f2fs: enable fast symlink by utilizing inline data
[deliverable/linux.git] / lib / rhashtable.c
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
6 *
7 * Based on the following paper:
8 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
9 *
10 * Code partially derived from nft_hash
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/jhash.h>
24 #include <linux/random.h>
25 #include <linux/rhashtable.h>
26 #include <linux/err.h>
27
28 #define HASH_DEFAULT_SIZE 64UL
29 #define HASH_MIN_SIZE 4UL
30 #define BUCKET_LOCKS_PER_CPU 128UL
31
32 /* Base bits plus 1 bit for nulls marker */
33 #define HASH_RESERVED_SPACE (RHT_BASE_BITS + 1)
34
35 enum {
36 RHT_LOCK_NORMAL,
37 RHT_LOCK_NESTED,
38 };
39
40 /* The bucket lock is selected based on the hash and protects mutations
41 * on a group of hash buckets.
42 *
43 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
44 * a single lock always covers both buckets which may both contains
45 * entries which link to the same bucket of the old table during resizing.
46 * This allows to simplify the locking as locking the bucket in both
47 * tables during resize always guarantee protection.
48 *
49 * IMPORTANT: When holding the bucket lock of both the old and new table
50 * during expansions and shrinking, the old bucket lock must always be
51 * acquired first.
52 */
53 static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
54 {
55 return &tbl->locks[hash & tbl->locks_mask];
56 }
57
58 static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
59 {
60 return (void *) he - ht->p.head_offset;
61 }
62
63 static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
64 {
65 return hash & (tbl->size - 1);
66 }
67
68 static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr)
69 {
70 u32 hash;
71
72 if (unlikely(!ht->p.key_len))
73 hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd);
74 else
75 hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
76 ht->p.hash_rnd);
77
78 return hash >> HASH_RESERVED_SPACE;
79 }
80
81 static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len)
82 {
83 return ht->p.hashfn(key, len, ht->p.hash_rnd) >> HASH_RESERVED_SPACE;
84 }
85
86 static u32 head_hashfn(const struct rhashtable *ht,
87 const struct bucket_table *tbl,
88 const struct rhash_head *he)
89 {
90 return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he)));
91 }
92
93 #ifdef CONFIG_PROVE_LOCKING
94 static void debug_dump_buckets(const struct rhashtable *ht,
95 const struct bucket_table *tbl)
96 {
97 struct rhash_head *he;
98 unsigned int i, hash;
99
100 for (i = 0; i < tbl->size; i++) {
101 pr_warn(" [Bucket %d] ", i);
102 rht_for_each_rcu(he, tbl, i) {
103 hash = head_hashfn(ht, tbl, he);
104 pr_cont("[hash = %#x, lock = %p] ",
105 hash, bucket_lock(tbl, hash));
106 }
107 pr_cont("\n");
108 }
109
110 }
111
112 static void debug_dump_table(struct rhashtable *ht,
113 const struct bucket_table *tbl,
114 unsigned int hash)
115 {
116 struct bucket_table *old_tbl, *future_tbl;
117
118 pr_emerg("BUG: lock for hash %#x in table %p not held\n",
119 hash, tbl);
120
121 rcu_read_lock();
122 future_tbl = rht_dereference_rcu(ht->future_tbl, ht);
123 old_tbl = rht_dereference_rcu(ht->tbl, ht);
124 if (future_tbl != old_tbl) {
125 pr_warn("Future table %p (size: %zd)\n",
126 future_tbl, future_tbl->size);
127 debug_dump_buckets(ht, future_tbl);
128 }
129
130 pr_warn("Table %p (size: %zd)\n", old_tbl, old_tbl->size);
131 debug_dump_buckets(ht, old_tbl);
132
133 rcu_read_unlock();
134 }
135
136 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
137 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH) \
138 do { \
139 if (unlikely(!lockdep_rht_bucket_is_held(TBL, HASH))) { \
140 debug_dump_table(HT, TBL, HASH); \
141 BUG(); \
142 } \
143 } while (0)
144
145 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
146 {
147 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
148 }
149 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
150
151 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
152 {
153 spinlock_t *lock = bucket_lock(tbl, hash);
154
155 return (debug_locks) ? lockdep_is_held(lock) : 1;
156 }
157 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
158 #else
159 #define ASSERT_RHT_MUTEX(HT)
160 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)
161 #endif
162
163
164 static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n)
165 {
166 struct rhash_head __rcu **pprev;
167
168 for (pprev = &tbl->buckets[n];
169 !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n));
170 pprev = &rht_dereference_bucket(*pprev, tbl, n)->next)
171 ;
172
173 return pprev;
174 }
175
176 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
177 {
178 unsigned int i, size;
179 #if defined(CONFIG_PROVE_LOCKING)
180 unsigned int nr_pcpus = 2;
181 #else
182 unsigned int nr_pcpus = num_possible_cpus();
183 #endif
184
185 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
186 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
187
188 /* Never allocate more than 0.5 locks per bucket */
189 size = min_t(unsigned int, size, tbl->size >> 1);
190
191 if (sizeof(spinlock_t) != 0) {
192 #ifdef CONFIG_NUMA
193 if (size * sizeof(spinlock_t) > PAGE_SIZE)
194 tbl->locks = vmalloc(size * sizeof(spinlock_t));
195 else
196 #endif
197 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
198 GFP_KERNEL);
199 if (!tbl->locks)
200 return -ENOMEM;
201 for (i = 0; i < size; i++)
202 spin_lock_init(&tbl->locks[i]);
203 }
204 tbl->locks_mask = size - 1;
205
206 return 0;
207 }
208
209 static void bucket_table_free(const struct bucket_table *tbl)
210 {
211 if (tbl)
212 kvfree(tbl->locks);
213
214 kvfree(tbl);
215 }
216
217 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
218 size_t nbuckets)
219 {
220 struct bucket_table *tbl;
221 size_t size;
222 int i;
223
224 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
225 tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
226 if (tbl == NULL)
227 tbl = vzalloc(size);
228
229 if (tbl == NULL)
230 return NULL;
231
232 tbl->size = nbuckets;
233
234 if (alloc_bucket_locks(ht, tbl) < 0) {
235 bucket_table_free(tbl);
236 return NULL;
237 }
238
239 for (i = 0; i < nbuckets; i++)
240 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
241
242 return tbl;
243 }
244
245 /**
246 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
247 * @ht: hash table
248 * @new_size: new table size
249 */
250 bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
251 {
252 /* Expand table when exceeding 75% load */
253 return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
254 (ht->p.max_shift && atomic_read(&ht->shift) < ht->p.max_shift);
255 }
256 EXPORT_SYMBOL_GPL(rht_grow_above_75);
257
258 /**
259 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
260 * @ht: hash table
261 * @new_size: new table size
262 */
263 bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
264 {
265 /* Shrink table beneath 30% load */
266 return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
267 (atomic_read(&ht->shift) > ht->p.min_shift);
268 }
269 EXPORT_SYMBOL_GPL(rht_shrink_below_30);
270
271 static void lock_buckets(struct bucket_table *new_tbl,
272 struct bucket_table *old_tbl, unsigned int hash)
273 __acquires(old_bucket_lock)
274 {
275 spin_lock_bh(bucket_lock(old_tbl, hash));
276 if (new_tbl != old_tbl)
277 spin_lock_bh_nested(bucket_lock(new_tbl, hash),
278 RHT_LOCK_NESTED);
279 }
280
281 static void unlock_buckets(struct bucket_table *new_tbl,
282 struct bucket_table *old_tbl, unsigned int hash)
283 __releases(old_bucket_lock)
284 {
285 if (new_tbl != old_tbl)
286 spin_unlock_bh(bucket_lock(new_tbl, hash));
287 spin_unlock_bh(bucket_lock(old_tbl, hash));
288 }
289
290 /**
291 * Unlink entries on bucket which hash to different bucket.
292 *
293 * Returns true if no more work needs to be performed on the bucket.
294 */
295 static bool hashtable_chain_unzip(struct rhashtable *ht,
296 const struct bucket_table *new_tbl,
297 struct bucket_table *old_tbl,
298 size_t old_hash)
299 {
300 struct rhash_head *he, *p, *next;
301 unsigned int new_hash, new_hash2;
302
303 ASSERT_BUCKET_LOCK(ht, old_tbl, old_hash);
304
305 /* Old bucket empty, no work needed. */
306 p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
307 old_hash);
308 if (rht_is_a_nulls(p))
309 return false;
310
311 new_hash = head_hashfn(ht, new_tbl, p);
312 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
313
314 /* Advance the old bucket pointer one or more times until it
315 * reaches a node that doesn't hash to the same bucket as the
316 * previous node p. Call the previous node p;
317 */
318 rht_for_each_continue(he, p->next, old_tbl, old_hash) {
319 new_hash2 = head_hashfn(ht, new_tbl, he);
320 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash2);
321
322 if (new_hash != new_hash2)
323 break;
324 p = he;
325 }
326 rcu_assign_pointer(old_tbl->buckets[old_hash], p->next);
327
328 /* Find the subsequent node which does hash to the same
329 * bucket as node P, or NULL if no such node exists.
330 */
331 INIT_RHT_NULLS_HEAD(next, ht, old_hash);
332 if (!rht_is_a_nulls(he)) {
333 rht_for_each_continue(he, he->next, old_tbl, old_hash) {
334 if (head_hashfn(ht, new_tbl, he) == new_hash) {
335 next = he;
336 break;
337 }
338 }
339 }
340
341 /* Set p's next pointer to that subsequent node pointer,
342 * bypassing the nodes which do not hash to p's bucket
343 */
344 rcu_assign_pointer(p->next, next);
345
346 p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
347 old_hash);
348
349 return !rht_is_a_nulls(p);
350 }
351
352 static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl,
353 unsigned int new_hash, struct rhash_head *entry)
354 {
355 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
356
357 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry);
358 }
359
360 /**
361 * rhashtable_expand - Expand hash table while allowing concurrent lookups
362 * @ht: the hash table to expand
363 *
364 * A secondary bucket array is allocated and the hash entries are migrated
365 * while keeping them on both lists until the end of the RCU grace period.
366 *
367 * This function may only be called in a context where it is safe to call
368 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
369 *
370 * The caller must ensure that no concurrent resizing occurs by holding
371 * ht->mutex.
372 *
373 * It is valid to have concurrent insertions and deletions protected by per
374 * bucket locks or concurrent RCU protected lookups and traversals.
375 */
376 int rhashtable_expand(struct rhashtable *ht)
377 {
378 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
379 struct rhash_head *he;
380 unsigned int new_hash, old_hash;
381 bool complete = false;
382
383 ASSERT_RHT_MUTEX(ht);
384
385 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
386 if (new_tbl == NULL)
387 return -ENOMEM;
388
389 atomic_inc(&ht->shift);
390
391 /* Make insertions go into the new, empty table right away. Deletions
392 * and lookups will be attempted in both tables until we synchronize.
393 * The synchronize_rcu() guarantees for the new table to be picked up
394 * so no new additions go into the old table while we relink.
395 */
396 rcu_assign_pointer(ht->future_tbl, new_tbl);
397 synchronize_rcu();
398
399 /* For each new bucket, search the corresponding old bucket for the
400 * first entry that hashes to the new bucket, and link the end of
401 * newly formed bucket chain (containing entries added to future
402 * table) to that entry. Since all the entries which will end up in
403 * the new bucket appear in the same old bucket, this constructs an
404 * entirely valid new hash table, but with multiple buckets
405 * "zipped" together into a single imprecise chain.
406 */
407 for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
408 old_hash = rht_bucket_index(old_tbl, new_hash);
409 lock_buckets(new_tbl, old_tbl, new_hash);
410 rht_for_each(he, old_tbl, old_hash) {
411 if (head_hashfn(ht, new_tbl, he) == new_hash) {
412 link_old_to_new(ht, new_tbl, new_hash, he);
413 break;
414 }
415 }
416 unlock_buckets(new_tbl, old_tbl, new_hash);
417 }
418
419 /* Unzip interleaved hash chains */
420 while (!complete && !ht->being_destroyed) {
421 /* Wait for readers. All new readers will see the new
422 * table, and thus no references to the old table will
423 * remain.
424 */
425 synchronize_rcu();
426
427 /* For each bucket in the old table (each of which
428 * contains items from multiple buckets of the new
429 * table): ...
430 */
431 complete = true;
432 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
433 lock_buckets(new_tbl, old_tbl, old_hash);
434
435 if (hashtable_chain_unzip(ht, new_tbl, old_tbl,
436 old_hash))
437 complete = false;
438
439 unlock_buckets(new_tbl, old_tbl, old_hash);
440 }
441 }
442
443 rcu_assign_pointer(ht->tbl, new_tbl);
444 synchronize_rcu();
445
446 bucket_table_free(old_tbl);
447 return 0;
448 }
449 EXPORT_SYMBOL_GPL(rhashtable_expand);
450
451 /**
452 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
453 * @ht: the hash table to shrink
454 *
455 * This function may only be called in a context where it is safe to call
456 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
457 *
458 * The caller must ensure that no concurrent resizing occurs by holding
459 * ht->mutex.
460 *
461 * The caller must ensure that no concurrent table mutations take place.
462 * It is however valid to have concurrent lookups if they are RCU protected.
463 *
464 * It is valid to have concurrent insertions and deletions protected by per
465 * bucket locks or concurrent RCU protected lookups and traversals.
466 */
467 int rhashtable_shrink(struct rhashtable *ht)
468 {
469 struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht);
470 unsigned int new_hash;
471
472 ASSERT_RHT_MUTEX(ht);
473
474 new_tbl = bucket_table_alloc(ht, tbl->size / 2);
475 if (new_tbl == NULL)
476 return -ENOMEM;
477
478 rcu_assign_pointer(ht->future_tbl, new_tbl);
479 synchronize_rcu();
480
481 /* Link the first entry in the old bucket to the end of the
482 * bucket in the new table. As entries are concurrently being
483 * added to the new table, lock down the new bucket. As we
484 * always divide the size in half when shrinking, each bucket
485 * in the new table maps to exactly two buckets in the old
486 * table.
487 */
488 for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
489 lock_buckets(new_tbl, tbl, new_hash);
490
491 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
492 tbl->buckets[new_hash]);
493 ASSERT_BUCKET_LOCK(ht, tbl, new_hash + new_tbl->size);
494 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
495 tbl->buckets[new_hash + new_tbl->size]);
496
497 unlock_buckets(new_tbl, tbl, new_hash);
498 }
499
500 /* Publish the new, valid hash table */
501 rcu_assign_pointer(ht->tbl, new_tbl);
502 atomic_dec(&ht->shift);
503
504 /* Wait for readers. No new readers will have references to the
505 * old hash table.
506 */
507 synchronize_rcu();
508
509 bucket_table_free(tbl);
510
511 return 0;
512 }
513 EXPORT_SYMBOL_GPL(rhashtable_shrink);
514
515 static void rht_deferred_worker(struct work_struct *work)
516 {
517 struct rhashtable *ht;
518 struct bucket_table *tbl;
519 struct rhashtable_walker *walker;
520
521 ht = container_of(work, struct rhashtable, run_work);
522 mutex_lock(&ht->mutex);
523 if (ht->being_destroyed)
524 goto unlock;
525
526 tbl = rht_dereference(ht->tbl, ht);
527
528 list_for_each_entry(walker, &ht->walkers, list)
529 walker->resize = true;
530
531 if (ht->p.grow_decision && ht->p.grow_decision(ht, tbl->size))
532 rhashtable_expand(ht);
533 else if (ht->p.shrink_decision && ht->p.shrink_decision(ht, tbl->size))
534 rhashtable_shrink(ht);
535
536 unlock:
537 mutex_unlock(&ht->mutex);
538 }
539
540 static void rhashtable_wakeup_worker(struct rhashtable *ht)
541 {
542 struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
543 struct bucket_table *new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
544 size_t size = tbl->size;
545
546 /* Only adjust the table if no resizing is currently in progress. */
547 if (tbl == new_tbl &&
548 ((ht->p.grow_decision && ht->p.grow_decision(ht, size)) ||
549 (ht->p.shrink_decision && ht->p.shrink_decision(ht, size))))
550 schedule_work(&ht->run_work);
551 }
552
553 static void __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
554 struct bucket_table *tbl, u32 hash)
555 {
556 struct rhash_head *head;
557
558 hash = rht_bucket_index(tbl, hash);
559 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
560
561 ASSERT_BUCKET_LOCK(ht, tbl, hash);
562
563 if (rht_is_a_nulls(head))
564 INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
565 else
566 RCU_INIT_POINTER(obj->next, head);
567
568 rcu_assign_pointer(tbl->buckets[hash], obj);
569
570 atomic_inc(&ht->nelems);
571
572 rhashtable_wakeup_worker(ht);
573 }
574
575 /**
576 * rhashtable_insert - insert object into hash table
577 * @ht: hash table
578 * @obj: pointer to hash head inside object
579 *
580 * Will take a per bucket spinlock to protect against mutual mutations
581 * on the same bucket. Multiple insertions may occur in parallel unless
582 * they map to the same bucket lock.
583 *
584 * It is safe to call this function from atomic context.
585 *
586 * Will trigger an automatic deferred table resizing if the size grows
587 * beyond the watermark indicated by grow_decision() which can be passed
588 * to rhashtable_init().
589 */
590 void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
591 {
592 struct bucket_table *tbl, *old_tbl;
593 unsigned hash;
594
595 rcu_read_lock();
596
597 tbl = rht_dereference_rcu(ht->future_tbl, ht);
598 old_tbl = rht_dereference_rcu(ht->tbl, ht);
599 hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
600
601 lock_buckets(tbl, old_tbl, hash);
602 __rhashtable_insert(ht, obj, tbl, hash);
603 unlock_buckets(tbl, old_tbl, hash);
604
605 rcu_read_unlock();
606 }
607 EXPORT_SYMBOL_GPL(rhashtable_insert);
608
609 /**
610 * rhashtable_remove - remove object from hash table
611 * @ht: hash table
612 * @obj: pointer to hash head inside object
613 *
614 * Since the hash chain is single linked, the removal operation needs to
615 * walk the bucket chain upon removal. The removal operation is thus
616 * considerable slow if the hash table is not correctly sized.
617 *
618 * Will automatically shrink the table via rhashtable_expand() if the
619 * shrink_decision function specified at rhashtable_init() returns true.
620 *
621 * The caller must ensure that no concurrent table mutations occur. It is
622 * however valid to have concurrent lookups if they are RCU protected.
623 */
624 bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
625 {
626 struct bucket_table *tbl, *new_tbl, *old_tbl;
627 struct rhash_head __rcu **pprev;
628 struct rhash_head *he, *he2;
629 unsigned int hash, new_hash;
630 bool ret = false;
631
632 rcu_read_lock();
633 old_tbl = rht_dereference_rcu(ht->tbl, ht);
634 tbl = new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
635 new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
636
637 lock_buckets(new_tbl, old_tbl, new_hash);
638 restart:
639 hash = rht_bucket_index(tbl, new_hash);
640 pprev = &tbl->buckets[hash];
641 rht_for_each(he, tbl, hash) {
642 if (he != obj) {
643 pprev = &he->next;
644 continue;
645 }
646
647 ASSERT_BUCKET_LOCK(ht, tbl, hash);
648
649 if (old_tbl->size > new_tbl->size && tbl == old_tbl &&
650 !rht_is_a_nulls(obj->next) &&
651 head_hashfn(ht, tbl, obj->next) != hash) {
652 rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
653 } else if (unlikely(old_tbl->size < new_tbl->size && tbl == new_tbl)) {
654 rht_for_each_continue(he2, obj->next, tbl, hash) {
655 if (head_hashfn(ht, tbl, he2) == hash) {
656 rcu_assign_pointer(*pprev, he2);
657 goto found;
658 }
659 }
660
661 rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
662 } else {
663 rcu_assign_pointer(*pprev, obj->next);
664 }
665
666 found:
667 ret = true;
668 break;
669 }
670
671 /* The entry may be linked in either 'tbl', 'future_tbl', or both.
672 * 'future_tbl' only exists for a short period of time during
673 * resizing. Thus traversing both is fine and the added cost is
674 * very rare.
675 */
676 if (tbl != old_tbl) {
677 tbl = old_tbl;
678 goto restart;
679 }
680
681 unlock_buckets(new_tbl, old_tbl, new_hash);
682
683 if (ret) {
684 atomic_dec(&ht->nelems);
685 rhashtable_wakeup_worker(ht);
686 }
687
688 rcu_read_unlock();
689
690 return ret;
691 }
692 EXPORT_SYMBOL_GPL(rhashtable_remove);
693
694 struct rhashtable_compare_arg {
695 struct rhashtable *ht;
696 const void *key;
697 };
698
699 static bool rhashtable_compare(void *ptr, void *arg)
700 {
701 struct rhashtable_compare_arg *x = arg;
702 struct rhashtable *ht = x->ht;
703
704 return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
705 }
706
707 /**
708 * rhashtable_lookup - lookup key in hash table
709 * @ht: hash table
710 * @key: pointer to key
711 *
712 * Computes the hash value for the key and traverses the bucket chain looking
713 * for a entry with an identical key. The first matching entry is returned.
714 *
715 * This lookup function may only be used for fixed key hash table (key_len
716 * parameter set). It will BUG() if used inappropriately.
717 *
718 * Lookups may occur in parallel with hashtable mutations and resizing.
719 */
720 void *rhashtable_lookup(struct rhashtable *ht, const void *key)
721 {
722 struct rhashtable_compare_arg arg = {
723 .ht = ht,
724 .key = key,
725 };
726
727 BUG_ON(!ht->p.key_len);
728
729 return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
730 }
731 EXPORT_SYMBOL_GPL(rhashtable_lookup);
732
733 /**
734 * rhashtable_lookup_compare - search hash table with compare function
735 * @ht: hash table
736 * @key: the pointer to the key
737 * @compare: compare function, must return true on match
738 * @arg: argument passed on to compare function
739 *
740 * Traverses the bucket chain behind the provided hash value and calls the
741 * specified compare function for each entry.
742 *
743 * Lookups may occur in parallel with hashtable mutations and resizing.
744 *
745 * Returns the first entry on which the compare function returned true.
746 */
747 void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
748 bool (*compare)(void *, void *), void *arg)
749 {
750 const struct bucket_table *tbl, *old_tbl;
751 struct rhash_head *he;
752 u32 hash;
753
754 rcu_read_lock();
755
756 old_tbl = rht_dereference_rcu(ht->tbl, ht);
757 tbl = rht_dereference_rcu(ht->future_tbl, ht);
758 hash = key_hashfn(ht, key, ht->p.key_len);
759 restart:
760 rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) {
761 if (!compare(rht_obj(ht, he), arg))
762 continue;
763 rcu_read_unlock();
764 return rht_obj(ht, he);
765 }
766
767 if (unlikely(tbl != old_tbl)) {
768 tbl = old_tbl;
769 goto restart;
770 }
771 rcu_read_unlock();
772
773 return NULL;
774 }
775 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
776
777 /**
778 * rhashtable_lookup_insert - lookup and insert object into hash table
779 * @ht: hash table
780 * @obj: pointer to hash head inside object
781 *
782 * Locks down the bucket chain in both the old and new table if a resize
783 * is in progress to ensure that writers can't remove from the old table
784 * and can't insert to the new table during the atomic operation of search
785 * and insertion. Searches for duplicates in both the old and new table if
786 * a resize is in progress.
787 *
788 * This lookup function may only be used for fixed key hash table (key_len
789 * parameter set). It will BUG() if used inappropriately.
790 *
791 * It is safe to call this function from atomic context.
792 *
793 * Will trigger an automatic deferred table resizing if the size grows
794 * beyond the watermark indicated by grow_decision() which can be passed
795 * to rhashtable_init().
796 */
797 bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
798 {
799 struct rhashtable_compare_arg arg = {
800 .ht = ht,
801 .key = rht_obj(ht, obj) + ht->p.key_offset,
802 };
803
804 BUG_ON(!ht->p.key_len);
805
806 return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
807 &arg);
808 }
809 EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);
810
811 /**
812 * rhashtable_lookup_compare_insert - search and insert object to hash table
813 * with compare function
814 * @ht: hash table
815 * @obj: pointer to hash head inside object
816 * @compare: compare function, must return true on match
817 * @arg: argument passed on to compare function
818 *
819 * Locks down the bucket chain in both the old and new table if a resize
820 * is in progress to ensure that writers can't remove from the old table
821 * and can't insert to the new table during the atomic operation of search
822 * and insertion. Searches for duplicates in both the old and new table if
823 * a resize is in progress.
824 *
825 * Lookups may occur in parallel with hashtable mutations and resizing.
826 *
827 * Will trigger an automatic deferred table resizing if the size grows
828 * beyond the watermark indicated by grow_decision() which can be passed
829 * to rhashtable_init().
830 */
831 bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
832 struct rhash_head *obj,
833 bool (*compare)(void *, void *),
834 void *arg)
835 {
836 struct bucket_table *new_tbl, *old_tbl;
837 u32 new_hash;
838 bool success = true;
839
840 BUG_ON(!ht->p.key_len);
841
842 rcu_read_lock();
843 old_tbl = rht_dereference_rcu(ht->tbl, ht);
844 new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
845 new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
846
847 lock_buckets(new_tbl, old_tbl, new_hash);
848
849 if (rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
850 compare, arg)) {
851 success = false;
852 goto exit;
853 }
854
855 __rhashtable_insert(ht, obj, new_tbl, new_hash);
856
857 exit:
858 unlock_buckets(new_tbl, old_tbl, new_hash);
859 rcu_read_unlock();
860
861 return success;
862 }
863 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
864
865 /**
866 * rhashtable_walk_init - Initialise an iterator
867 * @ht: Table to walk over
868 * @iter: Hash table Iterator
869 *
870 * This function prepares a hash table walk.
871 *
872 * Note that if you restart a walk after rhashtable_walk_stop you
873 * may see the same object twice. Also, you may miss objects if
874 * there are removals in between rhashtable_walk_stop and the next
875 * call to rhashtable_walk_start.
876 *
877 * For a completely stable walk you should construct your own data
878 * structure outside the hash table.
879 *
880 * This function may sleep so you must not call it from interrupt
881 * context or with spin locks held.
882 *
883 * You must call rhashtable_walk_exit if this function returns
884 * successfully.
885 */
886 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
887 {
888 iter->ht = ht;
889 iter->p = NULL;
890 iter->slot = 0;
891 iter->skip = 0;
892
893 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
894 if (!iter->walker)
895 return -ENOMEM;
896
897 mutex_lock(&ht->mutex);
898 list_add(&iter->walker->list, &ht->walkers);
899 mutex_unlock(&ht->mutex);
900
901 return 0;
902 }
903 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
904
905 /**
906 * rhashtable_walk_exit - Free an iterator
907 * @iter: Hash table Iterator
908 *
909 * This function frees resources allocated by rhashtable_walk_init.
910 */
911 void rhashtable_walk_exit(struct rhashtable_iter *iter)
912 {
913 mutex_lock(&iter->ht->mutex);
914 list_del(&iter->walker->list);
915 mutex_unlock(&iter->ht->mutex);
916 kfree(iter->walker);
917 }
918 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
919
920 /**
921 * rhashtable_walk_start - Start a hash table walk
922 * @iter: Hash table iterator
923 *
924 * Start a hash table walk. Note that we take the RCU lock in all
925 * cases including when we return an error. So you must always call
926 * rhashtable_walk_stop to clean up.
927 *
928 * Returns zero if successful.
929 *
930 * Returns -EAGAIN if resize event occured. Note that the iterator
931 * will rewind back to the beginning and you may use it immediately
932 * by calling rhashtable_walk_next.
933 */
934 int rhashtable_walk_start(struct rhashtable_iter *iter)
935 {
936 rcu_read_lock();
937
938 if (iter->walker->resize) {
939 iter->slot = 0;
940 iter->skip = 0;
941 iter->walker->resize = false;
942 return -EAGAIN;
943 }
944
945 return 0;
946 }
947 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
948
949 /**
950 * rhashtable_walk_next - Return the next object and advance the iterator
951 * @iter: Hash table iterator
952 *
953 * Note that you must call rhashtable_walk_stop when you are finished
954 * with the walk.
955 *
956 * Returns the next object or NULL when the end of the table is reached.
957 *
958 * Returns -EAGAIN if resize event occured. Note that the iterator
959 * will rewind back to the beginning and you may continue to use it.
960 */
961 void *rhashtable_walk_next(struct rhashtable_iter *iter)
962 {
963 const struct bucket_table *tbl;
964 struct rhashtable *ht = iter->ht;
965 struct rhash_head *p = iter->p;
966 void *obj = NULL;
967
968 tbl = rht_dereference_rcu(ht->tbl, ht);
969
970 if (p) {
971 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
972 goto next;
973 }
974
975 for (; iter->slot < tbl->size; iter->slot++) {
976 int skip = iter->skip;
977
978 rht_for_each_rcu(p, tbl, iter->slot) {
979 if (!skip)
980 break;
981 skip--;
982 }
983
984 next:
985 if (!rht_is_a_nulls(p)) {
986 iter->skip++;
987 iter->p = p;
988 obj = rht_obj(ht, p);
989 goto out;
990 }
991
992 iter->skip = 0;
993 }
994
995 iter->p = NULL;
996
997 out:
998 if (iter->walker->resize) {
999 iter->p = NULL;
1000 iter->slot = 0;
1001 iter->skip = 0;
1002 iter->walker->resize = false;
1003 return ERR_PTR(-EAGAIN);
1004 }
1005
1006 return obj;
1007 }
1008 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
1009
1010 /**
1011 * rhashtable_walk_stop - Finish a hash table walk
1012 * @iter: Hash table iterator
1013 *
1014 * Finish a hash table walk.
1015 */
1016 void rhashtable_walk_stop(struct rhashtable_iter *iter)
1017 {
1018 rcu_read_unlock();
1019 iter->p = NULL;
1020 }
1021 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
1022
1023 static size_t rounded_hashtable_size(struct rhashtable_params *params)
1024 {
1025 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
1026 1UL << params->min_shift);
1027 }
1028
1029 /**
1030 * rhashtable_init - initialize a new hash table
1031 * @ht: hash table to be initialized
1032 * @params: configuration parameters
1033 *
1034 * Initializes a new hash table based on the provided configuration
1035 * parameters. A table can be configured either with a variable or
1036 * fixed length key:
1037 *
1038 * Configuration Example 1: Fixed length keys
1039 * struct test_obj {
1040 * int key;
1041 * void * my_member;
1042 * struct rhash_head node;
1043 * };
1044 *
1045 * struct rhashtable_params params = {
1046 * .head_offset = offsetof(struct test_obj, node),
1047 * .key_offset = offsetof(struct test_obj, key),
1048 * .key_len = sizeof(int),
1049 * .hashfn = jhash,
1050 * .nulls_base = (1U << RHT_BASE_SHIFT),
1051 * };
1052 *
1053 * Configuration Example 2: Variable length keys
1054 * struct test_obj {
1055 * [...]
1056 * struct rhash_head node;
1057 * };
1058 *
1059 * u32 my_hash_fn(const void *data, u32 seed)
1060 * {
1061 * struct test_obj *obj = data;
1062 *
1063 * return [... hash ...];
1064 * }
1065 *
1066 * struct rhashtable_params params = {
1067 * .head_offset = offsetof(struct test_obj, node),
1068 * .hashfn = jhash,
1069 * .obj_hashfn = my_hash_fn,
1070 * };
1071 */
1072 int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
1073 {
1074 struct bucket_table *tbl;
1075 size_t size;
1076
1077 size = HASH_DEFAULT_SIZE;
1078
1079 if ((params->key_len && !params->hashfn) ||
1080 (!params->key_len && !params->obj_hashfn))
1081 return -EINVAL;
1082
1083 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
1084 return -EINVAL;
1085
1086 params->min_shift = max_t(size_t, params->min_shift,
1087 ilog2(HASH_MIN_SIZE));
1088
1089 if (params->nelem_hint)
1090 size = rounded_hashtable_size(params);
1091
1092 memset(ht, 0, sizeof(*ht));
1093 mutex_init(&ht->mutex);
1094 memcpy(&ht->p, params, sizeof(*params));
1095 INIT_LIST_HEAD(&ht->walkers);
1096
1097 if (params->locks_mul)
1098 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1099 else
1100 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1101
1102 tbl = bucket_table_alloc(ht, size);
1103 if (tbl == NULL)
1104 return -ENOMEM;
1105
1106 atomic_set(&ht->nelems, 0);
1107 atomic_set(&ht->shift, ilog2(tbl->size));
1108 RCU_INIT_POINTER(ht->tbl, tbl);
1109 RCU_INIT_POINTER(ht->future_tbl, tbl);
1110
1111 if (!ht->p.hash_rnd)
1112 get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd));
1113
1114 if (ht->p.grow_decision || ht->p.shrink_decision)
1115 INIT_WORK(&ht->run_work, rht_deferred_worker);
1116
1117 return 0;
1118 }
1119 EXPORT_SYMBOL_GPL(rhashtable_init);
1120
1121 /**
1122 * rhashtable_destroy - destroy hash table
1123 * @ht: the hash table to destroy
1124 *
1125 * Frees the bucket array. This function is not rcu safe, therefore the caller
1126 * has to make sure that no resizing may happen by unpublishing the hashtable
1127 * and waiting for the quiescent cycle before releasing the bucket array.
1128 */
1129 void rhashtable_destroy(struct rhashtable *ht)
1130 {
1131 ht->being_destroyed = true;
1132
1133 if (ht->p.grow_decision || ht->p.shrink_decision)
1134 cancel_work_sync(&ht->run_work);
1135
1136 mutex_lock(&ht->mutex);
1137 bucket_table_free(rht_dereference(ht->tbl, ht));
1138 mutex_unlock(&ht->mutex);
1139 }
1140 EXPORT_SYMBOL_GPL(rhashtable_destroy);
This page took 0.074196 seconds and 5 git commands to generate.