Merge branch 'perf-probes-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / lib / lmb.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/bitops.h>
16 #include <linux/lmb.h>
17
18 #define LMB_ALLOC_ANYWHERE 0
19
20 struct lmb lmb;
21
22 static int lmb_debug;
23
24 static int __init early_lmb(char *p)
25 {
26 if (p && strstr(p, "debug"))
27 lmb_debug = 1;
28 return 0;
29 }
30 early_param("lmb", early_lmb);
31
32 static void lmb_dump(struct lmb_region *region, char *name)
33 {
34 unsigned long long base, size;
35 int i;
36
37 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
38
39 for (i = 0; i < region->cnt; i++) {
40 base = region->region[i].base;
41 size = region->region[i].size;
42
43 pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
44 name, i, base, base + size - 1, size);
45 }
46 }
47
48 void lmb_dump_all(void)
49 {
50 if (!lmb_debug)
51 return;
52
53 pr_info("LMB configuration:\n");
54 pr_info(" rmo_size = 0x%llx\n", (unsigned long long)lmb.rmo_size);
55 pr_info(" memory.size = 0x%llx\n", (unsigned long long)lmb.memory.size);
56
57 lmb_dump(&lmb.memory, "memory");
58 lmb_dump(&lmb.reserved, "reserved");
59 }
60
61 static unsigned long lmb_addrs_overlap(u64 base1, u64 size1, u64 base2,
62 u64 size2)
63 {
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65 }
66
67 static long lmb_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
68 {
69 if (base2 == base1 + size1)
70 return 1;
71 else if (base1 == base2 + size2)
72 return -1;
73
74 return 0;
75 }
76
77 static long lmb_regions_adjacent(struct lmb_region *rgn,
78 unsigned long r1, unsigned long r2)
79 {
80 u64 base1 = rgn->region[r1].base;
81 u64 size1 = rgn->region[r1].size;
82 u64 base2 = rgn->region[r2].base;
83 u64 size2 = rgn->region[r2].size;
84
85 return lmb_addrs_adjacent(base1, size1, base2, size2);
86 }
87
88 static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
89 {
90 unsigned long i;
91
92 for (i = r; i < rgn->cnt - 1; i++) {
93 rgn->region[i].base = rgn->region[i + 1].base;
94 rgn->region[i].size = rgn->region[i + 1].size;
95 }
96 rgn->cnt--;
97 }
98
99 /* Assumption: base addr of region 1 < base addr of region 2 */
100 static void lmb_coalesce_regions(struct lmb_region *rgn,
101 unsigned long r1, unsigned long r2)
102 {
103 rgn->region[r1].size += rgn->region[r2].size;
104 lmb_remove_region(rgn, r2);
105 }
106
107 void __init lmb_init(void)
108 {
109 /* Create a dummy zero size LMB which will get coalesced away later.
110 * This simplifies the lmb_add() code below...
111 */
112 lmb.memory.region[0].base = 0;
113 lmb.memory.region[0].size = 0;
114 lmb.memory.cnt = 1;
115
116 /* Ditto. */
117 lmb.reserved.region[0].base = 0;
118 lmb.reserved.region[0].size = 0;
119 lmb.reserved.cnt = 1;
120 }
121
122 void __init lmb_analyze(void)
123 {
124 int i;
125
126 lmb.memory.size = 0;
127
128 for (i = 0; i < lmb.memory.cnt; i++)
129 lmb.memory.size += lmb.memory.region[i].size;
130 }
131
132 static long lmb_add_region(struct lmb_region *rgn, u64 base, u64 size)
133 {
134 unsigned long coalesced = 0;
135 long adjacent, i;
136
137 if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
138 rgn->region[0].base = base;
139 rgn->region[0].size = size;
140 return 0;
141 }
142
143 /* First try and coalesce this LMB with another. */
144 for (i = 0; i < rgn->cnt; i++) {
145 u64 rgnbase = rgn->region[i].base;
146 u64 rgnsize = rgn->region[i].size;
147
148 if ((rgnbase == base) && (rgnsize == size))
149 /* Already have this region, so we're done */
150 return 0;
151
152 adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
153 if (adjacent > 0) {
154 rgn->region[i].base -= size;
155 rgn->region[i].size += size;
156 coalesced++;
157 break;
158 } else if (adjacent < 0) {
159 rgn->region[i].size += size;
160 coalesced++;
161 break;
162 }
163 }
164
165 if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i+1)) {
166 lmb_coalesce_regions(rgn, i, i+1);
167 coalesced++;
168 }
169
170 if (coalesced)
171 return coalesced;
172 if (rgn->cnt >= MAX_LMB_REGIONS)
173 return -1;
174
175 /* Couldn't coalesce the LMB, so add it to the sorted table. */
176 for (i = rgn->cnt - 1; i >= 0; i--) {
177 if (base < rgn->region[i].base) {
178 rgn->region[i+1].base = rgn->region[i].base;
179 rgn->region[i+1].size = rgn->region[i].size;
180 } else {
181 rgn->region[i+1].base = base;
182 rgn->region[i+1].size = size;
183 break;
184 }
185 }
186
187 if (base < rgn->region[0].base) {
188 rgn->region[0].base = base;
189 rgn->region[0].size = size;
190 }
191 rgn->cnt++;
192
193 return 0;
194 }
195
196 long lmb_add(u64 base, u64 size)
197 {
198 struct lmb_region *_rgn = &lmb.memory;
199
200 /* On pSeries LPAR systems, the first LMB is our RMO region. */
201 if (base == 0)
202 lmb.rmo_size = size;
203
204 return lmb_add_region(_rgn, base, size);
205
206 }
207
208 static long __lmb_remove(struct lmb_region *rgn, u64 base, u64 size)
209 {
210 u64 rgnbegin, rgnend;
211 u64 end = base + size;
212 int i;
213
214 rgnbegin = rgnend = 0; /* supress gcc warnings */
215
216 /* Find the region where (base, size) belongs to */
217 for (i=0; i < rgn->cnt; i++) {
218 rgnbegin = rgn->region[i].base;
219 rgnend = rgnbegin + rgn->region[i].size;
220
221 if ((rgnbegin <= base) && (end <= rgnend))
222 break;
223 }
224
225 /* Didn't find the region */
226 if (i == rgn->cnt)
227 return -1;
228
229 /* Check to see if we are removing entire region */
230 if ((rgnbegin == base) && (rgnend == end)) {
231 lmb_remove_region(rgn, i);
232 return 0;
233 }
234
235 /* Check to see if region is matching at the front */
236 if (rgnbegin == base) {
237 rgn->region[i].base = end;
238 rgn->region[i].size -= size;
239 return 0;
240 }
241
242 /* Check to see if the region is matching at the end */
243 if (rgnend == end) {
244 rgn->region[i].size -= size;
245 return 0;
246 }
247
248 /*
249 * We need to split the entry - adjust the current one to the
250 * beginging of the hole and add the region after hole.
251 */
252 rgn->region[i].size = base - rgn->region[i].base;
253 return lmb_add_region(rgn, end, rgnend - end);
254 }
255
256 long lmb_remove(u64 base, u64 size)
257 {
258 return __lmb_remove(&lmb.memory, base, size);
259 }
260
261 long __init lmb_free(u64 base, u64 size)
262 {
263 return __lmb_remove(&lmb.reserved, base, size);
264 }
265
266 long __init lmb_reserve(u64 base, u64 size)
267 {
268 struct lmb_region *_rgn = &lmb.reserved;
269
270 BUG_ON(0 == size);
271
272 return lmb_add_region(_rgn, base, size);
273 }
274
275 long lmb_overlaps_region(struct lmb_region *rgn, u64 base, u64 size)
276 {
277 unsigned long i;
278
279 for (i = 0; i < rgn->cnt; i++) {
280 u64 rgnbase = rgn->region[i].base;
281 u64 rgnsize = rgn->region[i].size;
282 if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
283 break;
284 }
285
286 return (i < rgn->cnt) ? i : -1;
287 }
288
289 static u64 lmb_align_down(u64 addr, u64 size)
290 {
291 return addr & ~(size - 1);
292 }
293
294 static u64 lmb_align_up(u64 addr, u64 size)
295 {
296 return (addr + (size - 1)) & ~(size - 1);
297 }
298
299 static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end,
300 u64 size, u64 align)
301 {
302 u64 base, res_base;
303 long j;
304
305 base = lmb_align_down((end - size), align);
306 while (start <= base) {
307 j = lmb_overlaps_region(&lmb.reserved, base, size);
308 if (j < 0) {
309 /* this area isn't reserved, take it */
310 if (lmb_add_region(&lmb.reserved, base, size) < 0)
311 base = ~(u64)0;
312 return base;
313 }
314 res_base = lmb.reserved.region[j].base;
315 if (res_base < size)
316 break;
317 base = lmb_align_down(res_base - size, align);
318 }
319
320 return ~(u64)0;
321 }
322
323 static u64 __init lmb_alloc_nid_region(struct lmb_property *mp,
324 u64 (*nid_range)(u64, u64, int *),
325 u64 size, u64 align, int nid)
326 {
327 u64 start, end;
328
329 start = mp->base;
330 end = start + mp->size;
331
332 start = lmb_align_up(start, align);
333 while (start < end) {
334 u64 this_end;
335 int this_nid;
336
337 this_end = nid_range(start, end, &this_nid);
338 if (this_nid == nid) {
339 u64 ret = lmb_alloc_nid_unreserved(start, this_end,
340 size, align);
341 if (ret != ~(u64)0)
342 return ret;
343 }
344 start = this_end;
345 }
346
347 return ~(u64)0;
348 }
349
350 u64 __init lmb_alloc_nid(u64 size, u64 align, int nid,
351 u64 (*nid_range)(u64 start, u64 end, int *nid))
352 {
353 struct lmb_region *mem = &lmb.memory;
354 int i;
355
356 BUG_ON(0 == size);
357
358 size = lmb_align_up(size, align);
359
360 for (i = 0; i < mem->cnt; i++) {
361 u64 ret = lmb_alloc_nid_region(&mem->region[i],
362 nid_range,
363 size, align, nid);
364 if (ret != ~(u64)0)
365 return ret;
366 }
367
368 return lmb_alloc(size, align);
369 }
370
371 u64 __init lmb_alloc(u64 size, u64 align)
372 {
373 return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
374 }
375
376 u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr)
377 {
378 u64 alloc;
379
380 alloc = __lmb_alloc_base(size, align, max_addr);
381
382 if (alloc == 0)
383 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
384 (unsigned long long) size, (unsigned long long) max_addr);
385
386 return alloc;
387 }
388
389 u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr)
390 {
391 long i, j;
392 u64 base = 0;
393 u64 res_base;
394
395 BUG_ON(0 == size);
396
397 size = lmb_align_up(size, align);
398
399 /* On some platforms, make sure we allocate lowmem */
400 /* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */
401 if (max_addr == LMB_ALLOC_ANYWHERE)
402 max_addr = LMB_REAL_LIMIT;
403
404 for (i = lmb.memory.cnt - 1; i >= 0; i--) {
405 u64 lmbbase = lmb.memory.region[i].base;
406 u64 lmbsize = lmb.memory.region[i].size;
407
408 if (lmbsize < size)
409 continue;
410 if (max_addr == LMB_ALLOC_ANYWHERE)
411 base = lmb_align_down(lmbbase + lmbsize - size, align);
412 else if (lmbbase < max_addr) {
413 base = min(lmbbase + lmbsize, max_addr);
414 base = lmb_align_down(base - size, align);
415 } else
416 continue;
417
418 while (base && lmbbase <= base) {
419 j = lmb_overlaps_region(&lmb.reserved, base, size);
420 if (j < 0) {
421 /* this area isn't reserved, take it */
422 if (lmb_add_region(&lmb.reserved, base, size) < 0)
423 return 0;
424 return base;
425 }
426 res_base = lmb.reserved.region[j].base;
427 if (res_base < size)
428 break;
429 base = lmb_align_down(res_base - size, align);
430 }
431 }
432 return 0;
433 }
434
435 /* You must call lmb_analyze() before this. */
436 u64 __init lmb_phys_mem_size(void)
437 {
438 return lmb.memory.size;
439 }
440
441 u64 lmb_end_of_DRAM(void)
442 {
443 int idx = lmb.memory.cnt - 1;
444
445 return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
446 }
447
448 /* You must call lmb_analyze() after this. */
449 void __init lmb_enforce_memory_limit(u64 memory_limit)
450 {
451 unsigned long i;
452 u64 limit;
453 struct lmb_property *p;
454
455 if (!memory_limit)
456 return;
457
458 /* Truncate the lmb regions to satisfy the memory limit. */
459 limit = memory_limit;
460 for (i = 0; i < lmb.memory.cnt; i++) {
461 if (limit > lmb.memory.region[i].size) {
462 limit -= lmb.memory.region[i].size;
463 continue;
464 }
465
466 lmb.memory.region[i].size = limit;
467 lmb.memory.cnt = i + 1;
468 break;
469 }
470
471 if (lmb.memory.region[0].size < lmb.rmo_size)
472 lmb.rmo_size = lmb.memory.region[0].size;
473
474 memory_limit = lmb_end_of_DRAM();
475
476 /* And truncate any reserves above the limit also. */
477 for (i = 0; i < lmb.reserved.cnt; i++) {
478 p = &lmb.reserved.region[i];
479
480 if (p->base > memory_limit)
481 p->size = 0;
482 else if ((p->base + p->size) > memory_limit)
483 p->size = memory_limit - p->base;
484
485 if (p->size == 0) {
486 lmb_remove_region(&lmb.reserved, i);
487 i--;
488 }
489 }
490 }
491
492 int __init lmb_is_reserved(u64 addr)
493 {
494 int i;
495
496 for (i = 0; i < lmb.reserved.cnt; i++) {
497 u64 upper = lmb.reserved.region[i].base +
498 lmb.reserved.region[i].size - 1;
499 if ((addr >= lmb.reserved.region[i].base) && (addr <= upper))
500 return 1;
501 }
502 return 0;
503 }
504
505 int lmb_is_region_reserved(u64 base, u64 size)
506 {
507 return lmb_overlaps_region(&lmb.reserved, base, size);
508 }
509
510 /*
511 * Given a <base, len>, find which memory regions belong to this range.
512 * Adjust the request and return a contiguous chunk.
513 */
514 int lmb_find(struct lmb_property *res)
515 {
516 int i;
517 u64 rstart, rend;
518
519 rstart = res->base;
520 rend = rstart + res->size - 1;
521
522 for (i = 0; i < lmb.memory.cnt; i++) {
523 u64 start = lmb.memory.region[i].base;
524 u64 end = start + lmb.memory.region[i].size - 1;
525
526 if (start > rend)
527 return -1;
528
529 if ((end >= rstart) && (start < rend)) {
530 /* adjust the request */
531 if (rstart < start)
532 rstart = start;
533 if (rend > end)
534 rend = end;
535 res->base = rstart;
536 res->size = rend - rstart + 1;
537 return 0;
538 }
539 }
540 return -1;
541 }
This page took 0.042198 seconds and 6 git commands to generate.