* hashtab.c (htab_expand): Change to return int. Use calloc or
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <sys/types.h>
39
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
43
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47
48 #include <stdio.h>
49
50 #include "libiberty.h"
51 #include "hashtab.h"
52
53 /* This macro defines reserved value for empty table entry. */
54
55 #define EMPTY_ENTRY ((PTR) 0)
56
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
60 #define DELETED_ENTRY ((PTR) 1)
61
62 static unsigned long higher_prime_number PARAMS ((unsigned long));
63 static hashval_t hash_pointer PARAMS ((const void *));
64 static int eq_pointer PARAMS ((const void *, const void *));
65 static int htab_expand PARAMS ((htab_t));
66 static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
67
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer = hash_pointer;
72 htab_eq htab_eq_pointer = eq_pointer;
73
74 /* The following function returns the nearest prime number which is
75 greater than a given source number, N. */
76
77 static unsigned long
78 higher_prime_number (n)
79 unsigned long n;
80 {
81 unsigned long i;
82
83 /* Ensure we have a larger number and then force to odd. */
84 n++;
85 n |= 0x01;
86
87 /* All odd numbers < 9 are prime. */
88 if (n < 9)
89 return n;
90
91 /* Otherwise find the next prime using a sieve. */
92
93 next:
94
95 for (i = 3; i * i <= n; i += 2)
96 if (n % i == 0)
97 {
98 n += 2;
99 goto next;
100 }
101
102 return n;
103 }
104
105 /* Returns a hash code for P. */
106
107 static hashval_t
108 hash_pointer (p)
109 const PTR p;
110 {
111 return (hashval_t) ((long)p >> 3);
112 }
113
114 /* Returns non-zero if P1 and P2 are equal. */
115
116 static int
117 eq_pointer (p1, p2)
118 const PTR p1;
119 const PTR p2;
120 {
121 return p1 == p2;
122 }
123
124 /* This function creates table with length slightly longer than given
125 source length. Created hash table is initiated as empty (all the
126 hash table entries are EMPTY_ENTRY). The function returns the
127 created hash table. Memory allocation must not fail. */
128
129 htab_t
130 htab_create (size, hash_f, eq_f, del_f)
131 size_t size;
132 htab_hash hash_f;
133 htab_eq eq_f;
134 htab_del del_f;
135 {
136 htab_t result;
137
138 size = higher_prime_number (size);
139 result = (htab_t) xcalloc (1, sizeof (struct htab));
140 result->entries = (PTR *) xcalloc (size, sizeof (PTR));
141 result->size = size;
142 result->hash_f = hash_f;
143 result->eq_f = eq_f;
144 result->del_f = del_f;
145 result->return_allocation_failure = 0;
146 return result;
147 }
148
149 /* This function creates table with length slightly longer than given
150 source length. The created hash table is initiated as empty (all the
151 hash table entries are EMPTY_ENTRY). The function returns the created
152 hash table. Memory allocation may fail; it may return NULL. */
153
154 htab_t
155 htab_try_create (size, hash_f, eq_f, del_f)
156 size_t size;
157 htab_hash hash_f;
158 htab_eq eq_f;
159 htab_del del_f;
160 {
161 htab_t result;
162
163 size = higher_prime_number (size);
164 result = (htab_t) calloc (1, sizeof (struct htab));
165 if (result == NULL)
166 return NULL;
167
168 result->entries = (PTR *) calloc (size, sizeof (PTR));
169 if (result->entries == NULL)
170 {
171 free (result);
172 return NULL;
173 }
174
175 result->size = size;
176 result->hash_f = hash_f;
177 result->eq_f = eq_f;
178 result->del_f = del_f;
179 result->return_allocation_failure = 1;
180 return result;
181 }
182
183 /* This function frees all memory allocated for given hash table.
184 Naturally the hash table must already exist. */
185
186 void
187 htab_delete (htab)
188 htab_t htab;
189 {
190 int i;
191
192 if (htab->del_f)
193 for (i = htab->size - 1; i >= 0; i--)
194 if (htab->entries[i] != EMPTY_ENTRY
195 && htab->entries[i] != DELETED_ENTRY)
196 (*htab->del_f) (htab->entries[i]);
197
198 free (htab->entries);
199 free (htab);
200 }
201
202 /* This function clears all entries in the given hash table. */
203
204 void
205 htab_empty (htab)
206 htab_t htab;
207 {
208 int i;
209
210 if (htab->del_f)
211 for (i = htab->size - 1; i >= 0; i--)
212 if (htab->entries[i] != EMPTY_ENTRY
213 && htab->entries[i] != DELETED_ENTRY)
214 (*htab->del_f) (htab->entries[i]);
215
216 memset (htab->entries, 0, htab->size * sizeof (PTR));
217 }
218
219 /* Similar to htab_find_slot, but without several unwanted side effects:
220 - Does not call htab->eq_f when it finds an existing entry.
221 - Does not change the count of elements/searches/collisions in the
222 hash table.
223 This function also assumes there are no deleted entries in the table.
224 HASH is the hash value for the element to be inserted. */
225
226 static PTR *
227 find_empty_slot_for_expand (htab, hash)
228 htab_t htab;
229 hashval_t hash;
230 {
231 size_t size = htab->size;
232 hashval_t hash2 = 1 + hash % (size - 2);
233 unsigned int index = hash % size;
234
235 for (;;)
236 {
237 PTR *slot = htab->entries + index;
238
239 if (*slot == EMPTY_ENTRY)
240 return slot;
241 else if (*slot == DELETED_ENTRY)
242 abort ();
243
244 index += hash2;
245 if (index >= size)
246 index -= size;
247 }
248 }
249
250 /* The following function changes size of memory allocated for the
251 entries and repeatedly inserts the table elements. The occupancy
252 of the table after the call will be about 50%. Naturally the hash
253 table must already exist. Remember also that the place of the
254 table entries is changed. If memory allocation failures are allowed,
255 this function will return zero, indicating that the table could not be
256 expanded. If all goes well, it will return a non-zero value. */
257
258 static int
259 htab_expand (htab)
260 htab_t htab;
261 {
262 PTR *oentries;
263 PTR *olimit;
264 PTR *p;
265
266 oentries = htab->entries;
267 olimit = oentries + htab->size;
268
269 htab->size = higher_prime_number (htab->size * 2);
270
271 if (htab->return_allocation_failure)
272 {
273 PTR *nentries = (PTR *) calloc (htab->size, sizeof (PTR *));
274 if (nentries == NULL)
275 return 0;
276 htab->entries = nentries;
277 }
278 else
279 htab->entries = (PTR *) xcalloc (htab->size, sizeof (PTR *));
280
281 htab->n_elements -= htab->n_deleted;
282 htab->n_deleted = 0;
283
284 p = oentries;
285 do
286 {
287 PTR x = *p;
288
289 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
290 {
291 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
292
293 *q = x;
294 }
295
296 p++;
297 }
298 while (p < olimit);
299
300 free (oentries);
301 return 1;
302 }
303
304 /* This function searches for a hash table entry equal to the given
305 element. It cannot be used to insert or delete an element. */
306
307 PTR
308 htab_find_with_hash (htab, element, hash)
309 htab_t htab;
310 const PTR element;
311 hashval_t hash;
312 {
313 unsigned int index;
314 hashval_t hash2;
315 size_t size;
316 PTR entry;
317
318 htab->searches++;
319 size = htab->size;
320 index = hash % size;
321
322 entry = htab->entries[index];
323 if (entry == EMPTY_ENTRY
324 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
325 return entry;
326
327 hash2 = 1 + hash % (size - 2);
328
329 for (;;)
330 {
331 htab->collisions++;
332 index += hash2;
333 if (index >= size)
334 index -= size;
335
336 entry = htab->entries[index];
337 if (entry == EMPTY_ENTRY
338 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
339 return entry;
340 }
341 }
342
343 /* Like htab_find_slot_with_hash, but compute the hash value from the
344 element. */
345
346 PTR
347 htab_find (htab, element)
348 htab_t htab;
349 const PTR element;
350 {
351 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
352 }
353
354 /* This function searches for a hash table slot containing an entry
355 equal to the given element. To delete an entry, call this with
356 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
357 after doing some checks). To insert an entry, call this with
358 INSERT = 1, then write the value you want into the returned slot.
359 When inserting an entry, NULL may be returned if memory allocation
360 fails. */
361
362 PTR *
363 htab_find_slot_with_hash (htab, element, hash, insert)
364 htab_t htab;
365 const PTR element;
366 hashval_t hash;
367 enum insert_option insert;
368 {
369 PTR *first_deleted_slot;
370 unsigned int index;
371 hashval_t hash2;
372 size_t size;
373
374 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
375 && htab_expand (htab) == 0)
376 return NULL;
377
378 size = htab->size;
379 hash2 = 1 + hash % (size - 2);
380 index = hash % size;
381
382 htab->searches++;
383 first_deleted_slot = NULL;
384
385 for (;;)
386 {
387 PTR entry = htab->entries[index];
388 if (entry == EMPTY_ENTRY)
389 {
390 if (insert == NO_INSERT)
391 return NULL;
392
393 htab->n_elements++;
394
395 if (first_deleted_slot)
396 {
397 *first_deleted_slot = EMPTY_ENTRY;
398 return first_deleted_slot;
399 }
400
401 return &htab->entries[index];
402 }
403
404 if (entry == DELETED_ENTRY)
405 {
406 if (!first_deleted_slot)
407 first_deleted_slot = &htab->entries[index];
408 }
409 else if ((*htab->eq_f) (entry, element))
410 return &htab->entries[index];
411
412 htab->collisions++;
413 index += hash2;
414 if (index >= size)
415 index -= size;
416 }
417 }
418
419 /* Like htab_find_slot_with_hash, but compute the hash value from the
420 element. */
421
422 PTR *
423 htab_find_slot (htab, element, insert)
424 htab_t htab;
425 const PTR element;
426 enum insert_option insert;
427 {
428 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
429 insert);
430 }
431
432 /* This function deletes an element with the given value from hash
433 table. If there is no matching element in the hash table, this
434 function does nothing. */
435
436 void
437 htab_remove_elt (htab, element)
438 htab_t htab;
439 PTR element;
440 {
441 PTR *slot;
442
443 slot = htab_find_slot (htab, element, NO_INSERT);
444 if (*slot == EMPTY_ENTRY)
445 return;
446
447 if (htab->del_f)
448 (*htab->del_f) (*slot);
449
450 *slot = DELETED_ENTRY;
451 htab->n_deleted++;
452 }
453
454 /* This function clears a specified slot in a hash table. It is
455 useful when you've already done the lookup and don't want to do it
456 again. */
457
458 void
459 htab_clear_slot (htab, slot)
460 htab_t htab;
461 PTR *slot;
462 {
463 if (slot < htab->entries || slot >= htab->entries + htab->size
464 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
465 abort ();
466
467 if (htab->del_f)
468 (*htab->del_f) (*slot);
469
470 *slot = DELETED_ENTRY;
471 htab->n_deleted++;
472 }
473
474 /* This function scans over the entire hash table calling
475 CALLBACK for each live entry. If CALLBACK returns false,
476 the iteration stops. INFO is passed as CALLBACK's second
477 argument. */
478
479 void
480 htab_traverse (htab, callback, info)
481 htab_t htab;
482 htab_trav callback;
483 PTR info;
484 {
485 PTR *slot = htab->entries;
486 PTR *limit = slot + htab->size;
487
488 do
489 {
490 PTR x = *slot;
491
492 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
493 if (!(*callback) (slot, info))
494 break;
495 }
496 while (++slot < limit);
497 }
498
499 /* Return the current size of given hash table. */
500
501 size_t
502 htab_size (htab)
503 htab_t htab;
504 {
505 return htab->size;
506 }
507
508 /* Return the current number of elements in given hash table. */
509
510 size_t
511 htab_elements (htab)
512 htab_t htab;
513 {
514 return htab->n_elements - htab->n_deleted;
515 }
516
517 /* Return the fraction of fixed collisions during all work with given
518 hash table. */
519
520 double
521 htab_collisions (htab)
522 htab_t htab;
523 {
524 if (htab->searches == 0)
525 return 0.0;
526
527 return (double) htab->collisions / (double) htab->searches;
528 }
This page took 0.042527 seconds and 4 git commands to generate.