* defs.h (streq): Add prototype.
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <sys/types.h>
39
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
43
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47
48 #include <stdio.h>
49
50 #include "libiberty.h"
51 #include "hashtab.h"
52
53 /* This macro defines reserved value for empty table entry. */
54
55 #define EMPTY_ENTRY ((PTR) 0)
56
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
60 #define DELETED_ENTRY ((PTR) 1)
61
62 static unsigned long higher_prime_number PARAMS ((unsigned long));
63 static hashval_t hash_pointer PARAMS ((const void *));
64 static int eq_pointer PARAMS ((const void *, const void *));
65 static int htab_expand PARAMS ((htab_t));
66 static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
67
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer = hash_pointer;
72 htab_eq htab_eq_pointer = eq_pointer;
73
74 /* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
76
77 static unsigned long
78 higher_prime_number (n)
79 unsigned long n;
80 {
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
83 static const unsigned long primes[] = {
84 (unsigned long) 7,
85 (unsigned long) 13,
86 (unsigned long) 31,
87 (unsigned long) 61,
88 (unsigned long) 127,
89 (unsigned long) 251,
90 (unsigned long) 509,
91 (unsigned long) 1021,
92 (unsigned long) 2039,
93 (unsigned long) 4093,
94 (unsigned long) 8191,
95 (unsigned long) 16381,
96 (unsigned long) 32749,
97 (unsigned long) 65521,
98 (unsigned long) 131071,
99 (unsigned long) 262139,
100 (unsigned long) 524287,
101 (unsigned long) 1048573,
102 (unsigned long) 2097143,
103 (unsigned long) 4194301,
104 (unsigned long) 8388593,
105 (unsigned long) 16777213,
106 (unsigned long) 33554393,
107 (unsigned long) 67108859,
108 (unsigned long) 134217689,
109 (unsigned long) 268435399,
110 (unsigned long) 536870909,
111 (unsigned long) 1073741789,
112 (unsigned long) 2147483647,
113 /* 4294967291L */
114 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
115 };
116
117 const unsigned long *low = &primes[0];
118 const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
119
120 while (low != high)
121 {
122 const unsigned long *mid = low + (high - low) / 2;
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
127 }
128
129 /* If we've run out of primes, abort. */
130 if (n > *low)
131 {
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
134 }
135
136 return *low;
137 }
138
139 /* Returns a hash code for P. */
140
141 static hashval_t
142 hash_pointer (p)
143 const PTR p;
144 {
145 return (hashval_t) ((long)p >> 3);
146 }
147
148 /* Returns non-zero if P1 and P2 are equal. */
149
150 static int
151 eq_pointer (p1, p2)
152 const PTR p1;
153 const PTR p2;
154 {
155 return p1 == p2;
156 }
157
158 /* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
161 created hash table, or NULL if memory allocation fails. */
162
163 htab_t
164 htab_create_alloc (size, hash_f, eq_f, del_f, alloc_f, free_f)
165 size_t size;
166 htab_hash hash_f;
167 htab_eq eq_f;
168 htab_del del_f;
169 htab_alloc alloc_f;
170 htab_free free_f;
171 {
172 htab_t result;
173
174 size = higher_prime_number (size);
175 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
176 if (result == NULL)
177 return NULL;
178 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
179 if (result->entries == NULL)
180 {
181 if (free_f != NULL)
182 (*free_f) (result);
183 return NULL;
184 }
185 result->size = size;
186 result->hash_f = hash_f;
187 result->eq_f = eq_f;
188 result->del_f = del_f;
189 result->alloc_f = alloc_f;
190 result->free_f = free_f;
191 return result;
192 }
193
194 /* As above, but use the variants of alloc_f and free_f which accept
195 an extra argument. */
196
197 htab_t
198 htab_create_alloc_ex (size, hash_f, eq_f, del_f, alloc_arg, alloc_f,
199 free_f)
200 size_t size;
201 htab_hash hash_f;
202 htab_eq eq_f;
203 htab_del del_f;
204 PTR alloc_arg;
205 htab_alloc_with_arg alloc_f;
206 htab_free_with_arg free_f;
207 {
208 htab_t result;
209
210 size = higher_prime_number (size);
211 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
212 if (result == NULL)
213 return NULL;
214 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
215 if (result->entries == NULL)
216 {
217 if (free_f != NULL)
218 (*free_f) (alloc_arg, result);
219 return NULL;
220 }
221 result->size = size;
222 result->hash_f = hash_f;
223 result->eq_f = eq_f;
224 result->del_f = del_f;
225 result->alloc_arg = alloc_arg;
226 result->alloc_with_arg_f = alloc_f;
227 result->free_with_arg_f = free_f;
228 return result;
229 }
230
231 /* Update the function pointers and allocation parameter in the htab_t. */
232
233 void
234 htab_set_functions_ex (htab, hash_f, eq_f, del_f, alloc_arg, alloc_f, free_f)
235 htab_t htab;
236 htab_hash hash_f;
237 htab_eq eq_f;
238 htab_del del_f;
239 PTR alloc_arg;
240 htab_alloc_with_arg alloc_f;
241 htab_free_with_arg free_f;
242 {
243 htab->hash_f = hash_f;
244 htab->eq_f = eq_f;
245 htab->del_f = del_f;
246 htab->alloc_arg = alloc_arg;
247 htab->alloc_with_arg_f = alloc_f;
248 htab->free_with_arg_f = free_f;
249 }
250
251 /* These functions exist solely for backward compatibility. */
252
253 #undef htab_create
254 htab_t
255 htab_create (size, hash_f, eq_f, del_f)
256 size_t size;
257 htab_hash hash_f;
258 htab_eq eq_f;
259 htab_del del_f;
260 {
261 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
262 }
263
264 htab_t
265 htab_try_create (size, hash_f, eq_f, del_f)
266 size_t size;
267 htab_hash hash_f;
268 htab_eq eq_f;
269 htab_del del_f;
270 {
271 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
272 }
273
274 /* This function frees all memory allocated for given hash table.
275 Naturally the hash table must already exist. */
276
277 void
278 htab_delete (htab)
279 htab_t htab;
280 {
281 int i;
282
283 if (htab->del_f)
284 for (i = htab->size - 1; i >= 0; i--)
285 if (htab->entries[i] != EMPTY_ENTRY
286 && htab->entries[i] != DELETED_ENTRY)
287 (*htab->del_f) (htab->entries[i]);
288
289 if (htab->free_f != NULL)
290 {
291 (*htab->free_f) (htab->entries);
292 (*htab->free_f) (htab);
293 }
294 else if (htab->free_with_arg_f != NULL)
295 {
296 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
297 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
298 }
299 }
300
301 /* This function clears all entries in the given hash table. */
302
303 void
304 htab_empty (htab)
305 htab_t htab;
306 {
307 int i;
308
309 if (htab->del_f)
310 for (i = htab->size - 1; i >= 0; i--)
311 if (htab->entries[i] != EMPTY_ENTRY
312 && htab->entries[i] != DELETED_ENTRY)
313 (*htab->del_f) (htab->entries[i]);
314
315 memset (htab->entries, 0, htab->size * sizeof (PTR));
316 }
317
318 /* Similar to htab_find_slot, but without several unwanted side effects:
319 - Does not call htab->eq_f when it finds an existing entry.
320 - Does not change the count of elements/searches/collisions in the
321 hash table.
322 This function also assumes there are no deleted entries in the table.
323 HASH is the hash value for the element to be inserted. */
324
325 static PTR *
326 find_empty_slot_for_expand (htab, hash)
327 htab_t htab;
328 hashval_t hash;
329 {
330 size_t size = htab->size;
331 unsigned int index = hash % size;
332 PTR *slot = htab->entries + index;
333 hashval_t hash2;
334
335 if (*slot == EMPTY_ENTRY)
336 return slot;
337 else if (*slot == DELETED_ENTRY)
338 abort ();
339
340 hash2 = 1 + hash % (size - 2);
341 for (;;)
342 {
343 index += hash2;
344 if (index >= size)
345 index -= size;
346
347 slot = htab->entries + index;
348 if (*slot == EMPTY_ENTRY)
349 return slot;
350 else if (*slot == DELETED_ENTRY)
351 abort ();
352 }
353 }
354
355 /* The following function changes size of memory allocated for the
356 entries and repeatedly inserts the table elements. The occupancy
357 of the table after the call will be about 50%. Naturally the hash
358 table must already exist. Remember also that the place of the
359 table entries is changed. If memory allocation failures are allowed,
360 this function will return zero, indicating that the table could not be
361 expanded. If all goes well, it will return a non-zero value. */
362
363 static int
364 htab_expand (htab)
365 htab_t htab;
366 {
367 PTR *oentries;
368 PTR *olimit;
369 PTR *p;
370 PTR *nentries;
371 size_t nsize;
372
373 oentries = htab->entries;
374 olimit = oentries + htab->size;
375
376 nsize = higher_prime_number (htab->size * 2);
377
378 if (htab->alloc_with_arg_f != NULL)
379 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
380 sizeof (PTR *));
381 else
382 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
383 if (nentries == NULL)
384 return 0;
385 htab->entries = nentries;
386 htab->size = nsize;
387
388 htab->n_elements -= htab->n_deleted;
389 htab->n_deleted = 0;
390
391 p = oentries;
392 do
393 {
394 PTR x = *p;
395
396 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
397 {
398 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
399
400 *q = x;
401 }
402
403 p++;
404 }
405 while (p < olimit);
406
407 if (htab->free_f != NULL)
408 (*htab->free_f) (oentries);
409 else if (htab->free_with_arg_f != NULL)
410 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
411 return 1;
412 }
413
414 /* This function searches for a hash table entry equal to the given
415 element. It cannot be used to insert or delete an element. */
416
417 PTR
418 htab_find_with_hash (htab, element, hash)
419 htab_t htab;
420 const PTR element;
421 hashval_t hash;
422 {
423 unsigned int index;
424 hashval_t hash2;
425 size_t size;
426 PTR entry;
427
428 htab->searches++;
429 size = htab->size;
430 index = hash % size;
431
432 entry = htab->entries[index];
433 if (entry == EMPTY_ENTRY
434 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
435 return entry;
436
437 hash2 = 1 + hash % (size - 2);
438
439 for (;;)
440 {
441 htab->collisions++;
442 index += hash2;
443 if (index >= size)
444 index -= size;
445
446 entry = htab->entries[index];
447 if (entry == EMPTY_ENTRY
448 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
449 return entry;
450 }
451 }
452
453 /* Like htab_find_slot_with_hash, but compute the hash value from the
454 element. */
455
456 PTR
457 htab_find (htab, element)
458 htab_t htab;
459 const PTR element;
460 {
461 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
462 }
463
464 /* This function searches for a hash table slot containing an entry
465 equal to the given element. To delete an entry, call this with
466 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
467 after doing some checks). To insert an entry, call this with
468 INSERT = 1, then write the value you want into the returned slot.
469 When inserting an entry, NULL may be returned if memory allocation
470 fails. */
471
472 PTR *
473 htab_find_slot_with_hash (htab, element, hash, insert)
474 htab_t htab;
475 const PTR element;
476 hashval_t hash;
477 enum insert_option insert;
478 {
479 PTR *first_deleted_slot;
480 unsigned int index;
481 hashval_t hash2;
482 size_t size;
483 PTR entry;
484
485 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
486 && htab_expand (htab) == 0)
487 return NULL;
488
489 size = htab->size;
490 index = hash % size;
491
492 htab->searches++;
493 first_deleted_slot = NULL;
494
495 entry = htab->entries[index];
496 if (entry == EMPTY_ENTRY)
497 goto empty_entry;
498 else if (entry == DELETED_ENTRY)
499 first_deleted_slot = &htab->entries[index];
500 else if ((*htab->eq_f) (entry, element))
501 return &htab->entries[index];
502
503 hash2 = 1 + hash % (size - 2);
504 for (;;)
505 {
506 htab->collisions++;
507 index += hash2;
508 if (index >= size)
509 index -= size;
510
511 entry = htab->entries[index];
512 if (entry == EMPTY_ENTRY)
513 goto empty_entry;
514 else if (entry == DELETED_ENTRY)
515 {
516 if (!first_deleted_slot)
517 first_deleted_slot = &htab->entries[index];
518 }
519 else if ((*htab->eq_f) (entry, element))
520 return &htab->entries[index];
521 }
522
523 empty_entry:
524 if (insert == NO_INSERT)
525 return NULL;
526
527 htab->n_elements++;
528
529 if (first_deleted_slot)
530 {
531 *first_deleted_slot = EMPTY_ENTRY;
532 return first_deleted_slot;
533 }
534
535 return &htab->entries[index];
536 }
537
538 /* Like htab_find_slot_with_hash, but compute the hash value from the
539 element. */
540
541 PTR *
542 htab_find_slot (htab, element, insert)
543 htab_t htab;
544 const PTR element;
545 enum insert_option insert;
546 {
547 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
548 insert);
549 }
550
551 /* This function deletes an element with the given value from hash
552 table. If there is no matching element in the hash table, this
553 function does nothing. */
554
555 void
556 htab_remove_elt (htab, element)
557 htab_t htab;
558 PTR element;
559 {
560 PTR *slot;
561
562 slot = htab_find_slot (htab, element, NO_INSERT);
563 if (*slot == EMPTY_ENTRY)
564 return;
565
566 if (htab->del_f)
567 (*htab->del_f) (*slot);
568
569 *slot = DELETED_ENTRY;
570 htab->n_deleted++;
571 }
572
573 /* This function clears a specified slot in a hash table. It is
574 useful when you've already done the lookup and don't want to do it
575 again. */
576
577 void
578 htab_clear_slot (htab, slot)
579 htab_t htab;
580 PTR *slot;
581 {
582 if (slot < htab->entries || slot >= htab->entries + htab->size
583 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
584 abort ();
585
586 if (htab->del_f)
587 (*htab->del_f) (*slot);
588
589 *slot = DELETED_ENTRY;
590 htab->n_deleted++;
591 }
592
593 /* This function scans over the entire hash table calling
594 CALLBACK for each live entry. If CALLBACK returns false,
595 the iteration stops. INFO is passed as CALLBACK's second
596 argument. */
597
598 void
599 htab_traverse (htab, callback, info)
600 htab_t htab;
601 htab_trav callback;
602 PTR info;
603 {
604 PTR *slot = htab->entries;
605 PTR *limit = slot + htab->size;
606
607 do
608 {
609 PTR x = *slot;
610
611 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
612 if (!(*callback) (slot, info))
613 break;
614 }
615 while (++slot < limit);
616 }
617
618 /* Return the current size of given hash table. */
619
620 size_t
621 htab_size (htab)
622 htab_t htab;
623 {
624 return htab->size;
625 }
626
627 /* Return the current number of elements in given hash table. */
628
629 size_t
630 htab_elements (htab)
631 htab_t htab;
632 {
633 return htab->n_elements - htab->n_deleted;
634 }
635
636 /* Return the fraction of fixed collisions during all work with given
637 hash table. */
638
639 double
640 htab_collisions (htab)
641 htab_t htab;
642 {
643 if (htab->searches == 0)
644 return 0.0;
645
646 return (double) htab->collisions / (double) htab->searches;
647 }
648
649 /* Hash P as a null-terminated string.
650
651 Copied from gcc/hashtable.c. Zack had the following to say with respect
652 to applicability, though note that unlike hashtable.c, this hash table
653 implementation re-hashes rather than chain buckets.
654
655 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
656 From: Zack Weinberg <zackw@panix.com>
657 Date: Fri, 17 Aug 2001 02:15:56 -0400
658
659 I got it by extracting all the identifiers from all the source code
660 I had lying around in mid-1999, and testing many recurrences of
661 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
662 prime numbers or the appropriate identity. This was the best one.
663 I don't remember exactly what constituted "best", except I was
664 looking at bucket-length distributions mostly.
665
666 So it should be very good at hashing identifiers, but might not be
667 as good at arbitrary strings.
668
669 I'll add that it thoroughly trounces the hash functions recommended
670 for this use at http://burtleburtle.net/bob/hash/index.html, both
671 on speed and bucket distribution. I haven't tried it against the
672 function they just started using for Perl's hashes. */
673
674 hashval_t
675 htab_hash_string (p)
676 const PTR p;
677 {
678 const unsigned char *str = (const unsigned char *) p;
679 hashval_t r = 0;
680 unsigned char c;
681
682 while ((c = *str++) != 0)
683 r = r * 67 + c - 113;
684
685 return r;
686 }
This page took 0.043238 seconds and 4 git commands to generate.