* hashtab.c, partition.c, xmemdup.c: Include string.h
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <sys/types.h>
39
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
43
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47
48 #include <stdio.h>
49
50 #include "libiberty.h"
51 #include "hashtab.h"
52
53 /* This macro defines reserved value for empty table entry. */
54
55 #define EMPTY_ENTRY ((void *) 0)
56
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
60 #define DELETED_ENTRY ((void *) 1)
61
62 /* The following function returns the nearest prime number which is
63 greater than given source number. */
64
65 static unsigned long
66 higher_prime_number (n)
67 unsigned long n;
68 {
69 unsigned long i;
70
71 n |= 0x01; /* Force N to be odd. */
72 if (n < 9)
73 return n; /* All odd numbers < 9 are prime. */
74
75 next:
76 n += 2;
77 i = 3;
78 do
79 {
80 if (n % i == 0)
81 goto next;
82 i += 2;
83 }
84 while ((i * i) <= n);
85
86 return n;
87 }
88
89 /* This function creates table with length slightly longer than given
90 source length. Created hash table is initiated as empty (all the
91 hash table entries are EMPTY_ENTRY). The function returns the
92 created hash table. */
93
94 htab_t
95 htab_create (size, hash_f, eq_f, del_f)
96 size_t size;
97 htab_hash hash_f;
98 htab_eq eq_f;
99 htab_del del_f;
100 {
101 htab_t result;
102
103 size = higher_prime_number (size);
104 result = (htab_t) xcalloc (1, sizeof (struct htab));
105 result->entries = (void **) xcalloc (size, sizeof (void *));
106 result->size = size;
107 result->hash_f = hash_f;
108 result->eq_f = eq_f;
109 result->del_f = del_f;
110 return result;
111 }
112
113 /* This function frees all memory allocated for given hash table.
114 Naturally the hash table must already exist. */
115
116 void
117 htab_delete (htab)
118 htab_t htab;
119 {
120 int i;
121 if (htab->del_f)
122 for (i = htab->size - 1; i >= 0; i--)
123 {
124 if (htab->entries[i] != EMPTY_ENTRY
125 && htab->entries[i] != DELETED_ENTRY)
126 (*htab->del_f) (htab->entries[i]);
127 }
128
129 free (htab->entries);
130 free (htab);
131 }
132
133 /* This function clears all entries in the given hash table. */
134
135 void
136 htab_empty (htab)
137 htab_t htab;
138 {
139 int i;
140 if (htab->del_f)
141 for (i = htab->size - 1; i >= 0; i--)
142 {
143 if (htab->entries[i] != EMPTY_ENTRY
144 && htab->entries[i] != DELETED_ENTRY)
145 (*htab->del_f) (htab->entries[i]);
146 }
147
148 memset (htab->entries, 0, htab->size * sizeof (void *));
149 }
150
151 /* Similar to htab_find_slot, but without several unwanted side effects:
152 - Does not call htab->eq_f when it finds an existing entry.
153 - Does not change the count of elements/searches/collisions in the
154 hash table.
155 This function also assumes there are no deleted entries in the table.
156 HASH is the hash value for the element to be inserted. */
157 static void **
158 find_empty_slot_for_expand (htab, hash)
159 htab_t htab;
160 unsigned int hash;
161 {
162 size_t size = htab->size;
163 unsigned int hash2 = 1 + hash % (size - 2);
164 unsigned int index = hash % size;
165
166 for (;;)
167 {
168 void **slot = htab->entries + index;
169 if (*slot == EMPTY_ENTRY)
170 return slot;
171
172 if (*slot == DELETED_ENTRY)
173 abort ();
174
175 index += hash2;
176 if (index >= size)
177 index -= size;
178 }
179 }
180
181 /* The following function changes size of memory allocated for the
182 entries and repeatedly inserts the table elements. The occupancy
183 of the table after the call will be about 50%. Naturally the hash
184 table must already exist. Remember also that the place of the
185 table entries is changed. */
186
187 static void
188 htab_expand (htab)
189 htab_t htab;
190 {
191 void **oentries;
192 void **olimit;
193 void **p;
194
195 oentries = htab->entries;
196 olimit = oentries + htab->size;
197
198 htab->size = higher_prime_number (htab->size * 2);
199 htab->entries = xcalloc (htab->size, sizeof (void **));
200
201 htab->n_elements -= htab->n_deleted;
202 htab->n_deleted = 0;
203
204 p = oentries;
205 do
206 {
207 void *x = *p;
208 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
209 {
210 void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
211 *q = x;
212 }
213 p++;
214 }
215 while (p < olimit);
216 free (oentries);
217 }
218
219 /* This function searches for a hash table entry equal to the given
220 element. It cannot be used to insert or delete an element. */
221
222 void *
223 htab_find_with_hash (htab, element, hash)
224 htab_t htab;
225 const void *element;
226 unsigned int hash;
227 {
228 unsigned int index, hash2;
229 size_t size;
230
231 htab->searches++;
232 size = htab->size;
233 hash2 = 1 + hash % (size - 2);
234 index = hash % size;
235
236 for (;;)
237 {
238 void *entry = htab->entries[index];
239 if (entry == EMPTY_ENTRY)
240 return NULL;
241 else if (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element))
242 return entry;
243
244 htab->collisions++;
245 index += hash2;
246 if (index >= size)
247 index -= size;
248 }
249 }
250
251 /* Like htab_find_slot_with_hash, but compute the hash value from the
252 element. */
253 void *
254 htab_find (htab, element)
255 htab_t htab;
256 const void *element;
257 {
258 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
259 }
260
261 /* This function searches for a hash table slot containing an entry
262 equal to the given element. To delete an entry, call this with
263 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
264 after doing some checks). To insert an entry, call this with
265 INSERT = 1, then write the value you want into the returned slot. */
266
267 void **
268 htab_find_slot_with_hash (htab, element, hash, insert)
269 htab_t htab;
270 const void *element;
271 unsigned int hash;
272 int insert;
273 {
274 void **first_deleted_slot;
275 unsigned int index, hash2;
276 size_t size;
277
278 if (insert && htab->size * 3 <= htab->n_elements * 4)
279 htab_expand (htab);
280
281 size = htab->size;
282 hash2 = 1 + hash % (size - 2);
283 index = hash % size;
284
285 htab->searches++;
286 first_deleted_slot = NULL;
287
288 for (;;)
289 {
290 void *entry = htab->entries[index];
291 if (entry == EMPTY_ENTRY)
292 {
293 if (!insert)
294 return NULL;
295
296 htab->n_elements++;
297
298 if (first_deleted_slot)
299 {
300 *first_deleted_slot = EMPTY_ENTRY;
301 return first_deleted_slot;
302 }
303
304 return &htab->entries[index];
305 }
306
307 if (entry == DELETED_ENTRY)
308 {
309 if (!first_deleted_slot)
310 first_deleted_slot = &htab->entries[index];
311 }
312 else
313 {
314 if ((*htab->eq_f) (entry, element))
315 return &htab->entries[index];
316 }
317
318 htab->collisions++;
319 index += hash2;
320 if (index >= size)
321 index -= size;
322 }
323 }
324
325 /* Like htab_find_slot_with_hash, but compute the hash value from the
326 element. */
327 void **
328 htab_find_slot (htab, element, insert)
329 htab_t htab;
330 const void *element;
331 int insert;
332 {
333 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
334 insert);
335 }
336
337 /* This function deletes an element with the given value from hash
338 table. If there is no matching element in the hash table, this
339 function does nothing. */
340
341 void
342 htab_remove_elt (htab, element)
343 htab_t htab;
344 void *element;
345 {
346 void **slot;
347
348 slot = htab_find_slot (htab, element, 0);
349 if (*slot == EMPTY_ENTRY)
350 return;
351
352 if (htab->del_f)
353 (*htab->del_f) (*slot);
354
355 *slot = DELETED_ENTRY;
356 htab->n_deleted++;
357 }
358
359 /* This function clears a specified slot in a hash table. It is
360 useful when you've already done the lookup and don't want to do it
361 again. */
362
363 void
364 htab_clear_slot (htab, slot)
365 htab_t htab;
366 void **slot;
367 {
368 if (slot < htab->entries || slot >= htab->entries + htab->size
369 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
370 abort ();
371 if (htab->del_f)
372 (*htab->del_f) (*slot);
373 *slot = DELETED_ENTRY;
374 htab->n_deleted++;
375 }
376
377 /* This function scans over the entire hash table calling
378 CALLBACK for each live entry. If CALLBACK returns false,
379 the iteration stops. INFO is passed as CALLBACK's second
380 argument. */
381
382 void
383 htab_traverse (htab, callback, info)
384 htab_t htab;
385 htab_trav callback;
386 void *info;
387 {
388 void **slot, **limit;
389 slot = htab->entries;
390 limit = slot + htab->size;
391 do
392 {
393 void *x = *slot;
394 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
395 if (!(*callback) (slot, info))
396 break;
397 }
398 while (++slot < limit);
399 }
400
401 /* The following function returns current size of given hash table. */
402
403 size_t
404 htab_size (htab)
405 htab_t htab;
406 {
407 return htab->size;
408 }
409
410 /* The following function returns current number of elements in given
411 hash table. */
412
413 size_t
414 htab_elements (htab)
415 htab_t htab;
416 {
417 return htab->n_elements - htab->n_deleted;
418 }
419
420 /* The following function returns number of percents of fixed
421 collisions during all work with given hash table. */
422
423 double
424 htab_collisions (htab)
425 htab_t htab;
426 {
427 int searches;
428
429 searches = htab->searches;
430 if (searches == 0)
431 return 0.0;
432 return (double)htab->collisions / (double)searches;
433 }
This page took 0.043469 seconds and 5 git commands to generate.