merge from gcc
[deliverable/binutils-gdb.git] / libiberty / splay-tree.c
1 /* A splay-tree datatype.
2 Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Mark Mitchell (mark@markmitchell.com).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* For an easily readable description of splay-trees, see:
23
24 Lewis, Harry R. and Denenberg, Larry. Data Structures and Their
25 Algorithms. Harper-Collins, Inc. 1991. */
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #ifdef HAVE_STDLIB_H
32 #include <stdlib.h>
33 #endif
34
35 #include <stdio.h>
36
37 #include "libiberty.h"
38 #include "splay-tree.h"
39
40 static void splay_tree_delete_helper PARAMS((splay_tree,
41 splay_tree_node));
42 static void splay_tree_splay PARAMS((splay_tree,
43 splay_tree_key));
44 static splay_tree_node splay_tree_splay_helper
45 PARAMS((splay_tree,
46 splay_tree_key,
47 splay_tree_node*,
48 splay_tree_node*,
49 splay_tree_node*));
50 static int splay_tree_foreach_helper PARAMS((splay_tree,
51 splay_tree_node,
52 splay_tree_foreach_fn,
53 void*));
54
55 /* Deallocate NODE (a member of SP), and all its sub-trees. */
56
57 static void
58 splay_tree_delete_helper (sp, node)
59 splay_tree sp;
60 splay_tree_node node;
61 {
62 if (!node)
63 return;
64
65 splay_tree_delete_helper (sp, node->left);
66 splay_tree_delete_helper (sp, node->right);
67
68 if (sp->delete_key)
69 (*sp->delete_key)(node->key);
70 if (sp->delete_value)
71 (*sp->delete_value)(node->value);
72
73 free ((char*) node);
74 }
75
76 /* Help splay SP around KEY. PARENT and GRANDPARENT are the parent
77 and grandparent, respectively, of NODE. */
78
79 static splay_tree_node
80 splay_tree_splay_helper (sp, key, node, parent, grandparent)
81 splay_tree sp;
82 splay_tree_key key;
83 splay_tree_node *node;
84 splay_tree_node *parent;
85 splay_tree_node *grandparent;
86 {
87 splay_tree_node *next;
88 splay_tree_node n;
89 int comparison;
90
91 n = *node;
92
93 if (!n)
94 return *parent;
95
96 comparison = (*sp->comp) (key, n->key);
97
98 if (comparison == 0)
99 /* We've found the target. */
100 next = 0;
101 else if (comparison < 0)
102 /* The target is to the left. */
103 next = &n->left;
104 else
105 /* The target is to the right. */
106 next = &n->right;
107
108 if (next)
109 {
110 /* Continue down the tree. */
111 n = splay_tree_splay_helper (sp, key, next, node, parent);
112
113 /* The recursive call will change the place to which NODE
114 points. */
115 if (*node != n)
116 return n;
117 }
118
119 if (!parent)
120 /* NODE is the root. We are done. */
121 return n;
122
123 /* First, handle the case where there is no grandparent (i.e.,
124 *PARENT is the root of the tree.) */
125 if (!grandparent)
126 {
127 if (n == (*parent)->left)
128 {
129 *node = n->right;
130 n->right = *parent;
131 }
132 else
133 {
134 *node = n->left;
135 n->left = *parent;
136 }
137 *parent = n;
138 return n;
139 }
140
141 /* Next handle the cases where both N and *PARENT are left children,
142 or where both are right children. */
143 if (n == (*parent)->left && *parent == (*grandparent)->left)
144 {
145 splay_tree_node p = *parent;
146
147 (*grandparent)->left = p->right;
148 p->right = *grandparent;
149 p->left = n->right;
150 n->right = p;
151 *grandparent = n;
152 return n;
153 }
154 else if (n == (*parent)->right && *parent == (*grandparent)->right)
155 {
156 splay_tree_node p = *parent;
157
158 (*grandparent)->right = p->left;
159 p->left = *grandparent;
160 p->right = n->left;
161 n->left = p;
162 *grandparent = n;
163 return n;
164 }
165
166 /* Finally, deal with the case where N is a left child, but *PARENT
167 is a right child, or vice versa. */
168 if (n == (*parent)->left)
169 {
170 (*parent)->left = n->right;
171 n->right = *parent;
172 (*grandparent)->right = n->left;
173 n->left = *grandparent;
174 *grandparent = n;
175 return n;
176 }
177 else
178 {
179 (*parent)->right = n->left;
180 n->left = *parent;
181 (*grandparent)->left = n->right;
182 n->right = *grandparent;
183 *grandparent = n;
184 return n;
185 }
186 }
187
188 /* Splay SP around KEY. */
189
190 static void
191 splay_tree_splay (sp, key)
192 splay_tree sp;
193 splay_tree_key key;
194 {
195 if (sp->root == 0)
196 return;
197
198 splay_tree_splay_helper (sp, key, &sp->root,
199 /*grandparent=*/0, /*parent=*/0);
200 }
201
202 /* Call FN, passing it the DATA, for every node below NODE, all of
203 which are from SP, following an in-order traversal. If FN every
204 returns a non-zero value, the iteration ceases immediately, and the
205 value is returned. Otherwise, this function returns 0. */
206
207 static int
208 splay_tree_foreach_helper (sp, node, fn, data)
209 splay_tree sp;
210 splay_tree_node node;
211 splay_tree_foreach_fn fn;
212 void* data;
213 {
214 int val;
215
216 if (!node)
217 return 0;
218
219 val = splay_tree_foreach_helper (sp, node->left, fn, data);
220 if (val)
221 return val;
222
223 val = (*fn)(node, data);
224 if (val)
225 return val;
226
227 return splay_tree_foreach_helper (sp, node->right, fn, data);
228 }
229
230 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
231 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
232 values. */
233
234 splay_tree
235 splay_tree_new (compare_fn, delete_key_fn, delete_value_fn)
236 splay_tree_compare_fn compare_fn;
237 splay_tree_delete_key_fn delete_key_fn;
238 splay_tree_delete_value_fn delete_value_fn;
239 {
240 splay_tree sp = (splay_tree) xmalloc (sizeof (struct splay_tree_s));
241 sp->root = 0;
242 sp->comp = compare_fn;
243 sp->delete_key = delete_key_fn;
244 sp->delete_value = delete_value_fn;
245
246 return sp;
247 }
248
249 /* Deallocate SP. */
250
251 void
252 splay_tree_delete (sp)
253 splay_tree sp;
254 {
255 splay_tree_delete_helper (sp, sp->root);
256 free ((char*) sp);
257 }
258
259 /* Insert a new node (associating KEY with DATA) into SP. If a
260 previous node with the indicated KEY exists, its data is replaced
261 with the new value. Returns the new node. */
262
263 splay_tree_node
264 splay_tree_insert (sp, key, value)
265 splay_tree sp;
266 splay_tree_key key;
267 splay_tree_value value;
268 {
269 int comparison = 0;
270
271 splay_tree_splay (sp, key);
272
273 if (sp->root)
274 comparison = (*sp->comp)(sp->root->key, key);
275
276 if (sp->root && comparison == 0)
277 {
278 /* If the root of the tree already has the indicated KEY, just
279 replace the value with VALUE. */
280 if (sp->delete_value)
281 (*sp->delete_value)(sp->root->value);
282 sp->root->value = value;
283 }
284 else
285 {
286 /* Create a new node, and insert it at the root. */
287 splay_tree_node node;
288
289 node = (splay_tree_node) xmalloc (sizeof (struct splay_tree_node_s));
290 node->key = key;
291 node->value = value;
292
293 if (!sp->root)
294 node->left = node->right = 0;
295 else if (comparison < 0)
296 {
297 node->left = sp->root;
298 node->right = node->left->right;
299 node->left->right = 0;
300 }
301 else
302 {
303 node->right = sp->root;
304 node->left = node->right->left;
305 node->right->left = 0;
306 }
307
308 sp->root = node;
309 }
310
311 return sp->root;
312 }
313
314 /* Remove KEY from SP. It is not an error if it did not exist. */
315
316 void
317 splay_tree_remove (sp, key)
318 splay_tree sp;
319 splay_tree_key key;
320 {
321 splay_tree_splay (sp, key);
322
323 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
324 {
325 splay_tree_node left, right;
326
327 left = sp->root->left;
328 right = sp->root->right;
329
330 /* Delete the root node itself. */
331 if (sp->delete_value)
332 (*sp->delete_value) (sp->root->value);
333 free (sp->root);
334
335 /* One of the children is now the root. Doesn't matter much
336 which, so long as we preserve the properties of the tree. */
337 if (left)
338 {
339 sp->root = left;
340
341 /* If there was a right child as well, hang it off the
342 right-most leaf of the left child. */
343 if (right)
344 {
345 while (left->right)
346 left = left->right;
347 left->right = right;
348 }
349 }
350 else
351 sp->root = right;
352 }
353 }
354
355 /* Lookup KEY in SP, returning VALUE if present, and NULL
356 otherwise. */
357
358 splay_tree_node
359 splay_tree_lookup (sp, key)
360 splay_tree sp;
361 splay_tree_key key;
362 {
363 splay_tree_splay (sp, key);
364
365 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
366 return sp->root;
367 else
368 return 0;
369 }
370
371 /* Return the node in SP with the greatest key. */
372
373 splay_tree_node
374 splay_tree_max (sp)
375 splay_tree sp;
376 {
377 splay_tree_node n = sp->root;
378
379 if (!n)
380 return NULL;
381
382 while (n->right)
383 n = n->right;
384
385 return n;
386 }
387
388 /* Return the node in SP with the smallest key. */
389
390 splay_tree_node
391 splay_tree_min (sp)
392 splay_tree sp;
393 {
394 splay_tree_node n = sp->root;
395
396 if (!n)
397 return NULL;
398
399 while (n->left)
400 n = n->left;
401
402 return n;
403 }
404
405 /* Return the immediate predecessor KEY, or NULL if there is no
406 predecessor. KEY need not be present in the tree. */
407
408 splay_tree_node
409 splay_tree_predecessor (sp, key)
410 splay_tree sp;
411 splay_tree_key key;
412 {
413 int comparison;
414 splay_tree_node node;
415
416 /* If the tree is empty, there is certainly no predecessor. */
417 if (!sp->root)
418 return NULL;
419
420 /* Splay the tree around KEY. That will leave either the KEY
421 itself, its predecessor, or its successor at the root. */
422 splay_tree_splay (sp, key);
423 comparison = (*sp->comp)(sp->root->key, key);
424
425 /* If the predecessor is at the root, just return it. */
426 if (comparison < 0)
427 return sp->root;
428
429 /* Otherwise, find the leftmost element of the right subtree. */
430 node = sp->root->left;
431 if (node)
432 while (node->right)
433 node = node->right;
434
435 return node;
436 }
437
438 /* Return the immediate successor KEY, or NULL if there is no
439 predecessor. KEY need not be present in the tree. */
440
441 splay_tree_node
442 splay_tree_successor (sp, key)
443 splay_tree sp;
444 splay_tree_key key;
445 {
446 int comparison;
447 splay_tree_node node;
448
449 /* If the tree is empty, there is certainly no predecessor. */
450 if (!sp->root)
451 return NULL;
452
453 /* Splay the tree around KEY. That will leave either the KEY
454 itself, its predecessor, or its successor at the root. */
455 splay_tree_splay (sp, key);
456 comparison = (*sp->comp)(sp->root->key, key);
457
458 /* If the successor is at the root, just return it. */
459 if (comparison > 0)
460 return sp->root;
461
462 /* Otherwise, find the rightmost element of the left subtree. */
463 node = sp->root->right;
464 if (node)
465 while (node->left)
466 node = node->left;
467
468 return node;
469 }
470
471 /* Call FN, passing it the DATA, for every node in SP, following an
472 in-order traversal. If FN every returns a non-zero value, the
473 iteration ceases immediately, and the value is returned.
474 Otherwise, this function returns 0. */
475
476 int
477 splay_tree_foreach (sp, fn, data)
478 splay_tree sp;
479 splay_tree_foreach_fn fn;
480 void *data;
481 {
482 return splay_tree_foreach_helper (sp, sp->root, fn, data);
483 }
484
485 /* Splay-tree comparison function, treating the keys as ints. */
486
487 int
488 splay_tree_compare_ints (k1, k2)
489 splay_tree_key k1;
490 splay_tree_key k2;
491 {
492 if ((int) k1 < (int) k2)
493 return -1;
494 else if ((int) k1 > (int) k2)
495 return 1;
496 else
497 return 0;
498 }
499
500 /* Splay-tree comparison function, treating the keys as pointers. */
501
502 int
503 splay_tree_compare_pointers (k1, k2)
504 splay_tree_key k1;
505 splay_tree_key k2;
506 {
507 if ((char*) k1 < (char*) k2)
508 return -1;
509 else if ((char*) k1 > (char*) k2)
510 return 1;
511 else
512 return 0;
513 }
This page took 0.041858 seconds and 5 git commands to generate.