PR ld/12762
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "filenames.h"
27 #include "safe-ctype.h"
28 #include "obstack.h"
29 #include "bfdlink.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "libbfd.h"
45 #ifdef ENABLE_PLUGINS
46 #include "plugin.h"
47 #endif /* ENABLE_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Locals variables. */
54 static struct obstack stat_obstack;
55 static struct obstack map_obstack;
56
57 #define obstack_chunk_alloc xmalloc
58 #define obstack_chunk_free free
59 static const char *entry_symbol_default = "start";
60 static bfd_boolean placed_commons = FALSE;
61 static bfd_boolean stripped_excluded_sections = FALSE;
62 static lang_output_section_statement_type *default_common_section;
63 static bfd_boolean map_option_f;
64 static bfd_vma print_dot;
65 static lang_input_statement_type *first_file;
66 static const char *current_target;
67 static lang_statement_list_type statement_list;
68 static struct bfd_hash_table lang_definedness_table;
69 static lang_statement_list_type *stat_save[10];
70 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
71 static struct unique_sections *unique_section_list;
72 static bfd_boolean ldlang_sysrooted_script = FALSE;
73
74 /* Forward declarations. */
75 static void exp_init_os (etree_type *);
76 static void init_map_userdata (bfd *, asection *, void *);
77 static lang_input_statement_type *lookup_name (const char *);
78 static struct bfd_hash_entry *lang_definedness_newfunc
79 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
80 static void insert_undefined (const char *);
81 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
82 static void print_statement (lang_statement_union_type *,
83 lang_output_section_statement_type *);
84 static void print_statement_list (lang_statement_union_type *,
85 lang_output_section_statement_type *);
86 static void print_statements (void);
87 static void print_input_section (asection *, bfd_boolean);
88 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
89 static void lang_record_phdrs (void);
90 static void lang_do_version_exports_section (void);
91 static void lang_finalize_version_expr_head
92 (struct bfd_elf_version_expr_head *);
93
94 /* Exported variables. */
95 const char *output_target;
96 lang_output_section_statement_type *abs_output_section;
97 lang_statement_list_type lang_output_section_statement;
98 lang_statement_list_type *stat_ptr = &statement_list;
99 lang_statement_list_type file_chain = { NULL, NULL };
100 lang_statement_list_type input_file_chain;
101 struct bfd_sym_chain entry_symbol = { NULL, NULL };
102 const char *entry_section = ".text";
103 bfd_boolean entry_from_cmdline;
104 bfd_boolean undef_from_cmdline;
105 bfd_boolean lang_has_input_file = FALSE;
106 bfd_boolean had_output_filename = FALSE;
107 bfd_boolean lang_float_flag = FALSE;
108 bfd_boolean delete_output_file_on_failure = FALSE;
109 struct lang_phdr *lang_phdr_list;
110 struct lang_nocrossrefs *nocrossref_list;
111 bfd_boolean missing_file = FALSE;
112
113 /* Functions that traverse the linker script and might evaluate
114 DEFINED() need to increment this. */
115 int lang_statement_iteration = 0;
116
117 etree_type *base; /* Relocation base - or null */
118
119 /* Return TRUE if the PATTERN argument is a wildcard pattern.
120 Although backslashes are treated specially if a pattern contains
121 wildcards, we do not consider the mere presence of a backslash to
122 be enough to cause the pattern to be treated as a wildcard.
123 That lets us handle DOS filenames more naturally. */
124 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
125
126 #define new_stat(x, y) \
127 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
128
129 #define outside_section_address(q) \
130 ((q)->output_offset + (q)->output_section->vma)
131
132 #define outside_symbol_address(q) \
133 ((q)->value + outside_section_address (q->section))
134
135 #define SECTION_NAME_MAP_LENGTH (16)
136
137 void *
138 stat_alloc (size_t size)
139 {
140 return obstack_alloc (&stat_obstack, size);
141 }
142
143 static int
144 name_match (const char *pattern, const char *name)
145 {
146 if (wildcardp (pattern))
147 return fnmatch (pattern, name, 0);
148 return strcmp (pattern, name);
149 }
150
151 /* If PATTERN is of the form archive:file, return a pointer to the
152 separator. If not, return NULL. */
153
154 static char *
155 archive_path (const char *pattern)
156 {
157 char *p = NULL;
158
159 if (link_info.path_separator == 0)
160 return p;
161
162 p = strchr (pattern, link_info.path_separator);
163 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
164 if (p == NULL || link_info.path_separator != ':')
165 return p;
166
167 /* Assume a match on the second char is part of drive specifier,
168 as in "c:\silly.dos". */
169 if (p == pattern + 1 && ISALPHA (*pattern))
170 p = strchr (p + 1, link_info.path_separator);
171 #endif
172 return p;
173 }
174
175 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
176 return whether F matches FILE_SPEC. */
177
178 static bfd_boolean
179 input_statement_is_archive_path (const char *file_spec, char *sep,
180 lang_input_statement_type *f)
181 {
182 bfd_boolean match = FALSE;
183
184 if ((*(sep + 1) == 0
185 || name_match (sep + 1, f->filename) == 0)
186 && ((sep != file_spec)
187 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
188 {
189 match = TRUE;
190
191 if (sep != file_spec)
192 {
193 const char *aname = f->the_bfd->my_archive->filename;
194 *sep = 0;
195 match = name_match (file_spec, aname) == 0;
196 *sep = link_info.path_separator;
197 }
198 }
199 return match;
200 }
201
202 static bfd_boolean
203 unique_section_p (const asection *sec,
204 const lang_output_section_statement_type *os)
205 {
206 struct unique_sections *unam;
207 const char *secnam;
208
209 if (link_info.relocatable
210 && sec->owner != NULL
211 && bfd_is_group_section (sec->owner, sec))
212 return !(os != NULL
213 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
214
215 secnam = sec->name;
216 for (unam = unique_section_list; unam; unam = unam->next)
217 if (name_match (unam->name, secnam) == 0)
218 return TRUE;
219
220 return FALSE;
221 }
222
223 /* Generic traversal routines for finding matching sections. */
224
225 /* Try processing a section against a wildcard. This just calls
226 the callback unless the filename exclusion list is present
227 and excludes the file. It's hardly ever present so this
228 function is very fast. */
229
230 static void
231 walk_wild_consider_section (lang_wild_statement_type *ptr,
232 lang_input_statement_type *file,
233 asection *s,
234 struct wildcard_list *sec,
235 callback_t callback,
236 void *data)
237 {
238 struct name_list *list_tmp;
239
240 /* Propagate the section_flag_info from the wild statement to the section. */
241 s->section_flag_info = ptr->section_flag_list;
242
243 /* Don't process sections from files which were excluded. */
244 for (list_tmp = sec->spec.exclude_name_list;
245 list_tmp;
246 list_tmp = list_tmp->next)
247 {
248 char *p = archive_path (list_tmp->name);
249
250 if (p != NULL)
251 {
252 if (input_statement_is_archive_path (list_tmp->name, p, file))
253 return;
254 }
255
256 else if (name_match (list_tmp->name, file->filename) == 0)
257 return;
258
259 /* FIXME: Perhaps remove the following at some stage? Matching
260 unadorned archives like this was never documented and has
261 been superceded by the archive:path syntax. */
262 else if (file->the_bfd != NULL
263 && file->the_bfd->my_archive != NULL
264 && name_match (list_tmp->name,
265 file->the_bfd->my_archive->filename) == 0)
266 return;
267 }
268
269 (*callback) (ptr, sec, s, file, data);
270 }
271
272 /* Lowest common denominator routine that can handle everything correctly,
273 but slowly. */
274
275 static void
276 walk_wild_section_general (lang_wild_statement_type *ptr,
277 lang_input_statement_type *file,
278 callback_t callback,
279 void *data)
280 {
281 asection *s;
282 struct wildcard_list *sec;
283
284 for (s = file->the_bfd->sections; s != NULL; s = s->next)
285 {
286 sec = ptr->section_list;
287 if (sec == NULL)
288 (*callback) (ptr, sec, s, file, data);
289
290 while (sec != NULL)
291 {
292 bfd_boolean skip = FALSE;
293
294 if (sec->spec.name != NULL)
295 {
296 const char *sname = bfd_get_section_name (file->the_bfd, s);
297
298 skip = name_match (sec->spec.name, sname) != 0;
299 }
300
301 if (!skip)
302 walk_wild_consider_section (ptr, file, s, sec, callback, data);
303
304 sec = sec->next;
305 }
306 }
307 }
308
309 /* Routines to find a single section given its name. If there's more
310 than one section with that name, we report that. */
311
312 typedef struct
313 {
314 asection *found_section;
315 bfd_boolean multiple_sections_found;
316 } section_iterator_callback_data;
317
318 static bfd_boolean
319 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
320 {
321 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
322
323 if (d->found_section != NULL)
324 {
325 d->multiple_sections_found = TRUE;
326 return TRUE;
327 }
328
329 d->found_section = s;
330 return FALSE;
331 }
332
333 static asection *
334 find_section (lang_input_statement_type *file,
335 struct wildcard_list *sec,
336 bfd_boolean *multiple_sections_found)
337 {
338 section_iterator_callback_data cb_data = { NULL, FALSE };
339
340 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
341 section_iterator_callback, &cb_data);
342 *multiple_sections_found = cb_data.multiple_sections_found;
343 return cb_data.found_section;
344 }
345
346 /* Code for handling simple wildcards without going through fnmatch,
347 which can be expensive because of charset translations etc. */
348
349 /* A simple wild is a literal string followed by a single '*',
350 where the literal part is at least 4 characters long. */
351
352 static bfd_boolean
353 is_simple_wild (const char *name)
354 {
355 size_t len = strcspn (name, "*?[");
356 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
357 }
358
359 static bfd_boolean
360 match_simple_wild (const char *pattern, const char *name)
361 {
362 /* The first four characters of the pattern are guaranteed valid
363 non-wildcard characters. So we can go faster. */
364 if (pattern[0] != name[0] || pattern[1] != name[1]
365 || pattern[2] != name[2] || pattern[3] != name[3])
366 return FALSE;
367
368 pattern += 4;
369 name += 4;
370 while (*pattern != '*')
371 if (*name++ != *pattern++)
372 return FALSE;
373
374 return TRUE;
375 }
376
377 /* Return the numerical value of the init_priority attribute from
378 section name NAME. */
379
380 static unsigned long
381 get_init_priority (const char *name)
382 {
383 char *end;
384 unsigned long init_priority;
385
386 /* GCC uses the following section names for the init_priority
387 attribute with numerical values 101 and 65535 inclusive. A
388 lower value means a higher priority.
389
390 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
391 decimal numerical value of the init_priority attribute.
392 The order of execution in .init_array is forward and
393 .fini_array is backward.
394 2: .ctors.NNNN/.ctors.NNNN: Where NNNN is 65535 minus the
395 decimal numerical value of the init_priority attribute.
396 The order of execution in .ctors is backward and .dtors
397 is forward.
398 */
399 if (strncmp (name, ".init_array.", 12) == 0
400 || strncmp (name, ".fini_array.", 12) == 0)
401 {
402 init_priority = strtoul (name + 12, &end, 10);
403 return *end ? 0 : init_priority;
404 }
405 else if (strncmp (name, ".ctors.", 7) == 0
406 || strncmp (name, ".dtors.", 7) == 0)
407 {
408 init_priority = strtoul (name + 7, &end, 10);
409 return *end ? 0 : 65535 - init_priority;
410 }
411
412 return 0;
413 }
414
415 /* Compare sections ASEC and BSEC according to SORT. */
416
417 static int
418 compare_section (sort_type sort, asection *asec, asection *bsec)
419 {
420 int ret;
421 unsigned long ainit_priority, binit_priority;
422
423 switch (sort)
424 {
425 default:
426 abort ();
427
428 case by_init_priority:
429 ainit_priority
430 = get_init_priority (bfd_get_section_name (asec->owner, asec));
431 binit_priority
432 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
433 if (ainit_priority == 0 || binit_priority == 0)
434 goto sort_by_name;
435 ret = ainit_priority - binit_priority;
436 if (ret)
437 break;
438 else
439 goto sort_by_name;
440
441 case by_alignment_name:
442 ret = (bfd_section_alignment (bsec->owner, bsec)
443 - bfd_section_alignment (asec->owner, asec));
444 if (ret)
445 break;
446 /* Fall through. */
447
448 case by_name:
449 sort_by_name:
450 ret = strcmp (bfd_get_section_name (asec->owner, asec),
451 bfd_get_section_name (bsec->owner, bsec));
452 break;
453
454 case by_name_alignment:
455 ret = strcmp (bfd_get_section_name (asec->owner, asec),
456 bfd_get_section_name (bsec->owner, bsec));
457 if (ret)
458 break;
459 /* Fall through. */
460
461 case by_alignment:
462 ret = (bfd_section_alignment (bsec->owner, bsec)
463 - bfd_section_alignment (asec->owner, asec));
464 break;
465 }
466
467 return ret;
468 }
469
470 /* Build a Binary Search Tree to sort sections, unlike insertion sort
471 used in wild_sort(). BST is considerably faster if the number of
472 of sections are large. */
473
474 static lang_section_bst_type **
475 wild_sort_fast (lang_wild_statement_type *wild,
476 struct wildcard_list *sec,
477 lang_input_statement_type *file ATTRIBUTE_UNUSED,
478 asection *section)
479 {
480 lang_section_bst_type **tree;
481
482 tree = &wild->tree;
483 if (!wild->filenames_sorted
484 && (sec == NULL || sec->spec.sorted == none))
485 {
486 /* Append at the right end of tree. */
487 while (*tree)
488 tree = &((*tree)->right);
489 return tree;
490 }
491
492 while (*tree)
493 {
494 /* Find the correct node to append this section. */
495 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
496 tree = &((*tree)->left);
497 else
498 tree = &((*tree)->right);
499 }
500
501 return tree;
502 }
503
504 /* Use wild_sort_fast to build a BST to sort sections. */
505
506 static void
507 output_section_callback_fast (lang_wild_statement_type *ptr,
508 struct wildcard_list *sec,
509 asection *section,
510 lang_input_statement_type *file,
511 void *output)
512 {
513 lang_section_bst_type *node;
514 lang_section_bst_type **tree;
515 lang_output_section_statement_type *os;
516
517 os = (lang_output_section_statement_type *) output;
518
519 if (unique_section_p (section, os))
520 return;
521
522 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
523 node->left = 0;
524 node->right = 0;
525 node->section = section;
526
527 tree = wild_sort_fast (ptr, sec, file, section);
528 if (tree != NULL)
529 *tree = node;
530 }
531
532 /* Convert a sorted sections' BST back to list form. */
533
534 static void
535 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
536 lang_section_bst_type *tree,
537 void *output)
538 {
539 if (tree->left)
540 output_section_callback_tree_to_list (ptr, tree->left, output);
541
542 lang_add_section (&ptr->children, tree->section,
543 (lang_output_section_statement_type *) output);
544
545 if (tree->right)
546 output_section_callback_tree_to_list (ptr, tree->right, output);
547
548 free (tree);
549 }
550
551 /* Specialized, optimized routines for handling different kinds of
552 wildcards */
553
554 static void
555 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
556 lang_input_statement_type *file,
557 callback_t callback,
558 void *data)
559 {
560 /* We can just do a hash lookup for the section with the right name.
561 But if that lookup discovers more than one section with the name
562 (should be rare), we fall back to the general algorithm because
563 we would otherwise have to sort the sections to make sure they
564 get processed in the bfd's order. */
565 bfd_boolean multiple_sections_found;
566 struct wildcard_list *sec0 = ptr->handler_data[0];
567 asection *s0 = find_section (file, sec0, &multiple_sections_found);
568
569 if (multiple_sections_found)
570 walk_wild_section_general (ptr, file, callback, data);
571 else if (s0)
572 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
573 }
574
575 static void
576 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
577 lang_input_statement_type *file,
578 callback_t callback,
579 void *data)
580 {
581 asection *s;
582 struct wildcard_list *wildsec0 = ptr->handler_data[0];
583
584 for (s = file->the_bfd->sections; s != NULL; s = s->next)
585 {
586 const char *sname = bfd_get_section_name (file->the_bfd, s);
587 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
588
589 if (!skip)
590 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
591 }
592 }
593
594 static void
595 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
596 lang_input_statement_type *file,
597 callback_t callback,
598 void *data)
599 {
600 asection *s;
601 struct wildcard_list *sec0 = ptr->handler_data[0];
602 struct wildcard_list *wildsec1 = ptr->handler_data[1];
603 bfd_boolean multiple_sections_found;
604 asection *s0 = find_section (file, sec0, &multiple_sections_found);
605
606 if (multiple_sections_found)
607 {
608 walk_wild_section_general (ptr, file, callback, data);
609 return;
610 }
611
612 /* Note that if the section was not found, s0 is NULL and
613 we'll simply never succeed the s == s0 test below. */
614 for (s = file->the_bfd->sections; s != NULL; s = s->next)
615 {
616 /* Recall that in this code path, a section cannot satisfy more
617 than one spec, so if s == s0 then it cannot match
618 wildspec1. */
619 if (s == s0)
620 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
621 else
622 {
623 const char *sname = bfd_get_section_name (file->the_bfd, s);
624 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
625
626 if (!skip)
627 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
628 data);
629 }
630 }
631 }
632
633 static void
634 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
635 lang_input_statement_type *file,
636 callback_t callback,
637 void *data)
638 {
639 asection *s;
640 struct wildcard_list *sec0 = ptr->handler_data[0];
641 struct wildcard_list *wildsec1 = ptr->handler_data[1];
642 struct wildcard_list *wildsec2 = ptr->handler_data[2];
643 bfd_boolean multiple_sections_found;
644 asection *s0 = find_section (file, sec0, &multiple_sections_found);
645
646 if (multiple_sections_found)
647 {
648 walk_wild_section_general (ptr, file, callback, data);
649 return;
650 }
651
652 for (s = file->the_bfd->sections; s != NULL; s = s->next)
653 {
654 if (s == s0)
655 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
656 else
657 {
658 const char *sname = bfd_get_section_name (file->the_bfd, s);
659 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
660
661 if (!skip)
662 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
663 else
664 {
665 skip = !match_simple_wild (wildsec2->spec.name, sname);
666 if (!skip)
667 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
668 data);
669 }
670 }
671 }
672 }
673
674 static void
675 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
676 lang_input_statement_type *file,
677 callback_t callback,
678 void *data)
679 {
680 asection *s;
681 struct wildcard_list *sec0 = ptr->handler_data[0];
682 struct wildcard_list *sec1 = ptr->handler_data[1];
683 struct wildcard_list *wildsec2 = ptr->handler_data[2];
684 struct wildcard_list *wildsec3 = ptr->handler_data[3];
685 bfd_boolean multiple_sections_found;
686 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
687
688 if (multiple_sections_found)
689 {
690 walk_wild_section_general (ptr, file, callback, data);
691 return;
692 }
693
694 s1 = find_section (file, sec1, &multiple_sections_found);
695 if (multiple_sections_found)
696 {
697 walk_wild_section_general (ptr, file, callback, data);
698 return;
699 }
700
701 for (s = file->the_bfd->sections; s != NULL; s = s->next)
702 {
703 if (s == s0)
704 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
705 else
706 if (s == s1)
707 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
708 else
709 {
710 const char *sname = bfd_get_section_name (file->the_bfd, s);
711 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
712 sname);
713
714 if (!skip)
715 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
716 data);
717 else
718 {
719 skip = !match_simple_wild (wildsec3->spec.name, sname);
720 if (!skip)
721 walk_wild_consider_section (ptr, file, s, wildsec3,
722 callback, data);
723 }
724 }
725 }
726 }
727
728 static void
729 walk_wild_section (lang_wild_statement_type *ptr,
730 lang_input_statement_type *file,
731 callback_t callback,
732 void *data)
733 {
734 if (file->just_syms_flag)
735 return;
736
737 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
738 }
739
740 /* Returns TRUE when name1 is a wildcard spec that might match
741 something name2 can match. We're conservative: we return FALSE
742 only if the prefixes of name1 and name2 are different up to the
743 first wildcard character. */
744
745 static bfd_boolean
746 wild_spec_can_overlap (const char *name1, const char *name2)
747 {
748 size_t prefix1_len = strcspn (name1, "?*[");
749 size_t prefix2_len = strcspn (name2, "?*[");
750 size_t min_prefix_len;
751
752 /* Note that if there is no wildcard character, then we treat the
753 terminating 0 as part of the prefix. Thus ".text" won't match
754 ".text." or ".text.*", for example. */
755 if (name1[prefix1_len] == '\0')
756 prefix1_len++;
757 if (name2[prefix2_len] == '\0')
758 prefix2_len++;
759
760 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
761
762 return memcmp (name1, name2, min_prefix_len) == 0;
763 }
764
765 /* Select specialized code to handle various kinds of wildcard
766 statements. */
767
768 static void
769 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
770 {
771 int sec_count = 0;
772 int wild_name_count = 0;
773 struct wildcard_list *sec;
774 int signature;
775 int data_counter;
776
777 ptr->walk_wild_section_handler = walk_wild_section_general;
778 ptr->handler_data[0] = NULL;
779 ptr->handler_data[1] = NULL;
780 ptr->handler_data[2] = NULL;
781 ptr->handler_data[3] = NULL;
782 ptr->tree = NULL;
783
784 /* Count how many wildcard_specs there are, and how many of those
785 actually use wildcards in the name. Also, bail out if any of the
786 wildcard names are NULL. (Can this actually happen?
787 walk_wild_section used to test for it.) And bail out if any
788 of the wildcards are more complex than a simple string
789 ending in a single '*'. */
790 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
791 {
792 ++sec_count;
793 if (sec->spec.name == NULL)
794 return;
795 if (wildcardp (sec->spec.name))
796 {
797 ++wild_name_count;
798 if (!is_simple_wild (sec->spec.name))
799 return;
800 }
801 }
802
803 /* The zero-spec case would be easy to optimize but it doesn't
804 happen in practice. Likewise, more than 4 specs doesn't
805 happen in practice. */
806 if (sec_count == 0 || sec_count > 4)
807 return;
808
809 /* Check that no two specs can match the same section. */
810 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
811 {
812 struct wildcard_list *sec2;
813 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
814 {
815 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
816 return;
817 }
818 }
819
820 signature = (sec_count << 8) + wild_name_count;
821 switch (signature)
822 {
823 case 0x0100:
824 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
825 break;
826 case 0x0101:
827 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
828 break;
829 case 0x0201:
830 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
831 break;
832 case 0x0302:
833 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
834 break;
835 case 0x0402:
836 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
837 break;
838 default:
839 return;
840 }
841
842 /* Now fill the data array with pointers to the specs, first the
843 specs with non-wildcard names, then the specs with wildcard
844 names. It's OK to process the specs in different order from the
845 given order, because we've already determined that no section
846 will match more than one spec. */
847 data_counter = 0;
848 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
849 if (!wildcardp (sec->spec.name))
850 ptr->handler_data[data_counter++] = sec;
851 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
852 if (wildcardp (sec->spec.name))
853 ptr->handler_data[data_counter++] = sec;
854 }
855
856 /* Handle a wild statement for a single file F. */
857
858 static void
859 walk_wild_file (lang_wild_statement_type *s,
860 lang_input_statement_type *f,
861 callback_t callback,
862 void *data)
863 {
864 if (f->the_bfd == NULL
865 || ! bfd_check_format (f->the_bfd, bfd_archive))
866 walk_wild_section (s, f, callback, data);
867 else
868 {
869 bfd *member;
870
871 /* This is an archive file. We must map each member of the
872 archive separately. */
873 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
874 while (member != NULL)
875 {
876 /* When lookup_name is called, it will call the add_symbols
877 entry point for the archive. For each element of the
878 archive which is included, BFD will call ldlang_add_file,
879 which will set the usrdata field of the member to the
880 lang_input_statement. */
881 if (member->usrdata != NULL)
882 {
883 walk_wild_section (s,
884 (lang_input_statement_type *) member->usrdata,
885 callback, data);
886 }
887
888 member = bfd_openr_next_archived_file (f->the_bfd, member);
889 }
890 }
891 }
892
893 static void
894 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
895 {
896 const char *file_spec = s->filename;
897 char *p;
898
899 if (file_spec == NULL)
900 {
901 /* Perform the iteration over all files in the list. */
902 LANG_FOR_EACH_INPUT_STATEMENT (f)
903 {
904 walk_wild_file (s, f, callback, data);
905 }
906 }
907 else if ((p = archive_path (file_spec)) != NULL)
908 {
909 LANG_FOR_EACH_INPUT_STATEMENT (f)
910 {
911 if (input_statement_is_archive_path (file_spec, p, f))
912 walk_wild_file (s, f, callback, data);
913 }
914 }
915 else if (wildcardp (file_spec))
916 {
917 LANG_FOR_EACH_INPUT_STATEMENT (f)
918 {
919 if (fnmatch (file_spec, f->filename, 0) == 0)
920 walk_wild_file (s, f, callback, data);
921 }
922 }
923 else
924 {
925 lang_input_statement_type *f;
926
927 /* Perform the iteration over a single file. */
928 f = lookup_name (file_spec);
929 if (f)
930 walk_wild_file (s, f, callback, data);
931 }
932 }
933
934 /* lang_for_each_statement walks the parse tree and calls the provided
935 function for each node, except those inside output section statements
936 with constraint set to -1. */
937
938 void
939 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
940 lang_statement_union_type *s)
941 {
942 for (; s != NULL; s = s->header.next)
943 {
944 func (s);
945
946 switch (s->header.type)
947 {
948 case lang_constructors_statement_enum:
949 lang_for_each_statement_worker (func, constructor_list.head);
950 break;
951 case lang_output_section_statement_enum:
952 if (s->output_section_statement.constraint != -1)
953 lang_for_each_statement_worker
954 (func, s->output_section_statement.children.head);
955 break;
956 case lang_wild_statement_enum:
957 lang_for_each_statement_worker (func,
958 s->wild_statement.children.head);
959 break;
960 case lang_group_statement_enum:
961 lang_for_each_statement_worker (func,
962 s->group_statement.children.head);
963 break;
964 case lang_data_statement_enum:
965 case lang_reloc_statement_enum:
966 case lang_object_symbols_statement_enum:
967 case lang_output_statement_enum:
968 case lang_target_statement_enum:
969 case lang_input_section_enum:
970 case lang_input_statement_enum:
971 case lang_assignment_statement_enum:
972 case lang_padding_statement_enum:
973 case lang_address_statement_enum:
974 case lang_fill_statement_enum:
975 case lang_insert_statement_enum:
976 break;
977 default:
978 FAIL ();
979 break;
980 }
981 }
982 }
983
984 void
985 lang_for_each_statement (void (*func) (lang_statement_union_type *))
986 {
987 lang_for_each_statement_worker (func, statement_list.head);
988 }
989
990 /*----------------------------------------------------------------------*/
991
992 void
993 lang_list_init (lang_statement_list_type *list)
994 {
995 list->head = NULL;
996 list->tail = &list->head;
997 }
998
999 void
1000 push_stat_ptr (lang_statement_list_type *new_ptr)
1001 {
1002 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1003 abort ();
1004 *stat_save_ptr++ = stat_ptr;
1005 stat_ptr = new_ptr;
1006 }
1007
1008 void
1009 pop_stat_ptr (void)
1010 {
1011 if (stat_save_ptr <= stat_save)
1012 abort ();
1013 stat_ptr = *--stat_save_ptr;
1014 }
1015
1016 /* Build a new statement node for the parse tree. */
1017
1018 static lang_statement_union_type *
1019 new_statement (enum statement_enum type,
1020 size_t size,
1021 lang_statement_list_type *list)
1022 {
1023 lang_statement_union_type *new_stmt;
1024
1025 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1026 new_stmt->header.type = type;
1027 new_stmt->header.next = NULL;
1028 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1029 return new_stmt;
1030 }
1031
1032 /* Build a new input file node for the language. There are several
1033 ways in which we treat an input file, eg, we only look at symbols,
1034 or prefix it with a -l etc.
1035
1036 We can be supplied with requests for input files more than once;
1037 they may, for example be split over several lines like foo.o(.text)
1038 foo.o(.data) etc, so when asked for a file we check that we haven't
1039 got it already so we don't duplicate the bfd. */
1040
1041 static lang_input_statement_type *
1042 new_afile (const char *name,
1043 lang_input_file_enum_type file_type,
1044 const char *target,
1045 bfd_boolean add_to_list)
1046 {
1047 lang_input_statement_type *p;
1048
1049 if (add_to_list)
1050 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1051 else
1052 {
1053 p = (lang_input_statement_type *)
1054 stat_alloc (sizeof (lang_input_statement_type));
1055 p->header.type = lang_input_statement_enum;
1056 p->header.next = NULL;
1057 }
1058
1059 lang_has_input_file = TRUE;
1060 p->target = target;
1061 p->sysrooted = FALSE;
1062
1063 if (file_type == lang_input_file_is_l_enum
1064 && name[0] == ':' && name[1] != '\0')
1065 {
1066 file_type = lang_input_file_is_search_file_enum;
1067 name = name + 1;
1068 }
1069
1070 switch (file_type)
1071 {
1072 case lang_input_file_is_symbols_only_enum:
1073 p->filename = name;
1074 p->maybe_archive = FALSE;
1075 p->real = TRUE;
1076 p->local_sym_name = name;
1077 p->just_syms_flag = TRUE;
1078 p->search_dirs_flag = FALSE;
1079 break;
1080 case lang_input_file_is_fake_enum:
1081 p->filename = name;
1082 p->maybe_archive = FALSE;
1083 p->real = FALSE;
1084 p->local_sym_name = name;
1085 p->just_syms_flag = FALSE;
1086 p->search_dirs_flag = FALSE;
1087 break;
1088 case lang_input_file_is_l_enum:
1089 p->maybe_archive = TRUE;
1090 p->filename = name;
1091 p->real = TRUE;
1092 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1093 p->just_syms_flag = FALSE;
1094 p->search_dirs_flag = TRUE;
1095 break;
1096 case lang_input_file_is_marker_enum:
1097 p->filename = name;
1098 p->maybe_archive = FALSE;
1099 p->real = FALSE;
1100 p->local_sym_name = name;
1101 p->just_syms_flag = FALSE;
1102 p->search_dirs_flag = TRUE;
1103 break;
1104 case lang_input_file_is_search_file_enum:
1105 p->sysrooted = ldlang_sysrooted_script;
1106 p->filename = name;
1107 p->maybe_archive = FALSE;
1108 p->real = TRUE;
1109 p->local_sym_name = name;
1110 p->just_syms_flag = FALSE;
1111 p->search_dirs_flag = TRUE;
1112 break;
1113 case lang_input_file_is_file_enum:
1114 p->filename = name;
1115 p->maybe_archive = FALSE;
1116 p->real = TRUE;
1117 p->local_sym_name = name;
1118 p->just_syms_flag = FALSE;
1119 p->search_dirs_flag = FALSE;
1120 break;
1121 default:
1122 FAIL ();
1123 }
1124 p->the_bfd = NULL;
1125 p->next_real_file = NULL;
1126 p->next = NULL;
1127 p->dynamic = config.dynamic_link;
1128 p->add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
1129 p->add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
1130 p->whole_archive = whole_archive;
1131 p->loaded = FALSE;
1132 p->missing_file = FALSE;
1133 #ifdef ENABLE_PLUGINS
1134 p->claimed = FALSE;
1135 p->claim_archive = FALSE;
1136 #endif /* ENABLE_PLUGINS */
1137
1138 lang_statement_append (&input_file_chain,
1139 (lang_statement_union_type *) p,
1140 &p->next_real_file);
1141 return p;
1142 }
1143
1144 lang_input_statement_type *
1145 lang_add_input_file (const char *name,
1146 lang_input_file_enum_type file_type,
1147 const char *target)
1148 {
1149 return new_afile (name, file_type, target, TRUE);
1150 }
1151
1152 struct out_section_hash_entry
1153 {
1154 struct bfd_hash_entry root;
1155 lang_statement_union_type s;
1156 };
1157
1158 /* The hash table. */
1159
1160 static struct bfd_hash_table output_section_statement_table;
1161
1162 /* Support routines for the hash table used by lang_output_section_find,
1163 initialize the table, fill in an entry and remove the table. */
1164
1165 static struct bfd_hash_entry *
1166 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1167 struct bfd_hash_table *table,
1168 const char *string)
1169 {
1170 lang_output_section_statement_type **nextp;
1171 struct out_section_hash_entry *ret;
1172
1173 if (entry == NULL)
1174 {
1175 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1176 sizeof (*ret));
1177 if (entry == NULL)
1178 return entry;
1179 }
1180
1181 entry = bfd_hash_newfunc (entry, table, string);
1182 if (entry == NULL)
1183 return entry;
1184
1185 ret = (struct out_section_hash_entry *) entry;
1186 memset (&ret->s, 0, sizeof (ret->s));
1187 ret->s.header.type = lang_output_section_statement_enum;
1188 ret->s.output_section_statement.subsection_alignment = -1;
1189 ret->s.output_section_statement.section_alignment = -1;
1190 ret->s.output_section_statement.block_value = 1;
1191 lang_list_init (&ret->s.output_section_statement.children);
1192 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1193
1194 /* For every output section statement added to the list, except the
1195 first one, lang_output_section_statement.tail points to the "next"
1196 field of the last element of the list. */
1197 if (lang_output_section_statement.head != NULL)
1198 ret->s.output_section_statement.prev
1199 = ((lang_output_section_statement_type *)
1200 ((char *) lang_output_section_statement.tail
1201 - offsetof (lang_output_section_statement_type, next)));
1202
1203 /* GCC's strict aliasing rules prevent us from just casting the
1204 address, so we store the pointer in a variable and cast that
1205 instead. */
1206 nextp = &ret->s.output_section_statement.next;
1207 lang_statement_append (&lang_output_section_statement,
1208 &ret->s,
1209 (lang_statement_union_type **) nextp);
1210 return &ret->root;
1211 }
1212
1213 static void
1214 output_section_statement_table_init (void)
1215 {
1216 if (!bfd_hash_table_init_n (&output_section_statement_table,
1217 output_section_statement_newfunc,
1218 sizeof (struct out_section_hash_entry),
1219 61))
1220 einfo (_("%P%F: can not create hash table: %E\n"));
1221 }
1222
1223 static void
1224 output_section_statement_table_free (void)
1225 {
1226 bfd_hash_table_free (&output_section_statement_table);
1227 }
1228
1229 /* Build enough state so that the parser can build its tree. */
1230
1231 void
1232 lang_init (void)
1233 {
1234 obstack_begin (&stat_obstack, 1000);
1235
1236 stat_ptr = &statement_list;
1237
1238 output_section_statement_table_init ();
1239
1240 lang_list_init (stat_ptr);
1241
1242 lang_list_init (&input_file_chain);
1243 lang_list_init (&lang_output_section_statement);
1244 lang_list_init (&file_chain);
1245 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1246 NULL);
1247 abs_output_section =
1248 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1249
1250 abs_output_section->bfd_section = bfd_abs_section_ptr;
1251
1252 /* The value "3" is ad-hoc, somewhat related to the expected number of
1253 DEFINED expressions in a linker script. For most default linker
1254 scripts, there are none. Why a hash table then? Well, it's somewhat
1255 simpler to re-use working machinery than using a linked list in terms
1256 of code-complexity here in ld, besides the initialization which just
1257 looks like other code here. */
1258 if (!bfd_hash_table_init_n (&lang_definedness_table,
1259 lang_definedness_newfunc,
1260 sizeof (struct lang_definedness_hash_entry),
1261 3))
1262 einfo (_("%P%F: can not create hash table: %E\n"));
1263 }
1264
1265 void
1266 lang_finish (void)
1267 {
1268 output_section_statement_table_free ();
1269 }
1270
1271 /*----------------------------------------------------------------------
1272 A region is an area of memory declared with the
1273 MEMORY { name:org=exp, len=exp ... }
1274 syntax.
1275
1276 We maintain a list of all the regions here.
1277
1278 If no regions are specified in the script, then the default is used
1279 which is created when looked up to be the entire data space.
1280
1281 If create is true we are creating a region inside a MEMORY block.
1282 In this case it is probably an error to create a region that has
1283 already been created. If we are not inside a MEMORY block it is
1284 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1285 and so we issue a warning.
1286
1287 Each region has at least one name. The first name is either
1288 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1289 alias names to an existing region within a script with
1290 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1291 region. */
1292
1293 static lang_memory_region_type *lang_memory_region_list;
1294 static lang_memory_region_type **lang_memory_region_list_tail
1295 = &lang_memory_region_list;
1296
1297 lang_memory_region_type *
1298 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1299 {
1300 lang_memory_region_name *n;
1301 lang_memory_region_type *r;
1302 lang_memory_region_type *new_region;
1303
1304 /* NAME is NULL for LMA memspecs if no region was specified. */
1305 if (name == NULL)
1306 return NULL;
1307
1308 for (r = lang_memory_region_list; r != NULL; r = r->next)
1309 for (n = &r->name_list; n != NULL; n = n->next)
1310 if (strcmp (n->name, name) == 0)
1311 {
1312 if (create)
1313 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1314 name);
1315 return r;
1316 }
1317
1318 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1319 einfo (_("%P:%S: warning: memory region `%s' not declared\n"), name);
1320
1321 new_region = (lang_memory_region_type *)
1322 stat_alloc (sizeof (lang_memory_region_type));
1323
1324 new_region->name_list.name = xstrdup (name);
1325 new_region->name_list.next = NULL;
1326 new_region->next = NULL;
1327 new_region->origin = 0;
1328 new_region->length = ~(bfd_size_type) 0;
1329 new_region->current = 0;
1330 new_region->last_os = NULL;
1331 new_region->flags = 0;
1332 new_region->not_flags = 0;
1333 new_region->had_full_message = FALSE;
1334
1335 *lang_memory_region_list_tail = new_region;
1336 lang_memory_region_list_tail = &new_region->next;
1337
1338 return new_region;
1339 }
1340
1341 void
1342 lang_memory_region_alias (const char * alias, const char * region_name)
1343 {
1344 lang_memory_region_name * n;
1345 lang_memory_region_type * r;
1346 lang_memory_region_type * region;
1347
1348 /* The default region must be unique. This ensures that it is not necessary
1349 to iterate through the name list if someone wants the check if a region is
1350 the default memory region. */
1351 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1352 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1353 einfo (_("%F%P:%S: error: alias for default memory region\n"));
1354
1355 /* Look for the target region and check if the alias is not already
1356 in use. */
1357 region = NULL;
1358 for (r = lang_memory_region_list; r != NULL; r = r->next)
1359 for (n = &r->name_list; n != NULL; n = n->next)
1360 {
1361 if (region == NULL && strcmp (n->name, region_name) == 0)
1362 region = r;
1363 if (strcmp (n->name, alias) == 0)
1364 einfo (_("%F%P:%S: error: redefinition of memory region "
1365 "alias `%s'\n"),
1366 alias);
1367 }
1368
1369 /* Check if the target region exists. */
1370 if (region == NULL)
1371 einfo (_("%F%P:%S: error: memory region `%s' "
1372 "for alias `%s' does not exist\n"),
1373 region_name,
1374 alias);
1375
1376 /* Add alias to region name list. */
1377 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1378 n->name = xstrdup (alias);
1379 n->next = region->name_list.next;
1380 region->name_list.next = n;
1381 }
1382
1383 static lang_memory_region_type *
1384 lang_memory_default (asection * section)
1385 {
1386 lang_memory_region_type *p;
1387
1388 flagword sec_flags = section->flags;
1389
1390 /* Override SEC_DATA to mean a writable section. */
1391 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1392 sec_flags |= SEC_DATA;
1393
1394 for (p = lang_memory_region_list; p != NULL; p = p->next)
1395 {
1396 if ((p->flags & sec_flags) != 0
1397 && (p->not_flags & sec_flags) == 0)
1398 {
1399 return p;
1400 }
1401 }
1402 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1403 }
1404
1405 /* Find or create an output_section_statement with the given NAME.
1406 If CONSTRAINT is non-zero match one with that constraint, otherwise
1407 match any non-negative constraint. If CREATE, always make a
1408 new output_section_statement for SPECIAL CONSTRAINT. */
1409
1410 lang_output_section_statement_type *
1411 lang_output_section_statement_lookup (const char *name,
1412 int constraint,
1413 bfd_boolean create)
1414 {
1415 struct out_section_hash_entry *entry;
1416
1417 entry = ((struct out_section_hash_entry *)
1418 bfd_hash_lookup (&output_section_statement_table, name,
1419 create, FALSE));
1420 if (entry == NULL)
1421 {
1422 if (create)
1423 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1424 return NULL;
1425 }
1426
1427 if (entry->s.output_section_statement.name != NULL)
1428 {
1429 /* We have a section of this name, but it might not have the correct
1430 constraint. */
1431 struct out_section_hash_entry *last_ent;
1432
1433 name = entry->s.output_section_statement.name;
1434 if (create && constraint == SPECIAL)
1435 /* Not traversing to the end reverses the order of the second
1436 and subsequent SPECIAL sections in the hash table chain,
1437 but that shouldn't matter. */
1438 last_ent = entry;
1439 else
1440 do
1441 {
1442 if (constraint == entry->s.output_section_statement.constraint
1443 || (constraint == 0
1444 && entry->s.output_section_statement.constraint >= 0))
1445 return &entry->s.output_section_statement;
1446 last_ent = entry;
1447 entry = (struct out_section_hash_entry *) entry->root.next;
1448 }
1449 while (entry != NULL
1450 && name == entry->s.output_section_statement.name);
1451
1452 if (!create)
1453 return NULL;
1454
1455 entry
1456 = ((struct out_section_hash_entry *)
1457 output_section_statement_newfunc (NULL,
1458 &output_section_statement_table,
1459 name));
1460 if (entry == NULL)
1461 {
1462 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1463 return NULL;
1464 }
1465 entry->root = last_ent->root;
1466 last_ent->root.next = &entry->root;
1467 }
1468
1469 entry->s.output_section_statement.name = name;
1470 entry->s.output_section_statement.constraint = constraint;
1471 return &entry->s.output_section_statement;
1472 }
1473
1474 /* Find the next output_section_statement with the same name as OS.
1475 If CONSTRAINT is non-zero, find one with that constraint otherwise
1476 match any non-negative constraint. */
1477
1478 lang_output_section_statement_type *
1479 next_matching_output_section_statement (lang_output_section_statement_type *os,
1480 int constraint)
1481 {
1482 /* All output_section_statements are actually part of a
1483 struct out_section_hash_entry. */
1484 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1485 ((char *) os
1486 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1487 const char *name = os->name;
1488
1489 ASSERT (name == entry->root.string);
1490 do
1491 {
1492 entry = (struct out_section_hash_entry *) entry->root.next;
1493 if (entry == NULL
1494 || name != entry->s.output_section_statement.name)
1495 return NULL;
1496 }
1497 while (constraint != entry->s.output_section_statement.constraint
1498 && (constraint != 0
1499 || entry->s.output_section_statement.constraint < 0));
1500
1501 return &entry->s.output_section_statement;
1502 }
1503
1504 /* A variant of lang_output_section_find used by place_orphan.
1505 Returns the output statement that should precede a new output
1506 statement for SEC. If an exact match is found on certain flags,
1507 sets *EXACT too. */
1508
1509 lang_output_section_statement_type *
1510 lang_output_section_find_by_flags (const asection *sec,
1511 lang_output_section_statement_type **exact,
1512 lang_match_sec_type_func match_type)
1513 {
1514 lang_output_section_statement_type *first, *look, *found;
1515 flagword flags;
1516
1517 /* We know the first statement on this list is *ABS*. May as well
1518 skip it. */
1519 first = &lang_output_section_statement.head->output_section_statement;
1520 first = first->next;
1521
1522 /* First try for an exact match. */
1523 found = NULL;
1524 for (look = first; look; look = look->next)
1525 {
1526 flags = look->flags;
1527 if (look->bfd_section != NULL)
1528 {
1529 flags = look->bfd_section->flags;
1530 if (match_type && !match_type (link_info.output_bfd,
1531 look->bfd_section,
1532 sec->owner, sec))
1533 continue;
1534 }
1535 flags ^= sec->flags;
1536 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1537 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1538 found = look;
1539 }
1540 if (found != NULL)
1541 {
1542 if (exact != NULL)
1543 *exact = found;
1544 return found;
1545 }
1546
1547 if ((sec->flags & SEC_CODE) != 0
1548 && (sec->flags & SEC_ALLOC) != 0)
1549 {
1550 /* Try for a rw code section. */
1551 for (look = first; look; look = look->next)
1552 {
1553 flags = look->flags;
1554 if (look->bfd_section != NULL)
1555 {
1556 flags = look->bfd_section->flags;
1557 if (match_type && !match_type (link_info.output_bfd,
1558 look->bfd_section,
1559 sec->owner, sec))
1560 continue;
1561 }
1562 flags ^= sec->flags;
1563 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1564 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1565 found = look;
1566 }
1567 }
1568 else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0
1569 && (sec->flags & SEC_ALLOC) != 0)
1570 {
1571 /* .rodata can go after .text, .sdata2 after .rodata. */
1572 for (look = first; look; look = look->next)
1573 {
1574 flags = look->flags;
1575 if (look->bfd_section != NULL)
1576 {
1577 flags = look->bfd_section->flags;
1578 if (match_type && !match_type (link_info.output_bfd,
1579 look->bfd_section,
1580 sec->owner, sec))
1581 continue;
1582 }
1583 flags ^= sec->flags;
1584 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1585 | SEC_READONLY | SEC_SMALL_DATA))
1586 || (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1587 | SEC_READONLY))
1588 && !(look->flags & SEC_SMALL_DATA))
1589 || (!(flags & (SEC_THREAD_LOCAL | SEC_ALLOC))
1590 && (look->flags & SEC_THREAD_LOCAL)
1591 && (!(flags & SEC_LOAD)
1592 || (look->flags & SEC_LOAD))))
1593 found = look;
1594 }
1595 }
1596 else if ((sec->flags & SEC_SMALL_DATA) != 0
1597 && (sec->flags & SEC_ALLOC) != 0)
1598 {
1599 /* .sdata goes after .data, .sbss after .sdata. */
1600 for (look = first; look; look = look->next)
1601 {
1602 flags = look->flags;
1603 if (look->bfd_section != NULL)
1604 {
1605 flags = look->bfd_section->flags;
1606 if (match_type && !match_type (link_info.output_bfd,
1607 look->bfd_section,
1608 sec->owner, sec))
1609 continue;
1610 }
1611 flags ^= sec->flags;
1612 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1613 | SEC_THREAD_LOCAL))
1614 || ((look->flags & SEC_SMALL_DATA)
1615 && !(sec->flags & SEC_HAS_CONTENTS)))
1616 found = look;
1617 }
1618 }
1619 else if ((sec->flags & SEC_HAS_CONTENTS) != 0
1620 && (sec->flags & SEC_ALLOC) != 0)
1621 {
1622 /* .data goes after .rodata. */
1623 for (look = first; look; look = look->next)
1624 {
1625 flags = look->flags;
1626 if (look->bfd_section != NULL)
1627 {
1628 flags = look->bfd_section->flags;
1629 if (match_type && !match_type (link_info.output_bfd,
1630 look->bfd_section,
1631 sec->owner, sec))
1632 continue;
1633 }
1634 flags ^= sec->flags;
1635 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1636 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1637 found = look;
1638 }
1639 }
1640 else if ((sec->flags & SEC_ALLOC) != 0)
1641 {
1642 /* .bss goes after any other alloc section. */
1643 for (look = first; look; look = look->next)
1644 {
1645 flags = look->flags;
1646 if (look->bfd_section != NULL)
1647 {
1648 flags = look->bfd_section->flags;
1649 if (match_type && !match_type (link_info.output_bfd,
1650 look->bfd_section,
1651 sec->owner, sec))
1652 continue;
1653 }
1654 flags ^= sec->flags;
1655 if (!(flags & SEC_ALLOC))
1656 found = look;
1657 }
1658 }
1659 else
1660 {
1661 /* non-alloc go last. */
1662 for (look = first; look; look = look->next)
1663 {
1664 flags = look->flags;
1665 if (look->bfd_section != NULL)
1666 flags = look->bfd_section->flags;
1667 flags ^= sec->flags;
1668 if (!(flags & SEC_DEBUGGING))
1669 found = look;
1670 }
1671 return found;
1672 }
1673
1674 if (found || !match_type)
1675 return found;
1676
1677 return lang_output_section_find_by_flags (sec, NULL, NULL);
1678 }
1679
1680 /* Find the last output section before given output statement.
1681 Used by place_orphan. */
1682
1683 static asection *
1684 output_prev_sec_find (lang_output_section_statement_type *os)
1685 {
1686 lang_output_section_statement_type *lookup;
1687
1688 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1689 {
1690 if (lookup->constraint < 0)
1691 continue;
1692
1693 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1694 return lookup->bfd_section;
1695 }
1696
1697 return NULL;
1698 }
1699
1700 /* Look for a suitable place for a new output section statement. The
1701 idea is to skip over anything that might be inside a SECTIONS {}
1702 statement in a script, before we find another output section
1703 statement. Assignments to "dot" before an output section statement
1704 are assumed to belong to it, except in two cases; The first
1705 assignment to dot, and assignments before non-alloc sections.
1706 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1707 similar assignments that set the initial address, or we might
1708 insert non-alloc note sections among assignments setting end of
1709 image symbols. */
1710
1711 static lang_statement_union_type **
1712 insert_os_after (lang_output_section_statement_type *after)
1713 {
1714 lang_statement_union_type **where;
1715 lang_statement_union_type **assign = NULL;
1716 bfd_boolean ignore_first;
1717
1718 ignore_first
1719 = after == &lang_output_section_statement.head->output_section_statement;
1720
1721 for (where = &after->header.next;
1722 *where != NULL;
1723 where = &(*where)->header.next)
1724 {
1725 switch ((*where)->header.type)
1726 {
1727 case lang_assignment_statement_enum:
1728 if (assign == NULL)
1729 {
1730 lang_assignment_statement_type *ass;
1731
1732 ass = &(*where)->assignment_statement;
1733 if (ass->exp->type.node_class != etree_assert
1734 && ass->exp->assign.dst[0] == '.'
1735 && ass->exp->assign.dst[1] == 0
1736 && !ignore_first)
1737 assign = where;
1738 }
1739 ignore_first = FALSE;
1740 continue;
1741 case lang_wild_statement_enum:
1742 case lang_input_section_enum:
1743 case lang_object_symbols_statement_enum:
1744 case lang_fill_statement_enum:
1745 case lang_data_statement_enum:
1746 case lang_reloc_statement_enum:
1747 case lang_padding_statement_enum:
1748 case lang_constructors_statement_enum:
1749 assign = NULL;
1750 continue;
1751 case lang_output_section_statement_enum:
1752 if (assign != NULL)
1753 {
1754 asection *s = (*where)->output_section_statement.bfd_section;
1755
1756 if (s == NULL
1757 || s->map_head.s == NULL
1758 || (s->flags & SEC_ALLOC) != 0)
1759 where = assign;
1760 }
1761 break;
1762 case lang_input_statement_enum:
1763 case lang_address_statement_enum:
1764 case lang_target_statement_enum:
1765 case lang_output_statement_enum:
1766 case lang_group_statement_enum:
1767 case lang_insert_statement_enum:
1768 continue;
1769 }
1770 break;
1771 }
1772
1773 return where;
1774 }
1775
1776 lang_output_section_statement_type *
1777 lang_insert_orphan (asection *s,
1778 const char *secname,
1779 int constraint,
1780 lang_output_section_statement_type *after,
1781 struct orphan_save *place,
1782 etree_type *address,
1783 lang_statement_list_type *add_child)
1784 {
1785 lang_statement_list_type add;
1786 const char *ps;
1787 lang_output_section_statement_type *os;
1788 lang_output_section_statement_type **os_tail;
1789
1790 /* If we have found an appropriate place for the output section
1791 statements for this orphan, add them to our own private list,
1792 inserting them later into the global statement list. */
1793 if (after != NULL)
1794 {
1795 lang_list_init (&add);
1796 push_stat_ptr (&add);
1797 }
1798
1799 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1800 address = exp_intop (0);
1801
1802 os_tail = ((lang_output_section_statement_type **)
1803 lang_output_section_statement.tail);
1804 os = lang_enter_output_section_statement (secname, address, normal_section,
1805 NULL, NULL, NULL, constraint);
1806
1807 ps = NULL;
1808 if (config.build_constructors && *os_tail == os)
1809 {
1810 /* If the name of the section is representable in C, then create
1811 symbols to mark the start and the end of the section. */
1812 for (ps = secname; *ps != '\0'; ps++)
1813 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1814 break;
1815 if (*ps == '\0')
1816 {
1817 char *symname;
1818 etree_type *e_align;
1819
1820 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1821 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1822 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1823 e_align = exp_unop (ALIGN_K,
1824 exp_intop ((bfd_vma) 1 << s->alignment_power));
1825 lang_add_assignment (exp_assign (".", e_align));
1826 lang_add_assignment (exp_provide (symname,
1827 exp_unop (ABSOLUTE,
1828 exp_nameop (NAME, ".")),
1829 FALSE));
1830 }
1831 }
1832
1833 if (add_child == NULL)
1834 add_child = &os->children;
1835 lang_add_section (add_child, s, os);
1836
1837 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1838 {
1839 const char *region = (after->region
1840 ? after->region->name_list.name
1841 : DEFAULT_MEMORY_REGION);
1842 const char *lma_region = (after->lma_region
1843 ? after->lma_region->name_list.name
1844 : NULL);
1845 lang_leave_output_section_statement (NULL, region, after->phdrs,
1846 lma_region);
1847 }
1848 else
1849 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1850 NULL);
1851
1852 if (ps != NULL && *ps == '\0')
1853 {
1854 char *symname;
1855
1856 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1857 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1858 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1859 lang_add_assignment (exp_provide (symname,
1860 exp_nameop (NAME, "."),
1861 FALSE));
1862 }
1863
1864 /* Restore the global list pointer. */
1865 if (after != NULL)
1866 pop_stat_ptr ();
1867
1868 if (after != NULL && os->bfd_section != NULL)
1869 {
1870 asection *snew, *as;
1871
1872 snew = os->bfd_section;
1873
1874 /* Shuffle the bfd section list to make the output file look
1875 neater. This is really only cosmetic. */
1876 if (place->section == NULL
1877 && after != (&lang_output_section_statement.head
1878 ->output_section_statement))
1879 {
1880 asection *bfd_section = after->bfd_section;
1881
1882 /* If the output statement hasn't been used to place any input
1883 sections (and thus doesn't have an output bfd_section),
1884 look for the closest prior output statement having an
1885 output section. */
1886 if (bfd_section == NULL)
1887 bfd_section = output_prev_sec_find (after);
1888
1889 if (bfd_section != NULL && bfd_section != snew)
1890 place->section = &bfd_section->next;
1891 }
1892
1893 if (place->section == NULL)
1894 place->section = &link_info.output_bfd->sections;
1895
1896 as = *place->section;
1897
1898 if (!as)
1899 {
1900 /* Put the section at the end of the list. */
1901
1902 /* Unlink the section. */
1903 bfd_section_list_remove (link_info.output_bfd, snew);
1904
1905 /* Now tack it back on in the right place. */
1906 bfd_section_list_append (link_info.output_bfd, snew);
1907 }
1908 else if (as != snew && as->prev != snew)
1909 {
1910 /* Unlink the section. */
1911 bfd_section_list_remove (link_info.output_bfd, snew);
1912
1913 /* Now tack it back on in the right place. */
1914 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1915 }
1916
1917 /* Save the end of this list. Further ophans of this type will
1918 follow the one we've just added. */
1919 place->section = &snew->next;
1920
1921 /* The following is non-cosmetic. We try to put the output
1922 statements in some sort of reasonable order here, because they
1923 determine the final load addresses of the orphan sections.
1924 In addition, placing output statements in the wrong order may
1925 require extra segments. For instance, given a typical
1926 situation of all read-only sections placed in one segment and
1927 following that a segment containing all the read-write
1928 sections, we wouldn't want to place an orphan read/write
1929 section before or amongst the read-only ones. */
1930 if (add.head != NULL)
1931 {
1932 lang_output_section_statement_type *newly_added_os;
1933
1934 if (place->stmt == NULL)
1935 {
1936 lang_statement_union_type **where = insert_os_after (after);
1937
1938 *add.tail = *where;
1939 *where = add.head;
1940
1941 place->os_tail = &after->next;
1942 }
1943 else
1944 {
1945 /* Put it after the last orphan statement we added. */
1946 *add.tail = *place->stmt;
1947 *place->stmt = add.head;
1948 }
1949
1950 /* Fix the global list pointer if we happened to tack our
1951 new list at the tail. */
1952 if (*stat_ptr->tail == add.head)
1953 stat_ptr->tail = add.tail;
1954
1955 /* Save the end of this list. */
1956 place->stmt = add.tail;
1957
1958 /* Do the same for the list of output section statements. */
1959 newly_added_os = *os_tail;
1960 *os_tail = NULL;
1961 newly_added_os->prev = (lang_output_section_statement_type *)
1962 ((char *) place->os_tail
1963 - offsetof (lang_output_section_statement_type, next));
1964 newly_added_os->next = *place->os_tail;
1965 if (newly_added_os->next != NULL)
1966 newly_added_os->next->prev = newly_added_os;
1967 *place->os_tail = newly_added_os;
1968 place->os_tail = &newly_added_os->next;
1969
1970 /* Fixing the global list pointer here is a little different.
1971 We added to the list in lang_enter_output_section_statement,
1972 trimmed off the new output_section_statment above when
1973 assigning *os_tail = NULL, but possibly added it back in
1974 the same place when assigning *place->os_tail. */
1975 if (*os_tail == NULL)
1976 lang_output_section_statement.tail
1977 = (lang_statement_union_type **) os_tail;
1978 }
1979 }
1980 return os;
1981 }
1982
1983 static void
1984 lang_map_flags (flagword flag)
1985 {
1986 if (flag & SEC_ALLOC)
1987 minfo ("a");
1988
1989 if (flag & SEC_CODE)
1990 minfo ("x");
1991
1992 if (flag & SEC_READONLY)
1993 minfo ("r");
1994
1995 if (flag & SEC_DATA)
1996 minfo ("w");
1997
1998 if (flag & SEC_LOAD)
1999 minfo ("l");
2000 }
2001
2002 void
2003 lang_map (void)
2004 {
2005 lang_memory_region_type *m;
2006 bfd_boolean dis_header_printed = FALSE;
2007 bfd *p;
2008
2009 LANG_FOR_EACH_INPUT_STATEMENT (file)
2010 {
2011 asection *s;
2012
2013 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2014 || file->just_syms_flag)
2015 continue;
2016
2017 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2018 if ((s->output_section == NULL
2019 || s->output_section->owner != link_info.output_bfd)
2020 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2021 {
2022 if (! dis_header_printed)
2023 {
2024 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2025 dis_header_printed = TRUE;
2026 }
2027
2028 print_input_section (s, TRUE);
2029 }
2030 }
2031
2032 minfo (_("\nMemory Configuration\n\n"));
2033 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2034 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2035
2036 for (m = lang_memory_region_list; m != NULL; m = m->next)
2037 {
2038 char buf[100];
2039 int len;
2040
2041 fprintf (config.map_file, "%-16s ", m->name_list.name);
2042
2043 sprintf_vma (buf, m->origin);
2044 minfo ("0x%s ", buf);
2045 len = strlen (buf);
2046 while (len < 16)
2047 {
2048 print_space ();
2049 ++len;
2050 }
2051
2052 minfo ("0x%V", m->length);
2053 if (m->flags || m->not_flags)
2054 {
2055 #ifndef BFD64
2056 minfo (" ");
2057 #endif
2058 if (m->flags)
2059 {
2060 print_space ();
2061 lang_map_flags (m->flags);
2062 }
2063
2064 if (m->not_flags)
2065 {
2066 minfo (" !");
2067 lang_map_flags (m->not_flags);
2068 }
2069 }
2070
2071 print_nl ();
2072 }
2073
2074 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2075
2076 if (! link_info.reduce_memory_overheads)
2077 {
2078 obstack_begin (&map_obstack, 1000);
2079 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
2080 bfd_map_over_sections (p, init_map_userdata, 0);
2081 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2082 }
2083 lang_statement_iteration ++;
2084 print_statements ();
2085 }
2086
2087 static void
2088 init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED,
2089 asection *sec,
2090 void *data ATTRIBUTE_UNUSED)
2091 {
2092 fat_section_userdata_type *new_data
2093 = ((fat_section_userdata_type *) (stat_alloc
2094 (sizeof (fat_section_userdata_type))));
2095
2096 ASSERT (get_userdata (sec) == NULL);
2097 get_userdata (sec) = new_data;
2098 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
2099 new_data->map_symbol_def_count = 0;
2100 }
2101
2102 static bfd_boolean
2103 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2104 void *info ATTRIBUTE_UNUSED)
2105 {
2106 if (hash_entry->type == bfd_link_hash_defined
2107 || hash_entry->type == bfd_link_hash_defweak)
2108 {
2109 struct fat_user_section_struct *ud;
2110 struct map_symbol_def *def;
2111
2112 ud = (struct fat_user_section_struct *)
2113 get_userdata (hash_entry->u.def.section);
2114 if (! ud)
2115 {
2116 /* ??? What do we have to do to initialize this beforehand? */
2117 /* The first time we get here is bfd_abs_section... */
2118 init_map_userdata (0, hash_entry->u.def.section, 0);
2119 ud = (struct fat_user_section_struct *)
2120 get_userdata (hash_entry->u.def.section);
2121 }
2122 else if (!ud->map_symbol_def_tail)
2123 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2124
2125 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2126 def->entry = hash_entry;
2127 *(ud->map_symbol_def_tail) = def;
2128 ud->map_symbol_def_tail = &def->next;
2129 ud->map_symbol_def_count++;
2130 }
2131 return TRUE;
2132 }
2133
2134 /* Initialize an output section. */
2135
2136 static void
2137 init_os (lang_output_section_statement_type *s, flagword flags)
2138 {
2139 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2140 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2141
2142 if (s->constraint != SPECIAL)
2143 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2144 if (s->bfd_section == NULL)
2145 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2146 s->name, flags);
2147 if (s->bfd_section == NULL)
2148 {
2149 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
2150 link_info.output_bfd->xvec->name, s->name);
2151 }
2152 s->bfd_section->output_section = s->bfd_section;
2153 s->bfd_section->output_offset = 0;
2154
2155 if (!link_info.reduce_memory_overheads)
2156 {
2157 fat_section_userdata_type *new_userdata = (fat_section_userdata_type *)
2158 stat_alloc (sizeof (fat_section_userdata_type));
2159 memset (new_userdata, 0, sizeof (fat_section_userdata_type));
2160 get_userdata (s->bfd_section) = new_userdata;
2161 }
2162
2163 /* If there is a base address, make sure that any sections it might
2164 mention are initialized. */
2165 if (s->addr_tree != NULL)
2166 exp_init_os (s->addr_tree);
2167
2168 if (s->load_base != NULL)
2169 exp_init_os (s->load_base);
2170
2171 /* If supplied an alignment, set it. */
2172 if (s->section_alignment != -1)
2173 s->bfd_section->alignment_power = s->section_alignment;
2174 }
2175
2176 /* Make sure that all output sections mentioned in an expression are
2177 initialized. */
2178
2179 static void
2180 exp_init_os (etree_type *exp)
2181 {
2182 switch (exp->type.node_class)
2183 {
2184 case etree_assign:
2185 case etree_provide:
2186 exp_init_os (exp->assign.src);
2187 break;
2188
2189 case etree_binary:
2190 exp_init_os (exp->binary.lhs);
2191 exp_init_os (exp->binary.rhs);
2192 break;
2193
2194 case etree_trinary:
2195 exp_init_os (exp->trinary.cond);
2196 exp_init_os (exp->trinary.lhs);
2197 exp_init_os (exp->trinary.rhs);
2198 break;
2199
2200 case etree_assert:
2201 exp_init_os (exp->assert_s.child);
2202 break;
2203
2204 case etree_unary:
2205 exp_init_os (exp->unary.child);
2206 break;
2207
2208 case etree_name:
2209 switch (exp->type.node_code)
2210 {
2211 case ADDR:
2212 case LOADADDR:
2213 case SIZEOF:
2214 {
2215 lang_output_section_statement_type *os;
2216
2217 os = lang_output_section_find (exp->name.name);
2218 if (os != NULL && os->bfd_section == NULL)
2219 init_os (os, 0);
2220 }
2221 }
2222 break;
2223
2224 default:
2225 break;
2226 }
2227 }
2228 \f
2229 static void
2230 section_already_linked (bfd *abfd, asection *sec, void *data)
2231 {
2232 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2233
2234 /* If we are only reading symbols from this object, then we want to
2235 discard all sections. */
2236 if (entry->just_syms_flag)
2237 {
2238 bfd_link_just_syms (abfd, sec, &link_info);
2239 return;
2240 }
2241
2242 if (!(abfd->flags & DYNAMIC))
2243 bfd_section_already_linked (abfd, sec, &link_info);
2244 }
2245 \f
2246 /* The wild routines.
2247
2248 These expand statements like *(.text) and foo.o to a list of
2249 explicit actions, like foo.o(.text), bar.o(.text) and
2250 foo.o(.text, .data). */
2251
2252 /* Add SECTION to the output section OUTPUT. Do this by creating a
2253 lang_input_section statement which is placed at PTR. FILE is the
2254 input file which holds SECTION. */
2255
2256 void
2257 lang_add_section (lang_statement_list_type *ptr,
2258 asection *section,
2259 lang_output_section_statement_type *output)
2260 {
2261 flagword flags = section->flags;
2262 struct flag_info *sflag_info = section->section_flag_info;
2263
2264 bfd_boolean discard;
2265 lang_input_section_type *new_section;
2266 bfd *abfd = link_info.output_bfd;
2267
2268 /* Discard sections marked with SEC_EXCLUDE. */
2269 discard = (flags & SEC_EXCLUDE) != 0;
2270
2271 /* Discard input sections which are assigned to a section named
2272 DISCARD_SECTION_NAME. */
2273 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2274 discard = TRUE;
2275
2276 /* Discard debugging sections if we are stripping debugging
2277 information. */
2278 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2279 && (flags & SEC_DEBUGGING) != 0)
2280 discard = TRUE;
2281
2282 if (discard)
2283 {
2284 if (section->output_section == NULL)
2285 {
2286 /* This prevents future calls from assigning this section. */
2287 section->output_section = bfd_abs_section_ptr;
2288 }
2289 return;
2290 }
2291
2292 if (sflag_info)
2293 {
2294 if (sflag_info->flags_initialized == FALSE)
2295 bfd_lookup_section_flags (&link_info, sflag_info);
2296
2297 if (sflag_info->only_with_flags != 0
2298 && sflag_info->not_with_flags != 0
2299 && ((sflag_info->not_with_flags & flags) != 0
2300 || (sflag_info->only_with_flags & flags)
2301 != sflag_info->only_with_flags))
2302 return;
2303
2304 if (sflag_info->only_with_flags != 0
2305 && (sflag_info->only_with_flags & flags)
2306 != sflag_info->only_with_flags)
2307 return;
2308
2309 if (sflag_info->not_with_flags != 0
2310 && (sflag_info->not_with_flags & flags) != 0)
2311 return;
2312 }
2313
2314 if (section->output_section != NULL)
2315 return;
2316
2317 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2318 to an output section, because we want to be able to include a
2319 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2320 section (I don't know why we want to do this, but we do).
2321 build_link_order in ldwrite.c handles this case by turning
2322 the embedded SEC_NEVER_LOAD section into a fill. */
2323 flags &= ~ SEC_NEVER_LOAD;
2324
2325 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2326 already been processed. One reason to do this is that on pe
2327 format targets, .text$foo sections go into .text and it's odd
2328 to see .text with SEC_LINK_ONCE set. */
2329
2330 if (!link_info.relocatable)
2331 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2332
2333 switch (output->sectype)
2334 {
2335 case normal_section:
2336 case overlay_section:
2337 break;
2338 case noalloc_section:
2339 flags &= ~SEC_ALLOC;
2340 break;
2341 case noload_section:
2342 flags &= ~SEC_LOAD;
2343 flags |= SEC_NEVER_LOAD;
2344 /* Unfortunately GNU ld has managed to evolve two different
2345 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2346 alloc, no contents section. All others get a noload, noalloc
2347 section. */
2348 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2349 flags &= ~SEC_HAS_CONTENTS;
2350 else
2351 flags &= ~SEC_ALLOC;
2352 break;
2353 }
2354
2355 if (output->bfd_section == NULL)
2356 init_os (output, flags);
2357
2358 /* If SEC_READONLY is not set in the input section, then clear
2359 it from the output section. */
2360 output->bfd_section->flags &= flags | ~SEC_READONLY;
2361
2362 if (output->bfd_section->linker_has_input)
2363 {
2364 /* Only set SEC_READONLY flag on the first input section. */
2365 flags &= ~ SEC_READONLY;
2366
2367 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2368 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2369 != (flags & (SEC_MERGE | SEC_STRINGS))
2370 || ((flags & SEC_MERGE) != 0
2371 && output->bfd_section->entsize != section->entsize))
2372 {
2373 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2374 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2375 }
2376 }
2377 output->bfd_section->flags |= flags;
2378
2379 if (!output->bfd_section->linker_has_input)
2380 {
2381 output->bfd_section->linker_has_input = 1;
2382 /* This must happen after flags have been updated. The output
2383 section may have been created before we saw its first input
2384 section, eg. for a data statement. */
2385 bfd_init_private_section_data (section->owner, section,
2386 link_info.output_bfd,
2387 output->bfd_section,
2388 &link_info);
2389 if ((flags & SEC_MERGE) != 0)
2390 output->bfd_section->entsize = section->entsize;
2391 }
2392
2393 if ((flags & SEC_TIC54X_BLOCK) != 0
2394 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2395 {
2396 /* FIXME: This value should really be obtained from the bfd... */
2397 output->block_value = 128;
2398 }
2399
2400 if (section->alignment_power > output->bfd_section->alignment_power)
2401 output->bfd_section->alignment_power = section->alignment_power;
2402
2403 section->output_section = output->bfd_section;
2404
2405 if (!link_info.relocatable
2406 && !stripped_excluded_sections)
2407 {
2408 asection *s = output->bfd_section->map_tail.s;
2409 output->bfd_section->map_tail.s = section;
2410 section->map_head.s = NULL;
2411 section->map_tail.s = s;
2412 if (s != NULL)
2413 s->map_head.s = section;
2414 else
2415 output->bfd_section->map_head.s = section;
2416 }
2417
2418 /* Add a section reference to the list. */
2419 new_section = new_stat (lang_input_section, ptr);
2420 new_section->section = section;
2421 }
2422
2423 /* Handle wildcard sorting. This returns the lang_input_section which
2424 should follow the one we are going to create for SECTION and FILE,
2425 based on the sorting requirements of WILD. It returns NULL if the
2426 new section should just go at the end of the current list. */
2427
2428 static lang_statement_union_type *
2429 wild_sort (lang_wild_statement_type *wild,
2430 struct wildcard_list *sec,
2431 lang_input_statement_type *file,
2432 asection *section)
2433 {
2434 lang_statement_union_type *l;
2435
2436 if (!wild->filenames_sorted
2437 && (sec == NULL || sec->spec.sorted == none))
2438 return NULL;
2439
2440 for (l = wild->children.head; l != NULL; l = l->header.next)
2441 {
2442 lang_input_section_type *ls;
2443
2444 if (l->header.type != lang_input_section_enum)
2445 continue;
2446 ls = &l->input_section;
2447
2448 /* Sorting by filename takes precedence over sorting by section
2449 name. */
2450
2451 if (wild->filenames_sorted)
2452 {
2453 const char *fn, *ln;
2454 bfd_boolean fa, la;
2455 int i;
2456
2457 /* The PE support for the .idata section as generated by
2458 dlltool assumes that files will be sorted by the name of
2459 the archive and then the name of the file within the
2460 archive. */
2461
2462 if (file->the_bfd != NULL
2463 && bfd_my_archive (file->the_bfd) != NULL)
2464 {
2465 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2466 fa = TRUE;
2467 }
2468 else
2469 {
2470 fn = file->filename;
2471 fa = FALSE;
2472 }
2473
2474 if (bfd_my_archive (ls->section->owner) != NULL)
2475 {
2476 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2477 la = TRUE;
2478 }
2479 else
2480 {
2481 ln = ls->section->owner->filename;
2482 la = FALSE;
2483 }
2484
2485 i = filename_cmp (fn, ln);
2486 if (i > 0)
2487 continue;
2488 else if (i < 0)
2489 break;
2490
2491 if (fa || la)
2492 {
2493 if (fa)
2494 fn = file->filename;
2495 if (la)
2496 ln = ls->section->owner->filename;
2497
2498 i = filename_cmp (fn, ln);
2499 if (i > 0)
2500 continue;
2501 else if (i < 0)
2502 break;
2503 }
2504 }
2505
2506 /* Here either the files are not sorted by name, or we are
2507 looking at the sections for this file. */
2508
2509 if (sec != NULL && sec->spec.sorted != none)
2510 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2511 break;
2512 }
2513
2514 return l;
2515 }
2516
2517 /* Expand a wild statement for a particular FILE. SECTION may be
2518 NULL, in which case it is a wild card. */
2519
2520 static void
2521 output_section_callback (lang_wild_statement_type *ptr,
2522 struct wildcard_list *sec,
2523 asection *section,
2524 lang_input_statement_type *file,
2525 void *output)
2526 {
2527 lang_statement_union_type *before;
2528 lang_output_section_statement_type *os;
2529
2530 os = (lang_output_section_statement_type *) output;
2531
2532 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2533 if (unique_section_p (section, os))
2534 return;
2535
2536 before = wild_sort (ptr, sec, file, section);
2537
2538 /* Here BEFORE points to the lang_input_section which
2539 should follow the one we are about to add. If BEFORE
2540 is NULL, then the section should just go at the end
2541 of the current list. */
2542
2543 if (before == NULL)
2544 lang_add_section (&ptr->children, section, os);
2545 else
2546 {
2547 lang_statement_list_type list;
2548 lang_statement_union_type **pp;
2549
2550 lang_list_init (&list);
2551 lang_add_section (&list, section, os);
2552
2553 /* If we are discarding the section, LIST.HEAD will
2554 be NULL. */
2555 if (list.head != NULL)
2556 {
2557 ASSERT (list.head->header.next == NULL);
2558
2559 for (pp = &ptr->children.head;
2560 *pp != before;
2561 pp = &(*pp)->header.next)
2562 ASSERT (*pp != NULL);
2563
2564 list.head->header.next = *pp;
2565 *pp = list.head;
2566 }
2567 }
2568 }
2569
2570 /* Check if all sections in a wild statement for a particular FILE
2571 are readonly. */
2572
2573 static void
2574 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2575 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2576 asection *section,
2577 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2578 void *output)
2579 {
2580 lang_output_section_statement_type *os;
2581
2582 os = (lang_output_section_statement_type *) output;
2583
2584 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2585 if (unique_section_p (section, os))
2586 return;
2587
2588 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2589 os->all_input_readonly = FALSE;
2590 }
2591
2592 /* This is passed a file name which must have been seen already and
2593 added to the statement tree. We will see if it has been opened
2594 already and had its symbols read. If not then we'll read it. */
2595
2596 static lang_input_statement_type *
2597 lookup_name (const char *name)
2598 {
2599 lang_input_statement_type *search;
2600
2601 for (search = (lang_input_statement_type *) input_file_chain.head;
2602 search != NULL;
2603 search = (lang_input_statement_type *) search->next_real_file)
2604 {
2605 /* Use the local_sym_name as the name of the file that has
2606 already been loaded as filename might have been transformed
2607 via the search directory lookup mechanism. */
2608 const char *filename = search->local_sym_name;
2609
2610 if (filename != NULL
2611 && filename_cmp (filename, name) == 0)
2612 break;
2613 }
2614
2615 if (search == NULL)
2616 search = new_afile (name, lang_input_file_is_search_file_enum,
2617 default_target, FALSE);
2618
2619 /* If we have already added this file, or this file is not real
2620 don't add this file. */
2621 if (search->loaded || !search->real)
2622 return search;
2623
2624 if (! load_symbols (search, NULL))
2625 return NULL;
2626
2627 return search;
2628 }
2629
2630 /* Save LIST as a list of libraries whose symbols should not be exported. */
2631
2632 struct excluded_lib
2633 {
2634 char *name;
2635 struct excluded_lib *next;
2636 };
2637 static struct excluded_lib *excluded_libs;
2638
2639 void
2640 add_excluded_libs (const char *list)
2641 {
2642 const char *p = list, *end;
2643
2644 while (*p != '\0')
2645 {
2646 struct excluded_lib *entry;
2647 end = strpbrk (p, ",:");
2648 if (end == NULL)
2649 end = p + strlen (p);
2650 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2651 entry->next = excluded_libs;
2652 entry->name = (char *) xmalloc (end - p + 1);
2653 memcpy (entry->name, p, end - p);
2654 entry->name[end - p] = '\0';
2655 excluded_libs = entry;
2656 if (*end == '\0')
2657 break;
2658 p = end + 1;
2659 }
2660 }
2661
2662 static void
2663 check_excluded_libs (bfd *abfd)
2664 {
2665 struct excluded_lib *lib = excluded_libs;
2666
2667 while (lib)
2668 {
2669 int len = strlen (lib->name);
2670 const char *filename = lbasename (abfd->filename);
2671
2672 if (strcmp (lib->name, "ALL") == 0)
2673 {
2674 abfd->no_export = TRUE;
2675 return;
2676 }
2677
2678 if (filename_ncmp (lib->name, filename, len) == 0
2679 && (filename[len] == '\0'
2680 || (filename[len] == '.' && filename[len + 1] == 'a'
2681 && filename[len + 2] == '\0')))
2682 {
2683 abfd->no_export = TRUE;
2684 return;
2685 }
2686
2687 lib = lib->next;
2688 }
2689 }
2690
2691 /* Get the symbols for an input file. */
2692
2693 bfd_boolean
2694 load_symbols (lang_input_statement_type *entry,
2695 lang_statement_list_type *place)
2696 {
2697 char **matching;
2698
2699 if (entry->loaded)
2700 return TRUE;
2701
2702 ldfile_open_file (entry);
2703
2704 /* Do not process further if the file was missing. */
2705 if (entry->missing_file)
2706 return TRUE;
2707
2708 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2709 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2710 {
2711 bfd_error_type err;
2712 bfd_boolean save_ldlang_sysrooted_script;
2713 bfd_boolean save_add_DT_NEEDED_for_regular;
2714 bfd_boolean save_add_DT_NEEDED_for_dynamic;
2715 bfd_boolean save_whole_archive;
2716
2717 err = bfd_get_error ();
2718
2719 /* See if the emulation has some special knowledge. */
2720 if (ldemul_unrecognized_file (entry))
2721 return TRUE;
2722
2723 if (err == bfd_error_file_ambiguously_recognized)
2724 {
2725 char **p;
2726
2727 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2728 einfo (_("%B: matching formats:"), entry->the_bfd);
2729 for (p = matching; *p != NULL; p++)
2730 einfo (" %s", *p);
2731 einfo ("%F\n");
2732 }
2733 else if (err != bfd_error_file_not_recognized
2734 || place == NULL)
2735 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2736
2737 bfd_close (entry->the_bfd);
2738 entry->the_bfd = NULL;
2739
2740 /* Try to interpret the file as a linker script. */
2741 ldfile_open_command_file (entry->filename);
2742
2743 push_stat_ptr (place);
2744 save_ldlang_sysrooted_script = ldlang_sysrooted_script;
2745 ldlang_sysrooted_script = entry->sysrooted;
2746 save_add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
2747 add_DT_NEEDED_for_regular = entry->add_DT_NEEDED_for_regular;
2748 save_add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
2749 add_DT_NEEDED_for_dynamic = entry->add_DT_NEEDED_for_dynamic;
2750 save_whole_archive = whole_archive;
2751 whole_archive = entry->whole_archive;
2752
2753 ldfile_assumed_script = TRUE;
2754 parser_input = input_script;
2755 /* We want to use the same -Bdynamic/-Bstatic as the one for
2756 ENTRY. */
2757 config.dynamic_link = entry->dynamic;
2758 yyparse ();
2759 ldfile_assumed_script = FALSE;
2760
2761 ldlang_sysrooted_script = save_ldlang_sysrooted_script;
2762 add_DT_NEEDED_for_regular = save_add_DT_NEEDED_for_regular;
2763 add_DT_NEEDED_for_dynamic = save_add_DT_NEEDED_for_dynamic;
2764 whole_archive = save_whole_archive;
2765 pop_stat_ptr ();
2766
2767 return TRUE;
2768 }
2769
2770 if (ldemul_recognized_file (entry))
2771 return TRUE;
2772
2773 /* We don't call ldlang_add_file for an archive. Instead, the
2774 add_symbols entry point will call ldlang_add_file, via the
2775 add_archive_element callback, for each element of the archive
2776 which is used. */
2777 switch (bfd_get_format (entry->the_bfd))
2778 {
2779 default:
2780 break;
2781
2782 case bfd_object:
2783 ldlang_add_file (entry);
2784 if (trace_files || trace_file_tries)
2785 info_msg ("%I\n", entry);
2786 break;
2787
2788 case bfd_archive:
2789 check_excluded_libs (entry->the_bfd);
2790
2791 if (entry->whole_archive)
2792 {
2793 bfd *member = NULL;
2794 bfd_boolean loaded = TRUE;
2795
2796 for (;;)
2797 {
2798 bfd *subsbfd;
2799 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2800
2801 if (member == NULL)
2802 break;
2803
2804 if (! bfd_check_format (member, bfd_object))
2805 {
2806 einfo (_("%F%B: member %B in archive is not an object\n"),
2807 entry->the_bfd, member);
2808 loaded = FALSE;
2809 }
2810
2811 subsbfd = member;
2812 if (!(*link_info.callbacks
2813 ->add_archive_element) (&link_info, member,
2814 "--whole-archive", &subsbfd))
2815 abort ();
2816
2817 /* Potentially, the add_archive_element hook may have set a
2818 substitute BFD for us. */
2819 if (!bfd_link_add_symbols (subsbfd, &link_info))
2820 {
2821 einfo (_("%F%B: could not read symbols: %E\n"), member);
2822 loaded = FALSE;
2823 }
2824 }
2825
2826 entry->loaded = loaded;
2827 return loaded;
2828 }
2829 break;
2830 }
2831
2832 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2833 entry->loaded = TRUE;
2834 else
2835 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2836
2837 return entry->loaded;
2838 }
2839
2840 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2841 may be NULL, indicating that it is a wildcard. Separate
2842 lang_input_section statements are created for each part of the
2843 expansion; they are added after the wild statement S. OUTPUT is
2844 the output section. */
2845
2846 static void
2847 wild (lang_wild_statement_type *s,
2848 const char *target ATTRIBUTE_UNUSED,
2849 lang_output_section_statement_type *output)
2850 {
2851 struct wildcard_list *sec;
2852
2853 if (s->handler_data[0]
2854 && s->handler_data[0]->spec.sorted == by_name
2855 && !s->filenames_sorted)
2856 {
2857 lang_section_bst_type *tree;
2858
2859 walk_wild (s, output_section_callback_fast, output);
2860
2861 tree = s->tree;
2862 if (tree)
2863 {
2864 output_section_callback_tree_to_list (s, tree, output);
2865 s->tree = NULL;
2866 }
2867 }
2868 else
2869 walk_wild (s, output_section_callback, output);
2870
2871 if (default_common_section == NULL)
2872 for (sec = s->section_list; sec != NULL; sec = sec->next)
2873 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2874 {
2875 /* Remember the section that common is going to in case we
2876 later get something which doesn't know where to put it. */
2877 default_common_section = output;
2878 break;
2879 }
2880 }
2881
2882 /* Return TRUE iff target is the sought target. */
2883
2884 static int
2885 get_target (const bfd_target *target, void *data)
2886 {
2887 const char *sought = (const char *) data;
2888
2889 return strcmp (target->name, sought) == 0;
2890 }
2891
2892 /* Like strcpy() but convert to lower case as well. */
2893
2894 static void
2895 stricpy (char *dest, char *src)
2896 {
2897 char c;
2898
2899 while ((c = *src++) != 0)
2900 *dest++ = TOLOWER (c);
2901
2902 *dest = 0;
2903 }
2904
2905 /* Remove the first occurrence of needle (if any) in haystack
2906 from haystack. */
2907
2908 static void
2909 strcut (char *haystack, char *needle)
2910 {
2911 haystack = strstr (haystack, needle);
2912
2913 if (haystack)
2914 {
2915 char *src;
2916
2917 for (src = haystack + strlen (needle); *src;)
2918 *haystack++ = *src++;
2919
2920 *haystack = 0;
2921 }
2922 }
2923
2924 /* Compare two target format name strings.
2925 Return a value indicating how "similar" they are. */
2926
2927 static int
2928 name_compare (char *first, char *second)
2929 {
2930 char *copy1;
2931 char *copy2;
2932 int result;
2933
2934 copy1 = (char *) xmalloc (strlen (first) + 1);
2935 copy2 = (char *) xmalloc (strlen (second) + 1);
2936
2937 /* Convert the names to lower case. */
2938 stricpy (copy1, first);
2939 stricpy (copy2, second);
2940
2941 /* Remove size and endian strings from the name. */
2942 strcut (copy1, "big");
2943 strcut (copy1, "little");
2944 strcut (copy2, "big");
2945 strcut (copy2, "little");
2946
2947 /* Return a value based on how many characters match,
2948 starting from the beginning. If both strings are
2949 the same then return 10 * their length. */
2950 for (result = 0; copy1[result] == copy2[result]; result++)
2951 if (copy1[result] == 0)
2952 {
2953 result *= 10;
2954 break;
2955 }
2956
2957 free (copy1);
2958 free (copy2);
2959
2960 return result;
2961 }
2962
2963 /* Set by closest_target_match() below. */
2964 static const bfd_target *winner;
2965
2966 /* Scan all the valid bfd targets looking for one that has the endianness
2967 requirement that was specified on the command line, and is the nearest
2968 match to the original output target. */
2969
2970 static int
2971 closest_target_match (const bfd_target *target, void *data)
2972 {
2973 const bfd_target *original = (const bfd_target *) data;
2974
2975 if (command_line.endian == ENDIAN_BIG
2976 && target->byteorder != BFD_ENDIAN_BIG)
2977 return 0;
2978
2979 if (command_line.endian == ENDIAN_LITTLE
2980 && target->byteorder != BFD_ENDIAN_LITTLE)
2981 return 0;
2982
2983 /* Must be the same flavour. */
2984 if (target->flavour != original->flavour)
2985 return 0;
2986
2987 /* Ignore generic big and little endian elf vectors. */
2988 if (strcmp (target->name, "elf32-big") == 0
2989 || strcmp (target->name, "elf64-big") == 0
2990 || strcmp (target->name, "elf32-little") == 0
2991 || strcmp (target->name, "elf64-little") == 0)
2992 return 0;
2993
2994 /* If we have not found a potential winner yet, then record this one. */
2995 if (winner == NULL)
2996 {
2997 winner = target;
2998 return 0;
2999 }
3000
3001 /* Oh dear, we now have two potential candidates for a successful match.
3002 Compare their names and choose the better one. */
3003 if (name_compare (target->name, original->name)
3004 > name_compare (winner->name, original->name))
3005 winner = target;
3006
3007 /* Keep on searching until wqe have checked them all. */
3008 return 0;
3009 }
3010
3011 /* Return the BFD target format of the first input file. */
3012
3013 static char *
3014 get_first_input_target (void)
3015 {
3016 char *target = NULL;
3017
3018 LANG_FOR_EACH_INPUT_STATEMENT (s)
3019 {
3020 if (s->header.type == lang_input_statement_enum
3021 && s->real)
3022 {
3023 ldfile_open_file (s);
3024
3025 if (s->the_bfd != NULL
3026 && bfd_check_format (s->the_bfd, bfd_object))
3027 {
3028 target = bfd_get_target (s->the_bfd);
3029
3030 if (target != NULL)
3031 break;
3032 }
3033 }
3034 }
3035
3036 return target;
3037 }
3038
3039 const char *
3040 lang_get_output_target (void)
3041 {
3042 const char *target;
3043
3044 /* Has the user told us which output format to use? */
3045 if (output_target != NULL)
3046 return output_target;
3047
3048 /* No - has the current target been set to something other than
3049 the default? */
3050 if (current_target != default_target && current_target != NULL)
3051 return current_target;
3052
3053 /* No - can we determine the format of the first input file? */
3054 target = get_first_input_target ();
3055 if (target != NULL)
3056 return target;
3057
3058 /* Failed - use the default output target. */
3059 return default_target;
3060 }
3061
3062 /* Open the output file. */
3063
3064 static void
3065 open_output (const char *name)
3066 {
3067 output_target = lang_get_output_target ();
3068
3069 /* Has the user requested a particular endianness on the command
3070 line? */
3071 if (command_line.endian != ENDIAN_UNSET)
3072 {
3073 const bfd_target *target;
3074 enum bfd_endian desired_endian;
3075
3076 /* Get the chosen target. */
3077 target = bfd_search_for_target (get_target, (void *) output_target);
3078
3079 /* If the target is not supported, we cannot do anything. */
3080 if (target != NULL)
3081 {
3082 if (command_line.endian == ENDIAN_BIG)
3083 desired_endian = BFD_ENDIAN_BIG;
3084 else
3085 desired_endian = BFD_ENDIAN_LITTLE;
3086
3087 /* See if the target has the wrong endianness. This should
3088 not happen if the linker script has provided big and
3089 little endian alternatives, but some scrips don't do
3090 this. */
3091 if (target->byteorder != desired_endian)
3092 {
3093 /* If it does, then see if the target provides
3094 an alternative with the correct endianness. */
3095 if (target->alternative_target != NULL
3096 && (target->alternative_target->byteorder == desired_endian))
3097 output_target = target->alternative_target->name;
3098 else
3099 {
3100 /* Try to find a target as similar as possible to
3101 the default target, but which has the desired
3102 endian characteristic. */
3103 bfd_search_for_target (closest_target_match,
3104 (void *) target);
3105
3106 /* Oh dear - we could not find any targets that
3107 satisfy our requirements. */
3108 if (winner == NULL)
3109 einfo (_("%P: warning: could not find any targets"
3110 " that match endianness requirement\n"));
3111 else
3112 output_target = winner->name;
3113 }
3114 }
3115 }
3116 }
3117
3118 link_info.output_bfd = bfd_openw (name, output_target);
3119
3120 if (link_info.output_bfd == NULL)
3121 {
3122 if (bfd_get_error () == bfd_error_invalid_target)
3123 einfo (_("%P%F: target %s not found\n"), output_target);
3124
3125 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3126 }
3127
3128 delete_output_file_on_failure = TRUE;
3129
3130 if (! bfd_set_format (link_info.output_bfd, bfd_object))
3131 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3132 if (! bfd_set_arch_mach (link_info.output_bfd,
3133 ldfile_output_architecture,
3134 ldfile_output_machine))
3135 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3136
3137 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3138 if (link_info.hash == NULL)
3139 einfo (_("%P%F: can not create hash table: %E\n"));
3140
3141 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3142 }
3143
3144 static void
3145 ldlang_open_output (lang_statement_union_type *statement)
3146 {
3147 switch (statement->header.type)
3148 {
3149 case lang_output_statement_enum:
3150 ASSERT (link_info.output_bfd == NULL);
3151 open_output (statement->output_statement.name);
3152 ldemul_set_output_arch ();
3153 if (config.magic_demand_paged && !link_info.relocatable)
3154 link_info.output_bfd->flags |= D_PAGED;
3155 else
3156 link_info.output_bfd->flags &= ~D_PAGED;
3157 if (config.text_read_only)
3158 link_info.output_bfd->flags |= WP_TEXT;
3159 else
3160 link_info.output_bfd->flags &= ~WP_TEXT;
3161 if (link_info.traditional_format)
3162 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3163 else
3164 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3165 break;
3166
3167 case lang_target_statement_enum:
3168 current_target = statement->target_statement.target;
3169 break;
3170 default:
3171 break;
3172 }
3173 }
3174
3175 /* Convert between addresses in bytes and sizes in octets.
3176 For currently supported targets, octets_per_byte is always a power
3177 of two, so we can use shifts. */
3178 #define TO_ADDR(X) ((X) >> opb_shift)
3179 #define TO_SIZE(X) ((X) << opb_shift)
3180
3181 /* Support the above. */
3182 static unsigned int opb_shift = 0;
3183
3184 static void
3185 init_opb (void)
3186 {
3187 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3188 ldfile_output_machine);
3189 opb_shift = 0;
3190 if (x > 1)
3191 while ((x & 1) == 0)
3192 {
3193 x >>= 1;
3194 ++opb_shift;
3195 }
3196 ASSERT (x == 1);
3197 }
3198
3199 /* Open all the input files. */
3200
3201 enum open_bfd_mode
3202 {
3203 OPEN_BFD_NORMAL = 0,
3204 OPEN_BFD_FORCE = 1,
3205 OPEN_BFD_RESCAN = 2
3206 };
3207 #ifdef ENABLE_PLUGINS
3208 static lang_input_statement_type *plugin_insert = NULL;
3209 #endif
3210
3211 static void
3212 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3213 {
3214 for (; s != NULL; s = s->header.next)
3215 {
3216 switch (s->header.type)
3217 {
3218 case lang_constructors_statement_enum:
3219 open_input_bfds (constructor_list.head, mode);
3220 break;
3221 case lang_output_section_statement_enum:
3222 open_input_bfds (s->output_section_statement.children.head, mode);
3223 break;
3224 case lang_wild_statement_enum:
3225 /* Maybe we should load the file's symbols. */
3226 if ((mode & OPEN_BFD_RESCAN) == 0
3227 && s->wild_statement.filename
3228 && !wildcardp (s->wild_statement.filename)
3229 && !archive_path (s->wild_statement.filename))
3230 lookup_name (s->wild_statement.filename);
3231 open_input_bfds (s->wild_statement.children.head, mode);
3232 break;
3233 case lang_group_statement_enum:
3234 {
3235 struct bfd_link_hash_entry *undefs;
3236
3237 /* We must continually search the entries in the group
3238 until no new symbols are added to the list of undefined
3239 symbols. */
3240
3241 do
3242 {
3243 undefs = link_info.hash->undefs_tail;
3244 open_input_bfds (s->group_statement.children.head,
3245 mode | OPEN_BFD_FORCE);
3246 }
3247 while (undefs != link_info.hash->undefs_tail);
3248 }
3249 break;
3250 case lang_target_statement_enum:
3251 current_target = s->target_statement.target;
3252 break;
3253 case lang_input_statement_enum:
3254 if (s->input_statement.real)
3255 {
3256 lang_statement_union_type **os_tail;
3257 lang_statement_list_type add;
3258
3259 s->input_statement.target = current_target;
3260
3261 /* If we are being called from within a group, and this
3262 is an archive which has already been searched, then
3263 force it to be researched unless the whole archive
3264 has been loaded already. Do the same for a rescan. */
3265 if (mode != OPEN_BFD_NORMAL
3266 #ifdef ENABLE_PLUGINS
3267 && ((mode & OPEN_BFD_RESCAN) == 0
3268 || plugin_insert == NULL)
3269 #endif
3270 && !s->input_statement.whole_archive
3271 && s->input_statement.loaded
3272 && bfd_check_format (s->input_statement.the_bfd,
3273 bfd_archive))
3274 s->input_statement.loaded = FALSE;
3275
3276 os_tail = lang_output_section_statement.tail;
3277 lang_list_init (&add);
3278
3279 if (! load_symbols (&s->input_statement, &add))
3280 config.make_executable = FALSE;
3281
3282 if (add.head != NULL)
3283 {
3284 /* If this was a script with output sections then
3285 tack any added statements on to the end of the
3286 list. This avoids having to reorder the output
3287 section statement list. Very likely the user
3288 forgot -T, and whatever we do here will not meet
3289 naive user expectations. */
3290 if (os_tail != lang_output_section_statement.tail)
3291 {
3292 einfo (_("%P: warning: %s contains output sections;"
3293 " did you forget -T?\n"),
3294 s->input_statement.filename);
3295 *stat_ptr->tail = add.head;
3296 stat_ptr->tail = add.tail;
3297 }
3298 else
3299 {
3300 *add.tail = s->header.next;
3301 s->header.next = add.head;
3302 }
3303 }
3304 }
3305 #ifdef ENABLE_PLUGINS
3306 /* If we have found the point at which a plugin added new
3307 files, clear plugin_insert to enable archive rescan. */
3308 if (&s->input_statement == plugin_insert)
3309 plugin_insert = NULL;
3310 #endif
3311 break;
3312 case lang_assignment_statement_enum:
3313 if (s->assignment_statement.exp->assign.hidden)
3314 /* This is from a --defsym on the command line. */
3315 exp_fold_tree_no_dot (s->assignment_statement.exp);
3316 break;
3317 default:
3318 break;
3319 }
3320 }
3321
3322 /* Exit if any of the files were missing. */
3323 if (missing_file)
3324 einfo ("%F");
3325 }
3326
3327 /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
3328
3329 void
3330 lang_track_definedness (const char *name)
3331 {
3332 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
3333 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
3334 }
3335
3336 /* New-function for the definedness hash table. */
3337
3338 static struct bfd_hash_entry *
3339 lang_definedness_newfunc (struct bfd_hash_entry *entry,
3340 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
3341 const char *name ATTRIBUTE_UNUSED)
3342 {
3343 struct lang_definedness_hash_entry *ret
3344 = (struct lang_definedness_hash_entry *) entry;
3345
3346 if (ret == NULL)
3347 ret = (struct lang_definedness_hash_entry *)
3348 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3349
3350 if (ret == NULL)
3351 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3352
3353 ret->iteration = -1;
3354 return &ret->root;
3355 }
3356
3357 /* Return the iteration when the definition of NAME was last updated. A
3358 value of -1 means that the symbol is not defined in the linker script
3359 or the command line, but may be defined in the linker symbol table. */
3360
3361 int
3362 lang_symbol_definition_iteration (const char *name)
3363 {
3364 struct lang_definedness_hash_entry *defentry
3365 = (struct lang_definedness_hash_entry *)
3366 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3367
3368 /* We've already created this one on the presence of DEFINED in the
3369 script, so it can't be NULL unless something is borked elsewhere in
3370 the code. */
3371 if (defentry == NULL)
3372 FAIL ();
3373
3374 return defentry->iteration;
3375 }
3376
3377 /* Update the definedness state of NAME. */
3378
3379 void
3380 lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3381 {
3382 struct lang_definedness_hash_entry *defentry
3383 = (struct lang_definedness_hash_entry *)
3384 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3385
3386 /* We don't keep track of symbols not tested with DEFINED. */
3387 if (defentry == NULL)
3388 return;
3389
3390 /* If the symbol was already defined, and not from an earlier statement
3391 iteration, don't update the definedness iteration, because that'd
3392 make the symbol seem defined in the linker script at this point, and
3393 it wasn't; it was defined in some object. If we do anyway, DEFINED
3394 would start to yield false before this point and the construct "sym =
3395 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3396 in an object. */
3397 if (h->type != bfd_link_hash_undefined
3398 && h->type != bfd_link_hash_common
3399 && h->type != bfd_link_hash_new
3400 && defentry->iteration == -1)
3401 return;
3402
3403 defentry->iteration = lang_statement_iteration;
3404 }
3405
3406 /* Add the supplied name to the symbol table as an undefined reference.
3407 This is a two step process as the symbol table doesn't even exist at
3408 the time the ld command line is processed. First we put the name
3409 on a list, then, once the output file has been opened, transfer the
3410 name to the symbol table. */
3411
3412 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3413
3414 #define ldlang_undef_chain_list_head entry_symbol.next
3415
3416 void
3417 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3418 {
3419 ldlang_undef_chain_list_type *new_undef;
3420
3421 undef_from_cmdline = undef_from_cmdline || cmdline;
3422 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3423 new_undef->next = ldlang_undef_chain_list_head;
3424 ldlang_undef_chain_list_head = new_undef;
3425
3426 new_undef->name = xstrdup (name);
3427
3428 if (link_info.output_bfd != NULL)
3429 insert_undefined (new_undef->name);
3430 }
3431
3432 /* Insert NAME as undefined in the symbol table. */
3433
3434 static void
3435 insert_undefined (const char *name)
3436 {
3437 struct bfd_link_hash_entry *h;
3438
3439 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3440 if (h == NULL)
3441 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3442 if (h->type == bfd_link_hash_new)
3443 {
3444 h->type = bfd_link_hash_undefined;
3445 h->u.undef.abfd = NULL;
3446 bfd_link_add_undef (link_info.hash, h);
3447 }
3448 }
3449
3450 /* Run through the list of undefineds created above and place them
3451 into the linker hash table as undefined symbols belonging to the
3452 script file. */
3453
3454 static void
3455 lang_place_undefineds (void)
3456 {
3457 ldlang_undef_chain_list_type *ptr;
3458
3459 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3460 insert_undefined (ptr->name);
3461 }
3462
3463 /* Check for all readonly or some readwrite sections. */
3464
3465 static void
3466 check_input_sections
3467 (lang_statement_union_type *s,
3468 lang_output_section_statement_type *output_section_statement)
3469 {
3470 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3471 {
3472 switch (s->header.type)
3473 {
3474 case lang_wild_statement_enum:
3475 walk_wild (&s->wild_statement, check_section_callback,
3476 output_section_statement);
3477 if (! output_section_statement->all_input_readonly)
3478 return;
3479 break;
3480 case lang_constructors_statement_enum:
3481 check_input_sections (constructor_list.head,
3482 output_section_statement);
3483 if (! output_section_statement->all_input_readonly)
3484 return;
3485 break;
3486 case lang_group_statement_enum:
3487 check_input_sections (s->group_statement.children.head,
3488 output_section_statement);
3489 if (! output_section_statement->all_input_readonly)
3490 return;
3491 break;
3492 default:
3493 break;
3494 }
3495 }
3496 }
3497
3498 /* Update wildcard statements if needed. */
3499
3500 static void
3501 update_wild_statements (lang_statement_union_type *s)
3502 {
3503 struct wildcard_list *sec;
3504
3505 switch (sort_section)
3506 {
3507 default:
3508 FAIL ();
3509
3510 case none:
3511 break;
3512
3513 case by_name:
3514 case by_alignment:
3515 for (; s != NULL; s = s->header.next)
3516 {
3517 switch (s->header.type)
3518 {
3519 default:
3520 break;
3521
3522 case lang_wild_statement_enum:
3523 sec = s->wild_statement.section_list;
3524 for (sec = s->wild_statement.section_list; sec != NULL;
3525 sec = sec->next)
3526 {
3527 switch (sec->spec.sorted)
3528 {
3529 case none:
3530 sec->spec.sorted = sort_section;
3531 break;
3532 case by_name:
3533 if (sort_section == by_alignment)
3534 sec->spec.sorted = by_name_alignment;
3535 break;
3536 case by_alignment:
3537 if (sort_section == by_name)
3538 sec->spec.sorted = by_alignment_name;
3539 break;
3540 default:
3541 break;
3542 }
3543 }
3544 break;
3545
3546 case lang_constructors_statement_enum:
3547 update_wild_statements (constructor_list.head);
3548 break;
3549
3550 case lang_output_section_statement_enum:
3551 update_wild_statements
3552 (s->output_section_statement.children.head);
3553 break;
3554
3555 case lang_group_statement_enum:
3556 update_wild_statements (s->group_statement.children.head);
3557 break;
3558 }
3559 }
3560 break;
3561 }
3562 }
3563
3564 /* Open input files and attach to output sections. */
3565
3566 static void
3567 map_input_to_output_sections
3568 (lang_statement_union_type *s, const char *target,
3569 lang_output_section_statement_type *os)
3570 {
3571 for (; s != NULL; s = s->header.next)
3572 {
3573 lang_output_section_statement_type *tos;
3574 flagword flags;
3575
3576 switch (s->header.type)
3577 {
3578 case lang_wild_statement_enum:
3579 wild (&s->wild_statement, target, os);
3580 break;
3581 case lang_constructors_statement_enum:
3582 map_input_to_output_sections (constructor_list.head,
3583 target,
3584 os);
3585 break;
3586 case lang_output_section_statement_enum:
3587 tos = &s->output_section_statement;
3588 if (tos->constraint != 0)
3589 {
3590 if (tos->constraint != ONLY_IF_RW
3591 && tos->constraint != ONLY_IF_RO)
3592 break;
3593 tos->all_input_readonly = TRUE;
3594 check_input_sections (tos->children.head, tos);
3595 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3596 {
3597 tos->constraint = -1;
3598 break;
3599 }
3600 }
3601 map_input_to_output_sections (tos->children.head,
3602 target,
3603 tos);
3604 break;
3605 case lang_output_statement_enum:
3606 break;
3607 case lang_target_statement_enum:
3608 target = s->target_statement.target;
3609 break;
3610 case lang_group_statement_enum:
3611 map_input_to_output_sections (s->group_statement.children.head,
3612 target,
3613 os);
3614 break;
3615 case lang_data_statement_enum:
3616 /* Make sure that any sections mentioned in the expression
3617 are initialized. */
3618 exp_init_os (s->data_statement.exp);
3619 /* The output section gets CONTENTS, ALLOC and LOAD, but
3620 these may be overridden by the script. */
3621 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3622 switch (os->sectype)
3623 {
3624 case normal_section:
3625 case overlay_section:
3626 break;
3627 case noalloc_section:
3628 flags = SEC_HAS_CONTENTS;
3629 break;
3630 case noload_section:
3631 if (bfd_get_flavour (link_info.output_bfd)
3632 == bfd_target_elf_flavour)
3633 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3634 else
3635 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3636 break;
3637 }
3638 if (os->bfd_section == NULL)
3639 init_os (os, flags);
3640 else
3641 os->bfd_section->flags |= flags;
3642 break;
3643 case lang_input_section_enum:
3644 break;
3645 case lang_fill_statement_enum:
3646 case lang_object_symbols_statement_enum:
3647 case lang_reloc_statement_enum:
3648 case lang_padding_statement_enum:
3649 case lang_input_statement_enum:
3650 if (os != NULL && os->bfd_section == NULL)
3651 init_os (os, 0);
3652 break;
3653 case lang_assignment_statement_enum:
3654 if (os != NULL && os->bfd_section == NULL)
3655 init_os (os, 0);
3656
3657 /* Make sure that any sections mentioned in the assignment
3658 are initialized. */
3659 exp_init_os (s->assignment_statement.exp);
3660 break;
3661 case lang_address_statement_enum:
3662 /* Mark the specified section with the supplied address.
3663 If this section was actually a segment marker, then the
3664 directive is ignored if the linker script explicitly
3665 processed the segment marker. Originally, the linker
3666 treated segment directives (like -Ttext on the
3667 command-line) as section directives. We honor the
3668 section directive semantics for backwards compatibilty;
3669 linker scripts that do not specifically check for
3670 SEGMENT_START automatically get the old semantics. */
3671 if (!s->address_statement.segment
3672 || !s->address_statement.segment->used)
3673 {
3674 const char *name = s->address_statement.section_name;
3675
3676 /* Create the output section statement here so that
3677 orphans with a set address will be placed after other
3678 script sections. If we let the orphan placement code
3679 place them in amongst other sections then the address
3680 will affect following script sections, which is
3681 likely to surprise naive users. */
3682 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3683 tos->addr_tree = s->address_statement.address;
3684 if (tos->bfd_section == NULL)
3685 init_os (tos, 0);
3686 }
3687 break;
3688 case lang_insert_statement_enum:
3689 break;
3690 }
3691 }
3692 }
3693
3694 /* An insert statement snips out all the linker statements from the
3695 start of the list and places them after the output section
3696 statement specified by the insert. This operation is complicated
3697 by the fact that we keep a doubly linked list of output section
3698 statements as well as the singly linked list of all statements. */
3699
3700 static void
3701 process_insert_statements (void)
3702 {
3703 lang_statement_union_type **s;
3704 lang_output_section_statement_type *first_os = NULL;
3705 lang_output_section_statement_type *last_os = NULL;
3706 lang_output_section_statement_type *os;
3707
3708 /* "start of list" is actually the statement immediately after
3709 the special abs_section output statement, so that it isn't
3710 reordered. */
3711 s = &lang_output_section_statement.head;
3712 while (*(s = &(*s)->header.next) != NULL)
3713 {
3714 if ((*s)->header.type == lang_output_section_statement_enum)
3715 {
3716 /* Keep pointers to the first and last output section
3717 statement in the sequence we may be about to move. */
3718 os = &(*s)->output_section_statement;
3719
3720 ASSERT (last_os == NULL || last_os->next == os);
3721 last_os = os;
3722
3723 /* Set constraint negative so that lang_output_section_find
3724 won't match this output section statement. At this
3725 stage in linking constraint has values in the range
3726 [-1, ONLY_IN_RW]. */
3727 last_os->constraint = -2 - last_os->constraint;
3728 if (first_os == NULL)
3729 first_os = last_os;
3730 }
3731 else if ((*s)->header.type == lang_insert_statement_enum)
3732 {
3733 lang_insert_statement_type *i = &(*s)->insert_statement;
3734 lang_output_section_statement_type *where;
3735 lang_statement_union_type **ptr;
3736 lang_statement_union_type *first;
3737
3738 where = lang_output_section_find (i->where);
3739 if (where != NULL && i->is_before)
3740 {
3741 do
3742 where = where->prev;
3743 while (where != NULL && where->constraint < 0);
3744 }
3745 if (where == NULL)
3746 {
3747 einfo (_("%F%P: %s not found for insert\n"), i->where);
3748 return;
3749 }
3750
3751 /* Deal with reordering the output section statement list. */
3752 if (last_os != NULL)
3753 {
3754 asection *first_sec, *last_sec;
3755 struct lang_output_section_statement_struct **next;
3756
3757 /* Snip out the output sections we are moving. */
3758 first_os->prev->next = last_os->next;
3759 if (last_os->next == NULL)
3760 {
3761 next = &first_os->prev->next;
3762 lang_output_section_statement.tail
3763 = (lang_statement_union_type **) next;
3764 }
3765 else
3766 last_os->next->prev = first_os->prev;
3767 /* Add them in at the new position. */
3768 last_os->next = where->next;
3769 if (where->next == NULL)
3770 {
3771 next = &last_os->next;
3772 lang_output_section_statement.tail
3773 = (lang_statement_union_type **) next;
3774 }
3775 else
3776 where->next->prev = last_os;
3777 first_os->prev = where;
3778 where->next = first_os;
3779
3780 /* Move the bfd sections in the same way. */
3781 first_sec = NULL;
3782 last_sec = NULL;
3783 for (os = first_os; os != NULL; os = os->next)
3784 {
3785 os->constraint = -2 - os->constraint;
3786 if (os->bfd_section != NULL
3787 && os->bfd_section->owner != NULL)
3788 {
3789 last_sec = os->bfd_section;
3790 if (first_sec == NULL)
3791 first_sec = last_sec;
3792 }
3793 if (os == last_os)
3794 break;
3795 }
3796 if (last_sec != NULL)
3797 {
3798 asection *sec = where->bfd_section;
3799 if (sec == NULL)
3800 sec = output_prev_sec_find (where);
3801
3802 /* The place we want to insert must come after the
3803 sections we are moving. So if we find no
3804 section or if the section is the same as our
3805 last section, then no move is needed. */
3806 if (sec != NULL && sec != last_sec)
3807 {
3808 /* Trim them off. */
3809 if (first_sec->prev != NULL)
3810 first_sec->prev->next = last_sec->next;
3811 else
3812 link_info.output_bfd->sections = last_sec->next;
3813 if (last_sec->next != NULL)
3814 last_sec->next->prev = first_sec->prev;
3815 else
3816 link_info.output_bfd->section_last = first_sec->prev;
3817 /* Add back. */
3818 last_sec->next = sec->next;
3819 if (sec->next != NULL)
3820 sec->next->prev = last_sec;
3821 else
3822 link_info.output_bfd->section_last = last_sec;
3823 first_sec->prev = sec;
3824 sec->next = first_sec;
3825 }
3826 }
3827
3828 first_os = NULL;
3829 last_os = NULL;
3830 }
3831
3832 ptr = insert_os_after (where);
3833 /* Snip everything after the abs_section output statement we
3834 know is at the start of the list, up to and including
3835 the insert statement we are currently processing. */
3836 first = lang_output_section_statement.head->header.next;
3837 lang_output_section_statement.head->header.next = (*s)->header.next;
3838 /* Add them back where they belong. */
3839 *s = *ptr;
3840 if (*s == NULL)
3841 statement_list.tail = s;
3842 *ptr = first;
3843 s = &lang_output_section_statement.head;
3844 }
3845 }
3846
3847 /* Undo constraint twiddling. */
3848 for (os = first_os; os != NULL; os = os->next)
3849 {
3850 os->constraint = -2 - os->constraint;
3851 if (os == last_os)
3852 break;
3853 }
3854 }
3855
3856 /* An output section might have been removed after its statement was
3857 added. For example, ldemul_before_allocation can remove dynamic
3858 sections if they turn out to be not needed. Clean them up here. */
3859
3860 void
3861 strip_excluded_output_sections (void)
3862 {
3863 lang_output_section_statement_type *os;
3864
3865 /* Run lang_size_sections (if not already done). */
3866 if (expld.phase != lang_mark_phase_enum)
3867 {
3868 expld.phase = lang_mark_phase_enum;
3869 expld.dataseg.phase = exp_dataseg_none;
3870 one_lang_size_sections_pass (NULL, FALSE);
3871 lang_reset_memory_regions ();
3872 }
3873
3874 for (os = &lang_output_section_statement.head->output_section_statement;
3875 os != NULL;
3876 os = os->next)
3877 {
3878 asection *output_section;
3879 bfd_boolean exclude;
3880
3881 if (os->constraint < 0)
3882 continue;
3883
3884 output_section = os->bfd_section;
3885 if (output_section == NULL)
3886 continue;
3887
3888 exclude = (output_section->rawsize == 0
3889 && (output_section->flags & SEC_KEEP) == 0
3890 && !bfd_section_removed_from_list (link_info.output_bfd,
3891 output_section));
3892
3893 /* Some sections have not yet been sized, notably .gnu.version,
3894 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3895 input sections, so don't drop output sections that have such
3896 input sections unless they are also marked SEC_EXCLUDE. */
3897 if (exclude && output_section->map_head.s != NULL)
3898 {
3899 asection *s;
3900
3901 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3902 if ((s->flags & SEC_LINKER_CREATED) != 0
3903 && (s->flags & SEC_EXCLUDE) == 0)
3904 {
3905 exclude = FALSE;
3906 break;
3907 }
3908 }
3909
3910 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3911 output_section->map_head.link_order = NULL;
3912 output_section->map_tail.link_order = NULL;
3913
3914 if (exclude)
3915 {
3916 /* We don't set bfd_section to NULL since bfd_section of the
3917 removed output section statement may still be used. */
3918 if (!os->section_relative_symbol
3919 && !os->update_dot_tree)
3920 os->ignored = TRUE;
3921 output_section->flags |= SEC_EXCLUDE;
3922 bfd_section_list_remove (link_info.output_bfd, output_section);
3923 link_info.output_bfd->section_count--;
3924 }
3925 }
3926
3927 /* Stop future calls to lang_add_section from messing with map_head
3928 and map_tail link_order fields. */
3929 stripped_excluded_sections = TRUE;
3930 }
3931
3932 static void
3933 print_output_section_statement
3934 (lang_output_section_statement_type *output_section_statement)
3935 {
3936 asection *section = output_section_statement->bfd_section;
3937 int len;
3938
3939 if (output_section_statement != abs_output_section)
3940 {
3941 minfo ("\n%s", output_section_statement->name);
3942
3943 if (section != NULL)
3944 {
3945 print_dot = section->vma;
3946
3947 len = strlen (output_section_statement->name);
3948 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3949 {
3950 print_nl ();
3951 len = 0;
3952 }
3953 while (len < SECTION_NAME_MAP_LENGTH)
3954 {
3955 print_space ();
3956 ++len;
3957 }
3958
3959 minfo ("0x%V %W", section->vma, section->size);
3960
3961 if (section->vma != section->lma)
3962 minfo (_(" load address 0x%V"), section->lma);
3963
3964 if (output_section_statement->update_dot_tree != NULL)
3965 exp_fold_tree (output_section_statement->update_dot_tree,
3966 bfd_abs_section_ptr, &print_dot);
3967 }
3968
3969 print_nl ();
3970 }
3971
3972 print_statement_list (output_section_statement->children.head,
3973 output_section_statement);
3974 }
3975
3976 /* Scan for the use of the destination in the right hand side
3977 of an expression. In such cases we will not compute the
3978 correct expression, since the value of DST that is used on
3979 the right hand side will be its final value, not its value
3980 just before this expression is evaluated. */
3981
3982 static bfd_boolean
3983 scan_for_self_assignment (const char * dst, etree_type * rhs)
3984 {
3985 if (rhs == NULL || dst == NULL)
3986 return FALSE;
3987
3988 switch (rhs->type.node_class)
3989 {
3990 case etree_binary:
3991 return (scan_for_self_assignment (dst, rhs->binary.lhs)
3992 || scan_for_self_assignment (dst, rhs->binary.rhs));
3993
3994 case etree_trinary:
3995 return (scan_for_self_assignment (dst, rhs->trinary.lhs)
3996 || scan_for_self_assignment (dst, rhs->trinary.rhs));
3997
3998 case etree_assign:
3999 case etree_provided:
4000 case etree_provide:
4001 if (strcmp (dst, rhs->assign.dst) == 0)
4002 return TRUE;
4003 return scan_for_self_assignment (dst, rhs->assign.src);
4004
4005 case etree_unary:
4006 return scan_for_self_assignment (dst, rhs->unary.child);
4007
4008 case etree_value:
4009 if (rhs->value.str)
4010 return strcmp (dst, rhs->value.str) == 0;
4011 return FALSE;
4012
4013 case etree_name:
4014 if (rhs->name.name)
4015 return strcmp (dst, rhs->name.name) == 0;
4016 return FALSE;
4017
4018 default:
4019 break;
4020 }
4021
4022 return FALSE;
4023 }
4024
4025
4026 static void
4027 print_assignment (lang_assignment_statement_type *assignment,
4028 lang_output_section_statement_type *output_section)
4029 {
4030 unsigned int i;
4031 bfd_boolean is_dot;
4032 bfd_boolean computation_is_valid = TRUE;
4033 etree_type *tree;
4034 asection *osec;
4035
4036 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4037 print_space ();
4038
4039 if (assignment->exp->type.node_class == etree_assert)
4040 {
4041 is_dot = FALSE;
4042 tree = assignment->exp->assert_s.child;
4043 computation_is_valid = TRUE;
4044 }
4045 else
4046 {
4047 const char *dst = assignment->exp->assign.dst;
4048
4049 is_dot = (dst[0] == '.' && dst[1] == 0);
4050 tree = assignment->exp->assign.src;
4051 computation_is_valid = is_dot || !scan_for_self_assignment (dst, tree);
4052 }
4053
4054 osec = output_section->bfd_section;
4055 if (osec == NULL)
4056 osec = bfd_abs_section_ptr;
4057 exp_fold_tree (tree, osec, &print_dot);
4058 if (expld.result.valid_p)
4059 {
4060 bfd_vma value;
4061
4062 if (computation_is_valid)
4063 {
4064 value = expld.result.value;
4065
4066 if (expld.result.section != NULL)
4067 value += expld.result.section->vma;
4068
4069 minfo ("0x%V", value);
4070 if (is_dot)
4071 print_dot = value;
4072 }
4073 else
4074 {
4075 struct bfd_link_hash_entry *h;
4076
4077 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4078 FALSE, FALSE, TRUE);
4079 if (h)
4080 {
4081 value = h->u.def.value;
4082 value += h->u.def.section->output_section->vma;
4083 value += h->u.def.section->output_offset;
4084
4085 minfo ("[0x%V]", value);
4086 }
4087 else
4088 minfo ("[unresolved]");
4089 }
4090 }
4091 else
4092 {
4093 minfo ("*undef* ");
4094 #ifdef BFD64
4095 minfo (" ");
4096 #endif
4097 }
4098
4099 minfo (" ");
4100 exp_print_tree (assignment->exp);
4101 print_nl ();
4102 }
4103
4104 static void
4105 print_input_statement (lang_input_statement_type *statm)
4106 {
4107 if (statm->filename != NULL
4108 && (statm->the_bfd == NULL
4109 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4110 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4111 }
4112
4113 /* Print all symbols defined in a particular section. This is called
4114 via bfd_link_hash_traverse, or by print_all_symbols. */
4115
4116 static bfd_boolean
4117 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4118 {
4119 asection *sec = (asection *) ptr;
4120
4121 if ((hash_entry->type == bfd_link_hash_defined
4122 || hash_entry->type == bfd_link_hash_defweak)
4123 && sec == hash_entry->u.def.section)
4124 {
4125 int i;
4126
4127 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4128 print_space ();
4129 minfo ("0x%V ",
4130 (hash_entry->u.def.value
4131 + hash_entry->u.def.section->output_offset
4132 + hash_entry->u.def.section->output_section->vma));
4133
4134 minfo (" %T\n", hash_entry->root.string);
4135 }
4136
4137 return TRUE;
4138 }
4139
4140 static int
4141 hash_entry_addr_cmp (const void *a, const void *b)
4142 {
4143 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4144 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4145
4146 if (l->u.def.value < r->u.def.value)
4147 return -1;
4148 else if (l->u.def.value > r->u.def.value)
4149 return 1;
4150 else
4151 return 0;
4152 }
4153
4154 static void
4155 print_all_symbols (asection *sec)
4156 {
4157 struct fat_user_section_struct *ud =
4158 (struct fat_user_section_struct *) get_userdata (sec);
4159 struct map_symbol_def *def;
4160 struct bfd_link_hash_entry **entries;
4161 unsigned int i;
4162
4163 if (!ud)
4164 return;
4165
4166 *ud->map_symbol_def_tail = 0;
4167
4168 /* Sort the symbols by address. */
4169 entries = (struct bfd_link_hash_entry **)
4170 obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries));
4171
4172 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4173 entries[i] = def->entry;
4174
4175 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4176 hash_entry_addr_cmp);
4177
4178 /* Print the symbols. */
4179 for (i = 0; i < ud->map_symbol_def_count; i++)
4180 print_one_symbol (entries[i], sec);
4181
4182 obstack_free (&map_obstack, entries);
4183 }
4184
4185 /* Print information about an input section to the map file. */
4186
4187 static void
4188 print_input_section (asection *i, bfd_boolean is_discarded)
4189 {
4190 bfd_size_type size = i->size;
4191 int len;
4192 bfd_vma addr;
4193
4194 init_opb ();
4195
4196 print_space ();
4197 minfo ("%s", i->name);
4198
4199 len = 1 + strlen (i->name);
4200 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4201 {
4202 print_nl ();
4203 len = 0;
4204 }
4205 while (len < SECTION_NAME_MAP_LENGTH)
4206 {
4207 print_space ();
4208 ++len;
4209 }
4210
4211 if (i->output_section != NULL
4212 && i->output_section->owner == link_info.output_bfd)
4213 addr = i->output_section->vma + i->output_offset;
4214 else
4215 {
4216 addr = print_dot;
4217 if (!is_discarded)
4218 size = 0;
4219 }
4220
4221 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
4222
4223 if (size != i->rawsize && i->rawsize != 0)
4224 {
4225 len = SECTION_NAME_MAP_LENGTH + 3;
4226 #ifdef BFD64
4227 len += 16;
4228 #else
4229 len += 8;
4230 #endif
4231 while (len > 0)
4232 {
4233 print_space ();
4234 --len;
4235 }
4236
4237 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4238 }
4239
4240 if (i->output_section != NULL
4241 && i->output_section->owner == link_info.output_bfd)
4242 {
4243 if (link_info.reduce_memory_overheads)
4244 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4245 else
4246 print_all_symbols (i);
4247
4248 /* Update print_dot, but make sure that we do not move it
4249 backwards - this could happen if we have overlays and a
4250 later overlay is shorter than an earier one. */
4251 if (addr + TO_ADDR (size) > print_dot)
4252 print_dot = addr + TO_ADDR (size);
4253 }
4254 }
4255
4256 static void
4257 print_fill_statement (lang_fill_statement_type *fill)
4258 {
4259 size_t size;
4260 unsigned char *p;
4261 fputs (" FILL mask 0x", config.map_file);
4262 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4263 fprintf (config.map_file, "%02x", *p);
4264 fputs ("\n", config.map_file);
4265 }
4266
4267 static void
4268 print_data_statement (lang_data_statement_type *data)
4269 {
4270 int i;
4271 bfd_vma addr;
4272 bfd_size_type size;
4273 const char *name;
4274
4275 init_opb ();
4276 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4277 print_space ();
4278
4279 addr = data->output_offset;
4280 if (data->output_section != NULL)
4281 addr += data->output_section->vma;
4282
4283 switch (data->type)
4284 {
4285 default:
4286 abort ();
4287 case BYTE:
4288 size = BYTE_SIZE;
4289 name = "BYTE";
4290 break;
4291 case SHORT:
4292 size = SHORT_SIZE;
4293 name = "SHORT";
4294 break;
4295 case LONG:
4296 size = LONG_SIZE;
4297 name = "LONG";
4298 break;
4299 case QUAD:
4300 size = QUAD_SIZE;
4301 name = "QUAD";
4302 break;
4303 case SQUAD:
4304 size = QUAD_SIZE;
4305 name = "SQUAD";
4306 break;
4307 }
4308
4309 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
4310
4311 if (data->exp->type.node_class != etree_value)
4312 {
4313 print_space ();
4314 exp_print_tree (data->exp);
4315 }
4316
4317 print_nl ();
4318
4319 print_dot = addr + TO_ADDR (size);
4320 }
4321
4322 /* Print an address statement. These are generated by options like
4323 -Ttext. */
4324
4325 static void
4326 print_address_statement (lang_address_statement_type *address)
4327 {
4328 minfo (_("Address of section %s set to "), address->section_name);
4329 exp_print_tree (address->address);
4330 print_nl ();
4331 }
4332
4333 /* Print a reloc statement. */
4334
4335 static void
4336 print_reloc_statement (lang_reloc_statement_type *reloc)
4337 {
4338 int i;
4339 bfd_vma addr;
4340 bfd_size_type size;
4341
4342 init_opb ();
4343 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4344 print_space ();
4345
4346 addr = reloc->output_offset;
4347 if (reloc->output_section != NULL)
4348 addr += reloc->output_section->vma;
4349
4350 size = bfd_get_reloc_size (reloc->howto);
4351
4352 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
4353
4354 if (reloc->name != NULL)
4355 minfo ("%s+", reloc->name);
4356 else
4357 minfo ("%s+", reloc->section->name);
4358
4359 exp_print_tree (reloc->addend_exp);
4360
4361 print_nl ();
4362
4363 print_dot = addr + TO_ADDR (size);
4364 }
4365
4366 static void
4367 print_padding_statement (lang_padding_statement_type *s)
4368 {
4369 int len;
4370 bfd_vma addr;
4371
4372 init_opb ();
4373 minfo (" *fill*");
4374
4375 len = sizeof " *fill*" - 1;
4376 while (len < SECTION_NAME_MAP_LENGTH)
4377 {
4378 print_space ();
4379 ++len;
4380 }
4381
4382 addr = s->output_offset;
4383 if (s->output_section != NULL)
4384 addr += s->output_section->vma;
4385 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
4386
4387 if (s->fill->size != 0)
4388 {
4389 size_t size;
4390 unsigned char *p;
4391 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4392 fprintf (config.map_file, "%02x", *p);
4393 }
4394
4395 print_nl ();
4396
4397 print_dot = addr + TO_ADDR (s->size);
4398 }
4399
4400 static void
4401 print_wild_statement (lang_wild_statement_type *w,
4402 lang_output_section_statement_type *os)
4403 {
4404 struct wildcard_list *sec;
4405
4406 print_space ();
4407
4408 if (w->filenames_sorted)
4409 minfo ("SORT(");
4410 if (w->filename != NULL)
4411 minfo ("%s", w->filename);
4412 else
4413 minfo ("*");
4414 if (w->filenames_sorted)
4415 minfo (")");
4416
4417 minfo ("(");
4418 for (sec = w->section_list; sec; sec = sec->next)
4419 {
4420 if (sec->spec.sorted)
4421 minfo ("SORT(");
4422 if (sec->spec.exclude_name_list != NULL)
4423 {
4424 name_list *tmp;
4425 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4426 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4427 minfo (" %s", tmp->name);
4428 minfo (") ");
4429 }
4430 if (sec->spec.name != NULL)
4431 minfo ("%s", sec->spec.name);
4432 else
4433 minfo ("*");
4434 if (sec->spec.sorted)
4435 minfo (")");
4436 if (sec->next)
4437 minfo (" ");
4438 }
4439 minfo (")");
4440
4441 print_nl ();
4442
4443 print_statement_list (w->children.head, os);
4444 }
4445
4446 /* Print a group statement. */
4447
4448 static void
4449 print_group (lang_group_statement_type *s,
4450 lang_output_section_statement_type *os)
4451 {
4452 fprintf (config.map_file, "START GROUP\n");
4453 print_statement_list (s->children.head, os);
4454 fprintf (config.map_file, "END GROUP\n");
4455 }
4456
4457 /* Print the list of statements in S.
4458 This can be called for any statement type. */
4459
4460 static void
4461 print_statement_list (lang_statement_union_type *s,
4462 lang_output_section_statement_type *os)
4463 {
4464 while (s != NULL)
4465 {
4466 print_statement (s, os);
4467 s = s->header.next;
4468 }
4469 }
4470
4471 /* Print the first statement in statement list S.
4472 This can be called for any statement type. */
4473
4474 static void
4475 print_statement (lang_statement_union_type *s,
4476 lang_output_section_statement_type *os)
4477 {
4478 switch (s->header.type)
4479 {
4480 default:
4481 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4482 FAIL ();
4483 break;
4484 case lang_constructors_statement_enum:
4485 if (constructor_list.head != NULL)
4486 {
4487 if (constructors_sorted)
4488 minfo (" SORT (CONSTRUCTORS)\n");
4489 else
4490 minfo (" CONSTRUCTORS\n");
4491 print_statement_list (constructor_list.head, os);
4492 }
4493 break;
4494 case lang_wild_statement_enum:
4495 print_wild_statement (&s->wild_statement, os);
4496 break;
4497 case lang_address_statement_enum:
4498 print_address_statement (&s->address_statement);
4499 break;
4500 case lang_object_symbols_statement_enum:
4501 minfo (" CREATE_OBJECT_SYMBOLS\n");
4502 break;
4503 case lang_fill_statement_enum:
4504 print_fill_statement (&s->fill_statement);
4505 break;
4506 case lang_data_statement_enum:
4507 print_data_statement (&s->data_statement);
4508 break;
4509 case lang_reloc_statement_enum:
4510 print_reloc_statement (&s->reloc_statement);
4511 break;
4512 case lang_input_section_enum:
4513 print_input_section (s->input_section.section, FALSE);
4514 break;
4515 case lang_padding_statement_enum:
4516 print_padding_statement (&s->padding_statement);
4517 break;
4518 case lang_output_section_statement_enum:
4519 print_output_section_statement (&s->output_section_statement);
4520 break;
4521 case lang_assignment_statement_enum:
4522 print_assignment (&s->assignment_statement, os);
4523 break;
4524 case lang_target_statement_enum:
4525 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4526 break;
4527 case lang_output_statement_enum:
4528 minfo ("OUTPUT(%s", s->output_statement.name);
4529 if (output_target != NULL)
4530 minfo (" %s", output_target);
4531 minfo (")\n");
4532 break;
4533 case lang_input_statement_enum:
4534 print_input_statement (&s->input_statement);
4535 break;
4536 case lang_group_statement_enum:
4537 print_group (&s->group_statement, os);
4538 break;
4539 case lang_insert_statement_enum:
4540 minfo ("INSERT %s %s\n",
4541 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4542 s->insert_statement.where);
4543 break;
4544 }
4545 }
4546
4547 static void
4548 print_statements (void)
4549 {
4550 print_statement_list (statement_list.head, abs_output_section);
4551 }
4552
4553 /* Print the first N statements in statement list S to STDERR.
4554 If N == 0, nothing is printed.
4555 If N < 0, the entire list is printed.
4556 Intended to be called from GDB. */
4557
4558 void
4559 dprint_statement (lang_statement_union_type *s, int n)
4560 {
4561 FILE *map_save = config.map_file;
4562
4563 config.map_file = stderr;
4564
4565 if (n < 0)
4566 print_statement_list (s, abs_output_section);
4567 else
4568 {
4569 while (s && --n >= 0)
4570 {
4571 print_statement (s, abs_output_section);
4572 s = s->header.next;
4573 }
4574 }
4575
4576 config.map_file = map_save;
4577 }
4578
4579 static void
4580 insert_pad (lang_statement_union_type **ptr,
4581 fill_type *fill,
4582 unsigned int alignment_needed,
4583 asection *output_section,
4584 bfd_vma dot)
4585 {
4586 static fill_type zero_fill = { 1, { 0 } };
4587 lang_statement_union_type *pad = NULL;
4588
4589 if (ptr != &statement_list.head)
4590 pad = ((lang_statement_union_type *)
4591 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4592 if (pad != NULL
4593 && pad->header.type == lang_padding_statement_enum
4594 && pad->padding_statement.output_section == output_section)
4595 {
4596 /* Use the existing pad statement. */
4597 }
4598 else if ((pad = *ptr) != NULL
4599 && pad->header.type == lang_padding_statement_enum
4600 && pad->padding_statement.output_section == output_section)
4601 {
4602 /* Use the existing pad statement. */
4603 }
4604 else
4605 {
4606 /* Make a new padding statement, linked into existing chain. */
4607 pad = (lang_statement_union_type *)
4608 stat_alloc (sizeof (lang_padding_statement_type));
4609 pad->header.next = *ptr;
4610 *ptr = pad;
4611 pad->header.type = lang_padding_statement_enum;
4612 pad->padding_statement.output_section = output_section;
4613 if (fill == NULL)
4614 fill = &zero_fill;
4615 pad->padding_statement.fill = fill;
4616 }
4617 pad->padding_statement.output_offset = dot - output_section->vma;
4618 pad->padding_statement.size = alignment_needed;
4619 output_section->size += alignment_needed;
4620 }
4621
4622 /* Work out how much this section will move the dot point. */
4623
4624 static bfd_vma
4625 size_input_section
4626 (lang_statement_union_type **this_ptr,
4627 lang_output_section_statement_type *output_section_statement,
4628 fill_type *fill,
4629 bfd_vma dot)
4630 {
4631 lang_input_section_type *is = &((*this_ptr)->input_section);
4632 asection *i = is->section;
4633
4634 if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag
4635 && (i->flags & SEC_EXCLUDE) == 0)
4636 {
4637 unsigned int alignment_needed;
4638 asection *o;
4639
4640 /* Align this section first to the input sections requirement,
4641 then to the output section's requirement. If this alignment
4642 is greater than any seen before, then record it too. Perform
4643 the alignment by inserting a magic 'padding' statement. */
4644
4645 if (output_section_statement->subsection_alignment != -1)
4646 i->alignment_power = output_section_statement->subsection_alignment;
4647
4648 o = output_section_statement->bfd_section;
4649 if (o->alignment_power < i->alignment_power)
4650 o->alignment_power = i->alignment_power;
4651
4652 alignment_needed = align_power (dot, i->alignment_power) - dot;
4653
4654 if (alignment_needed != 0)
4655 {
4656 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4657 dot += alignment_needed;
4658 }
4659
4660 /* Remember where in the output section this input section goes. */
4661
4662 i->output_offset = dot - o->vma;
4663
4664 /* Mark how big the output section must be to contain this now. */
4665 dot += TO_ADDR (i->size);
4666 o->size = TO_SIZE (dot - o->vma);
4667 }
4668 else
4669 {
4670 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4671 }
4672
4673 return dot;
4674 }
4675
4676 static int
4677 sort_sections_by_lma (const void *arg1, const void *arg2)
4678 {
4679 const asection *sec1 = *(const asection **) arg1;
4680 const asection *sec2 = *(const asection **) arg2;
4681
4682 if (bfd_section_lma (sec1->owner, sec1)
4683 < bfd_section_lma (sec2->owner, sec2))
4684 return -1;
4685 else if (bfd_section_lma (sec1->owner, sec1)
4686 > bfd_section_lma (sec2->owner, sec2))
4687 return 1;
4688 else if (sec1->id < sec2->id)
4689 return -1;
4690 else if (sec1->id > sec2->id)
4691 return 1;
4692
4693 return 0;
4694 }
4695
4696 #define IGNORE_SECTION(s) \
4697 ((s->flags & SEC_ALLOC) == 0 \
4698 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4699 && (s->flags & SEC_LOAD) == 0))
4700
4701 /* Check to see if any allocated sections overlap with other allocated
4702 sections. This can happen if a linker script specifies the output
4703 section addresses of the two sections. Also check whether any memory
4704 region has overflowed. */
4705
4706 static void
4707 lang_check_section_addresses (void)
4708 {
4709 asection *s, *p;
4710 asection **sections, **spp;
4711 unsigned int count;
4712 bfd_vma s_start;
4713 bfd_vma s_end;
4714 bfd_vma p_start;
4715 bfd_vma p_end;
4716 bfd_size_type amt;
4717 lang_memory_region_type *m;
4718
4719 if (bfd_count_sections (link_info.output_bfd) <= 1)
4720 return;
4721
4722 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4723 sections = (asection **) xmalloc (amt);
4724
4725 /* Scan all sections in the output list. */
4726 count = 0;
4727 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4728 {
4729 /* Only consider loadable sections with real contents. */
4730 if (!(s->flags & SEC_LOAD)
4731 || !(s->flags & SEC_ALLOC)
4732 || s->size == 0)
4733 continue;
4734
4735 sections[count] = s;
4736 count++;
4737 }
4738
4739 if (count <= 1)
4740 return;
4741
4742 qsort (sections, (size_t) count, sizeof (asection *),
4743 sort_sections_by_lma);
4744
4745 spp = sections;
4746 s = *spp++;
4747 s_start = s->lma;
4748 s_end = s_start + TO_ADDR (s->size) - 1;
4749 for (count--; count; count--)
4750 {
4751 /* We must check the sections' LMA addresses not their VMA
4752 addresses because overlay sections can have overlapping VMAs
4753 but they must have distinct LMAs. */
4754 p = s;
4755 p_start = s_start;
4756 p_end = s_end;
4757 s = *spp++;
4758 s_start = s->lma;
4759 s_end = s_start + TO_ADDR (s->size) - 1;
4760
4761 /* Look for an overlap. We have sorted sections by lma, so we
4762 know that s_start >= p_start. Besides the obvious case of
4763 overlap when the current section starts before the previous
4764 one ends, we also must have overlap if the previous section
4765 wraps around the address space. */
4766 if (s_start <= p_end
4767 || p_end < p_start)
4768 einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"),
4769 s->name, s_start, s_end, p->name, p_start, p_end);
4770 }
4771
4772 free (sections);
4773
4774 /* If any memory region has overflowed, report by how much.
4775 We do not issue this diagnostic for regions that had sections
4776 explicitly placed outside their bounds; os_region_check's
4777 diagnostics are adequate for that case.
4778
4779 FIXME: It is conceivable that m->current - (m->origin + m->length)
4780 might overflow a 32-bit integer. There is, alas, no way to print
4781 a bfd_vma quantity in decimal. */
4782 for (m = lang_memory_region_list; m; m = m->next)
4783 if (m->had_full_message)
4784 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4785 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4786
4787 }
4788
4789 /* Make sure the new address is within the region. We explicitly permit the
4790 current address to be at the exact end of the region when the address is
4791 non-zero, in case the region is at the end of addressable memory and the
4792 calculation wraps around. */
4793
4794 static void
4795 os_region_check (lang_output_section_statement_type *os,
4796 lang_memory_region_type *region,
4797 etree_type *tree,
4798 bfd_vma rbase)
4799 {
4800 if ((region->current < region->origin
4801 || (region->current - region->origin > region->length))
4802 && ((region->current != region->origin + region->length)
4803 || rbase == 0))
4804 {
4805 if (tree != NULL)
4806 {
4807 einfo (_("%X%P: address 0x%v of %B section `%s'"
4808 " is not within region `%s'\n"),
4809 region->current,
4810 os->bfd_section->owner,
4811 os->bfd_section->name,
4812 region->name_list.name);
4813 }
4814 else if (!region->had_full_message)
4815 {
4816 region->had_full_message = TRUE;
4817
4818 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4819 os->bfd_section->owner,
4820 os->bfd_section->name,
4821 region->name_list.name);
4822 }
4823 }
4824 }
4825
4826 /* Set the sizes for all the output sections. */
4827
4828 static bfd_vma
4829 lang_size_sections_1
4830 (lang_statement_union_type **prev,
4831 lang_output_section_statement_type *output_section_statement,
4832 fill_type *fill,
4833 bfd_vma dot,
4834 bfd_boolean *relax,
4835 bfd_boolean check_regions)
4836 {
4837 lang_statement_union_type *s;
4838
4839 /* Size up the sections from their constituent parts. */
4840 for (s = *prev; s != NULL; s = s->header.next)
4841 {
4842 switch (s->header.type)
4843 {
4844 case lang_output_section_statement_enum:
4845 {
4846 bfd_vma newdot, after;
4847 lang_output_section_statement_type *os;
4848 lang_memory_region_type *r;
4849 int section_alignment = 0;
4850
4851 os = &s->output_section_statement;
4852 if (os->constraint == -1)
4853 break;
4854
4855 /* FIXME: We shouldn't need to zero section vmas for ld -r
4856 here, in lang_insert_orphan, or in the default linker scripts.
4857 This is covering for coff backend linker bugs. See PR6945. */
4858 if (os->addr_tree == NULL
4859 && link_info.relocatable
4860 && (bfd_get_flavour (link_info.output_bfd)
4861 == bfd_target_coff_flavour))
4862 os->addr_tree = exp_intop (0);
4863 if (os->addr_tree != NULL)
4864 {
4865 os->processed_vma = FALSE;
4866 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4867
4868 if (expld.result.valid_p)
4869 {
4870 dot = expld.result.value;
4871 if (expld.result.section != NULL)
4872 dot += expld.result.section->vma;
4873 }
4874 else if (expld.phase != lang_mark_phase_enum)
4875 einfo (_("%F%S: non constant or forward reference"
4876 " address expression for section %s\n"),
4877 os->name);
4878 }
4879
4880 if (os->bfd_section == NULL)
4881 /* This section was removed or never actually created. */
4882 break;
4883
4884 /* If this is a COFF shared library section, use the size and
4885 address from the input section. FIXME: This is COFF
4886 specific; it would be cleaner if there were some other way
4887 to do this, but nothing simple comes to mind. */
4888 if (((bfd_get_flavour (link_info.output_bfd)
4889 == bfd_target_ecoff_flavour)
4890 || (bfd_get_flavour (link_info.output_bfd)
4891 == bfd_target_coff_flavour))
4892 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4893 {
4894 asection *input;
4895
4896 if (os->children.head == NULL
4897 || os->children.head->header.next != NULL
4898 || (os->children.head->header.type
4899 != lang_input_section_enum))
4900 einfo (_("%P%X: Internal error on COFF shared library"
4901 " section %s\n"), os->name);
4902
4903 input = os->children.head->input_section.section;
4904 bfd_set_section_vma (os->bfd_section->owner,
4905 os->bfd_section,
4906 bfd_section_vma (input->owner, input));
4907 os->bfd_section->size = input->size;
4908 break;
4909 }
4910
4911 newdot = dot;
4912 if (bfd_is_abs_section (os->bfd_section))
4913 {
4914 /* No matter what happens, an abs section starts at zero. */
4915 ASSERT (os->bfd_section->vma == 0);
4916 }
4917 else
4918 {
4919 if (os->addr_tree == NULL)
4920 {
4921 /* No address specified for this section, get one
4922 from the region specification. */
4923 if (os->region == NULL
4924 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4925 && os->region->name_list.name[0] == '*'
4926 && strcmp (os->region->name_list.name,
4927 DEFAULT_MEMORY_REGION) == 0))
4928 {
4929 os->region = lang_memory_default (os->bfd_section);
4930 }
4931
4932 /* If a loadable section is using the default memory
4933 region, and some non default memory regions were
4934 defined, issue an error message. */
4935 if (!os->ignored
4936 && !IGNORE_SECTION (os->bfd_section)
4937 && ! link_info.relocatable
4938 && check_regions
4939 && strcmp (os->region->name_list.name,
4940 DEFAULT_MEMORY_REGION) == 0
4941 && lang_memory_region_list != NULL
4942 && (strcmp (lang_memory_region_list->name_list.name,
4943 DEFAULT_MEMORY_REGION) != 0
4944 || lang_memory_region_list->next != NULL)
4945 && expld.phase != lang_mark_phase_enum)
4946 {
4947 /* By default this is an error rather than just a
4948 warning because if we allocate the section to the
4949 default memory region we can end up creating an
4950 excessively large binary, or even seg faulting when
4951 attempting to perform a negative seek. See
4952 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4953 for an example of this. This behaviour can be
4954 overridden by the using the --no-check-sections
4955 switch. */
4956 if (command_line.check_section_addresses)
4957 einfo (_("%P%F: error: no memory region specified"
4958 " for loadable section `%s'\n"),
4959 bfd_get_section_name (link_info.output_bfd,
4960 os->bfd_section));
4961 else
4962 einfo (_("%P: warning: no memory region specified"
4963 " for loadable section `%s'\n"),
4964 bfd_get_section_name (link_info.output_bfd,
4965 os->bfd_section));
4966 }
4967
4968 newdot = os->region->current;
4969 section_alignment = os->bfd_section->alignment_power;
4970 }
4971 else
4972 section_alignment = os->section_alignment;
4973
4974 /* Align to what the section needs. */
4975 if (section_alignment > 0)
4976 {
4977 bfd_vma savedot = newdot;
4978 newdot = align_power (newdot, section_alignment);
4979
4980 if (newdot != savedot
4981 && (config.warn_section_align
4982 || os->addr_tree != NULL)
4983 && expld.phase != lang_mark_phase_enum)
4984 einfo (_("%P: warning: changing start of section"
4985 " %s by %lu bytes\n"),
4986 os->name, (unsigned long) (newdot - savedot));
4987 }
4988
4989 bfd_set_section_vma (0, os->bfd_section, newdot);
4990
4991 os->bfd_section->output_offset = 0;
4992 }
4993
4994 lang_size_sections_1 (&os->children.head, os,
4995 os->fill, newdot, relax, check_regions);
4996
4997 os->processed_vma = TRUE;
4998
4999 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5000 /* Except for some special linker created sections,
5001 no output section should change from zero size
5002 after strip_excluded_output_sections. A non-zero
5003 size on an ignored section indicates that some
5004 input section was not sized early enough. */
5005 ASSERT (os->bfd_section->size == 0);
5006 else
5007 {
5008 dot = os->bfd_section->vma;
5009
5010 /* Put the section within the requested block size, or
5011 align at the block boundary. */
5012 after = ((dot
5013 + TO_ADDR (os->bfd_section->size)
5014 + os->block_value - 1)
5015 & - (bfd_vma) os->block_value);
5016
5017 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
5018 }
5019
5020 /* Set section lma. */
5021 r = os->region;
5022 if (r == NULL)
5023 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5024
5025 if (os->load_base)
5026 {
5027 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5028 os->bfd_section->lma = lma;
5029 }
5030 else if (os->lma_region != NULL)
5031 {
5032 bfd_vma lma = os->lma_region->current;
5033
5034 if (section_alignment > 0)
5035 lma = align_power (lma, section_alignment);
5036 os->bfd_section->lma = lma;
5037 }
5038 else if (r->last_os != NULL
5039 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5040 {
5041 bfd_vma lma;
5042 asection *last;
5043
5044 last = r->last_os->output_section_statement.bfd_section;
5045
5046 /* A backwards move of dot should be accompanied by
5047 an explicit assignment to the section LMA (ie.
5048 os->load_base set) because backwards moves can
5049 create overlapping LMAs. */
5050 if (dot < last->vma
5051 && os->bfd_section->size != 0
5052 && dot + os->bfd_section->size <= last->vma)
5053 {
5054 /* If dot moved backwards then leave lma equal to
5055 vma. This is the old default lma, which might
5056 just happen to work when the backwards move is
5057 sufficiently large. Nag if this changes anything,
5058 so people can fix their linker scripts. */
5059
5060 if (last->vma != last->lma)
5061 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
5062 os->name);
5063 }
5064 else
5065 {
5066 /* If this is an overlay, set the current lma to that
5067 at the end of the previous section. */
5068 if (os->sectype == overlay_section)
5069 lma = last->lma + last->size;
5070
5071 /* Otherwise, keep the same lma to vma relationship
5072 as the previous section. */
5073 else
5074 lma = dot + last->lma - last->vma;
5075
5076 if (section_alignment > 0)
5077 lma = align_power (lma, section_alignment);
5078 os->bfd_section->lma = lma;
5079 }
5080 }
5081 os->processed_lma = TRUE;
5082
5083 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5084 break;
5085
5086 /* Keep track of normal sections using the default
5087 lma region. We use this to set the lma for
5088 following sections. Overlays or other linker
5089 script assignment to lma might mean that the
5090 default lma == vma is incorrect.
5091 To avoid warnings about dot moving backwards when using
5092 -Ttext, don't start tracking sections until we find one
5093 of non-zero size or with lma set differently to vma. */
5094 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5095 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
5096 && (os->bfd_section->flags & SEC_ALLOC) != 0
5097 && (os->bfd_section->size != 0
5098 || (r->last_os == NULL
5099 && os->bfd_section->vma != os->bfd_section->lma)
5100 || (r->last_os != NULL
5101 && dot >= (r->last_os->output_section_statement
5102 .bfd_section->vma)))
5103 && os->lma_region == NULL
5104 && !link_info.relocatable)
5105 r->last_os = s;
5106
5107 /* .tbss sections effectively have zero size. */
5108 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5109 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5110 || link_info.relocatable)
5111 dot += TO_ADDR (os->bfd_section->size);
5112
5113 if (os->update_dot_tree != 0)
5114 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5115
5116 /* Update dot in the region ?
5117 We only do this if the section is going to be allocated,
5118 since unallocated sections do not contribute to the region's
5119 overall size in memory. */
5120 if (os->region != NULL
5121 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5122 {
5123 os->region->current = dot;
5124
5125 if (check_regions)
5126 /* Make sure the new address is within the region. */
5127 os_region_check (os, os->region, os->addr_tree,
5128 os->bfd_section->vma);
5129
5130 if (os->lma_region != NULL && os->lma_region != os->region
5131 && (os->bfd_section->flags & SEC_LOAD))
5132 {
5133 os->lma_region->current
5134 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
5135
5136 if (check_regions)
5137 os_region_check (os, os->lma_region, NULL,
5138 os->bfd_section->lma);
5139 }
5140 }
5141 }
5142 break;
5143
5144 case lang_constructors_statement_enum:
5145 dot = lang_size_sections_1 (&constructor_list.head,
5146 output_section_statement,
5147 fill, dot, relax, check_regions);
5148 break;
5149
5150 case lang_data_statement_enum:
5151 {
5152 unsigned int size = 0;
5153
5154 s->data_statement.output_offset =
5155 dot - output_section_statement->bfd_section->vma;
5156 s->data_statement.output_section =
5157 output_section_statement->bfd_section;
5158
5159 /* We might refer to provided symbols in the expression, and
5160 need to mark them as needed. */
5161 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5162
5163 switch (s->data_statement.type)
5164 {
5165 default:
5166 abort ();
5167 case QUAD:
5168 case SQUAD:
5169 size = QUAD_SIZE;
5170 break;
5171 case LONG:
5172 size = LONG_SIZE;
5173 break;
5174 case SHORT:
5175 size = SHORT_SIZE;
5176 break;
5177 case BYTE:
5178 size = BYTE_SIZE;
5179 break;
5180 }
5181 if (size < TO_SIZE ((unsigned) 1))
5182 size = TO_SIZE ((unsigned) 1);
5183 dot += TO_ADDR (size);
5184 output_section_statement->bfd_section->size += size;
5185 }
5186 break;
5187
5188 case lang_reloc_statement_enum:
5189 {
5190 int size;
5191
5192 s->reloc_statement.output_offset =
5193 dot - output_section_statement->bfd_section->vma;
5194 s->reloc_statement.output_section =
5195 output_section_statement->bfd_section;
5196 size = bfd_get_reloc_size (s->reloc_statement.howto);
5197 dot += TO_ADDR (size);
5198 output_section_statement->bfd_section->size += size;
5199 }
5200 break;
5201
5202 case lang_wild_statement_enum:
5203 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5204 output_section_statement,
5205 fill, dot, relax, check_regions);
5206 break;
5207
5208 case lang_object_symbols_statement_enum:
5209 link_info.create_object_symbols_section =
5210 output_section_statement->bfd_section;
5211 break;
5212
5213 case lang_output_statement_enum:
5214 case lang_target_statement_enum:
5215 break;
5216
5217 case lang_input_section_enum:
5218 {
5219 asection *i;
5220
5221 i = s->input_section.section;
5222 if (relax)
5223 {
5224 bfd_boolean again;
5225
5226 if (! bfd_relax_section (i->owner, i, &link_info, &again))
5227 einfo (_("%P%F: can't relax section: %E\n"));
5228 if (again)
5229 *relax = TRUE;
5230 }
5231 dot = size_input_section (prev, output_section_statement,
5232 output_section_statement->fill, dot);
5233 }
5234 break;
5235
5236 case lang_input_statement_enum:
5237 break;
5238
5239 case lang_fill_statement_enum:
5240 s->fill_statement.output_section =
5241 output_section_statement->bfd_section;
5242
5243 fill = s->fill_statement.fill;
5244 break;
5245
5246 case lang_assignment_statement_enum:
5247 {
5248 bfd_vma newdot = dot;
5249 etree_type *tree = s->assignment_statement.exp;
5250
5251 expld.dataseg.relro = exp_dataseg_relro_none;
5252
5253 exp_fold_tree (tree,
5254 output_section_statement->bfd_section,
5255 &newdot);
5256
5257 if (expld.dataseg.relro == exp_dataseg_relro_start)
5258 {
5259 if (!expld.dataseg.relro_start_stat)
5260 expld.dataseg.relro_start_stat = s;
5261 else
5262 {
5263 ASSERT (expld.dataseg.relro_start_stat == s);
5264 }
5265 }
5266 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5267 {
5268 if (!expld.dataseg.relro_end_stat)
5269 expld.dataseg.relro_end_stat = s;
5270 else
5271 {
5272 ASSERT (expld.dataseg.relro_end_stat == s);
5273 }
5274 }
5275 expld.dataseg.relro = exp_dataseg_relro_none;
5276
5277 /* This symbol is relative to this section. */
5278 if ((tree->type.node_class == etree_provided
5279 || tree->type.node_class == etree_assign)
5280 && (tree->assign.dst [0] != '.'
5281 || tree->assign.dst [1] != '\0'))
5282 output_section_statement->section_relative_symbol = 1;
5283
5284 if (!output_section_statement->ignored)
5285 {
5286 if (output_section_statement == abs_output_section)
5287 {
5288 /* If we don't have an output section, then just adjust
5289 the default memory address. */
5290 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5291 FALSE)->current = newdot;
5292 }
5293 else if (newdot != dot)
5294 {
5295 /* Insert a pad after this statement. We can't
5296 put the pad before when relaxing, in case the
5297 assignment references dot. */
5298 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5299 output_section_statement->bfd_section, dot);
5300
5301 /* Don't neuter the pad below when relaxing. */
5302 s = s->header.next;
5303
5304 /* If dot is advanced, this implies that the section
5305 should have space allocated to it, unless the
5306 user has explicitly stated that the section
5307 should not be allocated. */
5308 if (output_section_statement->sectype != noalloc_section
5309 && (output_section_statement->sectype != noload_section
5310 || (bfd_get_flavour (link_info.output_bfd)
5311 == bfd_target_elf_flavour)))
5312 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5313 }
5314 dot = newdot;
5315 }
5316 }
5317 break;
5318
5319 case lang_padding_statement_enum:
5320 /* If this is the first time lang_size_sections is called,
5321 we won't have any padding statements. If this is the
5322 second or later passes when relaxing, we should allow
5323 padding to shrink. If padding is needed on this pass, it
5324 will be added back in. */
5325 s->padding_statement.size = 0;
5326
5327 /* Make sure output_offset is valid. If relaxation shrinks
5328 the section and this pad isn't needed, it's possible to
5329 have output_offset larger than the final size of the
5330 section. bfd_set_section_contents will complain even for
5331 a pad size of zero. */
5332 s->padding_statement.output_offset
5333 = dot - output_section_statement->bfd_section->vma;
5334 break;
5335
5336 case lang_group_statement_enum:
5337 dot = lang_size_sections_1 (&s->group_statement.children.head,
5338 output_section_statement,
5339 fill, dot, relax, check_regions);
5340 break;
5341
5342 case lang_insert_statement_enum:
5343 break;
5344
5345 /* We can only get here when relaxing is turned on. */
5346 case lang_address_statement_enum:
5347 break;
5348
5349 default:
5350 FAIL ();
5351 break;
5352 }
5353 prev = &s->header.next;
5354 }
5355 return dot;
5356 }
5357
5358 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5359 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5360 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5361 segments. We are allowed an opportunity to override this decision. */
5362
5363 bfd_boolean
5364 ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
5365 bfd * abfd ATTRIBUTE_UNUSED,
5366 asection * current_section,
5367 asection * previous_section,
5368 bfd_boolean new_segment)
5369 {
5370 lang_output_section_statement_type * cur;
5371 lang_output_section_statement_type * prev;
5372
5373 /* The checks below are only necessary when the BFD library has decided
5374 that the two sections ought to be placed into the same segment. */
5375 if (new_segment)
5376 return TRUE;
5377
5378 /* Paranoia checks. */
5379 if (current_section == NULL || previous_section == NULL)
5380 return new_segment;
5381
5382 /* Find the memory regions associated with the two sections.
5383 We call lang_output_section_find() here rather than scanning the list
5384 of output sections looking for a matching section pointer because if
5385 we have a large number of sections then a hash lookup is faster. */
5386 cur = lang_output_section_find (current_section->name);
5387 prev = lang_output_section_find (previous_section->name);
5388
5389 /* More paranoia. */
5390 if (cur == NULL || prev == NULL)
5391 return new_segment;
5392
5393 /* If the regions are different then force the sections to live in
5394 different segments. See the email thread starting at the following
5395 URL for the reasons why this is necessary:
5396 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5397 return cur->region != prev->region;
5398 }
5399
5400 void
5401 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5402 {
5403 lang_statement_iteration++;
5404 lang_size_sections_1 (&statement_list.head, abs_output_section,
5405 0, 0, relax, check_regions);
5406 }
5407
5408 void
5409 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5410 {
5411 expld.phase = lang_allocating_phase_enum;
5412 expld.dataseg.phase = exp_dataseg_none;
5413
5414 one_lang_size_sections_pass (relax, check_regions);
5415 if (expld.dataseg.phase == exp_dataseg_end_seen
5416 && link_info.relro && expld.dataseg.relro_end)
5417 {
5418 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
5419 to put expld.dataseg.relro on a (common) page boundary. */
5420 bfd_vma min_base, old_base, relro_end, maxpage;
5421
5422 expld.dataseg.phase = exp_dataseg_relro_adjust;
5423 maxpage = expld.dataseg.maxpagesize;
5424 /* MIN_BASE is the absolute minimum address we are allowed to start the
5425 read-write segment (byte before will be mapped read-only). */
5426 min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1);
5427 /* OLD_BASE is the address for a feasible minimum address which will
5428 still not cause a data overlap inside MAXPAGE causing file offset skip
5429 by MAXPAGE. */
5430 old_base = expld.dataseg.base;
5431 expld.dataseg.base += (-expld.dataseg.relro_end
5432 & (expld.dataseg.pagesize - 1));
5433 /* Compute the expected PT_GNU_RELRO segment end. */
5434 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5435 & ~(expld.dataseg.pagesize - 1));
5436 if (min_base + maxpage < expld.dataseg.base)
5437 {
5438 expld.dataseg.base -= maxpage;
5439 relro_end -= maxpage;
5440 }
5441 lang_reset_memory_regions ();
5442 one_lang_size_sections_pass (relax, check_regions);
5443 if (expld.dataseg.relro_end > relro_end)
5444 {
5445 /* The alignment of sections between DATA_SEGMENT_ALIGN
5446 and DATA_SEGMENT_RELRO_END caused huge padding to be
5447 inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so
5448 that the section alignments will fit in. */
5449 asection *sec;
5450 unsigned int max_alignment_power = 0;
5451
5452 /* Find maximum alignment power of sections between
5453 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5454 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5455 if (sec->vma >= expld.dataseg.base
5456 && sec->vma < expld.dataseg.relro_end
5457 && sec->alignment_power > max_alignment_power)
5458 max_alignment_power = sec->alignment_power;
5459
5460 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5461 {
5462 if (expld.dataseg.base - (1 << max_alignment_power) < old_base)
5463 expld.dataseg.base += expld.dataseg.pagesize;
5464 expld.dataseg.base -= (1 << max_alignment_power);
5465 lang_reset_memory_regions ();
5466 one_lang_size_sections_pass (relax, check_regions);
5467 }
5468 }
5469 link_info.relro_start = expld.dataseg.base;
5470 link_info.relro_end = expld.dataseg.relro_end;
5471 }
5472 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5473 {
5474 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5475 a page could be saved in the data segment. */
5476 bfd_vma first, last;
5477
5478 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5479 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5480 if (first && last
5481 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5482 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5483 && first + last <= expld.dataseg.pagesize)
5484 {
5485 expld.dataseg.phase = exp_dataseg_adjust;
5486 lang_reset_memory_regions ();
5487 one_lang_size_sections_pass (relax, check_regions);
5488 }
5489 else
5490 expld.dataseg.phase = exp_dataseg_done;
5491 }
5492 else
5493 expld.dataseg.phase = exp_dataseg_done;
5494 }
5495
5496 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5497
5498 static bfd_vma
5499 lang_do_assignments_1 (lang_statement_union_type *s,
5500 lang_output_section_statement_type *current_os,
5501 fill_type *fill,
5502 bfd_vma dot)
5503 {
5504 for (; s != NULL; s = s->header.next)
5505 {
5506 switch (s->header.type)
5507 {
5508 case lang_constructors_statement_enum:
5509 dot = lang_do_assignments_1 (constructor_list.head,
5510 current_os, fill, dot);
5511 break;
5512
5513 case lang_output_section_statement_enum:
5514 {
5515 lang_output_section_statement_type *os;
5516
5517 os = &(s->output_section_statement);
5518 if (os->bfd_section != NULL && !os->ignored)
5519 {
5520 dot = os->bfd_section->vma;
5521
5522 lang_do_assignments_1 (os->children.head, os, os->fill, dot);
5523
5524 /* .tbss sections effectively have zero size. */
5525 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5526 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5527 || link_info.relocatable)
5528 dot += TO_ADDR (os->bfd_section->size);
5529
5530 if (os->update_dot_tree != NULL)
5531 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5532 }
5533 }
5534 break;
5535
5536 case lang_wild_statement_enum:
5537
5538 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5539 current_os, fill, dot);
5540 break;
5541
5542 case lang_object_symbols_statement_enum:
5543 case lang_output_statement_enum:
5544 case lang_target_statement_enum:
5545 break;
5546
5547 case lang_data_statement_enum:
5548 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5549 if (expld.result.valid_p)
5550 {
5551 s->data_statement.value = expld.result.value;
5552 if (expld.result.section != NULL)
5553 s->data_statement.value += expld.result.section->vma;
5554 }
5555 else
5556 einfo (_("%F%P: invalid data statement\n"));
5557 {
5558 unsigned int size;
5559 switch (s->data_statement.type)
5560 {
5561 default:
5562 abort ();
5563 case QUAD:
5564 case SQUAD:
5565 size = QUAD_SIZE;
5566 break;
5567 case LONG:
5568 size = LONG_SIZE;
5569 break;
5570 case SHORT:
5571 size = SHORT_SIZE;
5572 break;
5573 case BYTE:
5574 size = BYTE_SIZE;
5575 break;
5576 }
5577 if (size < TO_SIZE ((unsigned) 1))
5578 size = TO_SIZE ((unsigned) 1);
5579 dot += TO_ADDR (size);
5580 }
5581 break;
5582
5583 case lang_reloc_statement_enum:
5584 exp_fold_tree (s->reloc_statement.addend_exp,
5585 bfd_abs_section_ptr, &dot);
5586 if (expld.result.valid_p)
5587 s->reloc_statement.addend_value = expld.result.value;
5588 else
5589 einfo (_("%F%P: invalid reloc statement\n"));
5590 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5591 break;
5592
5593 case lang_input_section_enum:
5594 {
5595 asection *in = s->input_section.section;
5596
5597 if ((in->flags & SEC_EXCLUDE) == 0)
5598 dot += TO_ADDR (in->size);
5599 }
5600 break;
5601
5602 case lang_input_statement_enum:
5603 break;
5604
5605 case lang_fill_statement_enum:
5606 fill = s->fill_statement.fill;
5607 break;
5608
5609 case lang_assignment_statement_enum:
5610 exp_fold_tree (s->assignment_statement.exp,
5611 current_os->bfd_section,
5612 &dot);
5613 break;
5614
5615 case lang_padding_statement_enum:
5616 dot += TO_ADDR (s->padding_statement.size);
5617 break;
5618
5619 case lang_group_statement_enum:
5620 dot = lang_do_assignments_1 (s->group_statement.children.head,
5621 current_os, fill, dot);
5622 break;
5623
5624 case lang_insert_statement_enum:
5625 break;
5626
5627 case lang_address_statement_enum:
5628 break;
5629
5630 default:
5631 FAIL ();
5632 break;
5633 }
5634 }
5635 return dot;
5636 }
5637
5638 void
5639 lang_do_assignments (lang_phase_type phase)
5640 {
5641 expld.phase = phase;
5642 lang_statement_iteration++;
5643 lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
5644 }
5645
5646 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5647 operator .startof. (section_name), it produces an undefined symbol
5648 .startof.section_name. Similarly, when it sees
5649 .sizeof. (section_name), it produces an undefined symbol
5650 .sizeof.section_name. For all the output sections, we look for
5651 such symbols, and set them to the correct value. */
5652
5653 static void
5654 lang_set_startof (void)
5655 {
5656 asection *s;
5657
5658 if (link_info.relocatable)
5659 return;
5660
5661 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5662 {
5663 const char *secname;
5664 char *buf;
5665 struct bfd_link_hash_entry *h;
5666
5667 secname = bfd_get_section_name (link_info.output_bfd, s);
5668 buf = (char *) xmalloc (10 + strlen (secname));
5669
5670 sprintf (buf, ".startof.%s", secname);
5671 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5672 if (h != NULL && h->type == bfd_link_hash_undefined)
5673 {
5674 h->type = bfd_link_hash_defined;
5675 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s);
5676 h->u.def.section = bfd_abs_section_ptr;
5677 }
5678
5679 sprintf (buf, ".sizeof.%s", secname);
5680 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5681 if (h != NULL && h->type == bfd_link_hash_undefined)
5682 {
5683 h->type = bfd_link_hash_defined;
5684 h->u.def.value = TO_ADDR (s->size);
5685 h->u.def.section = bfd_abs_section_ptr;
5686 }
5687
5688 free (buf);
5689 }
5690 }
5691
5692 static void
5693 lang_end (void)
5694 {
5695 struct bfd_link_hash_entry *h;
5696 bfd_boolean warn;
5697
5698 if ((link_info.relocatable && !link_info.gc_sections)
5699 || (link_info.shared && !link_info.executable))
5700 warn = entry_from_cmdline;
5701 else
5702 warn = TRUE;
5703
5704 /* Force the user to specify a root when generating a relocatable with
5705 --gc-sections. */
5706 if (link_info.gc_sections && link_info.relocatable
5707 && !(entry_from_cmdline || undef_from_cmdline))
5708 einfo (_("%P%F: gc-sections requires either an entry or "
5709 "an undefined symbol\n"));
5710
5711 if (entry_symbol.name == NULL)
5712 {
5713 /* No entry has been specified. Look for the default entry, but
5714 don't warn if we don't find it. */
5715 entry_symbol.name = entry_symbol_default;
5716 warn = FALSE;
5717 }
5718
5719 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5720 FALSE, FALSE, TRUE);
5721 if (h != NULL
5722 && (h->type == bfd_link_hash_defined
5723 || h->type == bfd_link_hash_defweak)
5724 && h->u.def.section->output_section != NULL)
5725 {
5726 bfd_vma val;
5727
5728 val = (h->u.def.value
5729 + bfd_get_section_vma (link_info.output_bfd,
5730 h->u.def.section->output_section)
5731 + h->u.def.section->output_offset);
5732 if (! bfd_set_start_address (link_info.output_bfd, val))
5733 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5734 }
5735 else
5736 {
5737 bfd_vma val;
5738 const char *send;
5739
5740 /* We couldn't find the entry symbol. Try parsing it as a
5741 number. */
5742 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5743 if (*send == '\0')
5744 {
5745 if (! bfd_set_start_address (link_info.output_bfd, val))
5746 einfo (_("%P%F: can't set start address\n"));
5747 }
5748 else
5749 {
5750 asection *ts;
5751
5752 /* Can't find the entry symbol, and it's not a number. Use
5753 the first address in the text section. */
5754 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5755 if (ts != NULL)
5756 {
5757 if (warn)
5758 einfo (_("%P: warning: cannot find entry symbol %s;"
5759 " defaulting to %V\n"),
5760 entry_symbol.name,
5761 bfd_get_section_vma (link_info.output_bfd, ts));
5762 if (!(bfd_set_start_address
5763 (link_info.output_bfd,
5764 bfd_get_section_vma (link_info.output_bfd, ts))))
5765 einfo (_("%P%F: can't set start address\n"));
5766 }
5767 else
5768 {
5769 if (warn)
5770 einfo (_("%P: warning: cannot find entry symbol %s;"
5771 " not setting start address\n"),
5772 entry_symbol.name);
5773 }
5774 }
5775 }
5776
5777 /* Don't bfd_hash_table_free (&lang_definedness_table);
5778 map file output may result in a call of lang_track_definedness. */
5779 }
5780
5781 /* This is a small function used when we want to ignore errors from
5782 BFD. */
5783
5784 static void
5785 ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5786 {
5787 /* Don't do anything. */
5788 }
5789
5790 /* Check that the architecture of all the input files is compatible
5791 with the output file. Also call the backend to let it do any
5792 other checking that is needed. */
5793
5794 static void
5795 lang_check (void)
5796 {
5797 lang_statement_union_type *file;
5798 bfd *input_bfd;
5799 const bfd_arch_info_type *compatible;
5800
5801 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5802 {
5803 #ifdef ENABLE_PLUGINS
5804 /* Don't check format of files claimed by plugin. */
5805 if (file->input_statement.claimed)
5806 continue;
5807 #endif /* ENABLE_PLUGINS */
5808 input_bfd = file->input_statement.the_bfd;
5809 compatible
5810 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5811 command_line.accept_unknown_input_arch);
5812
5813 /* In general it is not possible to perform a relocatable
5814 link between differing object formats when the input
5815 file has relocations, because the relocations in the
5816 input format may not have equivalent representations in
5817 the output format (and besides BFD does not translate
5818 relocs for other link purposes than a final link). */
5819 if ((link_info.relocatable || link_info.emitrelocations)
5820 && (compatible == NULL
5821 || (bfd_get_flavour (input_bfd)
5822 != bfd_get_flavour (link_info.output_bfd)))
5823 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5824 {
5825 einfo (_("%P%F: Relocatable linking with relocations from"
5826 " format %s (%B) to format %s (%B) is not supported\n"),
5827 bfd_get_target (input_bfd), input_bfd,
5828 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5829 /* einfo with %F exits. */
5830 }
5831
5832 if (compatible == NULL)
5833 {
5834 if (command_line.warn_mismatch)
5835 einfo (_("%P%X: %s architecture of input file `%B'"
5836 " is incompatible with %s output\n"),
5837 bfd_printable_name (input_bfd), input_bfd,
5838 bfd_printable_name (link_info.output_bfd));
5839 }
5840 else if (bfd_count_sections (input_bfd))
5841 {
5842 /* If the input bfd has no contents, it shouldn't set the
5843 private data of the output bfd. */
5844
5845 bfd_error_handler_type pfn = NULL;
5846
5847 /* If we aren't supposed to warn about mismatched input
5848 files, temporarily set the BFD error handler to a
5849 function which will do nothing. We still want to call
5850 bfd_merge_private_bfd_data, since it may set up
5851 information which is needed in the output file. */
5852 if (! command_line.warn_mismatch)
5853 pfn = bfd_set_error_handler (ignore_bfd_errors);
5854 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5855 {
5856 if (command_line.warn_mismatch)
5857 einfo (_("%P%X: failed to merge target specific data"
5858 " of file %B\n"), input_bfd);
5859 }
5860 if (! command_line.warn_mismatch)
5861 bfd_set_error_handler (pfn);
5862 }
5863 }
5864 }
5865
5866 /* Look through all the global common symbols and attach them to the
5867 correct section. The -sort-common command line switch may be used
5868 to roughly sort the entries by alignment. */
5869
5870 static void
5871 lang_common (void)
5872 {
5873 if (command_line.inhibit_common_definition)
5874 return;
5875 if (link_info.relocatable
5876 && ! command_line.force_common_definition)
5877 return;
5878
5879 if (! config.sort_common)
5880 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5881 else
5882 {
5883 unsigned int power;
5884
5885 if (config.sort_common == sort_descending)
5886 {
5887 for (power = 4; power > 0; power--)
5888 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5889
5890 power = 0;
5891 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5892 }
5893 else
5894 {
5895 for (power = 0; power <= 4; power++)
5896 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5897
5898 power = UINT_MAX;
5899 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5900 }
5901 }
5902 }
5903
5904 /* Place one common symbol in the correct section. */
5905
5906 static bfd_boolean
5907 lang_one_common (struct bfd_link_hash_entry *h, void *info)
5908 {
5909 unsigned int power_of_two;
5910 bfd_vma size;
5911 asection *section;
5912
5913 if (h->type != bfd_link_hash_common)
5914 return TRUE;
5915
5916 size = h->u.c.size;
5917 power_of_two = h->u.c.p->alignment_power;
5918
5919 if (config.sort_common == sort_descending
5920 && power_of_two < *(unsigned int *) info)
5921 return TRUE;
5922 else if (config.sort_common == sort_ascending
5923 && power_of_two > *(unsigned int *) info)
5924 return TRUE;
5925
5926 section = h->u.c.p->section;
5927 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
5928 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
5929 h->root.string);
5930
5931 if (config.map_file != NULL)
5932 {
5933 static bfd_boolean header_printed;
5934 int len;
5935 char *name;
5936 char buf[50];
5937
5938 if (! header_printed)
5939 {
5940 minfo (_("\nAllocating common symbols\n"));
5941 minfo (_("Common symbol size file\n\n"));
5942 header_printed = TRUE;
5943 }
5944
5945 name = bfd_demangle (link_info.output_bfd, h->root.string,
5946 DMGL_ANSI | DMGL_PARAMS);
5947 if (name == NULL)
5948 {
5949 minfo ("%s", h->root.string);
5950 len = strlen (h->root.string);
5951 }
5952 else
5953 {
5954 minfo ("%s", name);
5955 len = strlen (name);
5956 free (name);
5957 }
5958
5959 if (len >= 19)
5960 {
5961 print_nl ();
5962 len = 0;
5963 }
5964 while (len < 20)
5965 {
5966 print_space ();
5967 ++len;
5968 }
5969
5970 minfo ("0x");
5971 if (size <= 0xffffffff)
5972 sprintf (buf, "%lx", (unsigned long) size);
5973 else
5974 sprintf_vma (buf, size);
5975 minfo ("%s", buf);
5976 len = strlen (buf);
5977
5978 while (len < 16)
5979 {
5980 print_space ();
5981 ++len;
5982 }
5983
5984 minfo ("%B\n", section->owner);
5985 }
5986
5987 return TRUE;
5988 }
5989
5990 /* Run through the input files and ensure that every input section has
5991 somewhere to go. If one is found without a destination then create
5992 an input request and place it into the statement tree. */
5993
5994 static void
5995 lang_place_orphans (void)
5996 {
5997 LANG_FOR_EACH_INPUT_STATEMENT (file)
5998 {
5999 asection *s;
6000
6001 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6002 {
6003 if (s->output_section == NULL)
6004 {
6005 /* This section of the file is not attached, root
6006 around for a sensible place for it to go. */
6007
6008 if (file->just_syms_flag)
6009 bfd_link_just_syms (file->the_bfd, s, &link_info);
6010 else if ((s->flags & SEC_EXCLUDE) != 0)
6011 s->output_section = bfd_abs_section_ptr;
6012 else if (strcmp (s->name, "COMMON") == 0)
6013 {
6014 /* This is a lonely common section which must have
6015 come from an archive. We attach to the section
6016 with the wildcard. */
6017 if (! link_info.relocatable
6018 || command_line.force_common_definition)
6019 {
6020 if (default_common_section == NULL)
6021 default_common_section
6022 = lang_output_section_statement_lookup (".bss", 0,
6023 TRUE);
6024 lang_add_section (&default_common_section->children, s,
6025 default_common_section);
6026 }
6027 }
6028 else
6029 {
6030 const char *name = s->name;
6031 int constraint = 0;
6032
6033 if (config.unique_orphan_sections
6034 || unique_section_p (s, NULL))
6035 constraint = SPECIAL;
6036
6037 if (!ldemul_place_orphan (s, name, constraint))
6038 {
6039 lang_output_section_statement_type *os;
6040 os = lang_output_section_statement_lookup (name,
6041 constraint,
6042 TRUE);
6043 if (os->addr_tree == NULL
6044 && (link_info.relocatable
6045 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6046 os->addr_tree = exp_intop (0);
6047 lang_add_section (&os->children, s, os);
6048 }
6049 }
6050 }
6051 }
6052 }
6053 }
6054
6055 void
6056 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6057 {
6058 flagword *ptr_flags;
6059
6060 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6061 while (*flags)
6062 {
6063 switch (*flags)
6064 {
6065 case 'A': case 'a':
6066 *ptr_flags |= SEC_ALLOC;
6067 break;
6068
6069 case 'R': case 'r':
6070 *ptr_flags |= SEC_READONLY;
6071 break;
6072
6073 case 'W': case 'w':
6074 *ptr_flags |= SEC_DATA;
6075 break;
6076
6077 case 'X': case 'x':
6078 *ptr_flags |= SEC_CODE;
6079 break;
6080
6081 case 'L': case 'l':
6082 case 'I': case 'i':
6083 *ptr_flags |= SEC_LOAD;
6084 break;
6085
6086 default:
6087 einfo (_("%P%F: invalid syntax in flags\n"));
6088 break;
6089 }
6090 flags++;
6091 }
6092 }
6093
6094 /* Call a function on each input file. This function will be called
6095 on an archive, but not on the elements. */
6096
6097 void
6098 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6099 {
6100 lang_input_statement_type *f;
6101
6102 for (f = (lang_input_statement_type *) input_file_chain.head;
6103 f != NULL;
6104 f = (lang_input_statement_type *) f->next_real_file)
6105 func (f);
6106 }
6107
6108 /* Call a function on each file. The function will be called on all
6109 the elements of an archive which are included in the link, but will
6110 not be called on the archive file itself. */
6111
6112 void
6113 lang_for_each_file (void (*func) (lang_input_statement_type *))
6114 {
6115 LANG_FOR_EACH_INPUT_STATEMENT (f)
6116 {
6117 func (f);
6118 }
6119 }
6120
6121 void
6122 ldlang_add_file (lang_input_statement_type *entry)
6123 {
6124 lang_statement_append (&file_chain,
6125 (lang_statement_union_type *) entry,
6126 &entry->next);
6127
6128 /* The BFD linker needs to have a list of all input BFDs involved in
6129 a link. */
6130 ASSERT (entry->the_bfd->link_next == NULL);
6131 ASSERT (entry->the_bfd != link_info.output_bfd);
6132
6133 *link_info.input_bfds_tail = entry->the_bfd;
6134 link_info.input_bfds_tail = &entry->the_bfd->link_next;
6135 entry->the_bfd->usrdata = entry;
6136 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6137
6138 /* Look through the sections and check for any which should not be
6139 included in the link. We need to do this now, so that we can
6140 notice when the backend linker tries to report multiple
6141 definition errors for symbols which are in sections we aren't
6142 going to link. FIXME: It might be better to entirely ignore
6143 symbols which are defined in sections which are going to be
6144 discarded. This would require modifying the backend linker for
6145 each backend which might set the SEC_LINK_ONCE flag. If we do
6146 this, we should probably handle SEC_EXCLUDE in the same way. */
6147
6148 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6149 }
6150
6151 void
6152 lang_add_output (const char *name, int from_script)
6153 {
6154 /* Make -o on command line override OUTPUT in script. */
6155 if (!had_output_filename || !from_script)
6156 {
6157 output_filename = name;
6158 had_output_filename = TRUE;
6159 }
6160 }
6161
6162 static lang_output_section_statement_type *current_section;
6163
6164 static int
6165 topower (int x)
6166 {
6167 unsigned int i = 1;
6168 int l;
6169
6170 if (x < 0)
6171 return -1;
6172
6173 for (l = 0; l < 32; l++)
6174 {
6175 if (i >= (unsigned int) x)
6176 return l;
6177 i <<= 1;
6178 }
6179
6180 return 0;
6181 }
6182
6183 lang_output_section_statement_type *
6184 lang_enter_output_section_statement (const char *output_section_statement_name,
6185 etree_type *address_exp,
6186 enum section_type sectype,
6187 etree_type *align,
6188 etree_type *subalign,
6189 etree_type *ebase,
6190 int constraint)
6191 {
6192 lang_output_section_statement_type *os;
6193
6194 os = lang_output_section_statement_lookup (output_section_statement_name,
6195 constraint, TRUE);
6196 current_section = os;
6197
6198 if (os->addr_tree == NULL)
6199 {
6200 os->addr_tree = address_exp;
6201 }
6202 os->sectype = sectype;
6203 if (sectype != noload_section)
6204 os->flags = SEC_NO_FLAGS;
6205 else
6206 os->flags = SEC_NEVER_LOAD;
6207 os->block_value = 1;
6208
6209 /* Make next things chain into subchain of this. */
6210 push_stat_ptr (&os->children);
6211
6212 os->subsection_alignment =
6213 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6214 os->section_alignment =
6215 topower (exp_get_value_int (align, -1, "section alignment"));
6216
6217 os->load_base = ebase;
6218 return os;
6219 }
6220
6221 void
6222 lang_final (void)
6223 {
6224 lang_output_statement_type *new_stmt;
6225
6226 new_stmt = new_stat (lang_output_statement, stat_ptr);
6227 new_stmt->name = output_filename;
6228
6229 }
6230
6231 /* Reset the current counters in the regions. */
6232
6233 void
6234 lang_reset_memory_regions (void)
6235 {
6236 lang_memory_region_type *p = lang_memory_region_list;
6237 asection *o;
6238 lang_output_section_statement_type *os;
6239
6240 for (p = lang_memory_region_list; p != NULL; p = p->next)
6241 {
6242 p->current = p->origin;
6243 p->last_os = NULL;
6244 }
6245
6246 for (os = &lang_output_section_statement.head->output_section_statement;
6247 os != NULL;
6248 os = os->next)
6249 {
6250 os->processed_vma = FALSE;
6251 os->processed_lma = FALSE;
6252 }
6253
6254 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6255 {
6256 /* Save the last size for possible use by bfd_relax_section. */
6257 o->rawsize = o->size;
6258 o->size = 0;
6259 }
6260 }
6261
6262 /* Worker for lang_gc_sections_1. */
6263
6264 static void
6265 gc_section_callback (lang_wild_statement_type *ptr,
6266 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6267 asection *section,
6268 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6269 void *data ATTRIBUTE_UNUSED)
6270 {
6271 /* If the wild pattern was marked KEEP, the member sections
6272 should be as well. */
6273 if (ptr->keep_sections)
6274 section->flags |= SEC_KEEP;
6275 }
6276
6277 /* Iterate over sections marking them against GC. */
6278
6279 static void
6280 lang_gc_sections_1 (lang_statement_union_type *s)
6281 {
6282 for (; s != NULL; s = s->header.next)
6283 {
6284 switch (s->header.type)
6285 {
6286 case lang_wild_statement_enum:
6287 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6288 break;
6289 case lang_constructors_statement_enum:
6290 lang_gc_sections_1 (constructor_list.head);
6291 break;
6292 case lang_output_section_statement_enum:
6293 lang_gc_sections_1 (s->output_section_statement.children.head);
6294 break;
6295 case lang_group_statement_enum:
6296 lang_gc_sections_1 (s->group_statement.children.head);
6297 break;
6298 default:
6299 break;
6300 }
6301 }
6302 }
6303
6304 static void
6305 lang_gc_sections (void)
6306 {
6307 /* Keep all sections so marked in the link script. */
6308
6309 lang_gc_sections_1 (statement_list.head);
6310
6311 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6312 the special case of debug info. (See bfd/stabs.c)
6313 Twiddle the flag here, to simplify later linker code. */
6314 if (link_info.relocatable)
6315 {
6316 LANG_FOR_EACH_INPUT_STATEMENT (f)
6317 {
6318 asection *sec;
6319 #ifdef ENABLE_PLUGINS
6320 if (f->claimed)
6321 continue;
6322 #endif
6323 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6324 if ((sec->flags & SEC_DEBUGGING) == 0)
6325 sec->flags &= ~SEC_EXCLUDE;
6326 }
6327 }
6328
6329 if (link_info.gc_sections)
6330 bfd_gc_sections (link_info.output_bfd, &link_info);
6331 }
6332
6333 /* Worker for lang_find_relro_sections_1. */
6334
6335 static void
6336 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6337 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6338 asection *section,
6339 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6340 void *data)
6341 {
6342 /* Discarded, excluded and ignored sections effectively have zero
6343 size. */
6344 if (section->output_section != NULL
6345 && section->output_section->owner == link_info.output_bfd
6346 && (section->output_section->flags & SEC_EXCLUDE) == 0
6347 && !IGNORE_SECTION (section)
6348 && section->size != 0)
6349 {
6350 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6351 *has_relro_section = TRUE;
6352 }
6353 }
6354
6355 /* Iterate over sections for relro sections. */
6356
6357 static void
6358 lang_find_relro_sections_1 (lang_statement_union_type *s,
6359 bfd_boolean *has_relro_section)
6360 {
6361 if (*has_relro_section)
6362 return;
6363
6364 for (; s != NULL; s = s->header.next)
6365 {
6366 if (s == expld.dataseg.relro_end_stat)
6367 break;
6368
6369 switch (s->header.type)
6370 {
6371 case lang_wild_statement_enum:
6372 walk_wild (&s->wild_statement,
6373 find_relro_section_callback,
6374 has_relro_section);
6375 break;
6376 case lang_constructors_statement_enum:
6377 lang_find_relro_sections_1 (constructor_list.head,
6378 has_relro_section);
6379 break;
6380 case lang_output_section_statement_enum:
6381 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6382 has_relro_section);
6383 break;
6384 case lang_group_statement_enum:
6385 lang_find_relro_sections_1 (s->group_statement.children.head,
6386 has_relro_section);
6387 break;
6388 default:
6389 break;
6390 }
6391 }
6392 }
6393
6394 static void
6395 lang_find_relro_sections (void)
6396 {
6397 bfd_boolean has_relro_section = FALSE;
6398
6399 /* Check all sections in the link script. */
6400
6401 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6402 &has_relro_section);
6403
6404 if (!has_relro_section)
6405 link_info.relro = FALSE;
6406 }
6407
6408 /* Relax all sections until bfd_relax_section gives up. */
6409
6410 void
6411 lang_relax_sections (bfd_boolean need_layout)
6412 {
6413 if (RELAXATION_ENABLED)
6414 {
6415 /* We may need more than one relaxation pass. */
6416 int i = link_info.relax_pass;
6417
6418 /* The backend can use it to determine the current pass. */
6419 link_info.relax_pass = 0;
6420
6421 while (i--)
6422 {
6423 /* Keep relaxing until bfd_relax_section gives up. */
6424 bfd_boolean relax_again;
6425
6426 link_info.relax_trip = -1;
6427 do
6428 {
6429 link_info.relax_trip++;
6430
6431 /* Note: pe-dll.c does something like this also. If you find
6432 you need to change this code, you probably need to change
6433 pe-dll.c also. DJ */
6434
6435 /* Do all the assignments with our current guesses as to
6436 section sizes. */
6437 lang_do_assignments (lang_assigning_phase_enum);
6438
6439 /* We must do this after lang_do_assignments, because it uses
6440 size. */
6441 lang_reset_memory_regions ();
6442
6443 /* Perform another relax pass - this time we know where the
6444 globals are, so can make a better guess. */
6445 relax_again = FALSE;
6446 lang_size_sections (&relax_again, FALSE);
6447 }
6448 while (relax_again);
6449
6450 link_info.relax_pass++;
6451 }
6452 need_layout = TRUE;
6453 }
6454
6455 if (need_layout)
6456 {
6457 /* Final extra sizing to report errors. */
6458 lang_do_assignments (lang_assigning_phase_enum);
6459 lang_reset_memory_regions ();
6460 lang_size_sections (NULL, TRUE);
6461 }
6462 }
6463
6464 #ifdef ENABLE_PLUGINS
6465 /* Find the insert point for the plugin's replacement files. We
6466 place them after the first claimed real object file, or if the
6467 first claimed object is an archive member, after the last real
6468 object file immediately preceding the archive. In the event
6469 no objects have been claimed at all, we return the first dummy
6470 object file on the list as the insert point; that works, but
6471 the callee must be careful when relinking the file_chain as it
6472 is not actually on that chain, only the statement_list and the
6473 input_file list; in that case, the replacement files must be
6474 inserted at the head of the file_chain. */
6475
6476 static lang_input_statement_type *
6477 find_replacements_insert_point (void)
6478 {
6479 lang_input_statement_type *claim1, *lastobject;
6480 lastobject = &input_file_chain.head->input_statement;
6481 for (claim1 = &file_chain.head->input_statement;
6482 claim1 != NULL;
6483 claim1 = &claim1->next->input_statement)
6484 {
6485 if (claim1->claimed)
6486 return claim1->claim_archive ? lastobject : claim1;
6487 /* Update lastobject if this is a real object file. */
6488 if (claim1->the_bfd && (claim1->the_bfd->my_archive == NULL))
6489 lastobject = claim1;
6490 }
6491 /* No files were claimed by the plugin. Choose the last object
6492 file found on the list (maybe the first, dummy entry) as the
6493 insert point. */
6494 return lastobject;
6495 }
6496
6497 /* Insert SRCLIST into DESTLIST after given element by chaining
6498 on FIELD as the next-pointer. (Counterintuitively does not need
6499 a pointer to the actual after-node itself, just its chain field.) */
6500
6501 static void
6502 lang_list_insert_after (lang_statement_list_type *destlist,
6503 lang_statement_list_type *srclist,
6504 lang_statement_union_type **field)
6505 {
6506 *(srclist->tail) = *field;
6507 *field = srclist->head;
6508 if (destlist->tail == field)
6509 destlist->tail = srclist->tail;
6510 }
6511
6512 /* Detach new nodes added to DESTLIST since the time ORIGLIST
6513 was taken as a copy of it and leave them in ORIGLIST. */
6514
6515 static void
6516 lang_list_remove_tail (lang_statement_list_type *destlist,
6517 lang_statement_list_type *origlist)
6518 {
6519 union lang_statement_union **savetail;
6520 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
6521 ASSERT (origlist->head == destlist->head);
6522 savetail = origlist->tail;
6523 origlist->head = *(savetail);
6524 origlist->tail = destlist->tail;
6525 destlist->tail = savetail;
6526 *savetail = NULL;
6527 }
6528 #endif /* ENABLE_PLUGINS */
6529
6530 void
6531 lang_process (void)
6532 {
6533 /* Finalize dynamic list. */
6534 if (link_info.dynamic_list)
6535 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6536
6537 current_target = default_target;
6538
6539 /* Open the output file. */
6540 lang_for_each_statement (ldlang_open_output);
6541 init_opb ();
6542
6543 ldemul_create_output_section_statements ();
6544
6545 /* Add to the hash table all undefineds on the command line. */
6546 lang_place_undefineds ();
6547
6548 if (!bfd_section_already_linked_table_init ())
6549 einfo (_("%P%F: Failed to create hash table\n"));
6550
6551 /* Create a bfd for each input file. */
6552 current_target = default_target;
6553 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
6554
6555 #ifdef ENABLE_PLUGINS
6556 if (plugin_active_plugins_p ())
6557 {
6558 lang_statement_list_type added;
6559 lang_statement_list_type files, inputfiles;
6560
6561 /* Now all files are read, let the plugin(s) decide if there
6562 are any more to be added to the link before we call the
6563 emulation's after_open hook. We create a private list of
6564 input statements for this purpose, which we will eventually
6565 insert into the global statment list after the first claimed
6566 file. */
6567 added = *stat_ptr;
6568 /* We need to manipulate all three chains in synchrony. */
6569 files = file_chain;
6570 inputfiles = input_file_chain;
6571 if (plugin_call_all_symbols_read ())
6572 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6573 plugin_error_plugin ());
6574 /* Open any newly added files, updating the file chains. */
6575 link_info.loading_lto_outputs = TRUE;
6576 open_input_bfds (added.head, OPEN_BFD_NORMAL);
6577 /* Restore the global list pointer now they have all been added. */
6578 lang_list_remove_tail (stat_ptr, &added);
6579 /* And detach the fresh ends of the file lists. */
6580 lang_list_remove_tail (&file_chain, &files);
6581 lang_list_remove_tail (&input_file_chain, &inputfiles);
6582 /* Were any new files added? */
6583 if (added.head != NULL)
6584 {
6585 /* If so, we will insert them into the statement list immediately
6586 after the first input file that was claimed by the plugin. */
6587 plugin_insert = find_replacements_insert_point ();
6588 /* If a plugin adds input files without having claimed any, we
6589 don't really have a good idea where to place them. Just putting
6590 them at the start or end of the list is liable to leave them
6591 outside the crtbegin...crtend range. */
6592 ASSERT (plugin_insert != NULL);
6593 /* Splice the new statement list into the old one. */
6594 lang_list_insert_after (stat_ptr, &added,
6595 &plugin_insert->header.next);
6596 /* Likewise for the file chains. */
6597 lang_list_insert_after (&input_file_chain, &inputfiles,
6598 &plugin_insert->next_real_file);
6599 /* We must be careful when relinking file_chain; we may need to
6600 insert the new files at the head of the list if the insert
6601 point chosen is the dummy first input file. */
6602 if (plugin_insert->filename)
6603 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
6604 else
6605 lang_list_insert_after (&file_chain, &files, &file_chain.head);
6606
6607 /* Rescan archives in case new undefined symbols have appeared. */
6608 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
6609 }
6610 }
6611 #endif /* ENABLE_PLUGINS */
6612
6613 link_info.gc_sym_list = &entry_symbol;
6614 if (entry_symbol.name == NULL)
6615 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6616
6617 ldemul_after_open ();
6618
6619 bfd_section_already_linked_table_free ();
6620
6621 /* Make sure that we're not mixing architectures. We call this
6622 after all the input files have been opened, but before we do any
6623 other processing, so that any operations merge_private_bfd_data
6624 does on the output file will be known during the rest of the
6625 link. */
6626 lang_check ();
6627
6628 /* Handle .exports instead of a version script if we're told to do so. */
6629 if (command_line.version_exports_section)
6630 lang_do_version_exports_section ();
6631
6632 /* Build all sets based on the information gathered from the input
6633 files. */
6634 ldctor_build_sets ();
6635
6636 /* Remove unreferenced sections if asked to. */
6637 lang_gc_sections ();
6638
6639 /* Size up the common data. */
6640 lang_common ();
6641
6642 /* Update wild statements. */
6643 update_wild_statements (statement_list.head);
6644
6645 /* Run through the contours of the script and attach input sections
6646 to the correct output sections. */
6647 lang_statement_iteration++;
6648 map_input_to_output_sections (statement_list.head, NULL, NULL);
6649
6650 process_insert_statements ();
6651
6652 /* Find any sections not attached explicitly and handle them. */
6653 lang_place_orphans ();
6654
6655 if (! link_info.relocatable)
6656 {
6657 asection *found;
6658
6659 /* Merge SEC_MERGE sections. This has to be done after GC of
6660 sections, so that GCed sections are not merged, but before
6661 assigning dynamic symbols, since removing whole input sections
6662 is hard then. */
6663 bfd_merge_sections (link_info.output_bfd, &link_info);
6664
6665 /* Look for a text section and set the readonly attribute in it. */
6666 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6667
6668 if (found != NULL)
6669 {
6670 if (config.text_read_only)
6671 found->flags |= SEC_READONLY;
6672 else
6673 found->flags &= ~SEC_READONLY;
6674 }
6675 }
6676
6677 /* Do anything special before sizing sections. This is where ELF
6678 and other back-ends size dynamic sections. */
6679 ldemul_before_allocation ();
6680
6681 /* We must record the program headers before we try to fix the
6682 section positions, since they will affect SIZEOF_HEADERS. */
6683 lang_record_phdrs ();
6684
6685 /* Check relro sections. */
6686 if (link_info.relro && ! link_info.relocatable)
6687 lang_find_relro_sections ();
6688
6689 /* Size up the sections. */
6690 lang_size_sections (NULL, ! RELAXATION_ENABLED);
6691
6692 /* See if anything special should be done now we know how big
6693 everything is. This is where relaxation is done. */
6694 ldemul_after_allocation ();
6695
6696 /* Fix any .startof. or .sizeof. symbols. */
6697 lang_set_startof ();
6698
6699 /* Do all the assignments, now that we know the final resting places
6700 of all the symbols. */
6701 lang_do_assignments (lang_final_phase_enum);
6702
6703 ldemul_finish ();
6704
6705 /* Make sure that the section addresses make sense. */
6706 if (command_line.check_section_addresses)
6707 lang_check_section_addresses ();
6708
6709 lang_end ();
6710 }
6711
6712 /* EXPORTED TO YACC */
6713
6714 void
6715 lang_add_wild (struct wildcard_spec *filespec,
6716 struct wildcard_list *section_list,
6717 bfd_boolean keep_sections)
6718 {
6719 struct wildcard_list *curr, *next;
6720 lang_wild_statement_type *new_stmt;
6721
6722 /* Reverse the list as the parser puts it back to front. */
6723 for (curr = section_list, section_list = NULL;
6724 curr != NULL;
6725 section_list = curr, curr = next)
6726 {
6727 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6728 placed_commons = TRUE;
6729
6730 next = curr->next;
6731 curr->next = section_list;
6732 }
6733
6734 if (filespec != NULL && filespec->name != NULL)
6735 {
6736 if (strcmp (filespec->name, "*") == 0)
6737 filespec->name = NULL;
6738 else if (! wildcardp (filespec->name))
6739 lang_has_input_file = TRUE;
6740 }
6741
6742 new_stmt = new_stat (lang_wild_statement, stat_ptr);
6743 new_stmt->filename = NULL;
6744 new_stmt->filenames_sorted = FALSE;
6745 new_stmt->section_flag_list = NULL;
6746 if (filespec != NULL)
6747 {
6748 new_stmt->filename = filespec->name;
6749 new_stmt->filenames_sorted = filespec->sorted == by_name;
6750 new_stmt->section_flag_list = filespec->section_flag_list;
6751 }
6752 new_stmt->section_list = section_list;
6753 new_stmt->keep_sections = keep_sections;
6754 lang_list_init (&new_stmt->children);
6755 analyze_walk_wild_section_handler (new_stmt);
6756 }
6757
6758 void
6759 lang_section_start (const char *name, etree_type *address,
6760 const segment_type *segment)
6761 {
6762 lang_address_statement_type *ad;
6763
6764 ad = new_stat (lang_address_statement, stat_ptr);
6765 ad->section_name = name;
6766 ad->address = address;
6767 ad->segment = segment;
6768 }
6769
6770 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6771 because of a -e argument on the command line, or zero if this is
6772 called by ENTRY in a linker script. Command line arguments take
6773 precedence. */
6774
6775 void
6776 lang_add_entry (const char *name, bfd_boolean cmdline)
6777 {
6778 if (entry_symbol.name == NULL
6779 || cmdline
6780 || ! entry_from_cmdline)
6781 {
6782 entry_symbol.name = name;
6783 entry_from_cmdline = cmdline;
6784 }
6785 }
6786
6787 /* Set the default start symbol to NAME. .em files should use this,
6788 not lang_add_entry, to override the use of "start" if neither the
6789 linker script nor the command line specifies an entry point. NAME
6790 must be permanently allocated. */
6791 void
6792 lang_default_entry (const char *name)
6793 {
6794 entry_symbol_default = name;
6795 }
6796
6797 void
6798 lang_add_target (const char *name)
6799 {
6800 lang_target_statement_type *new_stmt;
6801
6802 new_stmt = new_stat (lang_target_statement, stat_ptr);
6803 new_stmt->target = name;
6804 }
6805
6806 void
6807 lang_add_map (const char *name)
6808 {
6809 while (*name)
6810 {
6811 switch (*name)
6812 {
6813 case 'F':
6814 map_option_f = TRUE;
6815 break;
6816 }
6817 name++;
6818 }
6819 }
6820
6821 void
6822 lang_add_fill (fill_type *fill)
6823 {
6824 lang_fill_statement_type *new_stmt;
6825
6826 new_stmt = new_stat (lang_fill_statement, stat_ptr);
6827 new_stmt->fill = fill;
6828 }
6829
6830 void
6831 lang_add_data (int type, union etree_union *exp)
6832 {
6833 lang_data_statement_type *new_stmt;
6834
6835 new_stmt = new_stat (lang_data_statement, stat_ptr);
6836 new_stmt->exp = exp;
6837 new_stmt->type = type;
6838 }
6839
6840 /* Create a new reloc statement. RELOC is the BFD relocation type to
6841 generate. HOWTO is the corresponding howto structure (we could
6842 look this up, but the caller has already done so). SECTION is the
6843 section to generate a reloc against, or NAME is the name of the
6844 symbol to generate a reloc against. Exactly one of SECTION and
6845 NAME must be NULL. ADDEND is an expression for the addend. */
6846
6847 void
6848 lang_add_reloc (bfd_reloc_code_real_type reloc,
6849 reloc_howto_type *howto,
6850 asection *section,
6851 const char *name,
6852 union etree_union *addend)
6853 {
6854 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6855
6856 p->reloc = reloc;
6857 p->howto = howto;
6858 p->section = section;
6859 p->name = name;
6860 p->addend_exp = addend;
6861
6862 p->addend_value = 0;
6863 p->output_section = NULL;
6864 p->output_offset = 0;
6865 }
6866
6867 lang_assignment_statement_type *
6868 lang_add_assignment (etree_type *exp)
6869 {
6870 lang_assignment_statement_type *new_stmt;
6871
6872 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
6873 new_stmt->exp = exp;
6874 return new_stmt;
6875 }
6876
6877 void
6878 lang_add_attribute (enum statement_enum attribute)
6879 {
6880 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6881 }
6882
6883 void
6884 lang_startup (const char *name)
6885 {
6886 if (first_file->filename != NULL)
6887 {
6888 einfo (_("%P%F: multiple STARTUP files\n"));
6889 }
6890 first_file->filename = name;
6891 first_file->local_sym_name = name;
6892 first_file->real = TRUE;
6893 }
6894
6895 void
6896 lang_float (bfd_boolean maybe)
6897 {
6898 lang_float_flag = maybe;
6899 }
6900
6901
6902 /* Work out the load- and run-time regions from a script statement, and
6903 store them in *LMA_REGION and *REGION respectively.
6904
6905 MEMSPEC is the name of the run-time region, or the value of
6906 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6907 LMA_MEMSPEC is the name of the load-time region, or null if the
6908 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6909 had an explicit load address.
6910
6911 It is an error to specify both a load region and a load address. */
6912
6913 static void
6914 lang_get_regions (lang_memory_region_type **region,
6915 lang_memory_region_type **lma_region,
6916 const char *memspec,
6917 const char *lma_memspec,
6918 bfd_boolean have_lma,
6919 bfd_boolean have_vma)
6920 {
6921 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6922
6923 /* If no runtime region or VMA has been specified, but the load region
6924 has been specified, then use the load region for the runtime region
6925 as well. */
6926 if (lma_memspec != NULL
6927 && ! have_vma
6928 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6929 *region = *lma_region;
6930 else
6931 *region = lang_memory_region_lookup (memspec, FALSE);
6932
6933 if (have_lma && lma_memspec != 0)
6934 einfo (_("%X%P:%S: section has both a load address and a load region\n"));
6935 }
6936
6937 void
6938 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6939 lang_output_section_phdr_list *phdrs,
6940 const char *lma_memspec)
6941 {
6942 lang_get_regions (&current_section->region,
6943 &current_section->lma_region,
6944 memspec, lma_memspec,
6945 current_section->load_base != NULL,
6946 current_section->addr_tree != NULL);
6947
6948 /* If this section has no load region or base, but uses the same
6949 region as the previous section, then propagate the previous
6950 section's load region. */
6951
6952 if (current_section->lma_region == NULL
6953 && current_section->load_base == NULL
6954 && current_section->addr_tree == NULL
6955 && current_section->region == current_section->prev->region)
6956 current_section->lma_region = current_section->prev->lma_region;
6957
6958 current_section->fill = fill;
6959 current_section->phdrs = phdrs;
6960 pop_stat_ptr ();
6961 }
6962
6963 /* Create an absolute symbol with the given name with the value of the
6964 address of first byte of the section named.
6965
6966 If the symbol already exists, then do nothing. */
6967
6968 void
6969 lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
6970 {
6971 struct bfd_link_hash_entry *h;
6972
6973 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6974 if (h == NULL)
6975 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6976
6977 if (h->type == bfd_link_hash_new
6978 || h->type == bfd_link_hash_undefined)
6979 {
6980 asection *sec;
6981
6982 h->type = bfd_link_hash_defined;
6983
6984 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6985 if (sec == NULL)
6986 h->u.def.value = 0;
6987 else
6988 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec);
6989
6990 h->u.def.section = bfd_abs_section_ptr;
6991 }
6992 }
6993
6994 /* Create an absolute symbol with the given name with the value of the
6995 address of the first byte after the end of the section named.
6996
6997 If the symbol already exists, then do nothing. */
6998
6999 void
7000 lang_abs_symbol_at_end_of (const char *secname, const char *name)
7001 {
7002 struct bfd_link_hash_entry *h;
7003
7004 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
7005 if (h == NULL)
7006 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
7007
7008 if (h->type == bfd_link_hash_new
7009 || h->type == bfd_link_hash_undefined)
7010 {
7011 asection *sec;
7012
7013 h->type = bfd_link_hash_defined;
7014
7015 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
7016 if (sec == NULL)
7017 h->u.def.value = 0;
7018 else
7019 h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec)
7020 + TO_ADDR (sec->size));
7021
7022 h->u.def.section = bfd_abs_section_ptr;
7023 }
7024 }
7025
7026 void
7027 lang_statement_append (lang_statement_list_type *list,
7028 lang_statement_union_type *element,
7029 lang_statement_union_type **field)
7030 {
7031 *(list->tail) = element;
7032 list->tail = field;
7033 }
7034
7035 /* Set the output format type. -oformat overrides scripts. */
7036
7037 void
7038 lang_add_output_format (const char *format,
7039 const char *big,
7040 const char *little,
7041 int from_script)
7042 {
7043 if (output_target == NULL || !from_script)
7044 {
7045 if (command_line.endian == ENDIAN_BIG
7046 && big != NULL)
7047 format = big;
7048 else if (command_line.endian == ENDIAN_LITTLE
7049 && little != NULL)
7050 format = little;
7051
7052 output_target = format;
7053 }
7054 }
7055
7056 void
7057 lang_add_insert (const char *where, int is_before)
7058 {
7059 lang_insert_statement_type *new_stmt;
7060
7061 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7062 new_stmt->where = where;
7063 new_stmt->is_before = is_before;
7064 saved_script_handle = previous_script_handle;
7065 }
7066
7067 /* Enter a group. This creates a new lang_group_statement, and sets
7068 stat_ptr to build new statements within the group. */
7069
7070 void
7071 lang_enter_group (void)
7072 {
7073 lang_group_statement_type *g;
7074
7075 g = new_stat (lang_group_statement, stat_ptr);
7076 lang_list_init (&g->children);
7077 push_stat_ptr (&g->children);
7078 }
7079
7080 /* Leave a group. This just resets stat_ptr to start writing to the
7081 regular list of statements again. Note that this will not work if
7082 groups can occur inside anything else which can adjust stat_ptr,
7083 but currently they can't. */
7084
7085 void
7086 lang_leave_group (void)
7087 {
7088 pop_stat_ptr ();
7089 }
7090
7091 /* Add a new program header. This is called for each entry in a PHDRS
7092 command in a linker script. */
7093
7094 void
7095 lang_new_phdr (const char *name,
7096 etree_type *type,
7097 bfd_boolean filehdr,
7098 bfd_boolean phdrs,
7099 etree_type *at,
7100 etree_type *flags)
7101 {
7102 struct lang_phdr *n, **pp;
7103 bfd_boolean hdrs;
7104
7105 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7106 n->next = NULL;
7107 n->name = name;
7108 n->type = exp_get_value_int (type, 0, "program header type");
7109 n->filehdr = filehdr;
7110 n->phdrs = phdrs;
7111 n->at = at;
7112 n->flags = flags;
7113
7114 hdrs = n->type == 1 && (phdrs || filehdr);
7115
7116 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7117 if (hdrs
7118 && (*pp)->type == 1
7119 && !((*pp)->filehdr || (*pp)->phdrs))
7120 {
7121 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported when prior PT_LOAD headers lack them\n"));
7122 hdrs = FALSE;
7123 }
7124
7125 *pp = n;
7126 }
7127
7128 /* Record the program header information in the output BFD. FIXME: We
7129 should not be calling an ELF specific function here. */
7130
7131 static void
7132 lang_record_phdrs (void)
7133 {
7134 unsigned int alc;
7135 asection **secs;
7136 lang_output_section_phdr_list *last;
7137 struct lang_phdr *l;
7138 lang_output_section_statement_type *os;
7139
7140 alc = 10;
7141 secs = (asection **) xmalloc (alc * sizeof (asection *));
7142 last = NULL;
7143
7144 for (l = lang_phdr_list; l != NULL; l = l->next)
7145 {
7146 unsigned int c;
7147 flagword flags;
7148 bfd_vma at;
7149
7150 c = 0;
7151 for (os = &lang_output_section_statement.head->output_section_statement;
7152 os != NULL;
7153 os = os->next)
7154 {
7155 lang_output_section_phdr_list *pl;
7156
7157 if (os->constraint < 0)
7158 continue;
7159
7160 pl = os->phdrs;
7161 if (pl != NULL)
7162 last = pl;
7163 else
7164 {
7165 if (os->sectype == noload_section
7166 || os->bfd_section == NULL
7167 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7168 continue;
7169
7170 /* Don't add orphans to PT_INTERP header. */
7171 if (l->type == 3)
7172 continue;
7173
7174 if (last == NULL)
7175 {
7176 lang_output_section_statement_type * tmp_os;
7177
7178 /* If we have not run across a section with a program
7179 header assigned to it yet, then scan forwards to find
7180 one. This prevents inconsistencies in the linker's
7181 behaviour when a script has specified just a single
7182 header and there are sections in that script which are
7183 not assigned to it, and which occur before the first
7184 use of that header. See here for more details:
7185 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7186 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7187 if (tmp_os->phdrs)
7188 {
7189 last = tmp_os->phdrs;
7190 break;
7191 }
7192 if (last == NULL)
7193 einfo (_("%F%P: no sections assigned to phdrs\n"));
7194 }
7195 pl = last;
7196 }
7197
7198 if (os->bfd_section == NULL)
7199 continue;
7200
7201 for (; pl != NULL; pl = pl->next)
7202 {
7203 if (strcmp (pl->name, l->name) == 0)
7204 {
7205 if (c >= alc)
7206 {
7207 alc *= 2;
7208 secs = (asection **) xrealloc (secs,
7209 alc * sizeof (asection *));
7210 }
7211 secs[c] = os->bfd_section;
7212 ++c;
7213 pl->used = TRUE;
7214 }
7215 }
7216 }
7217
7218 if (l->flags == NULL)
7219 flags = 0;
7220 else
7221 flags = exp_get_vma (l->flags, 0, "phdr flags");
7222
7223 if (l->at == NULL)
7224 at = 0;
7225 else
7226 at = exp_get_vma (l->at, 0, "phdr load address");
7227
7228 if (! bfd_record_phdr (link_info.output_bfd, l->type,
7229 l->flags != NULL, flags, l->at != NULL,
7230 at, l->filehdr, l->phdrs, c, secs))
7231 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7232 }
7233
7234 free (secs);
7235
7236 /* Make sure all the phdr assignments succeeded. */
7237 for (os = &lang_output_section_statement.head->output_section_statement;
7238 os != NULL;
7239 os = os->next)
7240 {
7241 lang_output_section_phdr_list *pl;
7242
7243 if (os->constraint < 0
7244 || os->bfd_section == NULL)
7245 continue;
7246
7247 for (pl = os->phdrs;
7248 pl != NULL;
7249 pl = pl->next)
7250 if (! pl->used && strcmp (pl->name, "NONE") != 0)
7251 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7252 os->name, pl->name);
7253 }
7254 }
7255
7256 /* Record a list of sections which may not be cross referenced. */
7257
7258 void
7259 lang_add_nocrossref (lang_nocrossref_type *l)
7260 {
7261 struct lang_nocrossrefs *n;
7262
7263 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7264 n->next = nocrossref_list;
7265 n->list = l;
7266 nocrossref_list = n;
7267
7268 /* Set notice_all so that we get informed about all symbols. */
7269 link_info.notice_all = TRUE;
7270 }
7271 \f
7272 /* Overlay handling. We handle overlays with some static variables. */
7273
7274 /* The overlay virtual address. */
7275 static etree_type *overlay_vma;
7276 /* And subsection alignment. */
7277 static etree_type *overlay_subalign;
7278
7279 /* An expression for the maximum section size seen so far. */
7280 static etree_type *overlay_max;
7281
7282 /* A list of all the sections in this overlay. */
7283
7284 struct overlay_list {
7285 struct overlay_list *next;
7286 lang_output_section_statement_type *os;
7287 };
7288
7289 static struct overlay_list *overlay_list;
7290
7291 /* Start handling an overlay. */
7292
7293 void
7294 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7295 {
7296 /* The grammar should prevent nested overlays from occurring. */
7297 ASSERT (overlay_vma == NULL
7298 && overlay_subalign == NULL
7299 && overlay_max == NULL);
7300
7301 overlay_vma = vma_expr;
7302 overlay_subalign = subalign;
7303 }
7304
7305 /* Start a section in an overlay. We handle this by calling
7306 lang_enter_output_section_statement with the correct VMA.
7307 lang_leave_overlay sets up the LMA and memory regions. */
7308
7309 void
7310 lang_enter_overlay_section (const char *name)
7311 {
7312 struct overlay_list *n;
7313 etree_type *size;
7314
7315 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7316 0, overlay_subalign, 0, 0);
7317
7318 /* If this is the first section, then base the VMA of future
7319 sections on this one. This will work correctly even if `.' is
7320 used in the addresses. */
7321 if (overlay_list == NULL)
7322 overlay_vma = exp_nameop (ADDR, name);
7323
7324 /* Remember the section. */
7325 n = (struct overlay_list *) xmalloc (sizeof *n);
7326 n->os = current_section;
7327 n->next = overlay_list;
7328 overlay_list = n;
7329
7330 size = exp_nameop (SIZEOF, name);
7331
7332 /* Arrange to work out the maximum section end address. */
7333 if (overlay_max == NULL)
7334 overlay_max = size;
7335 else
7336 overlay_max = exp_binop (MAX_K, overlay_max, size);
7337 }
7338
7339 /* Finish a section in an overlay. There isn't any special to do
7340 here. */
7341
7342 void
7343 lang_leave_overlay_section (fill_type *fill,
7344 lang_output_section_phdr_list *phdrs)
7345 {
7346 const char *name;
7347 char *clean, *s2;
7348 const char *s1;
7349 char *buf;
7350
7351 name = current_section->name;
7352
7353 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7354 region and that no load-time region has been specified. It doesn't
7355 really matter what we say here, since lang_leave_overlay will
7356 override it. */
7357 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7358
7359 /* Define the magic symbols. */
7360
7361 clean = (char *) xmalloc (strlen (name) + 1);
7362 s2 = clean;
7363 for (s1 = name; *s1 != '\0'; s1++)
7364 if (ISALNUM (*s1) || *s1 == '_')
7365 *s2++ = *s1;
7366 *s2 = '\0';
7367
7368 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7369 sprintf (buf, "__load_start_%s", clean);
7370 lang_add_assignment (exp_provide (buf,
7371 exp_nameop (LOADADDR, name),
7372 FALSE));
7373
7374 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7375 sprintf (buf, "__load_stop_%s", clean);
7376 lang_add_assignment (exp_provide (buf,
7377 exp_binop ('+',
7378 exp_nameop (LOADADDR, name),
7379 exp_nameop (SIZEOF, name)),
7380 FALSE));
7381
7382 free (clean);
7383 }
7384
7385 /* Finish an overlay. If there are any overlay wide settings, this
7386 looks through all the sections in the overlay and sets them. */
7387
7388 void
7389 lang_leave_overlay (etree_type *lma_expr,
7390 int nocrossrefs,
7391 fill_type *fill,
7392 const char *memspec,
7393 lang_output_section_phdr_list *phdrs,
7394 const char *lma_memspec)
7395 {
7396 lang_memory_region_type *region;
7397 lang_memory_region_type *lma_region;
7398 struct overlay_list *l;
7399 lang_nocrossref_type *nocrossref;
7400
7401 lang_get_regions (&region, &lma_region,
7402 memspec, lma_memspec,
7403 lma_expr != NULL, FALSE);
7404
7405 nocrossref = NULL;
7406
7407 /* After setting the size of the last section, set '.' to end of the
7408 overlay region. */
7409 if (overlay_list != NULL)
7410 overlay_list->os->update_dot_tree
7411 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max));
7412
7413 l = overlay_list;
7414 while (l != NULL)
7415 {
7416 struct overlay_list *next;
7417
7418 if (fill != NULL && l->os->fill == NULL)
7419 l->os->fill = fill;
7420
7421 l->os->region = region;
7422 l->os->lma_region = lma_region;
7423
7424 /* The first section has the load address specified in the
7425 OVERLAY statement. The rest are worked out from that.
7426 The base address is not needed (and should be null) if
7427 an LMA region was specified. */
7428 if (l->next == 0)
7429 {
7430 l->os->load_base = lma_expr;
7431 l->os->sectype = normal_section;
7432 }
7433 if (phdrs != NULL && l->os->phdrs == NULL)
7434 l->os->phdrs = phdrs;
7435
7436 if (nocrossrefs)
7437 {
7438 lang_nocrossref_type *nc;
7439
7440 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7441 nc->name = l->os->name;
7442 nc->next = nocrossref;
7443 nocrossref = nc;
7444 }
7445
7446 next = l->next;
7447 free (l);
7448 l = next;
7449 }
7450
7451 if (nocrossref != NULL)
7452 lang_add_nocrossref (nocrossref);
7453
7454 overlay_vma = NULL;
7455 overlay_list = NULL;
7456 overlay_max = NULL;
7457 }
7458 \f
7459 /* Version handling. This is only useful for ELF. */
7460
7461 /* This global variable holds the version tree that we build. */
7462
7463 struct bfd_elf_version_tree *lang_elf_version_info;
7464
7465 /* If PREV is NULL, return first version pattern matching particular symbol.
7466 If PREV is non-NULL, return first version pattern matching particular
7467 symbol after PREV (previously returned by lang_vers_match). */
7468
7469 static struct bfd_elf_version_expr *
7470 lang_vers_match (struct bfd_elf_version_expr_head *head,
7471 struct bfd_elf_version_expr *prev,
7472 const char *sym)
7473 {
7474 const char *c_sym;
7475 const char *cxx_sym = sym;
7476 const char *java_sym = sym;
7477 struct bfd_elf_version_expr *expr = NULL;
7478 enum demangling_styles curr_style;
7479
7480 curr_style = CURRENT_DEMANGLING_STYLE;
7481 cplus_demangle_set_style (no_demangling);
7482 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
7483 if (!c_sym)
7484 c_sym = sym;
7485 cplus_demangle_set_style (curr_style);
7486
7487 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7488 {
7489 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
7490 DMGL_PARAMS | DMGL_ANSI);
7491 if (!cxx_sym)
7492 cxx_sym = sym;
7493 }
7494 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7495 {
7496 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
7497 if (!java_sym)
7498 java_sym = sym;
7499 }
7500
7501 if (head->htab && (prev == NULL || prev->literal))
7502 {
7503 struct bfd_elf_version_expr e;
7504
7505 switch (prev ? prev->mask : 0)
7506 {
7507 case 0:
7508 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7509 {
7510 e.pattern = c_sym;
7511 expr = (struct bfd_elf_version_expr *)
7512 htab_find ((htab_t) head->htab, &e);
7513 while (expr && strcmp (expr->pattern, c_sym) == 0)
7514 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7515 goto out_ret;
7516 else
7517 expr = expr->next;
7518 }
7519 /* Fallthrough */
7520 case BFD_ELF_VERSION_C_TYPE:
7521 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7522 {
7523 e.pattern = cxx_sym;
7524 expr = (struct bfd_elf_version_expr *)
7525 htab_find ((htab_t) head->htab, &e);
7526 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7527 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7528 goto out_ret;
7529 else
7530 expr = expr->next;
7531 }
7532 /* Fallthrough */
7533 case BFD_ELF_VERSION_CXX_TYPE:
7534 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7535 {
7536 e.pattern = java_sym;
7537 expr = (struct bfd_elf_version_expr *)
7538 htab_find ((htab_t) head->htab, &e);
7539 while (expr && strcmp (expr->pattern, java_sym) == 0)
7540 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7541 goto out_ret;
7542 else
7543 expr = expr->next;
7544 }
7545 /* Fallthrough */
7546 default:
7547 break;
7548 }
7549 }
7550
7551 /* Finally, try the wildcards. */
7552 if (prev == NULL || prev->literal)
7553 expr = head->remaining;
7554 else
7555 expr = prev->next;
7556 for (; expr; expr = expr->next)
7557 {
7558 const char *s;
7559
7560 if (!expr->pattern)
7561 continue;
7562
7563 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7564 break;
7565
7566 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7567 s = java_sym;
7568 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7569 s = cxx_sym;
7570 else
7571 s = c_sym;
7572 if (fnmatch (expr->pattern, s, 0) == 0)
7573 break;
7574 }
7575
7576 out_ret:
7577 if (c_sym != sym)
7578 free ((char *) c_sym);
7579 if (cxx_sym != sym)
7580 free ((char *) cxx_sym);
7581 if (java_sym != sym)
7582 free ((char *) java_sym);
7583 return expr;
7584 }
7585
7586 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7587 return a pointer to the symbol name with any backslash quotes removed. */
7588
7589 static const char *
7590 realsymbol (const char *pattern)
7591 {
7592 const char *p;
7593 bfd_boolean changed = FALSE, backslash = FALSE;
7594 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7595
7596 for (p = pattern, s = symbol; *p != '\0'; ++p)
7597 {
7598 /* It is a glob pattern only if there is no preceding
7599 backslash. */
7600 if (backslash)
7601 {
7602 /* Remove the preceding backslash. */
7603 *(s - 1) = *p;
7604 backslash = FALSE;
7605 changed = TRUE;
7606 }
7607 else
7608 {
7609 if (*p == '?' || *p == '*' || *p == '[')
7610 {
7611 free (symbol);
7612 return NULL;
7613 }
7614
7615 *s++ = *p;
7616 backslash = *p == '\\';
7617 }
7618 }
7619
7620 if (changed)
7621 {
7622 *s = '\0';
7623 return symbol;
7624 }
7625 else
7626 {
7627 free (symbol);
7628 return pattern;
7629 }
7630 }
7631
7632 /* This is called for each variable name or match expression. NEW_NAME is
7633 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7634 pattern to be matched against symbol names. */
7635
7636 struct bfd_elf_version_expr *
7637 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7638 const char *new_name,
7639 const char *lang,
7640 bfd_boolean literal_p)
7641 {
7642 struct bfd_elf_version_expr *ret;
7643
7644 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7645 ret->next = orig;
7646 ret->symver = 0;
7647 ret->script = 0;
7648 ret->literal = TRUE;
7649 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7650 if (ret->pattern == NULL)
7651 {
7652 ret->pattern = new_name;
7653 ret->literal = FALSE;
7654 }
7655
7656 if (lang == NULL || strcasecmp (lang, "C") == 0)
7657 ret->mask = BFD_ELF_VERSION_C_TYPE;
7658 else if (strcasecmp (lang, "C++") == 0)
7659 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7660 else if (strcasecmp (lang, "Java") == 0)
7661 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7662 else
7663 {
7664 einfo (_("%X%P: unknown language `%s' in version information\n"),
7665 lang);
7666 ret->mask = BFD_ELF_VERSION_C_TYPE;
7667 }
7668
7669 return ldemul_new_vers_pattern (ret);
7670 }
7671
7672 /* This is called for each set of variable names and match
7673 expressions. */
7674
7675 struct bfd_elf_version_tree *
7676 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7677 struct bfd_elf_version_expr *locals)
7678 {
7679 struct bfd_elf_version_tree *ret;
7680
7681 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7682 ret->globals.list = globals;
7683 ret->locals.list = locals;
7684 ret->match = lang_vers_match;
7685 ret->name_indx = (unsigned int) -1;
7686 return ret;
7687 }
7688
7689 /* This static variable keeps track of version indices. */
7690
7691 static int version_index;
7692
7693 static hashval_t
7694 version_expr_head_hash (const void *p)
7695 {
7696 const struct bfd_elf_version_expr *e =
7697 (const struct bfd_elf_version_expr *) p;
7698
7699 return htab_hash_string (e->pattern);
7700 }
7701
7702 static int
7703 version_expr_head_eq (const void *p1, const void *p2)
7704 {
7705 const struct bfd_elf_version_expr *e1 =
7706 (const struct bfd_elf_version_expr *) p1;
7707 const struct bfd_elf_version_expr *e2 =
7708 (const struct bfd_elf_version_expr *) p2;
7709
7710 return strcmp (e1->pattern, e2->pattern) == 0;
7711 }
7712
7713 static void
7714 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7715 {
7716 size_t count = 0;
7717 struct bfd_elf_version_expr *e, *next;
7718 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7719
7720 for (e = head->list; e; e = e->next)
7721 {
7722 if (e->literal)
7723 count++;
7724 head->mask |= e->mask;
7725 }
7726
7727 if (count)
7728 {
7729 head->htab = htab_create (count * 2, version_expr_head_hash,
7730 version_expr_head_eq, NULL);
7731 list_loc = &head->list;
7732 remaining_loc = &head->remaining;
7733 for (e = head->list; e; e = next)
7734 {
7735 next = e->next;
7736 if (!e->literal)
7737 {
7738 *remaining_loc = e;
7739 remaining_loc = &e->next;
7740 }
7741 else
7742 {
7743 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
7744
7745 if (*loc)
7746 {
7747 struct bfd_elf_version_expr *e1, *last;
7748
7749 e1 = (struct bfd_elf_version_expr *) *loc;
7750 last = NULL;
7751 do
7752 {
7753 if (e1->mask == e->mask)
7754 {
7755 last = NULL;
7756 break;
7757 }
7758 last = e1;
7759 e1 = e1->next;
7760 }
7761 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
7762
7763 if (last == NULL)
7764 {
7765 /* This is a duplicate. */
7766 /* FIXME: Memory leak. Sometimes pattern is not
7767 xmalloced alone, but in larger chunk of memory. */
7768 /* free (e->pattern); */
7769 free (e);
7770 }
7771 else
7772 {
7773 e->next = last->next;
7774 last->next = e;
7775 }
7776 }
7777 else
7778 {
7779 *loc = e;
7780 *list_loc = e;
7781 list_loc = &e->next;
7782 }
7783 }
7784 }
7785 *remaining_loc = NULL;
7786 *list_loc = head->remaining;
7787 }
7788 else
7789 head->remaining = head->list;
7790 }
7791
7792 /* This is called when we know the name and dependencies of the
7793 version. */
7794
7795 void
7796 lang_register_vers_node (const char *name,
7797 struct bfd_elf_version_tree *version,
7798 struct bfd_elf_version_deps *deps)
7799 {
7800 struct bfd_elf_version_tree *t, **pp;
7801 struct bfd_elf_version_expr *e1;
7802
7803 if (name == NULL)
7804 name = "";
7805
7806 if ((name[0] == '\0' && lang_elf_version_info != NULL)
7807 || (lang_elf_version_info && lang_elf_version_info->name[0] == '\0'))
7808 {
7809 einfo (_("%X%P: anonymous version tag cannot be combined"
7810 " with other version tags\n"));
7811 free (version);
7812 return;
7813 }
7814
7815 /* Make sure this node has a unique name. */
7816 for (t = lang_elf_version_info; t != NULL; t = t->next)
7817 if (strcmp (t->name, name) == 0)
7818 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7819
7820 lang_finalize_version_expr_head (&version->globals);
7821 lang_finalize_version_expr_head (&version->locals);
7822
7823 /* Check the global and local match names, and make sure there
7824 aren't any duplicates. */
7825
7826 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7827 {
7828 for (t = lang_elf_version_info; t != NULL; t = t->next)
7829 {
7830 struct bfd_elf_version_expr *e2;
7831
7832 if (t->locals.htab && e1->literal)
7833 {
7834 e2 = (struct bfd_elf_version_expr *)
7835 htab_find ((htab_t) t->locals.htab, e1);
7836 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7837 {
7838 if (e1->mask == e2->mask)
7839 einfo (_("%X%P: duplicate expression `%s'"
7840 " in version information\n"), e1->pattern);
7841 e2 = e2->next;
7842 }
7843 }
7844 else if (!e1->literal)
7845 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7846 if (strcmp (e1->pattern, e2->pattern) == 0
7847 && e1->mask == e2->mask)
7848 einfo (_("%X%P: duplicate expression `%s'"
7849 " in version information\n"), e1->pattern);
7850 }
7851 }
7852
7853 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7854 {
7855 for (t = lang_elf_version_info; t != NULL; t = t->next)
7856 {
7857 struct bfd_elf_version_expr *e2;
7858
7859 if (t->globals.htab && e1->literal)
7860 {
7861 e2 = (struct bfd_elf_version_expr *)
7862 htab_find ((htab_t) t->globals.htab, e1);
7863 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7864 {
7865 if (e1->mask == e2->mask)
7866 einfo (_("%X%P: duplicate expression `%s'"
7867 " in version information\n"),
7868 e1->pattern);
7869 e2 = e2->next;
7870 }
7871 }
7872 else if (!e1->literal)
7873 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7874 if (strcmp (e1->pattern, e2->pattern) == 0
7875 && e1->mask == e2->mask)
7876 einfo (_("%X%P: duplicate expression `%s'"
7877 " in version information\n"), e1->pattern);
7878 }
7879 }
7880
7881 version->deps = deps;
7882 version->name = name;
7883 if (name[0] != '\0')
7884 {
7885 ++version_index;
7886 version->vernum = version_index;
7887 }
7888 else
7889 version->vernum = 0;
7890
7891 for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next)
7892 ;
7893 *pp = version;
7894 }
7895
7896 /* This is called when we see a version dependency. */
7897
7898 struct bfd_elf_version_deps *
7899 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7900 {
7901 struct bfd_elf_version_deps *ret;
7902 struct bfd_elf_version_tree *t;
7903
7904 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
7905 ret->next = list;
7906
7907 for (t = lang_elf_version_info; t != NULL; t = t->next)
7908 {
7909 if (strcmp (t->name, name) == 0)
7910 {
7911 ret->version_needed = t;
7912 return ret;
7913 }
7914 }
7915
7916 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7917
7918 ret->version_needed = NULL;
7919 return ret;
7920 }
7921
7922 static void
7923 lang_do_version_exports_section (void)
7924 {
7925 struct bfd_elf_version_expr *greg = NULL, *lreg;
7926
7927 LANG_FOR_EACH_INPUT_STATEMENT (is)
7928 {
7929 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7930 char *contents, *p;
7931 bfd_size_type len;
7932
7933 if (sec == NULL)
7934 continue;
7935
7936 len = sec->size;
7937 contents = (char *) xmalloc (len);
7938 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7939 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7940
7941 p = contents;
7942 while (p < contents + len)
7943 {
7944 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7945 p = strchr (p, '\0') + 1;
7946 }
7947
7948 /* Do not free the contents, as we used them creating the regex. */
7949
7950 /* Do not include this section in the link. */
7951 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7952 }
7953
7954 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7955 lang_register_vers_node (command_line.version_exports_section,
7956 lang_new_vers_node (greg, lreg), NULL);
7957 }
7958
7959 void
7960 lang_add_unique (const char *name)
7961 {
7962 struct unique_sections *ent;
7963
7964 for (ent = unique_section_list; ent; ent = ent->next)
7965 if (strcmp (ent->name, name) == 0)
7966 return;
7967
7968 ent = (struct unique_sections *) xmalloc (sizeof *ent);
7969 ent->name = xstrdup (name);
7970 ent->next = unique_section_list;
7971 unique_section_list = ent;
7972 }
7973
7974 /* Append the list of dynamic symbols to the existing one. */
7975
7976 void
7977 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7978 {
7979 if (link_info.dynamic_list)
7980 {
7981 struct bfd_elf_version_expr *tail;
7982 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7983 ;
7984 tail->next = link_info.dynamic_list->head.list;
7985 link_info.dynamic_list->head.list = dynamic;
7986 }
7987 else
7988 {
7989 struct bfd_elf_dynamic_list *d;
7990
7991 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
7992 d->head.list = dynamic;
7993 d->match = lang_vers_match;
7994 link_info.dynamic_list = d;
7995 }
7996 }
7997
7998 /* Append the list of C++ typeinfo dynamic symbols to the existing
7999 one. */
8000
8001 void
8002 lang_append_dynamic_list_cpp_typeinfo (void)
8003 {
8004 const char * symbols [] =
8005 {
8006 "typeinfo name for*",
8007 "typeinfo for*"
8008 };
8009 struct bfd_elf_version_expr *dynamic = NULL;
8010 unsigned int i;
8011
8012 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8013 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8014 FALSE);
8015
8016 lang_append_dynamic_list (dynamic);
8017 }
8018
8019 /* Append the list of C++ operator new and delete dynamic symbols to the
8020 existing one. */
8021
8022 void
8023 lang_append_dynamic_list_cpp_new (void)
8024 {
8025 const char * symbols [] =
8026 {
8027 "operator new*",
8028 "operator delete*"
8029 };
8030 struct bfd_elf_version_expr *dynamic = NULL;
8031 unsigned int i;
8032
8033 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8034 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8035 FALSE);
8036
8037 lang_append_dynamic_list (dynamic);
8038 }
8039
8040 /* Scan a space and/or comma separated string of features. */
8041
8042 void
8043 lang_ld_feature (char *str)
8044 {
8045 char *p, *q;
8046
8047 p = str;
8048 while (*p)
8049 {
8050 char sep;
8051 while (*p == ',' || ISSPACE (*p))
8052 ++p;
8053 if (!*p)
8054 break;
8055 q = p + 1;
8056 while (*q && *q != ',' && !ISSPACE (*q))
8057 ++q;
8058 sep = *q;
8059 *q = 0;
8060 if (strcasecmp (p, "SANE_EXPR") == 0)
8061 config.sane_expr = TRUE;
8062 else
8063 einfo (_("%X%P: unknown feature `%s'\n"), p);
8064 *q = sep;
8065 p = q;
8066 }
8067 }
This page took 0.28548 seconds and 5 git commands to generate.