elf: Allow mixed ordered/unordered inputs for non-relocatable link
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2021 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #if BFD_SUPPORTS_PLUGINS
46 #include "plugin.h"
47 #endif /* BFD_SUPPORTS_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bfd_boolean map_head_is_link_order = FALSE;
67 static lang_output_section_statement_type *default_common_section;
68 static bfd_boolean map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 /* Header for list of statements corresponding to any files involved in the
73 link, either specified from the command-line or added implicitely (eg.
74 archive member used to resolved undefined symbol, wildcard statement from
75 linker script, etc.). Next pointer is in next field of a
76 lang_statement_header_type (reached via header field in a
77 lang_statement_union). */
78 static lang_statement_list_type statement_list;
79 static lang_statement_list_type *stat_save[10];
80 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
81 static struct unique_sections *unique_section_list;
82 static struct asneeded_minfo *asneeded_list_head;
83 static unsigned int opb_shift = 0;
84
85 /* Forward declarations. */
86 static void exp_init_os (etree_type *);
87 static lang_input_statement_type *lookup_name (const char *);
88 static void insert_undefined (const char *);
89 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
90 static void print_statement (lang_statement_union_type *,
91 lang_output_section_statement_type *);
92 static void print_statement_list (lang_statement_union_type *,
93 lang_output_section_statement_type *);
94 static void print_statements (void);
95 static void print_input_section (asection *, bfd_boolean);
96 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
97 static void lang_record_phdrs (void);
98 static void lang_do_version_exports_section (void);
99 static void lang_finalize_version_expr_head
100 (struct bfd_elf_version_expr_head *);
101 static void lang_do_memory_regions (bfd_boolean);
102
103 /* Exported variables. */
104 const char *output_target;
105 lang_output_section_statement_type *abs_output_section;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_elf_dynamic_list **current_dynamic_list_p;
122 struct bfd_sym_chain entry_symbol = { NULL, NULL };
123 const char *entry_section = ".text";
124 struct lang_input_statement_flags input_flags;
125 bfd_boolean entry_from_cmdline;
126 bfd_boolean lang_has_input_file = FALSE;
127 bfd_boolean had_output_filename = FALSE;
128 bfd_boolean lang_float_flag = FALSE;
129 bfd_boolean delete_output_file_on_failure = FALSE;
130 struct lang_phdr *lang_phdr_list;
131 struct lang_nocrossrefs *nocrossref_list;
132 struct asneeded_minfo **asneeded_list_tail;
133 #ifdef ENABLE_LIBCTF
134 static ctf_dict_t *ctf_output;
135 #endif
136
137 /* Functions that traverse the linker script and might evaluate
138 DEFINED() need to increment this at the start of the traversal. */
139 int lang_statement_iteration = 0;
140
141 /* Count times through one_lang_size_sections_pass after mark phase. */
142 static int lang_sizing_iteration = 0;
143
144 /* Return TRUE if the PATTERN argument is a wildcard pattern.
145 Although backslashes are treated specially if a pattern contains
146 wildcards, we do not consider the mere presence of a backslash to
147 be enough to cause the pattern to be treated as a wildcard.
148 That lets us handle DOS filenames more naturally. */
149 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
150
151 #define new_stat(x, y) \
152 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
153
154 #define outside_section_address(q) \
155 ((q)->output_offset + (q)->output_section->vma)
156
157 #define outside_symbol_address(q) \
158 ((q)->value + outside_section_address (q->section))
159
160 /* CTF sections smaller than this are not compressed: compression of
161 dictionaries this small doesn't gain much, and this lets consumers mmap the
162 sections directly out of the ELF file and use them with no decompression
163 overhead if they want to. */
164 #define CTF_COMPRESSION_THRESHOLD 4096
165
166 void *
167 stat_alloc (size_t size)
168 {
169 return obstack_alloc (&stat_obstack, size);
170 }
171
172 static int
173 name_match (const char *pattern, const char *name)
174 {
175 if (wildcardp (pattern))
176 return fnmatch (pattern, name, 0);
177 return strcmp (pattern, name);
178 }
179
180 static char *
181 ldirname (const char *name)
182 {
183 const char *base = lbasename (name);
184 char *dirname;
185
186 while (base > name && IS_DIR_SEPARATOR (base[-1]))
187 --base;
188 if (base == name)
189 return strdup (".");
190 dirname = strdup (name);
191 dirname[base - name] = '\0';
192 return dirname;
193 }
194
195 /* If PATTERN is of the form archive:file, return a pointer to the
196 separator. If not, return NULL. */
197
198 static char *
199 archive_path (const char *pattern)
200 {
201 char *p = NULL;
202
203 if (link_info.path_separator == 0)
204 return p;
205
206 p = strchr (pattern, link_info.path_separator);
207 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
208 if (p == NULL || link_info.path_separator != ':')
209 return p;
210
211 /* Assume a match on the second char is part of drive specifier,
212 as in "c:\silly.dos". */
213 if (p == pattern + 1 && ISALPHA (*pattern))
214 p = strchr (p + 1, link_info.path_separator);
215 #endif
216 return p;
217 }
218
219 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
220 return whether F matches FILE_SPEC. */
221
222 static bfd_boolean
223 input_statement_is_archive_path (const char *file_spec, char *sep,
224 lang_input_statement_type *f)
225 {
226 bfd_boolean match = FALSE;
227
228 if ((*(sep + 1) == 0
229 || name_match (sep + 1, f->filename) == 0)
230 && ((sep != file_spec)
231 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
232 {
233 match = TRUE;
234
235 if (sep != file_spec)
236 {
237 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
238 *sep = 0;
239 match = name_match (file_spec, aname) == 0;
240 *sep = link_info.path_separator;
241 }
242 }
243 return match;
244 }
245
246 static bfd_boolean
247 unique_section_p (const asection *sec,
248 const lang_output_section_statement_type *os)
249 {
250 struct unique_sections *unam;
251 const char *secnam;
252
253 if (!link_info.resolve_section_groups
254 && sec->owner != NULL
255 && bfd_is_group_section (sec->owner, sec))
256 return !(os != NULL
257 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
258
259 secnam = sec->name;
260 for (unam = unique_section_list; unam; unam = unam->next)
261 if (name_match (unam->name, secnam) == 0)
262 return TRUE;
263
264 return FALSE;
265 }
266
267 /* Generic traversal routines for finding matching sections. */
268
269 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
270 false. */
271
272 static bfd_boolean
273 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
274 lang_input_statement_type *file)
275 {
276 struct name_list *list_tmp;
277
278 for (list_tmp = exclude_list;
279 list_tmp;
280 list_tmp = list_tmp->next)
281 {
282 char *p = archive_path (list_tmp->name);
283
284 if (p != NULL)
285 {
286 if (input_statement_is_archive_path (list_tmp->name, p, file))
287 return TRUE;
288 }
289
290 else if (name_match (list_tmp->name, file->filename) == 0)
291 return TRUE;
292
293 /* FIXME: Perhaps remove the following at some stage? Matching
294 unadorned archives like this was never documented and has
295 been superceded by the archive:path syntax. */
296 else if (file->the_bfd != NULL
297 && file->the_bfd->my_archive != NULL
298 && name_match (list_tmp->name,
299 bfd_get_filename (file->the_bfd->my_archive)) == 0)
300 return TRUE;
301 }
302
303 return FALSE;
304 }
305
306 /* Try processing a section against a wildcard. This just calls
307 the callback unless the filename exclusion list is present
308 and excludes the file. It's hardly ever present so this
309 function is very fast. */
310
311 static void
312 walk_wild_consider_section (lang_wild_statement_type *ptr,
313 lang_input_statement_type *file,
314 asection *s,
315 struct wildcard_list *sec,
316 callback_t callback,
317 void *data)
318 {
319 /* Don't process sections from files which were excluded. */
320 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
321 return;
322
323 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
324 }
325
326 /* Lowest common denominator routine that can handle everything correctly,
327 but slowly. */
328
329 static void
330 walk_wild_section_general (lang_wild_statement_type *ptr,
331 lang_input_statement_type *file,
332 callback_t callback,
333 void *data)
334 {
335 asection *s;
336 struct wildcard_list *sec;
337
338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
339 {
340 sec = ptr->section_list;
341 if (sec == NULL)
342 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
343
344 while (sec != NULL)
345 {
346 bfd_boolean skip = FALSE;
347
348 if (sec->spec.name != NULL)
349 {
350 const char *sname = bfd_section_name (s);
351
352 skip = name_match (sec->spec.name, sname) != 0;
353 }
354
355 if (!skip)
356 walk_wild_consider_section (ptr, file, s, sec, callback, data);
357
358 sec = sec->next;
359 }
360 }
361 }
362
363 /* Routines to find a single section given its name. If there's more
364 than one section with that name, we report that. */
365
366 typedef struct
367 {
368 asection *found_section;
369 bfd_boolean multiple_sections_found;
370 } section_iterator_callback_data;
371
372 static bfd_boolean
373 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
374 {
375 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
376
377 if (d->found_section != NULL)
378 {
379 d->multiple_sections_found = TRUE;
380 return TRUE;
381 }
382
383 d->found_section = s;
384 return FALSE;
385 }
386
387 static asection *
388 find_section (lang_input_statement_type *file,
389 struct wildcard_list *sec,
390 bfd_boolean *multiple_sections_found)
391 {
392 section_iterator_callback_data cb_data = { NULL, FALSE };
393
394 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
395 section_iterator_callback, &cb_data);
396 *multiple_sections_found = cb_data.multiple_sections_found;
397 return cb_data.found_section;
398 }
399
400 /* Code for handling simple wildcards without going through fnmatch,
401 which can be expensive because of charset translations etc. */
402
403 /* A simple wild is a literal string followed by a single '*',
404 where the literal part is at least 4 characters long. */
405
406 static bfd_boolean
407 is_simple_wild (const char *name)
408 {
409 size_t len = strcspn (name, "*?[");
410 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
411 }
412
413 static bfd_boolean
414 match_simple_wild (const char *pattern, const char *name)
415 {
416 /* The first four characters of the pattern are guaranteed valid
417 non-wildcard characters. So we can go faster. */
418 if (pattern[0] != name[0] || pattern[1] != name[1]
419 || pattern[2] != name[2] || pattern[3] != name[3])
420 return FALSE;
421
422 pattern += 4;
423 name += 4;
424 while (*pattern != '*')
425 if (*name++ != *pattern++)
426 return FALSE;
427
428 return TRUE;
429 }
430
431 /* Return the numerical value of the init_priority attribute from
432 section name NAME. */
433
434 static int
435 get_init_priority (const asection *sec)
436 {
437 const char *name = bfd_section_name (sec);
438 const char *dot;
439
440 /* GCC uses the following section names for the init_priority
441 attribute with numerical values 101 to 65535 inclusive. A
442 lower value means a higher priority.
443
444 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
445 decimal numerical value of the init_priority attribute.
446 The order of execution in .init_array is forward and
447 .fini_array is backward.
448 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
449 decimal numerical value of the init_priority attribute.
450 The order of execution in .ctors is backward and .dtors
451 is forward.
452
453 .init_array.NNNNN sections would normally be placed in an output
454 .init_array section, .fini_array.NNNNN in .fini_array,
455 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
456 we should sort by increasing number (and could just use
457 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
458 being placed in .init_array (which may also contain
459 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
460 placed in .fini_array then we need to extract the init_priority
461 attribute and sort on that. */
462 dot = strrchr (name, '.');
463 if (dot != NULL && ISDIGIT (dot[1]))
464 {
465 char *end;
466 unsigned long init_priority = strtoul (dot + 1, &end, 10);
467 if (*end == 0)
468 {
469 if (dot == name + 6
470 && (strncmp (name, ".ctors", 6) == 0
471 || strncmp (name, ".dtors", 6) == 0))
472 init_priority = 65535 - init_priority;
473 if (init_priority <= INT_MAX)
474 return init_priority;
475 }
476 }
477 return -1;
478 }
479
480 /* Compare sections ASEC and BSEC according to SORT. */
481
482 static int
483 compare_section (sort_type sort, asection *asec, asection *bsec)
484 {
485 int ret;
486 int a_priority, b_priority;
487
488 switch (sort)
489 {
490 default:
491 abort ();
492
493 case by_init_priority:
494 a_priority = get_init_priority (asec);
495 b_priority = get_init_priority (bsec);
496 if (a_priority < 0 || b_priority < 0)
497 goto sort_by_name;
498 ret = a_priority - b_priority;
499 if (ret)
500 break;
501 else
502 goto sort_by_name;
503
504 case by_alignment_name:
505 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
506 if (ret)
507 break;
508 /* Fall through. */
509
510 case by_name:
511 sort_by_name:
512 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
513 break;
514
515 case by_name_alignment:
516 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
517 if (ret)
518 break;
519 /* Fall through. */
520
521 case by_alignment:
522 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
523 break;
524 }
525
526 return ret;
527 }
528
529 /* Build a Binary Search Tree to sort sections, unlike insertion sort
530 used in wild_sort(). BST is considerably faster if the number of
531 of sections are large. */
532
533 static lang_section_bst_type **
534 wild_sort_fast (lang_wild_statement_type *wild,
535 struct wildcard_list *sec,
536 lang_input_statement_type *file ATTRIBUTE_UNUSED,
537 asection *section)
538 {
539 lang_section_bst_type **tree;
540
541 tree = &wild->tree;
542 if (!wild->filenames_sorted
543 && (sec == NULL || sec->spec.sorted == none))
544 {
545 /* Append at the right end of tree. */
546 while (*tree)
547 tree = &((*tree)->right);
548 return tree;
549 }
550
551 while (*tree)
552 {
553 /* Find the correct node to append this section. */
554 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
555 tree = &((*tree)->left);
556 else
557 tree = &((*tree)->right);
558 }
559
560 return tree;
561 }
562
563 /* Use wild_sort_fast to build a BST to sort sections. */
564
565 static void
566 output_section_callback_fast (lang_wild_statement_type *ptr,
567 struct wildcard_list *sec,
568 asection *section,
569 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
570 lang_input_statement_type *file,
571 void *output)
572 {
573 lang_section_bst_type *node;
574 lang_section_bst_type **tree;
575 lang_output_section_statement_type *os;
576
577 os = (lang_output_section_statement_type *) output;
578
579 if (unique_section_p (section, os))
580 return;
581
582 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
583 node->left = 0;
584 node->right = 0;
585 node->section = section;
586
587 tree = wild_sort_fast (ptr, sec, file, section);
588 if (tree != NULL)
589 *tree = node;
590 }
591
592 /* Convert a sorted sections' BST back to list form. */
593
594 static void
595 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
596 lang_section_bst_type *tree,
597 void *output)
598 {
599 if (tree->left)
600 output_section_callback_tree_to_list (ptr, tree->left, output);
601
602 lang_add_section (&ptr->children, tree->section, NULL,
603 (lang_output_section_statement_type *) output);
604
605 if (tree->right)
606 output_section_callback_tree_to_list (ptr, tree->right, output);
607
608 free (tree);
609 }
610
611 /* Specialized, optimized routines for handling different kinds of
612 wildcards */
613
614 static void
615 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 /* We can just do a hash lookup for the section with the right name.
621 But if that lookup discovers more than one section with the name
622 (should be rare), we fall back to the general algorithm because
623 we would otherwise have to sort the sections to make sure they
624 get processed in the bfd's order. */
625 bfd_boolean multiple_sections_found;
626 struct wildcard_list *sec0 = ptr->handler_data[0];
627 asection *s0 = find_section (file, sec0, &multiple_sections_found);
628
629 if (multiple_sections_found)
630 walk_wild_section_general (ptr, file, callback, data);
631 else if (s0)
632 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
633 }
634
635 static void
636 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
637 lang_input_statement_type *file,
638 callback_t callback,
639 void *data)
640 {
641 asection *s;
642 struct wildcard_list *wildsec0 = ptr->handler_data[0];
643
644 for (s = file->the_bfd->sections; s != NULL; s = s->next)
645 {
646 const char *sname = bfd_section_name (s);
647 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
648
649 if (!skip)
650 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
651 }
652 }
653
654 static void
655 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
656 lang_input_statement_type *file,
657 callback_t callback,
658 void *data)
659 {
660 asection *s;
661 struct wildcard_list *sec0 = ptr->handler_data[0];
662 struct wildcard_list *wildsec1 = ptr->handler_data[1];
663 bfd_boolean multiple_sections_found;
664 asection *s0 = find_section (file, sec0, &multiple_sections_found);
665
666 if (multiple_sections_found)
667 {
668 walk_wild_section_general (ptr, file, callback, data);
669 return;
670 }
671
672 /* Note that if the section was not found, s0 is NULL and
673 we'll simply never succeed the s == s0 test below. */
674 for (s = file->the_bfd->sections; s != NULL; s = s->next)
675 {
676 /* Recall that in this code path, a section cannot satisfy more
677 than one spec, so if s == s0 then it cannot match
678 wildspec1. */
679 if (s == s0)
680 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
681 else
682 {
683 const char *sname = bfd_section_name (s);
684 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
685
686 if (!skip)
687 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
688 data);
689 }
690 }
691 }
692
693 static void
694 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
695 lang_input_statement_type *file,
696 callback_t callback,
697 void *data)
698 {
699 asection *s;
700 struct wildcard_list *sec0 = ptr->handler_data[0];
701 struct wildcard_list *wildsec1 = ptr->handler_data[1];
702 struct wildcard_list *wildsec2 = ptr->handler_data[2];
703 bfd_boolean multiple_sections_found;
704 asection *s0 = find_section (file, sec0, &multiple_sections_found);
705
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 {
718 const char *sname = bfd_section_name (s);
719 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
720
721 if (!skip)
722 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
723 else
724 {
725 skip = !match_simple_wild (wildsec2->spec.name, sname);
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 }
730 }
731 }
732 }
733
734 static void
735 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
736 lang_input_statement_type *file,
737 callback_t callback,
738 void *data)
739 {
740 asection *s;
741 struct wildcard_list *sec0 = ptr->handler_data[0];
742 struct wildcard_list *sec1 = ptr->handler_data[1];
743 struct wildcard_list *wildsec2 = ptr->handler_data[2];
744 struct wildcard_list *wildsec3 = ptr->handler_data[3];
745 bfd_boolean multiple_sections_found;
746 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
747
748 if (multiple_sections_found)
749 {
750 walk_wild_section_general (ptr, file, callback, data);
751 return;
752 }
753
754 s1 = find_section (file, sec1, &multiple_sections_found);
755 if (multiple_sections_found)
756 {
757 walk_wild_section_general (ptr, file, callback, data);
758 return;
759 }
760
761 for (s = file->the_bfd->sections; s != NULL; s = s->next)
762 {
763 if (s == s0)
764 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
765 else
766 if (s == s1)
767 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
768 else
769 {
770 const char *sname = bfd_section_name (s);
771 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
772 sname);
773
774 if (!skip)
775 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
776 data);
777 else
778 {
779 skip = !match_simple_wild (wildsec3->spec.name, sname);
780 if (!skip)
781 walk_wild_consider_section (ptr, file, s, wildsec3,
782 callback, data);
783 }
784 }
785 }
786 }
787
788 static void
789 walk_wild_section (lang_wild_statement_type *ptr,
790 lang_input_statement_type *file,
791 callback_t callback,
792 void *data)
793 {
794 if (file->flags.just_syms)
795 return;
796
797 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
798 }
799
800 /* Returns TRUE when name1 is a wildcard spec that might match
801 something name2 can match. We're conservative: we return FALSE
802 only if the prefixes of name1 and name2 are different up to the
803 first wildcard character. */
804
805 static bfd_boolean
806 wild_spec_can_overlap (const char *name1, const char *name2)
807 {
808 size_t prefix1_len = strcspn (name1, "?*[");
809 size_t prefix2_len = strcspn (name2, "?*[");
810 size_t min_prefix_len;
811
812 /* Note that if there is no wildcard character, then we treat the
813 terminating 0 as part of the prefix. Thus ".text" won't match
814 ".text." or ".text.*", for example. */
815 if (name1[prefix1_len] == '\0')
816 prefix1_len++;
817 if (name2[prefix2_len] == '\0')
818 prefix2_len++;
819
820 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
821
822 return memcmp (name1, name2, min_prefix_len) == 0;
823 }
824
825 /* Select specialized code to handle various kinds of wildcard
826 statements. */
827
828 static void
829 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
830 {
831 int sec_count = 0;
832 int wild_name_count = 0;
833 struct wildcard_list *sec;
834 int signature;
835 int data_counter;
836
837 ptr->walk_wild_section_handler = walk_wild_section_general;
838 ptr->handler_data[0] = NULL;
839 ptr->handler_data[1] = NULL;
840 ptr->handler_data[2] = NULL;
841 ptr->handler_data[3] = NULL;
842 ptr->tree = NULL;
843
844 /* Count how many wildcard_specs there are, and how many of those
845 actually use wildcards in the name. Also, bail out if any of the
846 wildcard names are NULL. (Can this actually happen?
847 walk_wild_section used to test for it.) And bail out if any
848 of the wildcards are more complex than a simple string
849 ending in a single '*'. */
850 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
851 {
852 ++sec_count;
853 if (sec->spec.name == NULL)
854 return;
855 if (wildcardp (sec->spec.name))
856 {
857 ++wild_name_count;
858 if (!is_simple_wild (sec->spec.name))
859 return;
860 }
861 }
862
863 /* The zero-spec case would be easy to optimize but it doesn't
864 happen in practice. Likewise, more than 4 specs doesn't
865 happen in practice. */
866 if (sec_count == 0 || sec_count > 4)
867 return;
868
869 /* Check that no two specs can match the same section. */
870 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
871 {
872 struct wildcard_list *sec2;
873 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
874 {
875 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
876 return;
877 }
878 }
879
880 signature = (sec_count << 8) + wild_name_count;
881 switch (signature)
882 {
883 case 0x0100:
884 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
885 break;
886 case 0x0101:
887 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
888 break;
889 case 0x0201:
890 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
891 break;
892 case 0x0302:
893 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
894 break;
895 case 0x0402:
896 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
897 break;
898 default:
899 return;
900 }
901
902 /* Now fill the data array with pointers to the specs, first the
903 specs with non-wildcard names, then the specs with wildcard
904 names. It's OK to process the specs in different order from the
905 given order, because we've already determined that no section
906 will match more than one spec. */
907 data_counter = 0;
908 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
909 if (!wildcardp (sec->spec.name))
910 ptr->handler_data[data_counter++] = sec;
911 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
912 if (wildcardp (sec->spec.name))
913 ptr->handler_data[data_counter++] = sec;
914 }
915
916 /* Handle a wild statement for a single file F. */
917
918 static void
919 walk_wild_file (lang_wild_statement_type *s,
920 lang_input_statement_type *f,
921 callback_t callback,
922 void *data)
923 {
924 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
925 return;
926
927 if (f->the_bfd == NULL
928 || !bfd_check_format (f->the_bfd, bfd_archive))
929 walk_wild_section (s, f, callback, data);
930 else
931 {
932 bfd *member;
933
934 /* This is an archive file. We must map each member of the
935 archive separately. */
936 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
937 while (member != NULL)
938 {
939 /* When lookup_name is called, it will call the add_symbols
940 entry point for the archive. For each element of the
941 archive which is included, BFD will call ldlang_add_file,
942 which will set the usrdata field of the member to the
943 lang_input_statement. */
944 if (bfd_usrdata (member) != NULL)
945 walk_wild_section (s, bfd_usrdata (member), callback, data);
946
947 member = bfd_openr_next_archived_file (f->the_bfd, member);
948 }
949 }
950 }
951
952 static void
953 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
954 {
955 const char *file_spec = s->filename;
956 char *p;
957
958 if (file_spec == NULL)
959 {
960 /* Perform the iteration over all files in the list. */
961 LANG_FOR_EACH_INPUT_STATEMENT (f)
962 {
963 walk_wild_file (s, f, callback, data);
964 }
965 }
966 else if ((p = archive_path (file_spec)) != NULL)
967 {
968 LANG_FOR_EACH_INPUT_STATEMENT (f)
969 {
970 if (input_statement_is_archive_path (file_spec, p, f))
971 walk_wild_file (s, f, callback, data);
972 }
973 }
974 else if (wildcardp (file_spec))
975 {
976 LANG_FOR_EACH_INPUT_STATEMENT (f)
977 {
978 if (fnmatch (file_spec, f->filename, 0) == 0)
979 walk_wild_file (s, f, callback, data);
980 }
981 }
982 else
983 {
984 lang_input_statement_type *f;
985
986 /* Perform the iteration over a single file. */
987 f = lookup_name (file_spec);
988 if (f)
989 walk_wild_file (s, f, callback, data);
990 }
991 }
992
993 /* lang_for_each_statement walks the parse tree and calls the provided
994 function for each node, except those inside output section statements
995 with constraint set to -1. */
996
997 void
998 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
999 lang_statement_union_type *s)
1000 {
1001 for (; s != NULL; s = s->header.next)
1002 {
1003 func (s);
1004
1005 switch (s->header.type)
1006 {
1007 case lang_constructors_statement_enum:
1008 lang_for_each_statement_worker (func, constructor_list.head);
1009 break;
1010 case lang_output_section_statement_enum:
1011 if (s->output_section_statement.constraint != -1)
1012 lang_for_each_statement_worker
1013 (func, s->output_section_statement.children.head);
1014 break;
1015 case lang_wild_statement_enum:
1016 lang_for_each_statement_worker (func,
1017 s->wild_statement.children.head);
1018 break;
1019 case lang_group_statement_enum:
1020 lang_for_each_statement_worker (func,
1021 s->group_statement.children.head);
1022 break;
1023 case lang_data_statement_enum:
1024 case lang_reloc_statement_enum:
1025 case lang_object_symbols_statement_enum:
1026 case lang_output_statement_enum:
1027 case lang_target_statement_enum:
1028 case lang_input_section_enum:
1029 case lang_input_statement_enum:
1030 case lang_assignment_statement_enum:
1031 case lang_padding_statement_enum:
1032 case lang_address_statement_enum:
1033 case lang_fill_statement_enum:
1034 case lang_insert_statement_enum:
1035 break;
1036 default:
1037 FAIL ();
1038 break;
1039 }
1040 }
1041 }
1042
1043 void
1044 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1045 {
1046 lang_for_each_statement_worker (func, statement_list.head);
1047 }
1048
1049 /*----------------------------------------------------------------------*/
1050
1051 void
1052 lang_list_init (lang_statement_list_type *list)
1053 {
1054 list->head = NULL;
1055 list->tail = &list->head;
1056 }
1057
1058 static void
1059 lang_statement_append (lang_statement_list_type *list,
1060 void *element,
1061 void *field)
1062 {
1063 *(list->tail) = element;
1064 list->tail = field;
1065 }
1066
1067 void
1068 push_stat_ptr (lang_statement_list_type *new_ptr)
1069 {
1070 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1071 abort ();
1072 *stat_save_ptr++ = stat_ptr;
1073 stat_ptr = new_ptr;
1074 }
1075
1076 void
1077 pop_stat_ptr (void)
1078 {
1079 if (stat_save_ptr <= stat_save)
1080 abort ();
1081 stat_ptr = *--stat_save_ptr;
1082 }
1083
1084 /* Build a new statement node for the parse tree. */
1085
1086 static lang_statement_union_type *
1087 new_statement (enum statement_enum type,
1088 size_t size,
1089 lang_statement_list_type *list)
1090 {
1091 lang_statement_union_type *new_stmt;
1092
1093 new_stmt = stat_alloc (size);
1094 new_stmt->header.type = type;
1095 new_stmt->header.next = NULL;
1096 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1097 return new_stmt;
1098 }
1099
1100 /* Build a new input file node for the language. There are several
1101 ways in which we treat an input file, eg, we only look at symbols,
1102 or prefix it with a -l etc.
1103
1104 We can be supplied with requests for input files more than once;
1105 they may, for example be split over several lines like foo.o(.text)
1106 foo.o(.data) etc, so when asked for a file we check that we haven't
1107 got it already so we don't duplicate the bfd. */
1108
1109 static lang_input_statement_type *
1110 new_afile (const char *name,
1111 lang_input_file_enum_type file_type,
1112 const char *target,
1113 const char *from_filename)
1114 {
1115 lang_input_statement_type *p;
1116
1117 lang_has_input_file = TRUE;
1118
1119 p = new_stat (lang_input_statement, stat_ptr);
1120 memset (&p->the_bfd, 0,
1121 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1122 p->extra_search_path = NULL;
1123 p->target = target;
1124 p->flags.dynamic = input_flags.dynamic;
1125 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1126 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1127 p->flags.whole_archive = input_flags.whole_archive;
1128 p->flags.sysrooted = input_flags.sysrooted;
1129
1130 switch (file_type)
1131 {
1132 case lang_input_file_is_symbols_only_enum:
1133 p->filename = name;
1134 p->local_sym_name = name;
1135 p->flags.real = TRUE;
1136 p->flags.just_syms = TRUE;
1137 break;
1138 case lang_input_file_is_fake_enum:
1139 p->filename = name;
1140 p->local_sym_name = name;
1141 break;
1142 case lang_input_file_is_l_enum:
1143 if (name[0] == ':' && name[1] != '\0')
1144 {
1145 p->filename = name + 1;
1146 p->flags.full_name_provided = TRUE;
1147 }
1148 else
1149 p->filename = name;
1150 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1151 p->flags.maybe_archive = TRUE;
1152 p->flags.real = TRUE;
1153 p->flags.search_dirs = TRUE;
1154 break;
1155 case lang_input_file_is_marker_enum:
1156 p->filename = name;
1157 p->local_sym_name = name;
1158 p->flags.search_dirs = TRUE;
1159 break;
1160 case lang_input_file_is_search_file_enum:
1161 p->filename = name;
1162 p->local_sym_name = name;
1163 /* If name is a relative path, search the directory of the current linker
1164 script first. */
1165 if (from_filename && !IS_ABSOLUTE_PATH (name))
1166 p->extra_search_path = ldirname (from_filename);
1167 p->flags.real = TRUE;
1168 p->flags.search_dirs = TRUE;
1169 break;
1170 case lang_input_file_is_file_enum:
1171 p->filename = name;
1172 p->local_sym_name = name;
1173 p->flags.real = TRUE;
1174 break;
1175 default:
1176 FAIL ();
1177 }
1178
1179 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1180 return p;
1181 }
1182
1183 lang_input_statement_type *
1184 lang_add_input_file (const char *name,
1185 lang_input_file_enum_type file_type,
1186 const char *target)
1187 {
1188 if (name != NULL
1189 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1190 {
1191 lang_input_statement_type *ret;
1192 char *sysrooted_name
1193 = concat (ld_sysroot,
1194 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1195 (const char *) NULL);
1196
1197 /* We've now forcibly prepended the sysroot, making the input
1198 file independent of the context. Therefore, temporarily
1199 force a non-sysrooted context for this statement, so it won't
1200 get the sysroot prepended again when opened. (N.B. if it's a
1201 script, any child nodes with input files starting with "/"
1202 will be handled as "sysrooted" as they'll be found to be
1203 within the sysroot subdirectory.) */
1204 unsigned int outer_sysrooted = input_flags.sysrooted;
1205 input_flags.sysrooted = 0;
1206 ret = new_afile (sysrooted_name, file_type, target, NULL);
1207 input_flags.sysrooted = outer_sysrooted;
1208 return ret;
1209 }
1210
1211 return new_afile (name, file_type, target, current_input_file);
1212 }
1213
1214 struct out_section_hash_entry
1215 {
1216 struct bfd_hash_entry root;
1217 lang_statement_union_type s;
1218 };
1219
1220 /* The hash table. */
1221
1222 static struct bfd_hash_table output_section_statement_table;
1223
1224 /* Support routines for the hash table used by lang_output_section_find,
1225 initialize the table, fill in an entry and remove the table. */
1226
1227 static struct bfd_hash_entry *
1228 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1229 struct bfd_hash_table *table,
1230 const char *string)
1231 {
1232 lang_output_section_statement_type **nextp;
1233 struct out_section_hash_entry *ret;
1234
1235 if (entry == NULL)
1236 {
1237 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1238 sizeof (*ret));
1239 if (entry == NULL)
1240 return entry;
1241 }
1242
1243 entry = bfd_hash_newfunc (entry, table, string);
1244 if (entry == NULL)
1245 return entry;
1246
1247 ret = (struct out_section_hash_entry *) entry;
1248 memset (&ret->s, 0, sizeof (ret->s));
1249 ret->s.header.type = lang_output_section_statement_enum;
1250 ret->s.output_section_statement.subsection_alignment = NULL;
1251 ret->s.output_section_statement.section_alignment = NULL;
1252 ret->s.output_section_statement.block_value = 1;
1253 lang_list_init (&ret->s.output_section_statement.children);
1254 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1255
1256 /* For every output section statement added to the list, except the
1257 first one, lang_os_list.tail points to the "next"
1258 field of the last element of the list. */
1259 if (lang_os_list.head != NULL)
1260 ret->s.output_section_statement.prev
1261 = ((lang_output_section_statement_type *)
1262 ((char *) lang_os_list.tail
1263 - offsetof (lang_output_section_statement_type, next)));
1264
1265 /* GCC's strict aliasing rules prevent us from just casting the
1266 address, so we store the pointer in a variable and cast that
1267 instead. */
1268 nextp = &ret->s.output_section_statement.next;
1269 lang_statement_append (&lang_os_list, &ret->s, nextp);
1270 return &ret->root;
1271 }
1272
1273 static void
1274 output_section_statement_table_init (void)
1275 {
1276 if (!bfd_hash_table_init_n (&output_section_statement_table,
1277 output_section_statement_newfunc,
1278 sizeof (struct out_section_hash_entry),
1279 61))
1280 einfo (_("%F%P: can not create hash table: %E\n"));
1281 }
1282
1283 static void
1284 output_section_statement_table_free (void)
1285 {
1286 bfd_hash_table_free (&output_section_statement_table);
1287 }
1288
1289 /* Build enough state so that the parser can build its tree. */
1290
1291 void
1292 lang_init (void)
1293 {
1294 obstack_begin (&stat_obstack, 1000);
1295
1296 stat_ptr = &statement_list;
1297
1298 output_section_statement_table_init ();
1299
1300 lang_list_init (stat_ptr);
1301
1302 lang_list_init (&input_file_chain);
1303 lang_list_init (&lang_os_list);
1304 lang_list_init (&file_chain);
1305 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1306 NULL);
1307 abs_output_section =
1308 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, 1);
1309
1310 abs_output_section->bfd_section = bfd_abs_section_ptr;
1311
1312 asneeded_list_head = NULL;
1313 asneeded_list_tail = &asneeded_list_head;
1314 }
1315
1316 void
1317 lang_finish (void)
1318 {
1319 output_section_statement_table_free ();
1320 }
1321
1322 /*----------------------------------------------------------------------
1323 A region is an area of memory declared with the
1324 MEMORY { name:org=exp, len=exp ... }
1325 syntax.
1326
1327 We maintain a list of all the regions here.
1328
1329 If no regions are specified in the script, then the default is used
1330 which is created when looked up to be the entire data space.
1331
1332 If create is true we are creating a region inside a MEMORY block.
1333 In this case it is probably an error to create a region that has
1334 already been created. If we are not inside a MEMORY block it is
1335 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1336 and so we issue a warning.
1337
1338 Each region has at least one name. The first name is either
1339 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1340 alias names to an existing region within a script with
1341 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1342 region. */
1343
1344 static lang_memory_region_type *lang_memory_region_list;
1345 static lang_memory_region_type **lang_memory_region_list_tail
1346 = &lang_memory_region_list;
1347
1348 lang_memory_region_type *
1349 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1350 {
1351 lang_memory_region_name *n;
1352 lang_memory_region_type *r;
1353 lang_memory_region_type *new_region;
1354
1355 /* NAME is NULL for LMA memspecs if no region was specified. */
1356 if (name == NULL)
1357 return NULL;
1358
1359 for (r = lang_memory_region_list; r != NULL; r = r->next)
1360 for (n = &r->name_list; n != NULL; n = n->next)
1361 if (strcmp (n->name, name) == 0)
1362 {
1363 if (create)
1364 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1365 NULL, name);
1366 return r;
1367 }
1368
1369 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1370 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1371 NULL, name);
1372
1373 new_region = stat_alloc (sizeof (lang_memory_region_type));
1374
1375 new_region->name_list.name = xstrdup (name);
1376 new_region->name_list.next = NULL;
1377 new_region->next = NULL;
1378 new_region->origin_exp = NULL;
1379 new_region->origin = 0;
1380 new_region->length_exp = NULL;
1381 new_region->length = ~(bfd_size_type) 0;
1382 new_region->current = 0;
1383 new_region->last_os = NULL;
1384 new_region->flags = 0;
1385 new_region->not_flags = 0;
1386 new_region->had_full_message = FALSE;
1387
1388 *lang_memory_region_list_tail = new_region;
1389 lang_memory_region_list_tail = &new_region->next;
1390
1391 return new_region;
1392 }
1393
1394 void
1395 lang_memory_region_alias (const char *alias, const char *region_name)
1396 {
1397 lang_memory_region_name *n;
1398 lang_memory_region_type *r;
1399 lang_memory_region_type *region;
1400
1401 /* The default region must be unique. This ensures that it is not necessary
1402 to iterate through the name list if someone wants the check if a region is
1403 the default memory region. */
1404 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1405 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1406 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1407
1408 /* Look for the target region and check if the alias is not already
1409 in use. */
1410 region = NULL;
1411 for (r = lang_memory_region_list; r != NULL; r = r->next)
1412 for (n = &r->name_list; n != NULL; n = n->next)
1413 {
1414 if (region == NULL && strcmp (n->name, region_name) == 0)
1415 region = r;
1416 if (strcmp (n->name, alias) == 0)
1417 einfo (_("%F%P:%pS: error: redefinition of memory region "
1418 "alias `%s'\n"),
1419 NULL, alias);
1420 }
1421
1422 /* Check if the target region exists. */
1423 if (region == NULL)
1424 einfo (_("%F%P:%pS: error: memory region `%s' "
1425 "for alias `%s' does not exist\n"),
1426 NULL, region_name, alias);
1427
1428 /* Add alias to region name list. */
1429 n = stat_alloc (sizeof (lang_memory_region_name));
1430 n->name = xstrdup (alias);
1431 n->next = region->name_list.next;
1432 region->name_list.next = n;
1433 }
1434
1435 static lang_memory_region_type *
1436 lang_memory_default (asection *section)
1437 {
1438 lang_memory_region_type *p;
1439
1440 flagword sec_flags = section->flags;
1441
1442 /* Override SEC_DATA to mean a writable section. */
1443 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1444 sec_flags |= SEC_DATA;
1445
1446 for (p = lang_memory_region_list; p != NULL; p = p->next)
1447 {
1448 if ((p->flags & sec_flags) != 0
1449 && (p->not_flags & sec_flags) == 0)
1450 {
1451 return p;
1452 }
1453 }
1454 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1455 }
1456
1457 /* Get the output section statement directly from the userdata. */
1458
1459 lang_output_section_statement_type *
1460 lang_output_section_get (const asection *output_section)
1461 {
1462 return bfd_section_userdata (output_section);
1463 }
1464
1465 /* Find or create an output_section_statement with the given NAME.
1466 If CONSTRAINT is non-zero match one with that constraint, otherwise
1467 match any non-negative constraint. If CREATE is 0 return NULL when
1468 no match exists. If CREATE is 1, create an output_section_statement
1469 when no match exists or if CONSTRAINT is SPECIAL. If CREATE is 2,
1470 always make a new output_section_statement. */
1471
1472 lang_output_section_statement_type *
1473 lang_output_section_statement_lookup (const char *name,
1474 int constraint,
1475 int create)
1476 {
1477 struct out_section_hash_entry *entry;
1478
1479 entry = ((struct out_section_hash_entry *)
1480 bfd_hash_lookup (&output_section_statement_table, name,
1481 create != 0, FALSE));
1482 if (entry == NULL)
1483 {
1484 if (create)
1485 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1486 return NULL;
1487 }
1488
1489 if (entry->s.output_section_statement.name != NULL)
1490 {
1491 /* We have a section of this name, but it might not have the correct
1492 constraint. */
1493 struct out_section_hash_entry *last_ent;
1494
1495 name = entry->s.output_section_statement.name;
1496 do
1497 {
1498 if (create != 2
1499 && !(create && constraint == SPECIAL)
1500 && (constraint == entry->s.output_section_statement.constraint
1501 || (constraint == 0
1502 && entry->s.output_section_statement.constraint >= 0)))
1503 return &entry->s.output_section_statement;
1504 last_ent = entry;
1505 entry = (struct out_section_hash_entry *) entry->root.next;
1506 }
1507 while (entry != NULL
1508 && name == entry->s.output_section_statement.name);
1509
1510 if (!create)
1511 return NULL;
1512
1513 entry
1514 = ((struct out_section_hash_entry *)
1515 output_section_statement_newfunc (NULL,
1516 &output_section_statement_table,
1517 name));
1518 if (entry == NULL)
1519 {
1520 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1521 return NULL;
1522 }
1523 entry->root = last_ent->root;
1524 last_ent->root.next = &entry->root;
1525 }
1526
1527 entry->s.output_section_statement.name = name;
1528 entry->s.output_section_statement.constraint = constraint;
1529 entry->s.output_section_statement.dup_output = (create == 2
1530 || constraint == SPECIAL);
1531 return &entry->s.output_section_statement;
1532 }
1533
1534 /* Find the next output_section_statement with the same name as OS.
1535 If CONSTRAINT is non-zero, find one with that constraint otherwise
1536 match any non-negative constraint. */
1537
1538 lang_output_section_statement_type *
1539 next_matching_output_section_statement (lang_output_section_statement_type *os,
1540 int constraint)
1541 {
1542 /* All output_section_statements are actually part of a
1543 struct out_section_hash_entry. */
1544 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1545 ((char *) os
1546 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1547 const char *name = os->name;
1548
1549 ASSERT (name == entry->root.string);
1550 do
1551 {
1552 entry = (struct out_section_hash_entry *) entry->root.next;
1553 if (entry == NULL
1554 || name != entry->s.output_section_statement.name)
1555 return NULL;
1556 }
1557 while (constraint != entry->s.output_section_statement.constraint
1558 && (constraint != 0
1559 || entry->s.output_section_statement.constraint < 0));
1560
1561 return &entry->s.output_section_statement;
1562 }
1563
1564 /* A variant of lang_output_section_find used by place_orphan.
1565 Returns the output statement that should precede a new output
1566 statement for SEC. If an exact match is found on certain flags,
1567 sets *EXACT too. */
1568
1569 lang_output_section_statement_type *
1570 lang_output_section_find_by_flags (const asection *sec,
1571 flagword sec_flags,
1572 lang_output_section_statement_type **exact,
1573 lang_match_sec_type_func match_type)
1574 {
1575 lang_output_section_statement_type *first, *look, *found;
1576 flagword look_flags, differ;
1577
1578 /* We know the first statement on this list is *ABS*. May as well
1579 skip it. */
1580 first = (void *) lang_os_list.head;
1581 first = first->next;
1582
1583 /* First try for an exact match. */
1584 found = NULL;
1585 for (look = first; look; look = look->next)
1586 {
1587 look_flags = look->flags;
1588 if (look->bfd_section != NULL)
1589 {
1590 look_flags = look->bfd_section->flags;
1591 if (match_type && !match_type (link_info.output_bfd,
1592 look->bfd_section,
1593 sec->owner, sec))
1594 continue;
1595 }
1596 differ = look_flags ^ sec_flags;
1597 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1598 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1599 found = look;
1600 }
1601 if (found != NULL)
1602 {
1603 if (exact != NULL)
1604 *exact = found;
1605 return found;
1606 }
1607
1608 if ((sec_flags & SEC_CODE) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* Try for a rw code section. */
1612 for (look = first; look; look = look->next)
1613 {
1614 look_flags = look->flags;
1615 if (look->bfd_section != NULL)
1616 {
1617 look_flags = look->bfd_section->flags;
1618 if (match_type && !match_type (link_info.output_bfd,
1619 look->bfd_section,
1620 sec->owner, sec))
1621 continue;
1622 }
1623 differ = look_flags ^ sec_flags;
1624 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1625 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1626 found = look;
1627 }
1628 }
1629 else if ((sec_flags & SEC_READONLY) != 0
1630 && (sec_flags & SEC_ALLOC) != 0)
1631 {
1632 /* .rodata can go after .text, .sdata2 after .rodata. */
1633 for (look = first; look; look = look->next)
1634 {
1635 look_flags = look->flags;
1636 if (look->bfd_section != NULL)
1637 {
1638 look_flags = look->bfd_section->flags;
1639 if (match_type && !match_type (link_info.output_bfd,
1640 look->bfd_section,
1641 sec->owner, sec))
1642 continue;
1643 }
1644 differ = look_flags ^ sec_flags;
1645 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1646 | SEC_READONLY | SEC_SMALL_DATA))
1647 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1648 | SEC_READONLY))
1649 && !(look_flags & SEC_SMALL_DATA)))
1650 found = look;
1651 }
1652 }
1653 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1654 && (sec_flags & SEC_ALLOC) != 0)
1655 {
1656 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1657 as if it were a loaded section, and don't use match_type. */
1658 bfd_boolean seen_thread_local = FALSE;
1659
1660 match_type = NULL;
1661 for (look = first; look; look = look->next)
1662 {
1663 look_flags = look->flags;
1664 if (look->bfd_section != NULL)
1665 look_flags = look->bfd_section->flags;
1666
1667 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1668 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1669 {
1670 /* .tdata and .tbss must be adjacent and in that order. */
1671 if (!(look_flags & SEC_LOAD)
1672 && (sec_flags & SEC_LOAD))
1673 /* ..so if we're at a .tbss section and we're placing
1674 a .tdata section stop looking and return the
1675 previous section. */
1676 break;
1677 found = look;
1678 seen_thread_local = TRUE;
1679 }
1680 else if (seen_thread_local)
1681 break;
1682 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1683 found = look;
1684 }
1685 }
1686 else if ((sec_flags & SEC_SMALL_DATA) != 0
1687 && (sec_flags & SEC_ALLOC) != 0)
1688 {
1689 /* .sdata goes after .data, .sbss after .sdata. */
1690 for (look = first; look; look = look->next)
1691 {
1692 look_flags = look->flags;
1693 if (look->bfd_section != NULL)
1694 {
1695 look_flags = look->bfd_section->flags;
1696 if (match_type && !match_type (link_info.output_bfd,
1697 look->bfd_section,
1698 sec->owner, sec))
1699 continue;
1700 }
1701 differ = look_flags ^ sec_flags;
1702 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1703 | SEC_THREAD_LOCAL))
1704 || ((look_flags & SEC_SMALL_DATA)
1705 && !(sec_flags & SEC_HAS_CONTENTS)))
1706 found = look;
1707 }
1708 }
1709 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1710 && (sec_flags & SEC_ALLOC) != 0)
1711 {
1712 /* .data goes after .rodata. */
1713 for (look = first; look; look = look->next)
1714 {
1715 look_flags = look->flags;
1716 if (look->bfd_section != NULL)
1717 {
1718 look_flags = look->bfd_section->flags;
1719 if (match_type && !match_type (link_info.output_bfd,
1720 look->bfd_section,
1721 sec->owner, sec))
1722 continue;
1723 }
1724 differ = look_flags ^ sec_flags;
1725 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1726 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1727 found = look;
1728 }
1729 }
1730 else if ((sec_flags & SEC_ALLOC) != 0)
1731 {
1732 /* .bss goes after any other alloc section. */
1733 for (look = first; look; look = look->next)
1734 {
1735 look_flags = look->flags;
1736 if (look->bfd_section != NULL)
1737 {
1738 look_flags = look->bfd_section->flags;
1739 if (match_type && !match_type (link_info.output_bfd,
1740 look->bfd_section,
1741 sec->owner, sec))
1742 continue;
1743 }
1744 differ = look_flags ^ sec_flags;
1745 if (!(differ & SEC_ALLOC))
1746 found = look;
1747 }
1748 }
1749 else
1750 {
1751 /* non-alloc go last. */
1752 for (look = first; look; look = look->next)
1753 {
1754 look_flags = look->flags;
1755 if (look->bfd_section != NULL)
1756 look_flags = look->bfd_section->flags;
1757 differ = look_flags ^ sec_flags;
1758 if (!(differ & SEC_DEBUGGING))
1759 found = look;
1760 }
1761 return found;
1762 }
1763
1764 if (found || !match_type)
1765 return found;
1766
1767 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1768 }
1769
1770 /* Find the last output section before given output statement.
1771 Used by place_orphan. */
1772
1773 static asection *
1774 output_prev_sec_find (lang_output_section_statement_type *os)
1775 {
1776 lang_output_section_statement_type *lookup;
1777
1778 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1779 {
1780 if (lookup->constraint < 0)
1781 continue;
1782
1783 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1784 return lookup->bfd_section;
1785 }
1786
1787 return NULL;
1788 }
1789
1790 /* Look for a suitable place for a new output section statement. The
1791 idea is to skip over anything that might be inside a SECTIONS {}
1792 statement in a script, before we find another output section
1793 statement. Assignments to "dot" before an output section statement
1794 are assumed to belong to it, except in two cases; The first
1795 assignment to dot, and assignments before non-alloc sections.
1796 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1797 similar assignments that set the initial address, or we might
1798 insert non-alloc note sections among assignments setting end of
1799 image symbols. */
1800
1801 static lang_statement_union_type **
1802 insert_os_after (lang_output_section_statement_type *after)
1803 {
1804 lang_statement_union_type **where;
1805 lang_statement_union_type **assign = NULL;
1806 bfd_boolean ignore_first;
1807
1808 ignore_first = after == (void *) lang_os_list.head;
1809
1810 for (where = &after->header.next;
1811 *where != NULL;
1812 where = &(*where)->header.next)
1813 {
1814 switch ((*where)->header.type)
1815 {
1816 case lang_assignment_statement_enum:
1817 if (assign == NULL)
1818 {
1819 lang_assignment_statement_type *ass;
1820
1821 ass = &(*where)->assignment_statement;
1822 if (ass->exp->type.node_class != etree_assert
1823 && ass->exp->assign.dst[0] == '.'
1824 && ass->exp->assign.dst[1] == 0)
1825 {
1826 if (!ignore_first)
1827 assign = where;
1828 ignore_first = FALSE;
1829 }
1830 }
1831 continue;
1832 case lang_wild_statement_enum:
1833 case lang_input_section_enum:
1834 case lang_object_symbols_statement_enum:
1835 case lang_fill_statement_enum:
1836 case lang_data_statement_enum:
1837 case lang_reloc_statement_enum:
1838 case lang_padding_statement_enum:
1839 case lang_constructors_statement_enum:
1840 assign = NULL;
1841 ignore_first = FALSE;
1842 continue;
1843 case lang_output_section_statement_enum:
1844 if (assign != NULL)
1845 {
1846 asection *s = (*where)->output_section_statement.bfd_section;
1847
1848 if (s == NULL
1849 || s->map_head.s == NULL
1850 || (s->flags & SEC_ALLOC) != 0)
1851 where = assign;
1852 }
1853 break;
1854 case lang_input_statement_enum:
1855 case lang_address_statement_enum:
1856 case lang_target_statement_enum:
1857 case lang_output_statement_enum:
1858 case lang_group_statement_enum:
1859 case lang_insert_statement_enum:
1860 continue;
1861 }
1862 break;
1863 }
1864
1865 return where;
1866 }
1867
1868 lang_output_section_statement_type *
1869 lang_insert_orphan (asection *s,
1870 const char *secname,
1871 int constraint,
1872 lang_output_section_statement_type *after,
1873 struct orphan_save *place,
1874 etree_type *address,
1875 lang_statement_list_type *add_child)
1876 {
1877 lang_statement_list_type add;
1878 lang_output_section_statement_type *os;
1879 lang_output_section_statement_type **os_tail;
1880
1881 /* If we have found an appropriate place for the output section
1882 statements for this orphan, add them to our own private list,
1883 inserting them later into the global statement list. */
1884 if (after != NULL)
1885 {
1886 lang_list_init (&add);
1887 push_stat_ptr (&add);
1888 }
1889
1890 if (bfd_link_relocatable (&link_info)
1891 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1892 address = exp_intop (0);
1893
1894 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1895 os = lang_enter_output_section_statement (secname, address, normal_section,
1896 NULL, NULL, NULL, constraint, 0);
1897
1898 if (add_child == NULL)
1899 add_child = &os->children;
1900 lang_add_section (add_child, s, NULL, os);
1901
1902 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1903 {
1904 const char *region = (after->region
1905 ? after->region->name_list.name
1906 : DEFAULT_MEMORY_REGION);
1907 const char *lma_region = (after->lma_region
1908 ? after->lma_region->name_list.name
1909 : NULL);
1910 lang_leave_output_section_statement (NULL, region, after->phdrs,
1911 lma_region);
1912 }
1913 else
1914 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1915 NULL);
1916
1917 /* Restore the global list pointer. */
1918 if (after != NULL)
1919 pop_stat_ptr ();
1920
1921 if (after != NULL && os->bfd_section != NULL)
1922 {
1923 asection *snew, *as;
1924 bfd_boolean place_after = place->stmt == NULL;
1925 bfd_boolean insert_after = TRUE;
1926
1927 snew = os->bfd_section;
1928
1929 /* Shuffle the bfd section list to make the output file look
1930 neater. This is really only cosmetic. */
1931 if (place->section == NULL
1932 && after != (void *) lang_os_list.head)
1933 {
1934 asection *bfd_section = after->bfd_section;
1935
1936 /* If the output statement hasn't been used to place any input
1937 sections (and thus doesn't have an output bfd_section),
1938 look for the closest prior output statement having an
1939 output section. */
1940 if (bfd_section == NULL)
1941 bfd_section = output_prev_sec_find (after);
1942
1943 if (bfd_section != NULL && bfd_section != snew)
1944 place->section = &bfd_section->next;
1945 }
1946
1947 if (place->section == NULL)
1948 place->section = &link_info.output_bfd->sections;
1949
1950 as = *place->section;
1951
1952 if (!as)
1953 {
1954 /* Put the section at the end of the list. */
1955
1956 /* Unlink the section. */
1957 bfd_section_list_remove (link_info.output_bfd, snew);
1958
1959 /* Now tack it back on in the right place. */
1960 bfd_section_list_append (link_info.output_bfd, snew);
1961 }
1962 else if ((bfd_get_flavour (link_info.output_bfd)
1963 == bfd_target_elf_flavour)
1964 && (bfd_get_flavour (s->owner)
1965 == bfd_target_elf_flavour)
1966 && ((elf_section_type (s) == SHT_NOTE
1967 && (s->flags & SEC_LOAD) != 0)
1968 || (elf_section_type (as) == SHT_NOTE
1969 && (as->flags & SEC_LOAD) != 0)))
1970 {
1971 /* Make sure that output note sections are grouped and sorted
1972 by alignments when inserting a note section or insert a
1973 section after a note section, */
1974 asection *sec;
1975 /* A specific section after which the output note section
1976 should be placed. */
1977 asection *after_sec;
1978 /* True if we need to insert the orphan section after a
1979 specific section to maintain output note section order. */
1980 bfd_boolean after_sec_note = FALSE;
1981
1982 static asection *first_orphan_note = NULL;
1983
1984 /* Group and sort output note section by alignments in
1985 ascending order. */
1986 after_sec = NULL;
1987 if (elf_section_type (s) == SHT_NOTE
1988 && (s->flags & SEC_LOAD) != 0)
1989 {
1990 /* Search from the beginning for the last output note
1991 section with equal or larger alignments. NB: Don't
1992 place orphan note section after non-note sections. */
1993
1994 first_orphan_note = NULL;
1995 for (sec = link_info.output_bfd->sections;
1996 (sec != NULL
1997 && !bfd_is_abs_section (sec));
1998 sec = sec->next)
1999 if (sec != snew
2000 && elf_section_type (sec) == SHT_NOTE
2001 && (sec->flags & SEC_LOAD) != 0)
2002 {
2003 if (!first_orphan_note)
2004 first_orphan_note = sec;
2005 if (sec->alignment_power >= s->alignment_power)
2006 after_sec = sec;
2007 }
2008 else if (first_orphan_note)
2009 {
2010 /* Stop if there is non-note section after the first
2011 orphan note section. */
2012 break;
2013 }
2014
2015 /* If this will be the first orphan note section, it can
2016 be placed at the default location. */
2017 after_sec_note = first_orphan_note != NULL;
2018 if (after_sec == NULL && after_sec_note)
2019 {
2020 /* If all output note sections have smaller
2021 alignments, place the section before all
2022 output orphan note sections. */
2023 after_sec = first_orphan_note;
2024 insert_after = FALSE;
2025 }
2026 }
2027 else if (first_orphan_note)
2028 {
2029 /* Don't place non-note sections in the middle of orphan
2030 note sections. */
2031 after_sec_note = TRUE;
2032 after_sec = as;
2033 for (sec = as->next;
2034 (sec != NULL
2035 && !bfd_is_abs_section (sec));
2036 sec = sec->next)
2037 if (elf_section_type (sec) == SHT_NOTE
2038 && (sec->flags & SEC_LOAD) != 0)
2039 after_sec = sec;
2040 }
2041
2042 if (after_sec_note)
2043 {
2044 if (after_sec)
2045 {
2046 /* Search forward to insert OS after AFTER_SEC output
2047 statement. */
2048 lang_output_section_statement_type *stmt, *next;
2049 bfd_boolean found = FALSE;
2050 for (stmt = after; stmt != NULL; stmt = next)
2051 {
2052 next = stmt->next;
2053 if (insert_after)
2054 {
2055 if (stmt->bfd_section == after_sec)
2056 {
2057 place_after = TRUE;
2058 found = TRUE;
2059 after = stmt;
2060 break;
2061 }
2062 }
2063 else
2064 {
2065 /* If INSERT_AFTER is FALSE, place OS before
2066 AFTER_SEC output statement. */
2067 if (next && next->bfd_section == after_sec)
2068 {
2069 place_after = TRUE;
2070 found = TRUE;
2071 after = stmt;
2072 break;
2073 }
2074 }
2075 }
2076
2077 /* Search backward to insert OS after AFTER_SEC output
2078 statement. */
2079 if (!found)
2080 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2081 {
2082 if (insert_after)
2083 {
2084 if (stmt->bfd_section == after_sec)
2085 {
2086 place_after = TRUE;
2087 after = stmt;
2088 break;
2089 }
2090 }
2091 else
2092 {
2093 /* If INSERT_AFTER is FALSE, place OS before
2094 AFTER_SEC output statement. */
2095 if (stmt->next->bfd_section == after_sec)
2096 {
2097 place_after = TRUE;
2098 after = stmt;
2099 break;
2100 }
2101 }
2102 }
2103 }
2104
2105 if (after_sec == NULL
2106 || (insert_after && after_sec->next != snew)
2107 || (!insert_after && after_sec->prev != snew))
2108 {
2109 /* Unlink the section. */
2110 bfd_section_list_remove (link_info.output_bfd, snew);
2111
2112 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2113 prepend SNEW. */
2114 if (after_sec)
2115 {
2116 if (insert_after)
2117 bfd_section_list_insert_after (link_info.output_bfd,
2118 after_sec, snew);
2119 else
2120 bfd_section_list_insert_before (link_info.output_bfd,
2121 after_sec, snew);
2122 }
2123 else
2124 bfd_section_list_prepend (link_info.output_bfd, snew);
2125 }
2126 }
2127 else if (as != snew && as->prev != snew)
2128 {
2129 /* Unlink the section. */
2130 bfd_section_list_remove (link_info.output_bfd, snew);
2131
2132 /* Now tack it back on in the right place. */
2133 bfd_section_list_insert_before (link_info.output_bfd,
2134 as, snew);
2135 }
2136 }
2137 else if (as != snew && as->prev != snew)
2138 {
2139 /* Unlink the section. */
2140 bfd_section_list_remove (link_info.output_bfd, snew);
2141
2142 /* Now tack it back on in the right place. */
2143 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2144 }
2145
2146 /* Save the end of this list. Further ophans of this type will
2147 follow the one we've just added. */
2148 place->section = &snew->next;
2149
2150 /* The following is non-cosmetic. We try to put the output
2151 statements in some sort of reasonable order here, because they
2152 determine the final load addresses of the orphan sections.
2153 In addition, placing output statements in the wrong order may
2154 require extra segments. For instance, given a typical
2155 situation of all read-only sections placed in one segment and
2156 following that a segment containing all the read-write
2157 sections, we wouldn't want to place an orphan read/write
2158 section before or amongst the read-only ones. */
2159 if (add.head != NULL)
2160 {
2161 lang_output_section_statement_type *newly_added_os;
2162
2163 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2164 if (place_after)
2165 {
2166 lang_statement_union_type **where = insert_os_after (after);
2167
2168 *add.tail = *where;
2169 *where = add.head;
2170
2171 place->os_tail = &after->next;
2172 }
2173 else
2174 {
2175 /* Put it after the last orphan statement we added. */
2176 *add.tail = *place->stmt;
2177 *place->stmt = add.head;
2178 }
2179
2180 /* Fix the global list pointer if we happened to tack our
2181 new list at the tail. */
2182 if (*stat_ptr->tail == add.head)
2183 stat_ptr->tail = add.tail;
2184
2185 /* Save the end of this list. */
2186 place->stmt = add.tail;
2187
2188 /* Do the same for the list of output section statements. */
2189 newly_added_os = *os_tail;
2190 *os_tail = NULL;
2191 newly_added_os->prev = (lang_output_section_statement_type *)
2192 ((char *) place->os_tail
2193 - offsetof (lang_output_section_statement_type, next));
2194 newly_added_os->next = *place->os_tail;
2195 if (newly_added_os->next != NULL)
2196 newly_added_os->next->prev = newly_added_os;
2197 *place->os_tail = newly_added_os;
2198 place->os_tail = &newly_added_os->next;
2199
2200 /* Fixing the global list pointer here is a little different.
2201 We added to the list in lang_enter_output_section_statement,
2202 trimmed off the new output_section_statment above when
2203 assigning *os_tail = NULL, but possibly added it back in
2204 the same place when assigning *place->os_tail. */
2205 if (*os_tail == NULL)
2206 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2207 }
2208 }
2209 return os;
2210 }
2211
2212 static void
2213 lang_print_asneeded (void)
2214 {
2215 struct asneeded_minfo *m;
2216
2217 if (asneeded_list_head == NULL)
2218 return;
2219
2220 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2221
2222 for (m = asneeded_list_head; m != NULL; m = m->next)
2223 {
2224 size_t len;
2225
2226 minfo ("%s", m->soname);
2227 len = strlen (m->soname);
2228
2229 if (len >= 29)
2230 {
2231 print_nl ();
2232 len = 0;
2233 }
2234 while (len < 30)
2235 {
2236 print_space ();
2237 ++len;
2238 }
2239
2240 if (m->ref != NULL)
2241 minfo ("%pB ", m->ref);
2242 minfo ("(%pT)\n", m->name);
2243 }
2244 }
2245
2246 static void
2247 lang_map_flags (flagword flag)
2248 {
2249 if (flag & SEC_ALLOC)
2250 minfo ("a");
2251
2252 if (flag & SEC_CODE)
2253 minfo ("x");
2254
2255 if (flag & SEC_READONLY)
2256 minfo ("r");
2257
2258 if (flag & SEC_DATA)
2259 minfo ("w");
2260
2261 if (flag & SEC_LOAD)
2262 minfo ("l");
2263 }
2264
2265 void
2266 lang_map (void)
2267 {
2268 lang_memory_region_type *m;
2269 bfd_boolean dis_header_printed = FALSE;
2270
2271 LANG_FOR_EACH_INPUT_STATEMENT (file)
2272 {
2273 asection *s;
2274
2275 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2276 || file->flags.just_syms)
2277 continue;
2278
2279 if (config.print_map_discarded)
2280 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2281 if ((s->output_section == NULL
2282 || s->output_section->owner != link_info.output_bfd)
2283 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2284 {
2285 if (! dis_header_printed)
2286 {
2287 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2288 dis_header_printed = TRUE;
2289 }
2290
2291 print_input_section (s, TRUE);
2292 }
2293 }
2294
2295 minfo (_("\nMemory Configuration\n\n"));
2296 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2297 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2298
2299 for (m = lang_memory_region_list; m != NULL; m = m->next)
2300 {
2301 char buf[100];
2302 int len;
2303
2304 fprintf (config.map_file, "%-16s ", m->name_list.name);
2305
2306 sprintf_vma (buf, m->origin);
2307 minfo ("0x%s ", buf);
2308 len = strlen (buf);
2309 while (len < 16)
2310 {
2311 print_space ();
2312 ++len;
2313 }
2314
2315 minfo ("0x%V", m->length);
2316 if (m->flags || m->not_flags)
2317 {
2318 #ifndef BFD64
2319 minfo (" ");
2320 #endif
2321 if (m->flags)
2322 {
2323 print_space ();
2324 lang_map_flags (m->flags);
2325 }
2326
2327 if (m->not_flags)
2328 {
2329 minfo (" !");
2330 lang_map_flags (m->not_flags);
2331 }
2332 }
2333
2334 print_nl ();
2335 }
2336
2337 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2338
2339 if (!link_info.reduce_memory_overheads)
2340 {
2341 obstack_begin (&map_obstack, 1000);
2342 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2343 }
2344 expld.phase = lang_fixed_phase_enum;
2345 lang_statement_iteration++;
2346 print_statements ();
2347
2348 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2349 config.map_file);
2350 }
2351
2352 static bfd_boolean
2353 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2354 void *info ATTRIBUTE_UNUSED)
2355 {
2356 if ((hash_entry->type == bfd_link_hash_defined
2357 || hash_entry->type == bfd_link_hash_defweak)
2358 && hash_entry->u.def.section->owner != link_info.output_bfd
2359 && hash_entry->u.def.section->owner != NULL)
2360 {
2361 input_section_userdata_type *ud;
2362 struct map_symbol_def *def;
2363
2364 ud = bfd_section_userdata (hash_entry->u.def.section);
2365 if (!ud)
2366 {
2367 ud = stat_alloc (sizeof (*ud));
2368 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2369 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2370 ud->map_symbol_def_count = 0;
2371 }
2372 else if (!ud->map_symbol_def_tail)
2373 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2374
2375 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2376 def->entry = hash_entry;
2377 *(ud->map_symbol_def_tail) = def;
2378 ud->map_symbol_def_tail = &def->next;
2379 ud->map_symbol_def_count++;
2380 }
2381 return TRUE;
2382 }
2383
2384 /* Initialize an output section. */
2385
2386 static void
2387 init_os (lang_output_section_statement_type *s, flagword flags)
2388 {
2389 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2390 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2391
2392 if (!s->dup_output)
2393 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2394 if (s->bfd_section == NULL)
2395 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2396 s->name, flags);
2397 if (s->bfd_section == NULL)
2398 {
2399 einfo (_("%F%P: output format %s cannot represent section"
2400 " called %s: %E\n"),
2401 link_info.output_bfd->xvec->name, s->name);
2402 }
2403 s->bfd_section->output_section = s->bfd_section;
2404 s->bfd_section->output_offset = 0;
2405
2406 /* Set the userdata of the output section to the output section
2407 statement to avoid lookup. */
2408 bfd_set_section_userdata (s->bfd_section, s);
2409
2410 /* If there is a base address, make sure that any sections it might
2411 mention are initialized. */
2412 if (s->addr_tree != NULL)
2413 exp_init_os (s->addr_tree);
2414
2415 if (s->load_base != NULL)
2416 exp_init_os (s->load_base);
2417
2418 /* If supplied an alignment, set it. */
2419 if (s->section_alignment != NULL)
2420 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2421 "section alignment");
2422 }
2423
2424 /* Make sure that all output sections mentioned in an expression are
2425 initialized. */
2426
2427 static void
2428 exp_init_os (etree_type *exp)
2429 {
2430 switch (exp->type.node_class)
2431 {
2432 case etree_assign:
2433 case etree_provide:
2434 case etree_provided:
2435 exp_init_os (exp->assign.src);
2436 break;
2437
2438 case etree_binary:
2439 exp_init_os (exp->binary.lhs);
2440 exp_init_os (exp->binary.rhs);
2441 break;
2442
2443 case etree_trinary:
2444 exp_init_os (exp->trinary.cond);
2445 exp_init_os (exp->trinary.lhs);
2446 exp_init_os (exp->trinary.rhs);
2447 break;
2448
2449 case etree_assert:
2450 exp_init_os (exp->assert_s.child);
2451 break;
2452
2453 case etree_unary:
2454 exp_init_os (exp->unary.child);
2455 break;
2456
2457 case etree_name:
2458 switch (exp->type.node_code)
2459 {
2460 case ADDR:
2461 case LOADADDR:
2462 case SIZEOF:
2463 {
2464 lang_output_section_statement_type *os;
2465
2466 os = lang_output_section_find (exp->name.name);
2467 if (os != NULL && os->bfd_section == NULL)
2468 init_os (os, 0);
2469 }
2470 }
2471 break;
2472
2473 default:
2474 break;
2475 }
2476 }
2477 \f
2478 static void
2479 section_already_linked (bfd *abfd, asection *sec, void *data)
2480 {
2481 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2482
2483 /* If we are only reading symbols from this object, then we want to
2484 discard all sections. */
2485 if (entry->flags.just_syms)
2486 {
2487 bfd_link_just_syms (abfd, sec, &link_info);
2488 return;
2489 }
2490
2491 /* Deal with SHF_EXCLUDE ELF sections. */
2492 if (!bfd_link_relocatable (&link_info)
2493 && (abfd->flags & BFD_PLUGIN) == 0
2494 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2495 sec->output_section = bfd_abs_section_ptr;
2496
2497 if (!(abfd->flags & DYNAMIC))
2498 bfd_section_already_linked (abfd, sec, &link_info);
2499 }
2500 \f
2501
2502 /* Returns true if SECTION is one we know will be discarded based on its
2503 section flags, otherwise returns false. */
2504
2505 static bfd_boolean
2506 lang_discard_section_p (asection *section)
2507 {
2508 bfd_boolean discard;
2509 flagword flags = section->flags;
2510
2511 /* Discard sections marked with SEC_EXCLUDE. */
2512 discard = (flags & SEC_EXCLUDE) != 0;
2513
2514 /* Discard the group descriptor sections when we're finally placing the
2515 sections from within the group. */
2516 if ((flags & SEC_GROUP) != 0
2517 && link_info.resolve_section_groups)
2518 discard = TRUE;
2519
2520 /* Discard debugging sections if we are stripping debugging
2521 information. */
2522 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2523 && (flags & SEC_DEBUGGING) != 0)
2524 discard = TRUE;
2525
2526 return discard;
2527 }
2528
2529 /* The wild routines.
2530
2531 These expand statements like *(.text) and foo.o to a list of
2532 explicit actions, like foo.o(.text), bar.o(.text) and
2533 foo.o(.text, .data). */
2534
2535 /* Add SECTION to the output section OUTPUT. Do this by creating a
2536 lang_input_section statement which is placed at PTR. */
2537
2538 void
2539 lang_add_section (lang_statement_list_type *ptr,
2540 asection *section,
2541 struct flag_info *sflag_info,
2542 lang_output_section_statement_type *output)
2543 {
2544 flagword flags = section->flags;
2545
2546 bfd_boolean discard;
2547 lang_input_section_type *new_section;
2548 bfd *abfd = link_info.output_bfd;
2549
2550 /* Is this section one we know should be discarded? */
2551 discard = lang_discard_section_p (section);
2552
2553 /* Discard input sections which are assigned to a section named
2554 DISCARD_SECTION_NAME. */
2555 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2556 discard = TRUE;
2557
2558 if (discard)
2559 {
2560 if (section->output_section == NULL)
2561 {
2562 /* This prevents future calls from assigning this section. */
2563 section->output_section = bfd_abs_section_ptr;
2564 }
2565 else if (link_info.non_contiguous_regions_warnings)
2566 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2567 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2568 NULL, section, section->owner);
2569
2570 return;
2571 }
2572
2573 if (sflag_info)
2574 {
2575 bfd_boolean keep;
2576
2577 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2578 if (!keep)
2579 return;
2580 }
2581
2582 if (section->output_section != NULL)
2583 {
2584 if (!link_info.non_contiguous_regions)
2585 return;
2586
2587 /* SECTION has already been handled in a special way
2588 (eg. LINK_ONCE): skip it. */
2589 if (bfd_is_abs_section (section->output_section))
2590 return;
2591
2592 /* Already assigned to the same output section, do not process
2593 it again, to avoid creating loops between duplicate sections
2594 later. */
2595 if (section->output_section == output->bfd_section)
2596 return;
2597
2598 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2599 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2600 "change behaviour for section `%pA' from '%pB' (assigned to "
2601 "%pA, but additional match: %pA)\n"),
2602 NULL, section, section->owner, section->output_section,
2603 output->bfd_section);
2604
2605 /* SECTION has already been assigned to an output section, but
2606 the user allows it to be mapped to another one in case it
2607 overflows. We'll later update the actual output section in
2608 size_input_section as appropriate. */
2609 }
2610
2611 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2612 to an output section, because we want to be able to include a
2613 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2614 section (I don't know why we want to do this, but we do).
2615 build_link_order in ldwrite.c handles this case by turning
2616 the embedded SEC_NEVER_LOAD section into a fill. */
2617 flags &= ~ SEC_NEVER_LOAD;
2618
2619 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2620 already been processed. One reason to do this is that on pe
2621 format targets, .text$foo sections go into .text and it's odd
2622 to see .text with SEC_LINK_ONCE set. */
2623 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2624 {
2625 if (link_info.resolve_section_groups)
2626 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2627 else
2628 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2629 }
2630 else if (!bfd_link_relocatable (&link_info))
2631 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2632
2633 switch (output->sectype)
2634 {
2635 case normal_section:
2636 case overlay_section:
2637 case first_overlay_section:
2638 break;
2639 case noalloc_section:
2640 flags &= ~SEC_ALLOC;
2641 break;
2642 case noload_section:
2643 flags &= ~SEC_LOAD;
2644 flags |= SEC_NEVER_LOAD;
2645 /* Unfortunately GNU ld has managed to evolve two different
2646 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2647 alloc, no contents section. All others get a noload, noalloc
2648 section. */
2649 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2650 flags &= ~SEC_HAS_CONTENTS;
2651 else
2652 flags &= ~SEC_ALLOC;
2653 break;
2654 }
2655
2656 if (output->bfd_section == NULL)
2657 init_os (output, flags);
2658
2659 /* If SEC_READONLY is not set in the input section, then clear
2660 it from the output section. */
2661 output->bfd_section->flags &= flags | ~SEC_READONLY;
2662
2663 if (output->bfd_section->linker_has_input)
2664 {
2665 /* Only set SEC_READONLY flag on the first input section. */
2666 flags &= ~ SEC_READONLY;
2667
2668 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2669 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2670 != (flags & (SEC_MERGE | SEC_STRINGS))
2671 || ((flags & SEC_MERGE) != 0
2672 && output->bfd_section->entsize != section->entsize))
2673 {
2674 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2675 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2676 }
2677 }
2678 output->bfd_section->flags |= flags;
2679
2680 if (!output->bfd_section->linker_has_input)
2681 {
2682 output->bfd_section->linker_has_input = 1;
2683 /* This must happen after flags have been updated. The output
2684 section may have been created before we saw its first input
2685 section, eg. for a data statement. */
2686 bfd_init_private_section_data (section->owner, section,
2687 link_info.output_bfd,
2688 output->bfd_section,
2689 &link_info);
2690 if ((flags & SEC_MERGE) != 0)
2691 output->bfd_section->entsize = section->entsize;
2692 }
2693
2694 if ((flags & SEC_TIC54X_BLOCK) != 0
2695 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2696 {
2697 /* FIXME: This value should really be obtained from the bfd... */
2698 output->block_value = 128;
2699 }
2700
2701 if (section->alignment_power > output->bfd_section->alignment_power)
2702 output->bfd_section->alignment_power = section->alignment_power;
2703
2704 section->output_section = output->bfd_section;
2705
2706 if (!map_head_is_link_order)
2707 {
2708 asection *s = output->bfd_section->map_tail.s;
2709 output->bfd_section->map_tail.s = section;
2710 section->map_head.s = NULL;
2711 section->map_tail.s = s;
2712 if (s != NULL)
2713 s->map_head.s = section;
2714 else
2715 output->bfd_section->map_head.s = section;
2716 }
2717
2718 /* Add a section reference to the list. */
2719 new_section = new_stat (lang_input_section, ptr);
2720 new_section->section = section;
2721 }
2722
2723 /* Handle wildcard sorting. This returns the lang_input_section which
2724 should follow the one we are going to create for SECTION and FILE,
2725 based on the sorting requirements of WILD. It returns NULL if the
2726 new section should just go at the end of the current list. */
2727
2728 static lang_statement_union_type *
2729 wild_sort (lang_wild_statement_type *wild,
2730 struct wildcard_list *sec,
2731 lang_input_statement_type *file,
2732 asection *section)
2733 {
2734 lang_statement_union_type *l;
2735
2736 if (!wild->filenames_sorted
2737 && (sec == NULL || sec->spec.sorted == none))
2738 return NULL;
2739
2740 for (l = wild->children.head; l != NULL; l = l->header.next)
2741 {
2742 lang_input_section_type *ls;
2743
2744 if (l->header.type != lang_input_section_enum)
2745 continue;
2746 ls = &l->input_section;
2747
2748 /* Sorting by filename takes precedence over sorting by section
2749 name. */
2750
2751 if (wild->filenames_sorted)
2752 {
2753 const char *fn, *ln;
2754 bfd_boolean fa, la;
2755 int i;
2756
2757 /* The PE support for the .idata section as generated by
2758 dlltool assumes that files will be sorted by the name of
2759 the archive and then the name of the file within the
2760 archive. */
2761
2762 if (file->the_bfd != NULL
2763 && file->the_bfd->my_archive != NULL)
2764 {
2765 fn = bfd_get_filename (file->the_bfd->my_archive);
2766 fa = TRUE;
2767 }
2768 else
2769 {
2770 fn = file->filename;
2771 fa = FALSE;
2772 }
2773
2774 if (ls->section->owner->my_archive != NULL)
2775 {
2776 ln = bfd_get_filename (ls->section->owner->my_archive);
2777 la = TRUE;
2778 }
2779 else
2780 {
2781 ln = bfd_get_filename (ls->section->owner);
2782 la = FALSE;
2783 }
2784
2785 i = filename_cmp (fn, ln);
2786 if (i > 0)
2787 continue;
2788 else if (i < 0)
2789 break;
2790
2791 if (fa || la)
2792 {
2793 if (fa)
2794 fn = file->filename;
2795 if (la)
2796 ln = bfd_get_filename (ls->section->owner);
2797
2798 i = filename_cmp (fn, ln);
2799 if (i > 0)
2800 continue;
2801 else if (i < 0)
2802 break;
2803 }
2804 }
2805
2806 /* Here either the files are not sorted by name, or we are
2807 looking at the sections for this file. */
2808
2809 if (sec != NULL
2810 && sec->spec.sorted != none
2811 && sec->spec.sorted != by_none)
2812 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2813 break;
2814 }
2815
2816 return l;
2817 }
2818
2819 /* Expand a wild statement for a particular FILE. SECTION may be
2820 NULL, in which case it is a wild card. */
2821
2822 static void
2823 output_section_callback (lang_wild_statement_type *ptr,
2824 struct wildcard_list *sec,
2825 asection *section,
2826 struct flag_info *sflag_info,
2827 lang_input_statement_type *file,
2828 void *output)
2829 {
2830 lang_statement_union_type *before;
2831 lang_output_section_statement_type *os;
2832
2833 os = (lang_output_section_statement_type *) output;
2834
2835 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2836 if (unique_section_p (section, os))
2837 return;
2838
2839 before = wild_sort (ptr, sec, file, section);
2840
2841 /* Here BEFORE points to the lang_input_section which
2842 should follow the one we are about to add. If BEFORE
2843 is NULL, then the section should just go at the end
2844 of the current list. */
2845
2846 if (before == NULL)
2847 lang_add_section (&ptr->children, section, sflag_info, os);
2848 else
2849 {
2850 lang_statement_list_type list;
2851 lang_statement_union_type **pp;
2852
2853 lang_list_init (&list);
2854 lang_add_section (&list, section, sflag_info, os);
2855
2856 /* If we are discarding the section, LIST.HEAD will
2857 be NULL. */
2858 if (list.head != NULL)
2859 {
2860 ASSERT (list.head->header.next == NULL);
2861
2862 for (pp = &ptr->children.head;
2863 *pp != before;
2864 pp = &(*pp)->header.next)
2865 ASSERT (*pp != NULL);
2866
2867 list.head->header.next = *pp;
2868 *pp = list.head;
2869 }
2870 }
2871 }
2872
2873 /* Check if all sections in a wild statement for a particular FILE
2874 are readonly. */
2875
2876 static void
2877 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2878 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2879 asection *section,
2880 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2881 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2882 void *output)
2883 {
2884 lang_output_section_statement_type *os;
2885
2886 os = (lang_output_section_statement_type *) output;
2887
2888 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2889 if (unique_section_p (section, os))
2890 return;
2891
2892 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2893 os->all_input_readonly = FALSE;
2894 }
2895
2896 /* This is passed a file name which must have been seen already and
2897 added to the statement tree. We will see if it has been opened
2898 already and had its symbols read. If not then we'll read it. */
2899
2900 static lang_input_statement_type *
2901 lookup_name (const char *name)
2902 {
2903 lang_input_statement_type *search;
2904
2905 for (search = (void *) input_file_chain.head;
2906 search != NULL;
2907 search = search->next_real_file)
2908 {
2909 /* Use the local_sym_name as the name of the file that has
2910 already been loaded as filename might have been transformed
2911 via the search directory lookup mechanism. */
2912 const char *filename = search->local_sym_name;
2913
2914 if (filename != NULL
2915 && filename_cmp (filename, name) == 0)
2916 break;
2917 }
2918
2919 if (search == NULL)
2920 {
2921 /* Arrange to splice the input statement added by new_afile into
2922 statement_list after the current input_file_chain tail.
2923 We know input_file_chain is not an empty list, and that
2924 lookup_name was called via open_input_bfds. Later calls to
2925 lookup_name should always match an existing input_statement. */
2926 lang_statement_union_type **tail = stat_ptr->tail;
2927 lang_statement_union_type **after
2928 = (void *) ((char *) input_file_chain.tail
2929 - offsetof (lang_input_statement_type, next_real_file)
2930 + offsetof (lang_input_statement_type, header.next));
2931 lang_statement_union_type *rest = *after;
2932 stat_ptr->tail = after;
2933 search = new_afile (name, lang_input_file_is_search_file_enum,
2934 default_target, NULL);
2935 *stat_ptr->tail = rest;
2936 if (*tail == NULL)
2937 stat_ptr->tail = tail;
2938 }
2939
2940 /* If we have already added this file, or this file is not real
2941 don't add this file. */
2942 if (search->flags.loaded || !search->flags.real)
2943 return search;
2944
2945 if (!load_symbols (search, NULL))
2946 return NULL;
2947
2948 return search;
2949 }
2950
2951 /* Save LIST as a list of libraries whose symbols should not be exported. */
2952
2953 struct excluded_lib
2954 {
2955 char *name;
2956 struct excluded_lib *next;
2957 };
2958 static struct excluded_lib *excluded_libs;
2959
2960 void
2961 add_excluded_libs (const char *list)
2962 {
2963 const char *p = list, *end;
2964
2965 while (*p != '\0')
2966 {
2967 struct excluded_lib *entry;
2968 end = strpbrk (p, ",:");
2969 if (end == NULL)
2970 end = p + strlen (p);
2971 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2972 entry->next = excluded_libs;
2973 entry->name = (char *) xmalloc (end - p + 1);
2974 memcpy (entry->name, p, end - p);
2975 entry->name[end - p] = '\0';
2976 excluded_libs = entry;
2977 if (*end == '\0')
2978 break;
2979 p = end + 1;
2980 }
2981 }
2982
2983 static void
2984 check_excluded_libs (bfd *abfd)
2985 {
2986 struct excluded_lib *lib = excluded_libs;
2987
2988 while (lib)
2989 {
2990 int len = strlen (lib->name);
2991 const char *filename = lbasename (bfd_get_filename (abfd));
2992
2993 if (strcmp (lib->name, "ALL") == 0)
2994 {
2995 abfd->no_export = TRUE;
2996 return;
2997 }
2998
2999 if (filename_ncmp (lib->name, filename, len) == 0
3000 && (filename[len] == '\0'
3001 || (filename[len] == '.' && filename[len + 1] == 'a'
3002 && filename[len + 2] == '\0')))
3003 {
3004 abfd->no_export = TRUE;
3005 return;
3006 }
3007
3008 lib = lib->next;
3009 }
3010 }
3011
3012 /* Get the symbols for an input file. */
3013
3014 bfd_boolean
3015 load_symbols (lang_input_statement_type *entry,
3016 lang_statement_list_type *place)
3017 {
3018 char **matching;
3019
3020 if (entry->flags.loaded)
3021 return TRUE;
3022
3023 ldfile_open_file (entry);
3024
3025 /* Do not process further if the file was missing. */
3026 if (entry->flags.missing_file)
3027 return TRUE;
3028
3029 if (trace_files || verbose)
3030 info_msg ("%pI\n", entry);
3031
3032 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3033 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3034 {
3035 bfd_error_type err;
3036 struct lang_input_statement_flags save_flags;
3037 extern FILE *yyin;
3038
3039 err = bfd_get_error ();
3040
3041 /* See if the emulation has some special knowledge. */
3042 if (ldemul_unrecognized_file (entry))
3043 return TRUE;
3044
3045 if (err == bfd_error_file_ambiguously_recognized)
3046 {
3047 char **p;
3048
3049 einfo (_("%P: %pB: file not recognized: %E;"
3050 " matching formats:"), entry->the_bfd);
3051 for (p = matching; *p != NULL; p++)
3052 einfo (" %s", *p);
3053 einfo ("%F\n");
3054 }
3055 else if (err != bfd_error_file_not_recognized
3056 || place == NULL)
3057 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3058
3059 bfd_close (entry->the_bfd);
3060 entry->the_bfd = NULL;
3061
3062 /* Try to interpret the file as a linker script. */
3063 save_flags = input_flags;
3064 ldfile_open_command_file (entry->filename);
3065
3066 push_stat_ptr (place);
3067 input_flags.add_DT_NEEDED_for_regular
3068 = entry->flags.add_DT_NEEDED_for_regular;
3069 input_flags.add_DT_NEEDED_for_dynamic
3070 = entry->flags.add_DT_NEEDED_for_dynamic;
3071 input_flags.whole_archive = entry->flags.whole_archive;
3072 input_flags.dynamic = entry->flags.dynamic;
3073
3074 ldfile_assumed_script = TRUE;
3075 parser_input = input_script;
3076 current_input_file = entry->filename;
3077 yyparse ();
3078 current_input_file = NULL;
3079 ldfile_assumed_script = FALSE;
3080
3081 /* missing_file is sticky. sysrooted will already have been
3082 restored when seeing EOF in yyparse, but no harm to restore
3083 again. */
3084 save_flags.missing_file |= input_flags.missing_file;
3085 input_flags = save_flags;
3086 pop_stat_ptr ();
3087 fclose (yyin);
3088 yyin = NULL;
3089 entry->flags.loaded = TRUE;
3090
3091 return TRUE;
3092 }
3093
3094 if (ldemul_recognized_file (entry))
3095 return TRUE;
3096
3097 /* We don't call ldlang_add_file for an archive. Instead, the
3098 add_symbols entry point will call ldlang_add_file, via the
3099 add_archive_element callback, for each element of the archive
3100 which is used. */
3101 switch (bfd_get_format (entry->the_bfd))
3102 {
3103 default:
3104 break;
3105
3106 case bfd_object:
3107 if (!entry->flags.reload)
3108 ldlang_add_file (entry);
3109 break;
3110
3111 case bfd_archive:
3112 check_excluded_libs (entry->the_bfd);
3113
3114 bfd_set_usrdata (entry->the_bfd, entry);
3115 if (entry->flags.whole_archive)
3116 {
3117 bfd *member = NULL;
3118 bfd_boolean loaded = TRUE;
3119
3120 for (;;)
3121 {
3122 bfd *subsbfd;
3123 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3124
3125 if (member == NULL)
3126 break;
3127
3128 if (!bfd_check_format (member, bfd_object))
3129 {
3130 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3131 entry->the_bfd, member);
3132 loaded = FALSE;
3133 }
3134
3135 subsbfd = member;
3136 if (!(*link_info.callbacks
3137 ->add_archive_element) (&link_info, member,
3138 "--whole-archive", &subsbfd))
3139 abort ();
3140
3141 /* Potentially, the add_archive_element hook may have set a
3142 substitute BFD for us. */
3143 if (!bfd_link_add_symbols (subsbfd, &link_info))
3144 {
3145 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3146 loaded = FALSE;
3147 }
3148 }
3149
3150 entry->flags.loaded = loaded;
3151 return loaded;
3152 }
3153 break;
3154 }
3155
3156 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3157 entry->flags.loaded = TRUE;
3158 else
3159 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3160
3161 return entry->flags.loaded;
3162 }
3163
3164 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3165 may be NULL, indicating that it is a wildcard. Separate
3166 lang_input_section statements are created for each part of the
3167 expansion; they are added after the wild statement S. OUTPUT is
3168 the output section. */
3169
3170 static void
3171 wild (lang_wild_statement_type *s,
3172 const char *target ATTRIBUTE_UNUSED,
3173 lang_output_section_statement_type *output)
3174 {
3175 struct wildcard_list *sec;
3176
3177 if (s->handler_data[0]
3178 && s->handler_data[0]->spec.sorted == by_name
3179 && !s->filenames_sorted)
3180 {
3181 lang_section_bst_type *tree;
3182
3183 walk_wild (s, output_section_callback_fast, output);
3184
3185 tree = s->tree;
3186 if (tree)
3187 {
3188 output_section_callback_tree_to_list (s, tree, output);
3189 s->tree = NULL;
3190 }
3191 }
3192 else
3193 walk_wild (s, output_section_callback, output);
3194
3195 if (default_common_section == NULL)
3196 for (sec = s->section_list; sec != NULL; sec = sec->next)
3197 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3198 {
3199 /* Remember the section that common is going to in case we
3200 later get something which doesn't know where to put it. */
3201 default_common_section = output;
3202 break;
3203 }
3204 }
3205
3206 /* Return TRUE iff target is the sought target. */
3207
3208 static int
3209 get_target (const bfd_target *target, void *data)
3210 {
3211 const char *sought = (const char *) data;
3212
3213 return strcmp (target->name, sought) == 0;
3214 }
3215
3216 /* Like strcpy() but convert to lower case as well. */
3217
3218 static void
3219 stricpy (char *dest, const char *src)
3220 {
3221 char c;
3222
3223 while ((c = *src++) != 0)
3224 *dest++ = TOLOWER (c);
3225
3226 *dest = 0;
3227 }
3228
3229 /* Remove the first occurrence of needle (if any) in haystack
3230 from haystack. */
3231
3232 static void
3233 strcut (char *haystack, const char *needle)
3234 {
3235 haystack = strstr (haystack, needle);
3236
3237 if (haystack)
3238 {
3239 char *src;
3240
3241 for (src = haystack + strlen (needle); *src;)
3242 *haystack++ = *src++;
3243
3244 *haystack = 0;
3245 }
3246 }
3247
3248 /* Compare two target format name strings.
3249 Return a value indicating how "similar" they are. */
3250
3251 static int
3252 name_compare (const char *first, const char *second)
3253 {
3254 char *copy1;
3255 char *copy2;
3256 int result;
3257
3258 copy1 = (char *) xmalloc (strlen (first) + 1);
3259 copy2 = (char *) xmalloc (strlen (second) + 1);
3260
3261 /* Convert the names to lower case. */
3262 stricpy (copy1, first);
3263 stricpy (copy2, second);
3264
3265 /* Remove size and endian strings from the name. */
3266 strcut (copy1, "big");
3267 strcut (copy1, "little");
3268 strcut (copy2, "big");
3269 strcut (copy2, "little");
3270
3271 /* Return a value based on how many characters match,
3272 starting from the beginning. If both strings are
3273 the same then return 10 * their length. */
3274 for (result = 0; copy1[result] == copy2[result]; result++)
3275 if (copy1[result] == 0)
3276 {
3277 result *= 10;
3278 break;
3279 }
3280
3281 free (copy1);
3282 free (copy2);
3283
3284 return result;
3285 }
3286
3287 /* Set by closest_target_match() below. */
3288 static const bfd_target *winner;
3289
3290 /* Scan all the valid bfd targets looking for one that has the endianness
3291 requirement that was specified on the command line, and is the nearest
3292 match to the original output target. */
3293
3294 static int
3295 closest_target_match (const bfd_target *target, void *data)
3296 {
3297 const bfd_target *original = (const bfd_target *) data;
3298
3299 if (command_line.endian == ENDIAN_BIG
3300 && target->byteorder != BFD_ENDIAN_BIG)
3301 return 0;
3302
3303 if (command_line.endian == ENDIAN_LITTLE
3304 && target->byteorder != BFD_ENDIAN_LITTLE)
3305 return 0;
3306
3307 /* Must be the same flavour. */
3308 if (target->flavour != original->flavour)
3309 return 0;
3310
3311 /* Ignore generic big and little endian elf vectors. */
3312 if (strcmp (target->name, "elf32-big") == 0
3313 || strcmp (target->name, "elf64-big") == 0
3314 || strcmp (target->name, "elf32-little") == 0
3315 || strcmp (target->name, "elf64-little") == 0)
3316 return 0;
3317
3318 /* If we have not found a potential winner yet, then record this one. */
3319 if (winner == NULL)
3320 {
3321 winner = target;
3322 return 0;
3323 }
3324
3325 /* Oh dear, we now have two potential candidates for a successful match.
3326 Compare their names and choose the better one. */
3327 if (name_compare (target->name, original->name)
3328 > name_compare (winner->name, original->name))
3329 winner = target;
3330
3331 /* Keep on searching until wqe have checked them all. */
3332 return 0;
3333 }
3334
3335 /* Return the BFD target format of the first input file. */
3336
3337 static const char *
3338 get_first_input_target (void)
3339 {
3340 const char *target = NULL;
3341
3342 LANG_FOR_EACH_INPUT_STATEMENT (s)
3343 {
3344 if (s->header.type == lang_input_statement_enum
3345 && s->flags.real)
3346 {
3347 ldfile_open_file (s);
3348
3349 if (s->the_bfd != NULL
3350 && bfd_check_format (s->the_bfd, bfd_object))
3351 {
3352 target = bfd_get_target (s->the_bfd);
3353
3354 if (target != NULL)
3355 break;
3356 }
3357 }
3358 }
3359
3360 return target;
3361 }
3362
3363 const char *
3364 lang_get_output_target (void)
3365 {
3366 const char *target;
3367
3368 /* Has the user told us which output format to use? */
3369 if (output_target != NULL)
3370 return output_target;
3371
3372 /* No - has the current target been set to something other than
3373 the default? */
3374 if (current_target != default_target && current_target != NULL)
3375 return current_target;
3376
3377 /* No - can we determine the format of the first input file? */
3378 target = get_first_input_target ();
3379 if (target != NULL)
3380 return target;
3381
3382 /* Failed - use the default output target. */
3383 return default_target;
3384 }
3385
3386 /* Open the output file. */
3387
3388 static void
3389 open_output (const char *name)
3390 {
3391 output_target = lang_get_output_target ();
3392
3393 /* Has the user requested a particular endianness on the command
3394 line? */
3395 if (command_line.endian != ENDIAN_UNSET)
3396 {
3397 /* Get the chosen target. */
3398 const bfd_target *target
3399 = bfd_iterate_over_targets (get_target, (void *) output_target);
3400
3401 /* If the target is not supported, we cannot do anything. */
3402 if (target != NULL)
3403 {
3404 enum bfd_endian desired_endian;
3405
3406 if (command_line.endian == ENDIAN_BIG)
3407 desired_endian = BFD_ENDIAN_BIG;
3408 else
3409 desired_endian = BFD_ENDIAN_LITTLE;
3410
3411 /* See if the target has the wrong endianness. This should
3412 not happen if the linker script has provided big and
3413 little endian alternatives, but some scrips don't do
3414 this. */
3415 if (target->byteorder != desired_endian)
3416 {
3417 /* If it does, then see if the target provides
3418 an alternative with the correct endianness. */
3419 if (target->alternative_target != NULL
3420 && (target->alternative_target->byteorder == desired_endian))
3421 output_target = target->alternative_target->name;
3422 else
3423 {
3424 /* Try to find a target as similar as possible to
3425 the default target, but which has the desired
3426 endian characteristic. */
3427 bfd_iterate_over_targets (closest_target_match,
3428 (void *) target);
3429
3430 /* Oh dear - we could not find any targets that
3431 satisfy our requirements. */
3432 if (winner == NULL)
3433 einfo (_("%P: warning: could not find any targets"
3434 " that match endianness requirement\n"));
3435 else
3436 output_target = winner->name;
3437 }
3438 }
3439 }
3440 }
3441
3442 link_info.output_bfd = bfd_openw (name, output_target);
3443
3444 if (link_info.output_bfd == NULL)
3445 {
3446 if (bfd_get_error () == bfd_error_invalid_target)
3447 einfo (_("%F%P: target %s not found\n"), output_target);
3448
3449 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3450 }
3451
3452 delete_output_file_on_failure = TRUE;
3453
3454 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3455 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3456 if (!bfd_set_arch_mach (link_info.output_bfd,
3457 ldfile_output_architecture,
3458 ldfile_output_machine))
3459 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3460
3461 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3462 if (link_info.hash == NULL)
3463 einfo (_("%F%P: can not create hash table: %E\n"));
3464
3465 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3466 }
3467
3468 static void
3469 ldlang_open_output (lang_statement_union_type *statement)
3470 {
3471 switch (statement->header.type)
3472 {
3473 case lang_output_statement_enum:
3474 ASSERT (link_info.output_bfd == NULL);
3475 open_output (statement->output_statement.name);
3476 ldemul_set_output_arch ();
3477 if (config.magic_demand_paged
3478 && !bfd_link_relocatable (&link_info))
3479 link_info.output_bfd->flags |= D_PAGED;
3480 else
3481 link_info.output_bfd->flags &= ~D_PAGED;
3482 if (config.text_read_only)
3483 link_info.output_bfd->flags |= WP_TEXT;
3484 else
3485 link_info.output_bfd->flags &= ~WP_TEXT;
3486 if (link_info.traditional_format)
3487 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3488 else
3489 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3490 break;
3491
3492 case lang_target_statement_enum:
3493 current_target = statement->target_statement.target;
3494 break;
3495 default:
3496 break;
3497 }
3498 }
3499
3500 static void
3501 init_opb (asection *s)
3502 {
3503 unsigned int x;
3504
3505 opb_shift = 0;
3506 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3507 && s != NULL
3508 && (s->flags & SEC_ELF_OCTETS) != 0)
3509 return;
3510
3511 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3512 ldfile_output_machine);
3513 if (x > 1)
3514 while ((x & 1) == 0)
3515 {
3516 x >>= 1;
3517 ++opb_shift;
3518 }
3519 ASSERT (x == 1);
3520 }
3521
3522 /* Open all the input files. */
3523
3524 enum open_bfd_mode
3525 {
3526 OPEN_BFD_NORMAL = 0,
3527 OPEN_BFD_FORCE = 1,
3528 OPEN_BFD_RESCAN = 2
3529 };
3530 #if BFD_SUPPORTS_PLUGINS
3531 static lang_input_statement_type *plugin_insert = NULL;
3532 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3533 #endif
3534
3535 static void
3536 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3537 {
3538 for (; s != NULL; s = s->header.next)
3539 {
3540 switch (s->header.type)
3541 {
3542 case lang_constructors_statement_enum:
3543 open_input_bfds (constructor_list.head, mode);
3544 break;
3545 case lang_output_section_statement_enum:
3546 open_input_bfds (s->output_section_statement.children.head, mode);
3547 break;
3548 case lang_wild_statement_enum:
3549 /* Maybe we should load the file's symbols. */
3550 if ((mode & OPEN_BFD_RESCAN) == 0
3551 && s->wild_statement.filename
3552 && !wildcardp (s->wild_statement.filename)
3553 && !archive_path (s->wild_statement.filename))
3554 lookup_name (s->wild_statement.filename);
3555 open_input_bfds (s->wild_statement.children.head, mode);
3556 break;
3557 case lang_group_statement_enum:
3558 {
3559 struct bfd_link_hash_entry *undefs;
3560 #if BFD_SUPPORTS_PLUGINS
3561 lang_input_statement_type *plugin_insert_save;
3562 #endif
3563
3564 /* We must continually search the entries in the group
3565 until no new symbols are added to the list of undefined
3566 symbols. */
3567
3568 do
3569 {
3570 #if BFD_SUPPORTS_PLUGINS
3571 plugin_insert_save = plugin_insert;
3572 #endif
3573 undefs = link_info.hash->undefs_tail;
3574 open_input_bfds (s->group_statement.children.head,
3575 mode | OPEN_BFD_FORCE);
3576 }
3577 while (undefs != link_info.hash->undefs_tail
3578 #if BFD_SUPPORTS_PLUGINS
3579 /* Objects inserted by a plugin, which are loaded
3580 before we hit this loop, may have added new
3581 undefs. */
3582 || (plugin_insert != plugin_insert_save && plugin_undefs)
3583 #endif
3584 );
3585 }
3586 break;
3587 case lang_target_statement_enum:
3588 current_target = s->target_statement.target;
3589 break;
3590 case lang_input_statement_enum:
3591 if (s->input_statement.flags.real)
3592 {
3593 lang_statement_union_type **os_tail;
3594 lang_statement_list_type add;
3595 bfd *abfd;
3596
3597 s->input_statement.target = current_target;
3598
3599 /* If we are being called from within a group, and this
3600 is an archive which has already been searched, then
3601 force it to be researched unless the whole archive
3602 has been loaded already. Do the same for a rescan.
3603 Likewise reload --as-needed shared libs. */
3604 if (mode != OPEN_BFD_NORMAL
3605 #if BFD_SUPPORTS_PLUGINS
3606 && ((mode & OPEN_BFD_RESCAN) == 0
3607 || plugin_insert == NULL)
3608 #endif
3609 && s->input_statement.flags.loaded
3610 && (abfd = s->input_statement.the_bfd) != NULL
3611 && ((bfd_get_format (abfd) == bfd_archive
3612 && !s->input_statement.flags.whole_archive)
3613 || (bfd_get_format (abfd) == bfd_object
3614 && ((abfd->flags) & DYNAMIC) != 0
3615 && s->input_statement.flags.add_DT_NEEDED_for_regular
3616 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3617 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3618 {
3619 s->input_statement.flags.loaded = FALSE;
3620 s->input_statement.flags.reload = TRUE;
3621 }
3622
3623 os_tail = lang_os_list.tail;
3624 lang_list_init (&add);
3625
3626 if (!load_symbols (&s->input_statement, &add))
3627 config.make_executable = FALSE;
3628
3629 if (add.head != NULL)
3630 {
3631 /* If this was a script with output sections then
3632 tack any added statements on to the end of the
3633 list. This avoids having to reorder the output
3634 section statement list. Very likely the user
3635 forgot -T, and whatever we do here will not meet
3636 naive user expectations. */
3637 if (os_tail != lang_os_list.tail)
3638 {
3639 einfo (_("%P: warning: %s contains output sections;"
3640 " did you forget -T?\n"),
3641 s->input_statement.filename);
3642 *stat_ptr->tail = add.head;
3643 stat_ptr->tail = add.tail;
3644 }
3645 else
3646 {
3647 *add.tail = s->header.next;
3648 s->header.next = add.head;
3649 }
3650 }
3651 }
3652 #if BFD_SUPPORTS_PLUGINS
3653 /* If we have found the point at which a plugin added new
3654 files, clear plugin_insert to enable archive rescan. */
3655 if (&s->input_statement == plugin_insert)
3656 plugin_insert = NULL;
3657 #endif
3658 break;
3659 case lang_assignment_statement_enum:
3660 if (s->assignment_statement.exp->type.node_class != etree_assert)
3661 exp_fold_tree_no_dot (s->assignment_statement.exp);
3662 break;
3663 default:
3664 break;
3665 }
3666 }
3667
3668 /* Exit if any of the files were missing. */
3669 if (input_flags.missing_file)
3670 einfo ("%F");
3671 }
3672
3673 #ifdef ENABLE_LIBCTF
3674 /* Emit CTF errors and warnings. fp can be NULL to report errors/warnings
3675 that happened specifically at CTF open time. */
3676 static void
3677 lang_ctf_errs_warnings (ctf_dict_t *fp)
3678 {
3679 ctf_next_t *i = NULL;
3680 char *text;
3681 int is_warning;
3682 int err;
3683
3684 while ((text = ctf_errwarning_next (fp, &i, &is_warning, &err)) != NULL)
3685 {
3686 einfo (_("%s: %s\n"), is_warning ? _("CTF warning"): _("CTF error"),
3687 text);
3688 free (text);
3689 }
3690 if (err != ECTF_NEXT_END)
3691 {
3692 einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
3693 ctf_errmsg (err));
3694 }
3695
3696 /* `err' returns errors from the error/warning iterator in particular.
3697 These never assert. But if we have an fp, that could have recorded
3698 an assertion failure: assert if it has done so. */
3699 ASSERT (!fp || ctf_errno (fp) != ECTF_INTERNAL);
3700 }
3701
3702 /* Open the CTF sections in the input files with libctf: if any were opened,
3703 create a fake input file that we'll write the merged CTF data to later
3704 on. */
3705
3706 static void
3707 ldlang_open_ctf (void)
3708 {
3709 int any_ctf = 0;
3710 int err;
3711
3712 LANG_FOR_EACH_INPUT_STATEMENT (file)
3713 {
3714 asection *sect;
3715
3716 /* Incoming files from the compiler have a single ctf_dict_t in them
3717 (which is presented to us by the libctf API in a ctf_archive_t
3718 wrapper): files derived from a previous relocatable link have a CTF
3719 archive containing possibly many CTF files. */
3720
3721 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3722 {
3723 if (err != ECTF_NOCTFDATA)
3724 {
3725 lang_ctf_errs_warnings (NULL);
3726 einfo (_("%P: warning: CTF section in %pB not loaded; "
3727 "its types will be discarded: %s\n"), file->the_bfd,
3728 ctf_errmsg (err));
3729 }
3730 continue;
3731 }
3732
3733 /* Prevent the contents of this section from being written, while
3734 requiring the section itself to be duplicated in the output, but only
3735 once. */
3736 /* This section must exist if ctf_bfdopen() succeeded. */
3737 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3738 sect->size = 0;
3739 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3740
3741 if (any_ctf)
3742 sect->flags |= SEC_EXCLUDE;
3743 any_ctf = 1;
3744 }
3745
3746 if (!any_ctf)
3747 {
3748 ctf_output = NULL;
3749 return;
3750 }
3751
3752 if ((ctf_output = ctf_create (&err)) != NULL)
3753 return;
3754
3755 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3756 ctf_errmsg (err));
3757
3758 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3759 ctf_close (errfile->the_ctf);
3760 }
3761
3762 /* Merge together CTF sections. After this, only the symtab-dependent
3763 function and data object sections need adjustment. */
3764
3765 static void
3766 lang_merge_ctf (void)
3767 {
3768 asection *output_sect;
3769 int flags = 0;
3770
3771 if (!ctf_output)
3772 return;
3773
3774 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3775
3776 /* If the section was discarded, don't waste time merging. */
3777 if (output_sect == NULL)
3778 {
3779 ctf_dict_close (ctf_output);
3780 ctf_output = NULL;
3781
3782 LANG_FOR_EACH_INPUT_STATEMENT (file)
3783 {
3784 ctf_close (file->the_ctf);
3785 file->the_ctf = NULL;
3786 }
3787 return;
3788 }
3789
3790 LANG_FOR_EACH_INPUT_STATEMENT (file)
3791 {
3792 if (!file->the_ctf)
3793 continue;
3794
3795 /* Takes ownership of file->the_ctf. */
3796 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3797 {
3798 einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
3799 file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
3800 ctf_close (file->the_ctf);
3801 file->the_ctf = NULL;
3802 continue;
3803 }
3804 }
3805
3806 if (!config.ctf_share_duplicated)
3807 flags = CTF_LINK_SHARE_UNCONFLICTED;
3808 else
3809 flags = CTF_LINK_SHARE_DUPLICATED;
3810 if (!config.ctf_variables)
3811 flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
3812
3813 if (ctf_link (ctf_output, flags) < 0)
3814 {
3815 lang_ctf_errs_warnings (ctf_output);
3816 einfo (_("%P: warning: CTF linking failed; "
3817 "output will have no CTF section: %s\n"),
3818 ctf_errmsg (ctf_errno (ctf_output)));
3819 if (output_sect)
3820 {
3821 output_sect->size = 0;
3822 output_sect->flags |= SEC_EXCLUDE;
3823 }
3824 }
3825 /* Output any lingering errors that didn't come from ctf_link. */
3826 lang_ctf_errs_warnings (ctf_output);
3827 }
3828
3829 /* Let the emulation acquire strings from the dynamic strtab to help it optimize
3830 the CTF, if supported. */
3831
3832 void
3833 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab)
3834 {
3835 ldemul_acquire_strings_for_ctf (ctf_output, dynstrtab);
3836 }
3837
3838 /* Inform the emulation about the addition of a new dynamic symbol, in BFD
3839 internal format. */
3840 void ldlang_ctf_new_dynsym (int symidx, struct elf_internal_sym *sym)
3841 {
3842 ldemul_new_dynsym_for_ctf (ctf_output, symidx, sym);
3843 }
3844
3845 /* Write out the CTF section. Called early, if the emulation isn't going to
3846 need to dedup against the strtab and symtab, then possibly called from the
3847 target linker code if the dedup has happened. */
3848 static void
3849 lang_write_ctf (int late)
3850 {
3851 size_t output_size;
3852 asection *output_sect;
3853
3854 if (!ctf_output)
3855 return;
3856
3857 if (late)
3858 {
3859 /* Emit CTF late if this emulation says it can do so. */
3860 if (ldemul_emit_ctf_early ())
3861 return;
3862 }
3863 else
3864 {
3865 if (!ldemul_emit_ctf_early ())
3866 return;
3867 }
3868
3869 /* Inform the emulation that all the symbols that will be received have
3870 been. */
3871
3872 ldemul_new_dynsym_for_ctf (ctf_output, 0, NULL);
3873
3874 /* Emit CTF. */
3875
3876 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3877 if (output_sect)
3878 {
3879 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3880 CTF_COMPRESSION_THRESHOLD);
3881 output_sect->size = output_size;
3882 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3883
3884 lang_ctf_errs_warnings (ctf_output);
3885 if (!output_sect->contents)
3886 {
3887 einfo (_("%P: warning: CTF section emission failed; "
3888 "output will have no CTF section: %s\n"),
3889 ctf_errmsg (ctf_errno (ctf_output)));
3890 output_sect->size = 0;
3891 output_sect->flags |= SEC_EXCLUDE;
3892 }
3893 }
3894
3895 /* This also closes every CTF input file used in the link. */
3896 ctf_dict_close (ctf_output);
3897 ctf_output = NULL;
3898
3899 LANG_FOR_EACH_INPUT_STATEMENT (file)
3900 file->the_ctf = NULL;
3901 }
3902
3903 /* Write out the CTF section late, if the emulation needs that. */
3904
3905 void
3906 ldlang_write_ctf_late (void)
3907 {
3908 /* Trigger a "late call", if the emulation needs one. */
3909
3910 lang_write_ctf (1);
3911 }
3912 #else
3913 static void
3914 ldlang_open_ctf (void)
3915 {
3916 LANG_FOR_EACH_INPUT_STATEMENT (file)
3917 {
3918 asection *sect;
3919
3920 /* If built without CTF, warn and delete all CTF sections from the output.
3921 (The alternative would be to simply concatenate them, which does not
3922 yield a valid CTF section.) */
3923
3924 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3925 {
3926 einfo (_("%P: warning: CTF section in %pB not linkable: "
3927 "%P was built without support for CTF\n"), file->the_bfd);
3928 sect->size = 0;
3929 sect->flags |= SEC_EXCLUDE;
3930 }
3931 }
3932 }
3933
3934 static void lang_merge_ctf (void) {}
3935 void
3936 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab
3937 ATTRIBUTE_UNUSED) {}
3938 void
3939 ldlang_ctf_new_dynsym (int symidx ATTRIBUTE_UNUSED,
3940 struct elf_internal_sym *sym ATTRIBUTE_UNUSED) {}
3941 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3942 void ldlang_write_ctf_late (void) {}
3943 #endif
3944
3945 /* Add the supplied name to the symbol table as an undefined reference.
3946 This is a two step process as the symbol table doesn't even exist at
3947 the time the ld command line is processed. First we put the name
3948 on a list, then, once the output file has been opened, transfer the
3949 name to the symbol table. */
3950
3951 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3952
3953 #define ldlang_undef_chain_list_head entry_symbol.next
3954
3955 void
3956 ldlang_add_undef (const char *const name, bfd_boolean cmdline ATTRIBUTE_UNUSED)
3957 {
3958 ldlang_undef_chain_list_type *new_undef;
3959
3960 new_undef = stat_alloc (sizeof (*new_undef));
3961 new_undef->next = ldlang_undef_chain_list_head;
3962 ldlang_undef_chain_list_head = new_undef;
3963
3964 new_undef->name = xstrdup (name);
3965
3966 if (link_info.output_bfd != NULL)
3967 insert_undefined (new_undef->name);
3968 }
3969
3970 /* Insert NAME as undefined in the symbol table. */
3971
3972 static void
3973 insert_undefined (const char *name)
3974 {
3975 struct bfd_link_hash_entry *h;
3976
3977 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3978 if (h == NULL)
3979 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3980 if (h->type == bfd_link_hash_new)
3981 {
3982 h->type = bfd_link_hash_undefined;
3983 h->u.undef.abfd = NULL;
3984 h->non_ir_ref_regular = TRUE;
3985 if (is_elf_hash_table (link_info.hash))
3986 ((struct elf_link_hash_entry *) h)->mark = 1;
3987 bfd_link_add_undef (link_info.hash, h);
3988 }
3989 }
3990
3991 /* Run through the list of undefineds created above and place them
3992 into the linker hash table as undefined symbols belonging to the
3993 script file. */
3994
3995 static void
3996 lang_place_undefineds (void)
3997 {
3998 ldlang_undef_chain_list_type *ptr;
3999
4000 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
4001 insert_undefined (ptr->name);
4002 }
4003
4004 /* Structure used to build the list of symbols that the user has required
4005 be defined. */
4006
4007 struct require_defined_symbol
4008 {
4009 const char *name;
4010 struct require_defined_symbol *next;
4011 };
4012
4013 /* The list of symbols that the user has required be defined. */
4014
4015 static struct require_defined_symbol *require_defined_symbol_list;
4016
4017 /* Add a new symbol NAME to the list of symbols that are required to be
4018 defined. */
4019
4020 void
4021 ldlang_add_require_defined (const char *const name)
4022 {
4023 struct require_defined_symbol *ptr;
4024
4025 ldlang_add_undef (name, TRUE);
4026 ptr = stat_alloc (sizeof (*ptr));
4027 ptr->next = require_defined_symbol_list;
4028 ptr->name = strdup (name);
4029 require_defined_symbol_list = ptr;
4030 }
4031
4032 /* Check that all symbols the user required to be defined, are defined,
4033 raise an error if we find a symbol that is not defined. */
4034
4035 static void
4036 ldlang_check_require_defined_symbols (void)
4037 {
4038 struct require_defined_symbol *ptr;
4039
4040 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
4041 {
4042 struct bfd_link_hash_entry *h;
4043
4044 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
4045 FALSE, FALSE, TRUE);
4046 if (h == NULL
4047 || (h->type != bfd_link_hash_defined
4048 && h->type != bfd_link_hash_defweak))
4049 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
4050 }
4051 }
4052
4053 /* Check for all readonly or some readwrite sections. */
4054
4055 static void
4056 check_input_sections
4057 (lang_statement_union_type *s,
4058 lang_output_section_statement_type *output_section_statement)
4059 {
4060 for (; s != NULL; s = s->header.next)
4061 {
4062 switch (s->header.type)
4063 {
4064 case lang_wild_statement_enum:
4065 walk_wild (&s->wild_statement, check_section_callback,
4066 output_section_statement);
4067 if (!output_section_statement->all_input_readonly)
4068 return;
4069 break;
4070 case lang_constructors_statement_enum:
4071 check_input_sections (constructor_list.head,
4072 output_section_statement);
4073 if (!output_section_statement->all_input_readonly)
4074 return;
4075 break;
4076 case lang_group_statement_enum:
4077 check_input_sections (s->group_statement.children.head,
4078 output_section_statement);
4079 if (!output_section_statement->all_input_readonly)
4080 return;
4081 break;
4082 default:
4083 break;
4084 }
4085 }
4086 }
4087
4088 /* Update wildcard statements if needed. */
4089
4090 static void
4091 update_wild_statements (lang_statement_union_type *s)
4092 {
4093 struct wildcard_list *sec;
4094
4095 switch (sort_section)
4096 {
4097 default:
4098 FAIL ();
4099
4100 case none:
4101 break;
4102
4103 case by_name:
4104 case by_alignment:
4105 for (; s != NULL; s = s->header.next)
4106 {
4107 switch (s->header.type)
4108 {
4109 default:
4110 break;
4111
4112 case lang_wild_statement_enum:
4113 for (sec = s->wild_statement.section_list; sec != NULL;
4114 sec = sec->next)
4115 /* Don't sort .init/.fini sections. */
4116 if (strcmp (sec->spec.name, ".init") != 0
4117 && strcmp (sec->spec.name, ".fini") != 0)
4118 switch (sec->spec.sorted)
4119 {
4120 case none:
4121 sec->spec.sorted = sort_section;
4122 break;
4123 case by_name:
4124 if (sort_section == by_alignment)
4125 sec->spec.sorted = by_name_alignment;
4126 break;
4127 case by_alignment:
4128 if (sort_section == by_name)
4129 sec->spec.sorted = by_alignment_name;
4130 break;
4131 default:
4132 break;
4133 }
4134 break;
4135
4136 case lang_constructors_statement_enum:
4137 update_wild_statements (constructor_list.head);
4138 break;
4139
4140 case lang_output_section_statement_enum:
4141 update_wild_statements
4142 (s->output_section_statement.children.head);
4143 break;
4144
4145 case lang_group_statement_enum:
4146 update_wild_statements (s->group_statement.children.head);
4147 break;
4148 }
4149 }
4150 break;
4151 }
4152 }
4153
4154 /* Open input files and attach to output sections. */
4155
4156 static void
4157 map_input_to_output_sections
4158 (lang_statement_union_type *s, const char *target,
4159 lang_output_section_statement_type *os)
4160 {
4161 for (; s != NULL; s = s->header.next)
4162 {
4163 lang_output_section_statement_type *tos;
4164 flagword flags;
4165
4166 switch (s->header.type)
4167 {
4168 case lang_wild_statement_enum:
4169 wild (&s->wild_statement, target, os);
4170 break;
4171 case lang_constructors_statement_enum:
4172 map_input_to_output_sections (constructor_list.head,
4173 target,
4174 os);
4175 break;
4176 case lang_output_section_statement_enum:
4177 tos = &s->output_section_statement;
4178 if (tos->constraint == ONLY_IF_RW
4179 || tos->constraint == ONLY_IF_RO)
4180 {
4181 tos->all_input_readonly = TRUE;
4182 check_input_sections (tos->children.head, tos);
4183 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4184 tos->constraint = -1;
4185 }
4186 if (tos->constraint >= 0)
4187 map_input_to_output_sections (tos->children.head,
4188 target,
4189 tos);
4190 break;
4191 case lang_output_statement_enum:
4192 break;
4193 case lang_target_statement_enum:
4194 target = s->target_statement.target;
4195 break;
4196 case lang_group_statement_enum:
4197 map_input_to_output_sections (s->group_statement.children.head,
4198 target,
4199 os);
4200 break;
4201 case lang_data_statement_enum:
4202 /* Make sure that any sections mentioned in the expression
4203 are initialized. */
4204 exp_init_os (s->data_statement.exp);
4205 /* The output section gets CONTENTS, ALLOC and LOAD, but
4206 these may be overridden by the script. */
4207 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4208 switch (os->sectype)
4209 {
4210 case normal_section:
4211 case overlay_section:
4212 case first_overlay_section:
4213 break;
4214 case noalloc_section:
4215 flags = SEC_HAS_CONTENTS;
4216 break;
4217 case noload_section:
4218 if (bfd_get_flavour (link_info.output_bfd)
4219 == bfd_target_elf_flavour)
4220 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4221 else
4222 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4223 break;
4224 }
4225 if (os->bfd_section == NULL)
4226 init_os (os, flags);
4227 else
4228 os->bfd_section->flags |= flags;
4229 break;
4230 case lang_input_section_enum:
4231 break;
4232 case lang_fill_statement_enum:
4233 case lang_object_symbols_statement_enum:
4234 case lang_reloc_statement_enum:
4235 case lang_padding_statement_enum:
4236 case lang_input_statement_enum:
4237 if (os != NULL && os->bfd_section == NULL)
4238 init_os (os, 0);
4239 break;
4240 case lang_assignment_statement_enum:
4241 if (os != NULL && os->bfd_section == NULL)
4242 init_os (os, 0);
4243
4244 /* Make sure that any sections mentioned in the assignment
4245 are initialized. */
4246 exp_init_os (s->assignment_statement.exp);
4247 break;
4248 case lang_address_statement_enum:
4249 /* Mark the specified section with the supplied address.
4250 If this section was actually a segment marker, then the
4251 directive is ignored if the linker script explicitly
4252 processed the segment marker. Originally, the linker
4253 treated segment directives (like -Ttext on the
4254 command-line) as section directives. We honor the
4255 section directive semantics for backwards compatibility;
4256 linker scripts that do not specifically check for
4257 SEGMENT_START automatically get the old semantics. */
4258 if (!s->address_statement.segment
4259 || !s->address_statement.segment->used)
4260 {
4261 const char *name = s->address_statement.section_name;
4262
4263 /* Create the output section statement here so that
4264 orphans with a set address will be placed after other
4265 script sections. If we let the orphan placement code
4266 place them in amongst other sections then the address
4267 will affect following script sections, which is
4268 likely to surprise naive users. */
4269 tos = lang_output_section_statement_lookup (name, 0, 1);
4270 tos->addr_tree = s->address_statement.address;
4271 if (tos->bfd_section == NULL)
4272 init_os (tos, 0);
4273 }
4274 break;
4275 case lang_insert_statement_enum:
4276 break;
4277 }
4278 }
4279 }
4280
4281 /* An insert statement snips out all the linker statements from the
4282 start of the list and places them after the output section
4283 statement specified by the insert. This operation is complicated
4284 by the fact that we keep a doubly linked list of output section
4285 statements as well as the singly linked list of all statements.
4286 FIXME someday: Twiddling with the list not only moves statements
4287 from the user's script but also input and group statements that are
4288 built from command line object files and --start-group. We only
4289 get away with this because the list pointers used by file_chain
4290 and input_file_chain are not reordered, and processing via
4291 statement_list after this point mostly ignores input statements.
4292 One exception is the map file, where LOAD and START GROUP/END GROUP
4293 can end up looking odd. */
4294
4295 static void
4296 process_insert_statements (lang_statement_union_type **start)
4297 {
4298 lang_statement_union_type **s;
4299 lang_output_section_statement_type *first_os = NULL;
4300 lang_output_section_statement_type *last_os = NULL;
4301 lang_output_section_statement_type *os;
4302
4303 s = start;
4304 while (*s != NULL)
4305 {
4306 if ((*s)->header.type == lang_output_section_statement_enum)
4307 {
4308 /* Keep pointers to the first and last output section
4309 statement in the sequence we may be about to move. */
4310 os = &(*s)->output_section_statement;
4311
4312 ASSERT (last_os == NULL || last_os->next == os);
4313 last_os = os;
4314
4315 /* Set constraint negative so that lang_output_section_find
4316 won't match this output section statement. At this
4317 stage in linking constraint has values in the range
4318 [-1, ONLY_IN_RW]. */
4319 last_os->constraint = -2 - last_os->constraint;
4320 if (first_os == NULL)
4321 first_os = last_os;
4322 }
4323 else if ((*s)->header.type == lang_group_statement_enum)
4324 {
4325 /* A user might put -T between --start-group and
4326 --end-group. One way this odd construct might arise is
4327 from a wrapper around ld to change library search
4328 behaviour. For example:
4329 #! /bin/sh
4330 exec real_ld --start-group "$@" --end-group
4331 This isn't completely unreasonable so go looking inside a
4332 group statement for insert statements. */
4333 process_insert_statements (&(*s)->group_statement.children.head);
4334 }
4335 else if ((*s)->header.type == lang_insert_statement_enum)
4336 {
4337 lang_insert_statement_type *i = &(*s)->insert_statement;
4338 lang_output_section_statement_type *where;
4339 lang_statement_union_type **ptr;
4340 lang_statement_union_type *first;
4341
4342 if (link_info.non_contiguous_regions)
4343 {
4344 einfo (_("warning: INSERT statement in linker script is "
4345 "incompatible with --enable-non-contiguous-regions.\n"));
4346 }
4347
4348 where = lang_output_section_find (i->where);
4349 if (where != NULL && i->is_before)
4350 {
4351 do
4352 where = where->prev;
4353 while (where != NULL && where->constraint < 0);
4354 }
4355 if (where == NULL)
4356 {
4357 einfo (_("%F%P: %s not found for insert\n"), i->where);
4358 return;
4359 }
4360
4361 /* Deal with reordering the output section statement list. */
4362 if (last_os != NULL)
4363 {
4364 asection *first_sec, *last_sec;
4365 struct lang_output_section_statement_struct **next;
4366
4367 /* Snip out the output sections we are moving. */
4368 first_os->prev->next = last_os->next;
4369 if (last_os->next == NULL)
4370 {
4371 next = &first_os->prev->next;
4372 lang_os_list.tail = (lang_statement_union_type **) next;
4373 }
4374 else
4375 last_os->next->prev = first_os->prev;
4376 /* Add them in at the new position. */
4377 last_os->next = where->next;
4378 if (where->next == NULL)
4379 {
4380 next = &last_os->next;
4381 lang_os_list.tail = (lang_statement_union_type **) next;
4382 }
4383 else
4384 where->next->prev = last_os;
4385 first_os->prev = where;
4386 where->next = first_os;
4387
4388 /* Move the bfd sections in the same way. */
4389 first_sec = NULL;
4390 last_sec = NULL;
4391 for (os = first_os; os != NULL; os = os->next)
4392 {
4393 os->constraint = -2 - os->constraint;
4394 if (os->bfd_section != NULL
4395 && os->bfd_section->owner != NULL)
4396 {
4397 last_sec = os->bfd_section;
4398 if (first_sec == NULL)
4399 first_sec = last_sec;
4400 }
4401 if (os == last_os)
4402 break;
4403 }
4404 if (last_sec != NULL)
4405 {
4406 asection *sec = where->bfd_section;
4407 if (sec == NULL)
4408 sec = output_prev_sec_find (where);
4409
4410 /* The place we want to insert must come after the
4411 sections we are moving. So if we find no
4412 section or if the section is the same as our
4413 last section, then no move is needed. */
4414 if (sec != NULL && sec != last_sec)
4415 {
4416 /* Trim them off. */
4417 if (first_sec->prev != NULL)
4418 first_sec->prev->next = last_sec->next;
4419 else
4420 link_info.output_bfd->sections = last_sec->next;
4421 if (last_sec->next != NULL)
4422 last_sec->next->prev = first_sec->prev;
4423 else
4424 link_info.output_bfd->section_last = first_sec->prev;
4425 /* Add back. */
4426 last_sec->next = sec->next;
4427 if (sec->next != NULL)
4428 sec->next->prev = last_sec;
4429 else
4430 link_info.output_bfd->section_last = last_sec;
4431 first_sec->prev = sec;
4432 sec->next = first_sec;
4433 }
4434 }
4435
4436 first_os = NULL;
4437 last_os = NULL;
4438 }
4439
4440 ptr = insert_os_after (where);
4441 /* Snip everything from the start of the list, up to and
4442 including the insert statement we are currently processing. */
4443 first = *start;
4444 *start = (*s)->header.next;
4445 /* Add them back where they belong, minus the insert. */
4446 *s = *ptr;
4447 if (*s == NULL)
4448 statement_list.tail = s;
4449 *ptr = first;
4450 s = start;
4451 continue;
4452 }
4453 s = &(*s)->header.next;
4454 }
4455
4456 /* Undo constraint twiddling. */
4457 for (os = first_os; os != NULL; os = os->next)
4458 {
4459 os->constraint = -2 - os->constraint;
4460 if (os == last_os)
4461 break;
4462 }
4463 }
4464
4465 /* An output section might have been removed after its statement was
4466 added. For example, ldemul_before_allocation can remove dynamic
4467 sections if they turn out to be not needed. Clean them up here. */
4468
4469 void
4470 strip_excluded_output_sections (void)
4471 {
4472 lang_output_section_statement_type *os;
4473
4474 /* Run lang_size_sections (if not already done). */
4475 if (expld.phase != lang_mark_phase_enum)
4476 {
4477 expld.phase = lang_mark_phase_enum;
4478 expld.dataseg.phase = exp_seg_none;
4479 one_lang_size_sections_pass (NULL, FALSE);
4480 lang_reset_memory_regions ();
4481 }
4482
4483 for (os = (void *) lang_os_list.head;
4484 os != NULL;
4485 os = os->next)
4486 {
4487 asection *output_section;
4488 bfd_boolean exclude;
4489
4490 if (os->constraint < 0)
4491 continue;
4492
4493 output_section = os->bfd_section;
4494 if (output_section == NULL)
4495 continue;
4496
4497 exclude = (output_section->rawsize == 0
4498 && (output_section->flags & SEC_KEEP) == 0
4499 && !bfd_section_removed_from_list (link_info.output_bfd,
4500 output_section));
4501
4502 /* Some sections have not yet been sized, notably .gnu.version,
4503 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4504 input sections, so don't drop output sections that have such
4505 input sections unless they are also marked SEC_EXCLUDE. */
4506 if (exclude && output_section->map_head.s != NULL)
4507 {
4508 asection *s;
4509
4510 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4511 if ((s->flags & SEC_EXCLUDE) == 0
4512 && ((s->flags & SEC_LINKER_CREATED) != 0
4513 || link_info.emitrelocations))
4514 {
4515 exclude = FALSE;
4516 break;
4517 }
4518 }
4519
4520 if (exclude)
4521 {
4522 /* We don't set bfd_section to NULL since bfd_section of the
4523 removed output section statement may still be used. */
4524 if (!os->update_dot)
4525 os->ignored = TRUE;
4526 output_section->flags |= SEC_EXCLUDE;
4527 bfd_section_list_remove (link_info.output_bfd, output_section);
4528 link_info.output_bfd->section_count--;
4529 }
4530 }
4531 }
4532
4533 /* Called from ldwrite to clear out asection.map_head and
4534 asection.map_tail for use as link_orders in ldwrite. */
4535
4536 void
4537 lang_clear_os_map (void)
4538 {
4539 lang_output_section_statement_type *os;
4540
4541 if (map_head_is_link_order)
4542 return;
4543
4544 for (os = (void *) lang_os_list.head;
4545 os != NULL;
4546 os = os->next)
4547 {
4548 asection *output_section;
4549
4550 if (os->constraint < 0)
4551 continue;
4552
4553 output_section = os->bfd_section;
4554 if (output_section == NULL)
4555 continue;
4556
4557 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4558 output_section->map_head.link_order = NULL;
4559 output_section->map_tail.link_order = NULL;
4560 }
4561
4562 /* Stop future calls to lang_add_section from messing with map_head
4563 and map_tail link_order fields. */
4564 map_head_is_link_order = TRUE;
4565 }
4566
4567 static void
4568 print_output_section_statement
4569 (lang_output_section_statement_type *output_section_statement)
4570 {
4571 asection *section = output_section_statement->bfd_section;
4572 int len;
4573
4574 if (output_section_statement != abs_output_section)
4575 {
4576 minfo ("\n%s", output_section_statement->name);
4577
4578 if (section != NULL)
4579 {
4580 print_dot = section->vma;
4581
4582 len = strlen (output_section_statement->name);
4583 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4584 {
4585 print_nl ();
4586 len = 0;
4587 }
4588 while (len < SECTION_NAME_MAP_LENGTH)
4589 {
4590 print_space ();
4591 ++len;
4592 }
4593
4594 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4595
4596 if (section->vma != section->lma)
4597 minfo (_(" load address 0x%V"), section->lma);
4598
4599 if (output_section_statement->update_dot_tree != NULL)
4600 exp_fold_tree (output_section_statement->update_dot_tree,
4601 bfd_abs_section_ptr, &print_dot);
4602 }
4603
4604 print_nl ();
4605 }
4606
4607 print_statement_list (output_section_statement->children.head,
4608 output_section_statement);
4609 }
4610
4611 static void
4612 print_assignment (lang_assignment_statement_type *assignment,
4613 lang_output_section_statement_type *output_section)
4614 {
4615 unsigned int i;
4616 bfd_boolean is_dot;
4617 etree_type *tree;
4618 asection *osec;
4619
4620 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4621 print_space ();
4622
4623 if (assignment->exp->type.node_class == etree_assert)
4624 {
4625 is_dot = FALSE;
4626 tree = assignment->exp->assert_s.child;
4627 }
4628 else
4629 {
4630 const char *dst = assignment->exp->assign.dst;
4631
4632 is_dot = (dst[0] == '.' && dst[1] == 0);
4633 tree = assignment->exp;
4634 }
4635
4636 osec = output_section->bfd_section;
4637 if (osec == NULL)
4638 osec = bfd_abs_section_ptr;
4639
4640 if (assignment->exp->type.node_class != etree_provide)
4641 exp_fold_tree (tree, osec, &print_dot);
4642 else
4643 expld.result.valid_p = FALSE;
4644
4645 if (expld.result.valid_p)
4646 {
4647 bfd_vma value;
4648
4649 if (assignment->exp->type.node_class == etree_assert
4650 || is_dot
4651 || expld.assign_name != NULL)
4652 {
4653 value = expld.result.value;
4654
4655 if (expld.result.section != NULL)
4656 value += expld.result.section->vma;
4657
4658 minfo ("0x%V", value);
4659 if (is_dot)
4660 print_dot = value;
4661 }
4662 else
4663 {
4664 struct bfd_link_hash_entry *h;
4665
4666 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4667 FALSE, FALSE, TRUE);
4668 if (h != NULL
4669 && (h->type == bfd_link_hash_defined
4670 || h->type == bfd_link_hash_defweak))
4671 {
4672 value = h->u.def.value;
4673 value += h->u.def.section->output_section->vma;
4674 value += h->u.def.section->output_offset;
4675
4676 minfo ("[0x%V]", value);
4677 }
4678 else
4679 minfo ("[unresolved]");
4680 }
4681 }
4682 else
4683 {
4684 if (assignment->exp->type.node_class == etree_provide)
4685 minfo ("[!provide]");
4686 else
4687 minfo ("*undef* ");
4688 #ifdef BFD64
4689 minfo (" ");
4690 #endif
4691 }
4692 expld.assign_name = NULL;
4693
4694 minfo (" ");
4695 exp_print_tree (assignment->exp);
4696 print_nl ();
4697 }
4698
4699 static void
4700 print_input_statement (lang_input_statement_type *statm)
4701 {
4702 if (statm->filename != NULL)
4703 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4704 }
4705
4706 /* Print all symbols defined in a particular section. This is called
4707 via bfd_link_hash_traverse, or by print_all_symbols. */
4708
4709 bfd_boolean
4710 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4711 {
4712 asection *sec = (asection *) ptr;
4713
4714 if ((hash_entry->type == bfd_link_hash_defined
4715 || hash_entry->type == bfd_link_hash_defweak)
4716 && sec == hash_entry->u.def.section)
4717 {
4718 int i;
4719
4720 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4721 print_space ();
4722 minfo ("0x%V ",
4723 (hash_entry->u.def.value
4724 + hash_entry->u.def.section->output_offset
4725 + hash_entry->u.def.section->output_section->vma));
4726
4727 minfo (" %pT\n", hash_entry->root.string);
4728 }
4729
4730 return TRUE;
4731 }
4732
4733 static int
4734 hash_entry_addr_cmp (const void *a, const void *b)
4735 {
4736 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4737 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4738
4739 if (l->u.def.value < r->u.def.value)
4740 return -1;
4741 else if (l->u.def.value > r->u.def.value)
4742 return 1;
4743 else
4744 return 0;
4745 }
4746
4747 static void
4748 print_all_symbols (asection *sec)
4749 {
4750 input_section_userdata_type *ud = bfd_section_userdata (sec);
4751 struct map_symbol_def *def;
4752 struct bfd_link_hash_entry **entries;
4753 unsigned int i;
4754
4755 if (!ud)
4756 return;
4757
4758 *ud->map_symbol_def_tail = 0;
4759
4760 /* Sort the symbols by address. */
4761 entries = (struct bfd_link_hash_entry **)
4762 obstack_alloc (&map_obstack,
4763 ud->map_symbol_def_count * sizeof (*entries));
4764
4765 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4766 entries[i] = def->entry;
4767
4768 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4769 hash_entry_addr_cmp);
4770
4771 /* Print the symbols. */
4772 for (i = 0; i < ud->map_symbol_def_count; i++)
4773 ldemul_print_symbol (entries[i], sec);
4774
4775 obstack_free (&map_obstack, entries);
4776 }
4777
4778 /* Print information about an input section to the map file. */
4779
4780 static void
4781 print_input_section (asection *i, bfd_boolean is_discarded)
4782 {
4783 bfd_size_type size = i->size;
4784 int len;
4785 bfd_vma addr;
4786
4787 init_opb (i);
4788
4789 print_space ();
4790 minfo ("%s", i->name);
4791
4792 len = 1 + strlen (i->name);
4793 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4794 {
4795 print_nl ();
4796 len = 0;
4797 }
4798 while (len < SECTION_NAME_MAP_LENGTH)
4799 {
4800 print_space ();
4801 ++len;
4802 }
4803
4804 if (i->output_section != NULL
4805 && i->output_section->owner == link_info.output_bfd)
4806 addr = i->output_section->vma + i->output_offset;
4807 else
4808 {
4809 addr = print_dot;
4810 if (!is_discarded)
4811 size = 0;
4812 }
4813
4814 minfo ("0x%V %W %pB\n", addr, TO_ADDR (size), i->owner);
4815
4816 if (size != i->rawsize && i->rawsize != 0)
4817 {
4818 len = SECTION_NAME_MAP_LENGTH + 3;
4819 #ifdef BFD64
4820 len += 16;
4821 #else
4822 len += 8;
4823 #endif
4824 while (len > 0)
4825 {
4826 print_space ();
4827 --len;
4828 }
4829
4830 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4831 }
4832
4833 if (i->output_section != NULL
4834 && i->output_section->owner == link_info.output_bfd)
4835 {
4836 if (link_info.reduce_memory_overheads)
4837 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4838 else
4839 print_all_symbols (i);
4840
4841 /* Update print_dot, but make sure that we do not move it
4842 backwards - this could happen if we have overlays and a
4843 later overlay is shorter than an earier one. */
4844 if (addr + TO_ADDR (size) > print_dot)
4845 print_dot = addr + TO_ADDR (size);
4846 }
4847 }
4848
4849 static void
4850 print_fill_statement (lang_fill_statement_type *fill)
4851 {
4852 size_t size;
4853 unsigned char *p;
4854 fputs (" FILL mask 0x", config.map_file);
4855 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4856 fprintf (config.map_file, "%02x", *p);
4857 fputs ("\n", config.map_file);
4858 }
4859
4860 static void
4861 print_data_statement (lang_data_statement_type *data)
4862 {
4863 int i;
4864 bfd_vma addr;
4865 bfd_size_type size;
4866 const char *name;
4867
4868 init_opb (data->output_section);
4869 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4870 print_space ();
4871
4872 addr = data->output_offset;
4873 if (data->output_section != NULL)
4874 addr += data->output_section->vma;
4875
4876 switch (data->type)
4877 {
4878 default:
4879 abort ();
4880 case BYTE:
4881 size = BYTE_SIZE;
4882 name = "BYTE";
4883 break;
4884 case SHORT:
4885 size = SHORT_SIZE;
4886 name = "SHORT";
4887 break;
4888 case LONG:
4889 size = LONG_SIZE;
4890 name = "LONG";
4891 break;
4892 case QUAD:
4893 size = QUAD_SIZE;
4894 name = "QUAD";
4895 break;
4896 case SQUAD:
4897 size = QUAD_SIZE;
4898 name = "SQUAD";
4899 break;
4900 }
4901
4902 if (size < TO_SIZE ((unsigned) 1))
4903 size = TO_SIZE ((unsigned) 1);
4904 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4905
4906 if (data->exp->type.node_class != etree_value)
4907 {
4908 print_space ();
4909 exp_print_tree (data->exp);
4910 }
4911
4912 print_nl ();
4913
4914 print_dot = addr + TO_ADDR (size);
4915 }
4916
4917 /* Print an address statement. These are generated by options like
4918 -Ttext. */
4919
4920 static void
4921 print_address_statement (lang_address_statement_type *address)
4922 {
4923 minfo (_("Address of section %s set to "), address->section_name);
4924 exp_print_tree (address->address);
4925 print_nl ();
4926 }
4927
4928 /* Print a reloc statement. */
4929
4930 static void
4931 print_reloc_statement (lang_reloc_statement_type *reloc)
4932 {
4933 int i;
4934 bfd_vma addr;
4935 bfd_size_type size;
4936
4937 init_opb (reloc->output_section);
4938 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4939 print_space ();
4940
4941 addr = reloc->output_offset;
4942 if (reloc->output_section != NULL)
4943 addr += reloc->output_section->vma;
4944
4945 size = bfd_get_reloc_size (reloc->howto);
4946
4947 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4948
4949 if (reloc->name != NULL)
4950 minfo ("%s+", reloc->name);
4951 else
4952 minfo ("%s+", reloc->section->name);
4953
4954 exp_print_tree (reloc->addend_exp);
4955
4956 print_nl ();
4957
4958 print_dot = addr + TO_ADDR (size);
4959 }
4960
4961 static void
4962 print_padding_statement (lang_padding_statement_type *s)
4963 {
4964 int len;
4965 bfd_vma addr;
4966
4967 init_opb (s->output_section);
4968 minfo (" *fill*");
4969
4970 len = sizeof " *fill*" - 1;
4971 while (len < SECTION_NAME_MAP_LENGTH)
4972 {
4973 print_space ();
4974 ++len;
4975 }
4976
4977 addr = s->output_offset;
4978 if (s->output_section != NULL)
4979 addr += s->output_section->vma;
4980 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4981
4982 if (s->fill->size != 0)
4983 {
4984 size_t size;
4985 unsigned char *p;
4986 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4987 fprintf (config.map_file, "%02x", *p);
4988 }
4989
4990 print_nl ();
4991
4992 print_dot = addr + TO_ADDR (s->size);
4993 }
4994
4995 static void
4996 print_wild_statement (lang_wild_statement_type *w,
4997 lang_output_section_statement_type *os)
4998 {
4999 struct wildcard_list *sec;
5000
5001 print_space ();
5002
5003 if (w->exclude_name_list)
5004 {
5005 name_list *tmp;
5006 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
5007 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
5008 minfo (" %s", tmp->name);
5009 minfo (") ");
5010 }
5011
5012 if (w->filenames_sorted)
5013 minfo ("SORT_BY_NAME(");
5014 if (w->filename != NULL)
5015 minfo ("%s", w->filename);
5016 else
5017 minfo ("*");
5018 if (w->filenames_sorted)
5019 minfo (")");
5020
5021 minfo ("(");
5022 for (sec = w->section_list; sec; sec = sec->next)
5023 {
5024 int closing_paren = 0;
5025
5026 switch (sec->spec.sorted)
5027 {
5028 case none:
5029 break;
5030
5031 case by_name:
5032 minfo ("SORT_BY_NAME(");
5033 closing_paren = 1;
5034 break;
5035
5036 case by_alignment:
5037 minfo ("SORT_BY_ALIGNMENT(");
5038 closing_paren = 1;
5039 break;
5040
5041 case by_name_alignment:
5042 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
5043 closing_paren = 2;
5044 break;
5045
5046 case by_alignment_name:
5047 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
5048 closing_paren = 2;
5049 break;
5050
5051 case by_none:
5052 minfo ("SORT_NONE(");
5053 closing_paren = 1;
5054 break;
5055
5056 case by_init_priority:
5057 minfo ("SORT_BY_INIT_PRIORITY(");
5058 closing_paren = 1;
5059 break;
5060 }
5061
5062 if (sec->spec.exclude_name_list != NULL)
5063 {
5064 name_list *tmp;
5065 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5066 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5067 minfo (" %s", tmp->name);
5068 minfo (") ");
5069 }
5070 if (sec->spec.name != NULL)
5071 minfo ("%s", sec->spec.name);
5072 else
5073 minfo ("*");
5074 for (;closing_paren > 0; closing_paren--)
5075 minfo (")");
5076 if (sec->next)
5077 minfo (" ");
5078 }
5079 minfo (")");
5080
5081 print_nl ();
5082
5083 print_statement_list (w->children.head, os);
5084 }
5085
5086 /* Print a group statement. */
5087
5088 static void
5089 print_group (lang_group_statement_type *s,
5090 lang_output_section_statement_type *os)
5091 {
5092 fprintf (config.map_file, "START GROUP\n");
5093 print_statement_list (s->children.head, os);
5094 fprintf (config.map_file, "END GROUP\n");
5095 }
5096
5097 /* Print the list of statements in S.
5098 This can be called for any statement type. */
5099
5100 static void
5101 print_statement_list (lang_statement_union_type *s,
5102 lang_output_section_statement_type *os)
5103 {
5104 while (s != NULL)
5105 {
5106 print_statement (s, os);
5107 s = s->header.next;
5108 }
5109 }
5110
5111 /* Print the first statement in statement list S.
5112 This can be called for any statement type. */
5113
5114 static void
5115 print_statement (lang_statement_union_type *s,
5116 lang_output_section_statement_type *os)
5117 {
5118 switch (s->header.type)
5119 {
5120 default:
5121 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5122 FAIL ();
5123 break;
5124 case lang_constructors_statement_enum:
5125 if (constructor_list.head != NULL)
5126 {
5127 if (constructors_sorted)
5128 minfo (" SORT (CONSTRUCTORS)\n");
5129 else
5130 minfo (" CONSTRUCTORS\n");
5131 print_statement_list (constructor_list.head, os);
5132 }
5133 break;
5134 case lang_wild_statement_enum:
5135 print_wild_statement (&s->wild_statement, os);
5136 break;
5137 case lang_address_statement_enum:
5138 print_address_statement (&s->address_statement);
5139 break;
5140 case lang_object_symbols_statement_enum:
5141 minfo (" CREATE_OBJECT_SYMBOLS\n");
5142 break;
5143 case lang_fill_statement_enum:
5144 print_fill_statement (&s->fill_statement);
5145 break;
5146 case lang_data_statement_enum:
5147 print_data_statement (&s->data_statement);
5148 break;
5149 case lang_reloc_statement_enum:
5150 print_reloc_statement (&s->reloc_statement);
5151 break;
5152 case lang_input_section_enum:
5153 print_input_section (s->input_section.section, FALSE);
5154 break;
5155 case lang_padding_statement_enum:
5156 print_padding_statement (&s->padding_statement);
5157 break;
5158 case lang_output_section_statement_enum:
5159 print_output_section_statement (&s->output_section_statement);
5160 break;
5161 case lang_assignment_statement_enum:
5162 print_assignment (&s->assignment_statement, os);
5163 break;
5164 case lang_target_statement_enum:
5165 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5166 break;
5167 case lang_output_statement_enum:
5168 minfo ("OUTPUT(%s", s->output_statement.name);
5169 if (output_target != NULL)
5170 minfo (" %s", output_target);
5171 minfo (")\n");
5172 break;
5173 case lang_input_statement_enum:
5174 print_input_statement (&s->input_statement);
5175 break;
5176 case lang_group_statement_enum:
5177 print_group (&s->group_statement, os);
5178 break;
5179 case lang_insert_statement_enum:
5180 minfo ("INSERT %s %s\n",
5181 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5182 s->insert_statement.where);
5183 break;
5184 }
5185 }
5186
5187 static void
5188 print_statements (void)
5189 {
5190 print_statement_list (statement_list.head, abs_output_section);
5191 }
5192
5193 /* Print the first N statements in statement list S to STDERR.
5194 If N == 0, nothing is printed.
5195 If N < 0, the entire list is printed.
5196 Intended to be called from GDB. */
5197
5198 void
5199 dprint_statement (lang_statement_union_type *s, int n)
5200 {
5201 FILE *map_save = config.map_file;
5202
5203 config.map_file = stderr;
5204
5205 if (n < 0)
5206 print_statement_list (s, abs_output_section);
5207 else
5208 {
5209 while (s && --n >= 0)
5210 {
5211 print_statement (s, abs_output_section);
5212 s = s->header.next;
5213 }
5214 }
5215
5216 config.map_file = map_save;
5217 }
5218
5219 static void
5220 insert_pad (lang_statement_union_type **ptr,
5221 fill_type *fill,
5222 bfd_size_type alignment_needed,
5223 asection *output_section,
5224 bfd_vma dot)
5225 {
5226 static fill_type zero_fill;
5227 lang_statement_union_type *pad = NULL;
5228
5229 if (ptr != &statement_list.head)
5230 pad = ((lang_statement_union_type *)
5231 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5232 if (pad != NULL
5233 && pad->header.type == lang_padding_statement_enum
5234 && pad->padding_statement.output_section == output_section)
5235 {
5236 /* Use the existing pad statement. */
5237 }
5238 else if ((pad = *ptr) != NULL
5239 && pad->header.type == lang_padding_statement_enum
5240 && pad->padding_statement.output_section == output_section)
5241 {
5242 /* Use the existing pad statement. */
5243 }
5244 else
5245 {
5246 /* Make a new padding statement, linked into existing chain. */
5247 pad = stat_alloc (sizeof (lang_padding_statement_type));
5248 pad->header.next = *ptr;
5249 *ptr = pad;
5250 pad->header.type = lang_padding_statement_enum;
5251 pad->padding_statement.output_section = output_section;
5252 if (fill == NULL)
5253 fill = &zero_fill;
5254 pad->padding_statement.fill = fill;
5255 }
5256 pad->padding_statement.output_offset = dot - output_section->vma;
5257 pad->padding_statement.size = alignment_needed;
5258 if (!(output_section->flags & SEC_FIXED_SIZE))
5259 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5260 - output_section->vma);
5261 }
5262
5263 /* Work out how much this section will move the dot point. */
5264
5265 static bfd_vma
5266 size_input_section
5267 (lang_statement_union_type **this_ptr,
5268 lang_output_section_statement_type *output_section_statement,
5269 fill_type *fill,
5270 bfd_boolean *removed,
5271 bfd_vma dot)
5272 {
5273 lang_input_section_type *is = &((*this_ptr)->input_section);
5274 asection *i = is->section;
5275 asection *o = output_section_statement->bfd_section;
5276 *removed = 0;
5277
5278 if (link_info.non_contiguous_regions)
5279 {
5280 /* If the input section I has already been successfully assigned
5281 to an output section other than O, don't bother with it and
5282 let the caller remove it from the list. Keep processing in
5283 case we have already handled O, because the repeated passes
5284 have reinitialized its size. */
5285 if (i->already_assigned && i->already_assigned != o)
5286 {
5287 *removed = 1;
5288 return dot;
5289 }
5290 }
5291
5292 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5293 i->output_offset = i->vma - o->vma;
5294 else if (((i->flags & SEC_EXCLUDE) != 0)
5295 || output_section_statement->ignored)
5296 i->output_offset = dot - o->vma;
5297 else
5298 {
5299 bfd_size_type alignment_needed;
5300
5301 /* Align this section first to the input sections requirement,
5302 then to the output section's requirement. If this alignment
5303 is greater than any seen before, then record it too. Perform
5304 the alignment by inserting a magic 'padding' statement. */
5305
5306 if (output_section_statement->subsection_alignment != NULL)
5307 i->alignment_power
5308 = exp_get_power (output_section_statement->subsection_alignment,
5309 "subsection alignment");
5310
5311 if (o->alignment_power < i->alignment_power)
5312 o->alignment_power = i->alignment_power;
5313
5314 alignment_needed = align_power (dot, i->alignment_power) - dot;
5315
5316 if (alignment_needed != 0)
5317 {
5318 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5319 dot += alignment_needed;
5320 }
5321
5322 if (link_info.non_contiguous_regions)
5323 {
5324 /* If I would overflow O, let the caller remove I from the
5325 list. */
5326 if (output_section_statement->region)
5327 {
5328 bfd_vma end = output_section_statement->region->origin
5329 + output_section_statement->region->length;
5330
5331 if (dot + TO_ADDR (i->size) > end)
5332 {
5333 if (i->flags & SEC_LINKER_CREATED)
5334 einfo (_("%F%P: Output section '%s' not large enough for the "
5335 "linker-created stubs section '%s'.\n"),
5336 i->output_section->name, i->name);
5337
5338 if (i->rawsize && i->rawsize != i->size)
5339 einfo (_("%F%P: Relaxation not supported with "
5340 "--enable-non-contiguous-regions (section '%s' "
5341 "would overflow '%s' after it changed size).\n"),
5342 i->name, i->output_section->name);
5343
5344 *removed = 1;
5345 dot = end;
5346 i->output_section = NULL;
5347 return dot;
5348 }
5349 }
5350 }
5351
5352 /* Remember where in the output section this input section goes. */
5353 i->output_offset = dot - o->vma;
5354
5355 /* Mark how big the output section must be to contain this now. */
5356 dot += TO_ADDR (i->size);
5357 if (!(o->flags & SEC_FIXED_SIZE))
5358 o->size = TO_SIZE (dot - o->vma);
5359
5360 if (link_info.non_contiguous_regions)
5361 {
5362 /* Record that I was successfully assigned to O, and update
5363 its actual output section too. */
5364 i->already_assigned = o;
5365 i->output_section = o;
5366 }
5367 }
5368
5369 return dot;
5370 }
5371
5372 struct check_sec
5373 {
5374 asection *sec;
5375 bfd_boolean warned;
5376 };
5377
5378 static int
5379 sort_sections_by_lma (const void *arg1, const void *arg2)
5380 {
5381 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5382 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5383
5384 if (sec1->lma < sec2->lma)
5385 return -1;
5386 else if (sec1->lma > sec2->lma)
5387 return 1;
5388 else if (sec1->id < sec2->id)
5389 return -1;
5390 else if (sec1->id > sec2->id)
5391 return 1;
5392
5393 return 0;
5394 }
5395
5396 static int
5397 sort_sections_by_vma (const void *arg1, const void *arg2)
5398 {
5399 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5400 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5401
5402 if (sec1->vma < sec2->vma)
5403 return -1;
5404 else if (sec1->vma > sec2->vma)
5405 return 1;
5406 else if (sec1->id < sec2->id)
5407 return -1;
5408 else if (sec1->id > sec2->id)
5409 return 1;
5410
5411 return 0;
5412 }
5413
5414 #define IS_TBSS(s) \
5415 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5416
5417 #define IGNORE_SECTION(s) \
5418 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5419
5420 /* Check to see if any allocated sections overlap with other allocated
5421 sections. This can happen if a linker script specifies the output
5422 section addresses of the two sections. Also check whether any memory
5423 region has overflowed. */
5424
5425 static void
5426 lang_check_section_addresses (void)
5427 {
5428 asection *s, *p;
5429 struct check_sec *sections;
5430 size_t i, count;
5431 bfd_vma addr_mask;
5432 bfd_vma s_start;
5433 bfd_vma s_end;
5434 bfd_vma p_start = 0;
5435 bfd_vma p_end = 0;
5436 lang_memory_region_type *m;
5437 bfd_boolean overlays;
5438
5439 /* Detect address space overflow on allocated sections. */
5440 addr_mask = ((bfd_vma) 1 <<
5441 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5442 addr_mask = (addr_mask << 1) + 1;
5443 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5444 if ((s->flags & SEC_ALLOC) != 0)
5445 {
5446 s_end = (s->vma + s->size) & addr_mask;
5447 if (s_end != 0 && s_end < (s->vma & addr_mask))
5448 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5449 s->name);
5450 else
5451 {
5452 s_end = (s->lma + s->size) & addr_mask;
5453 if (s_end != 0 && s_end < (s->lma & addr_mask))
5454 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5455 s->name);
5456 }
5457 }
5458
5459 if (bfd_count_sections (link_info.output_bfd) <= 1)
5460 return;
5461
5462 count = bfd_count_sections (link_info.output_bfd);
5463 sections = XNEWVEC (struct check_sec, count);
5464
5465 /* Scan all sections in the output list. */
5466 count = 0;
5467 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5468 {
5469 if (IGNORE_SECTION (s)
5470 || s->size == 0)
5471 continue;
5472
5473 sections[count].sec = s;
5474 sections[count].warned = FALSE;
5475 count++;
5476 }
5477
5478 if (count <= 1)
5479 {
5480 free (sections);
5481 return;
5482 }
5483
5484 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5485
5486 /* First check section LMAs. There should be no overlap of LMAs on
5487 loadable sections, even with overlays. */
5488 for (p = NULL, i = 0; i < count; i++)
5489 {
5490 s = sections[i].sec;
5491 init_opb (s);
5492 if ((s->flags & SEC_LOAD) != 0)
5493 {
5494 s_start = s->lma;
5495 s_end = s_start + TO_ADDR (s->size) - 1;
5496
5497 /* Look for an overlap. We have sorted sections by lma, so
5498 we know that s_start >= p_start. Besides the obvious
5499 case of overlap when the current section starts before
5500 the previous one ends, we also must have overlap if the
5501 previous section wraps around the address space. */
5502 if (p != NULL
5503 && (s_start <= p_end
5504 || p_end < p_start))
5505 {
5506 einfo (_("%X%P: section %s LMA [%V,%V]"
5507 " overlaps section %s LMA [%V,%V]\n"),
5508 s->name, s_start, s_end, p->name, p_start, p_end);
5509 sections[i].warned = TRUE;
5510 }
5511 p = s;
5512 p_start = s_start;
5513 p_end = s_end;
5514 }
5515 }
5516
5517 /* If any non-zero size allocated section (excluding tbss) starts at
5518 exactly the same VMA as another such section, then we have
5519 overlays. Overlays generated by the OVERLAY keyword will have
5520 this property. It is possible to intentionally generate overlays
5521 that fail this test, but it would be unusual. */
5522 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5523 overlays = FALSE;
5524 p_start = sections[0].sec->vma;
5525 for (i = 1; i < count; i++)
5526 {
5527 s_start = sections[i].sec->vma;
5528 if (p_start == s_start)
5529 {
5530 overlays = TRUE;
5531 break;
5532 }
5533 p_start = s_start;
5534 }
5535
5536 /* Now check section VMAs if no overlays were detected. */
5537 if (!overlays)
5538 {
5539 for (p = NULL, i = 0; i < count; i++)
5540 {
5541 s = sections[i].sec;
5542 init_opb (s);
5543 s_start = s->vma;
5544 s_end = s_start + TO_ADDR (s->size) - 1;
5545
5546 if (p != NULL
5547 && !sections[i].warned
5548 && (s_start <= p_end
5549 || p_end < p_start))
5550 einfo (_("%X%P: section %s VMA [%V,%V]"
5551 " overlaps section %s VMA [%V,%V]\n"),
5552 s->name, s_start, s_end, p->name, p_start, p_end);
5553 p = s;
5554 p_start = s_start;
5555 p_end = s_end;
5556 }
5557 }
5558
5559 free (sections);
5560
5561 /* If any memory region has overflowed, report by how much.
5562 We do not issue this diagnostic for regions that had sections
5563 explicitly placed outside their bounds; os_region_check's
5564 diagnostics are adequate for that case.
5565
5566 FIXME: It is conceivable that m->current - (m->origin + m->length)
5567 might overflow a 32-bit integer. There is, alas, no way to print
5568 a bfd_vma quantity in decimal. */
5569 for (m = lang_memory_region_list; m; m = m->next)
5570 if (m->had_full_message)
5571 {
5572 unsigned long over = m->current - (m->origin + m->length);
5573 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5574 "%X%P: region `%s' overflowed by %lu bytes\n",
5575 over),
5576 m->name_list.name, over);
5577 }
5578 }
5579
5580 /* Make sure the new address is within the region. We explicitly permit the
5581 current address to be at the exact end of the region when the address is
5582 non-zero, in case the region is at the end of addressable memory and the
5583 calculation wraps around. */
5584
5585 static void
5586 os_region_check (lang_output_section_statement_type *os,
5587 lang_memory_region_type *region,
5588 etree_type *tree,
5589 bfd_vma rbase)
5590 {
5591 if ((region->current < region->origin
5592 || (region->current - region->origin > region->length))
5593 && ((region->current != region->origin + region->length)
5594 || rbase == 0))
5595 {
5596 if (tree != NULL)
5597 {
5598 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5599 " is not within region `%s'\n"),
5600 region->current,
5601 os->bfd_section->owner,
5602 os->bfd_section->name,
5603 region->name_list.name);
5604 }
5605 else if (!region->had_full_message)
5606 {
5607 region->had_full_message = TRUE;
5608
5609 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5610 os->bfd_section->owner,
5611 os->bfd_section->name,
5612 region->name_list.name);
5613 }
5614 }
5615 }
5616
5617 static void
5618 ldlang_check_relro_region (lang_statement_union_type *s,
5619 seg_align_type *seg)
5620 {
5621 if (seg->relro == exp_seg_relro_start)
5622 {
5623 if (!seg->relro_start_stat)
5624 seg->relro_start_stat = s;
5625 else
5626 {
5627 ASSERT (seg->relro_start_stat == s);
5628 }
5629 }
5630 else if (seg->relro == exp_seg_relro_end)
5631 {
5632 if (!seg->relro_end_stat)
5633 seg->relro_end_stat = s;
5634 else
5635 {
5636 ASSERT (seg->relro_end_stat == s);
5637 }
5638 }
5639 }
5640
5641 /* Set the sizes for all the output sections. */
5642
5643 static bfd_vma
5644 lang_size_sections_1
5645 (lang_statement_union_type **prev,
5646 lang_output_section_statement_type *output_section_statement,
5647 fill_type *fill,
5648 bfd_vma dot,
5649 bfd_boolean *relax,
5650 bfd_boolean check_regions)
5651 {
5652 lang_statement_union_type *s;
5653 lang_statement_union_type *prev_s = NULL;
5654 bfd_boolean removed_prev_s = FALSE;
5655
5656 /* Size up the sections from their constituent parts. */
5657 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5658 {
5659 bfd_boolean removed=FALSE;
5660
5661 switch (s->header.type)
5662 {
5663 case lang_output_section_statement_enum:
5664 {
5665 bfd_vma newdot, after, dotdelta;
5666 lang_output_section_statement_type *os;
5667 lang_memory_region_type *r;
5668 int section_alignment = 0;
5669
5670 os = &s->output_section_statement;
5671 init_opb (os->bfd_section);
5672 if (os->constraint == -1)
5673 break;
5674
5675 /* FIXME: We shouldn't need to zero section vmas for ld -r
5676 here, in lang_insert_orphan, or in the default linker scripts.
5677 This is covering for coff backend linker bugs. See PR6945. */
5678 if (os->addr_tree == NULL
5679 && bfd_link_relocatable (&link_info)
5680 && (bfd_get_flavour (link_info.output_bfd)
5681 == bfd_target_coff_flavour))
5682 os->addr_tree = exp_intop (0);
5683 if (os->addr_tree != NULL)
5684 {
5685 os->processed_vma = FALSE;
5686 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5687
5688 if (expld.result.valid_p)
5689 {
5690 dot = expld.result.value;
5691 if (expld.result.section != NULL)
5692 dot += expld.result.section->vma;
5693 }
5694 else if (expld.phase != lang_mark_phase_enum)
5695 einfo (_("%F%P:%pS: non constant or forward reference"
5696 " address expression for section %s\n"),
5697 os->addr_tree, os->name);
5698 }
5699
5700 if (os->bfd_section == NULL)
5701 /* This section was removed or never actually created. */
5702 break;
5703
5704 /* If this is a COFF shared library section, use the size and
5705 address from the input section. FIXME: This is COFF
5706 specific; it would be cleaner if there were some other way
5707 to do this, but nothing simple comes to mind. */
5708 if (((bfd_get_flavour (link_info.output_bfd)
5709 == bfd_target_ecoff_flavour)
5710 || (bfd_get_flavour (link_info.output_bfd)
5711 == bfd_target_coff_flavour))
5712 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5713 {
5714 asection *input;
5715
5716 if (os->children.head == NULL
5717 || os->children.head->header.next != NULL
5718 || (os->children.head->header.type
5719 != lang_input_section_enum))
5720 einfo (_("%X%P: internal error on COFF shared library"
5721 " section %s\n"), os->name);
5722
5723 input = os->children.head->input_section.section;
5724 bfd_set_section_vma (os->bfd_section,
5725 bfd_section_vma (input));
5726 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5727 os->bfd_section->size = input->size;
5728 break;
5729 }
5730
5731 newdot = dot;
5732 dotdelta = 0;
5733 if (bfd_is_abs_section (os->bfd_section))
5734 {
5735 /* No matter what happens, an abs section starts at zero. */
5736 ASSERT (os->bfd_section->vma == 0);
5737 }
5738 else
5739 {
5740 if (os->addr_tree == NULL)
5741 {
5742 /* No address specified for this section, get one
5743 from the region specification. */
5744 if (os->region == NULL
5745 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5746 && os->region->name_list.name[0] == '*'
5747 && strcmp (os->region->name_list.name,
5748 DEFAULT_MEMORY_REGION) == 0))
5749 {
5750 os->region = lang_memory_default (os->bfd_section);
5751 }
5752
5753 /* If a loadable section is using the default memory
5754 region, and some non default memory regions were
5755 defined, issue an error message. */
5756 if (!os->ignored
5757 && !IGNORE_SECTION (os->bfd_section)
5758 && !bfd_link_relocatable (&link_info)
5759 && check_regions
5760 && strcmp (os->region->name_list.name,
5761 DEFAULT_MEMORY_REGION) == 0
5762 && lang_memory_region_list != NULL
5763 && (strcmp (lang_memory_region_list->name_list.name,
5764 DEFAULT_MEMORY_REGION) != 0
5765 || lang_memory_region_list->next != NULL)
5766 && lang_sizing_iteration == 1)
5767 {
5768 /* By default this is an error rather than just a
5769 warning because if we allocate the section to the
5770 default memory region we can end up creating an
5771 excessively large binary, or even seg faulting when
5772 attempting to perform a negative seek. See
5773 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5774 for an example of this. This behaviour can be
5775 overridden by the using the --no-check-sections
5776 switch. */
5777 if (command_line.check_section_addresses)
5778 einfo (_("%F%P: error: no memory region specified"
5779 " for loadable section `%s'\n"),
5780 bfd_section_name (os->bfd_section));
5781 else
5782 einfo (_("%P: warning: no memory region specified"
5783 " for loadable section `%s'\n"),
5784 bfd_section_name (os->bfd_section));
5785 }
5786
5787 newdot = os->region->current;
5788 section_alignment = os->bfd_section->alignment_power;
5789 }
5790 else
5791 section_alignment = exp_get_power (os->section_alignment,
5792 "section alignment");
5793
5794 /* Align to what the section needs. */
5795 if (section_alignment > 0)
5796 {
5797 bfd_vma savedot = newdot;
5798 bfd_vma diff = 0;
5799
5800 newdot = align_power (newdot, section_alignment);
5801 dotdelta = newdot - savedot;
5802
5803 if (lang_sizing_iteration == 1)
5804 diff = dotdelta;
5805 else if (lang_sizing_iteration > 1)
5806 {
5807 /* Only report adjustments that would change
5808 alignment from what we have already reported. */
5809 diff = newdot - os->bfd_section->vma;
5810 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5811 diff = 0;
5812 }
5813 if (diff != 0
5814 && (config.warn_section_align
5815 || os->addr_tree != NULL))
5816 einfo (_("%P: warning: "
5817 "start of section %s changed by %ld\n"),
5818 os->name, (long) diff);
5819 }
5820
5821 bfd_set_section_vma (os->bfd_section, newdot);
5822
5823 os->bfd_section->output_offset = 0;
5824 }
5825
5826 lang_size_sections_1 (&os->children.head, os,
5827 os->fill, newdot, relax, check_regions);
5828
5829 os->processed_vma = TRUE;
5830
5831 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5832 /* Except for some special linker created sections,
5833 no output section should change from zero size
5834 after strip_excluded_output_sections. A non-zero
5835 size on an ignored section indicates that some
5836 input section was not sized early enough. */
5837 ASSERT (os->bfd_section->size == 0);
5838 else
5839 {
5840 dot = os->bfd_section->vma;
5841
5842 /* Put the section within the requested block size, or
5843 align at the block boundary. */
5844 after = ((dot
5845 + TO_ADDR (os->bfd_section->size)
5846 + os->block_value - 1)
5847 & - (bfd_vma) os->block_value);
5848
5849 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5850 os->bfd_section->size = TO_SIZE (after
5851 - os->bfd_section->vma);
5852 }
5853
5854 /* Set section lma. */
5855 r = os->region;
5856 if (r == NULL)
5857 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5858
5859 if (os->load_base)
5860 {
5861 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5862 os->bfd_section->lma = lma;
5863 }
5864 else if (os->lma_region != NULL)
5865 {
5866 bfd_vma lma = os->lma_region->current;
5867
5868 if (os->align_lma_with_input)
5869 lma += dotdelta;
5870 else
5871 {
5872 /* When LMA_REGION is the same as REGION, align the LMA
5873 as we did for the VMA, possibly including alignment
5874 from the bfd section. If a different region, then
5875 only align according to the value in the output
5876 statement. */
5877 if (os->lma_region != os->region)
5878 section_alignment = exp_get_power (os->section_alignment,
5879 "section alignment");
5880 if (section_alignment > 0)
5881 lma = align_power (lma, section_alignment);
5882 }
5883 os->bfd_section->lma = lma;
5884 }
5885 else if (r->last_os != NULL
5886 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5887 {
5888 bfd_vma lma;
5889 asection *last;
5890
5891 last = r->last_os->output_section_statement.bfd_section;
5892
5893 /* A backwards move of dot should be accompanied by
5894 an explicit assignment to the section LMA (ie.
5895 os->load_base set) because backwards moves can
5896 create overlapping LMAs. */
5897 if (dot < last->vma
5898 && os->bfd_section->size != 0
5899 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5900 {
5901 /* If dot moved backwards then leave lma equal to
5902 vma. This is the old default lma, which might
5903 just happen to work when the backwards move is
5904 sufficiently large. Nag if this changes anything,
5905 so people can fix their linker scripts. */
5906
5907 if (last->vma != last->lma)
5908 einfo (_("%P: warning: dot moved backwards "
5909 "before `%s'\n"), os->name);
5910 }
5911 else
5912 {
5913 /* If this is an overlay, set the current lma to that
5914 at the end of the previous section. */
5915 if (os->sectype == overlay_section)
5916 lma = last->lma + TO_ADDR (last->size);
5917
5918 /* Otherwise, keep the same lma to vma relationship
5919 as the previous section. */
5920 else
5921 lma = os->bfd_section->vma + last->lma - last->vma;
5922
5923 if (section_alignment > 0)
5924 lma = align_power (lma, section_alignment);
5925 os->bfd_section->lma = lma;
5926 }
5927 }
5928 os->processed_lma = TRUE;
5929
5930 /* Keep track of normal sections using the default
5931 lma region. We use this to set the lma for
5932 following sections. Overlays or other linker
5933 script assignment to lma might mean that the
5934 default lma == vma is incorrect.
5935 To avoid warnings about dot moving backwards when using
5936 -Ttext, don't start tracking sections until we find one
5937 of non-zero size or with lma set differently to vma.
5938 Do this tracking before we short-cut the loop so that we
5939 track changes for the case where the section size is zero,
5940 but the lma is set differently to the vma. This is
5941 important, if an orphan section is placed after an
5942 otherwise empty output section that has an explicit lma
5943 set, we want that lma reflected in the orphans lma. */
5944 if (((!IGNORE_SECTION (os->bfd_section)
5945 && (os->bfd_section->size != 0
5946 || (r->last_os == NULL
5947 && os->bfd_section->vma != os->bfd_section->lma)
5948 || (r->last_os != NULL
5949 && dot >= (r->last_os->output_section_statement
5950 .bfd_section->vma))))
5951 || os->sectype == first_overlay_section)
5952 && os->lma_region == NULL
5953 && !bfd_link_relocatable (&link_info))
5954 r->last_os = s;
5955
5956 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5957 break;
5958
5959 /* .tbss sections effectively have zero size. */
5960 if (!IS_TBSS (os->bfd_section)
5961 || bfd_link_relocatable (&link_info))
5962 dotdelta = TO_ADDR (os->bfd_section->size);
5963 else
5964 dotdelta = 0;
5965 dot += dotdelta;
5966
5967 if (os->update_dot_tree != 0)
5968 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5969
5970 /* Update dot in the region ?
5971 We only do this if the section is going to be allocated,
5972 since unallocated sections do not contribute to the region's
5973 overall size in memory. */
5974 if (os->region != NULL
5975 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5976 {
5977 os->region->current = dot;
5978
5979 if (check_regions)
5980 /* Make sure the new address is within the region. */
5981 os_region_check (os, os->region, os->addr_tree,
5982 os->bfd_section->vma);
5983
5984 if (os->lma_region != NULL && os->lma_region != os->region
5985 && ((os->bfd_section->flags & SEC_LOAD)
5986 || os->align_lma_with_input))
5987 {
5988 os->lma_region->current = os->bfd_section->lma + dotdelta;
5989
5990 if (check_regions)
5991 os_region_check (os, os->lma_region, NULL,
5992 os->bfd_section->lma);
5993 }
5994 }
5995 }
5996 break;
5997
5998 case lang_constructors_statement_enum:
5999 dot = lang_size_sections_1 (&constructor_list.head,
6000 output_section_statement,
6001 fill, dot, relax, check_regions);
6002 break;
6003
6004 case lang_data_statement_enum:
6005 {
6006 unsigned int size = 0;
6007
6008 s->data_statement.output_offset =
6009 dot - output_section_statement->bfd_section->vma;
6010 s->data_statement.output_section =
6011 output_section_statement->bfd_section;
6012
6013 /* We might refer to provided symbols in the expression, and
6014 need to mark them as needed. */
6015 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6016
6017 switch (s->data_statement.type)
6018 {
6019 default:
6020 abort ();
6021 case QUAD:
6022 case SQUAD:
6023 size = QUAD_SIZE;
6024 break;
6025 case LONG:
6026 size = LONG_SIZE;
6027 break;
6028 case SHORT:
6029 size = SHORT_SIZE;
6030 break;
6031 case BYTE:
6032 size = BYTE_SIZE;
6033 break;
6034 }
6035 if (size < TO_SIZE ((unsigned) 1))
6036 size = TO_SIZE ((unsigned) 1);
6037 dot += TO_ADDR (size);
6038 if (!(output_section_statement->bfd_section->flags
6039 & SEC_FIXED_SIZE))
6040 output_section_statement->bfd_section->size
6041 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6042
6043 }
6044 break;
6045
6046 case lang_reloc_statement_enum:
6047 {
6048 int size;
6049
6050 s->reloc_statement.output_offset =
6051 dot - output_section_statement->bfd_section->vma;
6052 s->reloc_statement.output_section =
6053 output_section_statement->bfd_section;
6054 size = bfd_get_reloc_size (s->reloc_statement.howto);
6055 dot += TO_ADDR (size);
6056 if (!(output_section_statement->bfd_section->flags
6057 & SEC_FIXED_SIZE))
6058 output_section_statement->bfd_section->size
6059 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6060 }
6061 break;
6062
6063 case lang_wild_statement_enum:
6064 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6065 output_section_statement,
6066 fill, dot, relax, check_regions);
6067 break;
6068
6069 case lang_object_symbols_statement_enum:
6070 link_info.create_object_symbols_section
6071 = output_section_statement->bfd_section;
6072 output_section_statement->bfd_section->flags |= SEC_KEEP;
6073 break;
6074
6075 case lang_output_statement_enum:
6076 case lang_target_statement_enum:
6077 break;
6078
6079 case lang_input_section_enum:
6080 {
6081 asection *i;
6082
6083 i = s->input_section.section;
6084 if (relax)
6085 {
6086 bfd_boolean again;
6087
6088 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6089 einfo (_("%F%P: can't relax section: %E\n"));
6090 if (again)
6091 *relax = TRUE;
6092 }
6093 dot = size_input_section (prev, output_section_statement,
6094 fill, &removed, dot);
6095 }
6096 break;
6097
6098 case lang_input_statement_enum:
6099 break;
6100
6101 case lang_fill_statement_enum:
6102 s->fill_statement.output_section =
6103 output_section_statement->bfd_section;
6104
6105 fill = s->fill_statement.fill;
6106 break;
6107
6108 case lang_assignment_statement_enum:
6109 {
6110 bfd_vma newdot = dot;
6111 etree_type *tree = s->assignment_statement.exp;
6112
6113 expld.dataseg.relro = exp_seg_relro_none;
6114
6115 exp_fold_tree (tree,
6116 output_section_statement->bfd_section,
6117 &newdot);
6118
6119 ldlang_check_relro_region (s, &expld.dataseg);
6120
6121 expld.dataseg.relro = exp_seg_relro_none;
6122
6123 /* This symbol may be relative to this section. */
6124 if ((tree->type.node_class == etree_provided
6125 || tree->type.node_class == etree_assign)
6126 && (tree->assign.dst [0] != '.'
6127 || tree->assign.dst [1] != '\0'))
6128 output_section_statement->update_dot = 1;
6129
6130 if (!output_section_statement->ignored)
6131 {
6132 if (output_section_statement == abs_output_section)
6133 {
6134 /* If we don't have an output section, then just adjust
6135 the default memory address. */
6136 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6137 FALSE)->current = newdot;
6138 }
6139 else if (newdot != dot)
6140 {
6141 /* Insert a pad after this statement. We can't
6142 put the pad before when relaxing, in case the
6143 assignment references dot. */
6144 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6145 output_section_statement->bfd_section, dot);
6146
6147 /* Don't neuter the pad below when relaxing. */
6148 s = s->header.next;
6149
6150 /* If dot is advanced, this implies that the section
6151 should have space allocated to it, unless the
6152 user has explicitly stated that the section
6153 should not be allocated. */
6154 if (output_section_statement->sectype != noalloc_section
6155 && (output_section_statement->sectype != noload_section
6156 || (bfd_get_flavour (link_info.output_bfd)
6157 == bfd_target_elf_flavour)))
6158 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6159 }
6160 dot = newdot;
6161 }
6162 }
6163 break;
6164
6165 case lang_padding_statement_enum:
6166 /* If this is the first time lang_size_sections is called,
6167 we won't have any padding statements. If this is the
6168 second or later passes when relaxing, we should allow
6169 padding to shrink. If padding is needed on this pass, it
6170 will be added back in. */
6171 s->padding_statement.size = 0;
6172
6173 /* Make sure output_offset is valid. If relaxation shrinks
6174 the section and this pad isn't needed, it's possible to
6175 have output_offset larger than the final size of the
6176 section. bfd_set_section_contents will complain even for
6177 a pad size of zero. */
6178 s->padding_statement.output_offset
6179 = dot - output_section_statement->bfd_section->vma;
6180 break;
6181
6182 case lang_group_statement_enum:
6183 dot = lang_size_sections_1 (&s->group_statement.children.head,
6184 output_section_statement,
6185 fill, dot, relax, check_regions);
6186 break;
6187
6188 case lang_insert_statement_enum:
6189 break;
6190
6191 /* We can only get here when relaxing is turned on. */
6192 case lang_address_statement_enum:
6193 break;
6194
6195 default:
6196 FAIL ();
6197 break;
6198 }
6199
6200 /* If an input section doesn't fit in the current output
6201 section, remove it from the list. Handle the case where we
6202 have to remove an input_section statement here: there is a
6203 special case to remove the first element of the list. */
6204 if (link_info.non_contiguous_regions && removed)
6205 {
6206 /* If we removed the first element during the previous
6207 iteration, override the loop assignment of prev_s. */
6208 if (removed_prev_s)
6209 prev_s = NULL;
6210
6211 if (prev_s)
6212 {
6213 /* If there was a real previous input section, just skip
6214 the current one. */
6215 prev_s->header.next=s->header.next;
6216 s = prev_s;
6217 removed_prev_s = FALSE;
6218 }
6219 else
6220 {
6221 /* Remove the first input section of the list. */
6222 *prev = s->header.next;
6223 removed_prev_s = TRUE;
6224 }
6225
6226 /* Move to next element, unless we removed the head of the
6227 list. */
6228 if (!removed_prev_s)
6229 prev = &s->header.next;
6230 }
6231 else
6232 {
6233 prev = &s->header.next;
6234 removed_prev_s = FALSE;
6235 }
6236 }
6237 return dot;
6238 }
6239
6240 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6241 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6242 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6243 segments. We are allowed an opportunity to override this decision. */
6244
6245 bfd_boolean
6246 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6247 bfd *abfd ATTRIBUTE_UNUSED,
6248 asection *current_section,
6249 asection *previous_section,
6250 bfd_boolean new_segment)
6251 {
6252 lang_output_section_statement_type *cur;
6253 lang_output_section_statement_type *prev;
6254
6255 /* The checks below are only necessary when the BFD library has decided
6256 that the two sections ought to be placed into the same segment. */
6257 if (new_segment)
6258 return TRUE;
6259
6260 /* Paranoia checks. */
6261 if (current_section == NULL || previous_section == NULL)
6262 return new_segment;
6263
6264 /* If this flag is set, the target never wants code and non-code
6265 sections comingled in the same segment. */
6266 if (config.separate_code
6267 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6268 return TRUE;
6269
6270 /* Find the memory regions associated with the two sections.
6271 We call lang_output_section_find() here rather than scanning the list
6272 of output sections looking for a matching section pointer because if
6273 we have a large number of sections then a hash lookup is faster. */
6274 cur = lang_output_section_find (current_section->name);
6275 prev = lang_output_section_find (previous_section->name);
6276
6277 /* More paranoia. */
6278 if (cur == NULL || prev == NULL)
6279 return new_segment;
6280
6281 /* If the regions are different then force the sections to live in
6282 different segments. See the email thread starting at the following
6283 URL for the reasons why this is necessary:
6284 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6285 return cur->region != prev->region;
6286 }
6287
6288 void
6289 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
6290 {
6291 lang_statement_iteration++;
6292 if (expld.phase != lang_mark_phase_enum)
6293 lang_sizing_iteration++;
6294 lang_size_sections_1 (&statement_list.head, abs_output_section,
6295 0, 0, relax, check_regions);
6296 }
6297
6298 static bfd_boolean
6299 lang_size_segment (seg_align_type *seg)
6300 {
6301 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6302 a page could be saved in the data segment. */
6303 bfd_vma first, last;
6304
6305 first = -seg->base & (seg->pagesize - 1);
6306 last = seg->end & (seg->pagesize - 1);
6307 if (first && last
6308 && ((seg->base & ~(seg->pagesize - 1))
6309 != (seg->end & ~(seg->pagesize - 1)))
6310 && first + last <= seg->pagesize)
6311 {
6312 seg->phase = exp_seg_adjust;
6313 return TRUE;
6314 }
6315
6316 seg->phase = exp_seg_done;
6317 return FALSE;
6318 }
6319
6320 static bfd_vma
6321 lang_size_relro_segment_1 (seg_align_type *seg)
6322 {
6323 bfd_vma relro_end, desired_end;
6324 asection *sec;
6325
6326 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6327 relro_end = ((seg->relro_end + seg->pagesize - 1)
6328 & ~(seg->pagesize - 1));
6329
6330 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6331 desired_end = relro_end - seg->relro_offset;
6332
6333 /* For sections in the relro segment.. */
6334 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6335 if ((sec->flags & SEC_ALLOC) != 0
6336 && sec->vma >= seg->base
6337 && sec->vma < seg->relro_end - seg->relro_offset)
6338 {
6339 /* Where do we want to put this section so that it ends as
6340 desired? */
6341 bfd_vma start, end, bump;
6342
6343 end = start = sec->vma;
6344 if (!IS_TBSS (sec))
6345 end += TO_ADDR (sec->size);
6346 bump = desired_end - end;
6347 /* We'd like to increase START by BUMP, but we must heed
6348 alignment so the increase might be less than optimum. */
6349 start += bump;
6350 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6351 /* This is now the desired end for the previous section. */
6352 desired_end = start;
6353 }
6354
6355 seg->phase = exp_seg_relro_adjust;
6356 ASSERT (desired_end >= seg->base);
6357 seg->base = desired_end;
6358 return relro_end;
6359 }
6360
6361 static bfd_boolean
6362 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
6363 {
6364 bfd_boolean do_reset = FALSE;
6365 bfd_boolean do_data_relro;
6366 bfd_vma data_initial_base, data_relro_end;
6367
6368 if (link_info.relro && expld.dataseg.relro_end)
6369 {
6370 do_data_relro = TRUE;
6371 data_initial_base = expld.dataseg.base;
6372 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
6373 }
6374 else
6375 {
6376 do_data_relro = FALSE;
6377 data_initial_base = data_relro_end = 0;
6378 }
6379
6380 if (do_data_relro)
6381 {
6382 lang_reset_memory_regions ();
6383 one_lang_size_sections_pass (relax, check_regions);
6384
6385 /* Assignments to dot, or to output section address in a user
6386 script have increased padding over the original. Revert. */
6387 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
6388 {
6389 expld.dataseg.base = data_initial_base;;
6390 do_reset = TRUE;
6391 }
6392 }
6393
6394 if (!do_data_relro && lang_size_segment (&expld.dataseg))
6395 do_reset = TRUE;
6396
6397 return do_reset;
6398 }
6399
6400 void
6401 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
6402 {
6403 expld.phase = lang_allocating_phase_enum;
6404 expld.dataseg.phase = exp_seg_none;
6405
6406 one_lang_size_sections_pass (relax, check_regions);
6407
6408 if (expld.dataseg.phase != exp_seg_end_seen)
6409 expld.dataseg.phase = exp_seg_done;
6410
6411 if (expld.dataseg.phase == exp_seg_end_seen)
6412 {
6413 bfd_boolean do_reset
6414 = lang_size_relro_segment (relax, check_regions);
6415
6416 if (do_reset)
6417 {
6418 lang_reset_memory_regions ();
6419 one_lang_size_sections_pass (relax, check_regions);
6420 }
6421
6422 if (link_info.relro && expld.dataseg.relro_end)
6423 {
6424 link_info.relro_start = expld.dataseg.base;
6425 link_info.relro_end = expld.dataseg.relro_end;
6426 }
6427 }
6428 }
6429
6430 static lang_output_section_statement_type *current_section;
6431 static lang_assignment_statement_type *current_assign;
6432 static bfd_boolean prefer_next_section;
6433
6434 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6435
6436 static bfd_vma
6437 lang_do_assignments_1 (lang_statement_union_type *s,
6438 lang_output_section_statement_type *current_os,
6439 fill_type *fill,
6440 bfd_vma dot,
6441 bfd_boolean *found_end)
6442 {
6443 for (; s != NULL; s = s->header.next)
6444 {
6445 switch (s->header.type)
6446 {
6447 case lang_constructors_statement_enum:
6448 dot = lang_do_assignments_1 (constructor_list.head,
6449 current_os, fill, dot, found_end);
6450 break;
6451
6452 case lang_output_section_statement_enum:
6453 {
6454 lang_output_section_statement_type *os;
6455 bfd_vma newdot;
6456
6457 os = &(s->output_section_statement);
6458 os->after_end = *found_end;
6459 init_opb (os->bfd_section);
6460 if (os->bfd_section != NULL && !os->ignored)
6461 {
6462 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6463 {
6464 current_section = os;
6465 prefer_next_section = FALSE;
6466 }
6467 dot = os->bfd_section->vma;
6468 }
6469 newdot = lang_do_assignments_1 (os->children.head,
6470 os, os->fill, dot, found_end);
6471 if (!os->ignored)
6472 {
6473 if (os->bfd_section != NULL)
6474 {
6475 /* .tbss sections effectively have zero size. */
6476 if (!IS_TBSS (os->bfd_section)
6477 || bfd_link_relocatable (&link_info))
6478 dot += TO_ADDR (os->bfd_section->size);
6479
6480 if (os->update_dot_tree != NULL)
6481 exp_fold_tree (os->update_dot_tree,
6482 bfd_abs_section_ptr, &dot);
6483 }
6484 else
6485 dot = newdot;
6486 }
6487 }
6488 break;
6489
6490 case lang_wild_statement_enum:
6491
6492 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6493 current_os, fill, dot, found_end);
6494 break;
6495
6496 case lang_object_symbols_statement_enum:
6497 case lang_output_statement_enum:
6498 case lang_target_statement_enum:
6499 break;
6500
6501 case lang_data_statement_enum:
6502 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6503 if (expld.result.valid_p)
6504 {
6505 s->data_statement.value = expld.result.value;
6506 if (expld.result.section != NULL)
6507 s->data_statement.value += expld.result.section->vma;
6508 }
6509 else if (expld.phase == lang_final_phase_enum)
6510 einfo (_("%F%P: invalid data statement\n"));
6511 {
6512 unsigned int size;
6513 switch (s->data_statement.type)
6514 {
6515 default:
6516 abort ();
6517 case QUAD:
6518 case SQUAD:
6519 size = QUAD_SIZE;
6520 break;
6521 case LONG:
6522 size = LONG_SIZE;
6523 break;
6524 case SHORT:
6525 size = SHORT_SIZE;
6526 break;
6527 case BYTE:
6528 size = BYTE_SIZE;
6529 break;
6530 }
6531 if (size < TO_SIZE ((unsigned) 1))
6532 size = TO_SIZE ((unsigned) 1);
6533 dot += TO_ADDR (size);
6534 }
6535 break;
6536
6537 case lang_reloc_statement_enum:
6538 exp_fold_tree (s->reloc_statement.addend_exp,
6539 bfd_abs_section_ptr, &dot);
6540 if (expld.result.valid_p)
6541 s->reloc_statement.addend_value = expld.result.value;
6542 else if (expld.phase == lang_final_phase_enum)
6543 einfo (_("%F%P: invalid reloc statement\n"));
6544 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6545 break;
6546
6547 case lang_input_section_enum:
6548 {
6549 asection *in = s->input_section.section;
6550
6551 if ((in->flags & SEC_EXCLUDE) == 0)
6552 dot += TO_ADDR (in->size);
6553 }
6554 break;
6555
6556 case lang_input_statement_enum:
6557 break;
6558
6559 case lang_fill_statement_enum:
6560 fill = s->fill_statement.fill;
6561 break;
6562
6563 case lang_assignment_statement_enum:
6564 current_assign = &s->assignment_statement;
6565 if (current_assign->exp->type.node_class != etree_assert)
6566 {
6567 const char *p = current_assign->exp->assign.dst;
6568
6569 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6570 prefer_next_section = TRUE;
6571
6572 while (*p == '_')
6573 ++p;
6574 if (strcmp (p, "end") == 0)
6575 *found_end = TRUE;
6576 }
6577 exp_fold_tree (s->assignment_statement.exp,
6578 (current_os->bfd_section != NULL
6579 ? current_os->bfd_section : bfd_und_section_ptr),
6580 &dot);
6581 break;
6582
6583 case lang_padding_statement_enum:
6584 dot += TO_ADDR (s->padding_statement.size);
6585 break;
6586
6587 case lang_group_statement_enum:
6588 dot = lang_do_assignments_1 (s->group_statement.children.head,
6589 current_os, fill, dot, found_end);
6590 break;
6591
6592 case lang_insert_statement_enum:
6593 break;
6594
6595 case lang_address_statement_enum:
6596 break;
6597
6598 default:
6599 FAIL ();
6600 break;
6601 }
6602 }
6603 return dot;
6604 }
6605
6606 void
6607 lang_do_assignments (lang_phase_type phase)
6608 {
6609 bfd_boolean found_end = FALSE;
6610
6611 current_section = NULL;
6612 prefer_next_section = FALSE;
6613 expld.phase = phase;
6614 lang_statement_iteration++;
6615 lang_do_assignments_1 (statement_list.head,
6616 abs_output_section, NULL, 0, &found_end);
6617 }
6618
6619 /* For an assignment statement outside of an output section statement,
6620 choose the best of neighbouring output sections to use for values
6621 of "dot". */
6622
6623 asection *
6624 section_for_dot (void)
6625 {
6626 asection *s;
6627
6628 /* Assignments belong to the previous output section, unless there
6629 has been an assignment to "dot", in which case following
6630 assignments belong to the next output section. (The assumption
6631 is that an assignment to "dot" is setting up the address for the
6632 next output section.) Except that past the assignment to "_end"
6633 we always associate with the previous section. This exception is
6634 for targets like SH that define an alloc .stack or other
6635 weirdness after non-alloc sections. */
6636 if (current_section == NULL || prefer_next_section)
6637 {
6638 lang_statement_union_type *stmt;
6639 lang_output_section_statement_type *os;
6640
6641 for (stmt = (lang_statement_union_type *) current_assign;
6642 stmt != NULL;
6643 stmt = stmt->header.next)
6644 if (stmt->header.type == lang_output_section_statement_enum)
6645 break;
6646
6647 os = &stmt->output_section_statement;
6648 while (os != NULL
6649 && !os->after_end
6650 && (os->bfd_section == NULL
6651 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6652 || bfd_section_removed_from_list (link_info.output_bfd,
6653 os->bfd_section)))
6654 os = os->next;
6655
6656 if (current_section == NULL || os == NULL || !os->after_end)
6657 {
6658 if (os != NULL)
6659 s = os->bfd_section;
6660 else
6661 s = link_info.output_bfd->section_last;
6662 while (s != NULL
6663 && ((s->flags & SEC_ALLOC) == 0
6664 || (s->flags & SEC_THREAD_LOCAL) != 0))
6665 s = s->prev;
6666 if (s != NULL)
6667 return s;
6668
6669 return bfd_abs_section_ptr;
6670 }
6671 }
6672
6673 s = current_section->bfd_section;
6674
6675 /* The section may have been stripped. */
6676 while (s != NULL
6677 && ((s->flags & SEC_EXCLUDE) != 0
6678 || (s->flags & SEC_ALLOC) == 0
6679 || (s->flags & SEC_THREAD_LOCAL) != 0
6680 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6681 s = s->prev;
6682 if (s == NULL)
6683 s = link_info.output_bfd->sections;
6684 while (s != NULL
6685 && ((s->flags & SEC_ALLOC) == 0
6686 || (s->flags & SEC_THREAD_LOCAL) != 0))
6687 s = s->next;
6688 if (s != NULL)
6689 return s;
6690
6691 return bfd_abs_section_ptr;
6692 }
6693
6694 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6695
6696 static struct bfd_link_hash_entry **start_stop_syms;
6697 static size_t start_stop_count = 0;
6698 static size_t start_stop_alloc = 0;
6699
6700 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6701 to start_stop_syms. */
6702
6703 static void
6704 lang_define_start_stop (const char *symbol, asection *sec)
6705 {
6706 struct bfd_link_hash_entry *h;
6707
6708 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6709 if (h != NULL)
6710 {
6711 if (start_stop_count == start_stop_alloc)
6712 {
6713 start_stop_alloc = 2 * start_stop_alloc + 10;
6714 start_stop_syms
6715 = xrealloc (start_stop_syms,
6716 start_stop_alloc * sizeof (*start_stop_syms));
6717 }
6718 start_stop_syms[start_stop_count++] = h;
6719 }
6720 }
6721
6722 /* Check for input sections whose names match references to
6723 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6724 preliminary definitions. */
6725
6726 static void
6727 lang_init_start_stop (void)
6728 {
6729 bfd *abfd;
6730 asection *s;
6731 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6732
6733 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6734 for (s = abfd->sections; s != NULL; s = s->next)
6735 {
6736 const char *ps;
6737 const char *secname = s->name;
6738
6739 for (ps = secname; *ps != '\0'; ps++)
6740 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6741 break;
6742 if (*ps == '\0')
6743 {
6744 char *symbol = (char *) xmalloc (10 + strlen (secname));
6745
6746 symbol[0] = leading_char;
6747 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6748 lang_define_start_stop (symbol, s);
6749
6750 symbol[1] = leading_char;
6751 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6752 lang_define_start_stop (symbol + 1, s);
6753
6754 free (symbol);
6755 }
6756 }
6757 }
6758
6759 /* Iterate over start_stop_syms. */
6760
6761 static void
6762 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6763 {
6764 size_t i;
6765
6766 for (i = 0; i < start_stop_count; ++i)
6767 func (start_stop_syms[i]);
6768 }
6769
6770 /* __start and __stop symbols are only supposed to be defined by the
6771 linker for orphan sections, but we now extend that to sections that
6772 map to an output section of the same name. The symbols were
6773 defined early for --gc-sections, before we mapped input to output
6774 sections, so undo those that don't satisfy this rule. */
6775
6776 static void
6777 undef_start_stop (struct bfd_link_hash_entry *h)
6778 {
6779 if (h->ldscript_def)
6780 return;
6781
6782 if (h->u.def.section->output_section == NULL
6783 || h->u.def.section->output_section->owner != link_info.output_bfd
6784 || strcmp (h->u.def.section->name,
6785 h->u.def.section->output_section->name) != 0)
6786 {
6787 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6788 h->u.def.section->name);
6789 if (sec != NULL)
6790 {
6791 /* When there are more than one input sections with the same
6792 section name, SECNAME, linker picks the first one to define
6793 __start_SECNAME and __stop_SECNAME symbols. When the first
6794 input section is removed by comdat group, we need to check
6795 if there is still an output section with section name
6796 SECNAME. */
6797 asection *i;
6798 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6799 if (strcmp (h->u.def.section->name, i->name) == 0)
6800 {
6801 h->u.def.section = i;
6802 return;
6803 }
6804 }
6805 h->type = bfd_link_hash_undefined;
6806 h->u.undef.abfd = NULL;
6807 }
6808 }
6809
6810 static void
6811 lang_undef_start_stop (void)
6812 {
6813 foreach_start_stop (undef_start_stop);
6814 }
6815
6816 /* Check for output sections whose names match references to
6817 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6818 preliminary definitions. */
6819
6820 static void
6821 lang_init_startof_sizeof (void)
6822 {
6823 asection *s;
6824
6825 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6826 {
6827 const char *secname = s->name;
6828 char *symbol = (char *) xmalloc (10 + strlen (secname));
6829
6830 sprintf (symbol, ".startof.%s", secname);
6831 lang_define_start_stop (symbol, s);
6832
6833 memcpy (symbol + 1, ".size", 5);
6834 lang_define_start_stop (symbol + 1, s);
6835 free (symbol);
6836 }
6837 }
6838
6839 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6840
6841 static void
6842 set_start_stop (struct bfd_link_hash_entry *h)
6843 {
6844 if (h->ldscript_def
6845 || h->type != bfd_link_hash_defined)
6846 return;
6847
6848 if (h->root.string[0] == '.')
6849 {
6850 /* .startof. or .sizeof. symbol.
6851 .startof. already has final value. */
6852 if (h->root.string[2] == 'i')
6853 {
6854 /* .sizeof. */
6855 h->u.def.value = TO_ADDR (h->u.def.section->size);
6856 h->u.def.section = bfd_abs_section_ptr;
6857 }
6858 }
6859 else
6860 {
6861 /* __start or __stop symbol. */
6862 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6863
6864 h->u.def.section = h->u.def.section->output_section;
6865 if (h->root.string[4 + has_lead] == 'o')
6866 {
6867 /* __stop_ */
6868 h->u.def.value = TO_ADDR (h->u.def.section->size);
6869 }
6870 }
6871 }
6872
6873 static void
6874 lang_finalize_start_stop (void)
6875 {
6876 foreach_start_stop (set_start_stop);
6877 }
6878
6879 static void
6880 lang_end (void)
6881 {
6882 struct bfd_link_hash_entry *h;
6883 bfd_boolean warn;
6884
6885 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6886 || bfd_link_dll (&link_info))
6887 warn = entry_from_cmdline;
6888 else
6889 warn = TRUE;
6890
6891 /* Force the user to specify a root when generating a relocatable with
6892 --gc-sections, unless --gc-keep-exported was also given. */
6893 if (bfd_link_relocatable (&link_info)
6894 && link_info.gc_sections
6895 && !link_info.gc_keep_exported)
6896 {
6897 struct bfd_sym_chain *sym;
6898
6899 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
6900 {
6901 h = bfd_link_hash_lookup (link_info.hash, sym->name,
6902 FALSE, FALSE, FALSE);
6903 if (h != NULL
6904 && (h->type == bfd_link_hash_defined
6905 || h->type == bfd_link_hash_defweak)
6906 && !bfd_is_const_section (h->u.def.section))
6907 break;
6908 }
6909 if (!sym)
6910 einfo (_("%F%P: --gc-sections requires a defined symbol root "
6911 "specified by -e or -u\n"));
6912 }
6913
6914 if (entry_symbol.name == NULL)
6915 {
6916 /* No entry has been specified. Look for the default entry, but
6917 don't warn if we don't find it. */
6918 entry_symbol.name = entry_symbol_default;
6919 warn = FALSE;
6920 }
6921
6922 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6923 FALSE, FALSE, TRUE);
6924 if (h != NULL
6925 && (h->type == bfd_link_hash_defined
6926 || h->type == bfd_link_hash_defweak)
6927 && h->u.def.section->output_section != NULL)
6928 {
6929 bfd_vma val;
6930
6931 val = (h->u.def.value
6932 + bfd_section_vma (h->u.def.section->output_section)
6933 + h->u.def.section->output_offset);
6934 if (!bfd_set_start_address (link_info.output_bfd, val))
6935 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6936 }
6937 else
6938 {
6939 bfd_vma val;
6940 const char *send;
6941
6942 /* We couldn't find the entry symbol. Try parsing it as a
6943 number. */
6944 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6945 if (*send == '\0')
6946 {
6947 if (!bfd_set_start_address (link_info.output_bfd, val))
6948 einfo (_("%F%P: can't set start address\n"));
6949 }
6950 else
6951 {
6952 asection *ts;
6953
6954 /* Can't find the entry symbol, and it's not a number. Use
6955 the first address in the text section. */
6956 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6957 if (ts != NULL)
6958 {
6959 if (warn)
6960 einfo (_("%P: warning: cannot find entry symbol %s;"
6961 " defaulting to %V\n"),
6962 entry_symbol.name,
6963 bfd_section_vma (ts));
6964 if (!bfd_set_start_address (link_info.output_bfd,
6965 bfd_section_vma (ts)))
6966 einfo (_("%F%P: can't set start address\n"));
6967 }
6968 else
6969 {
6970 if (warn)
6971 einfo (_("%P: warning: cannot find entry symbol %s;"
6972 " not setting start address\n"),
6973 entry_symbol.name);
6974 }
6975 }
6976 }
6977 }
6978
6979 /* This is a small function used when we want to ignore errors from
6980 BFD. */
6981
6982 static void
6983 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6984 va_list ap ATTRIBUTE_UNUSED)
6985 {
6986 /* Don't do anything. */
6987 }
6988
6989 /* Check that the architecture of all the input files is compatible
6990 with the output file. Also call the backend to let it do any
6991 other checking that is needed. */
6992
6993 static void
6994 lang_check (void)
6995 {
6996 lang_input_statement_type *file;
6997 bfd *input_bfd;
6998 const bfd_arch_info_type *compatible;
6999
7000 for (file = (void *) file_chain.head;
7001 file != NULL;
7002 file = file->next)
7003 {
7004 #if BFD_SUPPORTS_PLUGINS
7005 /* Don't check format of files claimed by plugin. */
7006 if (file->flags.claimed)
7007 continue;
7008 #endif /* BFD_SUPPORTS_PLUGINS */
7009 input_bfd = file->the_bfd;
7010 compatible
7011 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
7012 command_line.accept_unknown_input_arch);
7013
7014 /* In general it is not possible to perform a relocatable
7015 link between differing object formats when the input
7016 file has relocations, because the relocations in the
7017 input format may not have equivalent representations in
7018 the output format (and besides BFD does not translate
7019 relocs for other link purposes than a final link). */
7020 if (!file->flags.just_syms
7021 && (bfd_link_relocatable (&link_info)
7022 || link_info.emitrelocations)
7023 && (compatible == NULL
7024 || (bfd_get_flavour (input_bfd)
7025 != bfd_get_flavour (link_info.output_bfd)))
7026 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
7027 {
7028 einfo (_("%F%P: relocatable linking with relocations from"
7029 " format %s (%pB) to format %s (%pB) is not supported\n"),
7030 bfd_get_target (input_bfd), input_bfd,
7031 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
7032 /* einfo with %F exits. */
7033 }
7034
7035 if (compatible == NULL)
7036 {
7037 if (command_line.warn_mismatch)
7038 einfo (_("%X%P: %s architecture of input file `%pB'"
7039 " is incompatible with %s output\n"),
7040 bfd_printable_name (input_bfd), input_bfd,
7041 bfd_printable_name (link_info.output_bfd));
7042 }
7043
7044 /* If the input bfd has no contents, it shouldn't set the
7045 private data of the output bfd. */
7046 else if (!file->flags.just_syms
7047 && ((input_bfd->flags & DYNAMIC) != 0
7048 || bfd_count_sections (input_bfd) != 0))
7049 {
7050 bfd_error_handler_type pfn = NULL;
7051
7052 /* If we aren't supposed to warn about mismatched input
7053 files, temporarily set the BFD error handler to a
7054 function which will do nothing. We still want to call
7055 bfd_merge_private_bfd_data, since it may set up
7056 information which is needed in the output file. */
7057 if (!command_line.warn_mismatch)
7058 pfn = bfd_set_error_handler (ignore_bfd_errors);
7059 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7060 {
7061 if (command_line.warn_mismatch)
7062 einfo (_("%X%P: failed to merge target specific data"
7063 " of file %pB\n"), input_bfd);
7064 }
7065 if (!command_line.warn_mismatch)
7066 bfd_set_error_handler (pfn);
7067 }
7068 }
7069 }
7070
7071 /* Look through all the global common symbols and attach them to the
7072 correct section. The -sort-common command line switch may be used
7073 to roughly sort the entries by alignment. */
7074
7075 static void
7076 lang_common (void)
7077 {
7078 if (link_info.inhibit_common_definition)
7079 return;
7080 if (bfd_link_relocatable (&link_info)
7081 && !command_line.force_common_definition)
7082 return;
7083
7084 if (!config.sort_common)
7085 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7086 else
7087 {
7088 unsigned int power;
7089
7090 if (config.sort_common == sort_descending)
7091 {
7092 for (power = 4; power > 0; power--)
7093 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7094
7095 power = 0;
7096 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7097 }
7098 else
7099 {
7100 for (power = 0; power <= 4; power++)
7101 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7102
7103 power = (unsigned int) -1;
7104 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7105 }
7106 }
7107 }
7108
7109 /* Place one common symbol in the correct section. */
7110
7111 static bfd_boolean
7112 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7113 {
7114 unsigned int power_of_two;
7115 bfd_vma size;
7116 asection *section;
7117
7118 if (h->type != bfd_link_hash_common)
7119 return TRUE;
7120
7121 size = h->u.c.size;
7122 power_of_two = h->u.c.p->alignment_power;
7123
7124 if (config.sort_common == sort_descending
7125 && power_of_two < *(unsigned int *) info)
7126 return TRUE;
7127 else if (config.sort_common == sort_ascending
7128 && power_of_two > *(unsigned int *) info)
7129 return TRUE;
7130
7131 section = h->u.c.p->section;
7132 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7133 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7134 h->root.string);
7135
7136 if (config.map_file != NULL)
7137 {
7138 static bfd_boolean header_printed;
7139 int len;
7140 char *name;
7141 char buf[50];
7142
7143 if (!header_printed)
7144 {
7145 minfo (_("\nAllocating common symbols\n"));
7146 minfo (_("Common symbol size file\n\n"));
7147 header_printed = TRUE;
7148 }
7149
7150 name = bfd_demangle (link_info.output_bfd, h->root.string,
7151 DMGL_ANSI | DMGL_PARAMS);
7152 if (name == NULL)
7153 {
7154 minfo ("%s", h->root.string);
7155 len = strlen (h->root.string);
7156 }
7157 else
7158 {
7159 minfo ("%s", name);
7160 len = strlen (name);
7161 free (name);
7162 }
7163
7164 if (len >= 19)
7165 {
7166 print_nl ();
7167 len = 0;
7168 }
7169 while (len < 20)
7170 {
7171 print_space ();
7172 ++len;
7173 }
7174
7175 minfo ("0x");
7176 if (size <= 0xffffffff)
7177 sprintf (buf, "%lx", (unsigned long) size);
7178 else
7179 sprintf_vma (buf, size);
7180 minfo ("%s", buf);
7181 len = strlen (buf);
7182
7183 while (len < 16)
7184 {
7185 print_space ();
7186 ++len;
7187 }
7188
7189 minfo ("%pB\n", section->owner);
7190 }
7191
7192 return TRUE;
7193 }
7194
7195 /* Handle a single orphan section S, placing the orphan into an appropriate
7196 output section. The effects of the --orphan-handling command line
7197 option are handled here. */
7198
7199 static void
7200 ldlang_place_orphan (asection *s)
7201 {
7202 if (config.orphan_handling == orphan_handling_discard)
7203 {
7204 lang_output_section_statement_type *os;
7205 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0, 1);
7206 if (os->addr_tree == NULL
7207 && (bfd_link_relocatable (&link_info)
7208 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7209 os->addr_tree = exp_intop (0);
7210 lang_add_section (&os->children, s, NULL, os);
7211 }
7212 else
7213 {
7214 lang_output_section_statement_type *os;
7215 const char *name = s->name;
7216 int constraint = 0;
7217
7218 if (config.orphan_handling == orphan_handling_error)
7219 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7220 s, s->owner);
7221
7222 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7223 constraint = SPECIAL;
7224
7225 os = ldemul_place_orphan (s, name, constraint);
7226 if (os == NULL)
7227 {
7228 os = lang_output_section_statement_lookup (name, constraint, 1);
7229 if (os->addr_tree == NULL
7230 && (bfd_link_relocatable (&link_info)
7231 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7232 os->addr_tree = exp_intop (0);
7233 lang_add_section (&os->children, s, NULL, os);
7234 }
7235
7236 if (config.orphan_handling == orphan_handling_warn)
7237 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7238 "placed in section `%s'\n"),
7239 s, s->owner, os->name);
7240 }
7241 }
7242
7243 /* Run through the input files and ensure that every input section has
7244 somewhere to go. If one is found without a destination then create
7245 an input request and place it into the statement tree. */
7246
7247 static void
7248 lang_place_orphans (void)
7249 {
7250 LANG_FOR_EACH_INPUT_STATEMENT (file)
7251 {
7252 asection *s;
7253
7254 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7255 {
7256 if (s->output_section == NULL)
7257 {
7258 /* This section of the file is not attached, root
7259 around for a sensible place for it to go. */
7260
7261 if (file->flags.just_syms)
7262 bfd_link_just_syms (file->the_bfd, s, &link_info);
7263 else if (lang_discard_section_p (s))
7264 s->output_section = bfd_abs_section_ptr;
7265 else if (strcmp (s->name, "COMMON") == 0)
7266 {
7267 /* This is a lonely common section which must have
7268 come from an archive. We attach to the section
7269 with the wildcard. */
7270 if (!bfd_link_relocatable (&link_info)
7271 || command_line.force_common_definition)
7272 {
7273 if (default_common_section == NULL)
7274 default_common_section
7275 = lang_output_section_statement_lookup (".bss", 0, 1);
7276 lang_add_section (&default_common_section->children, s,
7277 NULL, default_common_section);
7278 }
7279 }
7280 else
7281 ldlang_place_orphan (s);
7282 }
7283 }
7284 }
7285 }
7286
7287 void
7288 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7289 {
7290 flagword *ptr_flags;
7291
7292 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7293
7294 while (*flags)
7295 {
7296 switch (*flags)
7297 {
7298 /* PR 17900: An exclamation mark in the attributes reverses
7299 the sense of any of the attributes that follow. */
7300 case '!':
7301 invert = !invert;
7302 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7303 break;
7304
7305 case 'A': case 'a':
7306 *ptr_flags |= SEC_ALLOC;
7307 break;
7308
7309 case 'R': case 'r':
7310 *ptr_flags |= SEC_READONLY;
7311 break;
7312
7313 case 'W': case 'w':
7314 *ptr_flags |= SEC_DATA;
7315 break;
7316
7317 case 'X': case 'x':
7318 *ptr_flags |= SEC_CODE;
7319 break;
7320
7321 case 'L': case 'l':
7322 case 'I': case 'i':
7323 *ptr_flags |= SEC_LOAD;
7324 break;
7325
7326 default:
7327 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7328 *flags, *flags);
7329 break;
7330 }
7331 flags++;
7332 }
7333 }
7334
7335 /* Call a function on each real input file. This function will be
7336 called on an archive, but not on the elements. */
7337
7338 void
7339 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7340 {
7341 lang_input_statement_type *f;
7342
7343 for (f = (void *) input_file_chain.head;
7344 f != NULL;
7345 f = f->next_real_file)
7346 if (f->flags.real)
7347 func (f);
7348 }
7349
7350 /* Call a function on each real file. The function will be called on
7351 all the elements of an archive which are included in the link, but
7352 will not be called on the archive file itself. */
7353
7354 void
7355 lang_for_each_file (void (*func) (lang_input_statement_type *))
7356 {
7357 LANG_FOR_EACH_INPUT_STATEMENT (f)
7358 {
7359 if (f->flags.real)
7360 func (f);
7361 }
7362 }
7363
7364 void
7365 ldlang_add_file (lang_input_statement_type *entry)
7366 {
7367 lang_statement_append (&file_chain, entry, &entry->next);
7368
7369 /* The BFD linker needs to have a list of all input BFDs involved in
7370 a link. */
7371 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7372 && entry->the_bfd->link.next == NULL);
7373 ASSERT (entry->the_bfd != link_info.output_bfd);
7374
7375 *link_info.input_bfds_tail = entry->the_bfd;
7376 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7377 bfd_set_usrdata (entry->the_bfd, entry);
7378 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7379
7380 /* Look through the sections and check for any which should not be
7381 included in the link. We need to do this now, so that we can
7382 notice when the backend linker tries to report multiple
7383 definition errors for symbols which are in sections we aren't
7384 going to link. FIXME: It might be better to entirely ignore
7385 symbols which are defined in sections which are going to be
7386 discarded. This would require modifying the backend linker for
7387 each backend which might set the SEC_LINK_ONCE flag. If we do
7388 this, we should probably handle SEC_EXCLUDE in the same way. */
7389
7390 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7391 }
7392
7393 void
7394 lang_add_output (const char *name, int from_script)
7395 {
7396 /* Make -o on command line override OUTPUT in script. */
7397 if (!had_output_filename || !from_script)
7398 {
7399 output_filename = name;
7400 had_output_filename = TRUE;
7401 }
7402 }
7403
7404 lang_output_section_statement_type *
7405 lang_enter_output_section_statement (const char *output_section_statement_name,
7406 etree_type *address_exp,
7407 enum section_type sectype,
7408 etree_type *align,
7409 etree_type *subalign,
7410 etree_type *ebase,
7411 int constraint,
7412 int align_with_input)
7413 {
7414 lang_output_section_statement_type *os;
7415
7416 os = lang_output_section_statement_lookup (output_section_statement_name,
7417 constraint, 2);
7418 current_section = os;
7419
7420 if (os->addr_tree == NULL)
7421 {
7422 os->addr_tree = address_exp;
7423 }
7424 os->sectype = sectype;
7425 if (sectype != noload_section)
7426 os->flags = SEC_NO_FLAGS;
7427 else
7428 os->flags = SEC_NEVER_LOAD;
7429 os->block_value = 1;
7430
7431 /* Make next things chain into subchain of this. */
7432 push_stat_ptr (&os->children);
7433
7434 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7435 if (os->align_lma_with_input && align != NULL)
7436 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7437 NULL);
7438
7439 os->subsection_alignment = subalign;
7440 os->section_alignment = align;
7441
7442 os->load_base = ebase;
7443 return os;
7444 }
7445
7446 void
7447 lang_final (void)
7448 {
7449 lang_output_statement_type *new_stmt;
7450
7451 new_stmt = new_stat (lang_output_statement, stat_ptr);
7452 new_stmt->name = output_filename;
7453 }
7454
7455 /* Reset the current counters in the regions. */
7456
7457 void
7458 lang_reset_memory_regions (void)
7459 {
7460 lang_memory_region_type *p = lang_memory_region_list;
7461 asection *o;
7462 lang_output_section_statement_type *os;
7463
7464 for (p = lang_memory_region_list; p != NULL; p = p->next)
7465 {
7466 p->current = p->origin;
7467 p->last_os = NULL;
7468 }
7469
7470 for (os = (void *) lang_os_list.head;
7471 os != NULL;
7472 os = os->next)
7473 {
7474 os->processed_vma = FALSE;
7475 os->processed_lma = FALSE;
7476 }
7477
7478 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7479 {
7480 /* Save the last size for possible use by bfd_relax_section. */
7481 o->rawsize = o->size;
7482 if (!(o->flags & SEC_FIXED_SIZE))
7483 o->size = 0;
7484 }
7485 }
7486
7487 /* Worker for lang_gc_sections_1. */
7488
7489 static void
7490 gc_section_callback (lang_wild_statement_type *ptr,
7491 struct wildcard_list *sec,
7492 asection *section,
7493 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7494 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7495 void *data ATTRIBUTE_UNUSED)
7496 {
7497 /* If the wild pattern was marked KEEP, the member sections
7498 should be as well. */
7499 if (ptr->keep_sections)
7500 section->flags |= SEC_KEEP;
7501 if (sec)
7502 section->pattern = sec->spec.name;
7503 }
7504
7505 /* Iterate over sections marking them against GC. */
7506
7507 static void
7508 lang_gc_sections_1 (lang_statement_union_type *s)
7509 {
7510 for (; s != NULL; s = s->header.next)
7511 {
7512 switch (s->header.type)
7513 {
7514 case lang_wild_statement_enum:
7515 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7516 break;
7517 case lang_constructors_statement_enum:
7518 lang_gc_sections_1 (constructor_list.head);
7519 break;
7520 case lang_output_section_statement_enum:
7521 lang_gc_sections_1 (s->output_section_statement.children.head);
7522 break;
7523 case lang_group_statement_enum:
7524 lang_gc_sections_1 (s->group_statement.children.head);
7525 break;
7526 default:
7527 break;
7528 }
7529 }
7530 }
7531
7532 static void
7533 lang_gc_sections (void)
7534 {
7535 /* Keep all sections so marked in the link script. */
7536 lang_gc_sections_1 (statement_list.head);
7537
7538 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7539 the special case of debug info. (See bfd/stabs.c)
7540 Twiddle the flag here, to simplify later linker code. */
7541 if (bfd_link_relocatable (&link_info))
7542 {
7543 LANG_FOR_EACH_INPUT_STATEMENT (f)
7544 {
7545 asection *sec;
7546 #if BFD_SUPPORTS_PLUGINS
7547 if (f->flags.claimed)
7548 continue;
7549 #endif
7550 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7551 if ((sec->flags & SEC_DEBUGGING) == 0)
7552 sec->flags &= ~SEC_EXCLUDE;
7553 }
7554 }
7555
7556 if (link_info.gc_sections)
7557 bfd_gc_sections (link_info.output_bfd, &link_info);
7558 }
7559
7560 /* Worker for lang_find_relro_sections_1. */
7561
7562 static void
7563 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7564 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7565 asection *section,
7566 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7567 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7568 void *data)
7569 {
7570 /* Discarded, excluded and ignored sections effectively have zero
7571 size. */
7572 if (section->output_section != NULL
7573 && section->output_section->owner == link_info.output_bfd
7574 && (section->output_section->flags & SEC_EXCLUDE) == 0
7575 && !IGNORE_SECTION (section)
7576 && section->size != 0)
7577 {
7578 bfd_boolean *has_relro_section = (bfd_boolean *) data;
7579 *has_relro_section = TRUE;
7580 }
7581 }
7582
7583 /* Iterate over sections for relro sections. */
7584
7585 static void
7586 lang_find_relro_sections_1 (lang_statement_union_type *s,
7587 seg_align_type *seg,
7588 bfd_boolean *has_relro_section)
7589 {
7590 if (*has_relro_section)
7591 return;
7592
7593 for (; s != NULL; s = s->header.next)
7594 {
7595 if (s == seg->relro_end_stat)
7596 break;
7597
7598 switch (s->header.type)
7599 {
7600 case lang_wild_statement_enum:
7601 walk_wild (&s->wild_statement,
7602 find_relro_section_callback,
7603 has_relro_section);
7604 break;
7605 case lang_constructors_statement_enum:
7606 lang_find_relro_sections_1 (constructor_list.head,
7607 seg, has_relro_section);
7608 break;
7609 case lang_output_section_statement_enum:
7610 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7611 seg, has_relro_section);
7612 break;
7613 case lang_group_statement_enum:
7614 lang_find_relro_sections_1 (s->group_statement.children.head,
7615 seg, has_relro_section);
7616 break;
7617 default:
7618 break;
7619 }
7620 }
7621 }
7622
7623 static void
7624 lang_find_relro_sections (void)
7625 {
7626 bfd_boolean has_relro_section = FALSE;
7627
7628 /* Check all sections in the link script. */
7629
7630 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7631 &expld.dataseg, &has_relro_section);
7632
7633 if (!has_relro_section)
7634 link_info.relro = FALSE;
7635 }
7636
7637 /* Relax all sections until bfd_relax_section gives up. */
7638
7639 void
7640 lang_relax_sections (bfd_boolean need_layout)
7641 {
7642 if (RELAXATION_ENABLED)
7643 {
7644 /* We may need more than one relaxation pass. */
7645 int i = link_info.relax_pass;
7646
7647 /* The backend can use it to determine the current pass. */
7648 link_info.relax_pass = 0;
7649
7650 while (i--)
7651 {
7652 /* Keep relaxing until bfd_relax_section gives up. */
7653 bfd_boolean relax_again;
7654
7655 link_info.relax_trip = -1;
7656 do
7657 {
7658 link_info.relax_trip++;
7659
7660 /* Note: pe-dll.c does something like this also. If you find
7661 you need to change this code, you probably need to change
7662 pe-dll.c also. DJ */
7663
7664 /* Do all the assignments with our current guesses as to
7665 section sizes. */
7666 lang_do_assignments (lang_assigning_phase_enum);
7667
7668 /* We must do this after lang_do_assignments, because it uses
7669 size. */
7670 lang_reset_memory_regions ();
7671
7672 /* Perform another relax pass - this time we know where the
7673 globals are, so can make a better guess. */
7674 relax_again = FALSE;
7675 lang_size_sections (&relax_again, FALSE);
7676 }
7677 while (relax_again);
7678
7679 link_info.relax_pass++;
7680 }
7681 need_layout = TRUE;
7682 }
7683
7684 if (need_layout)
7685 {
7686 /* Final extra sizing to report errors. */
7687 lang_do_assignments (lang_assigning_phase_enum);
7688 lang_reset_memory_regions ();
7689 lang_size_sections (NULL, TRUE);
7690 }
7691 }
7692
7693 #if BFD_SUPPORTS_PLUGINS
7694 /* Find the insert point for the plugin's replacement files. We
7695 place them after the first claimed real object file, or if the
7696 first claimed object is an archive member, after the last real
7697 object file immediately preceding the archive. In the event
7698 no objects have been claimed at all, we return the first dummy
7699 object file on the list as the insert point; that works, but
7700 the callee must be careful when relinking the file_chain as it
7701 is not actually on that chain, only the statement_list and the
7702 input_file list; in that case, the replacement files must be
7703 inserted at the head of the file_chain. */
7704
7705 static lang_input_statement_type *
7706 find_replacements_insert_point (bfd_boolean *before)
7707 {
7708 lang_input_statement_type *claim1, *lastobject;
7709 lastobject = (void *) input_file_chain.head;
7710 for (claim1 = (void *) file_chain.head;
7711 claim1 != NULL;
7712 claim1 = claim1->next)
7713 {
7714 if (claim1->flags.claimed)
7715 {
7716 *before = claim1->flags.claim_archive;
7717 return claim1->flags.claim_archive ? lastobject : claim1;
7718 }
7719 /* Update lastobject if this is a real object file. */
7720 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7721 lastobject = claim1;
7722 }
7723 /* No files were claimed by the plugin. Choose the last object
7724 file found on the list (maybe the first, dummy entry) as the
7725 insert point. */
7726 *before = FALSE;
7727 return lastobject;
7728 }
7729
7730 /* Find where to insert ADD, an archive element or shared library
7731 added during a rescan. */
7732
7733 static lang_input_statement_type **
7734 find_rescan_insertion (lang_input_statement_type *add)
7735 {
7736 bfd *add_bfd = add->the_bfd;
7737 lang_input_statement_type *f;
7738 lang_input_statement_type *last_loaded = NULL;
7739 lang_input_statement_type *before = NULL;
7740 lang_input_statement_type **iter = NULL;
7741
7742 if (add_bfd->my_archive != NULL)
7743 add_bfd = add_bfd->my_archive;
7744
7745 /* First look through the input file chain, to find an object file
7746 before the one we've rescanned. Normal object files always
7747 appear on both the input file chain and the file chain, so this
7748 lets us get quickly to somewhere near the correct place on the
7749 file chain if it is full of archive elements. Archives don't
7750 appear on the file chain, but if an element has been extracted
7751 then their input_statement->next points at it. */
7752 for (f = (void *) input_file_chain.head;
7753 f != NULL;
7754 f = f->next_real_file)
7755 {
7756 if (f->the_bfd == add_bfd)
7757 {
7758 before = last_loaded;
7759 if (f->next != NULL)
7760 return &f->next->next;
7761 }
7762 if (f->the_bfd != NULL && f->next != NULL)
7763 last_loaded = f;
7764 }
7765
7766 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7767 *iter != NULL;
7768 iter = &(*iter)->next)
7769 if (!(*iter)->flags.claim_archive
7770 && (*iter)->the_bfd->my_archive == NULL)
7771 break;
7772
7773 return iter;
7774 }
7775
7776 /* Insert SRCLIST into DESTLIST after given element by chaining
7777 on FIELD as the next-pointer. (Counterintuitively does not need
7778 a pointer to the actual after-node itself, just its chain field.) */
7779
7780 static void
7781 lang_list_insert_after (lang_statement_list_type *destlist,
7782 lang_statement_list_type *srclist,
7783 lang_statement_union_type **field)
7784 {
7785 *(srclist->tail) = *field;
7786 *field = srclist->head;
7787 if (destlist->tail == field)
7788 destlist->tail = srclist->tail;
7789 }
7790
7791 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7792 was taken as a copy of it and leave them in ORIGLIST. */
7793
7794 static void
7795 lang_list_remove_tail (lang_statement_list_type *destlist,
7796 lang_statement_list_type *origlist)
7797 {
7798 union lang_statement_union **savetail;
7799 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7800 ASSERT (origlist->head == destlist->head);
7801 savetail = origlist->tail;
7802 origlist->head = *(savetail);
7803 origlist->tail = destlist->tail;
7804 destlist->tail = savetail;
7805 *savetail = NULL;
7806 }
7807
7808 static lang_statement_union_type **
7809 find_next_input_statement (lang_statement_union_type **s)
7810 {
7811 for ( ; *s; s = &(*s)->header.next)
7812 {
7813 lang_statement_union_type **t;
7814 switch ((*s)->header.type)
7815 {
7816 case lang_input_statement_enum:
7817 return s;
7818 case lang_wild_statement_enum:
7819 t = &(*s)->wild_statement.children.head;
7820 break;
7821 case lang_group_statement_enum:
7822 t = &(*s)->group_statement.children.head;
7823 break;
7824 case lang_output_section_statement_enum:
7825 t = &(*s)->output_section_statement.children.head;
7826 break;
7827 default:
7828 continue;
7829 }
7830 t = find_next_input_statement (t);
7831 if (*t)
7832 return t;
7833 }
7834 return s;
7835 }
7836 #endif /* BFD_SUPPORTS_PLUGINS */
7837
7838 /* Add NAME to the list of garbage collection entry points. */
7839
7840 void
7841 lang_add_gc_name (const char *name)
7842 {
7843 struct bfd_sym_chain *sym;
7844
7845 if (name == NULL)
7846 return;
7847
7848 sym = stat_alloc (sizeof (*sym));
7849
7850 sym->next = link_info.gc_sym_list;
7851 sym->name = name;
7852 link_info.gc_sym_list = sym;
7853 }
7854
7855 /* Check relocations. */
7856
7857 static void
7858 lang_check_relocs (void)
7859 {
7860 if (link_info.check_relocs_after_open_input)
7861 {
7862 bfd *abfd;
7863
7864 for (abfd = link_info.input_bfds;
7865 abfd != (bfd *) NULL; abfd = abfd->link.next)
7866 if (!bfd_link_check_relocs (abfd, &link_info))
7867 {
7868 /* No object output, fail return. */
7869 config.make_executable = FALSE;
7870 /* Note: we do not abort the loop, but rather
7871 continue the scan in case there are other
7872 bad relocations to report. */
7873 }
7874 }
7875 }
7876
7877 /* Look through all output sections looking for places where we can
7878 propagate forward the lma region. */
7879
7880 static void
7881 lang_propagate_lma_regions (void)
7882 {
7883 lang_output_section_statement_type *os;
7884
7885 for (os = (void *) lang_os_list.head;
7886 os != NULL;
7887 os = os->next)
7888 {
7889 if (os->prev != NULL
7890 && os->lma_region == NULL
7891 && os->load_base == NULL
7892 && os->addr_tree == NULL
7893 && os->region == os->prev->region)
7894 os->lma_region = os->prev->lma_region;
7895 }
7896 }
7897
7898 void
7899 lang_process (void)
7900 {
7901 /* Finalize dynamic list. */
7902 if (link_info.dynamic_list)
7903 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7904
7905 current_target = default_target;
7906
7907 /* Open the output file. */
7908 lang_for_each_statement (ldlang_open_output);
7909 init_opb (NULL);
7910
7911 ldemul_create_output_section_statements ();
7912
7913 /* Add to the hash table all undefineds on the command line. */
7914 lang_place_undefineds ();
7915
7916 if (!bfd_section_already_linked_table_init ())
7917 einfo (_("%F%P: can not create hash table: %E\n"));
7918
7919 /* A first pass through the memory regions ensures that if any region
7920 references a symbol for its origin or length then this symbol will be
7921 added to the symbol table. Having these symbols in the symbol table
7922 means that when we call open_input_bfds PROVIDE statements will
7923 trigger to provide any needed symbols. The regions origins and
7924 lengths are not assigned as a result of this call. */
7925 lang_do_memory_regions (FALSE);
7926
7927 /* Create a bfd for each input file. */
7928 current_target = default_target;
7929 lang_statement_iteration++;
7930 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7931
7932 /* Now that open_input_bfds has processed assignments and provide
7933 statements we can give values to symbolic origin/length now. */
7934 lang_do_memory_regions (TRUE);
7935
7936 #if BFD_SUPPORTS_PLUGINS
7937 if (link_info.lto_plugin_active)
7938 {
7939 lang_statement_list_type added;
7940 lang_statement_list_type files, inputfiles;
7941
7942 /* Now all files are read, let the plugin(s) decide if there
7943 are any more to be added to the link before we call the
7944 emulation's after_open hook. We create a private list of
7945 input statements for this purpose, which we will eventually
7946 insert into the global statement list after the first claimed
7947 file. */
7948 added = *stat_ptr;
7949 /* We need to manipulate all three chains in synchrony. */
7950 files = file_chain;
7951 inputfiles = input_file_chain;
7952 if (plugin_call_all_symbols_read ())
7953 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7954 plugin_error_plugin ());
7955 link_info.lto_all_symbols_read = TRUE;
7956 /* Open any newly added files, updating the file chains. */
7957 plugin_undefs = link_info.hash->undefs_tail;
7958 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7959 if (plugin_undefs == link_info.hash->undefs_tail)
7960 plugin_undefs = NULL;
7961 /* Restore the global list pointer now they have all been added. */
7962 lang_list_remove_tail (stat_ptr, &added);
7963 /* And detach the fresh ends of the file lists. */
7964 lang_list_remove_tail (&file_chain, &files);
7965 lang_list_remove_tail (&input_file_chain, &inputfiles);
7966 /* Were any new files added? */
7967 if (added.head != NULL)
7968 {
7969 /* If so, we will insert them into the statement list immediately
7970 after the first input file that was claimed by the plugin,
7971 unless that file was an archive in which case it is inserted
7972 immediately before. */
7973 bfd_boolean before;
7974 lang_statement_union_type **prev;
7975 plugin_insert = find_replacements_insert_point (&before);
7976 /* If a plugin adds input files without having claimed any, we
7977 don't really have a good idea where to place them. Just putting
7978 them at the start or end of the list is liable to leave them
7979 outside the crtbegin...crtend range. */
7980 ASSERT (plugin_insert != NULL);
7981 /* Splice the new statement list into the old one. */
7982 prev = &plugin_insert->header.next;
7983 if (before)
7984 {
7985 prev = find_next_input_statement (prev);
7986 if (*prev != (void *) plugin_insert->next_real_file)
7987 {
7988 /* We didn't find the expected input statement.
7989 Fall back to adding after plugin_insert. */
7990 prev = &plugin_insert->header.next;
7991 }
7992 }
7993 lang_list_insert_after (stat_ptr, &added, prev);
7994 /* Likewise for the file chains. */
7995 lang_list_insert_after (&input_file_chain, &inputfiles,
7996 (void *) &plugin_insert->next_real_file);
7997 /* We must be careful when relinking file_chain; we may need to
7998 insert the new files at the head of the list if the insert
7999 point chosen is the dummy first input file. */
8000 if (plugin_insert->filename)
8001 lang_list_insert_after (&file_chain, &files,
8002 (void *) &plugin_insert->next);
8003 else
8004 lang_list_insert_after (&file_chain, &files, &file_chain.head);
8005
8006 /* Rescan archives in case new undefined symbols have appeared. */
8007 files = file_chain;
8008 lang_statement_iteration++;
8009 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
8010 lang_list_remove_tail (&file_chain, &files);
8011 while (files.head != NULL)
8012 {
8013 lang_input_statement_type **insert;
8014 lang_input_statement_type **iter, *temp;
8015 bfd *my_arch;
8016
8017 insert = find_rescan_insertion (&files.head->input_statement);
8018 /* All elements from an archive can be added at once. */
8019 iter = &files.head->input_statement.next;
8020 my_arch = files.head->input_statement.the_bfd->my_archive;
8021 if (my_arch != NULL)
8022 for (; *iter != NULL; iter = &(*iter)->next)
8023 if ((*iter)->the_bfd->my_archive != my_arch)
8024 break;
8025 temp = *insert;
8026 *insert = &files.head->input_statement;
8027 files.head = (lang_statement_union_type *) *iter;
8028 *iter = temp;
8029 if (my_arch != NULL)
8030 {
8031 lang_input_statement_type *parent = bfd_usrdata (my_arch);
8032 if (parent != NULL)
8033 parent->next = (lang_input_statement_type *)
8034 ((char *) iter
8035 - offsetof (lang_input_statement_type, next));
8036 }
8037 }
8038 }
8039 }
8040 #endif /* BFD_SUPPORTS_PLUGINS */
8041
8042 /* Make sure that nobody has tried to add a symbol to this list
8043 before now. */
8044 ASSERT (link_info.gc_sym_list == NULL);
8045
8046 link_info.gc_sym_list = &entry_symbol;
8047
8048 if (entry_symbol.name == NULL)
8049 {
8050 link_info.gc_sym_list = ldlang_undef_chain_list_head;
8051
8052 /* entry_symbol is normally initialied by a ENTRY definition in the
8053 linker script or the -e command line option. But if neither of
8054 these have been used, the target specific backend may still have
8055 provided an entry symbol via a call to lang_default_entry().
8056 Unfortunately this value will not be processed until lang_end()
8057 is called, long after this function has finished. So detect this
8058 case here and add the target's entry symbol to the list of starting
8059 points for garbage collection resolution. */
8060 lang_add_gc_name (entry_symbol_default);
8061 }
8062
8063 lang_add_gc_name (link_info.init_function);
8064 lang_add_gc_name (link_info.fini_function);
8065
8066 ldemul_after_open ();
8067 if (config.map_file != NULL)
8068 lang_print_asneeded ();
8069
8070 ldlang_open_ctf ();
8071
8072 bfd_section_already_linked_table_free ();
8073
8074 /* Make sure that we're not mixing architectures. We call this
8075 after all the input files have been opened, but before we do any
8076 other processing, so that any operations merge_private_bfd_data
8077 does on the output file will be known during the rest of the
8078 link. */
8079 lang_check ();
8080
8081 /* Handle .exports instead of a version script if we're told to do so. */
8082 if (command_line.version_exports_section)
8083 lang_do_version_exports_section ();
8084
8085 /* Build all sets based on the information gathered from the input
8086 files. */
8087 ldctor_build_sets ();
8088
8089 /* Give initial values for __start and __stop symbols, so that ELF
8090 gc_sections will keep sections referenced by these symbols. Must
8091 be done before lang_do_assignments below. */
8092 if (config.build_constructors)
8093 lang_init_start_stop ();
8094
8095 /* PR 13683: We must rerun the assignments prior to running garbage
8096 collection in order to make sure that all symbol aliases are resolved. */
8097 lang_do_assignments (lang_mark_phase_enum);
8098 expld.phase = lang_first_phase_enum;
8099
8100 /* Size up the common data. */
8101 lang_common ();
8102
8103 /* Remove unreferenced sections if asked to. */
8104 lang_gc_sections ();
8105
8106 /* Check relocations. */
8107 lang_check_relocs ();
8108
8109 ldemul_after_check_relocs ();
8110
8111 /* Update wild statements. */
8112 update_wild_statements (statement_list.head);
8113
8114 /* Run through the contours of the script and attach input sections
8115 to the correct output sections. */
8116 lang_statement_iteration++;
8117 map_input_to_output_sections (statement_list.head, NULL, NULL);
8118
8119 /* Start at the statement immediately after the special abs_section
8120 output statement, so that it isn't reordered. */
8121 process_insert_statements (&lang_os_list.head->header.next);
8122
8123 ldemul_before_place_orphans ();
8124
8125 /* Find any sections not attached explicitly and handle them. */
8126 lang_place_orphans ();
8127
8128 if (!bfd_link_relocatable (&link_info))
8129 {
8130 asection *found;
8131
8132 /* Merge SEC_MERGE sections. This has to be done after GC of
8133 sections, so that GCed sections are not merged, but before
8134 assigning dynamic symbols, since removing whole input sections
8135 is hard then. */
8136 bfd_merge_sections (link_info.output_bfd, &link_info);
8137
8138 /* Look for a text section and set the readonly attribute in it. */
8139 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8140
8141 if (found != NULL)
8142 {
8143 if (config.text_read_only)
8144 found->flags |= SEC_READONLY;
8145 else
8146 found->flags &= ~SEC_READONLY;
8147 }
8148 }
8149
8150 /* Merge together CTF sections. After this, only the symtab-dependent
8151 function and data object sections need adjustment. */
8152 lang_merge_ctf ();
8153
8154 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8155 examining things laid out late, like the strtab. */
8156 lang_write_ctf (0);
8157
8158 /* Copy forward lma regions for output sections in same lma region. */
8159 lang_propagate_lma_regions ();
8160
8161 /* Defining __start/__stop symbols early for --gc-sections to work
8162 around a glibc build problem can result in these symbols being
8163 defined when they should not be. Fix them now. */
8164 if (config.build_constructors)
8165 lang_undef_start_stop ();
8166
8167 /* Define .startof./.sizeof. symbols with preliminary values before
8168 dynamic symbols are created. */
8169 if (!bfd_link_relocatable (&link_info))
8170 lang_init_startof_sizeof ();
8171
8172 /* Do anything special before sizing sections. This is where ELF
8173 and other back-ends size dynamic sections. */
8174 ldemul_before_allocation ();
8175
8176 /* We must record the program headers before we try to fix the
8177 section positions, since they will affect SIZEOF_HEADERS. */
8178 lang_record_phdrs ();
8179
8180 /* Check relro sections. */
8181 if (link_info.relro && !bfd_link_relocatable (&link_info))
8182 lang_find_relro_sections ();
8183
8184 /* Size up the sections. */
8185 lang_size_sections (NULL, !RELAXATION_ENABLED);
8186
8187 /* See if anything special should be done now we know how big
8188 everything is. This is where relaxation is done. */
8189 ldemul_after_allocation ();
8190
8191 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8192 lang_finalize_start_stop ();
8193
8194 /* Do all the assignments again, to report errors. Assignment
8195 statements are processed multiple times, updating symbols; In
8196 open_input_bfds, lang_do_assignments, and lang_size_sections.
8197 Since lang_relax_sections calls lang_do_assignments, symbols are
8198 also updated in ldemul_after_allocation. */
8199 lang_do_assignments (lang_final_phase_enum);
8200
8201 ldemul_finish ();
8202
8203 /* Convert absolute symbols to section relative. */
8204 ldexp_finalize_syms ();
8205
8206 /* Make sure that the section addresses make sense. */
8207 if (command_line.check_section_addresses)
8208 lang_check_section_addresses ();
8209
8210 /* Check any required symbols are known. */
8211 ldlang_check_require_defined_symbols ();
8212
8213 lang_end ();
8214 }
8215
8216 /* EXPORTED TO YACC */
8217
8218 void
8219 lang_add_wild (struct wildcard_spec *filespec,
8220 struct wildcard_list *section_list,
8221 bfd_boolean keep_sections)
8222 {
8223 struct wildcard_list *curr, *next;
8224 lang_wild_statement_type *new_stmt;
8225
8226 /* Reverse the list as the parser puts it back to front. */
8227 for (curr = section_list, section_list = NULL;
8228 curr != NULL;
8229 section_list = curr, curr = next)
8230 {
8231 next = curr->next;
8232 curr->next = section_list;
8233 }
8234
8235 if (filespec != NULL && filespec->name != NULL)
8236 {
8237 if (strcmp (filespec->name, "*") == 0)
8238 filespec->name = NULL;
8239 else if (!wildcardp (filespec->name))
8240 lang_has_input_file = TRUE;
8241 }
8242
8243 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8244 new_stmt->filename = NULL;
8245 new_stmt->filenames_sorted = FALSE;
8246 new_stmt->section_flag_list = NULL;
8247 new_stmt->exclude_name_list = NULL;
8248 if (filespec != NULL)
8249 {
8250 new_stmt->filename = filespec->name;
8251 new_stmt->filenames_sorted = filespec->sorted == by_name;
8252 new_stmt->section_flag_list = filespec->section_flag_list;
8253 new_stmt->exclude_name_list = filespec->exclude_name_list;
8254 }
8255 new_stmt->section_list = section_list;
8256 new_stmt->keep_sections = keep_sections;
8257 lang_list_init (&new_stmt->children);
8258 analyze_walk_wild_section_handler (new_stmt);
8259 }
8260
8261 void
8262 lang_section_start (const char *name, etree_type *address,
8263 const segment_type *segment)
8264 {
8265 lang_address_statement_type *ad;
8266
8267 ad = new_stat (lang_address_statement, stat_ptr);
8268 ad->section_name = name;
8269 ad->address = address;
8270 ad->segment = segment;
8271 }
8272
8273 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8274 because of a -e argument on the command line, or zero if this is
8275 called by ENTRY in a linker script. Command line arguments take
8276 precedence. */
8277
8278 void
8279 lang_add_entry (const char *name, bfd_boolean cmdline)
8280 {
8281 if (entry_symbol.name == NULL
8282 || cmdline
8283 || !entry_from_cmdline)
8284 {
8285 entry_symbol.name = name;
8286 entry_from_cmdline = cmdline;
8287 }
8288 }
8289
8290 /* Set the default start symbol to NAME. .em files should use this,
8291 not lang_add_entry, to override the use of "start" if neither the
8292 linker script nor the command line specifies an entry point. NAME
8293 must be permanently allocated. */
8294 void
8295 lang_default_entry (const char *name)
8296 {
8297 entry_symbol_default = name;
8298 }
8299
8300 void
8301 lang_add_target (const char *name)
8302 {
8303 lang_target_statement_type *new_stmt;
8304
8305 new_stmt = new_stat (lang_target_statement, stat_ptr);
8306 new_stmt->target = name;
8307 }
8308
8309 void
8310 lang_add_map (const char *name)
8311 {
8312 while (*name)
8313 {
8314 switch (*name)
8315 {
8316 case 'F':
8317 map_option_f = TRUE;
8318 break;
8319 }
8320 name++;
8321 }
8322 }
8323
8324 void
8325 lang_add_fill (fill_type *fill)
8326 {
8327 lang_fill_statement_type *new_stmt;
8328
8329 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8330 new_stmt->fill = fill;
8331 }
8332
8333 void
8334 lang_add_data (int type, union etree_union *exp)
8335 {
8336 lang_data_statement_type *new_stmt;
8337
8338 new_stmt = new_stat (lang_data_statement, stat_ptr);
8339 new_stmt->exp = exp;
8340 new_stmt->type = type;
8341 }
8342
8343 /* Create a new reloc statement. RELOC is the BFD relocation type to
8344 generate. HOWTO is the corresponding howto structure (we could
8345 look this up, but the caller has already done so). SECTION is the
8346 section to generate a reloc against, or NAME is the name of the
8347 symbol to generate a reloc against. Exactly one of SECTION and
8348 NAME must be NULL. ADDEND is an expression for the addend. */
8349
8350 void
8351 lang_add_reloc (bfd_reloc_code_real_type reloc,
8352 reloc_howto_type *howto,
8353 asection *section,
8354 const char *name,
8355 union etree_union *addend)
8356 {
8357 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8358
8359 p->reloc = reloc;
8360 p->howto = howto;
8361 p->section = section;
8362 p->name = name;
8363 p->addend_exp = addend;
8364
8365 p->addend_value = 0;
8366 p->output_section = NULL;
8367 p->output_offset = 0;
8368 }
8369
8370 lang_assignment_statement_type *
8371 lang_add_assignment (etree_type *exp)
8372 {
8373 lang_assignment_statement_type *new_stmt;
8374
8375 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8376 new_stmt->exp = exp;
8377 return new_stmt;
8378 }
8379
8380 void
8381 lang_add_attribute (enum statement_enum attribute)
8382 {
8383 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8384 }
8385
8386 void
8387 lang_startup (const char *name)
8388 {
8389 if (first_file->filename != NULL)
8390 {
8391 einfo (_("%F%P: multiple STARTUP files\n"));
8392 }
8393 first_file->filename = name;
8394 first_file->local_sym_name = name;
8395 first_file->flags.real = TRUE;
8396 }
8397
8398 void
8399 lang_float (bfd_boolean maybe)
8400 {
8401 lang_float_flag = maybe;
8402 }
8403
8404
8405 /* Work out the load- and run-time regions from a script statement, and
8406 store them in *LMA_REGION and *REGION respectively.
8407
8408 MEMSPEC is the name of the run-time region, or the value of
8409 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8410 LMA_MEMSPEC is the name of the load-time region, or null if the
8411 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8412 had an explicit load address.
8413
8414 It is an error to specify both a load region and a load address. */
8415
8416 static void
8417 lang_get_regions (lang_memory_region_type **region,
8418 lang_memory_region_type **lma_region,
8419 const char *memspec,
8420 const char *lma_memspec,
8421 bfd_boolean have_lma,
8422 bfd_boolean have_vma)
8423 {
8424 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
8425
8426 /* If no runtime region or VMA has been specified, but the load region
8427 has been specified, then use the load region for the runtime region
8428 as well. */
8429 if (lma_memspec != NULL
8430 && !have_vma
8431 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8432 *region = *lma_region;
8433 else
8434 *region = lang_memory_region_lookup (memspec, FALSE);
8435
8436 if (have_lma && lma_memspec != 0)
8437 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8438 NULL);
8439 }
8440
8441 void
8442 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8443 lang_output_section_phdr_list *phdrs,
8444 const char *lma_memspec)
8445 {
8446 lang_get_regions (&current_section->region,
8447 &current_section->lma_region,
8448 memspec, lma_memspec,
8449 current_section->load_base != NULL,
8450 current_section->addr_tree != NULL);
8451
8452 current_section->fill = fill;
8453 current_section->phdrs = phdrs;
8454 pop_stat_ptr ();
8455 }
8456
8457 /* Set the output format type. -oformat overrides scripts. */
8458
8459 void
8460 lang_add_output_format (const char *format,
8461 const char *big,
8462 const char *little,
8463 int from_script)
8464 {
8465 if (output_target == NULL || !from_script)
8466 {
8467 if (command_line.endian == ENDIAN_BIG
8468 && big != NULL)
8469 format = big;
8470 else if (command_line.endian == ENDIAN_LITTLE
8471 && little != NULL)
8472 format = little;
8473
8474 output_target = format;
8475 }
8476 }
8477
8478 void
8479 lang_add_insert (const char *where, int is_before)
8480 {
8481 lang_insert_statement_type *new_stmt;
8482
8483 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8484 new_stmt->where = where;
8485 new_stmt->is_before = is_before;
8486 saved_script_handle = previous_script_handle;
8487 }
8488
8489 /* Enter a group. This creates a new lang_group_statement, and sets
8490 stat_ptr to build new statements within the group. */
8491
8492 void
8493 lang_enter_group (void)
8494 {
8495 lang_group_statement_type *g;
8496
8497 g = new_stat (lang_group_statement, stat_ptr);
8498 lang_list_init (&g->children);
8499 push_stat_ptr (&g->children);
8500 }
8501
8502 /* Leave a group. This just resets stat_ptr to start writing to the
8503 regular list of statements again. Note that this will not work if
8504 groups can occur inside anything else which can adjust stat_ptr,
8505 but currently they can't. */
8506
8507 void
8508 lang_leave_group (void)
8509 {
8510 pop_stat_ptr ();
8511 }
8512
8513 /* Add a new program header. This is called for each entry in a PHDRS
8514 command in a linker script. */
8515
8516 void
8517 lang_new_phdr (const char *name,
8518 etree_type *type,
8519 bfd_boolean filehdr,
8520 bfd_boolean phdrs,
8521 etree_type *at,
8522 etree_type *flags)
8523 {
8524 struct lang_phdr *n, **pp;
8525 bfd_boolean hdrs;
8526
8527 n = stat_alloc (sizeof (struct lang_phdr));
8528 n->next = NULL;
8529 n->name = name;
8530 n->type = exp_get_vma (type, 0, "program header type");
8531 n->filehdr = filehdr;
8532 n->phdrs = phdrs;
8533 n->at = at;
8534 n->flags = flags;
8535
8536 hdrs = n->type == 1 && (phdrs || filehdr);
8537
8538 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8539 if (hdrs
8540 && (*pp)->type == 1
8541 && !((*pp)->filehdr || (*pp)->phdrs))
8542 {
8543 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8544 " when prior PT_LOAD headers lack them\n"), NULL);
8545 hdrs = FALSE;
8546 }
8547
8548 *pp = n;
8549 }
8550
8551 /* Record the program header information in the output BFD. FIXME: We
8552 should not be calling an ELF specific function here. */
8553
8554 static void
8555 lang_record_phdrs (void)
8556 {
8557 unsigned int alc;
8558 asection **secs;
8559 lang_output_section_phdr_list *last;
8560 struct lang_phdr *l;
8561 lang_output_section_statement_type *os;
8562
8563 alc = 10;
8564 secs = (asection **) xmalloc (alc * sizeof (asection *));
8565 last = NULL;
8566
8567 for (l = lang_phdr_list; l != NULL; l = l->next)
8568 {
8569 unsigned int c;
8570 flagword flags;
8571 bfd_vma at;
8572
8573 c = 0;
8574 for (os = (void *) lang_os_list.head;
8575 os != NULL;
8576 os = os->next)
8577 {
8578 lang_output_section_phdr_list *pl;
8579
8580 if (os->constraint < 0)
8581 continue;
8582
8583 pl = os->phdrs;
8584 if (pl != NULL)
8585 last = pl;
8586 else
8587 {
8588 if (os->sectype == noload_section
8589 || os->bfd_section == NULL
8590 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8591 continue;
8592
8593 /* Don't add orphans to PT_INTERP header. */
8594 if (l->type == 3)
8595 continue;
8596
8597 if (last == NULL)
8598 {
8599 lang_output_section_statement_type *tmp_os;
8600
8601 /* If we have not run across a section with a program
8602 header assigned to it yet, then scan forwards to find
8603 one. This prevents inconsistencies in the linker's
8604 behaviour when a script has specified just a single
8605 header and there are sections in that script which are
8606 not assigned to it, and which occur before the first
8607 use of that header. See here for more details:
8608 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8609 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8610 if (tmp_os->phdrs)
8611 {
8612 last = tmp_os->phdrs;
8613 break;
8614 }
8615 if (last == NULL)
8616 einfo (_("%F%P: no sections assigned to phdrs\n"));
8617 }
8618 pl = last;
8619 }
8620
8621 if (os->bfd_section == NULL)
8622 continue;
8623
8624 for (; pl != NULL; pl = pl->next)
8625 {
8626 if (strcmp (pl->name, l->name) == 0)
8627 {
8628 if (c >= alc)
8629 {
8630 alc *= 2;
8631 secs = (asection **) xrealloc (secs,
8632 alc * sizeof (asection *));
8633 }
8634 secs[c] = os->bfd_section;
8635 ++c;
8636 pl->used = TRUE;
8637 }
8638 }
8639 }
8640
8641 if (l->flags == NULL)
8642 flags = 0;
8643 else
8644 flags = exp_get_vma (l->flags, 0, "phdr flags");
8645
8646 if (l->at == NULL)
8647 at = 0;
8648 else
8649 at = exp_get_vma (l->at, 0, "phdr load address");
8650
8651 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8652 l->flags != NULL, flags, l->at != NULL,
8653 at, l->filehdr, l->phdrs, c, secs))
8654 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8655 }
8656
8657 free (secs);
8658
8659 /* Make sure all the phdr assignments succeeded. */
8660 for (os = (void *) lang_os_list.head;
8661 os != NULL;
8662 os = os->next)
8663 {
8664 lang_output_section_phdr_list *pl;
8665
8666 if (os->constraint < 0
8667 || os->bfd_section == NULL)
8668 continue;
8669
8670 for (pl = os->phdrs;
8671 pl != NULL;
8672 pl = pl->next)
8673 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8674 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8675 os->name, pl->name);
8676 }
8677 }
8678
8679 /* Record a list of sections which may not be cross referenced. */
8680
8681 void
8682 lang_add_nocrossref (lang_nocrossref_type *l)
8683 {
8684 struct lang_nocrossrefs *n;
8685
8686 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8687 n->next = nocrossref_list;
8688 n->list = l;
8689 n->onlyfirst = FALSE;
8690 nocrossref_list = n;
8691
8692 /* Set notice_all so that we get informed about all symbols. */
8693 link_info.notice_all = TRUE;
8694 }
8695
8696 /* Record a section that cannot be referenced from a list of sections. */
8697
8698 void
8699 lang_add_nocrossref_to (lang_nocrossref_type *l)
8700 {
8701 lang_add_nocrossref (l);
8702 nocrossref_list->onlyfirst = TRUE;
8703 }
8704 \f
8705 /* Overlay handling. We handle overlays with some static variables. */
8706
8707 /* The overlay virtual address. */
8708 static etree_type *overlay_vma;
8709 /* And subsection alignment. */
8710 static etree_type *overlay_subalign;
8711
8712 /* An expression for the maximum section size seen so far. */
8713 static etree_type *overlay_max;
8714
8715 /* A list of all the sections in this overlay. */
8716
8717 struct overlay_list {
8718 struct overlay_list *next;
8719 lang_output_section_statement_type *os;
8720 };
8721
8722 static struct overlay_list *overlay_list;
8723
8724 /* Start handling an overlay. */
8725
8726 void
8727 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8728 {
8729 /* The grammar should prevent nested overlays from occurring. */
8730 ASSERT (overlay_vma == NULL
8731 && overlay_subalign == NULL
8732 && overlay_max == NULL);
8733
8734 overlay_vma = vma_expr;
8735 overlay_subalign = subalign;
8736 }
8737
8738 /* Start a section in an overlay. We handle this by calling
8739 lang_enter_output_section_statement with the correct VMA.
8740 lang_leave_overlay sets up the LMA and memory regions. */
8741
8742 void
8743 lang_enter_overlay_section (const char *name)
8744 {
8745 struct overlay_list *n;
8746 etree_type *size;
8747
8748 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8749 0, overlay_subalign, 0, 0, 0);
8750
8751 /* If this is the first section, then base the VMA of future
8752 sections on this one. This will work correctly even if `.' is
8753 used in the addresses. */
8754 if (overlay_list == NULL)
8755 overlay_vma = exp_nameop (ADDR, name);
8756
8757 /* Remember the section. */
8758 n = (struct overlay_list *) xmalloc (sizeof *n);
8759 n->os = current_section;
8760 n->next = overlay_list;
8761 overlay_list = n;
8762
8763 size = exp_nameop (SIZEOF, name);
8764
8765 /* Arrange to work out the maximum section end address. */
8766 if (overlay_max == NULL)
8767 overlay_max = size;
8768 else
8769 overlay_max = exp_binop (MAX_K, overlay_max, size);
8770 }
8771
8772 /* Finish a section in an overlay. There isn't any special to do
8773 here. */
8774
8775 void
8776 lang_leave_overlay_section (fill_type *fill,
8777 lang_output_section_phdr_list *phdrs)
8778 {
8779 const char *name;
8780 char *clean, *s2;
8781 const char *s1;
8782 char *buf;
8783
8784 name = current_section->name;
8785
8786 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8787 region and that no load-time region has been specified. It doesn't
8788 really matter what we say here, since lang_leave_overlay will
8789 override it. */
8790 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8791
8792 /* Define the magic symbols. */
8793
8794 clean = (char *) xmalloc (strlen (name) + 1);
8795 s2 = clean;
8796 for (s1 = name; *s1 != '\0'; s1++)
8797 if (ISALNUM (*s1) || *s1 == '_')
8798 *s2++ = *s1;
8799 *s2 = '\0';
8800
8801 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8802 sprintf (buf, "__load_start_%s", clean);
8803 lang_add_assignment (exp_provide (buf,
8804 exp_nameop (LOADADDR, name),
8805 FALSE));
8806
8807 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8808 sprintf (buf, "__load_stop_%s", clean);
8809 lang_add_assignment (exp_provide (buf,
8810 exp_binop ('+',
8811 exp_nameop (LOADADDR, name),
8812 exp_nameop (SIZEOF, name)),
8813 FALSE));
8814
8815 free (clean);
8816 }
8817
8818 /* Finish an overlay. If there are any overlay wide settings, this
8819 looks through all the sections in the overlay and sets them. */
8820
8821 void
8822 lang_leave_overlay (etree_type *lma_expr,
8823 int nocrossrefs,
8824 fill_type *fill,
8825 const char *memspec,
8826 lang_output_section_phdr_list *phdrs,
8827 const char *lma_memspec)
8828 {
8829 lang_memory_region_type *region;
8830 lang_memory_region_type *lma_region;
8831 struct overlay_list *l;
8832 lang_nocrossref_type *nocrossref;
8833
8834 lang_get_regions (&region, &lma_region,
8835 memspec, lma_memspec,
8836 lma_expr != NULL, FALSE);
8837
8838 nocrossref = NULL;
8839
8840 /* After setting the size of the last section, set '.' to end of the
8841 overlay region. */
8842 if (overlay_list != NULL)
8843 {
8844 overlay_list->os->update_dot = 1;
8845 overlay_list->os->update_dot_tree
8846 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8847 }
8848
8849 l = overlay_list;
8850 while (l != NULL)
8851 {
8852 struct overlay_list *next;
8853
8854 if (fill != NULL && l->os->fill == NULL)
8855 l->os->fill = fill;
8856
8857 l->os->region = region;
8858 l->os->lma_region = lma_region;
8859
8860 /* The first section has the load address specified in the
8861 OVERLAY statement. The rest are worked out from that.
8862 The base address is not needed (and should be null) if
8863 an LMA region was specified. */
8864 if (l->next == 0)
8865 {
8866 l->os->load_base = lma_expr;
8867 l->os->sectype = first_overlay_section;
8868 }
8869 if (phdrs != NULL && l->os->phdrs == NULL)
8870 l->os->phdrs = phdrs;
8871
8872 if (nocrossrefs)
8873 {
8874 lang_nocrossref_type *nc;
8875
8876 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8877 nc->name = l->os->name;
8878 nc->next = nocrossref;
8879 nocrossref = nc;
8880 }
8881
8882 next = l->next;
8883 free (l);
8884 l = next;
8885 }
8886
8887 if (nocrossref != NULL)
8888 lang_add_nocrossref (nocrossref);
8889
8890 overlay_vma = NULL;
8891 overlay_list = NULL;
8892 overlay_max = NULL;
8893 overlay_subalign = NULL;
8894 }
8895 \f
8896 /* Version handling. This is only useful for ELF. */
8897
8898 /* If PREV is NULL, return first version pattern matching particular symbol.
8899 If PREV is non-NULL, return first version pattern matching particular
8900 symbol after PREV (previously returned by lang_vers_match). */
8901
8902 static struct bfd_elf_version_expr *
8903 lang_vers_match (struct bfd_elf_version_expr_head *head,
8904 struct bfd_elf_version_expr *prev,
8905 const char *sym)
8906 {
8907 const char *c_sym;
8908 const char *cxx_sym = sym;
8909 const char *java_sym = sym;
8910 struct bfd_elf_version_expr *expr = NULL;
8911 enum demangling_styles curr_style;
8912
8913 curr_style = CURRENT_DEMANGLING_STYLE;
8914 cplus_demangle_set_style (no_demangling);
8915 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8916 if (!c_sym)
8917 c_sym = sym;
8918 cplus_demangle_set_style (curr_style);
8919
8920 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8921 {
8922 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8923 DMGL_PARAMS | DMGL_ANSI);
8924 if (!cxx_sym)
8925 cxx_sym = sym;
8926 }
8927 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8928 {
8929 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8930 if (!java_sym)
8931 java_sym = sym;
8932 }
8933
8934 if (head->htab && (prev == NULL || prev->literal))
8935 {
8936 struct bfd_elf_version_expr e;
8937
8938 switch (prev ? prev->mask : 0)
8939 {
8940 case 0:
8941 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8942 {
8943 e.pattern = c_sym;
8944 expr = (struct bfd_elf_version_expr *)
8945 htab_find ((htab_t) head->htab, &e);
8946 while (expr && strcmp (expr->pattern, c_sym) == 0)
8947 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8948 goto out_ret;
8949 else
8950 expr = expr->next;
8951 }
8952 /* Fallthrough */
8953 case BFD_ELF_VERSION_C_TYPE:
8954 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8955 {
8956 e.pattern = cxx_sym;
8957 expr = (struct bfd_elf_version_expr *)
8958 htab_find ((htab_t) head->htab, &e);
8959 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8960 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8961 goto out_ret;
8962 else
8963 expr = expr->next;
8964 }
8965 /* Fallthrough */
8966 case BFD_ELF_VERSION_CXX_TYPE:
8967 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8968 {
8969 e.pattern = java_sym;
8970 expr = (struct bfd_elf_version_expr *)
8971 htab_find ((htab_t) head->htab, &e);
8972 while (expr && strcmp (expr->pattern, java_sym) == 0)
8973 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8974 goto out_ret;
8975 else
8976 expr = expr->next;
8977 }
8978 /* Fallthrough */
8979 default:
8980 break;
8981 }
8982 }
8983
8984 /* Finally, try the wildcards. */
8985 if (prev == NULL || prev->literal)
8986 expr = head->remaining;
8987 else
8988 expr = prev->next;
8989 for (; expr; expr = expr->next)
8990 {
8991 const char *s;
8992
8993 if (!expr->pattern)
8994 continue;
8995
8996 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8997 break;
8998
8999 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9000 s = java_sym;
9001 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9002 s = cxx_sym;
9003 else
9004 s = c_sym;
9005 if (fnmatch (expr->pattern, s, 0) == 0)
9006 break;
9007 }
9008
9009 out_ret:
9010 if (c_sym != sym)
9011 free ((char *) c_sym);
9012 if (cxx_sym != sym)
9013 free ((char *) cxx_sym);
9014 if (java_sym != sym)
9015 free ((char *) java_sym);
9016 return expr;
9017 }
9018
9019 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
9020 return a pointer to the symbol name with any backslash quotes removed. */
9021
9022 static const char *
9023 realsymbol (const char *pattern)
9024 {
9025 const char *p;
9026 bfd_boolean changed = FALSE, backslash = FALSE;
9027 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
9028
9029 for (p = pattern, s = symbol; *p != '\0'; ++p)
9030 {
9031 /* It is a glob pattern only if there is no preceding
9032 backslash. */
9033 if (backslash)
9034 {
9035 /* Remove the preceding backslash. */
9036 *(s - 1) = *p;
9037 backslash = FALSE;
9038 changed = TRUE;
9039 }
9040 else
9041 {
9042 if (*p == '?' || *p == '*' || *p == '[')
9043 {
9044 free (symbol);
9045 return NULL;
9046 }
9047
9048 *s++ = *p;
9049 backslash = *p == '\\';
9050 }
9051 }
9052
9053 if (changed)
9054 {
9055 *s = '\0';
9056 return symbol;
9057 }
9058 else
9059 {
9060 free (symbol);
9061 return pattern;
9062 }
9063 }
9064
9065 /* This is called for each variable name or match expression. NEW_NAME is
9066 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9067 pattern to be matched against symbol names. */
9068
9069 struct bfd_elf_version_expr *
9070 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9071 const char *new_name,
9072 const char *lang,
9073 bfd_boolean literal_p)
9074 {
9075 struct bfd_elf_version_expr *ret;
9076
9077 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9078 ret->next = orig;
9079 ret->symver = 0;
9080 ret->script = 0;
9081 ret->literal = TRUE;
9082 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9083 if (ret->pattern == NULL)
9084 {
9085 ret->pattern = new_name;
9086 ret->literal = FALSE;
9087 }
9088
9089 if (lang == NULL || strcasecmp (lang, "C") == 0)
9090 ret->mask = BFD_ELF_VERSION_C_TYPE;
9091 else if (strcasecmp (lang, "C++") == 0)
9092 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9093 else if (strcasecmp (lang, "Java") == 0)
9094 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9095 else
9096 {
9097 einfo (_("%X%P: unknown language `%s' in version information\n"),
9098 lang);
9099 ret->mask = BFD_ELF_VERSION_C_TYPE;
9100 }
9101
9102 return ldemul_new_vers_pattern (ret);
9103 }
9104
9105 /* This is called for each set of variable names and match
9106 expressions. */
9107
9108 struct bfd_elf_version_tree *
9109 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9110 struct bfd_elf_version_expr *locals)
9111 {
9112 struct bfd_elf_version_tree *ret;
9113
9114 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9115 ret->globals.list = globals;
9116 ret->locals.list = locals;
9117 ret->match = lang_vers_match;
9118 ret->name_indx = (unsigned int) -1;
9119 return ret;
9120 }
9121
9122 /* This static variable keeps track of version indices. */
9123
9124 static int version_index;
9125
9126 static hashval_t
9127 version_expr_head_hash (const void *p)
9128 {
9129 const struct bfd_elf_version_expr *e =
9130 (const struct bfd_elf_version_expr *) p;
9131
9132 return htab_hash_string (e->pattern);
9133 }
9134
9135 static int
9136 version_expr_head_eq (const void *p1, const void *p2)
9137 {
9138 const struct bfd_elf_version_expr *e1 =
9139 (const struct bfd_elf_version_expr *) p1;
9140 const struct bfd_elf_version_expr *e2 =
9141 (const struct bfd_elf_version_expr *) p2;
9142
9143 return strcmp (e1->pattern, e2->pattern) == 0;
9144 }
9145
9146 static void
9147 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9148 {
9149 size_t count = 0;
9150 struct bfd_elf_version_expr *e, *next;
9151 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9152
9153 for (e = head->list; e; e = e->next)
9154 {
9155 if (e->literal)
9156 count++;
9157 head->mask |= e->mask;
9158 }
9159
9160 if (count)
9161 {
9162 head->htab = htab_create (count * 2, version_expr_head_hash,
9163 version_expr_head_eq, NULL);
9164 list_loc = &head->list;
9165 remaining_loc = &head->remaining;
9166 for (e = head->list; e; e = next)
9167 {
9168 next = e->next;
9169 if (!e->literal)
9170 {
9171 *remaining_loc = e;
9172 remaining_loc = &e->next;
9173 }
9174 else
9175 {
9176 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9177
9178 if (*loc)
9179 {
9180 struct bfd_elf_version_expr *e1, *last;
9181
9182 e1 = (struct bfd_elf_version_expr *) *loc;
9183 last = NULL;
9184 do
9185 {
9186 if (e1->mask == e->mask)
9187 {
9188 last = NULL;
9189 break;
9190 }
9191 last = e1;
9192 e1 = e1->next;
9193 }
9194 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9195
9196 if (last == NULL)
9197 {
9198 /* This is a duplicate. */
9199 /* FIXME: Memory leak. Sometimes pattern is not
9200 xmalloced alone, but in larger chunk of memory. */
9201 /* free (e->pattern); */
9202 free (e);
9203 }
9204 else
9205 {
9206 e->next = last->next;
9207 last->next = e;
9208 }
9209 }
9210 else
9211 {
9212 *loc = e;
9213 *list_loc = e;
9214 list_loc = &e->next;
9215 }
9216 }
9217 }
9218 *remaining_loc = NULL;
9219 *list_loc = head->remaining;
9220 }
9221 else
9222 head->remaining = head->list;
9223 }
9224
9225 /* This is called when we know the name and dependencies of the
9226 version. */
9227
9228 void
9229 lang_register_vers_node (const char *name,
9230 struct bfd_elf_version_tree *version,
9231 struct bfd_elf_version_deps *deps)
9232 {
9233 struct bfd_elf_version_tree *t, **pp;
9234 struct bfd_elf_version_expr *e1;
9235
9236 if (name == NULL)
9237 name = "";
9238
9239 if (link_info.version_info != NULL
9240 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9241 {
9242 einfo (_("%X%P: anonymous version tag cannot be combined"
9243 " with other version tags\n"));
9244 free (version);
9245 return;
9246 }
9247
9248 /* Make sure this node has a unique name. */
9249 for (t = link_info.version_info; t != NULL; t = t->next)
9250 if (strcmp (t->name, name) == 0)
9251 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9252
9253 lang_finalize_version_expr_head (&version->globals);
9254 lang_finalize_version_expr_head (&version->locals);
9255
9256 /* Check the global and local match names, and make sure there
9257 aren't any duplicates. */
9258
9259 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9260 {
9261 for (t = link_info.version_info; t != NULL; t = t->next)
9262 {
9263 struct bfd_elf_version_expr *e2;
9264
9265 if (t->locals.htab && e1->literal)
9266 {
9267 e2 = (struct bfd_elf_version_expr *)
9268 htab_find ((htab_t) t->locals.htab, e1);
9269 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9270 {
9271 if (e1->mask == e2->mask)
9272 einfo (_("%X%P: duplicate expression `%s'"
9273 " in version information\n"), e1->pattern);
9274 e2 = e2->next;
9275 }
9276 }
9277 else if (!e1->literal)
9278 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9279 if (strcmp (e1->pattern, e2->pattern) == 0
9280 && e1->mask == e2->mask)
9281 einfo (_("%X%P: duplicate expression `%s'"
9282 " in version information\n"), e1->pattern);
9283 }
9284 }
9285
9286 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9287 {
9288 for (t = link_info.version_info; t != NULL; t = t->next)
9289 {
9290 struct bfd_elf_version_expr *e2;
9291
9292 if (t->globals.htab && e1->literal)
9293 {
9294 e2 = (struct bfd_elf_version_expr *)
9295 htab_find ((htab_t) t->globals.htab, e1);
9296 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9297 {
9298 if (e1->mask == e2->mask)
9299 einfo (_("%X%P: duplicate expression `%s'"
9300 " in version information\n"),
9301 e1->pattern);
9302 e2 = e2->next;
9303 }
9304 }
9305 else if (!e1->literal)
9306 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9307 if (strcmp (e1->pattern, e2->pattern) == 0
9308 && e1->mask == e2->mask)
9309 einfo (_("%X%P: duplicate expression `%s'"
9310 " in version information\n"), e1->pattern);
9311 }
9312 }
9313
9314 version->deps = deps;
9315 version->name = name;
9316 if (name[0] != '\0')
9317 {
9318 ++version_index;
9319 version->vernum = version_index;
9320 }
9321 else
9322 version->vernum = 0;
9323
9324 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9325 ;
9326 *pp = version;
9327 }
9328
9329 /* This is called when we see a version dependency. */
9330
9331 struct bfd_elf_version_deps *
9332 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9333 {
9334 struct bfd_elf_version_deps *ret;
9335 struct bfd_elf_version_tree *t;
9336
9337 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9338 ret->next = list;
9339
9340 for (t = link_info.version_info; t != NULL; t = t->next)
9341 {
9342 if (strcmp (t->name, name) == 0)
9343 {
9344 ret->version_needed = t;
9345 return ret;
9346 }
9347 }
9348
9349 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9350
9351 ret->version_needed = NULL;
9352 return ret;
9353 }
9354
9355 static void
9356 lang_do_version_exports_section (void)
9357 {
9358 struct bfd_elf_version_expr *greg = NULL, *lreg;
9359
9360 LANG_FOR_EACH_INPUT_STATEMENT (is)
9361 {
9362 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9363 char *contents, *p;
9364 bfd_size_type len;
9365
9366 if (sec == NULL)
9367 continue;
9368
9369 len = sec->size;
9370 contents = (char *) xmalloc (len);
9371 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9372 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9373
9374 p = contents;
9375 while (p < contents + len)
9376 {
9377 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
9378 p = strchr (p, '\0') + 1;
9379 }
9380
9381 /* Do not free the contents, as we used them creating the regex. */
9382
9383 /* Do not include this section in the link. */
9384 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9385 }
9386
9387 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
9388 lang_register_vers_node (command_line.version_exports_section,
9389 lang_new_vers_node (greg, lreg), NULL);
9390 }
9391
9392 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec. This is initially
9393 called with UPDATE_REGIONS_P set to FALSE, in this case no errors are
9394 thrown, however, references to symbols in the origin and length fields
9395 will be pushed into the symbol table, this allows PROVIDE statements to
9396 then provide these symbols. This function is called a second time with
9397 UPDATE_REGIONS_P set to TRUE, this time the we update the actual region
9398 data structures, and throw errors if missing symbols are encountered. */
9399
9400 static void
9401 lang_do_memory_regions (bfd_boolean update_regions_p)
9402 {
9403 lang_memory_region_type *r = lang_memory_region_list;
9404
9405 for (; r != NULL; r = r->next)
9406 {
9407 if (r->origin_exp)
9408 {
9409 exp_fold_tree_no_dot (r->origin_exp);
9410 if (update_regions_p)
9411 {
9412 if (expld.result.valid_p)
9413 {
9414 r->origin = expld.result.value;
9415 r->current = r->origin;
9416 }
9417 else
9418 einfo (_("%P: invalid origin for memory region %s\n"),
9419 r->name_list.name);
9420 }
9421 }
9422 if (r->length_exp)
9423 {
9424 exp_fold_tree_no_dot (r->length_exp);
9425 if (update_regions_p)
9426 {
9427 if (expld.result.valid_p)
9428 r->length = expld.result.value;
9429 else
9430 einfo (_("%P: invalid length for memory region %s\n"),
9431 r->name_list.name);
9432 }
9433 }
9434 }
9435 }
9436
9437 void
9438 lang_add_unique (const char *name)
9439 {
9440 struct unique_sections *ent;
9441
9442 for (ent = unique_section_list; ent; ent = ent->next)
9443 if (strcmp (ent->name, name) == 0)
9444 return;
9445
9446 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9447 ent->name = xstrdup (name);
9448 ent->next = unique_section_list;
9449 unique_section_list = ent;
9450 }
9451
9452 /* Append the list of dynamic symbols to the existing one. */
9453
9454 void
9455 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9456 struct bfd_elf_version_expr *dynamic)
9457 {
9458 if (*list_p)
9459 {
9460 struct bfd_elf_version_expr *tail;
9461 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9462 ;
9463 tail->next = (*list_p)->head.list;
9464 (*list_p)->head.list = dynamic;
9465 }
9466 else
9467 {
9468 struct bfd_elf_dynamic_list *d;
9469
9470 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9471 d->head.list = dynamic;
9472 d->match = lang_vers_match;
9473 *list_p = d;
9474 }
9475 }
9476
9477 /* Append the list of C++ typeinfo dynamic symbols to the existing
9478 one. */
9479
9480 void
9481 lang_append_dynamic_list_cpp_typeinfo (void)
9482 {
9483 const char *symbols[] =
9484 {
9485 "typeinfo name for*",
9486 "typeinfo for*"
9487 };
9488 struct bfd_elf_version_expr *dynamic = NULL;
9489 unsigned int i;
9490
9491 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9492 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9493 FALSE);
9494
9495 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9496 }
9497
9498 /* Append the list of C++ operator new and delete dynamic symbols to the
9499 existing one. */
9500
9501 void
9502 lang_append_dynamic_list_cpp_new (void)
9503 {
9504 const char *symbols[] =
9505 {
9506 "operator new*",
9507 "operator delete*"
9508 };
9509 struct bfd_elf_version_expr *dynamic = NULL;
9510 unsigned int i;
9511
9512 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9513 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9514 FALSE);
9515
9516 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9517 }
9518
9519 /* Scan a space and/or comma separated string of features. */
9520
9521 void
9522 lang_ld_feature (char *str)
9523 {
9524 char *p, *q;
9525
9526 p = str;
9527 while (*p)
9528 {
9529 char sep;
9530 while (*p == ',' || ISSPACE (*p))
9531 ++p;
9532 if (!*p)
9533 break;
9534 q = p + 1;
9535 while (*q && *q != ',' && !ISSPACE (*q))
9536 ++q;
9537 sep = *q;
9538 *q = 0;
9539 if (strcasecmp (p, "SANE_EXPR") == 0)
9540 config.sane_expr = TRUE;
9541 else
9542 einfo (_("%X%P: unknown feature `%s'\n"), p);
9543 *q = sep;
9544 p = q;
9545 }
9546 }
9547
9548 /* Pretty print memory amount. */
9549
9550 static void
9551 lang_print_memory_size (bfd_vma sz)
9552 {
9553 if ((sz & 0x3fffffff) == 0)
9554 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9555 else if ((sz & 0xfffff) == 0)
9556 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9557 else if ((sz & 0x3ff) == 0)
9558 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9559 else
9560 printf (" %10" BFD_VMA_FMT "u B", sz);
9561 }
9562
9563 /* Implement --print-memory-usage: disply per region memory usage. */
9564
9565 void
9566 lang_print_memory_usage (void)
9567 {
9568 lang_memory_region_type *r;
9569
9570 printf ("Memory region Used Size Region Size %%age Used\n");
9571 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9572 {
9573 bfd_vma used_length = r->current - r->origin;
9574
9575 printf ("%16s: ",r->name_list.name);
9576 lang_print_memory_size (used_length);
9577 lang_print_memory_size ((bfd_vma) r->length);
9578
9579 if (r->length != 0)
9580 {
9581 double percent = used_length * 100.0 / r->length;
9582 printf (" %6.2f%%", percent);
9583 }
9584 printf ("\n");
9585 }
9586 }
This page took 0.219687 seconds and 5 git commands to generate.