1158 ret = new_afile (sysrooted_name, file_type, target, TRUE);
1159 input_flags.sysrooted = outer_sysrooted;
1160 return ret;
1161 }
1162
1163 return new_afile (name, file_type, target, TRUE);
1164 }
1165
1166 struct out_section_hash_entry
1167 {
1168 struct bfd_hash_entry root;
1169 lang_statement_union_type s;
1170 };
1171
1172 /* The hash table. */
1173
1174 static struct bfd_hash_table output_section_statement_table;
1175
1176 /* Support routines for the hash table used by lang_output_section_find,
1177 initialize the table, fill in an entry and remove the table. */
1178
1179 static struct bfd_hash_entry *
1180 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1181 struct bfd_hash_table *table,
1182 const char *string)
1183 {
1184 lang_output_section_statement_type **nextp;
1185 struct out_section_hash_entry *ret;
1186
1187 if (entry == NULL)
1188 {
1189 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1190 sizeof (*ret));
1191 if (entry == NULL)
1192 return entry;
1193 }
1194
1195 entry = bfd_hash_newfunc (entry, table, string);
1196 if (entry == NULL)
1197 return entry;
1198
1199 ret = (struct out_section_hash_entry *) entry;
1200 memset (&ret->s, 0, sizeof (ret->s));
1201 ret->s.header.type = lang_output_section_statement_enum;
1202 ret->s.output_section_statement.subsection_alignment = -1;
1203 ret->s.output_section_statement.section_alignment = -1;
1204 ret->s.output_section_statement.block_value = 1;
1205 lang_list_init (&ret->s.output_section_statement.children);
1206 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1207
1208 /* For every output section statement added to the list, except the
1209 first one, lang_output_section_statement.tail points to the "next"
1210 field of the last element of the list. */
1211 if (lang_output_section_statement.head != NULL)
1212 ret->s.output_section_statement.prev
1213 = ((lang_output_section_statement_type *)
1214 ((char *) lang_output_section_statement.tail
1215 - offsetof (lang_output_section_statement_type, next)));
1216
1217 /* GCC's strict aliasing rules prevent us from just casting the
1218 address, so we store the pointer in a variable and cast that
1219 instead. */
1220 nextp = &ret->s.output_section_statement.next;
1221 lang_statement_append (&lang_output_section_statement,
1222 &ret->s,
1223 (lang_statement_union_type **) nextp);
1224 return &ret->root;
1225 }
1226
1227 static void
1228 output_section_statement_table_init (void)
1229 {
1230 if (!bfd_hash_table_init_n (&output_section_statement_table,
1231 output_section_statement_newfunc,
1232 sizeof (struct out_section_hash_entry),
1233 61))
1234 einfo (_("%P%F: can not create hash table: %E\n"));
1235 }
1236
1237 static void
1238 output_section_statement_table_free (void)
1239 {
1240 bfd_hash_table_free (&output_section_statement_table);
1241 }
1242
1243 /* Build enough state so that the parser can build its tree. */
1244
1245 void
1246 lang_init (void)
1247 {
1248 obstack_begin (&stat_obstack, 1000);
1249
1250 stat_ptr = &statement_list;
1251
1252 output_section_statement_table_init ();
1253
1254 lang_list_init (stat_ptr);
1255
1256 lang_list_init (&input_file_chain);
1257 lang_list_init (&lang_output_section_statement);
1258 lang_list_init (&file_chain);
1259 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1260 NULL);
1261 abs_output_section =
1262 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1263
1264 abs_output_section->bfd_section = bfd_abs_section_ptr;
1265
1266 asneeded_list_head = NULL;
1267 asneeded_list_tail = &asneeded_list_head;
1268 }
1269
1270 void
1271 lang_finish (void)
1272 {
1273 output_section_statement_table_free ();
1274 }
1275
1276 /*----------------------------------------------------------------------
1277 A region is an area of memory declared with the
1278 MEMORY { name:org=exp, len=exp ... }
1279 syntax.
1280
1281 We maintain a list of all the regions here.
1282
1283 If no regions are specified in the script, then the default is used
1284 which is created when looked up to be the entire data space.
1285
1286 If create is true we are creating a region inside a MEMORY block.
1287 In this case it is probably an error to create a region that has
1288 already been created. If we are not inside a MEMORY block it is
1289 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1290 and so we issue a warning.
1291
1292 Each region has at least one name. The first name is either
1293 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1294 alias names to an existing region within a script with
1295 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1296 region. */
1297
1298 static lang_memory_region_type *lang_memory_region_list;
1299 static lang_memory_region_type **lang_memory_region_list_tail
1300 = &lang_memory_region_list;
1301
1302 lang_memory_region_type *
1303 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1304 {
1305 lang_memory_region_name *n;
1306 lang_memory_region_type *r;
1307 lang_memory_region_type *new_region;
1308
1309 /* NAME is NULL for LMA memspecs if no region was specified. */
1310 if (name == NULL)
1311 return NULL;
1312
1313 for (r = lang_memory_region_list; r != NULL; r = r->next)
1314 for (n = &r->name_list; n != NULL; n = n->next)
1315 if (strcmp (n->name, name) == 0)
1316 {
1317 if (create)
1318 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1319 NULL, name);
1320 return r;
1321 }
1322
1323 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1324 einfo (_("%P:%S: warning: memory region `%s' not declared\n"),
1325 NULL, name);
1326
1327 new_region = (lang_memory_region_type *)
1328 stat_alloc (sizeof (lang_memory_region_type));
1329
1330 new_region->name_list.name = xstrdup (name);
1331 new_region->name_list.next = NULL;
1332 new_region->next = NULL;
1333 new_region->origin_exp = NULL;
1334 new_region->origin = 0;
1335 new_region->length_exp = NULL;
1336 new_region->length = ~(bfd_size_type) 0;
1337 new_region->current = 0;
1338 new_region->last_os = NULL;
1339 new_region->flags = 0;
1340 new_region->not_flags = 0;
1341 new_region->had_full_message = FALSE;
1342
1343 *lang_memory_region_list_tail = new_region;
1344 lang_memory_region_list_tail = &new_region->next;
1345
1346 return new_region;
1347 }
1348
1349 void
1350 lang_memory_region_alias (const char *alias, const char *region_name)
1351 {
1352 lang_memory_region_name *n;
1353 lang_memory_region_type *r;
1354 lang_memory_region_type *region;
1355
1356 /* The default region must be unique. This ensures that it is not necessary
1357 to iterate through the name list if someone wants the check if a region is
1358 the default memory region. */
1359 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1360 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1361 einfo (_("%F%P:%S: error: alias for default memory region\n"), NULL);
1362
1363 /* Look for the target region and check if the alias is not already
1364 in use. */
1365 region = NULL;
1366 for (r = lang_memory_region_list; r != NULL; r = r->next)
1367 for (n = &r->name_list; n != NULL; n = n->next)
1368 {
1369 if (region == NULL && strcmp (n->name, region_name) == 0)
1370 region = r;
1371 if (strcmp (n->name, alias) == 0)
1372 einfo (_("%F%P:%S: error: redefinition of memory region "
1373 "alias `%s'\n"),
1374 NULL, alias);
1375 }
1376
1377 /* Check if the target region exists. */
1378 if (region == NULL)
1379 einfo (_("%F%P:%S: error: memory region `%s' "
1380 "for alias `%s' does not exist\n"),
1381 NULL, region_name, alias);
1382
1383 /* Add alias to region name list. */
1384 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1385 n->name = xstrdup (alias);
1386 n->next = region->name_list.next;
1387 region->name_list.next = n;
1388 }
1389
1390 static lang_memory_region_type *
1391 lang_memory_default (asection *section)
1392 {
1393 lang_memory_region_type *p;
1394
1395 flagword sec_flags = section->flags;
1396
1397 /* Override SEC_DATA to mean a writable section. */
1398 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1399 sec_flags |= SEC_DATA;
1400
1401 for (p = lang_memory_region_list; p != NULL; p = p->next)
1402 {
1403 if ((p->flags & sec_flags) != 0
1404 && (p->not_flags & sec_flags) == 0)
1405 {
1406 return p;
1407 }
1408 }
1409 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1410 }
1411
1412 /* Get the output section statement directly from the userdata. */
1413
1414 lang_output_section_statement_type *
1415 lang_output_section_get (const asection *output_section)
1416 {
1417 return get_userdata (output_section);
1418 }
1419
1420 /* Find or create an output_section_statement with the given NAME.
1421 If CONSTRAINT is non-zero match one with that constraint, otherwise
1422 match any non-negative constraint. If CREATE, always make a
1423 new output_section_statement for SPECIAL CONSTRAINT. */
1424
1425 lang_output_section_statement_type *
1426 lang_output_section_statement_lookup (const char *name,
1427 int constraint,
1428 bfd_boolean create)
1429 {
1430 struct out_section_hash_entry *entry;
1431
1432 entry = ((struct out_section_hash_entry *)
1433 bfd_hash_lookup (&output_section_statement_table, name,
1434 create, FALSE));
1435 if (entry == NULL)
1436 {
1437 if (create)
1438 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1439 return NULL;
1440 }
1441
1442 if (entry->s.output_section_statement.name != NULL)
1443 {
1444 /* We have a section of this name, but it might not have the correct
1445 constraint. */
1446 struct out_section_hash_entry *last_ent;
1447
1448 name = entry->s.output_section_statement.name;
1449 if (create && constraint == SPECIAL)
1450 /* Not traversing to the end reverses the order of the second
1451 and subsequent SPECIAL sections in the hash table chain,
1452 but that shouldn't matter. */
1453 last_ent = entry;
1454 else
1455 do
1456 {
1457 if (constraint == entry->s.output_section_statement.constraint
1458 || (constraint == 0
1459 && entry->s.output_section_statement.constraint >= 0))
1460 return &entry->s.output_section_statement;
1461 last_ent = entry;
1462 entry = (struct out_section_hash_entry *) entry->root.next;
1463 }
1464 while (entry != NULL
1465 && name == entry->s.output_section_statement.name);
1466
1467 if (!create)
1468 return NULL;
1469
1470 entry
1471 = ((struct out_section_hash_entry *)
1472 output_section_statement_newfunc (NULL,
1473 &output_section_statement_table,
1474 name));
1475 if (entry == NULL)
1476 {
1477 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1478 return NULL;
1479 }
1480 entry->root = last_ent->root;
1481 last_ent->root.next = &entry->root;
1482 }
1483
1484 entry->s.output_section_statement.name = name;
1485 entry->s.output_section_statement.constraint = constraint;
1486 return &entry->s.output_section_statement;
1487 }
1488
1489 /* Find the next output_section_statement with the same name as OS.
1490 If CONSTRAINT is non-zero, find one with that constraint otherwise
1491 match any non-negative constraint. */
1492
1493 lang_output_section_statement_type *
1494 next_matching_output_section_statement (lang_output_section_statement_type *os,
1495 int constraint)
1496 {
1497 /* All output_section_statements are actually part of a
1498 struct out_section_hash_entry. */
1499 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1500 ((char *) os
1501 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1502 const char *name = os->name;
1503
1504 ASSERT (name == entry->root.string);
1505 do
1506 {
1507 entry = (struct out_section_hash_entry *) entry->root.next;
1508 if (entry == NULL
1509 || name != entry->s.output_section_statement.name)
1510 return NULL;
1511 }
1512 while (constraint != entry->s.output_section_statement.constraint
1513 && (constraint != 0
1514 || entry->s.output_section_statement.constraint < 0));
1515
1516 return &entry->s.output_section_statement;
1517 }
1518
1519 /* A variant of lang_output_section_find used by place_orphan.
1520 Returns the output statement that should precede a new output
1521 statement for SEC. If an exact match is found on certain flags,
1522 sets *EXACT too. */
1523
1524 lang_output_section_statement_type *
1525 lang_output_section_find_by_flags (const asection *sec,
1526 flagword sec_flags,
1527 lang_output_section_statement_type **exact,
1528 lang_match_sec_type_func match_type)
1529 {
1530 lang_output_section_statement_type *first, *look, *found;
1531 flagword look_flags, differ;
1532
1533 /* We know the first statement on this list is *ABS*. May as well
1534 skip it. */
1535 first = &lang_output_section_statement.head->output_section_statement;
1536 first = first->next;
1537
1538 /* First try for an exact match. */
1539 found = NULL;
1540 for (look = first; look; look = look->next)
1541 {
1542 look_flags = look->flags;
1543 if (look->bfd_section != NULL)
1544 {
1545 look_flags = look->bfd_section->flags;
1546 if (match_type && !match_type (link_info.output_bfd,
1547 look->bfd_section,
1548 sec->owner, sec))
1549 continue;
1550 }
1551 differ = look_flags ^ sec_flags;
1552 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1553 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1554 found = look;
1555 }
1556 if (found != NULL)
1557 {
1558 if (exact != NULL)
1559 *exact = found;
1560 return found;
1561 }
1562
1563 if ((sec_flags & SEC_CODE) != 0
1564 && (sec_flags & SEC_ALLOC) != 0)
1565 {
1566 /* Try for a rw code section. */
1567 for (look = first; look; look = look->next)
1568 {
1569 look_flags = look->flags;
1570 if (look->bfd_section != NULL)
1571 {
1572 look_flags = look->bfd_section->flags;
1573 if (match_type && !match_type (link_info.output_bfd,
1574 look->bfd_section,
1575 sec->owner, sec))
1576 continue;
1577 }
1578 differ = look_flags ^ sec_flags;
1579 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1580 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1581 found = look;
1582 }
1583 }
1584 else if ((sec_flags & SEC_READONLY) != 0
1585 && (sec_flags & SEC_ALLOC) != 0)
1586 {
1587 /* .rodata can go after .text, .sdata2 after .rodata. */
1588 for (look = first; look; look = look->next)
1589 {
1590 look_flags = look->flags;
1591 if (look->bfd_section != NULL)
1592 {
1593 look_flags = look->bfd_section->flags;
1594 if (match_type && !match_type (link_info.output_bfd,
1595 look->bfd_section,
1596 sec->owner, sec))
1597 continue;
1598 }
1599 differ = look_flags ^ sec_flags;
1600 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1601 | SEC_READONLY | SEC_SMALL_DATA))
1602 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1603 | SEC_READONLY))
1604 && !(look_flags & SEC_SMALL_DATA)))
1605 found = look;
1606 }
1607 }
1608 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1612 as if it were a loaded section, and don't use match_type. */
1613 bfd_boolean seen_thread_local = FALSE;
1614
1615 match_type = NULL;
1616 for (look = first; look; look = look->next)
1617 {
1618 look_flags = look->flags;
1619 if (look->bfd_section != NULL)
1620 look_flags = look->bfd_section->flags;
1621
1622 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1623 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1624 {
1625 /* .tdata and .tbss must be adjacent and in that order. */
1626 if (!(look_flags & SEC_LOAD)
1627 && (sec_flags & SEC_LOAD))
1628 /* ..so if we're at a .tbss section and we're placing
1629 a .tdata section stop looking and return the
1630 previous section. */
1631 break;
1632 found = look;
1633 seen_thread_local = TRUE;
1634 }
1635 else if (seen_thread_local)
1636 break;
1637 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1638 found = look;
1639 }
1640 }
1641 else if ((sec_flags & SEC_SMALL_DATA) != 0
1642 && (sec_flags & SEC_ALLOC) != 0)
1643 {
1644 /* .sdata goes after .data, .sbss after .sdata. */
1645 for (look = first; look; look = look->next)
1646 {
1647 look_flags = look->flags;
1648 if (look->bfd_section != NULL)
1649 {
1650 look_flags = look->bfd_section->flags;
1651 if (match_type && !match_type (link_info.output_bfd,
1652 look->bfd_section,
1653 sec->owner, sec))
1654 continue;
1655 }
1656 differ = look_flags ^ sec_flags;
1657 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1658 | SEC_THREAD_LOCAL))
1659 || ((look_flags & SEC_SMALL_DATA)
1660 && !(sec_flags & SEC_HAS_CONTENTS)))
1661 found = look;
1662 }
1663 }
1664 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1665 && (sec_flags & SEC_ALLOC) != 0)
1666 {
1667 /* .data goes after .rodata. */
1668 for (look = first; look; look = look->next)
1669 {
1670 look_flags = look->flags;
1671 if (look->bfd_section != NULL)
1672 {
1673 look_flags = look->bfd_section->flags;
1674 if (match_type && !match_type (link_info.output_bfd,
1675 look->bfd_section,
1676 sec->owner, sec))
1677 continue;
1678 }
1679 differ = look_flags ^ sec_flags;
1680 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1681 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1682 found = look;
1683 }
1684 }
1685 else if ((sec_flags & SEC_ALLOC) != 0)
1686 {
1687 /* .bss goes after any other alloc section. */
1688 for (look = first; look; look = look->next)
1689 {
1690 look_flags = look->flags;
1691 if (look->bfd_section != NULL)
1692 {
1693 look_flags = look->bfd_section->flags;
1694 if (match_type && !match_type (link_info.output_bfd,
1695 look->bfd_section,
1696 sec->owner, sec))
1697 continue;
1698 }
1699 differ = look_flags ^ sec_flags;
1700 if (!(differ & SEC_ALLOC))
1701 found = look;
1702 }
1703 }
1704 else
1705 {
1706 /* non-alloc go last. */
1707 for (look = first; look; look = look->next)
1708 {
1709 look_flags = look->flags;
1710 if (look->bfd_section != NULL)
1711 look_flags = look->bfd_section->flags;
1712 differ = look_flags ^ sec_flags;
1713 if (!(differ & SEC_DEBUGGING))
1714 found = look;
1715 }
1716 return found;
1717 }
1718
1719 if (found || !match_type)
1720 return found;
1721
1722 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1723 }
1724
1725 /* Find the last output section before given output statement.
1726 Used by place_orphan. */
1727
1728 static asection *
1729 output_prev_sec_find (lang_output_section_statement_type *os)
1730 {
1731 lang_output_section_statement_type *lookup;
1732
1733 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1734 {
1735 if (lookup->constraint < 0)
1736 continue;
1737
1738 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1739 return lookup->bfd_section;
1740 }
1741
1742 return NULL;
1743 }
1744
1745 /* Look for a suitable place for a new output section statement. The
1746 idea is to skip over anything that might be inside a SECTIONS {}
1747 statement in a script, before we find another output section
1748 statement. Assignments to "dot" before an output section statement
1749 are assumed to belong to it, except in two cases; The first
1750 assignment to dot, and assignments before non-alloc sections.
1751 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1752 similar assignments that set the initial address, or we might
1753 insert non-alloc note sections among assignments setting end of
1754 image symbols. */
1755
1756 static lang_statement_union_type **
1757 insert_os_after (lang_output_section_statement_type *after)
1758 {
1759 lang_statement_union_type **where;
1760 lang_statement_union_type **assign = NULL;
1761 bfd_boolean ignore_first;
1762
1763 ignore_first
1764 = after == &lang_output_section_statement.head->output_section_statement;
1765
1766 for (where = &after->header.next;
1767 *where != NULL;
1768 where = &(*where)->header.next)
1769 {
1770 switch ((*where)->header.type)
1771 {
1772 case lang_assignment_statement_enum:
1773 if (assign == NULL)
1774 {
1775 lang_assignment_statement_type *ass;
1776
1777 ass = &(*where)->assignment_statement;
1778 if (ass->exp->type.node_class != etree_assert
1779 && ass->exp->assign.dst[0] == '.'
1780 && ass->exp->assign.dst[1] == 0
1781 && !ignore_first)
1782 assign = where;
1783 }
1784 ignore_first = FALSE;
1785 continue;
1786 case lang_wild_statement_enum:
1787 case lang_input_section_enum:
1788 case lang_object_symbols_statement_enum:
1789 case lang_fill_statement_enum:
1790 case lang_data_statement_enum:
1791 case lang_reloc_statement_enum:
1792 case lang_padding_statement_enum:
1793 case lang_constructors_statement_enum:
1794 assign = NULL;
1795 continue;
1796 case lang_output_section_statement_enum:
1797 if (assign != NULL)
1798 {
1799 asection *s = (*where)->output_section_statement.bfd_section;
1800
1801 if (s == NULL
1802 || s->map_head.s == NULL
1803 || (s->flags & SEC_ALLOC) != 0)
1804 where = assign;
1805 }
1806 break;
1807 case lang_input_statement_enum:
1808 case lang_address_statement_enum:
1809 case lang_target_statement_enum:
1810 case lang_output_statement_enum:
1811 case lang_group_statement_enum:
1812 case lang_insert_statement_enum:
1813 continue;
1814 }
1815 break;
1816 }
1817
1818 return where;
1819 }
1820
1821 lang_output_section_statement_type *
1822 lang_insert_orphan (asection *s,
1823 const char *secname,
1824 int constraint,
1825 lang_output_section_statement_type *after,
1826 struct orphan_save *place,
1827 etree_type *address,
1828 lang_statement_list_type *add_child)
1829 {
1830 lang_statement_list_type add;
1831 lang_output_section_statement_type *os;
1832 lang_output_section_statement_type **os_tail;
1833
1834 /* If we have found an appropriate place for the output section
1835 statements for this orphan, add them to our own private list,
1836 inserting them later into the global statement list. */
1837 if (after != NULL)
1838 {
1839 lang_list_init (&add);
1840 push_stat_ptr (&add);
1841 }
1842
1843 if (bfd_link_relocatable (&link_info)
1844 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1845 address = exp_intop (0);
1846
1847 os_tail = ((lang_output_section_statement_type **)
1848 lang_output_section_statement.tail);
1849 os = lang_enter_output_section_statement (secname, address, normal_section,
1850 NULL, NULL, NULL, constraint, 0);
1851
1852 if (add_child == NULL)
1853 add_child = &os->children;
1854 lang_add_section (add_child, s, NULL, os);
1855
1856 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1857 {
1858 const char *region = (after->region
1859 ? after->region->name_list.name
1860 : DEFAULT_MEMORY_REGION);
1861 const char *lma_region = (after->lma_region
1862 ? after->lma_region->name_list.name
1863 : NULL);
1864 lang_leave_output_section_statement (NULL, region, after->phdrs,
1865 lma_region);
1866 }
1867 else
1868 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1869 NULL);
1870
1871 /* Restore the global list pointer. */
1872 if (after != NULL)
1873 pop_stat_ptr ();
1874
1875 if (after != NULL && os->bfd_section != NULL)
1876 {
1877 asection *snew, *as;
1878
1879 snew = os->bfd_section;
1880
1881 /* Shuffle the bfd section list to make the output file look
1882 neater. This is really only cosmetic. */
1883 if (place->section == NULL
1884 && after != (&lang_output_section_statement.head
1885 ->output_section_statement))
1886 {
1887 asection *bfd_section = after->bfd_section;
1888
1889 /* If the output statement hasn't been used to place any input
1890 sections (and thus doesn't have an output bfd_section),
1891 look for the closest prior output statement having an
1892 output section. */
1893 if (bfd_section == NULL)
1894 bfd_section = output_prev_sec_find (after);
1895
1896 if (bfd_section != NULL && bfd_section != snew)
1897 place->section = &bfd_section->next;
1898 }
1899
1900 if (place->section == NULL)
1901 place->section = &link_info.output_bfd->sections;
1902
1903 as = *place->section;
1904
1905 if (!as)
1906 {
1907 /* Put the section at the end of the list. */
1908
1909 /* Unlink the section. */
1910 bfd_section_list_remove (link_info.output_bfd, snew);
1911
1912 /* Now tack it back on in the right place. */
1913 bfd_section_list_append (link_info.output_bfd, snew);
1914 }
1915 else if (as != snew && as->prev != snew)
1916 {
1917 /* Unlink the section. */
1918 bfd_section_list_remove (link_info.output_bfd, snew);
1919
1920 /* Now tack it back on in the right place. */
1921 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1922 }
1923
1924 /* Save the end of this list. Further ophans of this type will
1925 follow the one we've just added. */
1926 place->section = &snew->next;
1927
1928 /* The following is non-cosmetic. We try to put the output
1929 statements in some sort of reasonable order here, because they
1930 determine the final load addresses of the orphan sections.
1931 In addition, placing output statements in the wrong order may
1932 require extra segments. For instance, given a typical
1933 situation of all read-only sections placed in one segment and
1934 following that a segment containing all the read-write
1935 sections, we wouldn't want to place an orphan read/write
1936 section before or amongst the read-only ones. */
1937 if (add.head != NULL)
1938 {
1939 lang_output_section_statement_type *newly_added_os;
1940
1941 if (place->stmt == NULL)
1942 {
1943 lang_statement_union_type **where = insert_os_after (after);
1944
1945 *add.tail = *where;
1946 *where = add.head;
1947
1948 place->os_tail = &after->next;
1949 }
1950 else
1951 {
1952 /* Put it after the last orphan statement we added. */
1953 *add.tail = *place->stmt;
1954 *place->stmt = add.head;
1955 }
1956
1957 /* Fix the global list pointer if we happened to tack our
1958 new list at the tail. */
1959 if (*stat_ptr->tail == add.head)
1960 stat_ptr->tail = add.tail;
1961
1962 /* Save the end of this list. */
1963 place->stmt = add.tail;
1964
1965 /* Do the same for the list of output section statements. */
1966 newly_added_os = *os_tail;
1967 *os_tail = NULL;
1968 newly_added_os->prev = (lang_output_section_statement_type *)
1969 ((char *) place->os_tail
1970 - offsetof (lang_output_section_statement_type, next));
1971 newly_added_os->next = *place->os_tail;
1972 if (newly_added_os->next != NULL)
1973 newly_added_os->next->prev = newly_added_os;
1974 *place->os_tail = newly_added_os;
1975 place->os_tail = &newly_added_os->next;
1976
1977 /* Fixing the global list pointer here is a little different.
1978 We added to the list in lang_enter_output_section_statement,
1979 trimmed off the new output_section_statment above when
1980 assigning *os_tail = NULL, but possibly added it back in
1981 the same place when assigning *place->os_tail. */
1982 if (*os_tail == NULL)
1983 lang_output_section_statement.tail
1984 = (lang_statement_union_type **) os_tail;
1985 }
1986 }
1987 return os;
1988 }
1989
1990 static void
1991 lang_print_asneeded (void)
1992 {
1993 struct asneeded_minfo *m;
1994
1995 if (asneeded_list_head == NULL)
1996 return;
1997
1998 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
1999
2000 for (m = asneeded_list_head; m != NULL; m = m->next)
2001 {
2002 size_t len;
2003
2004 minfo ("%s", m->soname);
2005 len = strlen (m->soname);
2006
2007 if (len >= 29)
2008 {
2009 print_nl ();
2010 len = 0;
2011 }
2012 while (len < 30)
2013 {
2014 print_space ();
2015 ++len;
2016 }
2017
2018 if (m->ref != NULL)
2019 minfo ("%B ", m->ref);
2020 minfo ("(%T)\n", m->name);
2021 }
2022 }
2023
2024 static void
2025 lang_map_flags (flagword flag)
2026 {
2027 if (flag & SEC_ALLOC)
2028 minfo ("a");
2029
2030 if (flag & SEC_CODE)
2031 minfo ("x");
2032
2033 if (flag & SEC_READONLY)
2034 minfo ("r");
2035
2036 if (flag & SEC_DATA)
2037 minfo ("w");
2038
2039 if (flag & SEC_LOAD)
2040 minfo ("l");
2041 }
2042
2043 void
2044 lang_map (void)
2045 {
2046 lang_memory_region_type *m;
2047 bfd_boolean dis_header_printed = FALSE;
2048
2049 LANG_FOR_EACH_INPUT_STATEMENT (file)
2050 {
2051 asection *s;
2052
2053 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2054 || file->flags.just_syms)
2055 continue;
2056
2057 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2058 if ((s->output_section == NULL
2059 || s->output_section->owner != link_info.output_bfd)
2060 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2061 {
2062 if (!dis_header_printed)
2063 {
2064 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2065 dis_header_printed = TRUE;
2066 }
2067
2068 print_input_section (s, TRUE);
2069 }
2070 }
2071
2072 minfo (_("\nMemory Configuration\n\n"));
2073 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2074 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2075
2076 for (m = lang_memory_region_list; m != NULL; m = m->next)
2077 {
2078 char buf[100];
2079 int len;
2080
2081 fprintf (config.map_file, "%-16s ", m->name_list.name);
2082
2083 sprintf_vma (buf, m->origin);
2084 minfo ("0x%s ", buf);
2085 len = strlen (buf);
2086 while (len < 16)
2087 {
2088 print_space ();
2089 ++len;
2090 }
2091
2092 minfo ("0x%V", m->length);
2093 if (m->flags || m->not_flags)
2094 {
2095 #ifndef BFD64
2096 minfo (" ");
2097 #endif
2098 if (m->flags)
2099 {
2100 print_space ();
2101 lang_map_flags (m->flags);
2102 }
2103
2104 if (m->not_flags)
2105 {
2106 minfo (" !");
2107 lang_map_flags (m->not_flags);
2108 }
2109 }
2110
2111 print_nl ();
2112 }
2113
2114 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2115
2116 if (!link_info.reduce_memory_overheads)
2117 {
2118 obstack_begin (&map_obstack, 1000);
2119 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2120 }
2121 lang_statement_iteration++;
2122 print_statements ();
2123
2124 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2125 config.map_file);
2126 }
2127
2128 static bfd_boolean
2129 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2130 void *info ATTRIBUTE_UNUSED)
2131 {
2132 if ((hash_entry->type == bfd_link_hash_defined
2133 || hash_entry->type == bfd_link_hash_defweak)
2134 && hash_entry->u.def.section->owner != link_info.output_bfd
2135 && hash_entry->u.def.section->owner != NULL)
2136 {
2137 input_section_userdata_type *ud;
2138 struct map_symbol_def *def;
2139
2140 ud = ((input_section_userdata_type *)
2141 get_userdata (hash_entry->u.def.section));
2142 if (!ud)
2143 {
2144 ud = (input_section_userdata_type *) stat_alloc (sizeof (*ud));
2145 get_userdata (hash_entry->u.def.section) = ud;
2146 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2147 ud->map_symbol_def_count = 0;
2148 }
2149 else if (!ud->map_symbol_def_tail)
2150 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2151
2152 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2153 def->entry = hash_entry;
2154 *(ud->map_symbol_def_tail) = def;
2155 ud->map_symbol_def_tail = &def->next;
2156 ud->map_symbol_def_count++;
2157 }
2158 return TRUE;
2159 }
2160
2161 /* Initialize an output section. */
2162
2163 static void
2164 init_os (lang_output_section_statement_type *s, flagword flags)
2165 {
2166 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2167 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2168
2169 if (s->constraint != SPECIAL)
2170 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2171 if (s->bfd_section == NULL)
2172 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2173 s->name, flags);
2174 if (s->bfd_section == NULL)
2175 {
2176 einfo (_("%P%F: output format %s cannot represent section"
2177 " called %s: %E\n"),
2178 link_info.output_bfd->xvec->name, s->name);
2179 }
2180 s->bfd_section->output_section = s->bfd_section;
2181 s->bfd_section->output_offset = 0;
2182
2183 /* Set the userdata of the output section to the output section
2184 statement to avoid lookup. */
2185 get_userdata (s->bfd_section) = s;
2186
2187 /* If there is a base address, make sure that any sections it might
2188 mention are initialized. */
2189 if (s->addr_tree != NULL)
2190 exp_init_os (s->addr_tree);
2191
2192 if (s->load_base != NULL)
2193 exp_init_os (s->load_base);
2194
2195 /* If supplied an alignment, set it. */
2196 if (s->section_alignment != -1)
2197 s->bfd_section->alignment_power = s->section_alignment;
2198 }
2199
2200 /* Make sure that all output sections mentioned in an expression are
2201 initialized. */
2202
2203 static void
2204 exp_init_os (etree_type *exp)
2205 {
2206 switch (exp->type.node_class)
2207 {
2208 case etree_assign:
2209 case etree_provide:
2210 exp_init_os (exp->assign.src);
2211 break;
2212
2213 case etree_binary:
2214 exp_init_os (exp->binary.lhs);
2215 exp_init_os (exp->binary.rhs);
2216 break;
2217
2218 case etree_trinary:
2219 exp_init_os (exp->trinary.cond);
2220 exp_init_os (exp->trinary.lhs);
2221 exp_init_os (exp->trinary.rhs);
2222 break;
2223
2224 case etree_assert:
2225 exp_init_os (exp->assert_s.child);
2226 break;
2227
2228 case etree_unary:
2229 exp_init_os (exp->unary.child);
2230 break;
2231
2232 case etree_name:
2233 switch (exp->type.node_code)
2234 {
2235 case ADDR:
2236 case LOADADDR:
2237 case SIZEOF:
2238 {
2239 lang_output_section_statement_type *os;
2240
2241 os = lang_output_section_find (exp->name.name);
2242 if (os != NULL && os->bfd_section == NULL)
2243 init_os (os, 0);
2244 }
2245 }
2246 break;
2247
2248 default:
2249 break;
2250 }
2251 }
2252 \f
2253 static void
2254 section_already_linked (bfd *abfd, asection *sec, void *data)
2255 {
2256 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2257
2258 /* If we are only reading symbols from this object, then we want to
2259 discard all sections. */
2260 if (entry->flags.just_syms)
2261 {
2262 bfd_link_just_syms (abfd, sec, &link_info);
2263 return;
2264 }
2265
2266 /* Deal with SHF_EXCLUDE ELF sections. */
2267 if (!bfd_link_relocatable (&link_info)
2268 && (abfd->flags & BFD_PLUGIN) == 0
2269 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2270 sec->output_section = bfd_abs_section_ptr;
2271
2272 if (!(abfd->flags & DYNAMIC))
2273 bfd_section_already_linked (abfd, sec, &link_info);
2274 }
2275 \f
2276 /* The wild routines.
2277
2278 These expand statements like *(.text) and foo.o to a list of
2279 explicit actions, like foo.o(.text), bar.o(.text) and
2280 foo.o(.text, .data). */
2281
2282 /* Add SECTION to the output section OUTPUT. Do this by creating a
2283 lang_input_section statement which is placed at PTR. */
2284
2285 void
2286 lang_add_section (lang_statement_list_type *ptr,
2287 asection *section,
2288 struct flag_info *sflag_info,
2289 lang_output_section_statement_type *output)
2290 {
2291 flagword flags = section->flags;
2292
2293 bfd_boolean discard;
2294 lang_input_section_type *new_section;
2295 bfd *abfd = link_info.output_bfd;
2296
2297 /* Discard sections marked with SEC_EXCLUDE. */
2298 discard = (flags & SEC_EXCLUDE) != 0;
2299
2300 /* Discard input sections which are assigned to a section named
2301 DISCARD_SECTION_NAME. */
2302 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2303 discard = TRUE;
2304
2305 /* Discard the group descriptor sections when we're finally placing the
2306 sections from within the group. */
2307 if ((section->flags & SEC_GROUP) == SEC_GROUP
2308 && link_info.resolve_section_groups)
2309 discard = TRUE;
2310
2311 /* Discard debugging sections if we are stripping debugging
2312 information. */
2313 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2314 && (flags & SEC_DEBUGGING) != 0)
2315 discard = TRUE;
2316
2317 if (discard)
2318 {
2319 if (section->output_section == NULL)
2320 {
2321 /* This prevents future calls from assigning this section. */
2322 section->output_section = bfd_abs_section_ptr;
2323 }
2324 return;
2325 }
2326
2327 if (sflag_info)
2328 {
2329 bfd_boolean keep;
2330
2331 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2332 if (!keep)
2333 return;
2334 }
2335
2336 if (section->output_section != NULL)
2337 return;
2338
2339 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2340 to an output section, because we want to be able to include a
2341 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2342 section (I don't know why we want to do this, but we do).
2343 build_link_order in ldwrite.c handles this case by turning
2344 the embedded SEC_NEVER_LOAD section into a fill. */
2345 flags &= ~ SEC_NEVER_LOAD;
2346
2347 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2348 already been processed. One reason to do this is that on pe
2349 format targets, .text$foo sections go into .text and it's odd
2350 to see .text with SEC_LINK_ONCE set. */
2351 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2352 {
2353 if (link_info.resolve_section_groups)
2354 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2355 else
2356 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2357 }
2358 else if (!bfd_link_relocatable (&link_info))
2359 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2360
2361 switch (output->sectype)
2362 {
2363 case normal_section:
2364 case overlay_section:
2365 break;
2366 case noalloc_section:
2367 flags &= ~SEC_ALLOC;
2368 break;
2369 case noload_section:
2370 flags &= ~SEC_LOAD;
2371 flags |= SEC_NEVER_LOAD;
2372 /* Unfortunately GNU ld has managed to evolve two different
2373 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2374 alloc, no contents section. All others get a noload, noalloc
2375 section. */
2376 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2377 flags &= ~SEC_HAS_CONTENTS;
2378 else
2379 flags &= ~SEC_ALLOC;
2380 break;
2381 }
2382
2383 if (output->bfd_section == NULL)
2384 init_os (output, flags);
2385
2386 /* If SEC_READONLY is not set in the input section, then clear
2387 it from the output section. */
2388 output->bfd_section->flags &= flags | ~SEC_READONLY;
2389
2390 if (output->bfd_section->linker_has_input)
2391 {
2392 /* Only set SEC_READONLY flag on the first input section. */
2393 flags &= ~ SEC_READONLY;
2394
2395 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2396 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2397 != (flags & (SEC_MERGE | SEC_STRINGS))
2398 || ((flags & SEC_MERGE) != 0
2399 && output->bfd_section->entsize != section->entsize))
2400 {
2401 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2402 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2403 }
2404 }
2405 output->bfd_section->flags |= flags;
2406
2407 if (!output->bfd_section->linker_has_input)
2408 {
2409 output->bfd_section->linker_has_input = 1;
2410 /* This must happen after flags have been updated. The output
2411 section may have been created before we saw its first input
2412 section, eg. for a data statement. */
2413 bfd_init_private_section_data (section->owner, section,
2414 link_info.output_bfd,
2415 output->bfd_section,
2416 &link_info);
2417 if ((flags & SEC_MERGE) != 0)
2418 output->bfd_section->entsize = section->entsize;
2419 }
2420
2421 if ((flags & SEC_TIC54X_BLOCK) != 0
2422 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2423 {
2424 /* FIXME: This value should really be obtained from the bfd... */
2425 output->block_value = 128;
2426 }
2427
2428 if (section->alignment_power > output->bfd_section->alignment_power)
2429 output->bfd_section->alignment_power = section->alignment_power;
2430
2431 section->output_section = output->bfd_section;
2432
2433 if (!map_head_is_link_order)
2434 {
2435 asection *s = output->bfd_section->map_tail.s;
2436 output->bfd_section->map_tail.s = section;
2437 section->map_head.s = NULL;
2438 section->map_tail.s = s;
2439 if (s != NULL)
2440 s->map_head.s = section;
2441 else
2442 output->bfd_section->map_head.s = section;
2443 }
2444
2445 /* Add a section reference to the list. */
2446 new_section = new_stat (lang_input_section, ptr);
2447 new_section->section = section;
2448 }
2449
2450 /* Handle wildcard sorting. This returns the lang_input_section which
2451 should follow the one we are going to create for SECTION and FILE,
2452 based on the sorting requirements of WILD. It returns NULL if the
2453 new section should just go at the end of the current list. */
2454
2455 static lang_statement_union_type *
2456 wild_sort (lang_wild_statement_type *wild,
2457 struct wildcard_list *sec,
2458 lang_input_statement_type *file,
2459 asection *section)
2460 {
2461 lang_statement_union_type *l;
2462
2463 if (!wild->filenames_sorted
2464 && (sec == NULL || sec->spec.sorted == none))
2465 return NULL;
2466
2467 for (l = wild->children.head; l != NULL; l = l->header.next)
2468 {
2469 lang_input_section_type *ls;
2470
2471 if (l->header.type != lang_input_section_enum)
2472 continue;
2473 ls = &l->input_section;
2474
2475 /* Sorting by filename takes precedence over sorting by section
2476 name. */
2477
2478 if (wild->filenames_sorted)
2479 {
2480 const char *fn, *ln;
2481 bfd_boolean fa, la;
2482 int i;
2483
2484 /* The PE support for the .idata section as generated by
2485 dlltool assumes that files will be sorted by the name of
2486 the archive and then the name of the file within the
2487 archive. */
2488
2489 if (file->the_bfd != NULL
2490 && file->the_bfd->my_archive != NULL)
2491 {
2492 fn = bfd_get_filename (file->the_bfd->my_archive);
2493 fa = TRUE;
2494 }
2495 else
2496 {
2497 fn = file->filename;
2498 fa = FALSE;
2499 }
2500
2501 if (ls->section->owner->my_archive != NULL)
2502 {
2503 ln = bfd_get_filename (ls->section->owner->my_archive);
2504 la = TRUE;
2505 }
2506 else
2507 {
2508 ln = ls->section->owner->filename;
2509 la = FALSE;
2510 }
2511
2512 i = filename_cmp (fn, ln);
2513 if (i > 0)
2514 continue;
2515 else if (i < 0)
2516 break;
2517
2518 if (fa || la)
2519 {
2520 if (fa)
2521 fn = file->filename;
2522 if (la)
2523 ln = ls->section->owner->filename;
2524
2525 i = filename_cmp (fn, ln);
2526 if (i > 0)
2527 continue;
2528 else if (i < 0)
2529 break;
2530 }
2531 }
2532
2533 /* Here either the files are not sorted by name, or we are
2534 looking at the sections for this file. */
2535
2536 if (sec != NULL
2537 && sec->spec.sorted != none
2538 && sec->spec.sorted != by_none)
2539 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2540 break;
2541 }
2542
2543 return l;
2544 }
2545
2546 /* Expand a wild statement for a particular FILE. SECTION may be
2547 NULL, in which case it is a wild card. */
2548
2549 static void
2550 output_section_callback (lang_wild_statement_type *ptr,
2551 struct wildcard_list *sec,
2552 asection *section,
2553 struct flag_info *sflag_info,
2554 lang_input_statement_type *file,
2555 void *output)
2556 {
2557 lang_statement_union_type *before;
2558 lang_output_section_statement_type *os;
2559
2560 os = (lang_output_section_statement_type *) output;
2561
2562 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2563 if (unique_section_p (section, os))
2564 return;
2565
2566 before = wild_sort (ptr, sec, file, section);
2567
2568 /* Here BEFORE points to the lang_input_section which
2569 should follow the one we are about to add. If BEFORE
2570 is NULL, then the section should just go at the end
2571 of the current list. */
2572
2573 if (before == NULL)
2574 lang_add_section (&ptr->children, section, sflag_info, os);
2575 else
2576 {
2577 lang_statement_list_type list;
2578 lang_statement_union_type **pp;
2579
2580 lang_list_init (&list);
2581 lang_add_section (&list, section, sflag_info, os);
2582
2583 /* If we are discarding the section, LIST.HEAD will
2584 be NULL. */
2585 if (list.head != NULL)
2586 {
2587 ASSERT (list.head->header.next == NULL);
2588
2589 for (pp = &ptr->children.head;
2590 *pp != before;
2591 pp = &(*pp)->header.next)
2592 ASSERT (*pp != NULL);
2593
2594 list.head->header.next = *pp;
2595 *pp = list.head;
2596 }
2597 }
2598 }
2599
2600 /* Check if all sections in a wild statement for a particular FILE
2601 are readonly. */
2602
2603 static void
2604 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2605 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2606 asection *section,
2607 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2608 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2609 void *output)
2610 {
2611 lang_output_section_statement_type *os;
2612
2613 os = (lang_output_section_statement_type *) output;
2614
2615 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2616 if (unique_section_p (section, os))
2617 return;
2618
2619 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2620 os->all_input_readonly = FALSE;
2621 }
2622
2623 /* This is passed a file name which must have been seen already and
2624 added to the statement tree. We will see if it has been opened
2625 already and had its symbols read. If not then we'll read it. */
2626
2627 static lang_input_statement_type *
2628 lookup_name (const char *name)
2629 {
2630 lang_input_statement_type *search;
2631
2632 for (search = (lang_input_statement_type *) input_file_chain.head;
2633 search != NULL;
2634 search = (lang_input_statement_type *) search->next_real_file)
2635 {
2636 /* Use the local_sym_name as the name of the file that has
2637 already been loaded as filename might have been transformed
2638 via the search directory lookup mechanism. */
2639 const char *filename = search->local_sym_name;
2640
2641 if (filename != NULL
2642 && filename_cmp (filename, name) == 0)
2643 break;
2644 }
2645
2646 if (search == NULL)
2647 search = new_afile (name, lang_input_file_is_search_file_enum,
2648 default_target, FALSE);
2649
2650 /* If we have already added this file, or this file is not real
2651 don't add this file. */
2652 if (search->flags.loaded || !search->flags.real)
2653 return search;
2654
2655 if (!load_symbols (search, NULL))
2656 return NULL;
2657
2658 return search;
2659 }
2660
2661 /* Save LIST as a list of libraries whose symbols should not be exported. */
2662
2663 struct excluded_lib
2664 {
2665 char *name;
2666 struct excluded_lib *next;
2667 };
2668 static struct excluded_lib *excluded_libs;
2669
2670 void
2671 add_excluded_libs (const char *list)
2672 {
2673 const char *p = list, *end;
2674
2675 while (*p != '\0')
2676 {
2677 struct excluded_lib *entry;
2678 end = strpbrk (p, ",:");
2679 if (end == NULL)
2680 end = p + strlen (p);
2681 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2682 entry->next = excluded_libs;
2683 entry->name = (char *) xmalloc (end - p + 1);
2684 memcpy (entry->name, p, end - p);
2685 entry->name[end - p] = '\0';
2686 excluded_libs = entry;
2687 if (*end == '\0')
2688 break;
2689 p = end + 1;
2690 }
2691 }
2692
2693 static void
2694 check_excluded_libs (bfd *abfd)
2695 {
2696 struct excluded_lib *lib = excluded_libs;
2697
2698 while (lib)
2699 {
2700 int len = strlen (lib->name);
2701 const char *filename = lbasename (abfd->filename);
2702
2703 if (strcmp (lib->name, "ALL") == 0)
2704 {
2705 abfd->no_export = TRUE;
2706 return;
2707 }
2708
2709 if (filename_ncmp (lib->name, filename, len) == 0
2710 && (filename[len] == '\0'
2711 || (filename[len] == '.' && filename[len + 1] == 'a'
2712 && filename[len + 2] == '\0')))
2713 {
2714 abfd->no_export = TRUE;
2715 return;
2716 }
2717
2718 lib = lib->next;
2719 }
2720 }
2721
2722 /* Get the symbols for an input file. */
2723
2724 bfd_boolean
2725 load_symbols (lang_input_statement_type *entry,
2726 lang_statement_list_type *place)
2727 {
2728 char **matching;
2729
2730 if (entry->flags.loaded)
2731 return TRUE;
2732
2733 ldfile_open_file (entry);
2734
2735 /* Do not process further if the file was missing. */
2736 if (entry->flags.missing_file)
2737 return TRUE;
2738
2739 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2740 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2741 {
2742 bfd_error_type err;
2743 struct lang_input_statement_flags save_flags;
2744 extern FILE *yyin;
2745
2746 err = bfd_get_error ();
2747
2748 /* See if the emulation has some special knowledge. */
2749 if (ldemul_unrecognized_file (entry))
2750 return TRUE;
2751
2752 if (err == bfd_error_file_ambiguously_recognized)
2753 {
2754 char **p;
2755
2756 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2757 einfo (_("%B: matching formats:"), entry->the_bfd);
2758 for (p = matching; *p != NULL; p++)
2759 einfo (" %s", *p);
2760 einfo ("%F\n");
2761 }
2762 else if (err != bfd_error_file_not_recognized
2763 || place == NULL)
2764 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2765
2766 bfd_close (entry->the_bfd);
2767 entry->the_bfd = NULL;
2768
2769 /* Try to interpret the file as a linker script. */
2770 save_flags = input_flags;
2771 ldfile_open_command_file (entry->filename);
2772
2773 push_stat_ptr (place);
2774 input_flags.add_DT_NEEDED_for_regular
2775 = entry->flags.add_DT_NEEDED_for_regular;
2776 input_flags.add_DT_NEEDED_for_dynamic
2777 = entry->flags.add_DT_NEEDED_for_dynamic;
2778 input_flags.whole_archive = entry->flags.whole_archive;
2779 input_flags.dynamic = entry->flags.dynamic;
2780
2781 ldfile_assumed_script = TRUE;
2782 parser_input = input_script;
2783 yyparse ();
2784 ldfile_assumed_script = FALSE;
2785
2786 /* missing_file is sticky. sysrooted will already have been
2787 restored when seeing EOF in yyparse, but no harm to restore
2788 again. */
2789 save_flags.missing_file |= input_flags.missing_file;
2790 input_flags = save_flags;
2791 pop_stat_ptr ();
2792 fclose (yyin);
2793 yyin = NULL;
2794 entry->flags.loaded = TRUE;
2795
2796 return TRUE;
2797 }
2798
2799 if (ldemul_recognized_file (entry))
2800 return TRUE;
2801
2802 /* We don't call ldlang_add_file for an archive. Instead, the
2803 add_symbols entry point will call ldlang_add_file, via the
2804 add_archive_element callback, for each element of the archive
2805 which is used. */
2806 switch (bfd_get_format (entry->the_bfd))
2807 {
2808 default:
2809 break;
2810
2811 case bfd_object:
2812 if (!entry->flags.reload)
2813 ldlang_add_file (entry);
2814 if (trace_files || verbose)
2815 info_msg ("%I\n", entry);
2816 break;
2817
2818 case bfd_archive:
2819 check_excluded_libs (entry->the_bfd);
2820
2821 if (entry->flags.whole_archive)
2822 {
2823 bfd *member = NULL;
2824 bfd_boolean loaded = TRUE;
2825
2826 for (;;)
2827 {
2828 bfd *subsbfd;
2829 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2830
2831 if (member == NULL)
2832 break;
2833
2834 if (!bfd_check_format (member, bfd_object))
2835 {
2836 einfo (_("%F%B: member %B in archive is not an object\n"),
2837 entry->the_bfd, member);
2838 loaded = FALSE;
2839 }
2840
2841 subsbfd = member;
2842 if (!(*link_info.callbacks
2843 ->add_archive_element) (&link_info, member,
2844 "--whole-archive", &subsbfd))
2845 abort ();
2846
2847 /* Potentially, the add_archive_element hook may have set a
2848 substitute BFD for us. */
2849 if (!bfd_link_add_symbols (subsbfd, &link_info))
2850 {
2851 einfo (_("%F%B: error adding symbols: %E\n"), member);
2852 loaded = FALSE;
2853 }
2854 }
2855
2856 entry->flags.loaded = loaded;
2857 return loaded;
2858 }
2859 break;
2860 }
2861
2862 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2863 entry->flags.loaded = TRUE;
2864 else
2865 einfo (_("%F%B: error adding symbols: %E\n"), entry->the_bfd);
2866
2867 return entry->flags.loaded;
2868 }
2869
2870 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2871 may be NULL, indicating that it is a wildcard. Separate
2872 lang_input_section statements are created for each part of the
2873 expansion; they are added after the wild statement S. OUTPUT is
2874 the output section. */
2875
2876 static void
2877 wild (lang_wild_statement_type *s,
2878 const char *target ATTRIBUTE_UNUSED,
2879 lang_output_section_statement_type *output)
2880 {
2881 struct wildcard_list *sec;
2882
2883 if (s->handler_data[0]
2884 && s->handler_data[0]->spec.sorted == by_name
2885 && !s->filenames_sorted)
2886 {
2887 lang_section_bst_type *tree;
2888
2889 walk_wild (s, output_section_callback_fast, output);
2890
2891 tree = s->tree;
2892 if (tree)
2893 {
2894 output_section_callback_tree_to_list (s, tree, output);
2895 s->tree = NULL;
2896 }
2897 }
2898 else
2899 walk_wild (s, output_section_callback, output);
2900
2901 if (default_common_section == NULL)
2902 for (sec = s->section_list; sec != NULL; sec = sec->next)
2903 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2904 {
2905 /* Remember the section that common is going to in case we
2906 later get something which doesn't know where to put it. */
2907 default_common_section = output;
2908 break;
2909 }
2910 }
2911
2912 /* Return TRUE iff target is the sought target. */
2913
2914 static int
2915 get_target (const bfd_target *target, void *data)
2916 {
2917 const char *sought = (const char *) data;
2918
2919 return strcmp (target->name, sought) == 0;
2920 }
2921
2922 /* Like strcpy() but convert to lower case as well. */
2923
2924 static void
2925 stricpy (char *dest, char *src)
2926 {
2927 char c;
2928
2929 while ((c = *src++) != 0)
2930 *dest++ = TOLOWER (c);
2931
2932 *dest = 0;
2933 }
2934
2935 /* Remove the first occurrence of needle (if any) in haystack
2936 from haystack. */
2937
2938 static void
2939 strcut (char *haystack, char *needle)
2940 {
2941 haystack = strstr (haystack, needle);
2942
2943 if (haystack)
2944 {
2945 char *src;
2946
2947 for (src = haystack + strlen (needle); *src;)
2948 *haystack++ = *src++;
2949
2950 *haystack = 0;
2951 }
2952 }
2953
2954 /* Compare two target format name strings.
2955 Return a value indicating how "similar" they are. */
2956
2957 static int
2958 name_compare (char *first, char *second)
2959 {
2960 char *copy1;
2961 char *copy2;
2962 int result;
2963
2964 copy1 = (char *) xmalloc (strlen (first) + 1);
2965 copy2 = (char *) xmalloc (strlen (second) + 1);
2966
2967 /* Convert the names to lower case. */
2968 stricpy (copy1, first);
2969 stricpy (copy2, second);
2970
2971 /* Remove size and endian strings from the name. */
2972 strcut (copy1, "big");
2973 strcut (copy1, "little");
2974 strcut (copy2, "big");
2975 strcut (copy2, "little");
2976
2977 /* Return a value based on how many characters match,
2978 starting from the beginning. If both strings are
2979 the same then return 10 * their length. */
2980 for (result = 0; copy1[result] == copy2[result]; result++)
2981 if (copy1[result] == 0)
2982 {
2983 result *= 10;
2984 break;
2985 }
2986
2987 free (copy1);
2988 free (copy2);
2989
2990 return result;
2991 }
2992
2993 /* Set by closest_target_match() below. */
2994 static const bfd_target *winner;
2995
2996 /* Scan all the valid bfd targets looking for one that has the endianness
2997 requirement that was specified on the command line, and is the nearest
2998 match to the original output target. */
2999
3000 static int
3001 closest_target_match (const bfd_target *target, void *data)
3002 {
3003 const bfd_target *original = (const bfd_target *) data;
3004
3005 if (command_line.endian == ENDIAN_BIG
3006 && target->byteorder != BFD_ENDIAN_BIG)
3007 return 0;
3008
3009 if (command_line.endian == ENDIAN_LITTLE
3010 && target->byteorder != BFD_ENDIAN_LITTLE)
3011 return 0;
3012
3013 /* Must be the same flavour. */
3014 if (target->flavour != original->flavour)
3015 return 0;
3016
3017 /* Ignore generic big and little endian elf vectors. */
3018 if (strcmp (target->name, "elf32-big") == 0
3019 || strcmp (target->name, "elf64-big") == 0
3020 || strcmp (target->name, "elf32-little") == 0
3021 || strcmp (target->name, "elf64-little") == 0)
3022 return 0;
3023
3024 /* If we have not found a potential winner yet, then record this one. */
3025 if (winner == NULL)
3026 {
3027 winner = target;
3028 return 0;
3029 }
3030
3031 /* Oh dear, we now have two potential candidates for a successful match.
3032 Compare their names and choose the better one. */
3033 if (name_compare (target->name, original->name)
3034 > name_compare (winner->name, original->name))
3035 winner = target;
3036
3037 /* Keep on searching until wqe have checked them all. */
3038 return 0;
3039 }
3040
3041 /* Return the BFD target format of the first input file. */
3042
3043 static char *
3044 get_first_input_target (void)
3045 {
3046 char *target = NULL;
3047
3048 LANG_FOR_EACH_INPUT_STATEMENT (s)
3049 {
3050 if (s->header.type == lang_input_statement_enum
3051 && s->flags.real)
3052 {
3053 ldfile_open_file (s);
3054
3055 if (s->the_bfd != NULL
3056 && bfd_check_format (s->the_bfd, bfd_object))
3057 {
3058 target = bfd_get_target (s->the_bfd);
3059
3060 if (target != NULL)
3061 break;
3062 }
3063 }
3064 }
3065
3066 return target;
3067 }
3068
3069 const char *
3070 lang_get_output_target (void)
3071 {
3072 const char *target;
3073
3074 /* Has the user told us which output format to use? */
3075 if (output_target != NULL)
3076 return output_target;
3077
3078 /* No - has the current target been set to something other than
3079 the default? */
3080 if (current_target != default_target && current_target != NULL)
3081 return current_target;
3082
3083 /* No - can we determine the format of the first input file? */
3084 target = get_first_input_target ();
3085 if (target != NULL)
3086 return target;
3087
3088 /* Failed - use the default output target. */
3089 return default_target;
3090 }
3091
3092 /* Open the output file. */
3093
3094 static void
3095 open_output (const char *name)
3096 {
3097 output_target = lang_get_output_target ();
3098
3099 /* Has the user requested a particular endianness on the command
3100 line? */
3101 if (command_line.endian != ENDIAN_UNSET)
3102 {
3103 /* Get the chosen target. */
3104 const bfd_target *target
3105 = bfd_iterate_over_targets (get_target, (void *) output_target);
3106
3107 /* If the target is not supported, we cannot do anything. */
3108 if (target != NULL)
3109 {
3110 enum bfd_endian desired_endian;
3111
3112 if (command_line.endian == ENDIAN_BIG)
3113 desired_endian = BFD_ENDIAN_BIG;
3114 else
3115 desired_endian = BFD_ENDIAN_LITTLE;
3116
3117 /* See if the target has the wrong endianness. This should
3118 not happen if the linker script has provided big and
3119 little endian alternatives, but some scrips don't do
3120 this. */
3121 if (target->byteorder != desired_endian)
3122 {
3123 /* If it does, then see if the target provides
3124 an alternative with the correct endianness. */
3125 if (target->alternative_target != NULL
3126 && (target->alternative_target->byteorder == desired_endian))
3127 output_target = target->alternative_target->name;
3128 else
3129 {
3130 /* Try to find a target as similar as possible to
3131 the default target, but which has the desired
3132 endian characteristic. */
3133 bfd_iterate_over_targets (closest_target_match,
3134 (void *) target);
3135
3136 /* Oh dear - we could not find any targets that
3137 satisfy our requirements. */
3138 if (winner == NULL)
3139 einfo (_("%P: warning: could not find any targets"
3140 " that match endianness requirement\n"));
3141 else
3142 output_target = winner->name;
3143 }
3144 }
3145 }
3146 }
3147
3148 link_info.output_bfd = bfd_openw (name, output_target);
3149
3150 if (link_info.output_bfd == NULL)
3151 {
3152 if (bfd_get_error () == bfd_error_invalid_target)
3153 einfo (_("%P%F: target %s not found\n"), output_target);
3154
3155 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3156 }
3157
3158 delete_output_file_on_failure = TRUE;
3159
3160 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3161 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3162 if (!bfd_set_arch_mach (link_info.output_bfd,
3163 ldfile_output_architecture,
3164 ldfile_output_machine))
3165 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3166
3167 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3168 if (link_info.hash == NULL)
3169 einfo (_("%P%F: can not create hash table: %E\n"));
3170
3171 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3172 }
3173
3174 static void
3175 ldlang_open_output (lang_statement_union_type *statement)
3176 {
3177 switch (statement->header.type)
3178 {
3179 case lang_output_statement_enum:
3180 ASSERT (link_info.output_bfd == NULL);
3181 open_output (statement->output_statement.name);
3182 ldemul_set_output_arch ();
3183 if (config.magic_demand_paged
3184 && !bfd_link_relocatable (&link_info))
3185 link_info.output_bfd->flags |= D_PAGED;
3186 else
3187 link_info.output_bfd->flags &= ~D_PAGED;
3188 if (config.text_read_only)
3189 link_info.output_bfd->flags |= WP_TEXT;
3190 else
3191 link_info.output_bfd->flags &= ~WP_TEXT;
3192 if (link_info.traditional_format)
3193 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3194 else
3195 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3196 break;
3197
3198 case lang_target_statement_enum:
3199 current_target = statement->target_statement.target;
3200 break;
3201 default:
3202 break;
3203 }
3204 }
3205
3206 static void
3207 init_opb (void)
3208 {
3209 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3210 ldfile_output_machine);
3211 opb_shift = 0;
3212 if (x > 1)
3213 while ((x & 1) == 0)
3214 {
3215 x >>= 1;
3216 ++opb_shift;
3217 }
3218 ASSERT (x == 1);
3219 }
3220
3221 /* Open all the input files. */
3222
3223 enum open_bfd_mode
3224 {
3225 OPEN_BFD_NORMAL = 0,
3226 OPEN_BFD_FORCE = 1,
3227 OPEN_BFD_RESCAN = 2
3228 };
3229 #ifdef ENABLE_PLUGINS
3230 static lang_input_statement_type *plugin_insert = NULL;
3231 #endif
3232
3233 static void
3234 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3235 {
3236 for (; s != NULL; s = s->header.next)
3237 {
3238 switch (s->header.type)
3239 {
3240 case lang_constructors_statement_enum:
3241 open_input_bfds (constructor_list.head, mode);
3242 break;
3243 case lang_output_section_statement_enum:
3244 open_input_bfds (s->output_section_statement.children.head, mode);
3245 break;
3246 case lang_wild_statement_enum:
3247 /* Maybe we should load the file's symbols. */
3248 if ((mode & OPEN_BFD_RESCAN) == 0
3249 && s->wild_statement.filename
3250 && !wildcardp (s->wild_statement.filename)
3251 && !archive_path (s->wild_statement.filename))
3252 lookup_name (s->wild_statement.filename);
3253 open_input_bfds (s->wild_statement.children.head, mode);
3254 break;
3255 case lang_group_statement_enum:
3256 {
3257 struct bfd_link_hash_entry *undefs;
3258
3259 /* We must continually search the entries in the group
3260 until no new symbols are added to the list of undefined
3261 symbols. */
3262
3263 do
3264 {
3265 undefs = link_info.hash->undefs_tail;
3266 open_input_bfds (s->group_statement.children.head,
3267 mode | OPEN_BFD_FORCE);
3268 }
3269 while (undefs != link_info.hash->undefs_tail);
3270 }
3271 break;
3272 case lang_target_statement_enum:
3273 current_target = s->target_statement.target;
3274 break;
3275 case lang_input_statement_enum:
3276 if (s->input_statement.flags.real)
3277 {
3278 lang_statement_union_type **os_tail;
3279 lang_statement_list_type add;
3280 bfd *abfd;
3281
3282 s->input_statement.target = current_target;
3283
3284 /* If we are being called from within a group, and this
3285 is an archive which has already been searched, then
3286 force it to be researched unless the whole archive
3287 has been loaded already. Do the same for a rescan.
3288 Likewise reload --as-needed shared libs. */
3289 if (mode != OPEN_BFD_NORMAL
3290 #ifdef ENABLE_PLUGINS
3291 && ((mode & OPEN_BFD_RESCAN) == 0
3292 || plugin_insert == NULL)
3293 #endif
3294 && s->input_statement.flags.loaded
3295 && (abfd = s->input_statement.the_bfd) != NULL
3296 && ((bfd_get_format (abfd) == bfd_archive
3297 && !s->input_statement.flags.whole_archive)
3298 || (bfd_get_format (abfd) == bfd_object
3299 && ((abfd->flags) & DYNAMIC) != 0
3300 && s->input_statement.flags.add_DT_NEEDED_for_regular
3301 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3302 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3303 {
3304 s->input_statement.flags.loaded = FALSE;
3305 s->input_statement.flags.reload = TRUE;
3306 }
3307
3308 os_tail = lang_output_section_statement.tail;
3309 lang_list_init (&add);
3310
3311 if (!load_symbols (&s->input_statement, &add))
3312 config.make_executable = FALSE;
3313
3314 if (add.head != NULL)
3315 {
3316 /* If this was a script with output sections then
3317 tack any added statements on to the end of the
3318 list. This avoids having to reorder the output
3319 section statement list. Very likely the user
3320 forgot -T, and whatever we do here will not meet
3321 naive user expectations. */
3322 if (os_tail != lang_output_section_statement.tail)
3323 {
3324 einfo (_("%P: warning: %s contains output sections;"
3325 " did you forget -T?\n"),
3326 s->input_statement.filename);
3327 *stat_ptr->tail = add.head;
3328 stat_ptr->tail = add.tail;
3329 }
3330 else
3331 {
3332 *add.tail = s->header.next;
3333 s->header.next = add.head;
3334 }
3335 }
3336 }
3337 #ifdef ENABLE_PLUGINS
3338 /* If we have found the point at which a plugin added new
3339 files, clear plugin_insert to enable archive rescan. */
3340 if (&s->input_statement == plugin_insert)
3341 plugin_insert = NULL;
3342 #endif
3343 break;
3344 case lang_assignment_statement_enum:
3345 if (s->assignment_statement.exp->type.node_class != etree_assert
3346 && s->assignment_statement.exp->assign.defsym)
3347 /* This is from a --defsym on the command line. */
3348 exp_fold_tree_no_dot (s->assignment_statement.exp);
3349 break;
3350 default:
3351 break;
3352 }
3353 }
3354
3355 /* Exit if any of the files were missing. */
3356 if (input_flags.missing_file)
3357 einfo ("%F");
3358 }
3359
3360 /* Add the supplied name to the symbol table as an undefined reference.
3361 This is a two step process as the symbol table doesn't even exist at
3362 the time the ld command line is processed. First we put the name
3363 on a list, then, once the output file has been opened, transfer the
3364 name to the symbol table. */
3365
3366 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3367
3368 #define ldlang_undef_chain_list_head entry_symbol.next
3369
3370 void
3371 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3372 {
3373 ldlang_undef_chain_list_type *new_undef;
3374
3375 undef_from_cmdline = undef_from_cmdline || cmdline;
3376 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3377 new_undef->next = ldlang_undef_chain_list_head;
3378 ldlang_undef_chain_list_head = new_undef;
3379
3380 new_undef->name = xstrdup (name);
3381
3382 if (link_info.output_bfd != NULL)
3383 insert_undefined (new_undef->name);
3384 }
3385
3386 /* Insert NAME as undefined in the symbol table. */
3387
3388 static void
3389 insert_undefined (const char *name)
3390 {
3391 struct bfd_link_hash_entry *h;
3392
3393 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3394 if (h == NULL)
3395 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3396 if (h->type == bfd_link_hash_new)
3397 {
3398 h->type = bfd_link_hash_undefined;
3399 h->u.undef.abfd = NULL;
3400 if (is_elf_hash_table (link_info.hash))
3401 ((struct elf_link_hash_entry *) h)->mark = 1;
3402 bfd_link_add_undef (link_info.hash, h);
3403 }
3404 }
3405
3406 /* Run through the list of undefineds created above and place them
3407 into the linker hash table as undefined symbols belonging to the
3408 script file. */
3409
3410 static void
3411 lang_place_undefineds (void)
3412 {
3413 ldlang_undef_chain_list_type *ptr;
3414
3415 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3416 insert_undefined (ptr->name);
3417 }
3418
3419 /* Structure used to build the list of symbols that the user has required
3420 be defined. */
3421
3422 struct require_defined_symbol
3423 {
3424 const char *name;
3425 struct require_defined_symbol *next;
3426 };
3427
3428 /* The list of symbols that the user has required be defined. */
3429
3430 static struct require_defined_symbol *require_defined_symbol_list;
3431
3432 /* Add a new symbol NAME to the list of symbols that are required to be
3433 defined. */
3434
3435 void
3436 ldlang_add_require_defined (const char *const name)
3437 {
3438 struct require_defined_symbol *ptr;
3439
3440 ldlang_add_undef (name, TRUE);
3441 ptr = (struct require_defined_symbol *) stat_alloc (sizeof (*ptr));
3442 ptr->next = require_defined_symbol_list;
3443 ptr->name = strdup (name);
3444 require_defined_symbol_list = ptr;
3445 }
3446
3447 /* Check that all symbols the user required to be defined, are defined,
3448 raise an error if we find a symbol that is not defined. */
3449
3450 static void
3451 ldlang_check_require_defined_symbols (void)
3452 {
3453 struct require_defined_symbol *ptr;
3454
3455 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3456 {
3457 struct bfd_link_hash_entry *h;
3458
3459 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3460 FALSE, FALSE, TRUE);
3461 if (h == NULL
3462 || (h->type != bfd_link_hash_defined
3463 && h->type != bfd_link_hash_defweak))
3464 einfo(_("%P%X: required symbol `%s' not defined\n"), ptr->name);
3465 }
3466 }
3467
3468 /* Check for all readonly or some readwrite sections. */
3469
3470 static void
3471 check_input_sections
3472 (lang_statement_union_type *s,
3473 lang_output_section_statement_type *output_section_statement)
3474 {
3475 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3476 {
3477 switch (s->header.type)
3478 {
3479 case lang_wild_statement_enum:
3480 walk_wild (&s->wild_statement, check_section_callback,
3481 output_section_statement);
3482 if (!output_section_statement->all_input_readonly)
3483 return;
3484 break;
3485 case lang_constructors_statement_enum:
3486 check_input_sections (constructor_list.head,
3487 output_section_statement);
3488 if (!output_section_statement->all_input_readonly)
3489 return;
3490 break;
3491 case lang_group_statement_enum:
3492 check_input_sections (s->group_statement.children.head,
3493 output_section_statement);
3494 if (!output_section_statement->all_input_readonly)
3495 return;
3496 break;
3497 default:
3498 break;
3499 }
3500 }
3501 }
3502
3503 /* Update wildcard statements if needed. */
3504
3505 static void
3506 update_wild_statements (lang_statement_union_type *s)
3507 {
3508 struct wildcard_list *sec;
3509
3510 switch (sort_section)
3511 {
3512 default:
3513 FAIL ();
3514
3515 case none:
3516 break;
3517
3518 case by_name:
3519 case by_alignment:
3520 for (; s != NULL; s = s->header.next)
3521 {
3522 switch (s->header.type)
3523 {
3524 default:
3525 break;
3526
3527 case lang_wild_statement_enum:
3528 for (sec = s->wild_statement.section_list; sec != NULL;
3529 sec = sec->next)
3530 {
3531 switch (sec->spec.sorted)
3532 {
3533 case none:
3534 sec->spec.sorted = sort_section;
3535 break;
3536 case by_name:
3537 if (sort_section == by_alignment)
3538 sec->spec.sorted = by_name_alignment;
3539 break;
3540 case by_alignment:
3541 if (sort_section == by_name)
3542 sec->spec.sorted = by_alignment_name;
3543 break;
3544 default:
3545 break;
3546 }
3547 }
3548 break;
3549
3550 case lang_constructors_statement_enum:
3551 update_wild_statements (constructor_list.head);
3552 break;
3553
3554 case lang_output_section_statement_enum:
3555 /* Don't sort .init/.fini sections. */
3556 if (strcmp (s->output_section_statement.name, ".init") != 0
3557 && strcmp (s->output_section_statement.name, ".fini") != 0)
3558 update_wild_statements
3559 (s->output_section_statement.children.head);
3560 break;
3561
3562 case lang_group_statement_enum:
3563 update_wild_statements (s->group_statement.children.head);
3564 break;
3565 }
3566 }
3567 break;
3568 }
3569 }
3570
3571 /* Open input files and attach to output sections. */
3572
3573 static void
3574 map_input_to_output_sections
3575 (lang_statement_union_type *s, const char *target,
3576 lang_output_section_statement_type *os)
3577 {
3578 for (; s != NULL; s = s->header.next)
3579 {
3580 lang_output_section_statement_type *tos;
3581 flagword flags;
3582
3583 switch (s->header.type)
3584 {
3585 case lang_wild_statement_enum:
3586 wild (&s->wild_statement, target, os);
3587 break;
3588 case lang_constructors_statement_enum:
3589 map_input_to_output_sections (constructor_list.head,
3590 target,
3591 os);
3592 break;
3593 case lang_output_section_statement_enum:
3594 tos = &s->output_section_statement;
3595 if (tos->constraint != 0)
3596 {
3597 if (tos->constraint != ONLY_IF_RW
3598 && tos->constraint != ONLY_IF_RO)
3599 break;
3600 tos->all_input_readonly = TRUE;
3601 check_input_sections (tos->children.head, tos);
3602 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3603 {
3604 tos->constraint = -1;
3605 break;
3606 }
3607 }
3608 map_input_to_output_sections (tos->children.head,
3609 target,
3610 tos);
3611 break;
3612 case lang_output_statement_enum:
3613 break;
3614 case lang_target_statement_enum:
3615 target = s->target_statement.target;
3616 break;
3617 case lang_group_statement_enum:
3618 map_input_to_output_sections (s->group_statement.children.head,
3619 target,
3620 os);
3621 break;
3622 case lang_data_statement_enum:
3623 /* Make sure that any sections mentioned in the expression
3624 are initialized. */
3625 exp_init_os (s->data_statement.exp);
3626 /* The output section gets CONTENTS, ALLOC and LOAD, but
3627 these may be overridden by the script. */
3628 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3629 switch (os->sectype)
3630 {
3631 case normal_section:
3632 case overlay_section:
3633 break;
3634 case noalloc_section:
3635 flags = SEC_HAS_CONTENTS;
3636 break;
3637 case noload_section:
3638 if (bfd_get_flavour (link_info.output_bfd)
3639 == bfd_target_elf_flavour)
3640 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3641 else
3642 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3643 break;
3644 }
3645 if (os->bfd_section == NULL)
3646 init_os (os, flags);
3647 else
3648 os->bfd_section->flags |= flags;
3649 break;
3650 case lang_input_section_enum:
3651 break;
3652 case lang_fill_statement_enum:
3653 case lang_object_symbols_statement_enum:
3654 case lang_reloc_statement_enum:
3655 case lang_padding_statement_enum:
3656 case lang_input_statement_enum:
3657 if (os != NULL && os->bfd_section == NULL)
3658 init_os (os, 0);
3659 break;
3660 case lang_assignment_statement_enum:
3661 if (os != NULL && os->bfd_section == NULL)
3662 init_os (os, 0);
3663
3664 /* Make sure that any sections mentioned in the assignment
3665 are initialized. */
3666 exp_init_os (s->assignment_statement.exp);
3667 break;
3668 case lang_address_statement_enum:
3669 /* Mark the specified section with the supplied address.
3670 If this section was actually a segment marker, then the
3671 directive is ignored if the linker script explicitly
3672 processed the segment marker. Originally, the linker
3673 treated segment directives (like -Ttext on the
3674 command-line) as section directives. We honor the
3675 section directive semantics for backwards compatibility;
3676 linker scripts that do not specifically check for
3677 SEGMENT_START automatically get the old semantics. */
3678 if (!s->address_statement.segment
3679 || !s->address_statement.segment->used)
3680 {
3681 const char *name = s->address_statement.section_name;
3682
3683 /* Create the output section statement here so that
3684 orphans with a set address will be placed after other
3685 script sections. If we let the orphan placement code
3686 place them in amongst other sections then the address
3687 will affect following script sections, which is
3688 likely to surprise naive users. */
3689 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3690 tos->addr_tree = s->address_statement.address;
3691 if (tos->bfd_section == NULL)
3692 init_os (tos, 0);
3693 }
3694 break;
3695 case lang_insert_statement_enum:
3696 break;
3697 }
3698 }
3699 }
3700
3701 /* An insert statement snips out all the linker statements from the
3702 start of the list and places them after the output section
3703 statement specified by the insert. This operation is complicated
3704 by the fact that we keep a doubly linked list of output section
3705 statements as well as the singly linked list of all statements. */
3706
3707 static void
3708 process_insert_statements (void)
3709 {
3710 lang_statement_union_type **s;
3711 lang_output_section_statement_type *first_os = NULL;
3712 lang_output_section_statement_type *last_os = NULL;
3713 lang_output_section_statement_type *os;
3714
3715 /* "start of list" is actually the statement immediately after
3716 the special abs_section output statement, so that it isn't
3717 reordered. */
3718 s = &lang_output_section_statement.head;
3719 while (*(s = &(*s)->header.next) != NULL)
3720 {
3721 if ((*s)->header.type == lang_output_section_statement_enum)
3722 {
3723 /* Keep pointers to the first and last output section
3724 statement in the sequence we may be about to move. */
3725 os = &(*s)->output_section_statement;
3726
3727 ASSERT (last_os == NULL || last_os->next == os);
3728 last_os = os;
3729
3730 /* Set constraint negative so that lang_output_section_find
3731 won't match this output section statement. At this
3732 stage in linking constraint has values in the range
3733 [-1, ONLY_IN_RW]. */
3734 last_os->constraint = -2 - last_os->constraint;
3735 if (first_os == NULL)
3736 first_os = last_os;
3737 }
3738 else if ((*s)->header.type == lang_insert_statement_enum)
3739 {
3740 lang_insert_statement_type *i = &(*s)->insert_statement;
3741 lang_output_section_statement_type *where;
3742 lang_statement_union_type **ptr;
3743 lang_statement_union_type *first;
3744
3745 where = lang_output_section_find (i->where);
3746 if (where != NULL && i->is_before)
3747 {
3748 do
3749 where = where->prev;
3750 while (where != NULL && where->constraint < 0);
3751 }
3752 if (where == NULL)
3753 {
3754 einfo (_("%F%P: %s not found for insert\n"), i->where);
3755 return;
3756 }
3757
3758 /* Deal with reordering the output section statement list. */
3759 if (last_os != NULL)
3760 {
3761 asection *first_sec, *last_sec;
3762 struct lang_output_section_statement_struct **next;
3763
3764 /* Snip out the output sections we are moving. */
3765 first_os->prev->next = last_os->next;
3766 if (last_os->next == NULL)
3767 {
3768 next = &first_os->prev->next;
3769 lang_output_section_statement.tail
3770 = (lang_statement_union_type **) next;
3771 }
3772 else
3773 last_os->next->prev = first_os->prev;
3774 /* Add them in at the new position. */
3775 last_os->next = where->next;
3776 if (where->next == NULL)
3777 {
3778 next = &last_os->next;
3779 lang_output_section_statement.tail
3780 = (lang_statement_union_type **) next;
3781 }
3782 else
3783 where->next->prev = last_os;
3784 first_os->prev = where;
3785 where->next = first_os;
3786
3787 /* Move the bfd sections in the same way. */
3788 first_sec = NULL;
3789 last_sec = NULL;
3790 for (os = first_os; os != NULL; os = os->next)
3791 {
3792 os->constraint = -2 - os->constraint;
3793 if (os->bfd_section != NULL
3794 && os->bfd_section->owner != NULL)
3795 {
3796 last_sec = os->bfd_section;
3797 if (first_sec == NULL)
3798 first_sec = last_sec;
3799 }
3800 if (os == last_os)
3801 break;
3802 }
3803 if (last_sec != NULL)
3804 {
3805 asection *sec = where->bfd_section;
3806 if (sec == NULL)
3807 sec = output_prev_sec_find (where);
3808
3809 /* The place we want to insert must come after the
3810 sections we are moving. So if we find no
3811 section or if the section is the same as our
3812 last section, then no move is needed. */
3813 if (sec != NULL && sec != last_sec)
3814 {
3815 /* Trim them off. */
3816 if (first_sec->prev != NULL)
3817 first_sec->prev->next = last_sec->next;
3818 else
3819 link_info.output_bfd->sections = last_sec->next;
3820 if (last_sec->next != NULL)
3821 last_sec->next->prev = first_sec->prev;
3822 else
3823 link_info.output_bfd->section_last = first_sec->prev;
3824 /* Add back. */
3825 last_sec->next = sec->next;
3826 if (sec->next != NULL)
3827 sec->next->prev = last_sec;
3828 else
3829 link_info.output_bfd->section_last = last_sec;
3830 first_sec->prev = sec;
3831 sec->next = first_sec;
3832 }
3833 }
3834
3835 first_os = NULL;
3836 last_os = NULL;
3837 }
3838
3839 ptr = insert_os_after (where);
3840 /* Snip everything after the abs_section output statement we
3841 know is at the start of the list, up to and including
3842 the insert statement we are currently processing. */
3843 first = lang_output_section_statement.head->header.next;
3844 lang_output_section_statement.head->header.next = (*s)->header.next;
3845 /* Add them back where they belong. */
3846 *s = *ptr;
3847 if (*s == NULL)
3848 statement_list.tail = s;
3849 *ptr = first;
3850 s = &lang_output_section_statement.head;
3851 }
3852 }
3853
3854 /* Undo constraint twiddling. */
3855 for (os = first_os; os != NULL; os = os->next)
3856 {
3857 os->constraint = -2 - os->constraint;
3858 if (os == last_os)
3859 break;
3860 }
3861 }
3862
3863 /* An output section might have been removed after its statement was
3864 added. For example, ldemul_before_allocation can remove dynamic
3865 sections if they turn out to be not needed. Clean them up here. */
3866
3867 void
3868 strip_excluded_output_sections (void)
3869 {
3870 lang_output_section_statement_type *os;
3871
3872 /* Run lang_size_sections (if not already done). */
3873 if (expld.phase != lang_mark_phase_enum)
3874 {
3875 expld.phase = lang_mark_phase_enum;
3876 expld.dataseg.phase = exp_dataseg_none;
3877 one_lang_size_sections_pass (NULL, FALSE);
3878 lang_reset_memory_regions ();
3879 }
3880
3881 for (os = &lang_output_section_statement.head->output_section_statement;
3882 os != NULL;
3883 os = os->next)
3884 {
3885 asection *output_section;
3886 bfd_boolean exclude;
3887
3888 if (os->constraint < 0)
3889 continue;
3890
3891 output_section = os->bfd_section;
3892 if (output_section == NULL)
3893 continue;
3894
3895 exclude = (output_section->rawsize == 0
3896 && (output_section->flags & SEC_KEEP) == 0
3897 && !bfd_section_removed_from_list (link_info.output_bfd,
3898 output_section));
3899
3900 /* Some sections have not yet been sized, notably .gnu.version,
3901 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3902 input sections, so don't drop output sections that have such
3903 input sections unless they are also marked SEC_EXCLUDE. */
3904 if (exclude && output_section->map_head.s != NULL)
3905 {
3906 asection *s;
3907
3908 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3909 if ((s->flags & SEC_EXCLUDE) == 0
3910 && ((s->flags & SEC_LINKER_CREATED) != 0
3911 || link_info.emitrelocations))
3912 {
3913 exclude = FALSE;
3914 break;
3915 }
3916 }
3917
3918 if (exclude)
3919 {
3920 /* We don't set bfd_section to NULL since bfd_section of the
3921 removed output section statement may still be used. */
3922 if (!os->update_dot)
3923 os->ignored = TRUE;
3924 output_section->flags |= SEC_EXCLUDE;
3925 bfd_section_list_remove (link_info.output_bfd, output_section);
3926 link_info.output_bfd->section_count--;
3927 }
3928 }
3929 }
3930
3931 /* Called from ldwrite to clear out asection.map_head and
3932 asection.map_tail for use as link_orders in ldwrite.
3933 FIXME: Except for sh64elf.em which starts creating link_orders in
3934 its after_allocation routine so needs to call it early. */
3935
3936 void
3937 lang_clear_os_map (void)
3938 {
3939 lang_output_section_statement_type *os;
3940
3941 if (map_head_is_link_order)
3942 return;
3943
3944 for (os = &lang_output_section_statement.head->output_section_statement;
3945 os != NULL;
3946 os = os->next)
3947 {
3948 asection *output_section;
3949
3950 if (os->constraint < 0)
3951 continue;
3952
3953 output_section = os->bfd_section;
3954 if (output_section == NULL)
3955 continue;
3956
3957 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3958 output_section->map_head.link_order = NULL;
3959 output_section->map_tail.link_order = NULL;
3960 }
3961
3962 /* Stop future calls to lang_add_section from messing with map_head
3963 and map_tail link_order fields. */
3964 map_head_is_link_order = TRUE;
3965 }
3966
3967 static void
3968 print_output_section_statement
3969 (lang_output_section_statement_type *output_section_statement)
3970 {
3971 asection *section = output_section_statement->bfd_section;
3972 int len;
3973
3974 if (output_section_statement != abs_output_section)
3975 {
3976 minfo ("\n%s", output_section_statement->name);
3977
3978 if (section != NULL)
3979 {
3980 print_dot = section->vma;
3981
3982 len = strlen (output_section_statement->name);
3983 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3984 {
3985 print_nl ();
3986 len = 0;
3987 }
3988 while (len < SECTION_NAME_MAP_LENGTH)
3989 {
3990 print_space ();
3991 ++len;
3992 }
3993
3994 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
3995
3996 if (section->vma != section->lma)
3997 minfo (_(" load address 0x%V"), section->lma);
3998
3999 if (output_section_statement->update_dot_tree != NULL)
4000 exp_fold_tree (output_section_statement->update_dot_tree,
4001 bfd_abs_section_ptr, &print_dot);
4002 }
4003
4004 print_nl ();
4005 }
4006
4007 print_statement_list (output_section_statement->children.head,
4008 output_section_statement);
4009 }
4010
4011 static void
4012 print_assignment (lang_assignment_statement_type *assignment,
4013 lang_output_section_statement_type *output_section)
4014 {
4015 unsigned int i;
4016 bfd_boolean is_dot;
4017 etree_type *tree;
4018 asection *osec;
4019
4020 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4021 print_space ();
4022
4023 if (assignment->exp->type.node_class == etree_assert)
4024 {
4025 is_dot = FALSE;
4026 tree = assignment->exp->assert_s.child;
4027 }
4028 else
4029 {
4030 const char *dst = assignment->exp->assign.dst;
4031
4032 is_dot = (dst[0] == '.' && dst[1] == 0);
4033 if (!is_dot)
4034 expld.assign_name = dst;
4035 tree = assignment->exp->assign.src;
4036 }
4037
4038 osec = output_section->bfd_section;
4039 if (osec == NULL)
4040 osec = bfd_abs_section_ptr;
4041
4042 if (assignment->exp->type.node_class != etree_provide)
4043 exp_fold_tree (tree, osec, &print_dot);
4044 else
4045 expld.result.valid_p = FALSE;
4046
4047 if (expld.result.valid_p)
4048 {
4049 bfd_vma value;
4050
4051 if (assignment->exp->type.node_class == etree_assert
4052 || is_dot
4053 || expld.assign_name != NULL)
4054 {
4055 value = expld.result.value;
4056
4057 if (expld.result.section != NULL)
4058 value += expld.result.section->vma;
4059
4060 minfo ("0x%V", value);
4061 if (is_dot)
4062 print_dot = value;
4063 }
4064 else
4065 {
4066 struct bfd_link_hash_entry *h;
4067
4068 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4069 FALSE, FALSE, TRUE);
4070 if (h)
4071 {
4072 value = h->u.def.value;
4073 value += h->u.def.section->output_section->vma;
4074 value += h->u.def.section->output_offset;
4075
4076 minfo ("[0x%V]", value);
4077 }
4078 else
4079 minfo ("[unresolved]");
4080 }
4081 }
4082 else
4083 {
4084 if (assignment->exp->type.node_class == etree_provide)
4085 minfo ("[!provide]");
4086 else
4087 minfo ("*undef* ");
4088 #ifdef BFD64
4089 minfo (" ");
4090 #endif
4091 }
4092 expld.assign_name = NULL;
4093
4094 minfo (" ");
4095 exp_print_tree (assignment->exp);
4096 print_nl ();
4097 }
4098
4099 static void
4100 print_input_statement (lang_input_statement_type *statm)
4101 {
4102 if (statm->filename != NULL
4103 && (statm->the_bfd == NULL
4104 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4105 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4106 }
4107
4108 /* Print all symbols defined in a particular section. This is called
4109 via bfd_link_hash_traverse, or by print_all_symbols. */
4110
4111 static bfd_boolean
4112 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4113 {
4114 asection *sec = (asection *) ptr;
4115
4116 if ((hash_entry->type == bfd_link_hash_defined
4117 || hash_entry->type == bfd_link_hash_defweak)
4118 && sec == hash_entry->u.def.section)
4119 {
4120 int i;
4121
4122 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4123 print_space ();
4124 minfo ("0x%V ",
4125 (hash_entry->u.def.value
4126 + hash_entry->u.def.section->output_offset
4127 + hash_entry->u.def.section->output_section->vma));
4128
4129 minfo (" %T\n", hash_entry->root.string);
4130 }
4131
4132 return TRUE;
4133 }
4134
4135 static int
4136 hash_entry_addr_cmp (const void *a, const void *b)
4137 {
4138 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4139 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4140
4141 if (l->u.def.value < r->u.def.value)
4142 return -1;
4143 else if (l->u.def.value > r->u.def.value)
4144 return 1;
4145 else
4146 return 0;
4147 }
4148
4149 static void
4150 print_all_symbols (asection *sec)
4151 {
4152 input_section_userdata_type *ud
4153 = (input_section_userdata_type *) get_userdata (sec);
4154 struct map_symbol_def *def;
4155 struct bfd_link_hash_entry **entries;
4156 unsigned int i;
4157
4158 if (!ud)
4159 return;
4160
4161 *ud->map_symbol_def_tail = 0;
4162
4163 /* Sort the symbols by address. */
4164 entries = (struct bfd_link_hash_entry **)
4165 obstack_alloc (&map_obstack,
4166 ud->map_symbol_def_count * sizeof (*entries));
4167
4168 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4169 entries[i] = def->entry;
4170
4171 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4172 hash_entry_addr_cmp);
4173
4174 /* Print the symbols. */
4175 for (i = 0; i < ud->map_symbol_def_count; i++)
4176 print_one_symbol (entries[i], sec);
4177
4178 obstack_free (&map_obstack, entries);
4179 }
4180
4181 /* Print information about an input section to the map file. */
4182
4183 static void
4184 print_input_section (asection *i, bfd_boolean is_discarded)
4185 {
4186 bfd_size_type size = i->size;
4187 int len;
4188 bfd_vma addr;
4189
4190 init_opb ();
4191
4192 print_space ();
4193 minfo ("%s", i->name);
4194
4195 len = 1 + strlen (i->name);
4196 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4197 {
4198 print_nl ();
4199 len = 0;
4200 }
4201 while (len < SECTION_NAME_MAP_LENGTH)
4202 {
4203 print_space ();
4204 ++len;
4205 }
4206
4207 if (i->output_section != NULL
4208 && i->output_section->owner == link_info.output_bfd)
4209 addr = i->output_section->vma + i->output_offset;
4210 else
4211 {
4212 addr = print_dot;
4213 if (!is_discarded)
4214 size = 0;
4215 }
4216
4217 minfo ("0x%V %W %B\n", addr, size, i->owner);
4218
4219 if (size != i->rawsize && i->rawsize != 0)
4220 {
4221 len = SECTION_NAME_MAP_LENGTH + 3;
4222 #ifdef BFD64
4223 len += 16;
4224 #else
4225 len += 8;
4226 #endif
4227 while (len > 0)
4228 {
4229 print_space ();
4230 --len;
4231 }
4232
4233 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4234 }
4235
4236 if (i->output_section != NULL
4237 && i->output_section->owner == link_info.output_bfd)
4238 {
4239 if (link_info.reduce_memory_overheads)
4240 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4241 else
4242 print_all_symbols (i);
4243
4244 /* Update print_dot, but make sure that we do not move it
4245 backwards - this could happen if we have overlays and a
4246 later overlay is shorter than an earier one. */
4247 if (addr + TO_ADDR (size) > print_dot)
4248 print_dot = addr + TO_ADDR (size);
4249 }
4250 }
4251
4252 static void
4253 print_fill_statement (lang_fill_statement_type *fill)
4254 {
4255 size_t size;
4256 unsigned char *p;
4257 fputs (" FILL mask 0x", config.map_file);
4258 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4259 fprintf (config.map_file, "%02x", *p);
4260 fputs ("\n", config.map_file);
4261 }
4262
4263 static void
4264 print_data_statement (lang_data_statement_type *data)
4265 {
4266 int i;
4267 bfd_vma addr;
4268 bfd_size_type size;
4269 const char *name;
4270
4271 init_opb ();
4272 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4273 print_space ();
4274
4275 addr = data->output_offset;
4276 if (data->output_section != NULL)
4277 addr += data->output_section->vma;
4278
4279 switch (data->type)
4280 {
4281 default:
4282 abort ();
4283 case BYTE:
4284 size = BYTE_SIZE;
4285 name = "BYTE";
4286 break;
4287 case SHORT:
4288 size = SHORT_SIZE;
4289 name = "SHORT";
4290 break;
4291 case LONG:
4292 size = LONG_SIZE;
4293 name = "LONG";
4294 break;
4295 case QUAD:
4296 size = QUAD_SIZE;
4297 name = "QUAD";
4298 break;
4299 case SQUAD:
4300 size = QUAD_SIZE;
4301 name = "SQUAD";
4302 break;
4303 }
4304
4305 if (size < TO_SIZE ((unsigned) 1))
4306 size = TO_SIZE ((unsigned) 1);
4307 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4308
4309 if (data->exp->type.node_class != etree_value)
4310 {
4311 print_space ();
4312 exp_print_tree (data->exp);
4313 }
4314
4315 print_nl ();
4316
4317 print_dot = addr + TO_ADDR (size);
4318 }
4319
4320 /* Print an address statement. These are generated by options like
4321 -Ttext. */
4322
4323 static void
4324 print_address_statement (lang_address_statement_type *address)
4325 {
4326 minfo (_("Address of section %s set to "), address->section_name);
4327 exp_print_tree (address->address);
4328 print_nl ();
4329 }
4330
4331 /* Print a reloc statement. */
4332
4333 static void
4334 print_reloc_statement (lang_reloc_statement_type *reloc)
4335 {
4336 int i;
4337 bfd_vma addr;
4338 bfd_size_type size;
4339
4340 init_opb ();
4341 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4342 print_space ();
4343
4344 addr = reloc->output_offset;
4345 if (reloc->output_section != NULL)
4346 addr += reloc->output_section->vma;
4347
4348 size = bfd_get_reloc_size (reloc->howto);
4349
4350 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4351
4352 if (reloc->name != NULL)
4353 minfo ("%s+", reloc->name);
4354 else
4355 minfo ("%s+", reloc->section->name);
4356
4357 exp_print_tree (reloc->addend_exp);
4358
4359 print_nl ();
4360
4361 print_dot = addr + TO_ADDR (size);
4362 }
4363
4364 static void
4365 print_padding_statement (lang_padding_statement_type *s)
4366 {
4367 int len;
4368 bfd_vma addr;
4369
4370 init_opb ();
4371 minfo (" *fill*");
4372
4373 len = sizeof " *fill*" - 1;
4374 while (len < SECTION_NAME_MAP_LENGTH)
4375 {
4376 print_space ();
4377 ++len;
4378 }
4379
4380 addr = s->output_offset;
4381 if (s->output_section != NULL)
4382 addr += s->output_section->vma;
4383 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4384
4385 if (s->fill->size != 0)
4386 {
4387 size_t size;
4388 unsigned char *p;
4389 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4390 fprintf (config.map_file, "%02x", *p);
4391 }
4392
4393 print_nl ();
4394
4395 print_dot = addr + TO_ADDR (s->size);
4396 }
4397
4398 static void
4399 print_wild_statement (lang_wild_statement_type *w,
4400 lang_output_section_statement_type *os)
4401 {
4402 struct wildcard_list *sec;
4403
4404 print_space ();
4405
4406 if (w->exclude_name_list)
4407 {
4408 name_list *tmp;
4409 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4410 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4411 minfo (" %s", tmp->name);
4412 minfo (") ");
4413 }
4414
4415 if (w->filenames_sorted)
4416 minfo ("SORT_BY_NAME(");
4417 if (w->filename != NULL)
4418 minfo ("%s", w->filename);
4419 else
4420 minfo ("*");
4421 if (w->filenames_sorted)
4422 minfo (")");
4423
4424 minfo ("(");
4425 for (sec = w->section_list; sec; sec = sec->next)
4426 {
4427 int closing_paren = 0;
4428
4429 switch (sec->spec.sorted)
4430 {
4431 case none:
4432 break;
4433
4434 case by_name:
4435 minfo ("SORT_BY_NAME(");
4436 closing_paren = 1;
4437 break;
4438
4439 case by_alignment:
4440 minfo ("SORT_BY_ALIGNMENT(");
4441 closing_paren = 1;
4442 break;
4443
4444 case by_name_alignment:
4445 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
4446 closing_paren = 2;
4447 break;
4448
4449 case by_alignment_name:
4450 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
4451 closing_paren = 2;
4452 break;
4453
4454 case by_none:
4455 minfo ("SORT_NONE(");
4456 closing_paren = 1;
4457 break;
4458
4459 case by_init_priority:
4460 minfo ("SORT_BY_INIT_PRIORITY(");
4461 closing_paren = 1;
4462 break;
4463 }
4464
4465 if (sec->spec.exclude_name_list != NULL)
4466 {
4467 name_list *tmp;
4468 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4469 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4470 minfo (" %s", tmp->name);
4471 minfo (") ");
4472 }
4473 if (sec->spec.name != NULL)
4474 minfo ("%s", sec->spec.name);
4475 else
4476 minfo ("*");
4477 for (;closing_paren > 0; closing_paren--)
4478 minfo (")");
4479 if (sec->next)
4480 minfo (" ");
4481 }
4482 minfo (")");
4483
4484 print_nl ();
4485
4486 print_statement_list (w->children.head, os);
4487 }
4488
4489 /* Print a group statement. */
4490
4491 static void
4492 print_group (lang_group_statement_type *s,
4493 lang_output_section_statement_type *os)
4494 {
4495 fprintf (config.map_file, "START GROUP\n");
4496 print_statement_list (s->children.head, os);
4497 fprintf (config.map_file, "END GROUP\n");
4498 }
4499
4500 /* Print the list of statements in S.
4501 This can be called for any statement type. */
4502
4503 static void
4504 print_statement_list (lang_statement_union_type *s,
4505 lang_output_section_statement_type *os)
4506 {
4507 while (s != NULL)
4508 {
4509 print_statement (s, os);
4510 s = s->header.next;
4511 }
4512 }
4513
4514 /* Print the first statement in statement list S.
4515 This can be called for any statement type. */
4516
4517 static void
4518 print_statement (lang_statement_union_type *s,
4519 lang_output_section_statement_type *os)
4520 {
4521 switch (s->header.type)
4522 {
4523 default:
4524 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4525 FAIL ();
4526 break;
4527 case lang_constructors_statement_enum:
4528 if (constructor_list.head != NULL)
4529 {
4530 if (constructors_sorted)
4531 minfo (" SORT (CONSTRUCTORS)\n");
4532 else
4533 minfo (" CONSTRUCTORS\n");
4534 print_statement_list (constructor_list.head, os);
4535 }
4536 break;
4537 case lang_wild_statement_enum:
4538 print_wild_statement (&s->wild_statement, os);
4539 break;
4540 case lang_address_statement_enum:
4541 print_address_statement (&s->address_statement);
4542 break;
4543 case lang_object_symbols_statement_enum:
4544 minfo (" CREATE_OBJECT_SYMBOLS\n");
4545 break;
4546 case lang_fill_statement_enum:
4547 print_fill_statement (&s->fill_statement);
4548 break;
4549 case lang_data_statement_enum:
4550 print_data_statement (&s->data_statement);
4551 break;
4552 case lang_reloc_statement_enum:
4553 print_reloc_statement (&s->reloc_statement);
4554 break;
4555 case lang_input_section_enum:
4556 print_input_section (s->input_section.section, FALSE);
4557 break;
4558 case lang_padding_statement_enum:
4559 print_padding_statement (&s->padding_statement);
4560 break;
4561 case lang_output_section_statement_enum:
4562 print_output_section_statement (&s->output_section_statement);
4563 break;
4564 case lang_assignment_statement_enum:
4565 print_assignment (&s->assignment_statement, os);
4566 break;
4567 case lang_target_statement_enum:
4568 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4569 break;
4570 case lang_output_statement_enum:
4571 minfo ("OUTPUT(%s", s->output_statement.name);
4572 if (output_target != NULL)
4573 minfo (" %s", output_target);
4574 minfo (")\n");
4575 break;
4576 case lang_input_statement_enum:
4577 print_input_statement (&s->input_statement);
4578 break;
4579 case lang_group_statement_enum:
4580 print_group (&s->group_statement, os);
4581 break;
4582 case lang_insert_statement_enum:
4583 minfo ("INSERT %s %s\n",
4584 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4585 s->insert_statement.where);
4586 break;
4587 }
4588 }
4589
4590 static void
4591 print_statements (void)
4592 {
4593 print_statement_list (statement_list.head, abs_output_section);
4594 }
4595
4596 /* Print the first N statements in statement list S to STDERR.
4597 If N == 0, nothing is printed.
4598 If N < 0, the entire list is printed.
4599 Intended to be called from GDB. */
4600
4601 void
4602 dprint_statement (lang_statement_union_type *s, int n)
4603 {
4604 FILE *map_save = config.map_file;
4605
4606 config.map_file = stderr;
4607
4608 if (n < 0)
4609 print_statement_list (s, abs_output_section);
4610 else
4611 {
4612 while (s && --n >= 0)
4613 {
4614 print_statement (s, abs_output_section);
4615 s = s->header.next;
4616 }
4617 }
4618
4619 config.map_file = map_save;
4620 }
4621
4622 static void
4623 insert_pad (lang_statement_union_type **ptr,
4624 fill_type *fill,
4625 bfd_size_type alignment_needed,
4626 asection *output_section,
4627 bfd_vma dot)
4628 {
4629 static fill_type zero_fill;
4630 lang_statement_union_type *pad = NULL;
4631
4632 if (ptr != &statement_list.head)
4633 pad = ((lang_statement_union_type *)
4634 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4635 if (pad != NULL
4636 && pad->header.type == lang_padding_statement_enum
4637 && pad->padding_statement.output_section == output_section)
4638 {
4639 /* Use the existing pad statement. */
4640 }
4641 else if ((pad = *ptr) != NULL
4642 && pad->header.type == lang_padding_statement_enum
4643 && pad->padding_statement.output_section == output_section)
4644 {
4645 /* Use the existing pad statement. */
4646 }
4647 else
4648 {
4649 /* Make a new padding statement, linked into existing chain. */
4650 pad = (lang_statement_union_type *)
4651 stat_alloc (sizeof (lang_padding_statement_type));
4652 pad->header.next = *ptr;
4653 *ptr = pad;
4654 pad->header.type = lang_padding_statement_enum;
4655 pad->padding_statement.output_section = output_section;
4656 if (fill == NULL)
4657 fill = &zero_fill;
4658 pad->padding_statement.fill = fill;
4659 }
4660 pad->padding_statement.output_offset = dot - output_section->vma;
4661 pad->padding_statement.size = alignment_needed;
4662 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
4663 - output_section->vma);
4664 }
4665
4666 /* Work out how much this section will move the dot point. */
4667
4668 static bfd_vma
4669 size_input_section
4670 (lang_statement_union_type **this_ptr,
4671 lang_output_section_statement_type *output_section_statement,
4672 fill_type *fill,
4673 bfd_vma dot)
4674 {
4675 lang_input_section_type *is = &((*this_ptr)->input_section);
4676 asection *i = is->section;
4677 asection *o = output_section_statement->bfd_section;
4678
4679 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4680 i->output_offset = i->vma - o->vma;
4681 else if (((i->flags & SEC_EXCLUDE) != 0)
4682 || output_section_statement->ignored)
4683 i->output_offset = dot - o->vma;
4684 else
4685 {
4686 bfd_size_type alignment_needed;
4687
4688 /* Align this section first to the input sections requirement,
4689 then to the output section's requirement. If this alignment
4690 is greater than any seen before, then record it too. Perform
4691 the alignment by inserting a magic 'padding' statement. */
4692
4693 if (output_section_statement->subsection_alignment != -1)
4694 i->alignment_power = output_section_statement->subsection_alignment;
4695
4696 if (o->alignment_power < i->alignment_power)
4697 o->alignment_power = i->alignment_power;
4698
4699 alignment_needed = align_power (dot, i->alignment_power) - dot;
4700
4701 if (alignment_needed != 0)
4702 {
4703 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4704 dot += alignment_needed;
4705 }
4706
4707 /* Remember where in the output section this input section goes. */
4708 i->output_offset = dot - o->vma;
4709
4710 /* Mark how big the output section must be to contain this now. */
4711 dot += TO_ADDR (i->size);
4712 o->size = TO_SIZE (dot - o->vma);
4713 }
4714
4715 return dot;
4716 }
4717
4718 struct check_sec
4719 {
4720 asection *sec;
4721 bfd_boolean warned;
4722 };
4723
4724 static int
4725 sort_sections_by_lma (const void *arg1, const void *arg2)
4726 {
4727 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4728 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4729
4730 if (sec1->lma < sec2->lma)
4731 return -1;
4732 else if (sec1->lma > sec2->lma)
4733 return 1;
4734 else if (sec1->id < sec2->id)
4735 return -1;
4736 else if (sec1->id > sec2->id)
4737 return 1;
4738
4739 return 0;
4740 }
4741
4742 static int
4743 sort_sections_by_vma (const void *arg1, const void *arg2)
4744 {
4745 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4746 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4747
4748 if (sec1->vma < sec2->vma)
4749 return -1;
4750 else if (sec1->vma > sec2->vma)
4751 return 1;
4752 else if (sec1->id < sec2->id)
4753 return -1;
4754 else if (sec1->id > sec2->id)
4755 return 1;
4756
4757 return 0;
4758 }
4759
4760 #define IS_TBSS(s) \
4761 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
4762
4763 #define IGNORE_SECTION(s) \
4764 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
4765
4766 /* Check to see if any allocated sections overlap with other allocated
4767 sections. This can happen if a linker script specifies the output
4768 section addresses of the two sections. Also check whether any memory
4769 region has overflowed. */
4770
4771 static void
4772 lang_check_section_addresses (void)
4773 {
4774 asection *s, *p;
4775 struct check_sec *sections;
4776 size_t i, count;
4777 bfd_vma addr_mask;
4778 bfd_vma s_start;
4779 bfd_vma s_end;
4780 bfd_vma p_start = 0;
4781 bfd_vma p_end = 0;
4782 lang_memory_region_type *m;
4783 bfd_boolean overlays;
4784
4785 /* Detect address space overflow on allocated sections. */
4786 addr_mask = ((bfd_vma) 1 <<
4787 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
4788 addr_mask = (addr_mask << 1) + 1;
4789 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4790 if ((s->flags & SEC_ALLOC) != 0)
4791 {
4792 s_end = (s->vma + s->size) & addr_mask;
4793 if (s_end != 0 && s_end < (s->vma & addr_mask))
4794 einfo (_("%X%P: section %s VMA wraps around address space\n"),
4795 s->name);
4796 else
4797 {
4798 s_end = (s->lma + s->size) & addr_mask;
4799 if (s_end != 0 && s_end < (s->lma & addr_mask))
4800 einfo (_("%X%P: section %s LMA wraps around address space\n"),
4801 s->name);
4802 }
4803 }
4804
4805 if (bfd_count_sections (link_info.output_bfd) <= 1)
4806 return;
4807
4808 count = bfd_count_sections (link_info.output_bfd);
4809 sections = XNEWVEC (struct check_sec, count);
4810
4811 /* Scan all sections in the output list. */
4812 count = 0;
4813 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4814 {
4815 if (IGNORE_SECTION (s)
4816 || s->size == 0)
4817 continue;
4818
4819 sections[count].sec = s;
4820 sections[count].warned = FALSE;
4821 count++;
4822 }
4823
4824 if (count <= 1)
4825 {
4826 free (sections);
4827 return;
4828 }
4829
4830 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
4831
4832 /* First check section LMAs. There should be no overlap of LMAs on
4833 loadable sections, even with overlays. */
4834 for (p = NULL, i = 0; i < count; i++)
4835 {
4836 s = sections[i].sec;
4837 if ((s->flags & SEC_LOAD) != 0)
4838 {
4839 s_start = s->lma;
4840 s_end = s_start + TO_ADDR (s->size) - 1;
4841
4842 /* Look for an overlap. We have sorted sections by lma, so
4843 we know that s_start >= p_start. Besides the obvious
4844 case of overlap when the current section starts before
4845 the previous one ends, we also must have overlap if the
4846 previous section wraps around the address space. */
4847 if (p != NULL
4848 && (s_start <= p_end
4849 || p_end < p_start))
4850 {
4851 einfo (_("%X%P: section %s LMA [%V,%V]"
4852 " overlaps section %s LMA [%V,%V]\n"),
4853 s->name, s_start, s_end, p->name, p_start, p_end);
4854 sections[i].warned = TRUE;
4855 }
4856 p = s;
4857 p_start = s_start;
4858 p_end = s_end;
4859 }
4860 }
4861
4862 /* If any non-zero size allocated section (excluding tbss) starts at
4863 exactly the same VMA as another such section, then we have
4864 overlays. Overlays generated by the OVERLAY keyword will have
4865 this property. It is possible to intentionally generate overlays
4866 that fail this test, but it would be unusual. */
4867 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
4868 overlays = FALSE;
4869 p_start = sections[0].sec->vma;
4870 for (i = 1; i < count; i++)
4871 {
4872 s_start = sections[i].sec->vma;
4873 if (p_start == s_start)
4874 {
4875 overlays = TRUE;
4876 break;
4877 }
4878 p_start = s_start;
4879 }
4880
4881 /* Now check section VMAs if no overlays were detected. */
4882 if (!overlays)
4883 {
4884 for (p = NULL, i = 0; i < count; i++)
4885 {
4886 s = sections[i].sec;
4887 s_start = s->vma;
4888 s_end = s_start + TO_ADDR (s->size) - 1;
4889
4890 if (p != NULL
4891 && !sections[i].warned
4892 && (s_start <= p_end
4893 || p_end < p_start))
4894 einfo (_("%X%P: section %s VMA [%V,%V]"
4895 " overlaps section %s VMA [%V,%V]\n"),
4896 s->name, s_start, s_end, p->name, p_start, p_end);
4897 p = s;
4898 p_start = s_start;
4899 p_end = s_end;
4900 }
4901 }
4902
4903 free (sections);
4904
4905 /* If any memory region has overflowed, report by how much.
4906 We do not issue this diagnostic for regions that had sections
4907 explicitly placed outside their bounds; os_region_check's
4908 diagnostics are adequate for that case.
4909
4910 FIXME: It is conceivable that m->current - (m->origin + m->length)
4911 might overflow a 32-bit integer. There is, alas, no way to print
4912 a bfd_vma quantity in decimal. */
4913 for (m = lang_memory_region_list; m; m = m->next)
4914 if (m->had_full_message)
4915 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4916 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4917 }
4918
4919 /* Make sure the new address is within the region. We explicitly permit the
4920 current address to be at the exact end of the region when the address is
4921 non-zero, in case the region is at the end of addressable memory and the
4922 calculation wraps around. */
4923
4924 static void
4925 os_region_check (lang_output_section_statement_type *os,
4926 lang_memory_region_type *region,
4927 etree_type *tree,
4928 bfd_vma rbase)
4929 {
4930 if ((region->current < region->origin
4931 || (region->current - region->origin > region->length))
4932 && ((region->current != region->origin + region->length)
4933 || rbase == 0))
4934 {
4935 if (tree != NULL)
4936 {
4937 einfo (_("%X%P: address 0x%v of %B section `%s'"
4938 " is not within region `%s'\n"),
4939 region->current,
4940 os->bfd_section->owner,
4941 os->bfd_section->name,
4942 region->name_list.name);
4943 }
4944 else if (!region->had_full_message)
4945 {
4946 region->had_full_message = TRUE;
4947
4948 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4949 os->bfd_section->owner,
4950 os->bfd_section->name,
4951 region->name_list.name);
4952 }
4953 }
4954 }
4955
4956 /* Set the sizes for all the output sections. */
4957
4958 static bfd_vma
4959 lang_size_sections_1
4960 (lang_statement_union_type **prev,
4961 lang_output_section_statement_type *output_section_statement,
4962 fill_type *fill,
4963 bfd_vma dot,
4964 bfd_boolean *relax,
4965 bfd_boolean check_regions)
4966 {
4967 lang_statement_union_type *s;
4968
4969 /* Size up the sections from their constituent parts. */
4970 for (s = *prev; s != NULL; s = s->header.next)
4971 {
4972 switch (s->header.type)
4973 {
4974 case lang_output_section_statement_enum:
4975 {
4976 bfd_vma newdot, after, dotdelta;
4977 lang_output_section_statement_type *os;
4978 lang_memory_region_type *r;
4979 int section_alignment = 0;
4980
4981 os = &s->output_section_statement;
4982 if (os->constraint == -1)
4983 break;
4984
4985 /* FIXME: We shouldn't need to zero section vmas for ld -r
4986 here, in lang_insert_orphan, or in the default linker scripts.
4987 This is covering for coff backend linker bugs. See PR6945. */
4988 if (os->addr_tree == NULL
4989 && bfd_link_relocatable (&link_info)
4990 && (bfd_get_flavour (link_info.output_bfd)
4991 == bfd_target_coff_flavour))
4992 os->addr_tree = exp_intop (0);
4993 if (os->addr_tree != NULL)
4994 {
4995 os->processed_vma = FALSE;
4996 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4997
4998 if (expld.result.valid_p)
4999 {
5000 dot = expld.result.value;
5001 if (expld.result.section != NULL)
5002 dot += expld.result.section->vma;
5003 }
5004 else if (expld.phase != lang_mark_phase_enum)
5005 einfo (_("%F%S: non constant or forward reference"
5006 " address expression for section %s\n"),
5007 os->addr_tree, os->name);
5008 }
5009
5010 if (os->bfd_section == NULL)
5011 /* This section was removed or never actually created. */
5012 break;
5013
5014 /* If this is a COFF shared library section, use the size and
5015 address from the input section. FIXME: This is COFF
5016 specific; it would be cleaner if there were some other way
5017 to do this, but nothing simple comes to mind. */
5018 if (((bfd_get_flavour (link_info.output_bfd)
5019 == bfd_target_ecoff_flavour)
5020 || (bfd_get_flavour (link_info.output_bfd)
5021 == bfd_target_coff_flavour))
5022 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5023 {
5024 asection *input;
5025
5026 if (os->children.head == NULL
5027 || os->children.head->header.next != NULL
5028 || (os->children.head->header.type
5029 != lang_input_section_enum))
5030 einfo (_("%P%X: Internal error on COFF shared library"
5031 " section %s\n"), os->name);
5032
5033 input = os->children.head->input_section.section;
5034 bfd_set_section_vma (os->bfd_section->owner,
5035 os->bfd_section,
5036 bfd_section_vma (input->owner, input));
5037 os->bfd_section->size = input->size;
5038 break;
5039 }
5040
5041 newdot = dot;
5042 dotdelta = 0;
5043 if (bfd_is_abs_section (os->bfd_section))
5044 {
5045 /* No matter what happens, an abs section starts at zero. */
5046 ASSERT (os->bfd_section->vma == 0);
5047 }
5048 else
5049 {
5050 if (os->addr_tree == NULL)
5051 {
5052 /* No address specified for this section, get one
5053 from the region specification. */
5054 if (os->region == NULL
5055 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5056 && os->region->name_list.name[0] == '*'
5057 && strcmp (os->region->name_list.name,
5058 DEFAULT_MEMORY_REGION) == 0))
5059 {
5060 os->region = lang_memory_default (os->bfd_section);
5061 }
5062
5063 /* If a loadable section is using the default memory
5064 region, and some non default memory regions were
5065 defined, issue an error message. */
5066 if (!os->ignored
5067 && !IGNORE_SECTION (os->bfd_section)
5068 && !bfd_link_relocatable (&link_info)
5069 && check_regions
5070 && strcmp (os->region->name_list.name,
5071 DEFAULT_MEMORY_REGION) == 0
5072 && lang_memory_region_list != NULL
5073 && (strcmp (lang_memory_region_list->name_list.name,
5074 DEFAULT_MEMORY_REGION) != 0
5075 || lang_memory_region_list->next != NULL)
5076 && expld.phase != lang_mark_phase_enum)
5077 {
5078 /* By default this is an error rather than just a
5079 warning because if we allocate the section to the
5080 default memory region we can end up creating an
5081 excessively large binary, or even seg faulting when
5082 attempting to perform a negative seek. See
5083 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5084 for an example of this. This behaviour can be
5085 overridden by the using the --no-check-sections
5086 switch. */
5087 if (command_line.check_section_addresses)
5088 einfo (_("%P%F: error: no memory region specified"
5089 " for loadable section `%s'\n"),
5090 bfd_get_section_name (link_info.output_bfd,
5091 os->bfd_section));
5092 else
5093 einfo (_("%P: warning: no memory region specified"
5094 " for loadable section `%s'\n"),
5095 bfd_get_section_name (link_info.output_bfd,
5096 os->bfd_section));
5097 }
5098
5099 newdot = os->region->current;
5100 section_alignment = os->bfd_section->alignment_power;
5101 }
5102 else
5103 section_alignment = os->section_alignment;
5104
5105 /* Align to what the section needs. */
5106 if (section_alignment > 0)
5107 {
5108 bfd_vma savedot = newdot;
5109 newdot = align_power (newdot, section_alignment);
5110
5111 dotdelta = newdot - savedot;
5112 if (dotdelta != 0
5113 && (config.warn_section_align
5114 || os->addr_tree != NULL)
5115 && expld.phase != lang_mark_phase_enum)
5116 einfo (_("%P: warning: changing start of section"
5117 " %s by %lu bytes\n"),
5118 os->name, (unsigned long) dotdelta);
5119 }
5120
5121 bfd_set_section_vma (0, os->bfd_section, newdot);
5122
5123 os->bfd_section->output_offset = 0;
5124 }
5125
5126 lang_size_sections_1 (&os->children.head, os,
5127 os->fill, newdot, relax, check_regions);
5128
5129 os->processed_vma = TRUE;
5130
5131 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5132 /* Except for some special linker created sections,
5133 no output section should change from zero size
5134 after strip_excluded_output_sections. A non-zero
5135 size on an ignored section indicates that some
5136 input section was not sized early enough. */
5137 ASSERT (os->bfd_section->size == 0);
5138 else
5139 {
5140 dot = os->bfd_section->vma;
5141
5142 /* Put the section within the requested block size, or
5143 align at the block boundary. */
5144 after = ((dot
5145 + TO_ADDR (os->bfd_section->size)
5146 + os->block_value - 1)
5147 & - (bfd_vma) os->block_value);
5148
5149 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
5150 }
5151
5152 /* Set section lma. */
5153 r = os->region;
5154 if (r == NULL)
5155 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5156
5157 if (os->load_base)
5158 {
5159 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5160 os->bfd_section->lma = lma;
5161 }
5162 else if (os->lma_region != NULL)
5163 {
5164 bfd_vma lma = os->lma_region->current;
5165
5166 if (os->align_lma_with_input)
5167 lma += dotdelta;
5168 else
5169 {
5170 /* When LMA_REGION is the same as REGION, align the LMA
5171 as we did for the VMA, possibly including alignment
5172 from the bfd section. If a different region, then
5173 only align according to the value in the output
5174 statement. */
5175 if (os->lma_region != os->region)
5176 section_alignment = os->section_alignment;
5177 if (section_alignment > 0)
5178 lma = align_power (lma, section_alignment);
5179 }
5180 os->bfd_section->lma = lma;
5181 }
5182 else if (r->last_os != NULL
5183 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5184 {
5185 bfd_vma lma;
5186 asection *last;
5187
5188 last = r->last_os->output_section_statement.bfd_section;
5189
5190 /* A backwards move of dot should be accompanied by
5191 an explicit assignment to the section LMA (ie.
5192 os->load_base set) because backwards moves can
5193 create overlapping LMAs. */
5194 if (dot < last->vma
5195 && os->bfd_section->size != 0
5196 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5197 {
5198 /* If dot moved backwards then leave lma equal to
5199 vma. This is the old default lma, which might
5200 just happen to work when the backwards move is
5201 sufficiently large. Nag if this changes anything,
5202 so people can fix their linker scripts. */
5203
5204 if (last->vma != last->lma)
5205 einfo (_("%P: warning: dot moved backwards "
5206 "before `%s'\n"), os->name);
5207 }
5208 else
5209 {
5210 /* If this is an overlay, set the current lma to that
5211 at the end of the previous section. */
5212 if (os->sectype == overlay_section)
5213 lma = last->lma + TO_ADDR (last->size);
5214
5215 /* Otherwise, keep the same lma to vma relationship
5216 as the previous section. */
5217 else
5218 lma = dot + last->lma - last->vma;
5219
5220 if (section_alignment > 0)
5221 lma = align_power (lma, section_alignment);
5222 os->bfd_section->lma = lma;
5223 }
5224 }
5225 os->processed_lma = TRUE;
5226
5227 /* Keep track of normal sections using the default
5228 lma region. We use this to set the lma for
5229 following sections. Overlays or other linker
5230 script assignment to lma might mean that the
5231 default lma == vma is incorrect.
5232 To avoid warnings about dot moving backwards when using
5233 -Ttext, don't start tracking sections until we find one
5234 of non-zero size or with lma set differently to vma.
5235 Do this tracking before we short-cut the loop so that we
5236 track changes for the case where the section size is zero,
5237 but the lma is set differently to the vma. This is
5238 important, if an orphan section is placed after an
5239 otherwise empty output section that has an explicit lma
5240 set, we want that lma reflected in the orphans lma. */
5241 if (!IGNORE_SECTION (os->bfd_section)
5242 && (os->bfd_section->size != 0
5243 || (r->last_os == NULL
5244 && os->bfd_section->vma != os->bfd_section->lma)
5245 || (r->last_os != NULL
5246 && dot >= (r->last_os->output_section_statement
5247 .bfd_section->vma)))
5248 && os->lma_region == NULL
5249 && !bfd_link_relocatable (&link_info))
5250 r->last_os = s;
5251
5252 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5253 break;
5254
5255 /* .tbss sections effectively have zero size. */
5256 if (!IS_TBSS (os->bfd_section)
5257 || bfd_link_relocatable (&link_info))
5258 dotdelta = TO_ADDR (os->bfd_section->size);
5259 else
5260 dotdelta = 0;
5261 dot += dotdelta;
5262
5263 if (os->update_dot_tree != 0)
5264 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5265
5266 /* Update dot in the region ?
5267 We only do this if the section is going to be allocated,
5268 since unallocated sections do not contribute to the region's
5269 overall size in memory. */
5270 if (os->region != NULL
5271 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5272 {
5273 os->region->current = dot;
5274
5275 if (check_regions)
5276 /* Make sure the new address is within the region. */
5277 os_region_check (os, os->region, os->addr_tree,
5278 os->bfd_section->vma);
5279
5280 if (os->lma_region != NULL && os->lma_region != os->region
5281 && ((os->bfd_section->flags & SEC_LOAD)
5282 || os->align_lma_with_input))
5283 {
5284 os->lma_region->current = os->bfd_section->lma + dotdelta;
5285
5286 if (check_regions)
5287 os_region_check (os, os->lma_region, NULL,
5288 os->bfd_section->lma);
5289 }
5290 }
5291 }
5292 break;
5293
5294 case lang_constructors_statement_enum:
5295 dot = lang_size_sections_1 (&constructor_list.head,
5296 output_section_statement,
5297 fill, dot, relax, check_regions);
5298 break;
5299
5300 case lang_data_statement_enum:
5301 {
5302 unsigned int size = 0;
5303
5304 s->data_statement.output_offset =
5305 dot - output_section_statement->bfd_section->vma;
5306 s->data_statement.output_section =
5307 output_section_statement->bfd_section;
5308
5309 /* We might refer to provided symbols in the expression, and
5310 need to mark them as needed. */
5311 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5312
5313 switch (s->data_statement.type)
5314 {
5315 default:
5316 abort ();
5317 case QUAD:
5318 case SQUAD:
5319 size = QUAD_SIZE;
5320 break;
5321 case LONG:
5322 size = LONG_SIZE;
5323 break;
5324 case SHORT:
5325 size = SHORT_SIZE;
5326 break;
5327 case BYTE:
5328 size = BYTE_SIZE;
5329 break;
5330 }
5331 if (size < TO_SIZE ((unsigned) 1))
5332 size = TO_SIZE ((unsigned) 1);
5333 dot += TO_ADDR (size);
5334 output_section_statement->bfd_section->size
5335 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5336
5337 }
5338 break;
5339
5340 case lang_reloc_statement_enum:
5341 {
5342 int size;
5343
5344 s->reloc_statement.output_offset =
5345 dot - output_section_statement->bfd_section->vma;
5346 s->reloc_statement.output_section =
5347 output_section_statement->bfd_section;
5348 size = bfd_get_reloc_size (s->reloc_statement.howto);
5349 dot += TO_ADDR (size);
5350 output_section_statement->bfd_section->size
5351 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5352 }
5353 break;
5354
5355 case lang_wild_statement_enum:
5356 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5357 output_section_statement,
5358 fill, dot, relax, check_regions);
5359 break;
5360
5361 case lang_object_symbols_statement_enum:
5362 link_info.create_object_symbols_section =
5363 output_section_statement->bfd_section;
5364 break;
5365
5366 case lang_output_statement_enum:
5367 case lang_target_statement_enum:
5368 break;
5369
5370 case lang_input_section_enum:
5371 {
5372 asection *i;
5373
5374 i = s->input_section.section;
5375 if (relax)
5376 {
5377 bfd_boolean again;
5378
5379 if (!bfd_relax_section (i->owner, i, &link_info, &again))
5380 einfo (_("%P%F: can't relax section: %E\n"));
5381 if (again)
5382 *relax = TRUE;
5383 }
5384 dot = size_input_section (prev, output_section_statement,
5385 fill, dot);
5386 }
5387 break;
5388
5389 case lang_input_statement_enum:
5390 break;
5391
5392 case lang_fill_statement_enum:
5393 s->fill_statement.output_section =
5394 output_section_statement->bfd_section;
5395
5396 fill = s->fill_statement.fill;
5397 break;
5398
5399 case lang_assignment_statement_enum:
5400 {
5401 bfd_vma newdot = dot;
5402 etree_type *tree = s->assignment_statement.exp;
5403
5404 expld.dataseg.relro = exp_dataseg_relro_none;
5405
5406 exp_fold_tree (tree,
5407 output_section_statement->bfd_section,
5408 &newdot);
5409
5410 if (expld.dataseg.relro == exp_dataseg_relro_start)
5411 {
5412 if (!expld.dataseg.relro_start_stat)
5413 expld.dataseg.relro_start_stat = s;
5414 else
5415 {
5416 ASSERT (expld.dataseg.relro_start_stat == s);
5417 }
5418 }
5419 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5420 {
5421 if (!expld.dataseg.relro_end_stat)
5422 expld.dataseg.relro_end_stat = s;
5423 else
5424 {
5425 ASSERT (expld.dataseg.relro_end_stat == s);
5426 }
5427 }
5428 expld.dataseg.relro = exp_dataseg_relro_none;
5429
5430 /* This symbol may be relative to this section. */
5431 if ((tree->type.node_class == etree_provided
5432 || tree->type.node_class == etree_assign)
5433 && (tree->assign.dst [0] != '.'
5434 || tree->assign.dst [1] != '\0'))
5435 output_section_statement->update_dot = 1;
5436
5437 if (!output_section_statement->ignored)
5438 {
5439 if (output_section_statement == abs_output_section)
5440 {
5441 /* If we don't have an output section, then just adjust
5442 the default memory address. */
5443 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5444 FALSE)->current = newdot;
5445 }
5446 else if (newdot != dot)
5447 {
5448 /* Insert a pad after this statement. We can't
5449 put the pad before when relaxing, in case the
5450 assignment references dot. */
5451 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5452 output_section_statement->bfd_section, dot);
5453
5454 /* Don't neuter the pad below when relaxing. */
5455 s = s->header.next;
5456
5457 /* If dot is advanced, this implies that the section
5458 should have space allocated to it, unless the
5459 user has explicitly stated that the section
5460 should not be allocated. */
5461 if (output_section_statement->sectype != noalloc_section
5462 && (output_section_statement->sectype != noload_section
5463 || (bfd_get_flavour (link_info.output_bfd)
5464 == bfd_target_elf_flavour)))
5465 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5466 }
5467 dot = newdot;
5468 }
5469 }
5470 break;
5471
5472 case lang_padding_statement_enum:
5473 /* If this is the first time lang_size_sections is called,
5474 we won't have any padding statements. If this is the
5475 second or later passes when relaxing, we should allow
5476 padding to shrink. If padding is needed on this pass, it
5477 will be added back in. */
5478 s->padding_statement.size = 0;
5479
5480 /* Make sure output_offset is valid. If relaxation shrinks
5481 the section and this pad isn't needed, it's possible to
5482 have output_offset larger than the final size of the
5483 section. bfd_set_section_contents will complain even for
5484 a pad size of zero. */
5485 s->padding_statement.output_offset
5486 = dot - output_section_statement->bfd_section->vma;
5487 break;
5488
5489 case lang_group_statement_enum:
5490 dot = lang_size_sections_1 (&s->group_statement.children.head,
5491 output_section_statement,
5492 fill, dot, relax, check_regions);
5493 break;
5494
5495 case lang_insert_statement_enum:
5496 break;
5497
5498 /* We can only get here when relaxing is turned on. */
5499 case lang_address_statement_enum:
5500 break;
5501
5502 default:
5503 FAIL ();
5504 break;
5505 }
5506 prev = &s->header.next;
5507 }
5508 return dot;
5509 }
5510
5511 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5512 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5513 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5514 segments. We are allowed an opportunity to override this decision. */
5515
5516 bfd_boolean
5517 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5518 bfd *abfd ATTRIBUTE_UNUSED,
5519 asection *current_section,
5520 asection *previous_section,
5521 bfd_boolean new_segment)
5522 {
5523 lang_output_section_statement_type *cur;
5524 lang_output_section_statement_type *prev;
5525
5526 /* The checks below are only necessary when the BFD library has decided
5527 that the two sections ought to be placed into the same segment. */
5528 if (new_segment)
5529 return TRUE;
5530
5531 /* Paranoia checks. */
5532 if (current_section == NULL || previous_section == NULL)
5533 return new_segment;
5534
5535 /* If this flag is set, the target never wants code and non-code
5536 sections comingled in the same segment. */
5537 if (config.separate_code
5538 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
5539 return TRUE;
5540
5541 /* Find the memory regions associated with the two sections.
5542 We call lang_output_section_find() here rather than scanning the list
5543 of output sections looking for a matching section pointer because if
5544 we have a large number of sections then a hash lookup is faster. */
5545 cur = lang_output_section_find (current_section->name);
5546 prev = lang_output_section_find (previous_section->name);
5547
5548 /* More paranoia. */
5549 if (cur == NULL || prev == NULL)
5550 return new_segment;
5551
5552 /* If the regions are different then force the sections to live in
5553 different segments. See the email thread starting at the following
5554 URL for the reasons why this is necessary:
5555 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5556 return cur->region != prev->region;
5557 }
5558
5559 void
5560 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5561 {
5562 lang_statement_iteration++;
5563 lang_size_sections_1 (&statement_list.head, abs_output_section,
5564 0, 0, relax, check_regions);
5565 }
5566
5567 void
5568 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5569 {
5570 expld.phase = lang_allocating_phase_enum;
5571 expld.dataseg.phase = exp_dataseg_none;
5572
5573 one_lang_size_sections_pass (relax, check_regions);
5574 if (expld.dataseg.phase == exp_dataseg_end_seen
5575 && link_info.relro && expld.dataseg.relro_end)
5576 {
5577 bfd_vma initial_base, relro_end, desired_end;
5578 asection *sec;
5579
5580 /* Compute the expected PT_GNU_RELRO segment end. */
5581 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5582 & ~(expld.dataseg.pagesize - 1));
5583
5584 /* Adjust by the offset arg of DATA_SEGMENT_RELRO_END. */
5585 desired_end = relro_end - expld.dataseg.relro_offset;
5586
5587 /* For sections in the relro segment.. */
5588 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
5589 if ((sec->flags & SEC_ALLOC) != 0
5590 && sec->vma >= expld.dataseg.base
5591 && sec->vma < expld.dataseg.relro_end - expld.dataseg.relro_offset)
5592 {
5593 /* Where do we want to put this section so that it ends as
5594 desired? */
5595 bfd_vma start, end, bump;
5596
5597 end = start = sec->vma;
5598 if (!IS_TBSS (sec))
5599 end += TO_ADDR (sec->size);
5600 bump = desired_end - end;
5601 /* We'd like to increase START by BUMP, but we must heed
5602 alignment so the increase might be less than optimum. */
5603 start += bump;
5604 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
5605 /* This is now the desired end for the previous section. */
5606 desired_end = start;
5607 }
5608
5609 expld.dataseg.phase = exp_dataseg_relro_adjust;
5610 ASSERT (desired_end >= expld.dataseg.base);
5611 initial_base = expld.dataseg.base;
5612 expld.dataseg.base = desired_end;
5613 lang_reset_memory_regions ();
5614 one_lang_size_sections_pass (relax, check_regions);
5615
5616 if (expld.dataseg.relro_end > relro_end)
5617 {
5618 /* Assignments to dot, or to output section address in a
5619 user script have increased padding over the original.
5620 Revert. */
5621 expld.dataseg.base = initial_base;
5622 lang_reset_memory_regions ();
5623 one_lang_size_sections_pass (relax, check_regions);
5624 }
5625
5626 link_info.relro_start = expld.dataseg.base;
5627 link_info.relro_end = expld.dataseg.relro_end;
5628 }
5629 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5630 {
5631 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5632 a page could be saved in the data segment. */
5633 bfd_vma first, last;
5634
5635 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5636 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5637 if (first && last
5638 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5639 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5640 && first + last <= expld.dataseg.pagesize)
5641 {
5642 expld.dataseg.phase = exp_dataseg_adjust;
5643 lang_reset_memory_regions ();
5644 one_lang_size_sections_pass (relax, check_regions);
5645 }
5646 else
5647 expld.dataseg.phase = exp_dataseg_done;
5648 }
5649 else
5650 expld.dataseg.phase = exp_dataseg_done;
5651 }
5652
5653 static lang_output_section_statement_type *current_section;
5654 static lang_assignment_statement_type *current_assign;
5655 static bfd_boolean prefer_next_section;
5656
5657 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5658
5659 static bfd_vma
5660 lang_do_assignments_1 (lang_statement_union_type *s,
5661 lang_output_section_statement_type *current_os,
5662 fill_type *fill,
5663 bfd_vma dot,
5664 bfd_boolean *found_end)
5665 {
5666 for (; s != NULL; s = s->header.next)
5667 {
5668 switch (s->header.type)
5669 {
5670 case lang_constructors_statement_enum:
5671 dot = lang_do_assignments_1 (constructor_list.head,
5672 current_os, fill, dot, found_end);
5673 break;
5674
5675 case lang_output_section_statement_enum:
5676 {
5677 lang_output_section_statement_type *os;
5678 bfd_vma newdot;
5679
5680 os = &(s->output_section_statement);
5681 os->after_end = *found_end;
5682 if (os->bfd_section != NULL && !os->ignored)
5683 {
5684 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
5685 {
5686 current_section = os;
5687 prefer_next_section = FALSE;
5688 }
5689 dot = os->bfd_section->vma;
5690 }
5691 newdot = lang_do_assignments_1 (os->children.head,
5692 os, os->fill, dot, found_end);
5693 if (!os->ignored)
5694 {
5695 if (os->bfd_section != NULL)
5696 {
5697 /* .tbss sections effectively have zero size. */
5698 if (!IS_TBSS (os->bfd_section)
5699 || bfd_link_relocatable (&link_info))
5700 dot += TO_ADDR (os->bfd_section->size);
5701
5702 if (os->update_dot_tree != NULL)
5703 exp_fold_tree (os->update_dot_tree,
5704 bfd_abs_section_ptr, &dot);
5705 }
5706 else
5707 dot = newdot;
5708 }
5709 }
5710 break;
5711
5712 case lang_wild_statement_enum:
5713
5714 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5715 current_os, fill, dot, found_end);
5716 break;
5717
5718 case lang_object_symbols_statement_enum:
5719 case lang_output_statement_enum:
5720 case lang_target_statement_enum:
5721 break;
5722
5723 case lang_data_statement_enum:
5724 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5725 if (expld.result.valid_p)
5726 {
5727 s->data_statement.value = expld.result.value;
5728 if (expld.result.section != NULL)
5729 s->data_statement.value += expld.result.section->vma;
5730 }
5731 else if (expld.phase == lang_final_phase_enum)
5732 einfo (_("%F%P: invalid data statement\n"));
5733 {
5734 unsigned int size;
5735 switch (s->data_statement.type)
5736 {
5737 default:
5738 abort ();
5739 case QUAD:
5740 case SQUAD:
5741 size = QUAD_SIZE;
5742 break;
5743 case LONG:
5744 size = LONG_SIZE;
5745 break;
5746 case SHORT:
5747 size = SHORT_SIZE;
5748 break;
5749 case BYTE:
5750 size = BYTE_SIZE;
5751 break;
5752 }
5753 if (size < TO_SIZE ((unsigned) 1))
5754 size = TO_SIZE ((unsigned) 1);
5755 dot += TO_ADDR (size);
5756 }
5757 break;
5758
5759 case lang_reloc_statement_enum:
5760 exp_fold_tree (s->reloc_statement.addend_exp,
5761 bfd_abs_section_ptr, &dot);
5762 if (expld.result.valid_p)
5763 s->reloc_statement.addend_value = expld.result.value;
5764 else if (expld.phase == lang_final_phase_enum)
5765 einfo (_("%F%P: invalid reloc statement\n"));
5766 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5767 break;
5768
5769 case lang_input_section_enum:
5770 {
5771 asection *in = s->input_section.section;
5772
5773 if ((in->flags & SEC_EXCLUDE) == 0)
5774 dot += TO_ADDR (in->size);
5775 }
5776 break;
5777
5778 case lang_input_statement_enum:
5779 break;
5780
5781 case lang_fill_statement_enum:
5782 fill = s->fill_statement.fill;
5783 break;
5784
5785 case lang_assignment_statement_enum:
5786 current_assign = &s->assignment_statement;
5787 if (current_assign->exp->type.node_class != etree_assert)
5788 {
5789 const char *p = current_assign->exp->assign.dst;
5790
5791 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
5792 prefer_next_section = TRUE;
5793
5794 while (*p == '_')
5795 ++p;
5796 if (strcmp (p, "end") == 0)
5797 *found_end = TRUE;
5798 }
5799 exp_fold_tree (s->assignment_statement.exp,
5800 (current_os->bfd_section != NULL
5801 ? current_os->bfd_section : bfd_und_section_ptr),
5802 &dot);
5803 break;
5804
5805 case lang_padding_statement_enum:
5806 dot += TO_ADDR (s->padding_statement.size);
5807 break;
5808
5809 case lang_group_statement_enum:
5810 dot = lang_do_assignments_1 (s->group_statement.children.head,
5811 current_os, fill, dot, found_end);
5812 break;
5813
5814 case lang_insert_statement_enum:
5815 break;
5816
5817 case lang_address_statement_enum:
5818 break;
5819
5820 default:
5821 FAIL ();
5822 break;
5823 }
5824 }
5825 return dot;
5826 }
5827
5828 void
5829 lang_do_assignments (lang_phase_type phase)
5830 {
5831 bfd_boolean found_end = FALSE;
5832
5833 current_section = NULL;
5834 prefer_next_section = FALSE;
5835 expld.phase = phase;
5836 lang_statement_iteration++;
5837 lang_do_assignments_1 (statement_list.head,
5838 abs_output_section, NULL, 0, &found_end);
5839 }
5840
5841 /* For an assignment statement outside of an output section statement,
5842 choose the best of neighbouring output sections to use for values
5843 of "dot". */
5844
5845 asection *
5846 section_for_dot (void)
5847 {
5848 asection *s;
5849
5850 /* Assignments belong to the previous output section, unless there
5851 has been an assignment to "dot", in which case following
5852 assignments belong to the next output section. (The assumption
5853 is that an assignment to "dot" is setting up the address for the
5854 next output section.) Except that past the assignment to "_end"
5855 we always associate with the previous section. This exception is
5856 for targets like SH that define an alloc .stack or other
5857 weirdness after non-alloc sections. */
5858 if (current_section == NULL || prefer_next_section)
5859 {
5860 lang_statement_union_type *stmt;
5861 lang_output_section_statement_type *os;
5862
5863 for (stmt = (lang_statement_union_type *) current_assign;
5864 stmt != NULL;
5865 stmt = stmt->header.next)
5866 if (stmt->header.type == lang_output_section_statement_enum)
5867 break;
5868
5869 os = &stmt->output_section_statement;
5870 while (os != NULL
5871 && !os->after_end
5872 && (os->bfd_section == NULL
5873 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
5874 || bfd_section_removed_from_list (link_info.output_bfd,
5875 os->bfd_section)))
5876 os = os->next;
5877
5878 if (current_section == NULL || os == NULL || !os->after_end)
5879 {
5880 if (os != NULL)
5881 s = os->bfd_section;
5882 else
5883 s = link_info.output_bfd->section_last;
5884 while (s != NULL
5885 && ((s->flags & SEC_ALLOC) == 0
5886 || (s->flags & SEC_THREAD_LOCAL) != 0))
5887 s = s->prev;
5888 if (s != NULL)
5889 return s;
5890
5891 return bfd_abs_section_ptr;
5892 }
5893 }
5894
5895 s = current_section->bfd_section;
5896
5897 /* The section may have been stripped. */
5898 while (s != NULL
5899 && ((s->flags & SEC_EXCLUDE) != 0
5900 || (s->flags & SEC_ALLOC) == 0
5901 || (s->flags & SEC_THREAD_LOCAL) != 0
5902 || bfd_section_removed_from_list (link_info.output_bfd, s)))
5903 s = s->prev;
5904 if (s == NULL)
5905 s = link_info.output_bfd->sections;
5906 while (s != NULL
5907 && ((s->flags & SEC_ALLOC) == 0
5908 || (s->flags & SEC_THREAD_LOCAL) != 0))
5909 s = s->next;
5910 if (s != NULL)
5911 return s;
5912
5913 return bfd_abs_section_ptr;
5914 }
5915
5916 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
5917
5918 static struct bfd_link_hash_entry **start_stop_syms;
5919 static size_t start_stop_count = 0;
5920 static size_t start_stop_alloc = 0;
5921
5922 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
5923 to start_stop_syms. */
5924
5925 static void
5926 lang_define_start_stop (const char *symbol, asection *sec)
5927 {
5928 struct bfd_link_hash_entry *h;
5929
5930 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
5931 if (h != NULL)
5932 {
5933 if (start_stop_count == start_stop_alloc)
5934 {
5935 start_stop_alloc = 2 * start_stop_alloc + 10;
5936 start_stop_syms
5937 = xrealloc (start_stop_syms,
5938 start_stop_alloc * sizeof (*start_stop_syms));
5939 }
5940 start_stop_syms[start_stop_count++] = h;
5941 }
5942 }
5943
5944 /* Check for input sections whose names match references to
5945 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
5946 preliminary definitions. */
5947
5948 static void
5949 lang_init_start_stop (void)
5950 {
5951 bfd *abfd;
5952 asection *s;
5953 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
5954
5955 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
5956 for (s = abfd->sections; s != NULL; s = s->next)
5957 {
5958 const char *ps;
5959 const char *secname = s->name;
5960
5961 for (ps = secname; *ps != '\0'; ps++)
5962 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
5963 break;
5964 if (*ps == '\0')
5965 {
5966 char *symbol = (char *) xmalloc (10 + strlen (secname));
5967
5968 symbol[0] = leading_char;
5969 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
5970 lang_define_start_stop (symbol, s);
5971
5972 symbol[1] = leading_char;
5973 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
5974 lang_define_start_stop (symbol + 1, s);
5975
5976 free (symbol);
5977 }
5978 }
5979 }
5980
5981 /* Iterate over start_stop_syms. */
5982
5983 static void
5984 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
5985 {
5986 size_t i;
5987
5988 for (i = 0; i < start_stop_count; ++i)
5989 func (start_stop_syms[i]);
5990 }
5991
5992 /* __start and __stop symbols are only supposed to be defined by the
5993 linker for orphan sections, but we now extend that to sections that
5994 map to an output section of the same name. The symbols were
5995 defined early for --gc-sections, before we mapped input to output
5996 sections, so undo those that don't satisfy this rule. */
5997
5998 static void
5999 undef_start_stop (struct bfd_link_hash_entry *h)
6000 {
6001 if (h->ldscript_def)
6002 return;
6003
6004 if (h->u.def.section->output_section == NULL
6005 || h->u.def.section->output_section->owner != link_info.output_bfd
6006 || strcmp (h->u.def.section->name,
6007 h->u.def.section->output_section->name) != 0)
6008 {
6009 h->type = bfd_link_hash_undefined;
6010 h->u.undef.abfd = NULL;
6011 }
6012 }
6013
6014 static void
6015 lang_undef_start_stop (void)
6016 {
6017 foreach_start_stop (undef_start_stop);
6018 }
6019
6020 /* Check for output sections whose names match references to
6021 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6022 preliminary definitions. */
6023
6024 static void
6025 lang_init_startof_sizeof (void)
6026 {
6027 asection *s;
6028
6029 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6030 {
6031 const char *secname = s->name;
6032 char *symbol = (char *) xmalloc (10 + strlen (secname));
6033
6034 sprintf (symbol, ".startof.%s", secname);
6035 lang_define_start_stop (symbol, s);
6036
6037 memcpy (symbol + 1, ".size", 5);
6038 lang_define_start_stop (symbol + 1, s);
6039 free (symbol);
6040 }
6041 }
6042
6043 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6044
6045 static void
6046 set_start_stop (struct bfd_link_hash_entry *h)
6047 {
6048 if (h->ldscript_def
6049 || h->type != bfd_link_hash_defined)
6050 return;
6051
6052 if (h->root.string[0] == '.')
6053 {
6054 /* .startof. or .sizeof. symbol.
6055 .startof. already has final value. */
6056 if (h->root.string[2] == 'i')
6057 {
6058 /* .sizeof. */
6059 h->u.def.value = TO_ADDR (h->u.def.section->size);
6060 h->u.def.section = bfd_abs_section_ptr;
6061 }
6062 }
6063 else
6064 {
6065 /* __start or __stop symbol. */
6066 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6067
6068 h->u.def.section = h->u.def.section->output_section;
6069 if (h->root.string[4 + has_lead] == 'o')
6070 {
6071 /* __stop_ */
6072 h->u.def.value = TO_ADDR (h->u.def.section->size);
6073 }
6074 }
6075 }
6076
6077 static void
6078 lang_finalize_start_stop (void)
6079 {
6080 foreach_start_stop (set_start_stop);
6081 }
6082
6083 static void
6084 lang_end (void)
6085 {
6086 struct bfd_link_hash_entry *h;
6087 bfd_boolean warn;
6088
6089 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6090 || bfd_link_dll (&link_info))
6091 warn = entry_from_cmdline;
6092 else
6093 warn = TRUE;
6094
6095 /* Force the user to specify a root when generating a relocatable with
6096 --gc-sections. */
6097 if (link_info.gc_sections && bfd_link_relocatable (&link_info)
6098 && !(entry_from_cmdline || undef_from_cmdline))
6099 einfo (_("%P%F: gc-sections requires either an entry or "
6100 "an undefined symbol\n"));
6101
6102 if (entry_symbol.name == NULL)
6103 {
6104 /* No entry has been specified. Look for the default entry, but
6105 don't warn if we don't find it. */
6106 entry_symbol.name = entry_symbol_default;
6107 warn = FALSE;
6108 }
6109
6110 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6111 FALSE, FALSE, TRUE);
6112 if (h != NULL
6113 && (h->type == bfd_link_hash_defined
6114 || h->type == bfd_link_hash_defweak)
6115 && h->u.def.section->output_section != NULL)
6116 {
6117 bfd_vma val;
6118
6119 val = (h->u.def.value
6120 + bfd_get_section_vma (link_info.output_bfd,
6121 h->u.def.section->output_section)
6122 + h->u.def.section->output_offset);
6123 if (!bfd_set_start_address (link_info.output_bfd, val))
6124 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
6125 }
6126 else
6127 {
6128 bfd_vma val;
6129 const char *send;
6130
6131 /* We couldn't find the entry symbol. Try parsing it as a
6132 number. */
6133 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6134 if (*send == '\0')
6135 {
6136 if (!bfd_set_start_address (link_info.output_bfd, val))
6137 einfo (_("%P%F: can't set start address\n"));
6138 }
6139 else
6140 {
6141 asection *ts;
6142
6143 /* Can't find the entry symbol, and it's not a number. Use
6144 the first address in the text section. */
6145 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6146 if (ts != NULL)
6147 {
6148 if (warn)
6149 einfo (_("%P: warning: cannot find entry symbol %s;"
6150 " defaulting to %V\n"),
6151 entry_symbol.name,
6152 bfd_get_section_vma (link_info.output_bfd, ts));
6153 if (!(bfd_set_start_address
6154 (link_info.output_bfd,
6155 bfd_get_section_vma (link_info.output_bfd, ts))))
6156 einfo (_("%P%F: can't set start address\n"));
6157 }
6158 else
6159 {
6160 if (warn)
6161 einfo (_("%P: warning: cannot find entry symbol %s;"
6162 " not setting start address\n"),
6163 entry_symbol.name);
6164 }
6165 }
6166 }
6167 }
6168
6169 /* This is a small function used when we want to ignore errors from
6170 BFD. */
6171
6172 static void
6173 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6174 va_list ap ATTRIBUTE_UNUSED)
6175 {
6176 /* Don't do anything. */
6177 }
6178
6179 /* Check that the architecture of all the input files is compatible
6180 with the output file. Also call the backend to let it do any
6181 other checking that is needed. */
6182
6183 static void
6184 lang_check (void)
6185 {
6186 lang_statement_union_type *file;
6187 bfd *input_bfd;
6188 const bfd_arch_info_type *compatible;
6189
6190 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
6191 {
6192 #ifdef ENABLE_PLUGINS
6193 /* Don't check format of files claimed by plugin. */
6194 if (file->input_statement.flags.claimed)
6195 continue;
6196 #endif /* ENABLE_PLUGINS */
6197 input_bfd = file->input_statement.the_bfd;
6198 compatible
6199 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6200 command_line.accept_unknown_input_arch);
6201
6202 /* In general it is not possible to perform a relocatable
6203 link between differing object formats when the input
6204 file has relocations, because the relocations in the
6205 input format may not have equivalent representations in
6206 the output format (and besides BFD does not translate
6207 relocs for other link purposes than a final link). */
6208 if ((bfd_link_relocatable (&link_info)
6209 || link_info.emitrelocations)
6210 && (compatible == NULL
6211 || (bfd_get_flavour (input_bfd)
6212 != bfd_get_flavour (link_info.output_bfd)))
6213 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6214 {
6215 einfo (_("%P%F: Relocatable linking with relocations from"
6216 " format %s (%B) to format %s (%B) is not supported\n"),
6217 bfd_get_target (input_bfd), input_bfd,
6218 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6219 /* einfo with %F exits. */
6220 }
6221
6222 if (compatible == NULL)
6223 {
6224 if (command_line.warn_mismatch)
6225 einfo (_("%P%X: %s architecture of input file `%B'"
6226 " is incompatible with %s output\n"),
6227 bfd_printable_name (input_bfd), input_bfd,
6228 bfd_printable_name (link_info.output_bfd));
6229 }
6230 else if (bfd_count_sections (input_bfd))
6231 {
6232 /* If the input bfd has no contents, it shouldn't set the
6233 private data of the output bfd. */
6234
6235 bfd_error_handler_type pfn = NULL;
6236
6237 /* If we aren't supposed to warn about mismatched input
6238 files, temporarily set the BFD error handler to a
6239 function which will do nothing. We still want to call
6240 bfd_merge_private_bfd_data, since it may set up
6241 information which is needed in the output file. */
6242 if (!command_line.warn_mismatch)
6243 pfn = bfd_set_error_handler (ignore_bfd_errors);
6244 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6245 {
6246 if (command_line.warn_mismatch)
6247 einfo (_("%P%X: failed to merge target specific data"
6248 " of file %B\n"), input_bfd);
6249 }
6250 if (!command_line.warn_mismatch)
6251 bfd_set_error_handler (pfn);
6252 }
6253 }
6254 }
6255
6256 /* Look through all the global common symbols and attach them to the
6257 correct section. The -sort-common command line switch may be used
6258 to roughly sort the entries by alignment. */
6259
6260 static void
6261 lang_common (void)
6262 {
6263 if (link_info.inhibit_common_definition)
6264 return;
6265 if (bfd_link_relocatable (&link_info)
6266 && !command_line.force_common_definition)
6267 return;
6268
6269 if (!config.sort_common)
6270 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6271 else
6272 {
6273 unsigned int power;
6274
6275 if (config.sort_common == sort_descending)
6276 {
6277 for (power = 4; power > 0; power--)
6278 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6279
6280 power = 0;
6281 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6282 }
6283 else
6284 {
6285 for (power = 0; power <= 4; power++)
6286 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6287
6288 power = (unsigned int) -1;
6289 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6290 }
6291 }
6292 }
6293
6294 /* Place one common symbol in the correct section. */
6295
6296 static bfd_boolean
6297 lang_one_common (struct bfd_link_hash_entry *h, void *info)
6298 {
6299 unsigned int power_of_two;
6300 bfd_vma size;
6301 asection *section;
6302
6303 if (h->type != bfd_link_hash_common)
6304 return TRUE;
6305
6306 size = h->u.c.size;
6307 power_of_two = h->u.c.p->alignment_power;
6308
6309 if (config.sort_common == sort_descending
6310 && power_of_two < *(unsigned int *) info)
6311 return TRUE;
6312 else if (config.sort_common == sort_ascending
6313 && power_of_two > *(unsigned int *) info)
6314 return TRUE;
6315
6316 section = h->u.c.p->section;
6317 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
6318 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
6319 h->root.string);
6320
6321 if (config.map_file != NULL)
6322 {
6323 static bfd_boolean header_printed;
6324 int len;
6325 char *name;
6326 char buf[50];
6327
6328 if (!header_printed)
6329 {
6330 minfo (_("\nAllocating common symbols\n"));
6331 minfo (_("Common symbol size file\n\n"));
6332 header_printed = TRUE;
6333 }
6334
6335 name = bfd_demangle (link_info.output_bfd, h->root.string,
6336 DMGL_ANSI | DMGL_PARAMS);
6337 if (name == NULL)
6338 {
6339 minfo ("%s", h->root.string);
6340 len = strlen (h->root.string);
6341 }
6342 else
6343 {
6344 minfo ("%s", name);
6345 len = strlen (name);
6346 free (name);
6347 }
6348
6349 if (len >= 19)
6350 {
6351 print_nl ();
6352 len = 0;
6353 }
6354 while (len < 20)
6355 {
6356 print_space ();
6357 ++len;
6358 }
6359
6360 minfo ("0x");
6361 if (size <= 0xffffffff)
6362 sprintf (buf, "%lx", (unsigned long) size);
6363 else
6364 sprintf_vma (buf, size);
6365 minfo ("%s", buf);
6366 len = strlen (buf);
6367
6368 while (len < 16)
6369 {
6370 print_space ();
6371 ++len;
6372 }
6373
6374 minfo ("%B\n", section->owner);
6375 }
6376
6377 return TRUE;
6378 }
6379
6380 /* Handle a single orphan section S, placing the orphan into an appropriate
6381 output section. The effects of the --orphan-handling command line
6382 option are handled here. */
6383
6384 static void
6385 ldlang_place_orphan (asection *s)
6386 {
6387 if (config.orphan_handling == orphan_handling_discard)
6388 {
6389 lang_output_section_statement_type *os;
6390 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
6391 TRUE);
6392 if (os->addr_tree == NULL
6393 && (bfd_link_relocatable (&link_info)
6394 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6395 os->addr_tree = exp_intop (0);
6396 lang_add_section (&os->children, s, NULL, os);
6397 }
6398 else
6399 {
6400 lang_output_section_statement_type *os;
6401 const char *name = s->name;
6402 int constraint = 0;
6403
6404 if (config.orphan_handling == orphan_handling_error)
6405 einfo ("%X%P: error: unplaced orphan section `%A' from `%B'.\n",
6406 s, s->owner);
6407
6408 if (config.unique_orphan_sections || unique_section_p (s, NULL))
6409 constraint = SPECIAL;
6410
6411 os = ldemul_place_orphan (s, name, constraint);
6412 if (os == NULL)
6413 {
6414 os = lang_output_section_statement_lookup (name, constraint, TRUE);
6415 if (os->addr_tree == NULL
6416 && (bfd_link_relocatable (&link_info)
6417 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6418 os->addr_tree = exp_intop (0);
6419 lang_add_section (&os->children, s, NULL, os);
6420 }
6421
6422 if (config.orphan_handling == orphan_handling_warn)
6423 einfo ("%P: warning: orphan section `%A' from `%B' being "
6424 "placed in section `%s'.\n",
6425 s, s->owner, os->name);
6426 }
6427 }
6428
6429 /* Run through the input files and ensure that every input section has
6430 somewhere to go. If one is found without a destination then create
6431 an input request and place it into the statement tree. */
6432
6433 static void
6434 lang_place_orphans (void)
6435 {
6436 LANG_FOR_EACH_INPUT_STATEMENT (file)
6437 {
6438 asection *s;
6439
6440 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6441 {
6442 if (s->output_section == NULL)
6443 {
6444 /* This section of the file is not attached, root
6445 around for a sensible place for it to go. */
6446
6447 if (file->flags.just_syms)
6448 bfd_link_just_syms (file->the_bfd, s, &link_info);
6449 else if ((s->flags & SEC_EXCLUDE) != 0)
6450 s->output_section = bfd_abs_section_ptr;
6451 else if (strcmp (s->name, "COMMON") == 0)
6452 {
6453 /* This is a lonely common section which must have
6454 come from an archive. We attach to the section
6455 with the wildcard. */
6456 if (!bfd_link_relocatable (&link_info)
6457 || command_line.force_common_definition)
6458 {
6459 if (default_common_section == NULL)
6460 default_common_section
6461 = lang_output_section_statement_lookup (".bss", 0,
6462 TRUE);
6463 lang_add_section (&default_common_section->children, s,
6464 NULL, default_common_section);
6465 }
6466 }
6467 else
6468 ldlang_place_orphan (s);
6469 }
6470 }
6471 }
6472 }
6473
6474 void
6475 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6476 {
6477 flagword *ptr_flags;
6478
6479 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6480
6481 while (*flags)
6482 {
6483 switch (*flags)
6484 {
6485 /* PR 17900: An exclamation mark in the attributes reverses
6486 the sense of any of the attributes that follow. */
6487 case '!':
6488 invert = !invert;
6489 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6490 break;
6491
6492 case 'A': case 'a':
6493 *ptr_flags |= SEC_ALLOC;
6494 break;
6495
6496 case 'R': case 'r':
6497 *ptr_flags |= SEC_READONLY;
6498 break;
6499
6500 case 'W': case 'w':
6501 *ptr_flags |= SEC_DATA;
6502 break;
6503
6504 case 'X': case 'x':
6505 *ptr_flags |= SEC_CODE;
6506 break;
6507
6508 case 'L': case 'l':
6509 case 'I': case 'i':
6510 *ptr_flags |= SEC_LOAD;
6511 break;
6512
6513 default:
6514 einfo (_("%P%F: invalid character %c (%d) in flags\n"),
6515 *flags, *flags);
6516 break;
6517 }
6518 flags++;
6519 }
6520 }
6521
6522 /* Call a function on each input file. This function will be called
6523 on an archive, but not on the elements. */
6524
6525 void
6526 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6527 {
6528 lang_input_statement_type *f;
6529
6530 for (f = (lang_input_statement_type *) input_file_chain.head;
6531 f != NULL;
6532 f = (lang_input_statement_type *) f->next_real_file)
6533 func (f);
6534 }
6535
6536 /* Call a function on each file. The function will be called on all
6537 the elements of an archive which are included in the link, but will
6538 not be called on the archive file itself. */
6539
6540 void
6541 lang_for_each_file (void (*func) (lang_input_statement_type *))
6542 {
6543 LANG_FOR_EACH_INPUT_STATEMENT (f)
6544 {
6545 func (f);
6546 }
6547 }
6548
6549 void
6550 ldlang_add_file (lang_input_statement_type *entry)
6551 {
6552 lang_statement_append (&file_chain,
6553 (lang_statement_union_type *) entry,
6554 &entry->next);
6555
6556 /* The BFD linker needs to have a list of all input BFDs involved in
6557 a link. */
6558 ASSERT (entry->the_bfd->link.next == NULL);
6559 ASSERT (entry->the_bfd != link_info.output_bfd);
6560
6561 *link_info.input_bfds_tail = entry->the_bfd;
6562 link_info.input_bfds_tail = &entry->the_bfd->link.next;
6563 entry->the_bfd->usrdata = entry;
6564 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6565
6566 /* Look through the sections and check for any which should not be
6567 included in the link. We need to do this now, so that we can
6568 notice when the backend linker tries to report multiple
6569 definition errors for symbols which are in sections we aren't
6570 going to link. FIXME: It might be better to entirely ignore
6571 symbols which are defined in sections which are going to be
6572 discarded. This would require modifying the backend linker for
6573 each backend which might set the SEC_LINK_ONCE flag. If we do
6574 this, we should probably handle SEC_EXCLUDE in the same way. */
6575
6576 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6577 }
6578
6579 void
6580 lang_add_output (const char *name, int from_script)
6581 {
6582 /* Make -o on command line override OUTPUT in script. */
6583 if (!had_output_filename || !from_script)
6584 {
6585 output_filename = name;
6586 had_output_filename = TRUE;
6587 }
6588 }
6589
6590 static int
6591 topower (int x)
6592 {
6593 unsigned int i = 1;
6594 int l;
6595
6596 if (x < 0)
6597 return -1;
6598
6599 for (l = 0; l < 32; l++)
6600 {
6601 if (i >= (unsigned int) x)
6602 return l;
6603 i <<= 1;
6604 }
6605
6606 return 0;
6607 }
6608
6609 lang_output_section_statement_type *
6610 lang_enter_output_section_statement (const char *output_section_statement_name,
6611 etree_type *address_exp,
6612 enum section_type sectype,
6613 etree_type *align,
6614 etree_type *subalign,
6615 etree_type *ebase,
6616 int constraint,
6617 int align_with_input)
6618 {
6619 lang_output_section_statement_type *os;
6620
6621 os = lang_output_section_statement_lookup (output_section_statement_name,
6622 constraint, TRUE);
6623 current_section = os;
6624
6625 if (os->addr_tree == NULL)
6626 {
6627 os->addr_tree = address_exp;
6628 }
6629 os->sectype = sectype;
6630 if (sectype != noload_section)
6631 os->flags = SEC_NO_FLAGS;
6632 else
6633 os->flags = SEC_NEVER_LOAD;
6634 os->block_value = 1;
6635
6636 /* Make next things chain into subchain of this. */
6637 push_stat_ptr (&os->children);
6638
6639 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
6640 if (os->align_lma_with_input && align != NULL)
6641 einfo (_("%F%P:%S: error: align with input and explicit align specified\n"),
6642 NULL);
6643
6644 os->subsection_alignment =
6645 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6646 os->section_alignment =
6647 topower (exp_get_value_int (align, -1, "section alignment"));
6648
6649 os->load_base = ebase;
6650 return os;
6651 }
6652
6653 void
6654 lang_final (void)
6655 {
6656 lang_output_statement_type *new_stmt;
6657
6658 new_stmt = new_stat (lang_output_statement, stat_ptr);
6659 new_stmt->name = output_filename;
6660 }
6661
6662 /* Reset the current counters in the regions. */
6663
6664 void
6665 lang_reset_memory_regions (void)
6666 {
6667 lang_memory_region_type *p = lang_memory_region_list;
6668 asection *o;
6669 lang_output_section_statement_type *os;
6670
6671 for (p = lang_memory_region_list; p != NULL; p = p->next)
6672 {
6673 p->current = p->origin;
6674 p->last_os = NULL;
6675 }
6676
6677 for (os = &lang_output_section_statement.head->output_section_statement;
6678 os != NULL;
6679 os = os->next)
6680 {
6681 os->processed_vma = FALSE;
6682 os->processed_lma = FALSE;
6683 }
6684
6685 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6686 {
6687 /* Save the last size for possible use by bfd_relax_section. */
6688 o->rawsize = o->size;
6689 o->size = 0;
6690 }
6691 }
6692
6693 /* Worker for lang_gc_sections_1. */
6694
6695 static void
6696 gc_section_callback (lang_wild_statement_type *ptr,
6697 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6698 asection *section,
6699 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6700 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6701 void *data ATTRIBUTE_UNUSED)
6702 {
6703 /* If the wild pattern was marked KEEP, the member sections
6704 should be as well. */
6705 if (ptr->keep_sections)
6706 section->flags |= SEC_KEEP;
6707 }
6708
6709 /* Iterate over sections marking them against GC. */
6710
6711 static void
6712 lang_gc_sections_1 (lang_statement_union_type *s)
6713 {
6714 for (; s != NULL; s = s->header.next)
6715 {
6716 switch (s->header.type)
6717 {
6718 case lang_wild_statement_enum:
6719 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6720 break;
6721 case lang_constructors_statement_enum:
6722 lang_gc_sections_1 (constructor_list.head);
6723 break;
6724 case lang_output_section_statement_enum:
6725 lang_gc_sections_1 (s->output_section_statement.children.head);
6726 break;
6727 case lang_group_statement_enum:
6728 lang_gc_sections_1 (s->group_statement.children.head);
6729 break;
6730 default:
6731 break;
6732 }
6733 }
6734 }
6735
6736 static void
6737 lang_gc_sections (void)
6738 {
6739 /* Keep all sections so marked in the link script. */
6740 lang_gc_sections_1 (statement_list.head);
6741
6742 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6743 the special case of debug info. (See bfd/stabs.c)
6744 Twiddle the flag here, to simplify later linker code. */
6745 if (bfd_link_relocatable (&link_info))
6746 {
6747 LANG_FOR_EACH_INPUT_STATEMENT (f)
6748 {
6749 asection *sec;
6750 #ifdef ENABLE_PLUGINS
6751 if (f->flags.claimed)
6752 continue;
6753 #endif
6754 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6755 if ((sec->flags & SEC_DEBUGGING) == 0)
6756 sec->flags &= ~SEC_EXCLUDE;
6757 }
6758 }
6759
6760 if (link_info.gc_sections)
6761 bfd_gc_sections (link_info.output_bfd, &link_info);
6762 }
6763
6764 /* Worker for lang_find_relro_sections_1. */
6765
6766 static void
6767 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6768 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6769 asection *section,
6770 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6771 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6772 void *data)
6773 {
6774 /* Discarded, excluded and ignored sections effectively have zero
6775 size. */
6776 if (section->output_section != NULL
6777 && section->output_section->owner == link_info.output_bfd
6778 && (section->output_section->flags & SEC_EXCLUDE) == 0
6779 && !IGNORE_SECTION (section)
6780 && section->size != 0)
6781 {
6782 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6783 *has_relro_section = TRUE;
6784 }
6785 }
6786
6787 /* Iterate over sections for relro sections. */
6788
6789 static void
6790 lang_find_relro_sections_1 (lang_statement_union_type *s,
6791 bfd_boolean *has_relro_section)
6792 {
6793 if (*has_relro_section)
6794 return;
6795
6796 for (; s != NULL; s = s->header.next)
6797 {
6798 if (s == expld.dataseg.relro_end_stat)
6799 break;
6800
6801 switch (s->header.type)
6802 {
6803 case lang_wild_statement_enum:
6804 walk_wild (&s->wild_statement,
6805 find_relro_section_callback,
6806 has_relro_section);
6807 break;
6808 case lang_constructors_statement_enum:
6809 lang_find_relro_sections_1 (constructor_list.head,
6810 has_relro_section);
6811 break;
6812 case lang_output_section_statement_enum:
6813 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6814 has_relro_section);
6815 break;
6816 case lang_group_statement_enum:
6817 lang_find_relro_sections_1 (s->group_statement.children.head,
6818 has_relro_section);
6819 break;
6820 default:
6821 break;
6822 }
6823 }
6824 }
6825
6826 static void
6827 lang_find_relro_sections (void)
6828 {
6829 bfd_boolean has_relro_section = FALSE;
6830
6831 /* Check all sections in the link script. */
6832
6833 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6834 &has_relro_section);
6835
6836 if (!has_relro_section)
6837 link_info.relro = FALSE;
6838 }
6839
6840 /* Relax all sections until bfd_relax_section gives up. */
6841
6842 void
6843 lang_relax_sections (bfd_boolean need_layout)
6844 {
6845 if (RELAXATION_ENABLED)
6846 {
6847 /* We may need more than one relaxation pass. */
6848 int i = link_info.relax_pass;
6849
6850 /* The backend can use it to determine the current pass. */
6851 link_info.relax_pass = 0;
6852
6853 while (i--)
6854 {
6855 /* Keep relaxing until bfd_relax_section gives up. */
6856 bfd_boolean relax_again;
6857
6858 link_info.relax_trip = -1;
6859 do
6860 {
6861 link_info.relax_trip++;
6862
6863 /* Note: pe-dll.c does something like this also. If you find
6864 you need to change this code, you probably need to change
6865 pe-dll.c also. DJ */
6866
6867 /* Do all the assignments with our current guesses as to
6868 section sizes. */
6869 lang_do_assignments (lang_assigning_phase_enum);
6870
6871 /* We must do this after lang_do_assignments, because it uses
6872 size. */
6873 lang_reset_memory_regions ();
6874
6875 /* Perform another relax pass - this time we know where the
6876 globals are, so can make a better guess. */
6877 relax_again = FALSE;
6878 lang_size_sections (&relax_again, FALSE);
6879 }
6880 while (relax_again);
6881
6882 link_info.relax_pass++;
6883 }
6884 need_layout = TRUE;
6885 }
6886
6887 if (need_layout)
6888 {
6889 /* Final extra sizing to report errors. */
6890 lang_do_assignments (lang_assigning_phase_enum);
6891 lang_reset_memory_regions ();
6892 lang_size_sections (NULL, TRUE);
6893 }
6894 }
6895
6896 #ifdef ENABLE_PLUGINS
6897 /* Find the insert point for the plugin's replacement files. We
6898 place them after the first claimed real object file, or if the
6899 first claimed object is an archive member, after the last real
6900 object file immediately preceding the archive. In the event
6901 no objects have been claimed at all, we return the first dummy
6902 object file on the list as the insert point; that works, but
6903 the callee must be careful when relinking the file_chain as it
6904 is not actually on that chain, only the statement_list and the
6905 input_file list; in that case, the replacement files must be
6906 inserted at the head of the file_chain. */
6907
6908 static lang_input_statement_type *
6909 find_replacements_insert_point (void)
6910 {
6911 lang_input_statement_type *claim1, *lastobject;
6912 lastobject = &input_file_chain.head->input_statement;
6913 for (claim1 = &file_chain.head->input_statement;
6914 claim1 != NULL;
6915 claim1 = &claim1->next->input_statement)
6916 {
6917 if (claim1->flags.claimed)
6918 return claim1->flags.claim_archive ? lastobject : claim1;
6919 /* Update lastobject if this is a real object file. */
6920 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
6921 lastobject = claim1;
6922 }
6923 /* No files were claimed by the plugin. Choose the last object
6924 file found on the list (maybe the first, dummy entry) as the
6925 insert point. */
6926 return lastobject;
6927 }
6928
6929 /* Insert SRCLIST into DESTLIST after given element by chaining
6930 on FIELD as the next-pointer. (Counterintuitively does not need
6931 a pointer to the actual after-node itself, just its chain field.) */
6932
6933 static void
6934 lang_list_insert_after (lang_statement_list_type *destlist,
6935 lang_statement_list_type *srclist,
6936 lang_statement_union_type **field)
6937 {
6938 *(srclist->tail) = *field;
6939 *field = srclist->head;
6940 if (destlist->tail == field)
6941 destlist->tail = srclist->tail;
6942 }
6943
6944 /* Detach new nodes added to DESTLIST since the time ORIGLIST
6945 was taken as a copy of it and leave them in ORIGLIST. */
6946
6947 static void
6948 lang_list_remove_tail (lang_statement_list_type *destlist,
6949 lang_statement_list_type *origlist)
6950 {
6951 union lang_statement_union **savetail;
6952 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
6953 ASSERT (origlist->head == destlist->head);
6954 savetail = origlist->tail;
6955 origlist->head = *(savetail);
6956 origlist->tail = destlist->tail;
6957 destlist->tail = savetail;
6958 *savetail = NULL;
6959 }
6960 #endif /* ENABLE_PLUGINS */
6961
6962 /* Add NAME to the list of garbage collection entry points. */
6963
6964 void
6965 lang_add_gc_name (const char *name)
6966 {
6967 struct bfd_sym_chain *sym;
6968
6969 if (name == NULL)
6970 return;
6971
6972 sym = (struct bfd_sym_chain *) stat_alloc (sizeof (*sym));
6973
6974 sym->next = link_info.gc_sym_list;
6975 sym->name = name;
6976 link_info.gc_sym_list = sym;
6977 }
6978
6979 /* Check relocations. */
6980
6981 static void
6982 lang_check_relocs (void)
6983 {
6984 if (link_info.check_relocs_after_open_input)
6985 {
6986 bfd *abfd;
6987
6988 for (abfd = link_info.input_bfds;
6989 abfd != (bfd *) NULL; abfd = abfd->link.next)
6990 if (!bfd_link_check_relocs (abfd, &link_info))
6991 {
6992 /* No object output, fail return. */
6993 config.make_executable = FALSE;
6994 /* Note: we do not abort the loop, but rather
6995 continue the scan in case there are other
6996 bad relocations to report. */
6997 }
6998 }
6999 }
7000
7001 /* Look through all output sections looking for places where we can
7002 propagate forward the lma region. */
7003
7004 static void
7005 lang_propagate_lma_regions (void)
7006 {
7007 lang_output_section_statement_type *os;
7008
7009 for (os = &lang_output_section_statement.head->output_section_statement;
7010 os != NULL;
7011 os = os->next)
7012 {
7013 if (os->prev != NULL
7014 && os->lma_region == NULL
7015 && os->load_base == NULL
7016 && os->addr_tree == NULL
7017 && os->region == os->prev->region)
7018 os->lma_region = os->prev->lma_region;
7019 }
7020 }
7021
7022 void
7023 lang_process (void)
7024 {
7025 /* Finalize dynamic list. */
7026 if (link_info.dynamic_list)
7027 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7028
7029 current_target = default_target;
7030
7031 /* Open the output file. */
7032 lang_for_each_statement (ldlang_open_output);
7033 init_opb ();
7034
7035 ldemul_create_output_section_statements ();
7036
7037 /* Add to the hash table all undefineds on the command line. */
7038 lang_place_undefineds ();
7039
7040 if (!bfd_section_already_linked_table_init ())
7041 einfo (_("%P%F: Failed to create hash table\n"));
7042
7043 /* Create a bfd for each input file. */
7044 current_target = default_target;
7045 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7046
7047 #ifdef ENABLE_PLUGINS
7048 if (link_info.lto_plugin_active)
7049 {
7050 lang_statement_list_type added;
7051 lang_statement_list_type files, inputfiles;
7052
7053 /* Now all files are read, let the plugin(s) decide if there
7054 are any more to be added to the link before we call the
7055 emulation's after_open hook. We create a private list of
7056 input statements for this purpose, which we will eventually
7057 insert into the global statement list after the first claimed
7058 file. */
7059 added = *stat_ptr;
7060 /* We need to manipulate all three chains in synchrony. */
7061 files = file_chain;
7062 inputfiles = input_file_chain;
7063 if (plugin_call_all_symbols_read ())
7064 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
7065 plugin_error_plugin ());
7066 /* Open any newly added files, updating the file chains. */
7067 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7068 /* Restore the global list pointer now they have all been added. */
7069 lang_list_remove_tail (stat_ptr, &added);
7070 /* And detach the fresh ends of the file lists. */
7071 lang_list_remove_tail (&file_chain, &files);
7072 lang_list_remove_tail (&input_file_chain, &inputfiles);
7073 /* Were any new files added? */
7074 if (added.head != NULL)
7075 {
7076 /* If so, we will insert them into the statement list immediately
7077 after the first input file that was claimed by the plugin. */
7078 plugin_insert = find_replacements_insert_point ();
7079 /* If a plugin adds input files without having claimed any, we
7080 don't really have a good idea where to place them. Just putting
7081 them at the start or end of the list is liable to leave them
7082 outside the crtbegin...crtend range. */
7083 ASSERT (plugin_insert != NULL);
7084 /* Splice the new statement list into the old one. */
7085 lang_list_insert_after (stat_ptr, &added,
7086 &plugin_insert->header.next);
7087 /* Likewise for the file chains. */
7088 lang_list_insert_after (&input_file_chain, &inputfiles,
7089 &plugin_insert->next_real_file);
7090 /* We must be careful when relinking file_chain; we may need to
7091 insert the new files at the head of the list if the insert
7092 point chosen is the dummy first input file. */
7093 if (plugin_insert->filename)
7094 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
7095 else
7096 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7097
7098 /* Rescan archives in case new undefined symbols have appeared. */
7099 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
7100 }
7101 }
7102 #endif /* ENABLE_PLUGINS */
7103
7104 /* Make sure that nobody has tried to add a symbol to this list
7105 before now. */
7106 ASSERT (link_info.gc_sym_list == NULL);
7107
7108 link_info.gc_sym_list = &entry_symbol;
7109
7110 if (entry_symbol.name == NULL)
7111 {
7112 link_info.gc_sym_list = ldlang_undef_chain_list_head;
7113
7114 /* entry_symbol is normally initialied by a ENTRY definition in the
7115 linker script or the -e command line option. But if neither of
7116 these have been used, the target specific backend may still have
7117 provided an entry symbol via a call to lang_default_entry().
7118 Unfortunately this value will not be processed until lang_end()
7119 is called, long after this function has finished. So detect this
7120 case here and add the target's entry symbol to the list of starting
7121 points for garbage collection resolution. */
7122 lang_add_gc_name (entry_symbol_default);
7123 }
7124
7125 lang_add_gc_name (link_info.init_function);
7126 lang_add_gc_name (link_info.fini_function);
7127
7128 ldemul_after_open ();
7129 if (config.map_file != NULL)
7130 lang_print_asneeded ();
7131
7132 bfd_section_already_linked_table_free ();
7133
7134 /* Make sure that we're not mixing architectures. We call this
7135 after all the input files have been opened, but before we do any
7136 other processing, so that any operations merge_private_bfd_data
7137 does on the output file will be known during the rest of the
7138 link. */
7139 lang_check ();
7140
7141 /* Handle .exports instead of a version script if we're told to do so. */
7142 if (command_line.version_exports_section)
7143 lang_do_version_exports_section ();
7144
7145 /* Build all sets based on the information gathered from the input
7146 files. */
7147 ldctor_build_sets ();
7148
7149 /* Give initial values for __start and __stop symbols, so that ELF
7150 gc_sections will keep sections referenced by these symbols. Must
7151 be done before lang_do_assignments below. */
7152 if (config.build_constructors)
7153 lang_init_start_stop ();
7154
7155 /* PR 13683: We must rerun the assignments prior to running garbage
7156 collection in order to make sure that all symbol aliases are resolved. */
7157 lang_do_assignments (lang_mark_phase_enum);
7158
7159 lang_do_memory_regions();
7160 expld.phase = lang_first_phase_enum;
7161
7162 /* Size up the common data. */
7163 lang_common ();
7164
7165 /* Remove unreferenced sections if asked to. */
7166 lang_gc_sections ();
7167
7168 /* Check relocations. */
7169 lang_check_relocs ();
7170
7171 /* Update wild statements. */
7172 update_wild_statements (statement_list.head);
7173
7174 /* Run through the contours of the script and attach input sections
7175 to the correct output sections. */
7176 lang_statement_iteration++;
7177 map_input_to_output_sections (statement_list.head, NULL, NULL);
7178
7179 process_insert_statements ();
7180
7181 /* Find any sections not attached explicitly and handle them. */
7182 lang_place_orphans ();
7183
7184 if (!bfd_link_relocatable (&link_info))
7185 {
7186 asection *found;
7187
7188 /* Merge SEC_MERGE sections. This has to be done after GC of
7189 sections, so that GCed sections are not merged, but before
7190 assigning dynamic symbols, since removing whole input sections
7191 is hard then. */
7192 bfd_merge_sections (link_info.output_bfd, &link_info);
7193
7194 /* Look for a text section and set the readonly attribute in it. */
7195 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
7196
7197 if (found != NULL)
7198 {
7199 if (config.text_read_only)
7200 found->flags |= SEC_READONLY;
7201 else
7202 found->flags &= ~SEC_READONLY;
7203 }
7204 }
7205
7206 /* Copy forward lma regions for output sections in same lma region. */
7207 lang_propagate_lma_regions ();
7208
7209 /* Defining __start/__stop symbols early for --gc-sections to work
7210 around a glibc build problem can result in these symbols being
7211 defined when they should not be. Fix them now. */
7212 if (config.build_constructors)
7213 lang_undef_start_stop ();
7214
7215 /* Define .startof./.sizeof. symbols with preliminary values before
7216 dynamic symbols are created. */
7217 if (!bfd_link_relocatable (&link_info))
7218 lang_init_startof_sizeof ();
7219
7220 /* Do anything special before sizing sections. This is where ELF
7221 and other back-ends size dynamic sections. */
7222 ldemul_before_allocation ();
7223
7224 /* We must record the program headers before we try to fix the
7225 section positions, since they will affect SIZEOF_HEADERS. */
7226 lang_record_phdrs ();
7227
7228 /* Check relro sections. */
7229 if (link_info.relro && !bfd_link_relocatable (&link_info))
7230 lang_find_relro_sections ();
7231
7232 /* Size up the sections. */
7233 lang_size_sections (NULL, !RELAXATION_ENABLED);
7234
7235 /* See if anything special should be done now we know how big
7236 everything is. This is where relaxation is done. */
7237 ldemul_after_allocation ();
7238
7239 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
7240 lang_finalize_start_stop ();
7241
7242 /* Do all the assignments, now that we know the final resting places
7243 of all the symbols. */
7244 lang_do_assignments (lang_final_phase_enum);
7245
7246 ldemul_finish ();
7247
7248 /* Convert absolute symbols to section relative. */
7249 ldexp_finalize_syms ();
7250
7251 /* Make sure that the section addresses make sense. */
7252 if (command_line.check_section_addresses)
7253 lang_check_section_addresses ();
7254
7255 /* Check any required symbols are known. */
7256 ldlang_check_require_defined_symbols ();
7257
7258 lang_end ();
7259 }
7260
7261 /* EXPORTED TO YACC */
7262
7263 void
7264 lang_add_wild (struct wildcard_spec *filespec,
7265 struct wildcard_list *section_list,
7266 bfd_boolean keep_sections)
7267 {
7268 struct wildcard_list *curr, *next;
7269 lang_wild_statement_type *new_stmt;
7270
7271 /* Reverse the list as the parser puts it back to front. */
7272 for (curr = section_list, section_list = NULL;
7273 curr != NULL;
7274 section_list = curr, curr = next)
7275 {
7276 next = curr->next;
7277 curr->next = section_list;
7278 }
7279
7280 if (filespec != NULL && filespec->name != NULL)
7281 {
7282 if (strcmp (filespec->name, "*") == 0)
7283 filespec->name = NULL;
7284 else if (!wildcardp (filespec->name))
7285 lang_has_input_file = TRUE;
7286 }
7287
7288 new_stmt = new_stat (lang_wild_statement, stat_ptr);
7289 new_stmt->filename = NULL;
7290 new_stmt->filenames_sorted = FALSE;
7291 new_stmt->section_flag_list = NULL;
7292 new_stmt->exclude_name_list = NULL;
7293 if (filespec != NULL)
7294 {
7295 new_stmt->filename = filespec->name;
7296 new_stmt->filenames_sorted = filespec->sorted == by_name;
7297 new_stmt->section_flag_list = filespec->section_flag_list;
7298 new_stmt->exclude_name_list = filespec->exclude_name_list;
7299 }
7300 new_stmt->section_list = section_list;
7301 new_stmt->keep_sections = keep_sections;
7302 lang_list_init (&new_stmt->children);
7303 analyze_walk_wild_section_handler (new_stmt);
7304 }
7305
7306 void
7307 lang_section_start (const char *name, etree_type *address,
7308 const segment_type *segment)
7309 {
7310 lang_address_statement_type *ad;
7311
7312 ad = new_stat (lang_address_statement, stat_ptr);
7313 ad->section_name = name;
7314 ad->address = address;
7315 ad->segment = segment;
7316 }
7317
7318 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
7319 because of a -e argument on the command line, or zero if this is
7320 called by ENTRY in a linker script. Command line arguments take
7321 precedence. */
7322
7323 void
7324 lang_add_entry (const char *name, bfd_boolean cmdline)
7325 {
7326 if (entry_symbol.name == NULL
7327 || cmdline
7328 || !entry_from_cmdline)
7329 {
7330 entry_symbol.name = name;
7331 entry_from_cmdline = cmdline;
7332 }
7333 }
7334
7335 /* Set the default start symbol to NAME. .em files should use this,
7336 not lang_add_entry, to override the use of "start" if neither the
7337 linker script nor the command line specifies an entry point. NAME
7338 must be permanently allocated. */
7339 void
7340 lang_default_entry (const char *name)
7341 {
7342 entry_symbol_default = name;
7343 }
7344
7345 void
7346 lang_add_target (const char *name)
7347 {
7348 lang_target_statement_type *new_stmt;
7349
7350 new_stmt = new_stat (lang_target_statement, stat_ptr);
7351 new_stmt->target = name;
7352 }
7353
7354 void
7355 lang_add_map (const char *name)
7356 {
7357 while (*name)
7358 {
7359 switch (*name)
7360 {
7361 case 'F':
7362 map_option_f = TRUE;
7363 break;
7364 }
7365 name++;
7366 }
7367 }
7368
7369 void
7370 lang_add_fill (fill_type *fill)
7371 {
7372 lang_fill_statement_type *new_stmt;
7373
7374 new_stmt = new_stat (lang_fill_statement, stat_ptr);
7375 new_stmt->fill = fill;
7376 }
7377
7378 void
7379 lang_add_data (int type, union etree_union *exp)
7380 {
7381 lang_data_statement_type *new_stmt;
7382
7383 new_stmt = new_stat (lang_data_statement, stat_ptr);
7384 new_stmt->exp = exp;
7385 new_stmt->type = type;
7386 }
7387
7388 /* Create a new reloc statement. RELOC is the BFD relocation type to
7389 generate. HOWTO is the corresponding howto structure (we could
7390 look this up, but the caller has already done so). SECTION is the
7391 section to generate a reloc against, or NAME is the name of the
7392 symbol to generate a reloc against. Exactly one of SECTION and
7393 NAME must be NULL. ADDEND is an expression for the addend. */
7394
7395 void
7396 lang_add_reloc (bfd_reloc_code_real_type reloc,
7397 reloc_howto_type *howto,
7398 asection *section,
7399 const char *name,
7400 union etree_union *addend)
7401 {
7402 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
7403
7404 p->reloc = reloc;
7405 p->howto = howto;
7406 p->section = section;
7407 p->name = name;
7408 p->addend_exp = addend;
7409
7410 p->addend_value = 0;
7411 p->output_section = NULL;
7412 p->output_offset = 0;
7413 }
7414
7415 lang_assignment_statement_type *
7416 lang_add_assignment (etree_type *exp)
7417 {
7418 lang_assignment_statement_type *new_stmt;
7419
7420 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
7421 new_stmt->exp = exp;
7422 return new_stmt;
7423 }
7424
7425 void
7426 lang_add_attribute (enum statement_enum attribute)
7427 {
7428 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
7429 }
7430
7431 void
7432 lang_startup (const char *name)
7433 {
7434 if (first_file->filename != NULL)
7435 {
7436 einfo (_("%P%F: multiple STARTUP files\n"));
7437 }
7438 first_file->filename = name;
7439 first_file->local_sym_name = name;
7440 first_file->flags.real = TRUE;
7441 }
7442
7443 void
7444 lang_float (bfd_boolean maybe)
7445 {
7446 lang_float_flag = maybe;
7447 }
7448
7449
7450 /* Work out the load- and run-time regions from a script statement, and
7451 store them in *LMA_REGION and *REGION respectively.
7452
7453 MEMSPEC is the name of the run-time region, or the value of
7454 DEFAULT_MEMORY_REGION if the statement didn't specify one.
7455 LMA_MEMSPEC is the name of the load-time region, or null if the
7456 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
7457 had an explicit load address.
7458
7459 It is an error to specify both a load region and a load address. */
7460
7461 static void
7462 lang_get_regions (lang_memory_region_type **region,
7463 lang_memory_region_type **lma_region,
7464 const char *memspec,
7465 const char *lma_memspec,
7466 bfd_boolean have_lma,
7467 bfd_boolean have_vma)
7468 {
7469 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
7470
7471 /* If no runtime region or VMA has been specified, but the load region
7472 has been specified, then use the load region for the runtime region
7473 as well. */
7474 if (lma_memspec != NULL
7475 && !have_vma
7476 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
7477 *region = *lma_region;
7478 else
7479 *region = lang_memory_region_lookup (memspec, FALSE);
7480
7481 if (have_lma && lma_memspec != 0)
7482 einfo (_("%X%P:%S: section has both a load address and a load region\n"),
7483 NULL);
7484 }
7485
7486 void
7487 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
7488 lang_output_section_phdr_list *phdrs,
7489 const char *lma_memspec)
7490 {
7491 lang_get_regions (&current_section->region,
7492 &current_section->lma_region,
7493 memspec, lma_memspec,
7494 current_section->load_base != NULL,
7495 current_section->addr_tree != NULL);
7496
7497 current_section->fill = fill;
7498 current_section->phdrs = phdrs;
7499 pop_stat_ptr ();
7500 }
7501
7502 void
7503 lang_statement_append (lang_statement_list_type *list,
7504 lang_statement_union_type *element,
7505 lang_statement_union_type **field)
7506 {
7507 *(list->tail) = element;
7508 list->tail = field;
7509 }
7510
7511 /* Set the output format type. -oformat overrides scripts. */
7512
7513 void
7514 lang_add_output_format (const char *format,
7515 const char *big,
7516 const char *little,
7517 int from_script)
7518 {
7519 if (output_target == NULL || !from_script)
7520 {
7521 if (command_line.endian == ENDIAN_BIG
7522 && big != NULL)
7523 format = big;
7524 else if (command_line.endian == ENDIAN_LITTLE
7525 && little != NULL)
7526 format = little;
7527
7528 output_target = format;
7529 }
7530 }
7531
7532 void
7533 lang_add_insert (const char *where, int is_before)
7534 {
7535 lang_insert_statement_type *new_stmt;
7536
7537 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7538 new_stmt->where = where;
7539 new_stmt->is_before = is_before;
7540 saved_script_handle = previous_script_handle;
7541 }
7542
7543 /* Enter a group. This creates a new lang_group_statement, and sets
7544 stat_ptr to build new statements within the group. */
7545
7546 void
7547 lang_enter_group (void)
7548 {
7549 lang_group_statement_type *g;
7550
7551 g = new_stat (lang_group_statement, stat_ptr);
7552 lang_list_init (&g->children);
7553 push_stat_ptr (&g->children);
7554 }
7555
7556 /* Leave a group. This just resets stat_ptr to start writing to the
7557 regular list of statements again. Note that this will not work if
7558 groups can occur inside anything else which can adjust stat_ptr,
7559 but currently they can't. */
7560
7561 void
7562 lang_leave_group (void)
7563 {
7564 pop_stat_ptr ();
7565 }
7566
7567 /* Add a new program header. This is called for each entry in a PHDRS
7568 command in a linker script. */
7569
7570 void
7571 lang_new_phdr (const char *name,
7572 etree_type *type,
7573 bfd_boolean filehdr,
7574 bfd_boolean phdrs,
7575 etree_type *at,
7576 etree_type *flags)
7577 {
7578 struct lang_phdr *n, **pp;
7579 bfd_boolean hdrs;
7580
7581 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7582 n->next = NULL;
7583 n->name = name;
7584 n->type = exp_get_value_int (type, 0, "program header type");
7585 n->filehdr = filehdr;
7586 n->phdrs = phdrs;
7587 n->at = at;
7588 n->flags = flags;
7589
7590 hdrs = n->type == 1 && (phdrs || filehdr);
7591
7592 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7593 if (hdrs
7594 && (*pp)->type == 1
7595 && !((*pp)->filehdr || (*pp)->phdrs))
7596 {
7597 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported"
7598 " when prior PT_LOAD headers lack them\n"), NULL);
7599 hdrs = FALSE;
7600 }
7601
7602 *pp = n;
7603 }
7604
7605 /* Record the program header information in the output BFD. FIXME: We
7606 should not be calling an ELF specific function here. */
7607
7608 static void
7609 lang_record_phdrs (void)
7610 {
7611 unsigned int alc;
7612 asection **secs;
7613 lang_output_section_phdr_list *last;
7614 struct lang_phdr *l;
7615 lang_output_section_statement_type *os;
7616
7617 alc = 10;
7618 secs = (asection **) xmalloc (alc * sizeof (asection *));
7619 last = NULL;
7620
7621 for (l = lang_phdr_list; l != NULL; l = l->next)
7622 {
7623 unsigned int c;
7624 flagword flags;
7625 bfd_vma at;
7626
7627 c = 0;
7628 for (os = &lang_output_section_statement.head->output_section_statement;
7629 os != NULL;
7630 os = os->next)
7631 {
7632 lang_output_section_phdr_list *pl;
7633
7634 if (os->constraint < 0)
7635 continue;
7636
7637 pl = os->phdrs;
7638 if (pl != NULL)
7639 last = pl;
7640 else
7641 {
7642 if (os->sectype == noload_section
7643 || os->bfd_section == NULL
7644 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7645 continue;
7646
7647 /* Don't add orphans to PT_INTERP header. */
7648 if (l->type == 3)
7649 continue;
7650
7651 if (last == NULL)
7652 {
7653 lang_output_section_statement_type *tmp_os;
7654
7655 /* If we have not run across a section with a program
7656 header assigned to it yet, then scan forwards to find
7657 one. This prevents inconsistencies in the linker's
7658 behaviour when a script has specified just a single
7659 header and there are sections in that script which are
7660 not assigned to it, and which occur before the first
7661 use of that header. See here for more details:
7662 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7663 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7664 if (tmp_os->phdrs)
7665 {
7666 last = tmp_os->phdrs;
7667 break;
7668 }
7669 if (last == NULL)
7670 einfo (_("%F%P: no sections assigned to phdrs\n"));
7671 }
7672 pl = last;
7673 }
7674
7675 if (os->bfd_section == NULL)
7676 continue;
7677
7678 for (; pl != NULL; pl = pl->next)
7679 {
7680 if (strcmp (pl->name, l->name) == 0)
7681 {
7682 if (c >= alc)
7683 {
7684 alc *= 2;
7685 secs = (asection **) xrealloc (secs,
7686 alc * sizeof (asection *));
7687 }
7688 secs[c] = os->bfd_section;
7689 ++c;
7690 pl->used = TRUE;
7691 }
7692 }
7693 }
7694
7695 if (l->flags == NULL)
7696 flags = 0;
7697 else
7698 flags = exp_get_vma (l->flags, 0, "phdr flags");
7699
7700 if (l->at == NULL)
7701 at = 0;
7702 else
7703 at = exp_get_vma (l->at, 0, "phdr load address");
7704
7705 if (!bfd_record_phdr (link_info.output_bfd, l->type,
7706 l->flags != NULL, flags, l->at != NULL,
7707 at, l->filehdr, l->phdrs, c, secs))
7708 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7709 }
7710
7711 free (secs);
7712
7713 /* Make sure all the phdr assignments succeeded. */
7714 for (os = &lang_output_section_statement.head->output_section_statement;
7715 os != NULL;
7716 os = os->next)
7717 {
7718 lang_output_section_phdr_list *pl;
7719
7720 if (os->constraint < 0
7721 || os->bfd_section == NULL)
7722 continue;
7723
7724 for (pl = os->phdrs;
7725 pl != NULL;
7726 pl = pl->next)
7727 if (!pl->used && strcmp (pl->name, "NONE") != 0)
7728 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7729 os->name, pl->name);
7730 }
7731 }
7732
7733 /* Record a list of sections which may not be cross referenced. */
7734
7735 void
7736 lang_add_nocrossref (lang_nocrossref_type *l)
7737 {
7738 struct lang_nocrossrefs *n;
7739
7740 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7741 n->next = nocrossref_list;
7742 n->list = l;
7743 n->onlyfirst = FALSE;
7744 nocrossref_list = n;
7745
7746 /* Set notice_all so that we get informed about all symbols. */
7747 link_info.notice_all = TRUE;
7748 }
7749
7750 /* Record a section that cannot be referenced from a list of sections. */
7751
7752 void
7753 lang_add_nocrossref_to (lang_nocrossref_type *l)
7754 {
7755 lang_add_nocrossref (l);
7756 nocrossref_list->onlyfirst = TRUE;
7757 }
7758 \f
7759 /* Overlay handling. We handle overlays with some static variables. */
7760
7761 /* The overlay virtual address. */
7762 static etree_type *overlay_vma;
7763 /* And subsection alignment. */
7764 static etree_type *overlay_subalign;
7765
7766 /* An expression for the maximum section size seen so far. */
7767 static etree_type *overlay_max;
7768
7769 /* A list of all the sections in this overlay. */
7770
7771 struct overlay_list {
7772 struct overlay_list *next;
7773 lang_output_section_statement_type *os;
7774 };
7775
7776 static struct overlay_list *overlay_list;
7777
7778 /* Start handling an overlay. */
7779
7780 void
7781 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7782 {
7783 /* The grammar should prevent nested overlays from occurring. */
7784 ASSERT (overlay_vma == NULL
7785 && overlay_subalign == NULL
7786 && overlay_max == NULL);
7787
7788 overlay_vma = vma_expr;
7789 overlay_subalign = subalign;
7790 }
7791
7792 /* Start a section in an overlay. We handle this by calling
7793 lang_enter_output_section_statement with the correct VMA.
7794 lang_leave_overlay sets up the LMA and memory regions. */
7795
7796 void
7797 lang_enter_overlay_section (const char *name)
7798 {
7799 struct overlay_list *n;
7800 etree_type *size;
7801
7802 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7803 0, overlay_subalign, 0, 0, 0);
7804
7805 /* If this is the first section, then base the VMA of future
7806 sections on this one. This will work correctly even if `.' is
7807 used in the addresses. */
7808 if (overlay_list == NULL)
7809 overlay_vma = exp_nameop (ADDR, name);
7810
7811 /* Remember the section. */
7812 n = (struct overlay_list *) xmalloc (sizeof *n);
7813 n->os = current_section;
7814 n->next = overlay_list;
7815 overlay_list = n;
7816
7817 size = exp_nameop (SIZEOF, name);
7818
7819 /* Arrange to work out the maximum section end address. */
7820 if (overlay_max == NULL)
7821 overlay_max = size;
7822 else
7823 overlay_max = exp_binop (MAX_K, overlay_max, size);
7824 }
7825
7826 /* Finish a section in an overlay. There isn't any special to do
7827 here. */
7828
7829 void
7830 lang_leave_overlay_section (fill_type *fill,
7831 lang_output_section_phdr_list *phdrs)
7832 {
7833 const char *name;
7834 char *clean, *s2;
7835 const char *s1;
7836 char *buf;
7837
7838 name = current_section->name;
7839
7840 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7841 region and that no load-time region has been specified. It doesn't
7842 really matter what we say here, since lang_leave_overlay will
7843 override it. */
7844 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7845
7846 /* Define the magic symbols. */
7847
7848 clean = (char *) xmalloc (strlen (name) + 1);
7849 s2 = clean;
7850 for (s1 = name; *s1 != '\0'; s1++)
7851 if (ISALNUM (*s1) || *s1 == '_')
7852 *s2++ = *s1;
7853 *s2 = '\0';
7854
7855 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7856 sprintf (buf, "__load_start_%s", clean);
7857 lang_add_assignment (exp_provide (buf,
7858 exp_nameop (LOADADDR, name),
7859 FALSE));
7860
7861 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7862 sprintf (buf, "__load_stop_%s", clean);
7863 lang_add_assignment (exp_provide (buf,
7864 exp_binop ('+',
7865 exp_nameop (LOADADDR, name),
7866 exp_nameop (SIZEOF, name)),
7867 FALSE));
7868
7869 free (clean);
7870 }
7871
7872 /* Finish an overlay. If there are any overlay wide settings, this
7873 looks through all the sections in the overlay and sets them. */
7874
7875 void
7876 lang_leave_overlay (etree_type *lma_expr,
7877 int nocrossrefs,
7878 fill_type *fill,
7879 const char *memspec,
7880 lang_output_section_phdr_list *phdrs,
7881 const char *lma_memspec)
7882 {
7883 lang_memory_region_type *region;
7884 lang_memory_region_type *lma_region;
7885 struct overlay_list *l;
7886 lang_nocrossref_type *nocrossref;
7887
7888 lang_get_regions (&region, &lma_region,
7889 memspec, lma_memspec,
7890 lma_expr != NULL, FALSE);
7891
7892 nocrossref = NULL;
7893
7894 /* After setting the size of the last section, set '.' to end of the
7895 overlay region. */
7896 if (overlay_list != NULL)
7897 {
7898 overlay_list->os->update_dot = 1;
7899 overlay_list->os->update_dot_tree
7900 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
7901 }
7902
7903 l = overlay_list;
7904 while (l != NULL)
7905 {
7906 struct overlay_list *next;
7907
7908 if (fill != NULL && l->os->fill == NULL)
7909 l->os->fill = fill;
7910
7911 l->os->region = region;
7912 l->os->lma_region = lma_region;
7913
7914 /* The first section has the load address specified in the
7915 OVERLAY statement. The rest are worked out from that.
7916 The base address is not needed (and should be null) if
7917 an LMA region was specified. */
7918 if (l->next == 0)
7919 {
7920 l->os->load_base = lma_expr;
7921 l->os->sectype = normal_section;
7922 }
7923 if (phdrs != NULL && l->os->phdrs == NULL)
7924 l->os->phdrs = phdrs;
7925
7926 if (nocrossrefs)
7927 {
7928 lang_nocrossref_type *nc;
7929
7930 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7931 nc->name = l->os->name;
7932 nc->next = nocrossref;
7933 nocrossref = nc;
7934 }
7935
7936 next = l->next;
7937 free (l);
7938 l = next;
7939 }
7940
7941 if (nocrossref != NULL)
7942 lang_add_nocrossref (nocrossref);
7943
7944 overlay_vma = NULL;
7945 overlay_list = NULL;
7946 overlay_max = NULL;
7947 }
7948 \f
7949 /* Version handling. This is only useful for ELF. */
7950
7951 /* If PREV is NULL, return first version pattern matching particular symbol.
7952 If PREV is non-NULL, return first version pattern matching particular
7953 symbol after PREV (previously returned by lang_vers_match). */
7954
7955 static struct bfd_elf_version_expr *
7956 lang_vers_match (struct bfd_elf_version_expr_head *head,
7957 struct bfd_elf_version_expr *prev,
7958 const char *sym)
7959 {
7960 const char *c_sym;
7961 const char *cxx_sym = sym;
7962 const char *java_sym = sym;
7963 struct bfd_elf_version_expr *expr = NULL;
7964 enum demangling_styles curr_style;
7965
7966 curr_style = CURRENT_DEMANGLING_STYLE;
7967 cplus_demangle_set_style (no_demangling);
7968 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
7969 if (!c_sym)
7970 c_sym = sym;
7971 cplus_demangle_set_style (curr_style);
7972
7973 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7974 {
7975 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
7976 DMGL_PARAMS | DMGL_ANSI);
7977 if (!cxx_sym)
7978 cxx_sym = sym;
7979 }
7980 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7981 {
7982 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
7983 if (!java_sym)
7984 java_sym = sym;
7985 }
7986
7987 if (head->htab && (prev == NULL || prev->literal))
7988 {
7989 struct bfd_elf_version_expr e;
7990
7991 switch (prev ? prev->mask : 0)
7992 {
7993 case 0:
7994 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7995 {
7996 e.pattern = c_sym;
7997 expr = (struct bfd_elf_version_expr *)
7998 htab_find ((htab_t) head->htab, &e);
7999 while (expr && strcmp (expr->pattern, c_sym) == 0)
8000 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8001 goto out_ret;
8002 else
8003 expr = expr->next;
8004 }
8005 /* Fallthrough */
8006 case BFD_ELF_VERSION_C_TYPE:
8007 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8008 {
8009 e.pattern = cxx_sym;
8010 expr = (struct bfd_elf_version_expr *)
8011 htab_find ((htab_t) head->htab, &e);
8012 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8013 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8014 goto out_ret;
8015 else
8016 expr = expr->next;
8017 }
8018 /* Fallthrough */
8019 case BFD_ELF_VERSION_CXX_TYPE:
8020 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8021 {
8022 e.pattern = java_sym;
8023 expr = (struct bfd_elf_version_expr *)
8024 htab_find ((htab_t) head->htab, &e);
8025 while (expr && strcmp (expr->pattern, java_sym) == 0)
8026 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8027 goto out_ret;
8028 else
8029 expr = expr->next;
8030 }
8031 /* Fallthrough */
8032 default:
8033 break;
8034 }
8035 }
8036
8037 /* Finally, try the wildcards. */
8038 if (prev == NULL || prev->literal)
8039 expr = head->remaining;
8040 else
8041 expr = prev->next;
8042 for (; expr; expr = expr->next)
8043 {
8044 const char *s;
8045
8046 if (!expr->pattern)
8047 continue;
8048
8049 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8050 break;
8051
8052 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8053 s = java_sym;
8054 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8055 s = cxx_sym;
8056 else
8057 s = c_sym;
8058 if (fnmatch (expr->pattern, s, 0) == 0)
8059 break;
8060 }
8061
8062 out_ret:
8063 if (c_sym != sym)
8064 free ((char *) c_sym);
8065 if (cxx_sym != sym)
8066 free ((char *) cxx_sym);
8067 if (java_sym != sym)
8068 free ((char *) java_sym);
8069 return expr;
8070 }
8071
8072 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
8073 return a pointer to the symbol name with any backslash quotes removed. */
8074
8075 static const char *
8076 realsymbol (const char *pattern)
8077 {
8078 const char *p;
8079 bfd_boolean changed = FALSE, backslash = FALSE;
8080 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
8081
8082 for (p = pattern, s = symbol; *p != '\0'; ++p)
8083 {
8084 /* It is a glob pattern only if there is no preceding
8085 backslash. */
8086 if (backslash)
8087 {
8088 /* Remove the preceding backslash. */
8089 *(s - 1) = *p;
8090 backslash = FALSE;
8091 changed = TRUE;
8092 }
8093 else
8094 {
8095 if (*p == '?' || *p == '*' || *p == '[')
8096 {
8097 free (symbol);
8098 return NULL;
8099 }
8100
8101 *s++ = *p;
8102 backslash = *p == '\\';
8103 }
8104 }
8105
8106 if (changed)
8107 {
8108 *s = '\0';
8109 return symbol;
8110 }
8111 else
8112 {
8113 free (symbol);
8114 return pattern;
8115 }
8116 }
8117
8118 /* This is called for each variable name or match expression. NEW_NAME is
8119 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
8120 pattern to be matched against symbol names. */
8121
8122 struct bfd_elf_version_expr *
8123 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
8124 const char *new_name,
8125 const char *lang,
8126 bfd_boolean literal_p)
8127 {
8128 struct bfd_elf_version_expr *ret;
8129
8130 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
8131 ret->next = orig;
8132 ret->symver = 0;
8133 ret->script = 0;
8134 ret->literal = TRUE;
8135 ret->pattern = literal_p ? new_name : realsymbol (new_name);
8136 if (ret->pattern == NULL)
8137 {
8138 ret->pattern = new_name;
8139 ret->literal = FALSE;
8140 }
8141
8142 if (lang == NULL || strcasecmp (lang, "C") == 0)
8143 ret->mask = BFD_ELF_VERSION_C_TYPE;
8144 else if (strcasecmp (lang, "C++") == 0)
8145 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
8146 else if (strcasecmp (lang, "Java") == 0)
8147 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
8148 else
8149 {
8150 einfo (_("%X%P: unknown language `%s' in version information\n"),
8151 lang);
8152 ret->mask = BFD_ELF_VERSION_C_TYPE;
8153 }
8154
8155 return ldemul_new_vers_pattern (ret);
8156 }
8157
8158 /* This is called for each set of variable names and match
8159 expressions. */
8160
8161 struct bfd_elf_version_tree *
8162 lang_new_vers_node (struct bfd_elf_version_expr *globals,
8163 struct bfd_elf_version_expr *locals)
8164 {
8165 struct bfd_elf_version_tree *ret;
8166
8167 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
8168 ret->globals.list = globals;
8169 ret->locals.list = locals;
8170 ret->match = lang_vers_match;
8171 ret->name_indx = (unsigned int) -1;
8172 return ret;
8173 }
8174
8175 /* This static variable keeps track of version indices. */
8176
8177 static int version_index;
8178
8179 static hashval_t
8180 version_expr_head_hash (const void *p)
8181 {
8182 const struct bfd_elf_version_expr *e =
8183 (const struct bfd_elf_version_expr *) p;
8184
8185 return htab_hash_string (e->pattern);
8186 }
8187
8188 static int
8189 version_expr_head_eq (const void *p1, const void *p2)
8190 {
8191 const struct bfd_elf_version_expr *e1 =
8192 (const struct bfd_elf_version_expr *) p1;
8193 const struct bfd_elf_version_expr *e2 =
8194 (const struct bfd_elf_version_expr *) p2;
8195
8196 return strcmp (e1->pattern, e2->pattern) == 0;
8197 }
8198
8199 static void
8200 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
8201 {
8202 size_t count = 0;
8203 struct bfd_elf_version_expr *e, *next;
8204 struct bfd_elf_version_expr **list_loc, **remaining_loc;
8205
8206 for (e = head->list; e; e = e->next)
8207 {
8208 if (e->literal)
8209 count++;
8210 head->mask |= e->mask;
8211 }
8212
8213 if (count)
8214 {
8215 head->htab = htab_create (count * 2, version_expr_head_hash,
8216 version_expr_head_eq, NULL);
8217 list_loc = &head->list;
8218 remaining_loc = &head->remaining;
8219 for (e = head->list; e; e = next)
8220 {
8221 next = e->next;
8222 if (!e->literal)
8223 {
8224 *remaining_loc = e;
8225 remaining_loc = &e->next;
8226 }
8227 else
8228 {
8229 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
8230
8231 if (*loc)
8232 {
8233 struct bfd_elf_version_expr *e1, *last;
8234
8235 e1 = (struct bfd_elf_version_expr *) *loc;
8236 last = NULL;
8237 do
8238 {
8239 if (e1->mask == e->mask)
8240 {
8241 last = NULL;
8242 break;
8243 }
8244 last = e1;
8245 e1 = e1->next;
8246 }
8247 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
8248
8249 if (last == NULL)
8250 {
8251 /* This is a duplicate. */
8252 /* FIXME: Memory leak. Sometimes pattern is not
8253 xmalloced alone, but in larger chunk of memory. */
8254 /* free (e->pattern); */
8255 free (e);
8256 }
8257 else
8258 {
8259 e->next = last->next;
8260 last->next = e;
8261 }
8262 }
8263 else
8264 {
8265 *loc = e;
8266 *list_loc = e;
8267 list_loc = &e->next;
8268 }
8269 }
8270 }
8271 *remaining_loc = NULL;
8272 *list_loc = head->remaining;
8273 }
8274 else
8275 head->remaining = head->list;
8276 }
8277
8278 /* This is called when we know the name and dependencies of the
8279 version. */
8280
8281 void
8282 lang_register_vers_node (const char *name,
8283 struct bfd_elf_version_tree *version,
8284 struct bfd_elf_version_deps *deps)
8285 {
8286 struct bfd_elf_version_tree *t, **pp;
8287 struct bfd_elf_version_expr *e1;
8288
8289 if (name == NULL)
8290 name = "";
8291
8292 if (link_info.version_info != NULL
8293 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
8294 {
8295 einfo (_("%X%P: anonymous version tag cannot be combined"
8296 " with other version tags\n"));
8297 free (version);
8298 return;
8299 }
8300
8301 /* Make sure this node has a unique name. */
8302 for (t = link_info.version_info; t != NULL; t = t->next)
8303 if (strcmp (t->name, name) == 0)
8304 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
8305
8306 lang_finalize_version_expr_head (&version->globals);
8307 lang_finalize_version_expr_head (&version->locals);
8308
8309 /* Check the global and local match names, and make sure there
8310 aren't any duplicates. */
8311
8312 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
8313 {
8314 for (t = link_info.version_info; t != NULL; t = t->next)
8315 {
8316 struct bfd_elf_version_expr *e2;
8317
8318 if (t->locals.htab && e1->literal)
8319 {
8320 e2 = (struct bfd_elf_version_expr *)
8321 htab_find ((htab_t) t->locals.htab, e1);
8322 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8323 {
8324 if (e1->mask == e2->mask)
8325 einfo (_("%X%P: duplicate expression `%s'"
8326 " in version information\n"), e1->pattern);
8327 e2 = e2->next;
8328 }
8329 }
8330 else if (!e1->literal)
8331 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
8332 if (strcmp (e1->pattern, e2->pattern) == 0
8333 && e1->mask == e2->mask)
8334 einfo (_("%X%P: duplicate expression `%s'"
8335 " in version information\n"), e1->pattern);
8336 }
8337 }
8338
8339 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
8340 {
8341 for (t = link_info.version_info; t != NULL; t = t->next)
8342 {
8343 struct bfd_elf_version_expr *e2;
8344
8345 if (t->globals.htab && e1->literal)
8346 {
8347 e2 = (struct bfd_elf_version_expr *)
8348 htab_find ((htab_t) t->globals.htab, e1);
8349 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8350 {
8351 if (e1->mask == e2->mask)
8352 einfo (_("%X%P: duplicate expression `%s'"
8353 " in version information\n"),
8354 e1->pattern);
8355 e2 = e2->next;
8356 }
8357 }
8358 else if (!e1->literal)
8359 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
8360 if (strcmp (e1->pattern, e2->pattern) == 0
8361 && e1->mask == e2->mask)
8362 einfo (_("%X%P: duplicate expression `%s'"
8363 " in version information\n"), e1->pattern);
8364 }
8365 }
8366
8367 version->deps = deps;
8368 version->name = name;
8369 if (name[0] != '\0')
8370 {
8371 ++version_index;
8372 version->vernum = version_index;
8373 }
8374 else
8375 version->vernum = 0;
8376
8377 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
8378 ;
8379 *pp = version;
8380 }
8381
8382 /* This is called when we see a version dependency. */
8383
8384 struct bfd_elf_version_deps *
8385 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
8386 {
8387 struct bfd_elf_version_deps *ret;
8388 struct bfd_elf_version_tree *t;
8389
8390 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
8391 ret->next = list;
8392
8393 for (t = link_info.version_info; t != NULL; t = t->next)
8394 {
8395 if (strcmp (t->name, name) == 0)
8396 {
8397 ret->version_needed = t;
8398 return ret;
8399 }
8400 }
8401
8402 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
8403
8404 ret->version_needed = NULL;
8405 return ret;
8406 }
8407
8408 static void
8409 lang_do_version_exports_section (void)
8410 {
8411 struct bfd_elf_version_expr *greg = NULL, *lreg;
8412
8413 LANG_FOR_EACH_INPUT_STATEMENT (is)
8414 {
8415 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
8416 char *contents, *p;
8417 bfd_size_type len;
8418
8419 if (sec == NULL)
8420 continue;
8421
8422 len = sec->size;
8423 contents = (char *) xmalloc (len);
8424 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
8425 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
8426
8427 p = contents;
8428 while (p < contents + len)
8429 {
8430 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
8431 p = strchr (p, '\0') + 1;
8432 }
8433
8434 /* Do not free the contents, as we used them creating the regex. */
8435
8436 /* Do not include this section in the link. */
8437 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
8438 }
8439
8440 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
8441 lang_register_vers_node (command_line.version_exports_section,
8442 lang_new_vers_node (greg, lreg), NULL);
8443 }
8444
8445 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
8446
8447 static void
8448 lang_do_memory_regions (void)
8449 {
8450 lang_memory_region_type *r = lang_memory_region_list;
8451
8452 for (; r != NULL; r = r->next)
8453 {
8454 if (r->origin_exp)
8455 {
8456 exp_fold_tree_no_dot (r->origin_exp);
8457 if (expld.result.valid_p)
8458 {
8459 r->origin = expld.result.value;
8460 r->current = r->origin;
8461 }
8462 else
8463 einfo (_("%F%P: invalid origin for memory region %s\n"),
8464 r->name_list.name);
8465 }
8466 if (r->length_exp)
8467 {
8468 exp_fold_tree_no_dot (r->length_exp);
8469 if (expld.result.valid_p)
8470 r->length = expld.result.value;
8471 else
8472 einfo (_("%F%P: invalid length for memory region %s\n"),
8473 r->name_list.name);
8474 }
8475 }
8476 }
8477
8478 void
8479 lang_add_unique (const char *name)
8480 {
8481 struct unique_sections *ent;
8482
8483 for (ent = unique_section_list; ent; ent = ent->next)
8484 if (strcmp (ent->name, name) == 0)
8485 return;
8486
8487 ent = (struct unique_sections *) xmalloc (sizeof *ent);
8488 ent->name = xstrdup (name);
8489 ent->next = unique_section_list;
8490 unique_section_list = ent;
8491 }
8492
8493 /* Append the list of dynamic symbols to the existing one. */
8494
8495 void
8496 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
8497 {
8498 if (link_info.dynamic_list)
8499 {
8500 struct bfd_elf_version_expr *tail;
8501 for (tail = dynamic; tail->next != NULL; tail = tail->next)
8502 ;
8503 tail->next = link_info.dynamic_list->head.list;
8504 link_info.dynamic_list->head.list = dynamic;
8505 }
8506 else
8507 {
8508 struct bfd_elf_dynamic_list *d;
8509
8510 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
8511 d->head.list = dynamic;
8512 d->match = lang_vers_match;
8513 link_info.dynamic_list = d;
8514 }
8515 }
8516
8517 /* Append the list of C++ typeinfo dynamic symbols to the existing
8518 one. */
8519
8520 void
8521 lang_append_dynamic_list_cpp_typeinfo (void)
8522 {
8523 const char *symbols[] =
8524 {
8525 "typeinfo name for*",
8526 "typeinfo for*"
8527 };
8528 struct bfd_elf_version_expr *dynamic = NULL;
8529 unsigned int i;
8530
8531 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8532 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8533 FALSE);
8534
8535 lang_append_dynamic_list (dynamic);
8536 }
8537
8538 /* Append the list of C++ operator new and delete dynamic symbols to the
8539 existing one. */
8540
8541 void
8542 lang_append_dynamic_list_cpp_new (void)
8543 {
8544 const char *symbols[] =
8545 {
8546 "operator new*",
8547 "operator delete*"
8548 };
8549 struct bfd_elf_version_expr *dynamic = NULL;
8550 unsigned int i;
8551
8552 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8553 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8554 FALSE);
8555
8556 lang_append_dynamic_list (dynamic);
8557 }
8558
8559 /* Scan a space and/or comma separated string of features. */
8560
8561 void
8562 lang_ld_feature (char *str)
8563 {
8564 char *p, *q;
8565
8566 p = str;
8567 while (*p)
8568 {
8569 char sep;
8570 while (*p == ',' || ISSPACE (*p))
8571 ++p;
8572 if (!*p)
8573 break;
8574 q = p + 1;
8575 while (*q && *q != ',' && !ISSPACE (*q))
8576 ++q;
8577 sep = *q;
8578 *q = 0;
8579 if (strcasecmp (p, "SANE_EXPR") == 0)
8580 config.sane_expr = TRUE;
8581 else
8582 einfo (_("%X%P: unknown feature `%s'\n"), p);
8583 *q = sep;
8584 p = q;
8585 }
8586 }
8587
8588 /* Pretty print memory amount. */
8589
8590 static void
8591 lang_print_memory_size (bfd_vma sz)
8592 {
8593 if ((sz & 0x3fffffff) == 0)
8594 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
8595 else if ((sz & 0xfffff) == 0)
8596 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
8597 else if ((sz & 0x3ff) == 0)
8598 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
8599 else
8600 printf (" %10" BFD_VMA_FMT "u B", sz);
8601 }
8602
8603 /* Implement --print-memory-usage: disply per region memory usage. */
8604
8605 void
8606 lang_print_memory_usage (void)
8607 {
8608 lang_memory_region_type *r;
8609
8610 printf ("Memory region Used Size Region Size %%age Used\n");
8611 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
8612 {
8613 bfd_vma used_length = r->current - r->origin;
8614 double percent;
8615
8616 printf ("%16s: ",r->name_list.name);
8617 lang_print_memory_size (used_length);
8618 lang_print_memory_size ((bfd_vma) r->length);
8619
8620 percent = used_length * 100.0 / r->length;
8621
8622 printf (" %6.2f%%\n", percent);
8623 }
8624 }
This page took 0.285557 seconds and 5 git commands to generate.