merge from gcc
[deliverable/binutils-gdb.git] / libiberty / splay-tree.c
1 /* A splay-tree datatype.
2 Copyright (C) 1998, 1999, 2000, 2001, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Mark Mitchell (mark@markmitchell.com).
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /* For an easily readable description of splay-trees, see:
24
25 Lewis, Harry R. and Denenberg, Larry. Data Structures and Their
26 Algorithms. Harper-Collins, Inc. 1991. */
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #ifdef HAVE_STDLIB_H
33 #include <stdlib.h>
34 #endif
35
36 #include <stdio.h>
37
38 #include "libiberty.h"
39 #include "splay-tree.h"
40
41 static void splay_tree_delete_helper (splay_tree, splay_tree_node);
42 static inline void rotate_left (splay_tree_node *,
43 splay_tree_node, splay_tree_node);
44 static inline void rotate_right (splay_tree_node *,
45 splay_tree_node, splay_tree_node);
46 static void splay_tree_splay (splay_tree, splay_tree_key);
47 static int splay_tree_foreach_helper (splay_tree, splay_tree_node,
48 splay_tree_foreach_fn, void*);
49
50 /* Deallocate NODE (a member of SP), and all its sub-trees. */
51
52 static void
53 splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
54 {
55 splay_tree_node pending = 0;
56 splay_tree_node active = 0;
57
58 if (!node)
59 return;
60
61 #define KDEL(x) if (sp->delete_key) (*sp->delete_key)(x);
62 #define VDEL(x) if (sp->delete_value) (*sp->delete_value)(x);
63
64 KDEL (node->key);
65 VDEL (node->value);
66
67 /* We use the "key" field to hold the "next" pointer. */
68 node->key = (splay_tree_key)pending;
69 pending = (splay_tree_node)node;
70
71 /* Now, keep processing the pending list until there aren't any
72 more. This is a little more complicated than just recursing, but
73 it doesn't toast the stack for large trees. */
74
75 while (pending)
76 {
77 active = pending;
78 pending = 0;
79 while (active)
80 {
81 splay_tree_node temp;
82
83 /* active points to a node which has its key and value
84 deallocated, we just need to process left and right. */
85
86 if (active->left)
87 {
88 KDEL (active->left->key);
89 VDEL (active->left->value);
90 active->left->key = (splay_tree_key)pending;
91 pending = (splay_tree_node)(active->left);
92 }
93 if (active->right)
94 {
95 KDEL (active->right->key);
96 VDEL (active->right->value);
97 active->right->key = (splay_tree_key)pending;
98 pending = (splay_tree_node)(active->right);
99 }
100
101 temp = active;
102 active = (splay_tree_node)(temp->key);
103 (*sp->deallocate) ((char*) temp, sp->allocate_data);
104 }
105 }
106 #undef KDEL
107 #undef VDEL
108 }
109
110 /* Rotate the edge joining the left child N with its parent P. PP is the
111 grandparents' pointer to P. */
112
113 static inline void
114 rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
115 {
116 splay_tree_node tmp;
117 tmp = n->right;
118 n->right = p;
119 p->left = tmp;
120 *pp = n;
121 }
122
123 /* Rotate the edge joining the right child N with its parent P. PP is the
124 grandparents' pointer to P. */
125
126 static inline void
127 rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
128 {
129 splay_tree_node tmp;
130 tmp = n->left;
131 n->left = p;
132 p->right = tmp;
133 *pp = n;
134 }
135
136 /* Bottom up splay of key. */
137
138 static void
139 splay_tree_splay (splay_tree sp, splay_tree_key key)
140 {
141 if (sp->root == 0)
142 return;
143
144 do {
145 int cmp1, cmp2;
146 splay_tree_node n, c;
147
148 n = sp->root;
149 cmp1 = (*sp->comp) (key, n->key);
150
151 /* Found. */
152 if (cmp1 == 0)
153 return;
154
155 /* Left or right? If no child, then we're done. */
156 if (cmp1 < 0)
157 c = n->left;
158 else
159 c = n->right;
160 if (!c)
161 return;
162
163 /* Next one left or right? If found or no child, we're done
164 after one rotation. */
165 cmp2 = (*sp->comp) (key, c->key);
166 if (cmp2 == 0
167 || (cmp2 < 0 && !c->left)
168 || (cmp2 > 0 && !c->right))
169 {
170 if (cmp1 < 0)
171 rotate_left (&sp->root, n, c);
172 else
173 rotate_right (&sp->root, n, c);
174 return;
175 }
176
177 /* Now we have the four cases of double-rotation. */
178 if (cmp1 < 0 && cmp2 < 0)
179 {
180 rotate_left (&n->left, c, c->left);
181 rotate_left (&sp->root, n, n->left);
182 }
183 else if (cmp1 > 0 && cmp2 > 0)
184 {
185 rotate_right (&n->right, c, c->right);
186 rotate_right (&sp->root, n, n->right);
187 }
188 else if (cmp1 < 0 && cmp2 > 0)
189 {
190 rotate_right (&n->left, c, c->right);
191 rotate_left (&sp->root, n, n->left);
192 }
193 else if (cmp1 > 0 && cmp2 < 0)
194 {
195 rotate_left (&n->right, c, c->left);
196 rotate_right (&sp->root, n, n->right);
197 }
198 } while (1);
199 }
200
201 /* Call FN, passing it the DATA, for every node below NODE, all of
202 which are from SP, following an in-order traversal. If FN every
203 returns a non-zero value, the iteration ceases immediately, and the
204 value is returned. Otherwise, this function returns 0. */
205
206 static int
207 splay_tree_foreach_helper (splay_tree sp, splay_tree_node node,
208 splay_tree_foreach_fn fn, void *data)
209 {
210 int val;
211
212 if (!node)
213 return 0;
214
215 val = splay_tree_foreach_helper (sp, node->left, fn, data);
216 if (val)
217 return val;
218
219 val = (*fn)(node, data);
220 if (val)
221 return val;
222
223 return splay_tree_foreach_helper (sp, node->right, fn, data);
224 }
225
226
227 /* An allocator and deallocator based on xmalloc. */
228 static void *
229 splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
230 {
231 return (void *) xmalloc (size);
232 }
233
234 static void
235 splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
236 {
237 free (object);
238 }
239
240
241 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
242 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
243 values. Use xmalloc to allocate the splay tree structure, and any
244 nodes added. */
245
246 splay_tree
247 splay_tree_new (splay_tree_compare_fn compare_fn,
248 splay_tree_delete_key_fn delete_key_fn,
249 splay_tree_delete_value_fn delete_value_fn)
250 {
251 return (splay_tree_new_with_allocator
252 (compare_fn, delete_key_fn, delete_value_fn,
253 splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
254 }
255
256
257 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
258 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
259 values. */
260
261 splay_tree
262 splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
263 splay_tree_delete_key_fn delete_key_fn,
264 splay_tree_delete_value_fn delete_value_fn,
265 splay_tree_allocate_fn allocate_fn,
266 splay_tree_deallocate_fn deallocate_fn,
267 void *allocate_data)
268 {
269 return
270 splay_tree_new_typed_alloc (compare_fn, delete_key_fn, delete_value_fn,
271 allocate_fn, allocate_fn, deallocate_fn,
272 allocate_data);
273 }
274
275 /*
276
277 @deftypefn Supplemental splay_tree splay_tree_new_with_typed_alloc
278 (splay_tree_compare_fn @var{compare_fn},
279 splay_tree_delete_key_fn @var{delete_key_fn},
280 splay_tree_delete_value_fn @var{delete_value_fn},
281 splay_tree_allocate_fn @var{tree_allocate_fn},
282 splay_tree_allocate_fn @var{node_allocate_fn},
283 splay_tree_deallocate_fn @var{deallocate_fn},
284 void * @var{allocate_data})
285
286 This function creates a splay tree that uses two different allocators
287 @var{tree_allocate_fn} and @var{node_allocate_fn} to use for allocating the
288 tree itself and its nodes respectively. This is useful when variables of
289 different types need to be allocated with different allocators.
290
291 The splay tree will use @var{compare_fn} to compare nodes,
292 @var{delete_key_fn} to deallocate keys, and @var{delete_value_fn} to
293 deallocate values.
294
295 @end deftypefn
296
297 */
298
299 splay_tree
300 splay_tree_new_typed_alloc (splay_tree_compare_fn compare_fn,
301 splay_tree_delete_key_fn delete_key_fn,
302 splay_tree_delete_value_fn delete_value_fn,
303 splay_tree_allocate_fn tree_allocate_fn,
304 splay_tree_allocate_fn node_allocate_fn,
305 splay_tree_deallocate_fn deallocate_fn,
306 void * allocate_data)
307 {
308 splay_tree sp = (splay_tree) (*tree_allocate_fn)
309 (sizeof (struct splay_tree_s), allocate_data);
310
311 sp->root = 0;
312 sp->comp = compare_fn;
313 sp->delete_key = delete_key_fn;
314 sp->delete_value = delete_value_fn;
315 sp->allocate = node_allocate_fn;
316 sp->deallocate = deallocate_fn;
317 sp->allocate_data = allocate_data;
318
319 return sp;
320 }
321
322 /* Deallocate SP. */
323
324 void
325 splay_tree_delete (splay_tree sp)
326 {
327 splay_tree_delete_helper (sp, sp->root);
328 (*sp->deallocate) ((char*) sp, sp->allocate_data);
329 }
330
331 /* Insert a new node (associating KEY with DATA) into SP. If a
332 previous node with the indicated KEY exists, its data is replaced
333 with the new value. Returns the new node. */
334
335 splay_tree_node
336 splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
337 {
338 int comparison = 0;
339
340 splay_tree_splay (sp, key);
341
342 if (sp->root)
343 comparison = (*sp->comp)(sp->root->key, key);
344
345 if (sp->root && comparison == 0)
346 {
347 /* If the root of the tree already has the indicated KEY, just
348 replace the value with VALUE. */
349 if (sp->delete_value)
350 (*sp->delete_value)(sp->root->value);
351 sp->root->value = value;
352 }
353 else
354 {
355 /* Create a new node, and insert it at the root. */
356 splay_tree_node node;
357
358 node = ((splay_tree_node)
359 (*sp->allocate) (sizeof (struct splay_tree_node_s),
360 sp->allocate_data));
361 node->key = key;
362 node->value = value;
363
364 if (!sp->root)
365 node->left = node->right = 0;
366 else if (comparison < 0)
367 {
368 node->left = sp->root;
369 node->right = node->left->right;
370 node->left->right = 0;
371 }
372 else
373 {
374 node->right = sp->root;
375 node->left = node->right->left;
376 node->right->left = 0;
377 }
378
379 sp->root = node;
380 }
381
382 return sp->root;
383 }
384
385 /* Remove KEY from SP. It is not an error if it did not exist. */
386
387 void
388 splay_tree_remove (splay_tree sp, splay_tree_key key)
389 {
390 splay_tree_splay (sp, key);
391
392 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
393 {
394 splay_tree_node left, right;
395
396 left = sp->root->left;
397 right = sp->root->right;
398
399 /* Delete the root node itself. */
400 if (sp->delete_value)
401 (*sp->delete_value) (sp->root->value);
402 (*sp->deallocate) (sp->root, sp->allocate_data);
403
404 /* One of the children is now the root. Doesn't matter much
405 which, so long as we preserve the properties of the tree. */
406 if (left)
407 {
408 sp->root = left;
409
410 /* If there was a right child as well, hang it off the
411 right-most leaf of the left child. */
412 if (right)
413 {
414 while (left->right)
415 left = left->right;
416 left->right = right;
417 }
418 }
419 else
420 sp->root = right;
421 }
422 }
423
424 /* Lookup KEY in SP, returning VALUE if present, and NULL
425 otherwise. */
426
427 splay_tree_node
428 splay_tree_lookup (splay_tree sp, splay_tree_key key)
429 {
430 splay_tree_splay (sp, key);
431
432 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
433 return sp->root;
434 else
435 return 0;
436 }
437
438 /* Return the node in SP with the greatest key. */
439
440 splay_tree_node
441 splay_tree_max (splay_tree sp)
442 {
443 splay_tree_node n = sp->root;
444
445 if (!n)
446 return NULL;
447
448 while (n->right)
449 n = n->right;
450
451 return n;
452 }
453
454 /* Return the node in SP with the smallest key. */
455
456 splay_tree_node
457 splay_tree_min (splay_tree sp)
458 {
459 splay_tree_node n = sp->root;
460
461 if (!n)
462 return NULL;
463
464 while (n->left)
465 n = n->left;
466
467 return n;
468 }
469
470 /* Return the immediate predecessor KEY, or NULL if there is no
471 predecessor. KEY need not be present in the tree. */
472
473 splay_tree_node
474 splay_tree_predecessor (splay_tree sp, splay_tree_key key)
475 {
476 int comparison;
477 splay_tree_node node;
478
479 /* If the tree is empty, there is certainly no predecessor. */
480 if (!sp->root)
481 return NULL;
482
483 /* Splay the tree around KEY. That will leave either the KEY
484 itself, its predecessor, or its successor at the root. */
485 splay_tree_splay (sp, key);
486 comparison = (*sp->comp)(sp->root->key, key);
487
488 /* If the predecessor is at the root, just return it. */
489 if (comparison < 0)
490 return sp->root;
491
492 /* Otherwise, find the rightmost element of the left subtree. */
493 node = sp->root->left;
494 if (node)
495 while (node->right)
496 node = node->right;
497
498 return node;
499 }
500
501 /* Return the immediate successor KEY, or NULL if there is no
502 successor. KEY need not be present in the tree. */
503
504 splay_tree_node
505 splay_tree_successor (splay_tree sp, splay_tree_key key)
506 {
507 int comparison;
508 splay_tree_node node;
509
510 /* If the tree is empty, there is certainly no successor. */
511 if (!sp->root)
512 return NULL;
513
514 /* Splay the tree around KEY. That will leave either the KEY
515 itself, its predecessor, or its successor at the root. */
516 splay_tree_splay (sp, key);
517 comparison = (*sp->comp)(sp->root->key, key);
518
519 /* If the successor is at the root, just return it. */
520 if (comparison > 0)
521 return sp->root;
522
523 /* Otherwise, find the leftmost element of the right subtree. */
524 node = sp->root->right;
525 if (node)
526 while (node->left)
527 node = node->left;
528
529 return node;
530 }
531
532 /* Call FN, passing it the DATA, for every node in SP, following an
533 in-order traversal. If FN every returns a non-zero value, the
534 iteration ceases immediately, and the value is returned.
535 Otherwise, this function returns 0. */
536
537 int
538 splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
539 {
540 return splay_tree_foreach_helper (sp, sp->root, fn, data);
541 }
542
543 /* Splay-tree comparison function, treating the keys as ints. */
544
545 int
546 splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
547 {
548 if ((int) k1 < (int) k2)
549 return -1;
550 else if ((int) k1 > (int) k2)
551 return 1;
552 else
553 return 0;
554 }
555
556 /* Splay-tree comparison function, treating the keys as pointers. */
557
558 int
559 splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
560 {
561 if ((char*) k1 < (char*) k2)
562 return -1;
563 else if ((char*) k1 > (char*) k2)
564 return 1;
565 else
566 return 0;
567 }
This page took 0.041599 seconds and 4 git commands to generate.