merge from gcc
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <sys/types.h>
39
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
43
44 #include <stdio.h>
45
46 #include "libiberty.h"
47 #include "hashtab.h"
48
49 /* This macro defines reserved value for empty table entry. */
50
51 #define EMPTY_ENTRY ((void *) 0)
52
53 /* This macro defines reserved value for table entry which contained
54 a deleted element. */
55
56 #define DELETED_ENTRY ((void *) 1)
57
58 /* The following function returns the nearest prime number which is
59 greater than given source number. */
60
61 static unsigned long
62 higher_prime_number (n)
63 unsigned long n;
64 {
65 unsigned long i;
66
67 n |= 0x01; /* Force N to be odd. */
68 if (n < 9)
69 return n; /* All odd numbers < 9 are prime. */
70
71 next:
72 n += 2;
73 i = 3;
74 do
75 {
76 if (n % i == 0)
77 goto next;
78 i += 2;
79 }
80 while ((i * i) <= n);
81
82 return n;
83 }
84
85 /* This function creates table with length slightly longer than given
86 source length. Created hash table is initiated as empty (all the
87 hash table entries are EMPTY_ENTRY). The function returns the
88 created hash table. */
89
90 htab_t
91 htab_create (size, hash_f, eq_f, del_f)
92 size_t size;
93 htab_hash hash_f;
94 htab_eq eq_f;
95 htab_del del_f;
96 {
97 htab_t result;
98
99 size = higher_prime_number (size);
100 result = (htab_t) xcalloc (1, sizeof (struct htab));
101 result->entries = (void **) xcalloc (size, sizeof (void *));
102 result->size = size;
103 result->hash_f = hash_f;
104 result->eq_f = eq_f;
105 result->del_f = del_f;
106 return result;
107 }
108
109 /* This function frees all memory allocated for given hash table.
110 Naturally the hash table must already exist. */
111
112 void
113 htab_delete (htab)
114 htab_t htab;
115 {
116 int i;
117 if (htab->del_f)
118 for (i = htab->size - 1; i >= 0; i--)
119 {
120 if (htab->entries[i] != EMPTY_ENTRY
121 && htab->entries[i] != DELETED_ENTRY)
122 (*htab->del_f) (htab->entries[i]);
123 }
124
125 free (htab->entries);
126 free (htab);
127 }
128
129 /* This function clears all entries in the given hash table. */
130
131 void
132 htab_empty (htab)
133 htab_t htab;
134 {
135 int i;
136 if (htab->del_f)
137 for (i = htab->size - 1; i >= 0; i--)
138 {
139 if (htab->entries[i] != EMPTY_ENTRY
140 && htab->entries[i] != DELETED_ENTRY)
141 (*htab->del_f) (htab->entries[i]);
142 }
143
144 memset (htab->entries, 0, htab->size * sizeof (void *));
145 }
146
147 /* Similar to htab_find_slot, but without several unwanted side effects:
148 - Does not call htab->eq_f when it finds an existing entry.
149 - Does not change the count of elements/searches/collisions in the
150 hash table.
151 This function also assumes there are no deleted entries in the table.
152 HASH is the hash value for the element to be inserted. */
153 static void **
154 find_empty_slot_for_expand (htab, hash)
155 htab_t htab;
156 unsigned int hash;
157 {
158 size_t size = htab->size;
159 unsigned int hash2 = 1 + hash % (size - 2);
160 unsigned int index = hash % size;
161
162 for (;;)
163 {
164 void **slot = htab->entries + index;
165 if (*slot == EMPTY_ENTRY)
166 return slot;
167
168 if (*slot == DELETED_ENTRY)
169 abort ();
170
171 index += hash2;
172 if (index >= size)
173 index -= size;
174 }
175 }
176
177 /* The following function changes size of memory allocated for the
178 entries and repeatedly inserts the table elements. The occupancy
179 of the table after the call will be about 50%. Naturally the hash
180 table must already exist. Remember also that the place of the
181 table entries is changed. */
182
183 static void
184 htab_expand (htab)
185 htab_t htab;
186 {
187 void **oentries;
188 void **olimit;
189 void **p;
190
191 oentries = htab->entries;
192 olimit = oentries + htab->size;
193
194 htab->size = higher_prime_number (htab->size * 2);
195 htab->entries = xcalloc (htab->size, sizeof (void **));
196
197 htab->n_elements -= htab->n_deleted;
198 htab->n_deleted = 0;
199
200 p = oentries;
201 do
202 {
203 void *x = *p;
204 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
205 {
206 void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
207 *q = x;
208 }
209 p++;
210 }
211 while (p < olimit);
212 free (oentries);
213 }
214
215 /* This function searches for a hash table entry equal to the given
216 element. It cannot be used to insert or delete an element. */
217
218 void *
219 htab_find_with_hash (htab, element, hash)
220 htab_t htab;
221 const void *element;
222 unsigned int hash;
223 {
224 unsigned int index, hash2;
225 size_t size;
226
227 htab->searches++;
228 size = htab->size;
229 hash2 = 1 + hash % (size - 2);
230 index = hash % size;
231
232 for (;;)
233 {
234 void *entry = htab->entries[index];
235 if (entry == EMPTY_ENTRY)
236 return NULL;
237 else if (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element))
238 return entry;
239
240 htab->collisions++;
241 index += hash2;
242 if (index >= size)
243 index -= size;
244 }
245 }
246
247 /* Like htab_find_slot_with_hash, but compute the hash value from the
248 element. */
249 void *
250 htab_find (htab, element)
251 htab_t htab;
252 const void *element;
253 {
254 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
255 }
256
257 /* This function searches for a hash table slot containing an entry
258 equal to the given element. To delete an entry, call this with
259 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
260 after doing some checks). To insert an entry, call this with
261 INSERT = 1, then write the value you want into the returned slot. */
262
263 void **
264 htab_find_slot_with_hash (htab, element, hash, insert)
265 htab_t htab;
266 const void *element;
267 unsigned int hash;
268 int insert;
269 {
270 void **first_deleted_slot;
271 unsigned int index, hash2;
272 size_t size;
273
274 if (insert && htab->size * 3 <= htab->n_elements * 4)
275 htab_expand (htab);
276
277 size = htab->size;
278 hash2 = 1 + hash % (size - 2);
279 index = hash % size;
280
281 htab->searches++;
282 first_deleted_slot = NULL;
283
284 for (;;)
285 {
286 void *entry = htab->entries[index];
287 if (entry == EMPTY_ENTRY)
288 {
289 if (!insert)
290 return NULL;
291
292 htab->n_elements++;
293
294 if (first_deleted_slot)
295 {
296 *first_deleted_slot = EMPTY_ENTRY;
297 return first_deleted_slot;
298 }
299
300 return &htab->entries[index];
301 }
302
303 if (entry == DELETED_ENTRY)
304 {
305 if (!first_deleted_slot)
306 first_deleted_slot = &htab->entries[index];
307 }
308 else
309 {
310 if ((*htab->eq_f) (entry, element))
311 return &htab->entries[index];
312 }
313
314 htab->collisions++;
315 index += hash2;
316 if (index >= size)
317 index -= size;
318 }
319 }
320
321 /* Like htab_find_slot_with_hash, but compute the hash value from the
322 element. */
323 void **
324 htab_find_slot (htab, element, insert)
325 htab_t htab;
326 const void *element;
327 int insert;
328 {
329 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
330 insert);
331 }
332
333 /* This function deletes an element with the given value from hash
334 table. If there is no matching element in the hash table, this
335 function does nothing. */
336
337 void
338 htab_remove_elt (htab, element)
339 htab_t htab;
340 void *element;
341 {
342 void **slot;
343
344 slot = htab_find_slot (htab, element, 0);
345 if (*slot == EMPTY_ENTRY)
346 return;
347
348 if (htab->del_f)
349 (*htab->del_f) (*slot);
350
351 *slot = DELETED_ENTRY;
352 htab->n_deleted++;
353 }
354
355 /* This function clears a specified slot in a hash table. It is
356 useful when you've already done the lookup and don't want to do it
357 again. */
358
359 void
360 htab_clear_slot (htab, slot)
361 htab_t htab;
362 void **slot;
363 {
364 if (slot < htab->entries || slot >= htab->entries + htab->size
365 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
366 abort ();
367 if (htab->del_f)
368 (*htab->del_f) (*slot);
369 *slot = DELETED_ENTRY;
370 htab->n_deleted++;
371 }
372
373 /* This function scans over the entire hash table calling
374 CALLBACK for each live entry. If CALLBACK returns false,
375 the iteration stops. INFO is passed as CALLBACK's second
376 argument. */
377
378 void
379 htab_traverse (htab, callback, info)
380 htab_t htab;
381 htab_trav callback;
382 void *info;
383 {
384 void **slot, **limit;
385 slot = htab->entries;
386 limit = slot + htab->size;
387 do
388 {
389 void *x = *slot;
390 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
391 if (!(*callback) (slot, info))
392 break;
393 }
394 while (++slot < limit);
395 }
396
397 /* The following function returns current size of given hash table. */
398
399 size_t
400 htab_size (htab)
401 htab_t htab;
402 {
403 return htab->size;
404 }
405
406 /* The following function returns current number of elements in given
407 hash table. */
408
409 size_t
410 htab_elements (htab)
411 htab_t htab;
412 {
413 return htab->n_elements - htab->n_deleted;
414 }
415
416 /* The following function returns number of percents of fixed
417 collisions during all work with given hash table. */
418
419 double
420 htab_collisions (htab)
421 htab_t htab;
422 {
423 int searches;
424
425 searches = htab->searches;
426 if (searches == 0)
427 return 0.0;
428 return (double)htab->collisions / (double)searches;
429 }
This page took 0.049532 seconds and 5 git commands to generate.