rhashtable: Free bucket tables asynchronously after rehash
[deliverable/linux.git] / lib / rhashtable.c
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
6 *
7 * Based on the following paper:
8 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
9 *
10 * Code partially derived from nft_hash
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
28
29 #define HASH_DEFAULT_SIZE 64UL
30 #define HASH_MIN_SIZE 4UL
31 #define BUCKET_LOCKS_PER_CPU 128UL
32
33 /* Base bits plus 1 bit for nulls marker */
34 #define HASH_RESERVED_SPACE (RHT_BASE_BITS + 1)
35
36 /* The bucket lock is selected based on the hash and protects mutations
37 * on a group of hash buckets.
38 *
39 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
40 * a single lock always covers both buckets which may both contains
41 * entries which link to the same bucket of the old table during resizing.
42 * This allows to simplify the locking as locking the bucket in both
43 * tables during resize always guarantee protection.
44 *
45 * IMPORTANT: When holding the bucket lock of both the old and new table
46 * during expansions and shrinking, the old bucket lock must always be
47 * acquired first.
48 */
49 static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
50 {
51 return &tbl->locks[hash & tbl->locks_mask];
52 }
53
54 static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
55 {
56 return (void *) he - ht->p.head_offset;
57 }
58
59 static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
60 {
61 return (hash >> HASH_RESERVED_SPACE) & (tbl->size - 1);
62 }
63
64 static u32 key_hashfn(struct rhashtable *ht, const struct bucket_table *tbl,
65 const void *key)
66 {
67 return rht_bucket_index(tbl, ht->p.hashfn(key, ht->p.key_len,
68 tbl->hash_rnd));
69 }
70
71 static u32 head_hashfn(struct rhashtable *ht,
72 const struct bucket_table *tbl,
73 const struct rhash_head *he)
74 {
75 const char *ptr = rht_obj(ht, he);
76
77 return likely(ht->p.key_len) ?
78 key_hashfn(ht, tbl, ptr + ht->p.key_offset) :
79 rht_bucket_index(tbl, ht->p.obj_hashfn(ptr, tbl->hash_rnd));
80 }
81
82 #ifdef CONFIG_PROVE_LOCKING
83 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
84
85 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
86 {
87 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
88 }
89 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
90
91 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
92 {
93 spinlock_t *lock = bucket_lock(tbl, hash);
94
95 return (debug_locks) ? lockdep_is_held(lock) : 1;
96 }
97 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
98 #else
99 #define ASSERT_RHT_MUTEX(HT)
100 #endif
101
102
103 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
104 {
105 unsigned int i, size;
106 #if defined(CONFIG_PROVE_LOCKING)
107 unsigned int nr_pcpus = 2;
108 #else
109 unsigned int nr_pcpus = num_possible_cpus();
110 #endif
111
112 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
113 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
114
115 /* Never allocate more than 0.5 locks per bucket */
116 size = min_t(unsigned int, size, tbl->size >> 1);
117
118 if (sizeof(spinlock_t) != 0) {
119 #ifdef CONFIG_NUMA
120 if (size * sizeof(spinlock_t) > PAGE_SIZE)
121 tbl->locks = vmalloc(size * sizeof(spinlock_t));
122 else
123 #endif
124 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
125 GFP_KERNEL);
126 if (!tbl->locks)
127 return -ENOMEM;
128 for (i = 0; i < size; i++)
129 spin_lock_init(&tbl->locks[i]);
130 }
131 tbl->locks_mask = size - 1;
132
133 return 0;
134 }
135
136 static void bucket_table_free(const struct bucket_table *tbl)
137 {
138 if (tbl)
139 kvfree(tbl->locks);
140
141 kvfree(tbl);
142 }
143
144 static void bucket_table_free_rcu(struct rcu_head *head)
145 {
146 bucket_table_free(container_of(head, struct bucket_table, rcu));
147 }
148
149 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
150 size_t nbuckets)
151 {
152 struct bucket_table *tbl = NULL;
153 size_t size;
154 int i;
155
156 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
157 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
158 tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
159 if (tbl == NULL)
160 tbl = vzalloc(size);
161 if (tbl == NULL)
162 return NULL;
163
164 tbl->size = nbuckets;
165 tbl->shift = ilog2(nbuckets);
166
167 if (alloc_bucket_locks(ht, tbl) < 0) {
168 bucket_table_free(tbl);
169 return NULL;
170 }
171
172 INIT_LIST_HEAD(&tbl->walkers);
173
174 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
175
176 for (i = 0; i < nbuckets; i++)
177 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
178
179 return tbl;
180 }
181
182 /**
183 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
184 * @ht: hash table
185 * @tbl: current table
186 */
187 static bool rht_grow_above_75(const struct rhashtable *ht,
188 const struct bucket_table *tbl)
189 {
190 /* Expand table when exceeding 75% load */
191 return atomic_read(&ht->nelems) > (tbl->size / 4 * 3) &&
192 (!ht->p.max_shift || tbl->shift < ht->p.max_shift);
193 }
194
195 /**
196 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
197 * @ht: hash table
198 * @tbl: current table
199 */
200 static bool rht_shrink_below_30(const struct rhashtable *ht,
201 const struct bucket_table *tbl)
202 {
203 /* Shrink table beneath 30% load */
204 return atomic_read(&ht->nelems) < (tbl->size * 3 / 10) &&
205 tbl->shift > ht->p.min_shift;
206 }
207
208 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash)
209 {
210 struct bucket_table *new_tbl = rht_dereference(ht->future_tbl, ht);
211 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
212 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
213 int err = -ENOENT;
214 struct rhash_head *head, *next, *entry;
215 spinlock_t *new_bucket_lock;
216 unsigned new_hash;
217
218 rht_for_each(entry, old_tbl, old_hash) {
219 err = 0;
220 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
221
222 if (rht_is_a_nulls(next))
223 break;
224
225 pprev = &entry->next;
226 }
227
228 if (err)
229 goto out;
230
231 new_hash = head_hashfn(ht, new_tbl, entry);
232
233 new_bucket_lock = bucket_lock(new_tbl, new_hash);
234
235 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
236 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
237 new_tbl, new_hash);
238
239 if (rht_is_a_nulls(head))
240 INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
241 else
242 RCU_INIT_POINTER(entry->next, head);
243
244 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
245 spin_unlock(new_bucket_lock);
246
247 rcu_assign_pointer(*pprev, next);
248
249 out:
250 return err;
251 }
252
253 static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash)
254 {
255 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
256 spinlock_t *old_bucket_lock;
257
258 old_bucket_lock = bucket_lock(old_tbl, old_hash);
259
260 spin_lock_bh(old_bucket_lock);
261 while (!rhashtable_rehash_one(ht, old_hash))
262 ;
263 spin_unlock_bh(old_bucket_lock);
264 }
265
266 static void rhashtable_rehash(struct rhashtable *ht,
267 struct bucket_table *new_tbl)
268 {
269 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
270 struct rhashtable_walker *walker;
271 unsigned old_hash;
272
273 /* Make insertions go into the new, empty table right away. Deletions
274 * and lookups will be attempted in both tables until we synchronize.
275 * The synchronize_rcu() guarantees for the new table to be picked up
276 * so no new additions go into the old table while we relink.
277 */
278 rcu_assign_pointer(ht->future_tbl, new_tbl);
279
280 /* Ensure the new table is visible to readers. */
281 smp_wmb();
282
283 for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
284 rhashtable_rehash_chain(ht, old_hash);
285
286 /* Publish the new table pointer. */
287 rcu_assign_pointer(ht->tbl, new_tbl);
288
289 list_for_each_entry(walker, &old_tbl->walkers, list)
290 walker->tbl = NULL;
291
292 /* Wait for readers. All new readers will see the new
293 * table, and thus no references to the old table will
294 * remain.
295 */
296 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
297 }
298
299 /**
300 * rhashtable_expand - Expand hash table while allowing concurrent lookups
301 * @ht: the hash table to expand
302 *
303 * A secondary bucket array is allocated and the hash entries are migrated.
304 *
305 * This function may only be called in a context where it is safe to call
306 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
307 *
308 * The caller must ensure that no concurrent resizing occurs by holding
309 * ht->mutex.
310 *
311 * It is valid to have concurrent insertions and deletions protected by per
312 * bucket locks or concurrent RCU protected lookups and traversals.
313 */
314 int rhashtable_expand(struct rhashtable *ht)
315 {
316 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
317
318 ASSERT_RHT_MUTEX(ht);
319
320 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
321 if (new_tbl == NULL)
322 return -ENOMEM;
323
324 rhashtable_rehash(ht, new_tbl);
325 return 0;
326 }
327 EXPORT_SYMBOL_GPL(rhashtable_expand);
328
329 /**
330 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
331 * @ht: the hash table to shrink
332 *
333 * This function may only be called in a context where it is safe to call
334 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
335 *
336 * The caller must ensure that no concurrent resizing occurs by holding
337 * ht->mutex.
338 *
339 * The caller must ensure that no concurrent table mutations take place.
340 * It is however valid to have concurrent lookups if they are RCU protected.
341 *
342 * It is valid to have concurrent insertions and deletions protected by per
343 * bucket locks or concurrent RCU protected lookups and traversals.
344 */
345 int rhashtable_shrink(struct rhashtable *ht)
346 {
347 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
348
349 ASSERT_RHT_MUTEX(ht);
350
351 new_tbl = bucket_table_alloc(ht, old_tbl->size / 2);
352 if (new_tbl == NULL)
353 return -ENOMEM;
354
355 rhashtable_rehash(ht, new_tbl);
356 return 0;
357 }
358 EXPORT_SYMBOL_GPL(rhashtable_shrink);
359
360 static void rht_deferred_worker(struct work_struct *work)
361 {
362 struct rhashtable *ht;
363 struct bucket_table *tbl;
364
365 ht = container_of(work, struct rhashtable, run_work);
366 mutex_lock(&ht->mutex);
367 if (ht->being_destroyed)
368 goto unlock;
369
370 tbl = rht_dereference(ht->tbl, ht);
371
372 if (rht_grow_above_75(ht, tbl))
373 rhashtable_expand(ht);
374 else if (rht_shrink_below_30(ht, tbl))
375 rhashtable_shrink(ht);
376 unlock:
377 mutex_unlock(&ht->mutex);
378 }
379
380 static bool __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
381 bool (*compare)(void *, void *), void *arg)
382 {
383 struct bucket_table *tbl, *old_tbl;
384 struct rhash_head *head;
385 bool no_resize_running;
386 unsigned hash;
387 bool success = true;
388
389 rcu_read_lock();
390
391 old_tbl = rht_dereference_rcu(ht->tbl, ht);
392 hash = head_hashfn(ht, old_tbl, obj);
393
394 spin_lock_bh(bucket_lock(old_tbl, hash));
395
396 /* Because we have already taken the bucket lock in old_tbl,
397 * if we find that future_tbl is not yet visible then that
398 * guarantees all other insertions of the same entry will
399 * also grab the bucket lock in old_tbl because until the
400 * rehash completes ht->tbl won't be changed.
401 */
402 tbl = rht_dereference_rcu(ht->future_tbl, ht);
403 if (tbl != old_tbl) {
404 hash = head_hashfn(ht, tbl, obj);
405 spin_lock_nested(bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
406 }
407
408 if (compare &&
409 rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
410 compare, arg)) {
411 success = false;
412 goto exit;
413 }
414
415 no_resize_running = tbl == old_tbl;
416
417 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
418
419 if (rht_is_a_nulls(head))
420 INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
421 else
422 RCU_INIT_POINTER(obj->next, head);
423
424 rcu_assign_pointer(tbl->buckets[hash], obj);
425
426 atomic_inc(&ht->nelems);
427 if (no_resize_running && rht_grow_above_75(ht, tbl))
428 schedule_work(&ht->run_work);
429
430 exit:
431 if (tbl != old_tbl) {
432 hash = head_hashfn(ht, tbl, obj);
433 spin_unlock(bucket_lock(tbl, hash));
434 }
435
436 hash = head_hashfn(ht, old_tbl, obj);
437 spin_unlock_bh(bucket_lock(old_tbl, hash));
438
439 rcu_read_unlock();
440
441 return success;
442 }
443
444 /**
445 * rhashtable_insert - insert object into hash table
446 * @ht: hash table
447 * @obj: pointer to hash head inside object
448 *
449 * Will take a per bucket spinlock to protect against mutual mutations
450 * on the same bucket. Multiple insertions may occur in parallel unless
451 * they map to the same bucket lock.
452 *
453 * It is safe to call this function from atomic context.
454 *
455 * Will trigger an automatic deferred table resizing if the size grows
456 * beyond the watermark indicated by grow_decision() which can be passed
457 * to rhashtable_init().
458 */
459 void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
460 {
461 __rhashtable_insert(ht, obj, NULL, NULL);
462 }
463 EXPORT_SYMBOL_GPL(rhashtable_insert);
464
465 static bool __rhashtable_remove(struct rhashtable *ht,
466 struct bucket_table *tbl,
467 struct rhash_head *obj)
468 {
469 struct rhash_head __rcu **pprev;
470 struct rhash_head *he;
471 spinlock_t * lock;
472 unsigned hash;
473 bool ret = false;
474
475 hash = head_hashfn(ht, tbl, obj);
476 lock = bucket_lock(tbl, hash);
477
478 spin_lock_bh(lock);
479
480 pprev = &tbl->buckets[hash];
481 rht_for_each(he, tbl, hash) {
482 if (he != obj) {
483 pprev = &he->next;
484 continue;
485 }
486
487 rcu_assign_pointer(*pprev, obj->next);
488 ret = true;
489 break;
490 }
491
492 spin_unlock_bh(lock);
493
494 return ret;
495 }
496
497 /**
498 * rhashtable_remove - remove object from hash table
499 * @ht: hash table
500 * @obj: pointer to hash head inside object
501 *
502 * Since the hash chain is single linked, the removal operation needs to
503 * walk the bucket chain upon removal. The removal operation is thus
504 * considerable slow if the hash table is not correctly sized.
505 *
506 * Will automatically shrink the table via rhashtable_expand() if the
507 * shrink_decision function specified at rhashtable_init() returns true.
508 *
509 * The caller must ensure that no concurrent table mutations occur. It is
510 * however valid to have concurrent lookups if they are RCU protected.
511 */
512 bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
513 {
514 struct bucket_table *tbl, *old_tbl;
515 bool ret;
516
517 rcu_read_lock();
518
519 old_tbl = rht_dereference_rcu(ht->tbl, ht);
520 ret = __rhashtable_remove(ht, old_tbl, obj);
521
522 /* Because we have already taken (and released) the bucket
523 * lock in old_tbl, if we find that future_tbl is not yet
524 * visible then that guarantees the entry to still be in
525 * old_tbl if it exists.
526 */
527 tbl = rht_dereference_rcu(ht->future_tbl, ht);
528 if (!ret && old_tbl != tbl)
529 ret = __rhashtable_remove(ht, tbl, obj);
530
531 if (ret) {
532 bool no_resize_running = tbl == old_tbl;
533
534 atomic_dec(&ht->nelems);
535 if (no_resize_running && rht_shrink_below_30(ht, tbl))
536 schedule_work(&ht->run_work);
537 }
538
539 rcu_read_unlock();
540
541 return ret;
542 }
543 EXPORT_SYMBOL_GPL(rhashtable_remove);
544
545 struct rhashtable_compare_arg {
546 struct rhashtable *ht;
547 const void *key;
548 };
549
550 static bool rhashtable_compare(void *ptr, void *arg)
551 {
552 struct rhashtable_compare_arg *x = arg;
553 struct rhashtable *ht = x->ht;
554
555 return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
556 }
557
558 /**
559 * rhashtable_lookup - lookup key in hash table
560 * @ht: hash table
561 * @key: pointer to key
562 *
563 * Computes the hash value for the key and traverses the bucket chain looking
564 * for a entry with an identical key. The first matching entry is returned.
565 *
566 * This lookup function may only be used for fixed key hash table (key_len
567 * parameter set). It will BUG() if used inappropriately.
568 *
569 * Lookups may occur in parallel with hashtable mutations and resizing.
570 */
571 void *rhashtable_lookup(struct rhashtable *ht, const void *key)
572 {
573 struct rhashtable_compare_arg arg = {
574 .ht = ht,
575 .key = key,
576 };
577
578 BUG_ON(!ht->p.key_len);
579
580 return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
581 }
582 EXPORT_SYMBOL_GPL(rhashtable_lookup);
583
584 /**
585 * rhashtable_lookup_compare - search hash table with compare function
586 * @ht: hash table
587 * @key: the pointer to the key
588 * @compare: compare function, must return true on match
589 * @arg: argument passed on to compare function
590 *
591 * Traverses the bucket chain behind the provided hash value and calls the
592 * specified compare function for each entry.
593 *
594 * Lookups may occur in parallel with hashtable mutations and resizing.
595 *
596 * Returns the first entry on which the compare function returned true.
597 */
598 void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
599 bool (*compare)(void *, void *), void *arg)
600 {
601 const struct bucket_table *tbl, *old_tbl;
602 struct rhash_head *he;
603 u32 hash;
604
605 rcu_read_lock();
606
607 tbl = rht_dereference_rcu(ht->tbl, ht);
608 restart:
609 hash = key_hashfn(ht, tbl, key);
610 rht_for_each_rcu(he, tbl, hash) {
611 if (!compare(rht_obj(ht, he), arg))
612 continue;
613 rcu_read_unlock();
614 return rht_obj(ht, he);
615 }
616
617 /* Ensure we see any new tables. */
618 smp_rmb();
619
620 old_tbl = tbl;
621 tbl = rht_dereference_rcu(ht->future_tbl, ht);
622 if (unlikely(tbl != old_tbl))
623 goto restart;
624 rcu_read_unlock();
625
626 return NULL;
627 }
628 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
629
630 /**
631 * rhashtable_lookup_insert - lookup and insert object into hash table
632 * @ht: hash table
633 * @obj: pointer to hash head inside object
634 *
635 * Locks down the bucket chain in both the old and new table if a resize
636 * is in progress to ensure that writers can't remove from the old table
637 * and can't insert to the new table during the atomic operation of search
638 * and insertion. Searches for duplicates in both the old and new table if
639 * a resize is in progress.
640 *
641 * This lookup function may only be used for fixed key hash table (key_len
642 * parameter set). It will BUG() if used inappropriately.
643 *
644 * It is safe to call this function from atomic context.
645 *
646 * Will trigger an automatic deferred table resizing if the size grows
647 * beyond the watermark indicated by grow_decision() which can be passed
648 * to rhashtable_init().
649 */
650 bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
651 {
652 struct rhashtable_compare_arg arg = {
653 .ht = ht,
654 .key = rht_obj(ht, obj) + ht->p.key_offset,
655 };
656
657 BUG_ON(!ht->p.key_len);
658
659 return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
660 &arg);
661 }
662 EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);
663
664 /**
665 * rhashtable_lookup_compare_insert - search and insert object to hash table
666 * with compare function
667 * @ht: hash table
668 * @obj: pointer to hash head inside object
669 * @compare: compare function, must return true on match
670 * @arg: argument passed on to compare function
671 *
672 * Locks down the bucket chain in both the old and new table if a resize
673 * is in progress to ensure that writers can't remove from the old table
674 * and can't insert to the new table during the atomic operation of search
675 * and insertion. Searches for duplicates in both the old and new table if
676 * a resize is in progress.
677 *
678 * Lookups may occur in parallel with hashtable mutations and resizing.
679 *
680 * Will trigger an automatic deferred table resizing if the size grows
681 * beyond the watermark indicated by grow_decision() which can be passed
682 * to rhashtable_init().
683 */
684 bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
685 struct rhash_head *obj,
686 bool (*compare)(void *, void *),
687 void *arg)
688 {
689 BUG_ON(!ht->p.key_len);
690
691 return __rhashtable_insert(ht, obj, compare, arg);
692 }
693 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
694
695 /**
696 * rhashtable_walk_init - Initialise an iterator
697 * @ht: Table to walk over
698 * @iter: Hash table Iterator
699 *
700 * This function prepares a hash table walk.
701 *
702 * Note that if you restart a walk after rhashtable_walk_stop you
703 * may see the same object twice. Also, you may miss objects if
704 * there are removals in between rhashtable_walk_stop and the next
705 * call to rhashtable_walk_start.
706 *
707 * For a completely stable walk you should construct your own data
708 * structure outside the hash table.
709 *
710 * This function may sleep so you must not call it from interrupt
711 * context or with spin locks held.
712 *
713 * You must call rhashtable_walk_exit if this function returns
714 * successfully.
715 */
716 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
717 {
718 iter->ht = ht;
719 iter->p = NULL;
720 iter->slot = 0;
721 iter->skip = 0;
722
723 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
724 if (!iter->walker)
725 return -ENOMEM;
726
727 mutex_lock(&ht->mutex);
728 iter->walker->tbl = rht_dereference(ht->tbl, ht);
729 list_add(&iter->walker->list, &iter->walker->tbl->walkers);
730 mutex_unlock(&ht->mutex);
731
732 return 0;
733 }
734 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
735
736 /**
737 * rhashtable_walk_exit - Free an iterator
738 * @iter: Hash table Iterator
739 *
740 * This function frees resources allocated by rhashtable_walk_init.
741 */
742 void rhashtable_walk_exit(struct rhashtable_iter *iter)
743 {
744 mutex_lock(&iter->ht->mutex);
745 if (iter->walker->tbl)
746 list_del(&iter->walker->list);
747 mutex_unlock(&iter->ht->mutex);
748 kfree(iter->walker);
749 }
750 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
751
752 /**
753 * rhashtable_walk_start - Start a hash table walk
754 * @iter: Hash table iterator
755 *
756 * Start a hash table walk. Note that we take the RCU lock in all
757 * cases including when we return an error. So you must always call
758 * rhashtable_walk_stop to clean up.
759 *
760 * Returns zero if successful.
761 *
762 * Returns -EAGAIN if resize event occured. Note that the iterator
763 * will rewind back to the beginning and you may use it immediately
764 * by calling rhashtable_walk_next.
765 */
766 int rhashtable_walk_start(struct rhashtable_iter *iter)
767 {
768 struct rhashtable *ht = iter->ht;
769
770 mutex_lock(&ht->mutex);
771
772 if (iter->walker->tbl)
773 list_del(&iter->walker->list);
774
775 rcu_read_lock();
776
777 mutex_unlock(&ht->mutex);
778
779 if (!iter->walker->tbl) {
780 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
781 return -EAGAIN;
782 }
783
784 return 0;
785 }
786 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
787
788 /**
789 * rhashtable_walk_next - Return the next object and advance the iterator
790 * @iter: Hash table iterator
791 *
792 * Note that you must call rhashtable_walk_stop when you are finished
793 * with the walk.
794 *
795 * Returns the next object or NULL when the end of the table is reached.
796 *
797 * Returns -EAGAIN if resize event occured. Note that the iterator
798 * will rewind back to the beginning and you may continue to use it.
799 */
800 void *rhashtable_walk_next(struct rhashtable_iter *iter)
801 {
802 struct bucket_table *tbl = iter->walker->tbl;
803 struct rhashtable *ht = iter->ht;
804 struct rhash_head *p = iter->p;
805 void *obj = NULL;
806
807 if (p) {
808 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
809 goto next;
810 }
811
812 for (; iter->slot < tbl->size; iter->slot++) {
813 int skip = iter->skip;
814
815 rht_for_each_rcu(p, tbl, iter->slot) {
816 if (!skip)
817 break;
818 skip--;
819 }
820
821 next:
822 if (!rht_is_a_nulls(p)) {
823 iter->skip++;
824 iter->p = p;
825 obj = rht_obj(ht, p);
826 goto out;
827 }
828
829 iter->skip = 0;
830 }
831
832 iter->walker->tbl = rht_dereference_rcu(ht->future_tbl, ht);
833 if (iter->walker->tbl != tbl) {
834 iter->slot = 0;
835 iter->skip = 0;
836 return ERR_PTR(-EAGAIN);
837 }
838
839 iter->walker->tbl = NULL;
840 iter->p = NULL;
841
842 out:
843
844 return obj;
845 }
846 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
847
848 /**
849 * rhashtable_walk_stop - Finish a hash table walk
850 * @iter: Hash table iterator
851 *
852 * Finish a hash table walk.
853 */
854 void rhashtable_walk_stop(struct rhashtable_iter *iter)
855 {
856 struct rhashtable *ht;
857 struct bucket_table *tbl = iter->walker->tbl;
858
859 rcu_read_unlock();
860
861 if (!tbl)
862 return;
863
864 ht = iter->ht;
865
866 mutex_lock(&ht->mutex);
867 if (rht_dereference(ht->tbl, ht) == tbl ||
868 rht_dereference(ht->future_tbl, ht) == tbl)
869 list_add(&iter->walker->list, &tbl->walkers);
870 else
871 iter->walker->tbl = NULL;
872 mutex_unlock(&ht->mutex);
873
874 iter->p = NULL;
875 }
876 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
877
878 static size_t rounded_hashtable_size(struct rhashtable_params *params)
879 {
880 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
881 1UL << params->min_shift);
882 }
883
884 /**
885 * rhashtable_init - initialize a new hash table
886 * @ht: hash table to be initialized
887 * @params: configuration parameters
888 *
889 * Initializes a new hash table based on the provided configuration
890 * parameters. A table can be configured either with a variable or
891 * fixed length key:
892 *
893 * Configuration Example 1: Fixed length keys
894 * struct test_obj {
895 * int key;
896 * void * my_member;
897 * struct rhash_head node;
898 * };
899 *
900 * struct rhashtable_params params = {
901 * .head_offset = offsetof(struct test_obj, node),
902 * .key_offset = offsetof(struct test_obj, key),
903 * .key_len = sizeof(int),
904 * .hashfn = jhash,
905 * .nulls_base = (1U << RHT_BASE_SHIFT),
906 * };
907 *
908 * Configuration Example 2: Variable length keys
909 * struct test_obj {
910 * [...]
911 * struct rhash_head node;
912 * };
913 *
914 * u32 my_hash_fn(const void *data, u32 seed)
915 * {
916 * struct test_obj *obj = data;
917 *
918 * return [... hash ...];
919 * }
920 *
921 * struct rhashtable_params params = {
922 * .head_offset = offsetof(struct test_obj, node),
923 * .hashfn = jhash,
924 * .obj_hashfn = my_hash_fn,
925 * };
926 */
927 int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
928 {
929 struct bucket_table *tbl;
930 size_t size;
931
932 size = HASH_DEFAULT_SIZE;
933
934 if ((params->key_len && !params->hashfn) ||
935 (!params->key_len && !params->obj_hashfn))
936 return -EINVAL;
937
938 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
939 return -EINVAL;
940
941 params->min_shift = max_t(size_t, params->min_shift,
942 ilog2(HASH_MIN_SIZE));
943
944 if (params->nelem_hint)
945 size = rounded_hashtable_size(params);
946
947 memset(ht, 0, sizeof(*ht));
948 mutex_init(&ht->mutex);
949 memcpy(&ht->p, params, sizeof(*params));
950
951 if (params->locks_mul)
952 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
953 else
954 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
955
956 tbl = bucket_table_alloc(ht, size);
957 if (tbl == NULL)
958 return -ENOMEM;
959
960 atomic_set(&ht->nelems, 0);
961
962 RCU_INIT_POINTER(ht->tbl, tbl);
963 RCU_INIT_POINTER(ht->future_tbl, tbl);
964
965 INIT_WORK(&ht->run_work, rht_deferred_worker);
966
967 return 0;
968 }
969 EXPORT_SYMBOL_GPL(rhashtable_init);
970
971 /**
972 * rhashtable_destroy - destroy hash table
973 * @ht: the hash table to destroy
974 *
975 * Frees the bucket array. This function is not rcu safe, therefore the caller
976 * has to make sure that no resizing may happen by unpublishing the hashtable
977 * and waiting for the quiescent cycle before releasing the bucket array.
978 */
979 void rhashtable_destroy(struct rhashtable *ht)
980 {
981 ht->being_destroyed = true;
982
983 cancel_work_sync(&ht->run_work);
984
985 mutex_lock(&ht->mutex);
986 bucket_table_free(rht_dereference(ht->tbl, ht));
987 mutex_unlock(&ht->mutex);
988 }
989 EXPORT_SYMBOL_GPL(rhashtable_destroy);
This page took 0.049743 seconds and 5 git commands to generate.